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Mass spectrometry-based 
determination of Kallikrein-
related peptidase 7 (KLK7) 
cleavage preferences and subsite 
dependency
Lakmali Munasinghage Silva1,4, Thomas Stoll2, Thomas Kryza1, Carson Ryan Stephens1, 
Marcus Lachlan Hastie2, Helen Frances Irving-Rodgers3, Ying Dong1, Jeffrey John Gorman2 & 
Judith Ann Clements1

The cleavage preferences of Kallikrein-related peptidase 7 (KLK7) have previously been delineated 
using synthetic peptide libraries of fixed length, or single protein chains and have suggested that KLK7 
exerts a chymotryptic-like cleavage preference. Due to the short length of the peptides utilised, only 
a limited number of subsites have however been assessed. To determine the subsite preferences of 
KLK7 in a global setting, we used a mass spectrometry (MS)-based in-depth proteomics approach that 
utilises human proteome-derived peptide libraries of varying length, termed Proteomic Identification 
of protease Cleavage Sites (PICS). Consistent with previous findings, KLK7 was found to exert 
chymotryptic-like cleavage preferences. KLK7 subsite preferences were also characterised in the P2-P2′ 
region, demonstrating a preference for hydrophobic residues in the non-prime and hydrophilic residues 
in the prime subsites. Interestingly, single catalytic triad mutant KLK7 (mKLK7; S195A) also showed 
residual catalytic activity (kcat/KM = 7.93 × 102 s−1M−1). Catalytic inactivity of KLK7 was however 
achieved by additional mutation in this region (D102N). In addition to characterising the cleavage 
preferences of KLK7, our data thereby also suggests that the use of double catalytic triad mutants 
should be employed as more appropriate negative controls in future investigations of KLK7, especially 
when highly sensitive MS-based approaches are employed.

Human Kallikrein-related peptidase 7 (KLK7) is a member of a family composed of 15 serine peptidases clus-
tered on chromosome 19q13.41–3 and reported to be involved in many pathological conditions, including skin 
inflammation, ovarian and many other cancers4–8, although its mechanism of action is still not known. Detailed 
analysis of its substrate specificity is essential in determining its natural substrate repertoire, to guide in designing 
inhibitors, artificial peptide substrates and subsequently in determining its functional consequences. To date, only 
a small number of studies have been performed9–11, where the prime (S’) and non-prime (S) side of the scissile 
peptide bond (Schechter and Berger nomenclature12) have been studied independently.

To further characterise the substrate specificity of KLK7, we employed a peptide-centric proteomics approach, 
which utilises human proteome-derived peptide libraries and liquid chromatography coupled with tandem mass 
spectrometry (LC-MS/MS), termed Proteomic Identification of protease Cleavage Sites (PICS)13 to determine 
KLK7 substrate preferences on both the prime and non-prime sides simultaneously. Thereby, we determined that 
KLK7 shows chymotryptic-like cleavage specificity by cleaving C-terminal to hydrophobic amino acids, tyrosine 
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(Y), leucine (L), phenylalanine (F), methionine (M) and tryptophan (W) at the P1 position, in agreement with 
previous studies9–11. Furthermore, KLK7 S2 and S3 subsites showed selectivity for hydrophobic amino acids, such 
as leucine (L) and valine (V) at the S2 and alanine (A) at the S3 subsite. Nonetheless, the prime side, S2′ and S3′ 
subsites, showed specificity to hydrophilic amino acid lysine (K) and a hydrophobic amino acid, alanine (A) to a 
lesser extent. This study is the first study to determine KLK7 cleavage specificities in a more global manner, ana-
lyzing subsite preferences of KLK7 on both prime and non-prime sites simultaneously.

As part of our research into the biological function of the KLK7 peptidase, we sought to ensure that the mutant 
peptidases we had generated were indeed catalytically inactive. Although mutant KLK7 (mKLK7) carrying the 
single mutation (S195A) in the catalytic triad has been widely used in in vitro cell-based protease research14, the 
activity has not been measured using more highly sensitive in-depth proteomics approaches. We observed that 
the single mKLK7 has residual chymotryptic-like activity by cleaving C-terminal to Tyrosine (Y), Leucine (L) and 
Phenylalanine (F) at the P1 position in line with active KLK7 (kcat/KM = 7.93 × 102 s−1M−1). High sequence and/
or structural similarity is evident between the KLK7 and KLK4 and KLK5 proteins, suggesting potential residual 
activity may also occur in S195A mutant KLK4 and KLK5. We then produced S195A mKLK4, which also showed 
residual catalytic activity (kcat/KM = 6.13 × 103 s−1M−1). These observations of residual catalytic activity of single 
mKLK4 and mKLK7 when mutated at the Ser residue led us to make an additional point mutation in both the 
mKLK7 and mKLK4 catalytic triad, D102N (asparagine), which showed no catalytic activity in subsequent assays.

Results
Single mutant KLK7 does not appear to have any residual activity.  Active KLK7 and mKLK7 
(S195A) were produced in the Pichia pastoris expression system. To ensure correct sequences with appropriate 
mutations where expected, sequence coverage analysis of the produced peptidases was performed using trypsin 
digestion followed by MS analysis. Only the peptides identified with high confidence (i.e. >99% protein and 
>95% peptide probability) were further analysed (Supplementary Table 1). Recombinant active KLK7 was identi-
fied with 12 unique peptides, 24 unique spectra (out of a total of 32) and 68% protein coverage (172/253 residues) 
(Fig. 1a). Similarly, recombinant mKLK7 was identified with 21 unique peptides, 49 unique spectra and 79% 
protein coverage (199/253 residues). High confidence tryptic peptides were identified with the S195A muta-
tion confirming successful generation of mKLK7 (Fig. 1b). Moreover, minimal protein contamination from the 
expression system was identified.

Figure 1.  KLK7 and mKLK7 protein identity. (a) Surface exposed residues corresponding to the catalytic 
triad (His57, Asp102 and Ser195; Schechter and Berger notation12) of KLK7 were identified on the three 
dimensional (3D) structure available in Protein Data Bank (PDB, accession: 2QXG.pdb in standard serine 
protease orientation) using SPDBV v4.10. (b) In addition, S195A mutation was made using the mutation tool 
on SPDBV v4.10. Alongside, are the peptides identified in the MS analysis (Underlined; identified with a 99% 
protein probability and 95% peptide probability cut off) of trypsin-digested (a) active KLK7 and (b) mKLK7 
aligned with the KLK7 full length protein (UniProtKB; P49862-1). The pro-signal peptide (in blue box) was 
not included in the expression construct, thus obtaining mature amino acid sequences for these peptidases. 
Expected mutation, S195A was identified in the MS-identified mKLK7 peptide sequence as highlighted in red 
bold letter.
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Activity of these peptidases was first analysed using casein-zymography, a KLK7-specific peptide substrate 
and a protein substrate, fibronectin (FN). Only the active KLK7 but not mKLK7 showed proteolytic activity 
on the casein-zymogram as indicated by a cleared area at ~25 kDa (Fig. 2a). Activity is further indicated by 

