

Numerical Study of Wall-Mounted Finite Span Wings

Jesse Lee Coombs

Faculty of Engineering, Computer and Mathematical Sciences School of Mechanical Engineering The University of Adelaide

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in engineering.

March 2017

Supervisors: Associate Professor Anthony C. Zander, Associate Professor Con J. Doolan, Dr. Danielle J. Moreau, Dr. Laura A. Brooks

Copyright 2012-2017 Jesse Lee Coombs

Submission date: November 7, 2016 Ammendment date: March 31, 2017

School of Mechanical Engineering The University of Adleaide, 5055 South Australia, Australia

All rights reserved. No part of this report may be used or reproduced in any form or by and means, or stored in a database or retrieval system without prior written permission of the university, except in the case of breif quotations embodied in critical articles and reviews.

Contents

\mathbf{Lis}	st of	Figures	xi
Li	st of	Tables	xii
Al	bstra	\mathbf{ct}	xiii
De	eclara	ation	xiv
Ac	cknov	vledgements	xv
1	Intr	oduction	1
	1.1	Publications	4
2	Lite	rature Review	5
	2.1	Overview of Wall-Mounted Finite Span Wing Flow Features	5
		2.1.1 Horseshoe Vortex	5 6
		2.1.2 Tip vortex	0 11
		2.1.5 Corner vortex and Separation	11
		Wing Flow Structure	11
		215 Junction Flows Subject To Pressure Gradients	12
	2.2	CFD Modelling of Wall-Mounted Finite Span Wing Flows	12
	2.3	Wall-Mounted Finite Span Wing Flow Noise Components	16
	2.4	Turbulent Boundary Laver Trailing Edge Noise and Modelling	17
		2.4.1 Empirical and Semi-Empirical Methods	17
		2.4.2 Prediction via Direct Simulation to the Far Field	18
		2.4.3 Hybrid Methods	19
		2.4.4 2D RSNM	20
	2.5	Tip Noise and Modelling	21
	2.6	Leading Edge Noise and Modelling	22
	2.7	Research Gaps	22
	2.8	Thesis Aims	23
9	Mat	hadalagies	∩ 4
J	2 1	Introduction and Justification	24 94
	0.1 2.0	Flow Modelling	24 94
	0.2	3.2.1 Governing Equations	$\frac{24}{94}$
		3.2.2 Revnolds Averaged Based Methods	24 25
		3.2.3 Discretisation and Solution	26
		3.2.4 Boundary Conditions and Wall Functions	29
	3.3	Noise Modelling	30
	3.4	BPM Tip Noise	30
	3.5	BPM TE Noise	32
	3.6	Herr TE Noise Model	33
		3.6.1 Model Formulation	33
		3.6.2 Implementation Verification	33
		3.6.3 Extension of Surface Pressure Spectrum Methods to Account for Span-	
		wise Variation in Geometric and Flow Properties	34
		3.6.4 Extension Validation	35
	3.7	LE Noise Model Method	36

		3.7.1 Theory of Amiet
		3.7.2 Validation $\ldots \ldots 37$
	3.8	RSNM Detailed Description, 3D Adaptation, and Implementation
		3.8.1 2D RSNM Detailed Description
		3.8.2 Turbulent Velocity Cross-Spectrum of the Original 2D RSNM Model 40
		3.8.3 3D RSNM Adaptation
		3.8.4 Implementation
		1
4	Tur	bulence Model Verification and Validation 47
	4.1	Study Aims
	4.2	Background
	4.3	Geometry and Boundary Locations
	4.4	Boundary Conditions
		4.4.1 Inlet Boundary Conditions
		4.4.2 Wing and Floor Boundary Conditions
		4.4.3 Symmetry Plane Boundary Conditions
		4.4.4 Outlet Boundary Conditions
		4.4.5 Roof Boundary Conditions
	4.5	Grid Generation and Independence 54
	4.6	Residual Control
	47	Turbulence Models 55
	4.8	Results 56
	1.0	4.8.1 General Results - Pressure 56
		4.8.2 General Results - Upstream Separation 57
		4.8.3 General Results - Unstream Turbulent Kinetic Energy 57
		$4.8.4 k - \epsilon \text{ Model} $ 58
		4.85 Discussion of Other Model Results
		4.8.6 Effect of Symmetry Plane - Non-symmetric Case Comparison 67
		4.8.7 Somi Infinite Wing Height Effect 74
		$4.8.7 \text{Semi-infinite wing freight Direct} \dots \dots \dots \dots \dots \dots \dots \dots \dots $
	4.0	Conclusions and Summary 70
	4.9	
5	$2\mathbf{D}$	to 3D Test Cases 80
	5.1	Introduction and Background
	5.2	Details and Methodologies
	5.3	FP12 Case Grid Independence Study
	5.4	FP12 Case Validation Against Literature Results
	5.5	NACA0012 Case Grid Independence Study
	5.6	DU96 Case Grid Independence Study
	5.7	DU96 Case Validation Against Literature Results
	5.8	3D RSNM Results
	5.9	Conclusions
	0.0	
6	Uni	iversity of Adelaide Anechoic Wind Tunnel Case 108
	6.1	Introduction
	6.2	Methodology
		6.2.1 Experimental Details
	6.3	Modelling Details
		6.3.1 Boundary Locations and Conditions
		6.3.2 Grid Generation
		6.3.3 Residual Control and Numerical Methods

