# GENE THERAPY FOR PULMONARY ARTERIAL HYPERTENSION WITH BONE MORPHOGENETIC PROTEIN RECEPTOR TYPE-2 MODULATION VIA ENGINEERED ENDOTHELIAL PROGENITOR CELLS OR A TARGETED ADENO-VIRAL CONSTRUCT: CHANGES IN SMAD AND NON-SMAD SIGNALLING CONTRIBUTED TO AMELIORATION OF DISEASE

ΒY

REBECCA L HARPER

A thesis submitted in fulfilment of DOCTOR OF PHILOSOPHY

in the



Discipline of Medicine, School of Medicine,

Faculty of Health Sciences,

University of Adelaide

January 2016

To my love, Ninh.

And to all the rural kids who dare to look beyond the horizon.

## ABSTRACT

Pulmonary arterial hypertension (PAH) is a rare but devastating disease and despite available therapeutics, survival remains at 3-5 years. Reduced expression of the bone morphogenetic protein receptor type 2 (BMPR2) is causally linked to hereditary, idiopathic and secondary forms of PAH. Thus, we proposed that up-regulation of BMPR2 may be therapeutic. As proof of concept, we've previously attenuated PAH in animal models through BMPR2 targeted gene delivery using Adenoviral (Ad) vectors. However, further understanding of the cell signalling mechanisms involved, as well as overcoming limitations with viral vector approaches is required to progress this approach to the clinic. Endothelial progenitor cells (EPCs) may be the key to avoiding the shortcomings of Ad-vector technology. EPCs are important for angiogenesis as well as tissue repair and have been shown to have altered function and abundance in patients with PAH. Manipulating these cells may be an alternate means to up-regulate BMPR2 in lungs affected by PAH, thereby avoiding some of the limitations of viral gene delivery techniques and enabling easier clinical translation.

Herein, I confirmed disease reversal in the rat monocrotaline (MCT)induced PAH model following targeted gene delivery of BMPR2 to the pulmonary vascular endothelium and assessed the relevant BMPR2 mediated Smad pathways in whole lung tissue, 10 days following treatment. Microarray technology was utilised to identify any novel molecular targets, with results from this indicating that a peak Smad signalling effect was missed at this 10 day time-point. However, the microarray did indicate potential changes in BMPR2 mediated non-Smad signalling. PAH reversal was then assessed 2 days following targeted gene delivery of BMPR2 to the pulmonary endothelium and further assessment of BMPR2 mediated Smad and non-Smad pathways were analysed in the subsequent whole lung tissue.

Moving towards a more clinically applicable therapy, cell therapy using *ex vivo* engineered EPCs to deliver BMPR2 to the pulmonary endothelium was investigated in the rat MCT-induced PAH model. To do this, the technique to isolate and culture rat bone marrow derived EPCs (r-EPCs) was developed. Successful transduction of these cells to over-express BMPR2 was optimised and these now engineered cells were used as a vehicle to deliver BMPR2 to the pulmonary vasculature via intravenous injection into rats with MCT-induced PAH. Amelioration of PAH was confirmed 10 days following the cell therapy treatment and subsequent protein analysis of BMPR2 mediated Smad pathways in the whole lung tissue saw changes activated Smad1/5/8.

The development of new therapies for PAH is critical. BMPR2 modulation is a novel therapeutic strategy which addresses the well known underlying pathology of BMPR2 deficiency that occurs not only in hereditary PH, but secondary PH and most PAH animal models. The success of our highly novel pre-clinical BMPR2 cell therapy may lead the way for further development of other BMPR2 therapies, as well as give significant insight into the pathophysiology of this devastating disease.

## DECLARATION

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder(s) of those works. I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library Search and also through web search engines, unless permission has be granted by the University to restrict access for a period of time.

> Rebecca L Harper, July 25, 2016

#### ACKNOWLEDGEMENTS

To have the privilege of undertaking and completing a PhD in medicine was not a goal I imagined to be possible for myself. There have been many instrumental people who have contributed to the success of this work, of whom I am eternally grateful and would like to particularly mention.

Firstly, thank you to my supervisor Prof. Paul Reynolds, who is responsible for giving me the opportunity to pursue a dream I didn't ever think I was capable of. For empowering me to voice my ideas and giving me the freedom to explore all possibilities. For always having time, when in reality, you had no time to give at all. Thank you for instilling in me the importance of scientific rigour and for teaching me the value of small details and hard work. Your humble nature and quiet determination inspires me everyday and I will forever be grateful that I've had the privilege to have you as a mentor.

I would also like to acknowledge and thank my second supervisor A/Prof. Claudine Bonder. I'm very grateful for your positive nature and easy going approach. At times it lifted me to a higher level of motivation and confidence. You are a shining example of who I aspire to be, both professionally and personally.

To all my colleagues at the Lung Research Laboratory, past and present, in particular Dr Ann Reynolds who taught me all the technical skills to complete this work, and who has become a very dear friend of mine. Your support and advice throughout my PhD studies has been invaluable.

A special thanks to my family who have all been very supportive in many different ways. You have always supported me tremendously in every endeavour and I will forever be grateful for that. I would like to thank Aesha and Kallan for the perspective they gave me when they entered my life, for teaching me what is important and for being the most wonderful kids anyone could hope to have.

To my darling Ninha, thank you for instilling patience in me, for inspiring me to be better everyday just by being who you are. Thank you for always lifting me up and never pulling me down. For being a selfless and strong pillar for me to depend on always. Thank you for motivating me during the tough times and for enabling me to be assertive and to have confidence in my capabilities. Thank you for being the greatest friend I could ever wish for and giving me a renewed sense of life.