Figure 2.  Activity of KLK7 and mKLK7. (a) Coomassie-stained 1% casein zymography: cleared area at 
approximately 25 kDa shows digestion of casein by active KLK7 while mKLK7 has not digested casein, 
suggesting no activity. (b) Activity with a KLK7-specific peptide substrate MeO-Suc-Arg-Pro-Tyr-MCA: time 
versus absorbance (corrected mean ± SD) plot showing activity of KLK7 compared to no activity with mKLK7 
and substrate only control (n = 6; mean ± SD). (c) Activity against a KLK7 protein substrate fibronectin: KLK7 
and mKLK7 incubated with fibronectin (KLK7/FN: 1/10 molar ratio) visualised by silver-stained SDS-PAGE. 
Black arrow heads indicate KLK7-generated cleavage fragments. No cleavage was observed for mKLK7. (d) 
For KLK7 and (f) mKLK7 the percentage amino acid occurrences in P6-P6′ derived from both libraries were 
calculated and are shown in the form of a two-dimensional heat map. Both libraries confirm the predominant 
KLK7 specificity for Y, L and F in P1. The mKLK7-treated (f) tryptic and GluC libraries confirm the mKLK7 
specificity for Y in P1. White line depicts the scissile peptide bond between P1 and P1′. (e) KLK7 and (g) 
mKLK7 cleavage sites derived from both libraries are displayed as icelogos by analysing their multiple sequence 
alignments. The height of the single amino acid residue (in bits) reflects its occurrence rate for each position in 
P10-P10′. Amino acids are coloured according to their physico-chemical properties.
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increasing absorbance over time towards the MeO-Suc-Arg-Pro-Tyr-MCA peptide substrate (Fig. 2b) and cleav-
age of the protein substrate, fibronectin (Fig. 2c); mKLK7 appeared to have no activity.

The Proteomic Identification of protease Cleavage Sites (PICS) analysis of KLK7.  To assess the 
cleavage preferences of KLK7, PICS analysis was performed by first generating tryptic and GluC peptide librar-
ies by treating HEK-293 whole cell lysate with either trypsin (cleaves C-terminal to Arg/Lys) or GluC (cleaves 
C-terminal to Glu/Asp) enzymes. The generated Tryptic and GluC libraries were treated with equivalent amounts 
of KLK7 or mKLK7 peptidase followed by the isolation of neo-N-termini and analysis by LC-MS/MS. The active 
KLK7 cleavage site specificities were predominantly chymotryptic-like by cleaving C-terminal to Y, L, F, M and 
W at the P1 position (Fig. 2d,e). Additionally, the other significant KLK7 cleavage site specificities, natural abun-
dance >2, besides the L, F, Y, M and W at the P1 position, were primarily located in P2-P2′ (Supplementary 
Figure 1). Outside of P2-P2′, except glycine (G) at the P3′-P6′ positions, the amino acid ratios did not signifi-
cantly exceed the natural amino acid composition, suggesting the non-random occurrence of amino acid levels 
in P2-P2′ (Supplementary Figure 1). Therefore, the frequency of occurrence of each unique P2-P2′ sequence 
combination was assessed.

In the KLK7-cleaved tryptic library, 130 P2-P2′ sequences were repeatedly identified in different peptides 
and L, F, Y, M and W were present in 28.5%, 23.1%, 21.7%, 5% and 4.1% of all P1 positions (1403) respectively. 
Similarly, in the GluC library, 20 P2-P2′ sequences were repeated in different peptides and L, Y, F, R, M and W 
were present in 25.8%, 20.4%, 15%, 6.5%, 4.5% and 2.3% of all P1 positions (353) respectively (Supplementary 
Figure 2). As shown previously15, KLK7 was detected to cleave C-terminal to R at the P1 position to a much lesser 
extent (6.5% of all cleavages detected), confirming minor tryptic-like specificities of KLK7.

In addition, analysis of the P2-P2′ peptides revealed subsite cooperativity of KLK7. In this analy-
sis only the GluC-derived peptides were analysed as this library allowed for screening of both tryptic- and 
chymotryptic-like specificities (Supplementary Figure 2b). Hydrophobic amino acids, predominantly L and V 
were preferred at the P2 position, as shown previously16. Interestingly, the oxidized insulin β chain cleavage site, 
Glu-Ala-Leu-Tyr↓Leu-Val-Cya-Gly (↓indicates cleavage) matched with the above cleavage profile. On the other 
hand, hydrophilic K was preferred at the P1′ position in agreement with the cathelicidin antimicrobial peptide, 
Gly-Lys-Glu-Phe↓Lys-Arg-Ile-Val17 and the P2′ position showed selectivity to hydrophobic A and V predom-
inantly and hydrophilic K to a lesser extent. Moreover, subsite dependency between P3-P3′ for all positional 
occurrences >1 × natural abundance was calculated using the CLIP-PICS web server18 (Table 1). Therein, occur-
rence of A, K, N, Q and V at the P3 position was shown to positively affect amino acid occurrence at P2, P1′ and 
P3′ positions and vice versa.

The PICS analysis of mKLK7 suggests mKLK7 still has residual activity.  Intriguingly, 
mKLK7-treated tryptic and GluC peptide libraries showed specificity to Y, F and to a lesser extent L, at the P1 
position (Fig. 2f,g), as per those treated with KLK7. Similarly, in mKLK7-treated samples, additional significant 
cleavage site specificities were located between P2-P2′ while occurrence of other amino acids in other positions 

Fixed residue
Affected 
residue(s) Change (percentage-points) Vice-Versa change

P3_A P1prime_A 11.6 11.4

P3_A P2_V 16.4 16

P3_K P2_K 11.5 12.5

P3_N P1prime_A 18.6 11.2

P3_Q P1prime_R 13.4 12.4

P3_Q P2_K 10.8 12.2

P3_Q P3prime_D 17.1 14.6

P3_Q P3prime_V 18.2 11.1

P3_V P2_P 22 14.9

P3_V P3prime_N 10.6 19.1

P2_K P1prime_S 19.3 12.3

P2_K P2prime_N 14.8 20.8

P2_V P1_F −12.7 −10.3

P2_V P1prime_A 11.1 11.1

P1_Q P3prime_I 15.6 11.3

P1prime_H P2prime_M 21.3 19.7

P1prime_R P3prime_V 15.9 10.5

P2prime_N P3prime_I 25.1 13

Table 1.  Potential subsite cooperativity analysis for KLK7. Potential subsite cooperativity analysis for 353 KLK7 
cleavage sites detected in the GluC library was calculated using the CLIP-PICS web server (http://clipserve.
clip.ubc.ca/pics)18. Minimum difference for subsite dependency was set to ±10 percentage-points. Subsite 
dependency was checked for all positional occurrences >1 × natural abundance and restricted to P3-P3′. 
Subsites with a change ≥15 percentage-point are bold.

http://1
http://1
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did not significantly exceed natural occurrence. These observations therefore suggested that mKLK7 (S195A) 
retains residual enzymatic activity. Overall, 121 mKLK7-cleaved peptides identified in the tryptic library, with 
119 peptides possessing different P2-P2′ sequences (Supplementary Tables 4, 7). Only two P2-P2′ sequences 
were repeated in different peptides and Y, L and F were present in 41%, 17.3% and 23.9% of all P1 positions 
(121) respectively. In the GluC library, of 141 peptides, 131 possessed different P2-P2′ sequences (Supplementary 
Tables 5, 7). Ten P2-P2′ sequences were repeated in different peptides and Y, L and F were present in 46%, 23.4% 
and 19.8% of all P1 positions (141) respectively. Notably, mKLK7 cleaved 10% and 40% of the active KLK7–
cleaved tryptic (1,403) and GluC (353) peptides respectively.