	6.4	Results and Analysis	113
		6.4.1 Grid Independence Results	113
		6.4.2 Flow Visualisation and Structure	113
		6.4.3 Tip Flow Topology	123
		6.4.4 Pressure Fields	127
		6.4.5 Comparison of Simulated and Experimental Velocity Fields	127
		6.4.6 3D RSNM TE Specifications and Results	135
		6.4.7 Amiet Based LE Noise Model Specifications and Results	135
	6.5	Conclusions and Summary	139
7	Virg	ginia Tech Cases	140
	7.1	Introduction	140
	7.2	Methodology	140
		7.2.1 Experimental Details	140
	7.3	Modelling Details	141
		7.3.1 Inlet Boundary Positions and Conditions	141
		7.3.2 Zero Angle of Attack Boundary Conditions	142
		7.3.3 Non-Zero Angle of Attack Boundary Conditions	142
		7.3.4 Grid Generation	142
		7.3.5 Residual Control and Numerical Methods	142
	7.4	Results and Analysis	144
		7.4.1 Discussion and Analysis of the Moreau et al. (2015) Results	144
		7.4.2 Grid Independence Results	145
		7.4.3 Vortex Size Based Isolated Tip Noise Model	149
		7.4.4 3D RSNM TE Specifications and Results	152
		7.4.5 Amiet Based LE Noise Model Specifications and Results	161
		7.4.6 Noise Modelling Comparison	164
	6.)	Conclusions and Summary	104
8	Sun	nmary of Conclusions, and Recommendations for Future Work	167
	8.1	Summary of Conclusions	167
	8.2	Future Work	168
Re	efere	nces	170
			1.0
A	ppen	dices	180
Α	Tur	bulence Model Validation and Comparison Results Figures	180
в	Noi	se Modelling Verification and Validation Results Figures	222
С	Tur	bulence Models: Formulation and Performance	227
	C.1	The Boussinesq Hypothesis	228
	C.2	Model Classifications	228
	С.3	One Equation Models	229
		C.3.1 Spalart-Allmaras	229
	C.4	Two Equation Models	229
		C.4.1 (Standard) k- ϵ	229
		C.4.2 (Standard) k- ω	230
		C.4.3 Re-normalisation Group Theory (RNG) k- ϵ	232
		C.4.4 Shear-Stress Transport (SST) k- ω	232

		C.4.5	Realisable k- ϵ	 •		233
	C.5	Stress-	Transport Models	 •		235
		C.5.1	Launder-Reece-Rodi (LRR)	 •	 •	235
		C.5.2	Launder Gibson with Wall-Reflection Terms	 •	 •	235
D	Tur	bulenc	e Models: Wall Function Details			237
\mathbf{E}	Rich	hardso	n Extrapolation			240