## PUBLICATIONS

#### JOURNAL ARTICLES

## Accepted

- R L Harper, A M Reynolds and P N Reynolds, Changes in Smad Signalling Leads to Amelioration of PAH Following Gene Delivery of BMPR2, accepted Respirology, September, 2015.
- F Feng, R L Harper and P N Reynolds, BMPR-2 gene delivery reduces mutation-related PAH and counteracts TGFβ mediated pulmonary cell signalling, accepted Respirology, September, 2015.

#### In preparation

- 1. R L Harper, C S Bonder and P N Reynolds, *Endothelial Progenitor Cells Over-expressing BMPR2 Ameliorates PAH in A Rat MCT Model.*
- 2. R L Harper, C S Bonder and P N Reynolds, *Biodistribution of Engineered Endothelial Progenitor Cells Following Intraveneous Injection into Rats.*
- 3. R L Harper, C S Bonder and P N Reynolds, *Identification of Novel Therapy Targets following a Microarray Study of rat lungs from a disease reversal model of MCT-induced PAH.*

- R L Harper and P N Reynolds, Smad and Non Smad Signalling in PAH Following BMPR2 Gene Delivery, presented as a poster presentation at the 2015 ATS Annual Scientific Meeting, Denver, CO, May 2015
- R L Harper and P N Reynolds, Up-regulation of BMPR2 in Rat Derived Endothelial Progenitor Cells Leads to the Attenuation of PAH in a MCT Rat Model, presented as a poster presentation at the 2015 ATS Annual Scientific Meeting, Denver, CO, May 2015.
   Recipient of ATS Scholarship
- 3. R L Harper and P N Reynolds, *BMPR2 Replacement Therapy via In Situ Gene Delivery or Engineered Endothelial Cells Alleviates PAH in a Rat Model*, presented as a poster presentation at the 2015 American Society of Gene and Cell Therapy, Annual Scientific Meeting, New Orleans, LO, May 2015.
- 4. R L Harper and P N Reynolds, BMPR2 Upregulation Via in situ Gene Delivery or Via Engineered Endothelial Progenitor Cells Alleviates Pulmonary Arterial Hypertension (PAH) in a Rat Model, presented as an oral presentation at the 2015 TSANZ, Annual Scientific Meeting, Gold Coast, QLD, May 2015.

Winner of the Ann Woolcock Young Investigator of the Year

- 5. R L Harper and P N Reynolds, *Identification of Novel Cellular Signalling Pathways Following Gene Delivery of Bone Morphogenetic Protein Receptor Type-2: A Microarray Study,* presented as an oral presentation at the 2014 TSANZ Annual Scientific Meeting, Adelaide, April, 2014.
- 6. R L Harper and P N Reynolds, *Identification of Novel Cellular Signalling Pathways Following Gene Delivery of Bone Morphogenetic Protein Receptor*

*Type-2: A Microarray Study*, presented as an oral presentation at the 2014 TSANZ Annual Scientific Meeting, Adelaide, April, 2014.

- 7. R L Harper, C S Bonder and P N Reynolds, Isolation and Characterisation of a Defined Populations of Endothelial Progenitor Cells from the Left Ventricle: A Pilot Study, presented as a poster presentation at the 2014 TSANZ Annual Scientific Meeting, Adelaide, April, 2014.
- R L Harper, A M Reynolds and P N Reynolds, *BMPR2 Gene Delivery* Shifts Intracellular Smad Activation Profile, presented as a poster presentation at the 2012 European Respiratory Society Annual Congress, Vienna, September, 2012.
- R L Harper, A M Reynolds and P R Reynolds, *Changes in Smad Signalling Leads To Amelioration of PAH Following Gene Delivery of Bone Morphogenetic Protein Receptor Type 2*, Am J Respir Crit Care Med, vol. 185, pg. A6517, 2012. Presented as an oral presentation at the 2012 ATS Annual Conference, San Francisco, 2012.
- 10. R L Harper, A M Reynolds and P R Reynolds, Gene Delivery of Bone Morphogenetic Protein Receptor Type 2 Ameliorates PAH via Changes in Smad Signalling, in proceedings of Respirology, vol 17, pg. 19, 2012. Presented as an oral presentation at the TSANZ Annual Scientific Meeting, Canberra, 2012
- 11. R L Harper, A M Reynolds and P R Reynolds, Amelioration Of PAH Following Gene Delivery Of BMPR2 Via Changes in Smad Signalling, in proceedings of Respirology, vol 17, pg. 19, 2012. Poster presented at the South Australian Cardiovascular Research Forum, 2012.
- S Pradeepan, R Harper, A Thornton, S Johnston and H Greville, β-Blocker Usage by Patients Referred For Lung Function Testing: An Observational Study, in proceedings of Respirology, vol. 16, pg. TP-155, 2011.

- R Harper, S Johnston and A Thornton, *Six Minute Walk Test: Compliance with ATS Guidelines*, in proceedings Respirology, vol. 15:1, pg. A8, March, 2010. Poster presented at Australian and New Zealand Society of Respiratory Science (ANZSRS) Annual Scientific Meeting, Brisbane, March, 2010.
- 14. R Harper, P Roger, S Johnston and A Thornton, *15 Years of Inter-Laboratory Quality Control, in proceedings,* Respirology, vol. 14:1, pg. A5, April, 2009. Poster presented at Australian and New Zealand Society of Respiratory Science (ANZSRS) Annual Scientific Meeting, Darwin, April, 2009.

#### INVITED PRESENTATIONS

- 1. Japanese Respiratory Society, ASM, Tokyo. April, 2015.
- Asia Pacific Respiratory Society, ASM, Kuala Lumpur. December, 2015.