DmKLK7 is catalytically inactive.  Given the residual activity observed for the S195A mKLK7, we sought 
to mutate an additional residue in the catalytic triad to completely ablate activity. The dmKLK7 was produced in 
the Pichia pastoris expression system by mutating the D102N additional to the S195A mutation in the catalytic 
triad. Sequence coverage analysis of the produced dmKLK7 peptidase was performed using trypsin digestion 
followed by MS analysis. Only the peptides identified with high confidence (i.e. >99% protein and >95% peptide 
probability) were further analysed (Supplementary Table 1). The dmKLK7 was identified with 12 unique peptides, 
22 unique spectra (of a total of 33) and 45% protein coverage (114/253 residues). Further, both the D102N and 
S195A mutations were detected in the tryptic peptides identified for dmKLK7 (Fig. 3a).

Interestingly, the dmKLK7-treated tryptic library resulted in 11 peptide identifications (background noise) 
with scattered cleavage site specificities within P6-P6′ (Fig. 3b). In fact, no L, F, and Y cleavages were observed at 

Figure 3.  Activity profile of the double mutant KLK7 (dmKLK7). (a) Surface exposed residues corresponding 
to the catalytic triad of dmKLK7 (His57, Asn102 and Ala195) are shown on the 3D-structure available in PDB 
(accession: 2QXG.pdb in standard serine protease orientation) using SPDBV v4.10. Alongside, are the peptides 
identified in the MS-analysis (underlined) aligned with the KLK7 full length protein (UniProtKB; P49862-1).  
S195A and D102N mutations are as highlighted in red bold letters. (b) dmKLK7 cleavage site preferences 
in the tryptic-PICS library (1:50; enzyme/library) in the form of a 2D-heat map showing scattered cleavage 
specificities from P6-P6′ with no chymotryptic-like cleavage site specificities. (c) Casein-zymogram comparing 
active KLK7, mKLK7 and dmKLK7; (d) MeO-Suc-Arg-Pro-Tyr-MCA peptide substrate assay (n = 6, 
mean ± SD) with mKLK7 and dmKLK7; and (e) silver-stained SDS-PAGE with the protein substrate, FN, 
comparing active KLK (1/10 to 1/1000) with dmKLK7 .

http://4
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the P1 site as observed in the mKLK7-treated PICS libraries. Additionally, the P2-P2′ profiles in dmKLK7 showed 
no similarity to any of the KLK7 P2-P2′ profiles except for one sequence similar to the mKLK7-generated pep-
tide (NQVALN↓PQNTV) in the tryptic library (Supplementary Tables 6, 7). Furthermore, no catalytic activity 
was observed on a casein-zymogram (Fig. 3c), with the peptide substrate (Fig. 3d), or with a protein substrate, 
fibronectin (Fig. 3e). Of note, dmKLK7 showed reduced catalytic activity compared to the ~1% residual activity 
of mKLK7 with the MeO-Suc-Arg-Pro-Tyr-MCA peptide substrate (Fig. 3d).

For further verification, Michaelis-Menten kinetics was calculated for KLK7, mKLK7 and dmKLK7 (Table 2, 
Supplementary Figure 4), which reflected the residual activity of mKLK7. The mKLK7 (S195A) showed a reduc-
tion in turnover number (kcat) by ~72-fold, whilst the dmKLK7 velocity values for increasing substrate concentra-
tions did not fit the Michaelis-Menten kinetics curve, suggesting no residual activity of dmKLK7 (Supplementary 
Figure 4). S195A mutation caused a small increase in KM, ~1.5-fold, which may result from alterations in substrate 
binding upon S195A mutation as described for subtilisin mutants19. Interestingly, the enzyme efficiency dropped 
~102-fold compared to that of KLK7, although dmKLK7 resulted in complete inactivation. Mutation of both S195 
and D102 residues in subtilisin and trypsin resulted in reduced turnover number (kcat)19, 20. To confirm negative 
contamination of mKLK7 at the DNA construct level, mKLK7 and dmKLK7 constructs were re-produced in the 
Pichia system. The newly produced mKLK7 also showed similar activity as observed previously (Supplementary 
Figure 5), while the newly produced dmKLK7 remained inactive (data not shown).

Other KLK family members may have a similar propensity to retain catalytic activity with a 
single S195A mutation.  The sequence similarity between the 15 members of KLK family is high1 with 
KLK7 showing highest sequence similarity to KLK4 and KLK5 (Fig. 4a) with particularly high sequence conser-
vation surrounding the catalytic triad residues (Fig. 4b)1, 21. Thus, active KLK4, mutant KLK4 (S195A) and double 
mutant KLK4 (S195A and D102N) were produced. Interestingly, the mKLK4 showed partial activity by cleaving 
the peptide substrate, d-VLR-AFC (Fig. 4c, Supplementary Figure 4f), which was not observed with dmKLK4 
(S195A/D102N) (Fig. 4c, Supplementary Figure 4g) and supported by kinetics values (Table 2). The mKLK4 
showed 35-fold reduction in kcat and a ~2.5-fold increase in KM while the dmKLK4 kinetic values did not fit the 
Michaelis-Menten curve, suggesting no residual catalytic activity (Supplementary Figure 4d–g).

Discussion
In the present study we report the first instance to analyse the prime and non-prime side specificities of KLK7 
simultaneously using a MS-based approach. Moreover, we report the importance of extensive screening for 
the activity of mutated peptidases that are in use as catalytically inactive experimental controls due to detected 
residual activity of two Kallikrein-related peptidases, KLK4 and KLK7, mutated at the catalytic serine residues 
(S195A).

Herein, we used a mass spectrometry-based Proteomics Identification of protease Cleavage Sites (PICS) 
approach to determine cleavage preferences of KLK7 and mKLK7 (S195A). The active KLK7 cleavage site speci-
ficity profiles obtained in the present study are in excellent agreement with other studies where KLK7 was shown 
to have chymotryptic-like cleavage site specificities9–11. Of note, the cleavage preferences detected in this study 
are in accord with Skytt et al.9, where KLK7 was shown to cleave oxidized bovine insulin B chain predominantly 
C-terminal to Y, F and L, unlike other studies that have shown KLK7-mediated predominant cleavage of varying 
combinations, including F, Y or M10 and Y, A or M11. Despite significant differences in the starting material used, 
i.e. mammalian (C127 mouse) cell -derived KLK7 with the oxidized bovine insulin B chain as the substrate in 
Skytt et al.9, and Pichia pastoris-secreted KLK7 with HEK-293 cell-derived peptides in the current study, similar 
cleavage preferences were observed.

