

THE EFFECT OF ACUTE CARBON MONOXIDE EXPOSURE ON THE BRAIN OF

THE CONSCIOUS SHEEP

by

Peter George Langston

for a

Master of Science

DEPARTMENT OF ANAESTHESIA AND INTENSIVE CARE

ROYAL ADELAIDE HOSPITAL

and

DEPARTMENT OF PHYSIOLOGY

UNIVERSITY OF ADELAIDE

August, 1997

CONTENTS

	Page No
Index	2 - 9
Glossary of Tables and Figures	10
Abbreviations	14
Abstract	16
Acknowledgements	17
Declaration of Thesis Originality	18
Chapter 1 Review of Carbon Monoxide	
Introduction	19
The Endogenous and Exogenous Production of CO	19
Methylene Chloride	20
Statistics of CO Poisoning	20
Conflicting Theories of CO Toxicity	21
Research Models for CO Toxicity	22
The Affinity of CO for Haemoglobin	24
Human Blood	24
Animal Blood	24
Sheep Blood	25
CO and Hypoxia	27
Tissue Hypoxia	27
CO Hypoxia	27
CO and Cellular Toxicity	32
CO and Haem - Proteins	33
CO Absorption and Elimination in the Body	37

Page No.

Effects of Anaesthesia on the Cardio- and Cerebrovascular Systems	39
Systemic Effects of CO	41
CO Effects on Heart Rate in Conscious Animals	42
CO Effects on Cardiac Output in Conscious Animals	43
CO Effects on Acid / Base Response in Conscious Animals	44
CO Effects on Blood Pressure in Conscious Animals	46
Blood Pressure Response to Chemodenervation	48
Beta- Receptors	49
Alpha- Receptors	50
CO Effects on Cerebral Blood Flow in Animals	51
CO Effects on Brain Oxygen Delivery and Consumption in Animals	53
CO Effects on Brain Function in Animals	54
Overview	56

Chapter 2 General Methods and Materials

	Page No.
Overview	60
Method for chronic placement of a 4 french gauge catheter into / and a	l
20 MHz Ultrasonic Doppler Flow Probe onto the Superior Sagittal Sinu	s 61
Preparation	61
Surgical placement of the Ultrasonic Doppler Probe	61
Catheterisation of Superior Sagittal Sinus	62
Chronic Catheterisation of the Sheep for Cerebrovascular Study	65
Catheter Flushing System	66
Physiological Monitoring	68
Bloodgas Measurement	68
Brain Oxygen Delivery and Consumption	68
Lactate Determination	69
CO Administration Technique	71
The CO Experiment	72
Calibration of the Sagittal Sinus Doppler Probe	74
Cerebral Blood Flow Regulation Technique	74
Doppler Calibration Technique	75

Chapter 3 A Method to Determine Sheep Carboxyhaemoglobin,

Oxyhaemoglobin, Reduced Haemoglobin, Met-haemoglobin and Oxygen Content using a Spectrophotometer

Page No.

Introduction	76
The IL482 CO-Oximeter	77
Methods	78
Sample Preparation	78
Sample Handling	78
Sample Analysis	78
As Drawn Blood	79
Oxyhaemoglobin	79
Carboxyhaemoglobin	79
Reduced Haemoglobin	80
Methaemoglobin	80
Matrix Calculation	81
Stage 1	81
Stage 2	83
Stage 3	83
Calibration	84
Results	86
As Drawn Blood	86
Matrices	86
Matrix Errors	86
Calibration Curve	92

	Page No.
Discussion	95
The IL482 CO-Oximeter Protocol	95

Chapter 4 Brain Oxygen Metabolism and Cerebrovascular Response of the Conscious Unrestrained Sheep to an Acute Exposure to Carbon Monoxide

	Page No.
Introduction	99
The CO Conflict	99
The Experimental Model	100
Materials and Methods	101
Surgical Preparation	101
Sheep Training	101
Experimental Procedure	101
Brain Oxygen Delivery	103
Brain Oxygen Consumption	103
Brain Lactate Production	103
Data Analysis and Interpretation	104
Results	105
Behavioural Effects	105
Cardiovascular Effects	106
PCO ₂ Effects	106
PO ₂ Effects	106
Observation's of Note	111
Lactate Effect	112
pH Effect	115
Discussion	118

Page No.