## AWARDS AND SCHOLARSHIPS

- Ann Woolcock Young Investigator of the Year 2015, Thoracic Society of Australia and New Zealand.
   A single prestigious annual award open to both Australia and New Zealand.
- 2. Asia Pacific Young Investigator Award 2015, Asia Pacific Respiratory Society.

A single award open to all nations in the Asia Pacific region to represent the region at the Japanese Respiratory Society, ASM, Tokyo.

- South Australia/ NT Branch, Young Investigator of the Year 2015, Thoracic Society of Australia and New Zealand.
   A single annual award open to candidates from South Australia and Northern Territory.
- 4. **Abstract Scholarship** 2015, Pulmonary Circulation Committee, American Thoracic Society.

A \$500 award given to outstanding ATS ASM submissions.

- Dawes Top-up Scholarship. 2013-2015.
  \$5,000 pa scholarship, selected by the Royal Adelaide Hospital Research Committee.
- Lions Medical Research Foundation Top-up Scholarship. 2012-2015.
  One of three \$10,000 pa scholarships for PhD projects, selected by the Lions Medical Foundation.
- 7. Australian Postgraduate Award 2012-2015.Scholarships awarded to top honours students to undertake their PhD.
- 8. Scicchitano Award 2012.

Annual \$5,000 award given to outstanding research in the field of Thoracic Medicine.

# CONTENTS

| De | edicat      | tion    |                                   |   |   |    |   | iii  |
|----|-------------|---------|-----------------------------------|---|---|----|---|------|
| Ał | Abstract iv |         |                                   |   |   | iv |   |      |
| De | eclara      | tion    |                                   |   |   |    |   | vi   |
| A  | cknov       | vledgei | ments                             |   |   |    |   | vii  |
| Ρt | ıblica      | tions   |                                   |   |   |    |   | viii |
| Li | st of I     | Figures | 3                                 |   |   |    |   | xxi  |
| Li | st of '     | Tables  |                                   |   |   |    | x | xvi  |
| A  | crony       | ms      |                                   |   |   |    | x | xvii |
| _  |             |         |                                   |   |   |    |   |      |
| Ι  | INT         | RODUC   | TION                              |   |   |    |   | 1    |
| 1  | PUL         | MONA    | RY ARTERIAL HYPERTENSION          |   |   |    |   | 2    |
|    | 1.1         | Classi  | fication                          | • | • | •  | • | 4    |
| 2  | PUL         | MONA    | RY ARTERIES IN THE LUNG           |   |   |    |   | 8    |
|    | 2.1         | Overv   | view                              |   | • | •  | • | 8    |
|    |             | 2.1.1   | Anatomy                           |   | • | •  | • | 8    |
|    |             | 2.1.2   | Histology                         |   | • | •  | • | 11   |
|    |             | 2.1.3   | Physiology                        |   | • | •  | • | 13   |
|    | 2.2         | Right   | Heart                             |   | • | •  | • | 14   |
|    |             | 2.2.1   | Right Ventricle Anatomy           |   | • | •  | • | 15   |
|    |             | 2.2.2   | Right Ventricle Histology         |   | • | •  | • | 15   |
|    |             | 2.2.3   | Right Ventricle Physiology        |   | • | •  | • | 15   |
|    | 2.3         | Endot   | thelial Cells and Blood Vessels   |   | • |    | • | 17   |
|    | 2.4         | Endot   | helial Cells and Vascular Disease |   | • |    | • | 19   |
| 3  | DIS         | EASE P  | ATHOGENESIS                       |   |   |    |   | 21   |
|    | 3.1         | Overv   | view                              |   | • |    | • | 21   |
|    | 3.2         | Plexif  | orm Lesions                       |   |   |    | • | 24   |

|   |     | 3.2.1 Molecular Changes                    | 5  |
|---|-----|--------------------------------------------|----|
|   | 3.3 | Inflammation                               | 5  |
|   | 3.4 | Disrupted Cellular Function                | 6  |
|   |     | 3.4.1 Endothelial Cell Dysfunction         | 6  |
|   |     | 3.4.2 Smooth Muscle Cell Dysfunction       | 7  |
|   | 3.5 | Gene Mutation in PAH                       | 8  |
| 4 | BON | NE MORPHOGENETIC PROTEIN RECEPTOR TYPE 2 3 | 0  |
|   | 4.1 | Overview                                   | 0  |
|   | 4.2 | Genomic Information and Receptor Structure | 2  |
|   | 4.3 | Bone Morphogenetic Proteins                | 3  |
|   | 4.4 | Smad Signalling Pathway 3                  | 4  |
|   | 4.5 | Non-Smad Signalling Pathway 3              | 7  |
|   | 4.6 | Mutations in the BMPR2 gene                | 8  |
| 5 | EXP | PERIMENTAL MODELS OF PAH 4                 | 2  |
|   | 5.1 | Overview                                   | 2  |
|   | 5.2 | Monocrotaline Model                        | 4  |
|   | 5.3 | Chronic Hypoxia Model                      | 5  |
|   | 5.4 | Sugen-5416/ Hypoxia Model                  | .6 |
|   | 5.5 | Transgenic Mouse Models                    | 7  |
|   | 5.6 | Summary                                    | 0  |
| 6 | TRE | EATMENT 5                                  | 1  |
|   | 6.1 | Overview                                   | 1  |
|   | 6.2 | Current Treatments                         | 2  |
|   |     | 6.2.1 Calcium Channel Blockers             | 2  |
|   |     | 6.2.2 Endothelin-Receptor Antagonists      | 4  |
|   |     | 6.2.3 Prostacyclin Therapy                 | 5  |
|   |     | 6.2.4 Phosphodiesterase-5 Inhibitors       | 6  |
|   |     | 6.2.5 Combination Therapy 5                | 6  |
|   | 6.3 | Emerging Treatments                        | 7  |
|   |     | 6.3.1 Riociguat                            | 7  |

