MALCOLM STUART PURDEY

Hydrogen Peroxide Sensing for Reproductive Health

Hydrogen Peroxide Sensing for Reproductive Health

by Malcolm Stuart Purdey

A Thesis submitted for the degree of

Doctor of Philosophy

in the

Faculty of Science

School of Physical Sciences

December 2015

© Malcolm Purdey, *Hydrogen Peroxide Sensing for Reproductive Health*, The University of Adelaide, 2015

For Ainsley: my patient, beautiful, longsuffering wife.

If we knew what it was we were doing, it would not be called research, would it? Albert Einstein

CONTENTS

List of Figures	xi
List of Schemes	xiii
Publications	xiv
Abbreviations	
Glossary of Eluorescent Probes	xviii
Abstract	vvii
	XXII
Declaration	xxv
Acknowledgements	xxvi
Chapter 1: Introduction	1
1.1 Reactive Oxygen Species and Hydrogen Peroxide	3
1.2 Fluorescent Probes	4
1.2.1 Principles of Fluorescence	5
1.2.2 Common structures of Organic Fluorophores	6
1.2.3 Turn-on Fluorescent Probes	7
1.2.4 Förster Resonance Energy Transfer	7
1.2.5 Photoinduced electron transfer	9
1.3 Fluorescent Probes for Reactive Oxygen Species	10
1.3.1 Aryl Boronate Esters	12
1.3.2 Benzils	13
1.4 Optical Fibre Sensors	14
1.4.1 Fibre Tip Sensors	15
1.4.2 Microstructured Fibres	16
1.5 Project Outline	17
1.5.1 Commercial Motivation	17
1.5.2 Research Objectives	18
1.5.3 Thesis Structure	18
1.6 References	19
Chapter 2: Boronate Probes for the Detection of Hydrogen Peroxide Release from Human	1
Spermatozoa	27
Statement of Authorship	29
2.1 Abstract	31

2.2 Introduction	32
2.3 Results and Discussion	33
2.3.1 ROS Characterisation of Probes	33
2.3.2 Comparative Study on ROS Production in Human Spermatozo	ba 34
2.3.3 Sensitivity of Aryl Boronates to ROS Production in Human Spe	ermatozoa 38
2.4 Conclusion	41
2.5 Acknowledgements	42
2.6 Materials and Methods	42
2.6.1 Materials:	42
2.6.2 Semen Samples:	42
2.6.3 Sample Preparation:	42
2.6.4 Leukocyte Removal:	43
2.6.5 Treatments:	43
2.6.6 Staining:	43
2.6.7 Flow Cytometry:	43
2.6.8 Statistical Analysis:	43
2.6.9 ROS Selectivity Study:	43
2.6.10 Fluorescence Controls for Menadione, AA and 4HNE	44
2.6.11 Synthesis	44
2.7 Supplementary Data	46
2.8 References	48
Chapter 3: Localised Hydrogen Peroxide Sensing with Surface Funct	ionalised
Fluorophores	51
3.1 Introduction	53
3.2 Fluorophore Design	56
3.3 Characterisation of CPF1 Attached to Glass Slides	59
3.4 Attachment Methods of CPF1 to Optical Fibre Tips	61
3.4.1 Polyelectrolyte deposition	61
3.4.2 Silane Monolayer Formation	62
3.4.3 Light-Catalysed Polymerisation of Acrylamide/Bisacrylamide M	fatrix 63
3.5 Use of Optical Fibre Probes with Micromanipulators	64
3.6 Conclusion	66
3.7 Experimental	66
3.7.1 Materials	66
3.7.2 Synthesis	67

3.7.3	Fluorescence Assay in Fluorimeter	68
3.7.4	Fluorescence Assay in Plate Reader	68
3.7.5	Surface Attachment Protocols	68
3.7.6	Fibre Setup	71
3.7.7	Micromanipulator Trials	72
3.8 R	Peferences	72