Moreover, in the present study, both trypsin- and GluC-derived libraries were used to emphasize the KLK7 
cleavage site specificity profile. Tryptic peptides lack internal Lys and Arg residues and thus cannot be used in 
investigating subsite preferences for basic amino acids. Therefore, in addition to the tryptic library, PICS librar-
ies were generated using GluC which cuts C-terminal to Glu and Asp. As a result, both the chymotryptic- and 
tryptic-like specificities of KLK7 were determined with high consistency using trypsin- and GluC-derived librar-
ies respectively. Further, the use of different enzymes to prepare the peptide libraries overcame bias associated 
with peptide secondary structure formation and interactions that could occur distant to the active site cleft 

Enzyme Active site configuration kcat (s−1) KM (µM)
kcat/KM 
(s−1M−1) % Activity*

KLK7 Ser195 Asp102 His57 24.5 ± 0.7 303.6 ± 20.16 8.08 × 104 100

mKLK7 Ala195 Asp102 His57 0.34 ± 0.09 429.6 ± 224.2 7.93 × 102 0.98

dmKLK7 Ala195 Asn102 His57 N/A N/A N/A N/A

KLK4 Ser195 Asp102 His57 21.9 ± 0.6 40.53 ± 3.77 5.41 × 105 100

mKLK4 Ala195 Asp102 His57 0.618 ± 0.09 101 ± 41 6.13 × 103 1.13

dmKLK4 Ala195 Asn102 His57 N/A N/A N/A N/A

Table 2.  Kinetics parameters of mutant KLKs (KLK4 and KLK7) at pH 8.0. Kinetic parameters for the active 
and mutant KLKs were measured using the MeO-Suc-Arg-Pro-Tyr-MCA (for KLK7) and d-VLR-AFC (for 
KLK4) substrates. KM and kcat values were calculated using the nonlinear regression analysis in Graphpad 
Prism (n = 6). Velocity values for dmKLK7 and dmKLK4 did not fit the Michaelis-Menten curve suggesting no 
residual activity and indicated as N/A. Data are presented as ±standard error. *Percentage activity of mKLKs is 
calculated relative to the catalytic activity of KLKs with MeO-Suc-Arg-Pro-Tyr-MCA or d-VLR-AFC substrates.
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distorting cleavage events22. However, chemical modification of the sulfhydryls and primary amines of the pep-
tides may have modified the peptidase cleavage preferences13.

Previous studies on KLK7 subsite preferences9–11 have employed synthetic peptide libraries of fixed length or 
oxidized bovine albumin B chain as a substrate, subsequently limiting the potential for subsite analysis. On the 

Figure 4.  KLK family sequence similarity. (a) Human KLK full length protein sequences (UniProtKB) were 
aligned using Clustal Omega. Phylogram indicated high sequence similarity between KLK7, KLK4 and KLK5 
(in box). (b) KLK4, 5 and 7 sequence alignment represents high sequence similarity adjacent to the catalytic 
triad residues (His57, Asp102 and Ser195 in red). N-termini of mature KLKs starting at Ile16 is shown in bold 
letters. “*”, a single, fully conserved residue; “:”, conservation between groups of strongly similar properties-
scoring >0.5^; “ . ”, conservation between groups of weakly similar properties-scoring ≤0.5^; ^Gonnet PAM250 
matrix. (c) mKLK4 showed residual activity against d-VLR-AFC peptide substrate compared to the dmKLK4.
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other hand, in the PICS assay, KLK7 peptidases were incubated with human proteome-derived highly diverse 
peptide sequence libraries of variable peptide length which can improve peptide recognition22. Moreover, these 
human proteome-derived peptides more closely represent physiological cleavage events due to similar glyco-
sylation and other post-translational modifications, which may interfere with cleavage events, and were not 
accounted for in the previous studies. By detecting >1,000 individual cleavage sites in a single experiment, PICS 
allowed robust statistical analysis of subsite cooperation. Contrary to other studies, we were able to study the 
P6-P6′ range of KLK7 simultaneously, where other studies have studied P1-P410 and P1′-P3′11 individually, thus 
lacking a more complete picture of the cooperativity between prime and non-prime side residues. Herein, we 
showed that KLK7 shows selectivity to hydrophobic amino acids in the P2-P2′ positions although hydrophilic K 
was preferred at the P1′ position.

Pichia pastoris is an efficient system for the secretion of correctly folded and N-linked glycosylated proteins, 
despite lacking the complex glycosylation that is present in higher order eukaryotes23. As shown in the literature, 
KLK7 and the mutants produced in the Pichia system were not N-linked glycosylated (data not shown) due to the 
presence of a sequon at Asn239 in the terminal α-helix24. Therefore, the observed high molecular weight bands of 
stratum corneum-extracted KLK7 may be partially O-linked glycosylated at Thr144 as predicted by the NetOGlyc 
4.0 Server (http://www.cbs.dtu.dk/services/NetOGlyc/), however not further verified to date25. Although we can-
not exclude that difference in such complex post-translational regulation may have had some effect on the cleav-
age preference of KLK7, we note the selectivity profiles obtained here were similar to those obtained in other 
studies using mammalian cell-line derived KLK79. Further, whilst the kinetics values obtained here for KLK7 
produced in pichia showed slightly different efficiency (kcat/KM = 8.08 × 104 s−1M−1) than reported for human 
stratum corneum-extracted KLK7 for the cleavage of the same MeO-Suc-Arg-Pro-Tyr-pNA/AMC substrate  
(kcat/KM = 1.8 × 103 s−1M−1), this may be the result of different detection approaches (absorbance vs fluorescence)26.

Identification of cleaved peptides in the mKLK7-treated library by PICS analysis revealed the residual pro-
teolytic activity of mKLK7 that was not detected by the other methods used, such as casein-zymography, the 
chromogenic peptide substrate-based activity assay and a protein substrate, fibronectin (FN). These techniques 
employ a single recombinant protein digestion or a single peptide sequence/substrate (fluorescent/chromog-
enic substrate assays) which offer a limited number of potential cleavage sites that is efficiently cleaved by 
KLK7, but not by mKLK7. The PICS method on the other hand is a highly sensitive approach which provides 
proteome-derived peptide libraries with a multitude of potential cleavage sites for mKLK722. Furthermore, cleav-
age products generated in the PICS assay can be sensitively detected by MS, whereas any cleavage of proteins into 
peptides by mKLK7 to this low extent would not be detected by less sensitive methods like zymography or silver 
staining. Interestingly, mKLK7 showed a slightly increased preference to Y at the P1 position compared to that of 
wild type KLK7. Substitution of S with A might have increased the hydrophobicity of the KLK7 substrate binding 
pocket, aiding the change of preferences observed in the PICS assay27. It is unknown to what extent this residual 
activity may have an effect in biological assays both in vitro and in vivo when analysing the role of KLK7. Hence it 
is important to be certain that a truly catalytically inactive control is used.