|    |     | 6.3.2   | FK506(Tacrolimus)                                       | 57 |
|----|-----|---------|---------------------------------------------------------|----|
|    |     | 6.3.3   | Cell Therapy                                            | 58 |
| 7  | GEN | E THE   | RAPY                                                    | 60 |
|    | 7.1 | Overv   | 'iew                                                    | 60 |
|    | 7.2 | Viral V | Vectors                                                 | 62 |
|    |     | 7.2.1   | Adenovirus                                              | 62 |
|    |     | 7.2.2   | Retrovirus                                              | 64 |
|    |     | 7.2.3   | Adeno-associated Virus                                  | 64 |
|    | 7.3 | Non-v   | viral Vectors                                           | 67 |
|    | 7.4 | Gene    | Therapy and PAH                                         | 67 |
|    |     | 7.4.1   | BMPR2 Replacement Therapy                               | 68 |
| 8  | CON | ICLUSI  | ON                                                      | 69 |
| тт |     |         |                                                         |    |
| II |     |         | METHODOLOGY                                             | 71 |
| 9  | MET |         | AND MATERIALS                                           | 72 |
|    | 9.1 | Cell C  | Culture                                                 | 72 |
|    | 9.2 | Aden    | oviral Vector Preparation                               | 72 |
|    |     | 9.2.1   | Virus Amplification                                     | 72 |
|    |     | 9.2.2   | Cesium Chloride Purification of Virus                   | 73 |
|    |     | 9.2.3   | Particle and Infectious Titre                           | 74 |
|    | 9.3 | Rat de  | erived EPC Isolation and Characterisation               | 75 |
|    |     | 9.3.1   | Extraction, Isolation and Culture of Rat derived EPCs . | 75 |
|    |     | 9.3.2   | Rat derived EPC characterisation                        | 76 |
|    |     | 9.3.3   | Flow Cytometry                                          | 76 |
|    |     | 9.3.4   | Rat derived EPC AdCMVGFP Transduction Studies           | 77 |
|    |     | 9.3.5   | Rat derived EPC Transduction with AdCMVBMPR2myc         | 77 |
|    |     | 9.3.6   | Analysis of AdCMVBMPR2myc Transduction in r-EPCS        | 78 |
|    | 9.4 | Physic  | ological Studies                                        | 78 |
|    |     | 9.4.1   | Construction of Fab-9B9: ACE Targeted Gene Delivery     |    |
|    |     |         | Conjugate                                               | 78 |

|     |      | 9.4.2  | Validation of ACE Targeted Gene Delivery in vitro via    |     |
|-----|------|--------|----------------------------------------------------------|-----|
|     |      |        | Luciferase Assay                                         | 79  |
|     |      | 9.4.3  | Validation of ACE Targeted Gene Delivery in vivo via     |     |
|     |      |        | Luciferase Assay                                         | 79  |
|     |      | 9.4.4  | Animals                                                  | 80  |
|     |      | 9.4.5  | Bio-Distribution Studies of Rat derived EPCs in Sprague- |     |
|     |      |        | Dawley Rats                                              | 80  |
|     |      | 9.4.6  | Protein Analysis: 1 hour post BMPR2-EPC injection        | 81  |
|     |      | 9.4.7  | Rat Monocrotaline Model                                  | 82  |
|     |      | 9.4.8  | AdBMPR2 Studies: 2 and 10-day time-points                | 82  |
|     |      | 9.4.9  | AdBMPR2-EPC Studies: 10-day Time-point                   | 84  |
|     | 9.5  | Anim   | al Tissue Processing and Analysis                        | 85  |
|     |      | 9.5.1  | Tissue Extraction and Preparation                        | 85  |
|     |      | 9.5.2  | Smad and Non-Smad Pathway Analysis                       | 86  |
|     |      | 9.5.3  | RNA extraction                                           | 87  |
|     | 9.6  | Micro  | array Studies                                            | 87  |
|     |      | 9.6.1  | Ingenuity Pathway Analysis                               | 88  |
|     | 9.7  | Statis | tical analysis                                           | 88  |
|     |      |        |                                                          | 0   |
| III | RE   | SULTS  |                                                          | 89  |
| 10  |      |        | EDIATED SMAD SIGNALLING ANALYSIS                         | 90  |
|     |      |        | <i>v</i> iew                                             | 90  |
|     |      |        | ioration of PAH: 10 days following AdBMPR2 treatment     | 96  |
|     | 10.3 | Activa | ation of Smad pathways was inconclusive 10-days fol-     |     |
|     |      | lowin  | g AdBMPR2 treatment                                      | 97  |
|     | 10.4 | Reduc  | ction in right ventricular hypertrophy in MCT-induced    |     |
|     |      | PAH    | rats only 2 days post AdBMPR2 treatment                  | 101 |
|     | 10.5 | Activa | ation of Smad1/5/8: 2 days following AdBMPR2 treat-      |     |
|     |      | ment   |                                                          | 103 |
|     | 10.6 | Effect | on Smad3 activation: 2 days following AdBMPR2 treat-     |     |
|     |      | ment   |                                                          | 104 |