List of Figures

1.1	Schematic overview of a wall-mounted finite span wing flow, including horseshoe	
	vortex, corner and tip vorticies.	3
2.1	Round ended airfoil at non-zero AOA vortex formation process diagram	8
2.2	Flat-ended airfoil at non-zero AOA vortex formation process diagram	10
2.3	Devenport and Simpson (1990) experiment diagram, adapted from Fleming et al.	
	$(1993) \ldots \ldots$	13
3.1	Diagram of arbitrary control volumes (with centroids P and N)	27
3.2	Face area vector decomposition for a non-orthogonal cell	28
3.3	Diagram showing coordinate system, TE flow, and observer location	35
3.4	LE noise model method implementation validation	38
3.5	Cylindrical coordinate system centred at the trailing edge. Adapted from (Al-	
	barracin et al., 2012a)	39
3.6	Explanation of original RSNM model breakdown	44
4.1	Computational Domain (adapted from (Paciorri et al., 2005))	49
4.2	Comparison Planes (adapted from (Paciorri et al., 2005))	49
4.3	Surfaces for Boundary Conditions (adapted from (Paciorri et al., 2005))	50
4.4	Functional Representation Curve Fit.	52
4.5	$Y/T = 0.13279$ plane comparison of the very fine mesh Realisable k- ϵ model	
	solution and experimental wing pressure coefficient	56
4.6	Plot of turbulent kinetic energy maximum amplitude and positional accuracy.	59
4.7	$k - \epsilon$ model very-fine grid flat plate pressure coefficient plot	61
4.8	$k-\epsilon$ model upwind symmetry plane velocity vector plot compared with Deven-	
	port and Simpson (1990) experiment.	62
4.9	$k - \epsilon$ model grid dependence of upstream symmetry plane velocity profiles	63
4.10	$k-\epsilon$ model plane 05 velocity contour plots compared with Devenport and Simp-	
	son (1990) experiment. \ldots	64
4.11	$k-\epsilon$ model plane 10 velocity contour plots compared with Devenport and Simp-	
	son (1990) experiment. \ldots	65
4.12	$k - \epsilon$ model turbulent kinetic energy contour plots compared with Devenport	
	and Simpson (1990) experiment.	66
4.13	Symmetry effect investigaton flat plate pressure coefficient contour plots	69
4.14	Symmetry effect investigaton upwind symmetry plane velocity vector plots	70
4.15	Symmetry effect investigaton plane 05 velocity contour plots	71
4.16	Symmetry effect investigaton plane 10 velocity contour plots	72
4.17	Symmetry effect investigaton turbulent kinetic energy contour plots	73
4.18	Height variation investigation upstream symmetry plane velocity vector plots.	75
4.19	Height variation investigation upstream symmetry plane velocity profile plots.	76
4.20	Height variation investigation upstream symmetry plane turbulent kinetic energy	
	contour plots.	77
4.21	Coarsest Grid Solution Speed Comparison	78
5.1	Schematic diagram of flat plate model geometry. Image adapted from Moreau	
	et al. (2011)	81
5.2	Slicing process visualisation	81
5.3	FP12 case mesh topology	82
5.4	FP12 case coarse mesh LE closeup	82
5.5	NACA0012 case mesh topology	83
5.6	NACA0012 case coarse mesh LE closeup diagram	83
5.7	DU96 case mesh topology	84