Chapter 4: A dual sensor for pH and hydrogen peroxide using polymer-coated optical fibr	e
tips	75
Statement of Authorship	77
4.1 Abstract	79
4.2 Introduction	80
4.3 Results and Discussion	82
4.3.1 Hydrogen Peroxide Detection	82
4.3.2 pH Sensing	85
4.4 Conclusion	87
4.5 Acknowledgements	88
4.6 Conflicts of Interest	88
4.7 Methods	88
4.7.1 Materials	88
4.7.2 Polyacrylamide Photo-polymerisation on Optical Fibre Tips	88
4.7.3 Optical Measurements	89
4.8 Supplementary Information	90
4.8.1 Synthesis of CPF1 and SNARF2	90
4.8.2 Fluorescence Spectra of Functionalised Fibre Tips	91
4.9 References	92
Chapter 5: Aryl boronate and benzil BODIPY-based probes for hydrogen peroxide	95
Statement of Authorship	97
5.1 Abstract	99
5.2 Communication	100
5.3 Conclusions	105
5.4 Acknowledgements	105
5.5 Supplementary Information	106
5.5.1 Materials	106

5.5.1 Materials

IX

	100
ROS Selectivity Study	107
Detection of H ₂ O ₂ in Bovine Oocytes	107
Synthesis	109
Spectra	112
eferences	117
Extending Current Sensing Technologies	119
itroduction	121
Autofluorescence background signal	121
Reusable Fibre Probes	122
aphthoperoxyfluor-1	124
eversible Fibre-tip Sensor for Hydrogen Peroxide	126
onclusion and Outlook	128
xperimental	129
Materials	129
Synthesis	129
Fluorescence Assay	130
Fibre Setup	131
NCR3 Oxidation and Reduction on Fibre Tips	132
eferences	132
Applications and Conclusions	133
pplications	135
pH Sensor for Tumour Margin Detection	135
Detection of Redox States and Oxidative Stress in Bovine Oocytes	136
Hydrogen Peroxide Monitoring in Spermatozoa	137
Detection of Gold Nanoparticles for Mining Industry	137
onclusions	138
1: Free Radical Biology and Medicine Paper	143
	Processedection of H ₂ O ₂ in Bovine Oocytes Synthesis Spectra Peterences Extending Current Sensing Technologies Autofluorescence background signal Reusable Fibre Probes Paphthoperoxyfluor-1 Peversible Fibre-tip Sensor for Hydrogen Peroxide Pronclusion and Outlook Experimental Materials Synthesis Fluorescence Assay Fibre Setup NCR3 Oxidation and Reduction on Fibre Tips Peterences Applications pplications pH Sensor for Tumour Margin Detection Detection of Redox States and Oxidative Stress in Bovine Oocytes Hydrogen Peroxide Monitoring in Spermatozoa Detection of Gold Nanoparticles for Mining Industry Participations Participations Participations Petersiones Participations Physications Physications Physications Automatication Spermatozoa Detection of Gold Nanoparticles for Mining Industry Physications

LIST OF FIGURES

Figure 1. The formation of reactive oxygen species (ROS) within mitochondria is complex	3
Figure 2. Different fluorophores for sensing purposes	4
Figure 3. Franck-Condon energy diagram of fluorescence within a molecule	5
Figure 4. Standard organic fluorophores	6
Figure 5. A turn-on fluorescent probe	7
Figure 6. FRET between two example fluorophores 1 and 2	8
Figure 7. A FRET-based probe in "off" and "on" configuration	8
Figure 8. A coumarin and rhodamine FRET-based fluorescent probe for NO, Cou-Rho-NO	9
Figure 9. Jablonski diagram demonstrating the principle of photoinduced electron transfer (PET).	9
Figure 10. A turn-on probe utilising photoinduced electron transfer (PET) to distinguish off and or	ı
states	10
Figure 11. MAMBO is an example of a PET-based sensor for NO	10
Figure 12. Various fluorescent probes for sensing ROS	11
Figure 13. A selection of boronate ester probes	13
Figure 14. Fluorescent probes for H ₂ O ₂ based on benzils	14
Figure 15. Example of an optical fibre as a fluorescence-based sensor in a tip-sensor configuration	on 15
Figure 16. An example of using an optical fibre tip-probe for sensing near a cell	15
Figure 17. An example of a fluorescence tip-sensor	16
Figure 18. Cross-section of a suspended core MOF	17
Figure 19. Chemical structures of the ROS sensors used in this study	32
Figure 20. Fluorescence characterisation of EEPF1 and comparison with DCFH for selectivity to	ROS
	34
Figure 21. Analysis of flow cytometry results, showing the percentage of human sperm population	ns
which indicated a fluorescent response	36
Figure 22. Fluorescence response of PF1, CPF1 and EEPF1 to menadione, AA and 4HNE in the	;
absence of spermatozoa	37
Figure 23. Analysis of flow cytometry results for menadione, 4HNE and H ₂ O ₂ treated spermatozo	a 39
Figure 24. Analysis of flow cytometry results showing the percentage of poorly motile and motile	
samples of human spermatozoa populations indicating a fluorescent response	41
Figure 25. A) PF1 and B) CPF1 selectivity data, each incubated at 37 °C with 100 µM ROS for 0,	10,
20, 30 and 40 min	46
Figure 26. Representative flow cytometry histograms, indicating the level of fluorescence for each	h of
the 10,000 spermatozoa measured per sample	46
Figure 27. Microscope images: Fluorescence response of sperm cells treated with menadione	47
Figure 28. Microscope images: Fluorescence response of spermatozoa cells	47
Figure 29. PF1 can be modified to give any of the possible structures	56