|    | 10.7 Discussion and Conclusions                                 | 106 |
|----|-----------------------------------------------------------------|-----|
| 11 | MICROARRAY STUDIES                                              | 110 |
|    | 11.1 Overview                                                   | 110 |
|    | 11.2 Gene expression profiles differ between treatment groups   | 112 |
|    | 11.3 Preliminary Analysis                                       | 114 |
|    | 11.4 Ingenuity Pathway Analysis: main summary                   | 116 |
|    | 11.5 Non-Smad pathways identified in the pathway analysis       | 118 |
|    | 11.6 Discussion and Conclusions                                 | 122 |
| 12 | NON-SMAD SIGNALLING PROFILES ARE ALTERED FOLLOWING              |     |
|    | BMPR2 MODULATION                                                | 126 |
|    | 12.1 Overview                                                   | 126 |
|    | 12.2 PI3K is significantly increased 2 days following AdBMPR2   |     |
|    | treatment                                                       | 127 |
|    | 12.3 De-activation of p38 MAPK: 2 days following AdBMPR2 treat- |     |
|    | ment                                                            | 128 |
|    | 12.4 Discussion and Conclusions                                 | 130 |
| 13 | GENE THERAPY USING ENDOTHELIAL PROGENITOR CELLS                 | 134 |
|    | 13.1 Overview                                                   | 134 |
|    | 13.2 Isolation and characterisation of rat derived EPCs         | 137 |
|    | 13.2.1 Morphological Assessment                                 | 137 |
|    | 13.2.2 Flow cytometric analysis                                 | 139 |
|    | 13.3 Efficient transduction of rat derived EPCs                 | 139 |
|    | 13.3.1 AdCMVGFP                                                 | 139 |
|    | 13.3.2 AdCMVLuc                                                 | 140 |
|    | 13.4 Successful BMPR2 Up-regulation in Rat Derived EPCs         | 141 |
|    | 13.5 Discussion and Conclusion                                  | 143 |
| 14 | AMELIORATION OF PAH FOLLOWING BMPR2 DELIVERY VIA AUG-           |     |
|    | MENTED <i>ex vivo</i> rat derived epcs                          | 147 |
|    | 14.1 Overview                                                   | 147 |
|    | 14.2 Bio-distribution of Rat derived EPCs                       | 150 |

|    |                                                                 | 14.2.1 <i>In vivo</i> Luciferase Peak Signalling Time-curve | 150        |
|----|-----------------------------------------------------------------|-------------------------------------------------------------|------------|
|    |                                                                 | 14.2.2 R-EPCs home to the lung following IV injection       | 152        |
|    | 14.3 BMPR2 up-regulation 1 h following BMPR2-EPC treatment . 15 |                                                             |            |
|    | 14.4 Activation of the Smad1/5/8 pathway 1 h following BMPR2-   |                                                             |            |
|    | EPC treatment                                                   |                                                             |            |
|    | 14.5 BMPR2 Augmented Rat derived EPCs ameliorates PAH in        |                                                             |            |
|    |                                                                 | the rat MCT model                                           | 156        |
|    | 14.6                                                            | Comparison of AdBMPR2 treatment with BMPR2-EPCs treat-      |            |
|    |                                                                 | ment: FI 10-days following treatment                        | 158        |
|    | 14.7                                                            | Discussion and Conclusions                                  | 160        |
| 15 | SMA                                                             | D SIGNALLING PROFILES ARE ALTERED FOLLOWING BMPR2           |            |
|    | моі                                                             | DULATED EX VIVO EPC DELIVERY                                | 164        |
|    | 15.1                                                            | Overview                                                    | 164        |
|    | 15.2                                                            | BMPR2 expression is increased 10-days following EPC and     |            |
|    |                                                                 | BMPR2-EPC treatment                                         | 165        |
|    | 15.3                                                            | Activation of the Smad1/5/8 pathway 10-days following BMPR  | .2-        |
|    |                                                                 | EPC treatment                                               | 166        |
|    | 15.4                                                            | Decrease in activated Smad3 10-days following BMPR2-EPC     |            |
|    |                                                                 | treatment                                                   | 167        |
|    | 15.5                                                            | Discussion and Conclusions                                  | 169        |
| IV |                                                                 | NOT HOLONG AND EVENDE MODY                                  | <b>4-0</b> |
|    |                                                                 | NCLUSIONS AND FUTURE WORK                                   | 173        |
| 16 |                                                                 |                                                             | 174        |
|    |                                                                 | Conclusions                                                 |            |
|    | 16.2                                                            | Future Work                                                 | 183        |
| Ap | penc                                                            | lices                                                       | 188        |
| Α  | ACE                                                             | TARGETING                                                   | 189        |
|    | A.1                                                             | ACE Targeting <i>in vitro</i> Results                       | 189        |
|    | A.2                                                             | ACE Targeting <i>in vivo</i> Results                        | 189        |
| В  | MIC                                                             | ROARRAY                                                     | 191        |

|    | B.1              | Bioan | alyzer Results                                          | 191 |  |  |
|----|------------------|-------|---------------------------------------------------------|-----|--|--|
|    | B.2              | Samp  | Sample list of significant genes from MCT Only vs MCT + |     |  |  |
|    |                  | AdBM  | IPR2Fab-9B9 comparison                                  | 194 |  |  |
| C  | HUN              | MAN E | PCS                                                     | 196 |  |  |
|    | C.1              | Huma  | an derived Endothelial Progenitor Cells                 | 196 |  |  |
|    |                  | C.1.1 | Isolation, Culture and Characterisation of h-EPCs from  |     |  |  |
|    |                  |       | the peripheral blood                                    | 196 |  |  |
|    |                  | C.1.2 | Transduction of h-EPCs with AdCMVGFP                    | 198 |  |  |
|    |                  | C.1.3 | Transduction of h-EPCs with AdCMVBMPR2myc               | 200 |  |  |
|    |                  |       |                                                         |     |  |  |
| ΒI | BIBLIOGRAPHY 201 |       |                                                         |     |  |  |