5.8	DU96 case coarse mesh LE closeup diagram	84
5.9	FP12 case plate surface pressure coefficient	87
5.10	FP12 case comparison of velocity profiles at $\frac{X}{C} = 1.00$ for different mesh solutions	
	with experimental data	89
5.11	FP12 case comparison of fine mesh velocity profile to those of the literature at	
	$\frac{X}{G} = 1.00$	90
5.12	FP12 case comparison of turbulence intensity profiles for different mesh solutions	
-	with experimental data at $\frac{X}{Z} = 1.00$	90
5.13	FP12 case comparison of fine mesh turbulence intensity profiles to those of the	00
0.20	literature at $\frac{X}{2} = 1.00$	91
5.14	NACA0012 case comparison of velocity profiles for different mesh solutions at	01
0.11	$\frac{X}{X} = 1$	92
5.15	C = 1	02
0.10	much solutions at $\frac{X}{2} = 1$	02
5 16	NACA0012 case comparison of aerofoil surface pressure coefficient for different	52
0.10	mosh solutions	Q./
517	DU06 esse comparison of perefeil surface pressure coefficient for different mesh	54
0.17	solutions	04
5 1 9	DU06 asso comparison drag coefficient with pearest experimental measurements	94
5.10	DU96 case comparison diag coefficient with heatest experimental measurements	90
0.19	$2.165,000$ with superimental measurements at $P_{c} = 1.570,000$	06
F 90	2,105,000 with experimental measurements at $Re_c = 1,570,000$	90
0.20	D_{0} Case comparison of near training edge turbulence intensity prome at $Re_c = 2.165,000$ with sum wine and a maximum state $Re_c = 1.570,000$	06
5 01	2, 105, 000 with experimental measurements at $Re_c = 1, 570, 000$	90
5.21	FP12 case baseline RSNM TE noise prediction NACA0012 L DONM TE	98
5.22	NACAUUIZ case baseline RSNM TE noise prediction	100
5.23	DU96 case baseline RSNM TE noise prediction	100
5.24	FP12 RSNM TE noise prediction with expectation value correction	101
5.25	NACA0012 RSNM TE noise prediction with expectation value correction	102
5.26	DU96 RSNM TE noise prediction with expectation value correction	103
5.27	FP12 RSNM TE noise prediction with expectation value correction and opti-	104
F 00	mised $C_{l_z} = 7$	104
5.28	NACA0012 RSNM TE noise prediction with expectation value correction and	105
~ ~ ~	optimised $C_{l_z} = 2$	105
5.29	NACA0012 case comparison of optimised 3D RSNM TE, with alernative noise	
	modelling methods	106
6.1	Moreau and Doolan (2013) experimental set-up, adapted from Moreau and Doolan	
	$(2013) \ldots \ldots$	109
6.2	University of Adelaide anechoic wind tunnel case sample locations for comparison	
	with Moreau and Doolan (2013) experimental results $\ldots \ldots \ldots \ldots \ldots$	110
6.3	University of Adelaide anechoic wind tunnel case computational domain	111
6.4	University of Adelaide anechoic wind tunnel case coarse mesh example	112
6.5	Comparison of midspan pressure coefficient for different mesh solutions	114
6.6	University of Adelaide anechoic wind tunnel case flow visualistion of isocontours	
	of Q coloured by flow velocity magnitude $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	115
6.7	University of Adelaide anechoic wind tunnel case wing and flat plate static pres-	
	sure coefficient visualisation $\ldots \ldots \ldots$	116
6.8	University of Adelaide anechoic wind tunnel case visualisation of U_x in the wing	
	symmetry plane	116
6.9	University of Adelaide anechoic wind tunnel case visualisation of U_z in the wing	
	symmetry plane	117

6.10	University of Adelaide anechoic wind tunnel case visualisation of U_x in the max-
	imum thickness plane
6.11	University of Adelaide anechoic wind tunnel case visualisation of U_y in the max-
	imum thickness plane
6.12	University of Adelaide anechoic wind tunnel case visualisation of U_z in the max-
	imum thickness plane
6.13	University of Adelaide anechoic wind tunnel case visualisation of U_x in a plane
	1mm downstream of the TE
6.14	University of Adelaide anechoic wind tunnel case visualisation of U_y in a plane
	1mm downstream of the TE
6.15	University of Adelaide anechoic wind tunnel case visualisation of U_z in a plane
	1mm downstream of the TE
6.16	Visualisation of the magnitude of vorticity in a plane 1mm downstream of the TE121
6.17	Comparison of University of Adelaide anechoic wind tunnel case fine mesh nor-
	malised axial velocity one quarter chord downstream of the TE with experimental
	results of Giuni and Green (2013) in chord normalised coordinates
6.18	Comparison of University of Adelaide anechoic wind tunnel case fine mesh nor-
	malised x-plane vorticity one quarter chord downstream of the TE with experi-
	mental results of Giuni and Green (2013) in chord normalised coordinates 122
6.19	University of Adelaide anechoic Wind Tunnel Case $x = 0.017$ vorticity magnitude 124
6.20	University of Adelaide anechoic Wind Tunnel Case $x = 0.035$ vorticity magnitude 124
6.21	University of Adelaide anechoic Wind Tunnel Case $x = 0.05$ vorticity magnitude 125
6.22	University of Adelaide Anechoic Wind Tunnel Case $x = 0.07$ vorticity magnitude 125
6.23	Flat ended airfoil at zero AOA vortex formation process diagram a) Vortex de-
	velopment plane definition diagram b-g) Vortex representative planes as labelled 126
6.24	University of Adelaide anechoic wind tunnel case wing port side static pressure
	coefficient visualisation
6.25	University of Adelaide anechoic wind tunnel case flat plate static pressure coef-
	ficient visualisation
6.26	University of Adelaide anechoic wind tunnel case symmetry plane velocity profile
	comparison
6.27	University of Adelaide anechoic wind tunnel case symmetry plane velocity profile
	comparison showing sample distance dependence
6.28	University of Adelaide anechoic wind tunnel case symmetry plane turbulence
	kinetic energy profiles
6.29	University of Adelaide anechoic wind tunnel case 39mm plane velocity profile
	$comparison \dots \dots$
6.30	University of Adelaide anechoic wind tunnel case 39mm plane velocity sample
	downstream distance dependence plot
6.31	University of Adelaide anechoic wind tunnel case 39mm plane turbulence inten-
	sity profile comparison
6.32	University of Adelaide anechoic wind tunnel case 64mm plane velocity profile
	comparison
6.33	University of Adelaide anechoic wind tunnel case 64mm plane turbulence inten-
	sity profile comparison
6.34	69mm plane velocity profile comparison
6.35	University of Adelaide anechoic wind tunnel case 69mm plane turbulence inten-
-	sity profile comparison