Figure 30. Fluorescent response of A) 19 to 0, 20, 40 and 60 μ M H ₂ O ₂ over 5 h. B) CPF1 to 0	, 20, 40
and 60 µM H ₂ O ₂ over 1 h	57
Figure 31. A) Absorption and emission spectra of CPF1 in 20 mM HEPES at pH 7.4 when treat	ated
with 0, 10, 25, 50, 75 and 100 μ M H ₂ O ₂ . B) Fluorescence over 40 min of CPF1 treated w	ith 100
μM H ₂ O ₂	59
Figure 32. Characterisation of glass dish functionalised with CPF1 on polyelectrolytes	60
Figure 33. A glass slide functionalised with CPF1 has several droplets with differing concentration	ations of
H ₂ O ₂	61
Figure 34. Poly electrolyte coating with CPF1 attached, in 1 mM H ₂ O ₂ for 20 min	62
Figure 35. APTES-coated fibre tip shows a poor increase in fluorescence to 1 mM H ₂ O ₂	63
Figure 36. The response of CPF1-NHS in polyacrylamide to 1 mM H ₂ O ₂ (ex. 473 nm laser)	63
Figure 37. Fibre tip functionalised with CPF1-NHS and dipped into 100mM H ₂ O ₂ using	
micromanipulators	64
Figure 38. Fluorescent response from CPF1-NHS on a fibre tip after dispensing 100mM H ₂ O ₂	into the
drop over 5 min	65
Figure 39. Experimental configuration for photopolymerisation, and optical measurements	71
Figure 40. Chemical structures of fluorescent probes used in this study	
Figure 41. A) Integrated fluorescence intensity from CPF1 using blue excitation with varied pe	eroxide
concentration in pH 7.5 buffer. B) Slope of integrated fluorescence for increasing concen	trations
of H ₂ O ₂	
Figure 42. Response of CPF1 to 100 μ M H ₂ O ₂ in solutions that varied in pH	
Figure 43. pH response of SNARF2 embedded in polyacrylamide on fibre tip to varied pH	
Figure 44. Sensing of pH before and after immersion in H ₂ O ₂	
Figure 45. Experimental configuration for optical measurements of the combined pH/peroxide	sensor
Figure 46. Fluorescence spectra of functionalised optical fibre dipped into various solutions	
Figure 47. Fluorescent ratio of probes dipped into solutions of varying pH multiple times to de	termine
if any hysteresis is shown	
Figure 48. Fluorescent probes	100
Figure 49. Response of PB1 and NbzB to 0, 5, 10, 25, 50, 75 and 100 μ M of H ₂ O ₂ over 50 m	in in 100
mM phosphate buffer at pH 7.4	103
Figure 50. Response of PB1 and NbzB to H ₂ O ₂ and hydroxyl radicals (•OH), hypochlorite (-O	CI), tert-
butyl hydroperoxide (TBHP), nitric oxide (NO $^+$), superoxide (O $_2$ ⁻) and peroxynitrite (ONO	O ⁻). 104
Figure 51. Confocal microscope images of denuded bovine oocytes stained with PB1 and Nb	zB 105
Figure 52. Oxidation of PB1 to 11 with H ₂ O ₂ after 50 min in 100 mM phosphate buffer at pH 7	.4 107
Figure 53. Average of the fluorescence intensity across the oocyte populations of each treatm	nent
group	108
Figure 54. Fluorescent probes, carboxyperoxyfluor-1 (CPF1) and naphthoperoxyfluor-1 (NPF	1) 121
Figure 55. Reversible probes for ROS	123
Figure 56. Emission spectra of NCR3 in reduced and oxidised form	124