Chapter 5 Final Conclusion

APPENDICES

	Page No
Appendix 1	128
Gas Chromatograph	128
Gas Chromatograph Conditions	128
Reagents	129
Appendix 2	
Lactate Assay	130
Appendix 3	131
Thesis Publications	

PG Langston, DA Jarvis, G Lewis, GA Osborne, WJ Russell. The Determination of Absorption Coefficients for Measurements of Carboxyhaemoglobin, Oxyhaemoglobin, Reduced Haemoglobin, and Methaemoglobin in Sheep using the IL 482 CO-Oximeter. J Anal Toxic. Vol 17 (September), 1993.

Langston P, Gorman D, Runciman W, Upton R.

The effect of carbon monoxide on oxygen metabolism in the brains of awake sheep. Toxicology, Vol 114, p 223 - 232, 1996.

REFERENCES

132 - 149

Glossary of Tables and Figures

Chapter 1

Table 1. Reported values for affinities of CO and Hb (Hb affinity), when

compared to the affinities of oxygen for Hb, for various animal species.

Figure 1. Oxygen Cascade Pathway (Nunn 1975).

Figure 2. Oxyhaemoglobin Dissociation Curve of Human Blood.

Figure 3. Carbon Monoxide and Oxidative Phosphorylation.

Chapter 2

Figure 4. Dorsal view of the sheep skull showing position of "trephine burr hole."

Figure 5. Sheep in metabolic crate, showing catheters connected to the saline flushing apparatus.

Chapter 3

Table 2.Normalised Matrix of Relative Absorption Coefficients [E], for Sheepwith Type A Haemoglobin.

Table 3. The Inverse of the Normalised Matrix of Relative AbsorptionCoefficients [E]⁻¹, for Sheep with Type A haemoglobin.

- Table 4.The Standard Deviation (%) in Sample Measurement due to variancein the Coefficient Matrices of Five Sheep.
- Figure 6. The absorption spectra of the reduced, oxy-, carboxy-, and methaemoglobin.

Chapter 3 (cont)

- Figure 7. Calibration curve of the various COHb concentrations in sheep blood with type A haemoglobin, prepared by tonometery, and analysed on the IL482 using the derived sheep coefficient matrix program. The correlation coefficient was 0.999 with a regression equation of COHb = 0.989 (calcCOHb) + 1.091.
- Figure 8. Altman-Bland plot of the difference between the measured and calculated COHb percentage and various COHb saturations.

Chapter 4

- Figure 9. A graph of the mean (SD) percentage carotid arterial blood COHb levels, heart rate and MABP against time in 8 sheep exposed to 1.0 percent CO.
- Figure 10. A graph of the group mean (SD) percentage carotid arterial blood COHb levels, carotid artery P_aCO₂ and sagittal sinus P_vCO₂ against time in 8 sheep exposed to 1.0 percent CO.
- Figure 11. A graph of the group mean (SD) percentage carotid arterial blood COHb levels, carotid artery P_aO_2 and sagittal sinus P_vO_2 against time in 8 sheep exposed to 1.0 percent CO.

Glossary of Tables and Figures

Chapter 4 (cont)

- Figure 12. A graph of the group mean (SD) percentage carotid arterial blood COHb levels, CBF (as a percentage of that measured during the pre-CO baseline), oxygen delivery to the brain (as a percentage of that measured during the pre-CO baseline) and oxygen consumption by the brain (as a percentage of that measured during the pre-CO baseline) against time in 8 sheep exposed to 1.0 percent CO.
- Figure 13. A graph of the carotid arterial blood COHb levels, and the carotid arterial and sagittal sinus venous blood lactate concentrations for individual animals against time in 8 sheep exposed to 1.0 percent CO.
- Figure 14. A graph of the group mean (SD) percentage carotid arterial blood COHb levels, and the carotid artery and sagittal sinus pH against time in 8 sheep exposed to 1.0 percent CO.
- Table 5. Group mean (sd) estimates of oxygen (mls of oxygen/100 mls of carotid arterial blood), dissociating from Hb in the brain capillaries of sheep exposed to 1.0 percent CO for 35 minutes, at different carotid arterial blood COHb concentrations. Estimates are derived from the carotid arterial and sagittal sinus venous blood oxygen tensions and the OHb dissociation curves of Roughton and Darling (1944) and then corrected for relative CBF.