6.36	University of Adelaide Anechoic Wind Tunnel Case 3DRSNM-TE coarse mesh smallest sample region optimisation of C_{l_z} value comparison against BPM pre-	
	diction	136
6.37	University of Adelaide Anechoic Wind Tunnel Case 3DRSNM-TE mesh and sam-	
	ple region dependence and comparison	137
6.38	University of Adelaide anechoic wind tunnel case leading edge noise predition .	138
7.1	Virginia Tech cases computational domain	141
7.2	Virginia Tech cases computational boundaries diagram	143
7.3	Virginia Tech case aspect ratio $= 1$ coarse mesh visualisation	144
7.4	Moreau et al. (2015) sound map results for aspect ratio 3, $U_{ref} = 60$ m/s, zero	
	AOA wing (adapted from Moreau et al. (2015))	146
7.5	Integrated one-twelfth-octave band total airfoil, as well as isolated trailing edge,	
	leading edge, junction and tip spectra for the wall-mounted airfoil with aspect	
	ratio 3 at $U_{ref} = 60 \text{ m/s}$ and zero AOA (taken from Moreau et al. (2015)).	147
7.6	Integration regions a) Airfoil, b) Trailing and leading edges, c) Junction and tip,	
	adapted from Moreau et al. (2015)	148
7.7	Virginia Tech cases trailing edge tip vortex swirl velocity profiles	149
7.8	Isolated tip noise model compared against experimental levels for $AR = 3$,	
	AOA = 12 degrees, $U = 60[m/s]$ case	150
7.9	Isolated tip noise model compared against experimental levels for $AR = 2$,	
	AOA = 12 degrees, $U = 60[m/s]$ case	150
7.10	Isolated tip noise model compared against experimental levels for $AR = 1$,	
	AOA = 12 degrees, $U = 60[m/s]$ case	151
7.11	Isolated tip noise model compared against experimental levels for $AR = 3$,	
	AOA = 8 degrees, $U = 40[m/s]$ case	151
7.12	Isolated tip noise model compared against experimental levels for $AR = 3$,	
	AOA = 12, U = 40[m/s] case	151
7.13	Virginia Tech aspect ratio 1, zero angle of attack case, 3DRSNM-TE resulting	
	noise prediction variation of C_{l_z} value effect comparison	152
7.14	Virginia Tech aspect ratio 1, zero angle of attack case, 3DRSNM-TE coarse mesh	
	and sample region dependence and comparison	153
7.15	Virginia Tech aspect ratio 1, zero angle of attack case, 3DRSNM-TE moderate	1 50
= 10	mesh and sample region dependence and comparison	153
7.16	Virginia Tech aspect ratio 1, zero angle of attack case, 3DRSNM-TE fine mesh	
- 1 -	and sample region dependence and comparison	154
7.17	Virginia Tech aspect ratio 1, 6 degree angle of attack case, 3DRSNM-TE resulting	1
7 10	Noise prediction	154
7.18	Virginia Tech aspect ratio 1, 12 degree angle of attack case, 3DRSNM-TE re-	154
7 10	Virginia Tark and the first of the second state of the second stat	154
1.19	virginia Tech aspect ratio 2, 0 degree angle of attack case, 5DR5NM-TE resulting	1 គ គ
7.90	Virginia Task appear ratio 2.6 degree apple of attack appear 2DPSNM TE regulting	100
1.20	virginia Tech aspect ratio 2, 6 degree angle 61 attack case, 5D R5NM-TE resulting	155
7 91	Virginia Tech aspect ratio 2, 12 degree angle of attack case, 2DRSNM TE re-	100
1.41	sulting noise prediction	155
7 99	Virginia Tech aspect ratio 3 0 degree angle of attack case 3DBSNM-TE resulting	100
1.22	noise prediction	156
7.23	Virginia Tech aspect ratio 3. 6 degree angle of attack case 3DRSNM-TE resulting	100
0	noise prediction	156
	L	