Figure 57. Response of NPF1 and CPF1 to H ₂ O ₂ 126
Figure 58. Oxidation and reduction of NCR3 by H ₂ O ₂ and NaCNBH ₃ respectively
Figure 59. Fluorescent ratio of NCR3 in air after treatment with NaCNBH ₃ (reduced), or H_2O_2
(oxidised)127
Figure 60. Fluorescence of NCR3 (oxidised) on a fibre tip over 2 min in pH 7.4 phosphate buffer 128
Figure 61. Experimental configuration for photopolymerisation, and optical measurements 131
Figure 62. Demonstration of the lift-off method to remove the autofluorescence background 135
Figure 63. Oocytes with different treatments of follicle stimulated hormone and bone morphogenic
protein 15
Figure 64. Sperm incubated with EEPF1 fluoresce to reveal oxidative stress
Figure 65. Reaction of non-fluorescent I-BODIPY with gold nanoparticles to form the fluorescent H-
BODIPY

LIST OF SCHEMES

Scheme 1. Deprotection of boronate ester 1 by H ₂ O ₂ to give phenol 2	12
Scheme 2. Synthesis of PF1	13
Scheme 3. Reaction of benzil (6) with H ₂ O ₂ to produce benzylic acid (7)	13
Scheme 4. Synthesis of CPF1 and EEPF1	44
Scheme 5. Representative diagram of the deposition of poly electrolyte layers poly(allylamine	
hydrochloride) and poly(acrylic acid) to a glass surface	54
Scheme 6. Surface functionalisation of a fluorophore using APTES	55
Scheme 7. Formation of a polyacrylamide matrix containing a fluorophore	55
Scheme 8. Retrosynthesis of PF1 derivatives	58
Scheme 9. Synthesis of a Rhodamine B alkyne 13	59
Scheme 10. Representative diagram of the deposition of poly electrolyte layers poly(allylamine	
hydrochloride) and poly(acrylic acid) to a glass surface	69
Scheme 11. Surface functionalisation of CPF1-NHS with APTES	70
Scheme 12. Formation of a polyacrylamide matrix containing CPF1-NHS	71
Scheme 13. Synthesis of BODIPY-based H ₂ O ₂ sensors	102
Scheme 14. Synthesis of NPF1	125

PUBLICATIONS

Journal Papers

These papers comprise full chapters in this thesis:

Purdey, M. S.; Connaughton, H. S.; Whiting, S.; Schartner, E. P.; Monro, T. M.; Thompson, J. G.; Aitken, R. J.; Abell, A. D., Boronate probes for the detection of hydrogen peroxide release from human spermatozoa. *Free Radical Biology and Medicine* **2015**, *81* (0), 69-76.

Purdey, M. S.; Thompson, J. G.; Monro, T. M.; Abell, A. D.; Schartner, E. P., A dual sensor for pH and hydrogen peroxide using polymer-coated optical fibre tips. *Sensors* **2015**, *15* (12), 31904-31913.

Purdey, M. S.; Abell, A. D., New BODIPY-based probes for the detection of hydrogen peroxide. **2015**, *In Preparation*.

These publications represent other work by the author described in this thesis:

Sutton-McDowall, M. L.; Purdey, M.; Brown, H. M.; Abell, A. D.; Mottershead, D. G.; Cetica, P. D.; Dalvit, G. C.; Goldys, E. M.; Gilchrist, R. B.; Gardner, D. K.; Thompson, J. G., Redox and anti-oxidant state within cattle oocytes following in vitro maturation with bone morphogenetic protein 15 and follicle stimulating hormone. *Molecular Reproduction and Development* **2015**, *82* (4), 281-294.