# LIST OF FIGURES

| Figure 1     | A Kaplan-Meier plot of survival for patients with                    |    |
|--------------|----------------------------------------------------------------------|----|
| 0            | PAH over 3 years                                                     | 2  |
| Figure 2     |                                                                      | 10 |
| Figure 3     | Changes in cell composition as blood vessels progress                |    |
| 0 9          |                                                                      | 12 |
| Figure 4     |                                                                      | 14 |
| Figure 5     |                                                                      | 16 |
| Figure 6     | Cross section of a normal rat heart and a rat heart                  |    |
|              |                                                                      | 17 |
| Figure 7     | Schematic demonstrating the role of endothelial cells                | ~/ |
| rigure /     |                                                                      | 10 |
| <b>T</b> : 0 |                                                                      | 19 |
| Figure 8     |                                                                      | 23 |
| Figure 9     | Converging factors of PAH pathogenesis                               | 24 |
| Figure 10    | Role of inflammation in PAH                                          | 27 |
| Figure 11    | TGF- $\beta$ Super-family of Receptors $\ldots \ldots \ldots \ldots$ | 31 |
| Figure 12    | BMPR2 chromosome and gene with germline muta-                        |    |
|              | tions for PAH                                                        | 32 |
| Figure 13    | BMPR2 receptor                                                       | 33 |
| Figure 14    | BMPR2 mediated Smad1/5/8 signalling pathway                          | 35 |
| Figure 15    | TGF- $\beta$ mediated Smad2/3 signalling pathway                     | 36 |
| Figure 16    | BMPR2 mediated non-Smad signalling pathway                           | 37 |
| Figure 17    | TGF- $\beta$ mediated non-Smad signalling pathways $\ldots$          | 38 |
| Figure 18    | Mechanism of Truncating and Missense mutations in                    |    |
|              | the BMPR2 gene                                                       | 40 |
| Figure 19    | A Kaplan-Meier plot of the disease Severity of Trun-                 |    |
|              | cating vs Missense mutations over time                               | 41 |

| Figure 20 | Targeted molecular pathways and actions of current                   |
|-----------|----------------------------------------------------------------------|
|           | approved PAH therapies                                               |
| Figure 21 | Updated PAH evidence based treatment algorithm 53                    |
| Figure 22 | Mechanism of adenovirus, adeno-associated virus and                  |
|           | retrovirus entering the cell and integrating their DNA 66            |
| Figure 23 | Cesium chloride centrifugation purification method . 74              |
| Figure 24 | Tissue culture infectious dose TCID <sub>5</sub> 0 Assay $\ldots$ 75 |
| Figure 25 | Placement of left and right heart catheters for hemo-                |
|           | dynmamic assessment                                                  |
| Figure 26 | Example of hemodynamic pressure traces taken from                    |
|           | a healthy rat                                                        |
| Figure 27 | Up-regulation of BMPR2 mediated Smad1/5/8 and                        |
|           | down-regulation of pSmad3 following BMPR2 trans-                     |
|           | duction of HMVEC-LBl                                                 |
| Figure 28 | Hemodynamic assessment of MCT-induced PAH fol-                       |
|           | lowing AdBMPR2Fab-9B9 treatment                                      |
| Figure 29 | Consistency of animal health at the time of hemody-                  |
|           | namic analysis                                                       |
| Figure 30 | Immunoblot proetin analysis of BMPR2 mediated Smad1/5/8              |
|           | signalling pathway in whole rat lung 10-days follow-                 |
|           | ing AdBMPR2 treatment 100                                            |
| Figure 31 | Immunoblot protein analysis of TGF- $\beta$ mediated Smad2/3         |
|           | dependent signalling pathway in whole rat lung 10-                   |
|           | days following AdBMPR2 treatment 101                                 |
| Figure 32 | Reduction in right ventricular hypertrophy in MCT-                   |
|           | induced PAH rats only 2 days post AdBMPR2Fab-                        |
|           | 9B9 treatment 102                                                    |
| Figure 33 | Body weight of animals at the time of Fulton Index                   |
|           | measurement                                                          |
|           |                                                                      |

| Figure 34 | Immunoblot protein analysis of BMPR2 mediated Smad           |
|-----------|--------------------------------------------------------------|
|           | dependent signalling pathways in whole rat lung 10-          |
|           | days following AdBMPR2 treatment 104                         |
| Figure 35 | Immunoblot protein analysis of TGF- $\beta$ mediated Smad2/3 |
|           | dependent signalling pathway in whole rat lung 10-           |
|           | days following AdBMPR2 treatment 105                         |
| Figure 36 | Principle Component Analysis Graph of gene expres-           |
|           | sion differences between each treatment group from           |
|           | the MCT-induced PAH: 10 days following AdBMPR2               |
|           | treatment                                                    |
| Figure 37 | Venn diagram of microarray results                           |
| Figure 38 | ERK1/2 Network Map: a cell signalling network iden-          |
|           | tified by the IPA analysis of the gene expression pro-       |
|           | file of rat lungs 10 days following AdBMPR2 treat-           |
|           | ment in MCT-induced PAH rats                                 |
| Figure 39 | MAPK Network map: a cell signalling network iden-            |
|           | tified by the IPA analysis of the gene expression pro-       |
|           | file of rat lungs 10 days following AdBMPR2 treat-           |
|           | ment in MCT-induced PAH rats                                 |
| Figure 40 | eIF2 Network map: a cell signalling network identi-          |
|           | fied by the IPA analysis of the gene expression profile      |
|           | of rat lungs 10 days following AdBMPR2 treatment             |
|           | in MCT-induced PAH rats                                      |
| Figure 41 | Immunoblot protein analysis of BMPR2 mediated non-           |
|           | Smad dependent PI3K signalling pathway 129                   |
| Figure 42 | Immunoblot protein analysis of BMPR2 mediated non-           |
|           | Smad dependent p38 MAPK signalling pathway 130               |
| Figure 43 | Phase contrast images of rat derrived EPCs 138               |
| Figure 44 | Flow cytometric analysis of rat derived EPCs 140             |