Given the findings above, a dmKLK7 was produced by mutating S195A and D102N in the catalytic triad in 
order to remove any residual activity of mKLK7. The dmKLK7 did not show any chymotryptic-like specific-
ity with the PICS assay but only 11 peptide identities with scattered cleavage site specificities depicting back-
ground noise. Further, no activity was observed with the peptide substrate or the protein substrate, fibronectin. 
Moreover, the dmKLK7 kinetics values did not fit the Michaelis-Menten kinetics curve exhibiting no residual 
activity. Hence, the dmKLK7 (D102N/S195A) was considered catalytically inactive compared to the partially 
active mKLK7 (S195A).

KLK7 is a member of a family of 15 peptidases that are encoded by fifteen structurally similar conserved genes 
clustered together on chromosome 19q13.41, 28. KLK7 showed high sequence similarity to KLK4 and KLK5 and 
high sequence conservation around the catalytic triad residues within these three genes. Thus, KLK4 and KLK5 
may also require both point mutations, S195A and D102N in the catalytic triad to completely remove their cat-
alytic activity. To scrutinize this possibility, we produced the wild-type KLK4 and mKLK4 with S195A mutation 
in the catalytic triad using the SF9 insect expression system. Use of different expression systems was expected to 
exclude any technical bias associated with individual expression systems and to ascertain that this residual activity 
is not an artefact of the expression system employed. Interestingly, the mKLK4 showed partial activity by cleaving 
the peptide substrate, d-VLR-AFC, which was not observed with dmKLK4 (S195A and D102N) and supported 
by kinetics values.

Observation of residual activity with both mKLK7 and mKLK4, produced independently of each other in two 
different expression systems confirmed that these KLKs are catalytically active (~1% activity of the wild-type) 
even in the absence of the serine nucleophile and is not an artefact of the expression system used. Notably 
our peptidases were prepared in isolation, preventing any possible contamination between active and mutant 
material, which could have been a possible confounder. This similar activity of a mutant lacking the conserved 
Ser195 residue in the catalytic triad, suggests a common additional enzymatic function may exist in this fam-
ily, which could result from stabilization of a transition state by amino acids outside the catalytic triad19 or by 
substrate-assisted catalysis. In the latter possibility, substrate amino acids could directly participate in catalysis, 
such has been suggested previously in instances where one or more residues of the enzyme catalytic triad have 
been mutated19, 29, 30. Indeed, residual activity of S195A trypsin and subtilisin has been already reported19, 20, 
which could be similar to what we have observed in this analysis.

Additionally, in a previous study, on the related rat anionic trypsin, a 7-fold lower kcat was observed with 
S195T compared to S195A mutation, suggesting a further reduction in enzymatic activity by S195T substitution20. 
Further, it has been shown that D102N mutated trypsin can still bind to inhibitors directed at Ser195 or His57 
several magnitudes slower than wild-type trypsin31, suggesting possible binding of the substrate to the Asp102 
and/or His57 in the KLK7 catalytic triad upon S195A mutation. Perhaps such tetrahedral intermediates formed 

http://www.cbs.dtu.dk/services/NetOGlyc/
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in the absence of the Ser195 could decompose by attack of a H2O OH− ion. Thus, pH dependent measurement of 
mKLKs compared to their wild type KLKs would be of interest, especially given the possibility that the residual 
enzymatic activity of mKLK7 could be mediated by nucleophilic attack of a water OH− ion. These instances high-
light the highly cooperative role the catalytic triad plays in the catalytic mechanism and this is the first instance 
to report residual catalytic activity of S195A mutation of two members of the KLK family as already reported for 
other serine proteases, including trypsin and subtilisin19, 20. However, the alternative catalytic mechanism through 
which these serine peptidases function in the absence of Ser195 is yet to be elucidated.

Conclusion
This is the first MS-based in-depth analysis to elucidate KLK7 subsite preferences and subsite co-operativity 
using human proteome-derived peptide libraries. Thereby, consistent with previous findings, KLK7 was found 
to exert chymotryptic-like cleavage preferences by cleaving predominantly C-terminal to Tyrosine, Leucine, 
Phenylalanine, Methionine and Tryptophan at the P1 position. KLK7 subsite preferences were also character-
ised in the prime and non-prime region simultaneously (P2-P2′), demonstrating a preference for hydrophobic 
residues in the non-prime and hydrophilic residues in the prime subsites. Moreover, we report residual catalytic 
activity of mKLK7 and mKLK4 with a single point mutation in the catalytic triad (S195A). Our observations 
suggest multiple point mutations (D102N/S195A), as validated herein, in the KLK7 or KLK4 catalytic triad to 
obtain a completely catalytically inactive KLK7 or KLK4 as experimental controls. Use of appropriate controls is 
important in deducing the precise roles of proteases and this information may aid in determining better controls 
for future experiments involving KLK7 or KLK4 in disease biology.

Methods
Recombinant KLK peptidase production.  The pre-pro-KLK7 and KLK4 coding sequences [National 
Centre for Biotechnology Information (NCBI) reference sequence (RefSeq): NM_005046.3 and NM_004917.3 
respectively] were PCR amplified from OVCAR-3 and LNCaP cells (ATTC) respectively. KLK4 pro-region was 
substituted with the enterokinase (EK) activation site (c. 1–69; NCBI RefSeq: NM_002769.4). S195A and D102N 
mutations were made using site-directed mutagenesis and sub-cloned into the pPIC9K vector followed by expres-
sion in Pichia pastoris GS115 cells32 or SF9 cells33 as described previously.

Secreted recombinant peptidases were purified from culture supernatant by cation exchange chromatography. 
Briefly, cells and insoluble debris were removed by centrifugation. Clarified culture supernatant was incubated 
with UNOSphere S cation exchange resin (Bio-Rad; 4 °C, O/N). Resin was recovered by column filtration and 
the KLK proteins were eluted using a stepped gradient of 50 mM K2HPO4 pH 7.5 buffer containing 0-500 mM 
NaCl, followed by a final elution at 1 M NaCl containing 50 mM K2HPO4. Fractions containing the KLK proteins 
were further purified using a pre-packed cation exchange Resource S column (GE Life Sciences), according to the 
manufacturers’ instructions. A 12,500:1 ratio of pro-KLK4: EK (w/w) was employed to process pro-KLK4 (23 °C, 
18 h). EK-treated pro-KLK4 and pro-mKLK4 were further purified by anion exchange chromatography using a 
Resource Q column (GE Life Sciences) according to the manufacturers’ instructions.

To avoid cross-contamination, mKLKs were purified before wild type KLKs, and multiple blank runs carried 
out prior to, and following, purification of each peptidase. Fractions containing KLK peptidases, and no detect-
able contaminating proteins, were identified by silver-stained SDS-PAGE and pooled for further concentration 
with Amicon centrifugal filter units (Millipore, 3 kDa molecular weight cut off). Total protein concentration was 
determined using a BCA assay. Enzyme aliquots were stored at −80 °C and thawed aliquots re-frozen up to once 
only prior to use.