Sutton-McDowall, M. L.; Wu, L.; Purdey, M.; Brown, H. M.; Abell, A. D.; Goldys, E. M.; MacMillan, K. L.; Robker, R. L.; Thompson, J. G., Non-Esterified Fatty Acid-Induced Endoplasmic Reticulum Stress in Cattle Cumulus Oocyte Complexes Alters Cell Metabolism and Developmental Competence. *Biology of Reproduction* **2015**, *Available online,* doi:10.1095/biolreprod.115.131862

Zuber, A.; Purdey, M.; Schartner, E.; Forbes, C.; van der Hoek, B.; Giles, D.; Abell, A.; Ebendorff-Heidepriem, H., Detection of gold nanoparticles with different sizes using absorption and fluorescence based method. *Sensors and Actuators B: Chemical* **2016**, *227*, 117-127.

Schartner, E. P.; Henderson, M. R.; Purdey, M. S., Dhatrak, D.; Monro, T. M.; Gill, P. G.; Callen, D. F., Tumour detection in human tissue samples using a fibre tip pH probe. **2016**, *In preparation*.

Patent

Australian patent application 2015902890 – "*Detection of Gold Nanoparticles*" (Deep Exploration Technologies CRC Limited) – 21 July **2015**

Conference presentations

Conference paper:

Purdey, M. S.; Schartner, E. P.; Sutton-McDowall, M. L.; Ritter, L. J.; Thompson, J. G.; Monro, T. M.; Abell, A. D., Localised hydrogen peroxide sensing for reproductive health. *Proceedings of SPIE* **2015**, *9506*, 950614.

Invited talks:

Purdey, M. S.; Schartner, E. P.; Heng, S.; Zhang, X. Z.; Stubing, D. B.; Monro, T. M.; Abell, A. D.; Functionalisation of Optical Fibres for Biosensing Applications. *ANFF Research Showcase*, Canberra, ACT, Australia, November **2014**.

Purdey, M. S.; Schartner, E. P.; Sutton-McDowall, M. L.; Ritter, L. J.; Monro, T. M.; Thompson, J. G.; Abell, A. D.; A Non-invasive Sensor for Hydrogen Peroxide and pH. *Society for Reproductive Biology,* Adelaide, SA, Australia, August **2015**.

Conference posters:

Purdey, M. S.; Connaughton, H. S.; Whiting, S.; Thompson, J. G.; Aitken, R. J.; Abell, A. D.; Reactive Oxygen Species Detection in Human Spermatozoa with Aryl Boronates. *RACI National Congress,* Adelaide, SA, Australia, December **2014**.

Purdey, M. S.; Schartner, E. P.; Monro, T. M.; Aitken, R. J.; Thompson, J. G.; Abell, A. D.; Hydrogen Peroxide Sensing for Reproductive Health. *249th ACS Nation Congress,* Denver, CO, USA, March **2015**.

ABBREVIATIONS

4HNE 4-Hydroxynonenal

AA Arachidonic Acid

ACN Acetonitrile

ABBREVIATIONS

APTES	3-(Aminopropyl)triethoxysilane
BODIPY	Boron Dipyrromethene
CDCI ₃	Deuterated chloroform
CHCl₃	Chloroform
CPF1	Carboxy Peroxyfluor-1
CPF1-NHS	N-Succinimide ester of Carboxy Peroxyfluor-1
DCFH	2',7'-Dichlorohydrofluorescein diacetate
DCM	Dichloromethane
DHE	Dihydroethidium
DMF	Dimethylformamide
DMSO	Dimethylsulfoxide
DPI	Diphenyl Iodonium
EEPF1	2-Ethoxy(2-Ethoxyethoxy) Peroxyfluor-1
ETC	Electron Transport Chain
FCR2	Flavin Coumarin Redox sensor 2
FRET	Förster Resonance Energy Transfer
H_2O_2	Hydrogen Peroxide
HEPES	4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid
HNO	Nitroxyl
HPLC	High Performance Liquid Chromatography
HRMS	High Resolution Mass Spectrometry
IVF	In Vitro Fertilisation
МеОН	Methanol
MitoPY1	Mitochondrial PeroxyYellow-1

MRI	Magnetic Resonance Imaging
MSR	MitoSOX Red
NaCNBH₃	Sodium Cyanoborohydride
NbzB	NitrobenzoyIBODIPY
NbzF	NitrobenzoylFluorescein
NCR3	NicotinamideCoumarin Redox sensor 3
NEFA	Non-Esterified Fatty Acid
NMR	Nuclear Magnetic Resonance
NO	Nitric Oxide
NPF1	Naphthoperoxyfluor-1
NpFR1	Naphthalimide Flavin Redox sensor 1
O ₂ •-	Superoxide
-OCI	Hypochlorite
•ОН	Hydroxyl radical
ONOO-	Peroxynitrite
PB1	PeroxyBODIPY-1
PBS	Phosphate Buffer Solution
PEG	Poly Ethylene Glycol
PET	Photoinduced Electron Transfer
PF1	Peroxyfluor-1
ROS	Reactive Oxygen Species
SE	Standard Error of the mean
SNARF2	Seminaphthorhodofluor-2
TBHP	Tert-Butyl Hydroperoxide