Glossary of Tables and Figures

Chapter 4 (cont)

Table 6. The range and median values of brain lactate production (umol/min) in 8 sheep exposed to 1.0 percent CO for 35 minutes, at different carotid arterial blood COHb concentrations. Negative values indicate the carotid arterial blood concentrations exceeded sagittal sinus venous blood values.

Abbreviations

CO	carbon monoxide
cGMP	guanosine 3,5-monophosphate
COHb	carboxyhaemoglobin
Hb	haemoglobin
Нурохіа	hypoxic hypoxia
PO ₂	oxygen partial pressure
PCO	carbon monoxide partial pressure
L/min	litres per minute
рН	-log [H ion]
mmHg	millimetres of mercury
ppm	parts per million
CSER	cerebral somatosensory evoked responses
CortSER	cortical somatosensory evoked responses
PaO ₂	arterial oxygen partial pressure
IL482	Instrument Laboratories 482 CO-Oximeter
RHb	reduced haemoglobin
MetHb	met-haemoglobin
CaO	arterial oxygen content
CvO	venous oxygen content
mls	millilitres
Calc	calculated
HR	heart rate
P _{et} CO ₂	end-tidal carbon dioxide concentration

Abbreviations (cont)

cerebral blood flow
arterial oxygen content
venous oxygen content
total haemoglobin
nanometres
milligrams
fractional concentration of reduced haemoglobin
fractional concentration of oxyhaemoglobin
fractional concentration of carboxyhaemoglobin
fractional concentration of met-haemoglobin
scalar constant
inverse matrix
saturated carboxyhaemoglobin
haematocrit
grams
micro-moles per minute

Abstract

The prevalent hypothesis of carbon monoxide toxicity is based on the combination of carbon monoxide binding to haemoglobin forming carboxyhaemoglobin (causing a fall in the bloods oxygen carrying capacity) and the reduction in the dissociation of oxygen from haemoglobin.

Although the relationship between inspired carbon monoxide concentration and the level of carboxyhaemoglobin level in the blood is well recognised, the relationship between carboxyhaemoglobin level, the oxygen status of critical organs such as the brain and heart and the progression of the acute symptoms is uncertain.

This thesis examines the relationship between carboxyhaemoglobin level and critical organ status, with particular reference to the brain, in eight chronically instrumented conscious sheep whilst being progressively exposed to carbon monoxide in the expired breath, to simulate an acute human poisoning.

In all sheep, the carboxyhaemoglobin levels at the end of the exposure to carbon monoxide was approximately 65 percent. Mean arterial blood pressure remained unchanged with the exception of two sheep, where carbon monoxide administration was stopped at 25 minutes due to a sudden onset of hypotension. Oxygen delivery to the brain was sustained throughout the administration of carbon monoxide due to a significant increase in cerebral blood flow. There was no evidence of metabolic acidosis or lactate production by the brain, suggesting the brain did not become hypoxic during the time course of the carbon monoxide exposure. Oxygen consumption by the brain decreased progressively, and the sheep showed behavioural changes which varied from agitation to sedation to narcosis. The mechanism of these changes was therefore probably unrelated to hypoxia, however, may have been due to raised intracranial pressure or a direct effect of carbon monoxide on brain function.

Acknowledgements

My sincere thanks and appreciation goes to the following people who assisted me in some way or another, enabling me to achieve this thesis:

Prof. Des Gorman	(Dept. of Medicine, University of Auckland)
Prof. Bill Runciman	(Dept. of Anaes. & Int. Care, Royal Adelaide Hospital)
Dr. John Russell	(Dept. of Anaes. & Int. Care, Royal Adelaide Hospital)
Dr. Richard Upton	(Dept. of Anaes. & Int. Care, Royal Adelaide Hospital)
Elke Gray	(Dept. of Anaes. & Int. Care, Royal Adelaide Hospital)
Dr. Yifei Huang	(Dept. of Anaes. & Int. Care, Royal Adelaide Hospital)
Cliff Grant	(Dept. of Anaes. & Int. Care, Royal Adelaide Hospital)
Dr. Tim Miles	(Dept. of Physiology, University of Adelaide)

and, a final acknowledgement of appreciation is to the Institutions that provided the finanacial support to the Carbon Monoxide Toxicity Project:

National Health and Medical Research Council, Australia Royal Adelaide Hospital (Special Purposes Fund), Adelaide, Australia