Activity of the produced peptidases.  Casein zymography.  Native protein samples were resolved by 
a 12% SDS-PAGE gel incorporated with 1% casein. Gels were washed (Novex® renaturing buffer, Invitrogen), 
developed at 37 °C, O/N (Novex®), and stained with coomassie brilliant blue R-250.

Activity against a fluorogenic peptide substrate.  Peptidases at 5 nM final concentration was incubated with a 
peptide substrate (MeO-Suc-Arg-Pro-Tyr-7-amino-4-methylcoumarin; 50 μM final) in assay buffer (0.1 M 
Tris-HCl; pH 8.0, 0.1 M NaCl, 10 mM CaCl2, 0.005% Triton X-100 [v/v], 37 °C). Relative fluorescence units (RFU) 
were recorded using the POLARstar® Omega Plate Reader Spectrophotometer (BMG Labtech; ex 400 nm, em 
505 nm; 37 °C). The substrate with buffer was employed as the control. Results presented correspond to mean of 
RFU values +/− S.D. calculated on 6 technical replicates. Activity of KLK4 peptidases were measured using the 
d-Val-Leu-Arg-7-amido-4-trifluoromethyl coumarin (d-VLR-AFC) peptide substrate as above.

Active site titration.  KLK7 was reacted (37 °C, 15 min) with serial dilutions of recombinant human (rh) Serpin 
A3/α1-Antichymotrypsin (ACT) (R&D Systems), a known covalent inhibitor of KLK734, before fluorescent sub-
strate addition (100 μM; Lys-His-Leu-Tyr-para nitroaniline or KHLY-pNA35) in assay buffer. The initial rate of 
KLK7 activity (Δ Optical Density min−1; Δ OD min−1), measured in a PolarStar Optima microplate reader 
(BMG Labtech; 405 nm; 37 °C), was plotted against respective inhibitor concentrations and extrapolated to Δ 
OD min-1 = 0 to find the concentration of ACT required for complete KLK7 inhibition, equal to the concentra-
tion of active KLK7 (1:1 stoichiometry). 2.5 nM ACT was considered required to completely inhibit 3 nM total 
KLK7 and considering the purity of ACT (90%), KLK7 was calculated to be composed of 75% active material 
[(2.5/3) * 90% = 75%]. Active site titration was performed to determine the concentration of active KLK4, with 
serial dilutions of α2-antiplasmin (R&D Systems), a known covalent inhibitor of KLK434, and the d-Val-Leu-Arg- 
7-Amido-4-trifluoromethylcoumarin (d-VLR-AFC) trypsin-like peptide substrate (data not given) as for KLK7.
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Michaelis-Menten Kinetics.  Velocity (in relative fluorescence units [RFU]) of enzyme-substrate reaction was 
measured with increasing substrate (MeO-Suc-Arg-Pro-Tyr-7-amino-4-methylcoumarin [AMC]) concentra-
tion (0–250 μM) using the POLARstar® Omega Plate Reader Spectrophotometer (BMG Labtech; ex 400 nm, 
em 505 nm; 37 °C). RFU was converted to nM using a standard curve derived using a dilution series of AMC. 
Kinetics values (KM, kcat and Vmax) were calculated using the non-linear regression analysis in the GraphPad Prism 
software. Results presented correspond to mean of RFU values +/− S.D. calculated on 6 technical replicates. 
D-VLR-AFC peptide substrate was used in determining KLK4 kinetics values.

PICS specificity assay.  Generation of PICS peptide libraries.  The HEK293-F cell line (Invitrogen) was 
grown in suspension (5 L) using the chemically-defined, protein-free CD 293 medium (Invitrogen) supplemented 
with 4 mM GlutaMAX. Whole cell lysate was prepared as described previously13, 22. Briefly, the proteome derived 
from the HEK293-F cell line was digested with either trypsin or GluC (1:100; enzyme to proteome w/w) to gen-
erate respective peptide libraries (final peptide concentration of 1.3 μg μL−1) followed by LC-MS/MS analysis as 
described below in ‘PICS analysis of KLK7 and mKLK7’.

Determination of cleavage preferences.  Experiment 1 contained the active KLK7 (5 μg total protein = 3.75 μg 
active enzyme, enzyme: library ratio 1:53) and the tryptic/GluC peptide library (200 μg). Buffer conditions were 
adjusted to 100 mM HEPES pH 7.4 and phosphate buffered saline (12 mM phosphate pH 7.4, 137 mM NaCl, 
2.7 mM KCl) and incubated for 16 hrs, 37 °C. In experiment 2 and 3 the active KLK7 was replaced by either 
mKLK7 or dmKLK7 (5 μg total protein). In experiment 4 the peptide library was replaced by milliQ water. In 
experiment 5 the active KLK7 was replaced by milliQ water. Cleavage products were biotinylated and isolated 
using immobilised streptavidin. Peptides were purified using solid phase extraction (Strata-X 33 μm polymeric 
reversed phase 10 mg mL−1, Phenomenex). Results presented correspond to combined searches of cleavage sites/
peptides identified in 2 technical replicates.

PICS analysis of KLK7 and mKLK7.  Untreated as well as KLK7- and mKLK7-treated tryptic and GluC pep-
tide libraries were analysed on a Prominence nano HPLC system (Shimadzu). Acidified sample aliquots were 
loaded onto a trap column (ReproSil pur C18-AQ 3 μm, 0.3 mm × 10 mm; Dr. Maisch, Ammerbuch-Entringen, 
Germany) and washed for 5 min at 30 μL min-1 using 100% eluent A. Peptide mixtures were subsequently flushed 
onto a capillary column (75 μm × 150 mm) packed in-house with ReproSil-Pur 120 C18-AQ 2.4 μm (Dr. Maisch) 
and separated at a flow rate of 300 nL min-1. Eluent A and sample loading eluent were 0.1% formic acid in 2% 
acetonitrile and eluent B was 0.1% formic acid in 80% acetonitrile. Peptides were separated at 50 °C using the 
following gradient: 0 min (5% eluent B) −5.5 min (5% B) −8.5 min (10% B) −90 min (30% B) −100 min (45% B) 
−108 min (95% B) −118 min (95% B) −120 min (5% B) −140 min (5% B).