GLOSSARY OF FLUORESCENT PROBES

Carboxyperoxyfluor-1 (CPF1)

See Chapters 2-4, 6 and 7

2',7'-Dichlorohydrofluorescein Diacetate (DCFH)

See Chapters 1 and 2

Non-Fluorescent (Acetates removed by intracellular esterases)

Exc. 485nm; Em. 525nm

Dihydroethidium (DHE) See Chapters 1 and 2

Non-Fluorescent

2-hydroxyethidium Exc, 500 nm; Em. 580 nm

2(2-Ethoxyethoxy)ethoxy Peroxyfluor-1 (EEPF1) See Chapters 2, 6 and 7

MitoSOX red (MSR)

See Chapters 1 and 2

NitrobenzoyIBODIPY (NbzB)

See Chapters 5-7

NbzB Weakly fluorescent Exc. 490nm; Em. 510nm **20** Exc. 490nm; Em. 510nm

Nicotinamide Coumarin Redox Sensor 3 (NCR3)

See Chapters 6 and 7

Naphthoperoxyfluor-1 (NPF1)

See Chapters 6 and 7

PeroxyBODIPY-1 (PB1)

See Chapters 5-7

Peroxyfluor-1 (**PF1**) See **Chapters 1-7**

Seminaphtharhodafluor-2 (SNARF2) See Chapters 4 and 7

ABSTRACT

The research presented in this thesis details the synthesis, surface functionalisation and photochemical studies of fluorescent probes for the detection of hydrogen peroxide (H_2O_2) in reproductive health.

Chapter 1

 H_2O_2 is an important reactive oxygen species (ROS) that is detrimental to the health of spermatozoa and embryos. Fluorescent probes are commonly used for the detection of ROS and here examples with different mechanisms of detection are examined; such as turn-on probes, turn-off probes, Förster resonance energy transfer (FRET)-based and photoinduced electron transfer (PET)-based probes. Specific reference is given to the aryl boronate and benzil classes of probe, which show good selectivity for H_2O_2 over other ROS. The attachment of the fluorescent probe to an optical fibre as a non-invasive sensing platform is discussed. This then allows sensing in a sensitive biological environment, such as an embryo, without exposure to the probe in solution. Fibre tip sensors and microstructured optical fibre-based sensors are discussed for use in such biological environments. Finally, a summary is provided detailing the objectives of this thesis and the chapters in which these are addressed.

Chapter 2

Three aryl boronate probes [peroxyfluor-1 (**PF1**), carboxy peroxyfluor-1 (**CPF1**) and a novel probe 2(2-ethoxyethoxy)ethoxy peroxyfluor-1 (**EEPF1**)] were synthesised for use in the detection of H_2O_2 in human spermatozoa. The activity and selectivity of these probes was then compared to three commonly used commercial probes, 2',7'-dichlorohydrofluorescein diacetate (**DCFH**), dihydroethidium (**DHE**) and MitoSOX red (**MSR**). **PF1** and **EEPF1** were found to be effective at detecting H_2O_2 and peroxynitrite (ONOO⁻) produced by spermatozoa when stimulated with menadione or 4-hydroxynonenal. Flow cytometry was used to demonstrate that **EEPF1** is more effective at detecting ROS in spermatozoa compared to **DCFH**, **DHE** and **MSR**. Furthermore, **EEPF1** distinguished poorly motile sperm from motile sperm as revealed by an enhanced production of ROS.