| Figure 45 | Assessment of transduction efficiency of AdCMVGFP      |
|-----------|--------------------------------------------------------|
|           | in r-EPCs                                              |
| Figure 46 | Luciferase activity following r-EPC transduction with  |
|           | AdCMVLuc                                               |
| Figure 47 | Immunoblot proetin analysis of BMPR2 expression        |
|           | in r-EPCs following AdBMPR2 transduciton 142           |
| Figure 48 | Immunoblot proetin analysis of myc expression in r-    |
|           | EPCs following AdBMPR2 transduciton 143                |
| Figure 49 | Luminescence time-curve in live rats post IV injection |
|           | of AdTrackLuc transduced EPCs                          |
| Figure 50 | Luminescence scanning of rats post IV injection of     |
|           | AdTrackLuc transduced r-EPCs                           |
| Figure 51 | Quantification of luminescence scanning of rats post   |
|           | IV injection of AdTrackLuc transduced r-EPCs 153       |
| Figure 52 | Immunoblot protein analysis of BMPR2 in whole rat      |
|           | lungs 1 h following BMPR2-EPC treatment 154            |
| Figure 53 | Immunoblot protein analysis of the BMPR2 mediated      |
|           | Smad1/5/8 signalling pathway in whole rat lung 1 h     |
|           | following BMPR2-EPC treatment 155                      |
| Figure 54 | Hemodynamic assessment of MCT-induced PAH fol-         |
|           | lowing BMPR2-EPCs treatment 158                        |
| Figure 55 | Consisteny of animal health at the time of hemody-     |
|           | namic assessment 159                                   |
| Figure 56 | Fulton index measurement 10 days post BMPR2-EPC,       |
|           | EPC Only and AdBMPR2-Fab-9B9 treatments in SD          |
|           | rats with MCT induced PAH                              |
| Figure 57 | Immunoblot protein analysis of BMPR2 expression        |
|           | in whole rat lung 10-days following BMPR2-EPCs         |
|           | treatment                                              |
|           |                                                        |

| Figure 58 | Immunoblot protein analysis of BMPR2 mediated Smad1/5/8        |
|-----------|----------------------------------------------------------------|
|           | signalling pathways in whole rat lung 10-days fol-             |
|           | lowing BMPR2-EPC treatment                                     |
| Figure 59 | Immunoblot protein analysis of TGF-β mediated Smad3            |
|           | signalling in whole rat lung 10-days following BMPR2-          |
|           | EPC treatment 168                                              |
| Figure 60 | Luciferase assay of CHO and CHO-2C2 cells to assess            |
|           | the targeting ability of Fab-9B9 fractions in vitro 189        |
| Figure 61 | Luciferase assay of CHo and CHO-2C2 cells to assess            |
|           | the targeting ability of Fab-9B9 fractions <i>in vitro</i> 190 |
| Figure 62 | Choosen samples for microarray. (A) MCT+AdTrackLucFab-         |
|           | 9B9; (B) MCT+AdCMVBMPR2Fab-9B9                                 |
| Figure 63 | Exmaple list of significant genes resulting from the           |
|           | microarray analysis                                            |
| Figure 64 | Isolation, cultre and characterisation technique of h-         |
|           | EPC                                                            |
| Figure 65 | Phase contrast image and fluorescent image of h-EPCs 198       |
| Figure 66 | Flow cytometric analysis of h-EPCs derived from the            |
|           | left ventricle                                                 |
| Figure 67 | Immunoblot image of BMPR2 up-regulation in h-EPCs              |
|           | following AdCMVBMPR2myc transduction 200                       |
|           |                                                                |

# LIST OF TABLES

| Table 1 | Updated classification of pulmonary hypertension 6      |
|---------|---------------------------------------------------------|
| Table 2 | Modified New York Heart Association functional clas-    |
|         | sification scale $\ldots$ 7                             |
| Table 3 | Relevant animal models of Group 1 pulmonary hy-         |
|         | pertension 43                                           |
| Table 4 | Transgenic mouse models of PAH                          |
| Table 5 | Raw hemodynamic data obtained 10 days following         |
|         | AdBMPR2 treatment                                       |
| Table 6 | False discovery rate report of mircroarray results from |
|         | the MCT-induced PAH: 10 days following AdBMPR2          |
|         | treatment                                               |
| Table 7 | IPA main summary of analysis                            |
| Table 8 | Raw hemodynamic data obtained 10 days following         |
|         | AdBMPR2 treatment                                       |