7.24	Virginia Tech aspect ratio 3, 12 degree angle of attack case, 3DRSNM-TE re-	
	sulting noise prediction	156
7.25	Virginia Tech aspect ratio 1, zero angle of attack case, 3DRSNM-TE resulting	
	noise prediction variation of C_{lz} value effect comparison	157
7.26	Virginia Tech aspect ratio 1, zero angle of attack case, 3DRSNM-TE coarse mesh	
	and sample region dependence and comparison	158
7.27	Virginia Tech aspect ratio 1, zero angle of attack case, 3DRSNM-TE coarse mesh	
	and sample region dependence and comparison	158
7.28	Virginia Tech aspect ratio 1, 6 degree angle of attack case, 3DRSNM-TE resulting noise prediction	158
7.29	Virginia Tech aspect ratio 1. 12 degree angle of attack case. 3DRSNM-TE re-	
	sulting noise prediction	159
7.30	Virginia Tech aspect ratio 2. 0 degree angle of attack case. 3DRSNM-TE resulting	
	noise prediction	159
7.31	Virginia Tech aspect ratio 2. 6 degree angle of attack case. 3DRSNM-TE resulting	
	noise prediction	159
7.32	Virginia Tech aspect ratio 2. 12 degree angle of attack case. 3DRSNM-TE re-	
	sulting noise prediction	160
7.33	Virginia Tech aspect ratio 3. 0 degree angle of attack case. 3DRSNM-TE resulting	
	noise prediction	160
7.34	Virginia Tech aspect ratio 3, 6 degree angle of attack case, 3DRSNM-TE resulting	100
1.0 1	noise prediction	160
7.35	Virginia Tech aspect ratio 3, 12 degree angle of attack case, 3DRSNM-TE re-	100
1.00	sulting noise prediction	161
7.36	Virginia Tech $AB = 1$ $AOA = 0$ case leading edge noise prediction	162
737	Virginia Tech $AB = 1$ $AOA = 0$ case experimentally measured noise compo-	102
1.01	nents and total noise	162
7 38	Virginia Tech $AB = 1$ $AOA = 0$ case leading edge noise prediction	162
7 39	Virginia Tech $AB = 2$ $AOA = 0$ case leading edge noise prediction	163
7 40	Virginia Tech $AB = 2$ $AOA = 0$ case leading edge noise prediction	163
7 41	Virginia Tech cases $AB = 2$ AOA = 12 developed noise models compared against	100
1.11	those of literature	165
7.42	Virginia Tech cases $AB = 2$ AOA -12 combined developed noise models com-	100
1.12	pared against those of literature	166
A 1	BNG $k - \epsilon$ model very-fine grid flat plate pressure coefficient plot	181
A 2	BNG $k - \epsilon$ model upwind symmetry plane velocity vector plot compared with	101
11.2	Devenport and Simpson (1990) experiment	182
A 3	BNG $k - \epsilon$ model grid dependence of upstream symmetry plane velocity profiles	183
$\Delta \Delta$	BNG $k - \epsilon$ model plane 05 velocity contour plots compared with Devenport and	100
11.1	Simpson (1990) experiment	184
Δ 5	BNG $k - \epsilon$ model plane 10 velocity contour plots compared with Devenport and	101
11.0	Simpson (1000) experiment	185
Δ 6	BNG $k = \epsilon$ model turbulent kinetic energy contour plots compared with Deven	100
п.0	port and Simpson (1990) experiment	186
Δ 7	Bealisable $k = \epsilon$ model very fine grid flat plate pressure coefficient plot	187
Δ8	Realisable $k = \epsilon$ model upwind symmetry plane velocity vector plot compared	101
п.0	with Devenport and Simpson (1000) experiment	188
ΔΩ	Realisable $k = \epsilon$ model grid dependence of upstream symmetry plane velocity	100
11.3	profiles	180
	promee	103