Chapter 3

A fibre-tip based probe constructed by encapsulating **CPF1-NHS** in a polyacrylamide matrix is reported for the detection of H_2O_2 . This non-invasive platform avoids the need to introduce an organic fluorophore into a sensitive cell such as an embryo as discussed above. A number of derivatives of **PF1** were investigated, with carboxylated fluorophore **CPF1** proving to be the easiest to synthesise and characterise. **CPF1** was functionalised to glass slides

using layer-by-layer deposition of polyelectrolytes. This functionalised surface showed a fluorescent response to H_2O_2 comparable to solution-based measurements. Three surface functionalisation methods were then investigated for attachment to an optical fibre tip, specifically polyelectrolyte deposition, silane monolayer formation, and light-catalysed polymerisation of acrylamide. The most effective method of functionalisation was found to be light-catalysed formation of a polyacrylamide matrix with the **CPF1** embedded. These polyacrylamide fibre tip probes were then guided into microdroplets of bovine *in vitro* fertilisation (IVF) media using a micromanipulator. This was visualised under an optical microscope to detect the controlled release of H_2O_2 . This fibre probe is thus compatible with imaging techniques used in IVF research laboratories.

Chapter 4

This chapter presents the development of a single optical fibre tip probe capable of detecting both the concentration of H_2O_2 and the pH of the associated solution. The sensor was constructed by embedding two fluorophores [**CPF1** and seminaphtharhodafluor-2 (**SNARF2**) for H_2O_2 and pH detection respectively] on the tip of an optical fibre using the previous developed polyacrylamide matrix methodology. The functionalised fibre probes reproducibly sensed pH with a resolution of 0.1 pH units. The probe also accurately detected H_2O_2 over a biologically significant concentration range, of 50-100 μ M. This study revealed the importance of simultaneous detection of H_2O_2 and pH, where changes in pH were shown to affect the fluorescent response of **CPF1**. This new fibre probe offers potential for noninvasive detection of pH and H_2O_2 in biological environments using a single optical fibre.

Chapter 5

Two new cell-permeable boron-dipyrromethene (**BODIPY**) based fluorescent probes for the detection of H_2O_2 were designed and synthesised. The aryl boronate peroxyBODIPY-1 (**PB1**) gave rise to a decrease in fluorescence on reaction with H_2O_2 , while the fluorescence of the benzil-based nitrobenzoylBODIPY (**NbzB**) probe increased on reaction with H_2O_2 . The benzil probe **NbzB** exhibited a high degree of selectivity for H_2O_2 over other ROS. The aryl boronate **PB1** showed a greater change in fluorescence on reaction with H_2O_2 compared to **NbzB**, and **PB1** also detected H_2O_2 in bovine oocytes under oxidative stress. These results suggest that aryl boronates (i.e. **PB1**) and benzils (i.e. **NbzB**) have use in biological environments requiring higher sensitivity or selectivity to H_2O_2 .

Chapter 6

The research discussed here extends the solution-based and fibre tip experiments to the detection of H_2O_2 in biological environments. Detection of H_2O_2 within cells is often frustrated

ABSTRACT

by autofluorescence in the green emission region. Contrastingly, the red emission region in biological systems shows a lower autofluorescence background signal. Therefore a redemitting fluorescent probe for H₂O₂, naphthoperoxyfluor-1 (NPF1), was synthesised. However, when incubated with H_2O_2 in cuvette, NPF1 showed a greater than 20-fold reduced fluorescent response to H_2O_2 compared with **CPF1**. This poor sensitivity suggests that NPF1 should not be used for the detection of H_2O_2 , but rather fluorophores with a greater fluorescent response should be utilised (e.g. CPF1). A reversible optical fibre-based sensor for H₂O₂ was then explored by attaching a reversible fluorescent probe for ROS (nicotinamide coumarin redox sensor 3, NCR3) to an optical fibre tip. The sensor was constructed using light-catalysed polymerisation to give a polymer matrix on the tip containing NCR3. This allowed the fibre tip to be reversibly oxidised by H_2O_2 and reduced by NaCNBH₃. The sensor exhibited good reversibility over at least seven cycles of oxidation and reduction, with consistent fluorescent ratios of its maxima at 500 and 635 nm. However, its fluorescence intensity decreased over time, suggesting that NCR3 leached from the polymer into the buffer solution. This nevertheless represents the first example of a reversible fibre sensor for ROS and is as such an important first step towards a reusable optical fibre probe for H_2O_2 .