# ACRONYMS

| Alpha <b>-SM Actin</b> | Alpha-Smooth Muscle Actin                |
|------------------------|------------------------------------------|
| 5-HT                   | Hydroxytrypamine or Serotonin            |
| 5-HTT                  | Hydroxytrypamine (Serotonin) Transporter |
| 6MWD                   | 6 Minute Walk Distance                   |
| AAV                    | Adeno-associated Virus                   |
| ACE                    | Angiotenisin Converting Enzyme           |
| Ad                     | Adenovirus                               |
| ADA-SCID               | Adenosine Deaminase Deficiency           |
| ALK-5                  | Activin Receptor-Like Kinase-5           |
| ALK                    | Activin-Like Receptor Kinase-1           |
| ANG-1                  | Angiopoietin-1                           |
| APC                    | Antigen Presenting Cell                  |
| BMPR2                  | Bone Morphogenetic Protein Receptor Type |
| BSA                    | Bovine Serum Albumin                     |
| cAMP                   | cyclic AMP                               |
| CAR                    | Coxsackie and Adenovirus Receptor        |
| ССВ                    | Calcium Channel Blockers                 |
| cGMP                   | cyclic Guanosine Monophosphate           |

2

| СРЕ    | Cytopathic Effect                     |
|--------|---------------------------------------|
| CsCl   | Cesium Chloride                       |
| CXCL10 | CXC-chemokine Ligand 10               |
| DMEM   | Dulbecco's Modeified Eagle Medium     |
| EC     | Endothelial Cell                      |
| ECM    | Extracellular Matrix                  |
| EGF    | Epidermal Growth Factor               |
| EHS    | Engelbreth-Holm-Swarm                 |
| eIF2   | Eukaryotic Initiation Factor 2        |
| EM     | Electron Microscopy                   |
| EMA    | European Medicine Agency              |
| EMT    | Epithelial to Mesenchymal Transition  |
| EndoMT | Endothelial to Mesenchymal Transition |
| ENG    | Endoglin                              |
| EPC    | Endothelial Progenitor Cell           |
| ERA    | Endothelin-Receptor Antagonists       |
| ESC    | Embryonic Stem Cells                  |
| ET1    | Endothelin-1                          |
| ETA    | Endothelin-1 A                        |
| ETB    | Endothelin-1 B                        |
| FCS    | Foetal Calf Serum                     |

| FDA        | Food and Drug Administration                      |
|------------|---------------------------------------------------|
| FDR        | False Discovery Rate                              |
| FH Rats    | Fawn-Hooded Rats                                  |
| FI         | Fulton Index                                      |
| FKBP       | FK506 Binding Protein                             |
| FLAP       | 5-lipoxygenase Activating Protein                 |
| GFP        | Green Florescent Protein                          |
| HIF-1alpha | Hypoxia Inducible Factor -1alpha                  |
| HIF-1beta  | Hypoxia Inducible Factor -1beta                   |
| HMVEC-L    | Lung Derived Human Microvascular Endothelial Cell |
| НРАН       | Hereditary Pulmonary Arterial Hypertension        |
| HRQOL      | Health Related Quality of Life                    |
| IPA        | Ingenuity Pathway Analysis                        |
| IPAH       | Idiopathic Pulmonary Arterial Hypertension        |
| Luc        | Luciferase                                        |
| LV         | Left Ventricle                                    |
| МАРК       | Mitogen Activated Protein Kinase                  |
| MBP        | Myeloid Binding Protein                           |
| mcDNA      | Minicircle DNA                                    |
| MCP-1      | Monocyte Chemoattractant Protein-1                |
| MHD        | Mad-homology Domain                               |

| mPAP              | Mean Pulmonary Arterial Pressure                   |
|-------------------|----------------------------------------------------|
| NHMRC             | National Health and Medical Research Council       |
| NMD               | Nonsense Mediated Decay                            |
| NO                | Nitric Oxide                                       |
| NT-proBNP         | N-terminal Prohormone of Brain Natriuretic Peptide |
| NYHA              | New York Heart Association                         |
| p-Smad            | Phosphorylated-Smad                                |
| РА                | Pulmonary Artery                                   |
| PAEC              | Pulmonary Arterial Endothelial Cell                |
| РАН               | Pulmonary Arterial Hypertension                    |
| PASMC             | Pulmonary Arterial Smooth Muscle Cell              |
| PAWP              | Pulmonary Arterial Wedge Pressure                  |
| PBS               | Phosphate Buffered Solution                        |
| PCA               | Principle Component Analysis                       |
| PDE-5             | Phosphodiesterase-5                                |
| PDGF              | Platelet-Derived Growth Factor                     |
| pDNA              | Naked Plasmid DNA                                  |
| PFU               | Plaque Forming Units                               |
| PGI2S             | Prostacyclin Synthase                              |
| РН                | Pulmonary Hypertension                             |
| PI <sub>3</sub> K | Phosphoinsitide 3-Kinase                           |
|                   |                                                    |

| PVR        | Pulmonary Vascular Resistance             |
|------------|-------------------------------------------|
| rEPCs      | Rat Derived Endothelial Progenitor Cell   |
| RHC        | Right Heart Catheterisation               |
| Rho        | Ras Homologous                            |
| RIN        | RNA Integrity Score                       |
| ROCK       | Rho Kinase                                |
| RT         | Room Temperature                          |
| RVOT       | Right Ventricle Outflow Tract             |
| S          | Septum                                    |
| SDF-1      | Stromal Derived Factor-1                  |
| sGC        | Soluable Guanylate Cyclase                |
| SMAD       | Some Mothers Against Decapentaplegic      |
| SMC        | Smooth Muscle Cell                        |
| SVC        | Superior Vena Cava                        |
| TCID50     | Tissue Culture Infectious Dose 50         |
| TGF        | Transforming Growth Factor-β              |
| TNS        | Trypsin Neutralising Solution             |
| Treg Cells | High Regulatory T Cells                   |
| V/Q        | Ventilation and Perfusion                 |
| VEGF       | Vascular Endothelial Growth Factor        |
| WSPH       | World Symposium on Pulmonary Hypertension |