A.10	Realisable $k - \epsilon$ model plane 05 velocity contour plots compared with Devenport	100
A 11	and Simpson (1990) experiment. \dots	190
A.11	Realisable $\kappa - \epsilon$ model plane 10 velocity contour plots compared with Devenport	101
A 19	\mathbf{R}	191
A.12	Realisable $k = \epsilon$ model turbulent kinetic energy contour plots compared with Devenport and Simpson (1000) experiment	109
A 19	Developert and Simpson (1990) experiment. $\dots \dots \dots$	192
A.15	$k - \omega$ model very-line grid hat plate pressure coefficient plot	199
A.14	$\kappa - \omega$ model upwind symmetry plane velocity vector plot compared with Deven-	104
A 15	port and Simpson (1990) experiment.	194
A.15 A.16	$k - \omega$ model grid dependence of upstream symmetry plane velocity promes $k - \omega$ model plane 05 velocity contour plots compared with Devenport and Simp-	195
	son (1990) experiment. \ldots	196
A.17	$k-\omega$ model plane 10 velocity contour plots compared with Devenport and Simp-	
	son (1990) experiment. \ldots	197
A.18	$k-\omega$ model turbulent kinetic energy contour plots compared with Devenport	
	and Simpson (1990) experiment.	198
A.19	$k - \omega$ SST model very-fine grid flat plate pressure coefficient plot	199
A.20	$k-\omega$ SST model upwind symmetry plane velocity vector plot compared with	
	Devenport and Simpson (1990) experiment.	200
A.21	$k-\omega$ model grid dependence of upstream symmetry plane velocity profiles	201
A.22	$k-\omega$ SST model plane 05 velocity contour plots compared with Devenport and	
	Simpson (1990) experiment.	202
A.23	$k-\omega$ SST model plane 10 velocity contour plots compared with Devenport and	
	Simpson (1990) experiment.	203
A.24	$k-\omega$ SST model turbulent kinetic energy contour plots compared with Devenport	
	and Simpson (1990) experiment.	204
A.25	$k - \omega$ SST model very-fine grid flat plate pressure coefficient plot	205
A.26	LRR model upwind symmetry plane velocity vector plot compared with Deven-	
	port and Simpson (1990) experiment.	206
A.27	LRR model grid dependence of upstream symmetry plane velocity profiles	207
A.28	LRR model plane 05 velocity contour plots compared with Devenport and Simp-	
	son (1990) experiment. \ldots	208
A.29	LRR model plane 10 velocity contour plots compared with Devenport and Simp-	
	son (1990) experiment. \ldots	209
A.30	LRR model turbulent kinetic energy contour plots compared with Devenport	
	and Simpson (1990) experiment.	210
A.31	Launder Gibson model very-fine grid flat plate pressure coefficient plot	211
A.32	Launder Gibson model upwind symmetry plane velocity vector plot compared	
	with Devenport and Simpson (1990) experiment.	212
A.33	Launder Gibson model grid dependence of upstream symmetry plane velocity	
	profiles.	213
A.34	Launder Gibson model plane 05 velocity contour plots compared with Devenport	
	and Simpson (1990) experiment.	214
A.35	Launder Gibson model plane 10 velocity contour plots compared with Devenport	
	and Simpson (1990) experiment.	215
A.36	Launder Gibson model turbulent kinetic energy contour plots compared with	
	Devenport and Simpson (1990) experiment.	216
A.37	Spalart-Allmaras model very-fine grid flat plate pressure coefficient plot.	217
A.38	Spalart-Allmaras model upwind symmetry plane velocity vector plot compared	
	with Devenport and Simpson (1990) experiment.	218

A.39	Spalart-Allmaras model grid dependence of upstream symmetry plane velocity	
	profiles	219
A.40	Spalart-Allmaras model plane 05 velocity contour plots compared with Deven-	
	port and Simpson (1990) experiment. \ldots \ldots \ldots \ldots \ldots \ldots	220
A.41	Spalart-Allmaras model plane 10 velocity contour plots compared with Deven-	
	port and Simpson (1990) experiment. \ldots \ldots \ldots \ldots \ldots \ldots	221
B.1	BPM tip noise implementation verification	223
B.2	BPM TE noise model implementation verification	224
B.3	Equation 3.35 implementation verification	224
B.4	Herr method farfield spectra implementation verification	225
B.5	Herr extension method farfield spectra implementation validation	226