Column-separated peptides were introduced either to an LTQ-Velos Pro (GluC peptide libraries) or an Elite 
(tryptic peptide libraries) Orbitrap mass spectrometer through a Nanospray Flex Ion Source (Thermo Fisher 
Scientific). Spray voltage was 1.5 kV with no sheath, sweep, or auxiliary gases used. The heated capillary temper-
ature was set to 285 °C and the S-lens to 55%. The mass spectrometer was controlled using Xcalibur 2.2 software 
(Thermo Fisher Scientific) and operated in positive ion and data-dependent acquisition mode to automatically 
switch between Orbitrap-MS and ion trap-MS/MS. Full scan MS spectra (m/z 380–1700) were acquired in the 
Orbitrap with a resolving power set to 60,000 and 240,000 (at 400 m/z) for Velos Pro and Elite, respectively, after 
accumulation to a target value of 1 × 106 in the linear ion trap. The top 15 most intense ions with charge states 
≥+2 were sequentially isolated with a target value of 5,000 and fragmented using rapid collision-induced dis-
sociation (CID) scan mode in the linear ion trap. Fragmentation conditions were set as follows: 35% normalised 
collision energy; activation q of 0.25; 10 ms activation time; ion selection threshold 500 counts. Maximum ion 
injection times were 200 ms for survey full scans and 50 ms for MS/MS scans. Dynamic exclusion was set to 70 s. 
Lock mass of m/z 445.12 was applied with an abundance set at 0%.

PICS analysis of dmKLK7.  Peptides of dmKLK7-treated tryptic peptide libraries were separated on a nano 
ACQUITY UPLC system (Waters, Milford, US), which enables the use of sub-2 μm particles resulting in narrower 
chromatographic peaks, improved signal-to-noise ratio and hence higher peak capacity and sensitivity. Digests were 
loaded onto a Symmetry C18 (5 μm, 180 μm × 20 mm; Waters) trap column, washed for 3 min at 15 μL min-1 using 
2% eluent B and then separated on a BEH130 C18 column (1.7 μm, 75 μm × 200 mm; Waters) at a flow rate of 
300 nL min-1. Eluent A was 0.1% formic acid in milliQ water and eluent B was 0.1% formic acid in acetonitrile. 
Peptides were separated at 35 °C using a sequence of linear gradients: starting from 5% B over 1 min, to 30% B over 
90 min, to 45% B over 10 min and finally, to 95% B over 7 min, before holding the column at 95% B for a further 
10 min. Column-separated peptides were electrosprayed into the LTQ-Orbitrap Velos Pro and analysed as above.

Data analysis.  Tandem mass spectra were processed and searched through Proteome Discoverer 1.3 (Thermo 
Scientific) using the Mascot and SequestHT search engines. MS/MS spectra were searched against a SwissProt data-
base with the taxonomy set to either ‘all entries’ (539,830 entries) or ‘Homo sapiens’ (20,307 entries, January 2013). 
For all database searches the following settings were kept constant: Precursor and fragment tolerance at ±20 ppm 
and ±0.8 Da, respectively. Oxidation of methionine and deamidation of glutamine and asparagine were set as var-
iable modification. Depending on the experiment, parameters were modified: Enzyme specificity (semi-trypsin or 
semi-GluC) and maximum number of missed cleavages (2 or 3). Biotinylation of peptide N-termini, carbamidometh-
ylation of cysteine and dimethylation of lysine either set to fixed or variable modifications. Scaffold (Proteome Software 
Inc., v4.0.5) was used to validate MS/MS-based peptide and protein identifications, and accepted where peptide and 
protein probabilities were >95.0% and >99.0%, respectively, to achieve an FDR <1.0% with at least 2 peptides.



www.nature.com/scientificreports/

1 1ScIenTIfIc ReportS | 7: 6789 | DOI:10.1038/s41598-017-06680-4

References
	 1.	 Clements, J., Hooper, J., Dong, Y. & Harvey, T. The expanded human kallikrein (KLK) gene family: genomic organisation, tissue-

specific expression and potential functions. Biol Chem 382, 5–14 (2001).
	 2.	 Clements, J. A., Willemsen, N. M., Myers, S. A. & Dong, Y. The tissue kallikrein family of serine proteases: functional roles in human 

disease and potential as clinical biomarkers. Critical Reviews in Clinical Laboratory Sciences 41, 265–312 (2004).
	 3.	 Yousef, G. M., Scorilas, A., Magklara, A., Soosaipillai, A. & Diamandis, E. P. The KLK7 (PRSS6) gene, encoding for the stratum 

corenum chymotryptic enzyme is a new member of the human kallikrein gene family-genome characterization, mapping, tissue 
expression and hormonal regulation. Gene 254, 119–128 (2000).

	 4.	 Clements, J. The molecular biology of the kallikreins and their roles in inflammation. The Kinin System 5, 71–97 (1997).
	 5.	 Dong, Y., Kaushal, A., Brattsand, M., Nicklin, J. & Clements, J. A. Differential Splicing of KLK5 and KLK7 in Epithelial Ovarian 

Cancer Produces Novel Varients with Potential as Cancer Biomarkers. Clinical Cancer Research 9, 1710–1720 (2003).
	 6.	 Dong, Y. et al. Kallikrein-Related Peptidase 7 Promotes Multicellular Aggregation via the α5β1 Integrin Pathway and Paclitaxel 

Chemoresistance in Serous Epithelial Ovarian Carcinoma. Cancer Research 70, 2624 (2010).
	 7.	 Loessner, D. et al. Combined expression of KLK4, KLK5, KLK6, and KLK7 by ovarian cancer cells leads to decreased adhesion and 

paclitaxel-induced chemoresistance. Gynecol Oncol 127, 569–578 (2012).
	 8.	 Shahinian, H. et al. Secretome and degradome profiling shows that Kallikrein-related peptidases 4, 5, 6, and 7 induce TGFbeta-1 

signaling in ovarian cancer cells. Mol Oncol 8, 68–82 (2014).
	 9.	 Skytt, A., Stromqvist, M. & Egelrud, T. Primary substrate specificity of recombinant human stratum corneum chymotryptic enzyme. 

Biochemical and Biophysical Research Communications 211, 586–589 (1995).
	10.	 Debela, M. et al. Specificity profiling of seven human tissue kallikreins reveals individual subsite preferences. J Biol Chem 281, 

25678–25688 (2006).
	11.	 Oliveira, J. R. et al. Specificity studies on Kallikrein-related peptidase 7 (KLK7) and effects of osmolytes and glycosaminoglycans on 

its peptidase activity. Biochim Biophys Acta 1854, 73–83 (2015).
	12.	 Schechter, I. & Berger, A. On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun 27, 157–162 (1967).
	13.	 Schilling, O. & Overall, C. M. Proteome-derived, database-searchable peptide libraries for identifying protease cleavage sites. Nature 

Biotechnology 26, 685–694 (2008).
	14.	 Guerrero, J. L., O’Malley, M. A. & Daugherty, P. S. Intracellular FRET-based Screen for Redesigning the Specificity of Secreted 

Proteases. ACS Chemical Biology 11, 961–970 (2016).
	15.	 Yoon, H. et al. Activation profiles and regulatory cascades of the human kallikrein-related peptidases. Journal of Biological Chemistry 

282, 31852 (2007).
	16.	 de Veer, S. J. et al. Selective Substrates and Inhibitors for Kallikrein-Related Peptidase 7 (KLK7) Shed Light on KLK Proteolytic 

Activity in the Stratum Corneum. J Invest Dermatol 137, 430–439 (2017).
	17.	 Yamasaki, K. et al. Kallikrein-mediated proteolysis regulates the antimicrobial effects of cathelicidins in skin. The FASEB Journal 20, 