DECLARATION

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signed:

Malcolm Purdey

Tuesday, 8 December 2015

ACKNOWLEDGEMENTS

Firstly, I would like to thank my supervisor, Prof. Andrew Abell. There are few things that can aid a PhD student more than a fantastic supervisor, and I could not have asked for a better supervisor than Andrew. I have learned enormous amounts through the course of this study, and certainly a vast proportion of that is due to Andrew's input. It was always reassuring to know that whenever I was stuck with an issue I could take it to Andrew and there would be a solution.

Thanks to Prof. Tanya Monro for the input into the project and for invaluable knowledge about optical fibres and sensor designs. In this area I would also like to acknowledge Dr. Erik Schartner for his endless assistance with optics, optical fibres and sensing in general. It also helped to have someone constantly there to top me up with fresh cynicism towards any given experiment when I may be running dry. There were a lot of good laughs had, as well as many valuable discussions and timely assistance.

I wish also to thank Prof. John Carver, for initial supervision of this project, and for further support even after his move to ANU in Canberra.

Importantly, I would like to acknowledge Cook Medical Australia, along with the ARC Linkage grant (LP 110200736) that supported this work. The outcomes have been fantastic and it was immensely helpful working so closely with industry.

For those post-docs in the Abell group; particularly Dr. William Tieu, Dr. Sabrina Heng and Dr. Niels Krogsgaard-Larsen, I thank profoundly for listening patiently to any issues I might be having. It would not be a stretch to call each of them unending sources of chemical wisdom, and I am extremely grateful for the number of hours chopped off my PhD studies due to helpful suggestions. A special thanks to Niels for extended periods of time listening to ideas and helping with aesthetics of figures and presentation of this thesis.

I also thank my contemporary and past PhD students, particularly Daniel Stubing, Michelle Zhang, Jacko Feng, Kelly Keeling and Tim Engler for making the lab a fun place to be all the time. I really don't think I would have finished all this if there weren't people to bounce ideas off and to empathise with on the tougher days.

I must thank Assoc. Prof. Jeremy Thompson and Dr. Mel Sutton-McDowall for direction and help with biological studies with embryos. Working with them enabled the whole project to be grounded in applications, as well as them just being fantastic people to work with. The technical staff at IPAS and the Discipline of Chemistry also deserve a huge thanks. I would particularly like to mention the assistance of Dr. Herbert Foo, who was instrumental in helping with surface functionalisation and analysis.

I would further like to thank Prof. John Aitken, Haley Connaughton and Sara Whiting at the University of Newcastle for assistance with experiments in human spermatozoa.

It would be remiss of me to leave out thanking the superb lab placement students I supervised during my studies: Pang-Chong (Alex) Yun, Yvonne Yusa, Camilia Tan Huici, Alex "Bumpmaster" Jackson and Conner Sangster. Each were exceptional students and were extremely helpful in the lab. I enjoyed teaching them as much as they hopefully enjoyed learning!

I would also like to thank all involved in the formation of the Centre for Nanoscale BioPhotonics. It has been a pleasure to get to know everyone and the level of research taking place is certainly inspiring to students like me.

On a more personal note, there is again nearly too many people to thank! I will start by thanking my parents, Don and Annette Purdey, for all their support during all my studies throughout my entire life. I would especially like to thank Mum for her continued support, help and excellent proof-reading even after Dad passed away mid last year. It is truly inspiring to have parents of such incredible love and wisdom.

I must thank also my Grandad, Dr. J. Howard Bradbury, who really piqued my interest in science by his continued tireless work at the Australian National University for more than 25 years since his retirement. He remains a profound input into my studies, and the only difficulty I now have is continuing on such a legacy of academic excellence and personal integrity.

If I were to name all the other family and friends I would wish to thank and reasons why, I believe it would take at least as many pages as the research presented here! Suffice it to say that I feel blessed to have such amazing brothers, sisters, parents (& in-laws), and friends. I can't thank you all enough for putting up with me in this amazing yet lengthy journey.

Finally, it is no surprise that I thank my wife Ainsley. This last three and a half years has been full of joy and sorrow, and I can't thank you enough for the constant support and friendship that you've shown me. There is no other way to put it – this PhD would not have been the same without you. I entered this program not yet married, and exited it married to

the best woman ever, complete with a beautiful daughter Elsie who is a constant joy! Thank you so very much, you are simply the best!

I also can't help but acknowledge God who led me here and continues to prod me with new thoughts and ideas. He is incessantly consistent and perfectly reliable, I never thought I wanted to end up where I am, but He had much better ideas.