List of Tables

2.1	Tip flow literature operating conditions summary	7
2.2	Tip vortex formation process knowledge	9
2.3	CFD modelling of wing-in-junction flows literature operating conditions summary	14
2.4	Summary of literature case operating conditions and simulated crossflow extent.	19
3.1	Herr TE noise model validation data taken from Herr et al. (2010)	33
3.2	OASPL comparison for extension validation case	36
4.1	Comparison of the ERCOFTAC suggested boundary distances and those imple-	
	mented in the present study	48
4.2	Inlet Velocity Profile Data	51
4.3	Freestream Turbulent Parameters Estimation	53
4.4	Grid Composition Information	55
4.5	Freestream Turbulent Parameters Residuals	55
4.6	Model pressure coefficient error	57
4.7	Model pressure coefficient error	57
4.8	Comparison of literature turbulent kinetic energy maximum amplitude and location	58
5.1	Test Case Summary	80
5.2	FP12 case boundary layer heights and trailing edge wall shear stresses for differ-	
	ent mesh solutions	87
5.3	FP12 case grid convergence and independence results	87
5.4	FP12 case plate surface pressure coefficient extrema	89
5.5	NACA0012 case boundary layer heights for different mesh solutions	89
5.6	NACA0012 case pressure coefficent and force results	89
5.7	NACA0012 case grid convergence and independence study results	91
5.8	DU96 case airfoil surface pressure coefficient extrema	95
5.9	DU96 case forces acting on aerofoil	95
5.10	DU96 case grid convergence and independence results	95
6.1	Test Case Summary	108
6.2	University of Adelaide anechoic wind tunnel case mesh y^+ statistics $\ldots \ldots \ldots$	112
6.3	University of Adelaide anechoic wind tunnel case boundary layer heights com-	
	parison	113
6.4	University of Adelaide anechoic wind tunnel case forces on the wing	114
6.5	Midspan pressure coefficient extrema and location	114
7.1	Mesh y^+ statistics	144
7.2	Virginia Tech aspect ratio 1, zero angle of attack case, boundary layer heights	
	comparison	147
7.3	Virginia Tech aspect ratio 1, zero angle of attack case, forces on the wing	149

7.4	Virginia Tech	cases trailing edge tip vortex si	ze
-----	---------------	-----------------------------------	----

Abstract

The extensive use of hydrofoils and airfoils in applications including domestic and military, air, water, and land vehicles, as well as air-conditioning and wind turbines, means that their design for minimally noisy and maximum aerodynamic performance, is not only an important issue for defence, but one with broader economic, health and environmental ramifications.

Wall-mounted finite span wing flows occur when a boundary layer developing on a surface encounters a hydrofoil or airfoil attached to that surface. Although fundamental to various engineering fields, there is a lack of insight into the underlying physics of these flows. Particularly important is the noise created by the complex flow structures associated with them.

The main objective of this work is to investigate the noise and associated flow structures of wallmounted finite span wings and to develop noise prediction methods for these flows. A number of recent wall-mounted finite span wing experiments (Moreau et al., 2015; Moreau and Doolan, 2013) involving flat ended finite length wings attached to flat plates are simulated using threedimensional Reynolds Averaged Navier Stokes (RANS) based methods, which provide greater insight into the complete flow structure than is available from the original experiments. The flow structures are observed and compared with experimental measurements. A flow topology model is developed to describe the observed tip vortex formation process for the zero angle of attack condition. Existing leading and trailing edge noise models that are suitable for predicting the noise from 2D airfoils are extended to be applicable for 3D airfoil applications, allowing spanwise variations in geometric and flow properties to be taken into account. Additionally, an isolated tip noise model is developed based on the size of the tip vortex obtained from RANS flow simulations. The developed noise models have been validated against experimental measurements and have been shown to agree well and thus provide a means for prediction of the noise produced by wall-mounted finite span wing flows. The increased understanding of the wall-mounted finite span wing flow structures and the increased capacity of the developed wallmounted finite span wing flow noise modelling is expected to have applications in the design of airfoils and hydrofoils with improved aerodynamic and aeroacoustic performance.

Declaration

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree. I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder(s) of those works. I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library Search and also through web search engines, unless permission has been granted.

Jesse Coombs

Acknowledgements

Thanks to my family, especially my mother, for all the many forms of support that I have been gifted.

I am indebted to my supervisors, Associate Professor Con J. Doolan, Associate Professor Anthony C. Zander, Dr. Laura A. Brooks, and Dr. Danielle J. Moreau, whose guidance, patience, and kindness, have been invaluable.

I am grateful also to Mr. Cristobal Albarracin Gonzalez, for his assistance, generally, and especially during the 3D-RSNM implementation phase.

My thanks to eResearch SA for use of the supercomputer facilities, as well as Andrew Hill and all the other eResearch SA staff for their instruction and assistance in making use of those facilities.