2068–2080 (2006).
	18.	 Schilling, O., Auf dem Keller, U. & Overall, C. M. Factor Xa subsite mapping by proteome-derived peptide libraries improved using 

WebPICS, a resource for proteomic identification of cleavage sites. Biol Chem 392, 1031–1037 (2011).
	19.	 Carter, P. & Wells, J. A. Dissecting the catalytic triad of a serine protease. Nature 332, 564–568 (1988).
	20.	 Corey, D. R. & Craik, C. S. An investigation into the minimum requirements for peptide hydrolysis by mutation of the catalytic triad 

of trypsin. J Am Chem Soc 114, 1784–1790 (1992).
	21.	 Lawrence, M. G., Lai, J. & Clements, J. A. Kallikreins on steroids: structure, function, and hormonal regulation of prostate-specific 

antigen and the extended kallikrein locus. Endocrine Reviews 31, 407–446 (2010).
	22.	 Schilling, O. et al. Characterization of the prime and non-prime active site specificities of proteases by proteome-derived peptide 

libraries and tandem mass spectrometry. Nature Protocols 6, 111–120 (2011).
	23.	 Bretthauer, R. K. & Castellino, F. J. Glycosylation of Pichia pastoris-derived proteins. Biotechnology and Applied Biochemistry 30(Pt 3), 

193–200 (1999).
	24.	 Debela, M. et al. Chymotryptic specificity determinants in the 1.0 A structure of the zinc-inhibited human tissue kallikrein 7. Proc 

Natl Acad Sci USA 104, 16086–16091 (2007).
	25.	 Guo, S., Skala, W., Magdolen, V., Brandstetter, H. & Goettig, P. Sweetened kallikrein-related peptidases (KLKs): glycan trees as 

potential regulators of activation and activity. Biol Chem 395, 959–976 (2014).
	26.	 Franzke, C. W., Baici, A., Bartels, J., Christophers, E. & Wiedow, O. Antileukoprotease inhibits stratum corneum chymotryptic 

enzyme. Evidence for a regulative function in desquamation. J Biol Chem 271, 21886–21890 (1996).
	27.	 Debela, M. et al. Structures and specificity of the human kallikrein-related peptidases KLK 4, 5, 6, and 7. Biol Chem 389, 623–632 (2008).
	28.	 Diamandis, E. P., Yousef, G. M., Luo, L. Y., Magklara, A. & Obiezu, C. V. The new human kallikrein gene family: implications in 

carcinogenesis. Trends in Endocrinology & Metabolism 11, 54–60 (2000).
	29.	 Wells, J. A. & Estell, D. A. Subtilisin–an enzyme designed to be engineered. Trends in Biochemical Sciences 13, 291–297 (1988).
	30.	 Carter, P. & Wells, J. A. Engineering enzyme specificity by “substrate-assisted catalysis”. Science 237, 394–399 (1987).
	31.	 Craik, C. S., Roczniak, S., Largman, C. & Rutter, W. J. The catalytic role of the active site aspartic acid in serine proteases. Science 237, 

909–913 (1987).
	32.	 Wu, S. & Letchworth, G. J. High efficiency transformation by electroporation of Pichia pastoris pretreated with lithium acetate and 

dithiothreitol. Biotechniques 36, 152–155 (2004).
	33.	 Ramsay, A. J. et al. Kallikrein-related peptidase 4 (KLK4) initiates intracellular signaling via protease-activated receptors (PARs). 

Journal of Biological Chemistry 283, 12293–12304 (2008).
	34.	 Goettig, P., Magdolen, V. & Brandstetter, H. Natural and synthetic inhibitors of kallikrein-related peptidases (KLKs). Biochimie 92, 

1546–1567 (2010).
	35.	 de Veer, S. J. et al. Mechanism-based selection of a potent kallikrein-related peptidase 7 inhibitor from a versatile library based on 

the sunflower trypsin inhibitor SFTI-1. Biopolymers 100, 510–518 (2013).

Acknowledgements
This work was funded by grants-in-aid from the National Health and Medical Research Council (NHMRC) 
of Australia (553045), Australia-India Strategic Research Fund (BF060023), the Cancer Council Queensland 
(1051318, 1105922), Wesley Medical Research Foundation (2010-07, 2014-46). Access to proteomic infrastructure 
in the QIMR Berghofer Protein Discovery Centre was made possible by funding from Bioplatforms Australia 
and the Queensland State Government provided through the Australian Government National Collaborative 
Infrastructure Strategy (NCRIS) and EIF Fund. JAC is a Principal Research Fellow of the NHMRC of Australia 
(1005717); LMS was funded by International Postgraduate Research Scholarship (IPRS), Australian Postgraduate-
Award (APA) and Institute of Health and Biomedical Innovation (IHBI) funding. We gratefully acknowledge our 
introduction to the PICS technique through C. Overall (University of British Columbia, Canada) and S. Stansfield 
(QUT) and N.W. Ashton (QUT) for scientific discussion.



www.nature.com/scientificreports/

1 2ScIenTIfIc ReportS | 7: 6789 | DOI:10.1038/s41598-017-06680-4

Author Contributions
J.A.C., L.M.S., Y.D. and H.F.I. designed research; L.M.S., T.S., T.K., M.L.H. and C.R.S. performed research; L.M.S. 
wrote the manuscript; J.J.G. provided strategic guidance and mass spec facilities. All authors read and reviewed 
this manuscript.

Additional Information
Supplementary information accompanies this paper at doi:10.1038/s41598-017-06680-4
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://dx.doi.org/10.1038/s41598-017-06680-4
http://creativecommons.org/licenses/by/4.0/

	Mass spectrometry-based determination of Kallikrein-related peptidase 7 (KLK7) cleavage preferences and subsite dependency

	Results

	Single mutant KLK7 does not appear to have any residual activity. 
	The Proteomic Identification of protease Cleavage Sites (PICS) analysis of KLK7. 
	The PICS analysis of mKLK7 suggests mKLK7 still has residual activity. 
	DmKLK7 is catalytically inactive. 
	Other KLK family members may have a similar propensity to retain catalytic activity with a single S195A mutation. 

	Discussion

	Conclusion

	Methods

	Recombinant KLK peptidase production. 
	Activity of the produced peptidases. 
	Casein zymography. 
	Activity against a fluorogenic peptide substrate. 
	Active site titration. 
	Michaelis-Menten Kinetics. 

	PICS specificity assay. 
	Generation of PICS peptide libraries. 
	Determination of cleavage preferences. 
	PICS analysis of KLK7 and mKLK7. 
	PICS analysis of dmKLK7. 
	Data analysis. 


	Acknowledgements

	Figure 1 KLK7 and mKLK7 protein identity.
	Figure 2 Activity of KLK7 and mKLK7.
	Figure 3 Activity profile of the double mutant KLK7 (dmKLK7).
	Figure 4 KLK family sequence similarity.
	Table 1 Potential subsite cooperativity analysis for KLK7.
	Table 2 Kinetics parameters of mutant KLKs (KLK4 and KLK7) at pH 8.


