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A B S T R A C T

Pulmonary arterial hypertension (PAH) is a rare but devastating disease

and despite available therapeutics, survival remains at 3-5 years. Reduced

expression of the bone morphogenetic protein receptor type 2 (BMPR2) is

causally linked to hereditary, idiopathic and secondary forms of PAH. Thus,

we proposed that up-regulation of BMPR2 may be therapeutic. As proof

of concept, we’ve previously attenuated PAH in animal models through

BMPR2 targeted gene delivery using Adenoviral (Ad) vectors. However, fur-

ther understanding of the cell signalling mechanisms involved, as well as

overcoming limitations with viral vector approaches is required to progress

this approach to the clinic. Endothelial progenitor cells (EPCs) may be the

key to avoiding the shortcomings of Ad-vector technology. EPCs are impor-

tant for angiogenesis as well as tissue repair and have been shown to have

altered function and abundance in patients with PAH. Manipulating these

cells may be an alternate means to up-regulate BMPR2 in lungs affected by

PAH, thereby avoiding some of the limitations of viral gene delivery tech-

niques and enabling easier clinical translation.

Herein, I confirmed disease reversal in the rat monocrotaline (MCT)-

induced PAH model following targeted gene delivery of BMPR2 to the

pulmonary vascular endothelium and assessed the relevant BMPR2 medi-

ated Smad pathways in whole lung tissue, 10 days following treatment.

Microarray technology was utilised to identify any novel molecular targets,

with results from this indicating that a peak Smad signalling effect was

missed at this 10 day time-point. However, the microarray did indicate po-

tential changes in BMPR2 mediated non-Smad signalling. PAH reversal was

then assessed 2 days following targeted gene delivery of BMPR2 to the pul-
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monary endothelium and further assessment of BMPR2 mediated Smad

and non-Smad pathways were analysed in the subsequent whole lung tis-

sue.

Moving towards a more clinically applicable therapy, cell therapy using

ex vivo engineered EPCs to deliver BMPR2 to the pulmonary endothelium

was investigated in the rat MCT-induced PAH model. To do this, the tech-

nique to isolate and culture rat bone marrow derived EPCs (r-EPCs) was

developed. Successful transduction of these cells to over-express BMPR2

was optimised and these now engineered cells were used as a vehicle to

deliver BMPR2 to the pulmonary vasculature via intravenous injection into

rats with MCT-induced PAH. Amelioration of PAH was confirmed 10 days

following the cell therapy treatment and subsequent protein analysis of

BMPR2 mediated Smad pathways in the whole lung tissue saw changes

activated Smad1/5/8.

The development of new therapies for PAH is critical. BMPR2 modula-

tion is a novel therapeutic strategy which addresses the well known un-

derlying pathology of BMPR2 deficiency that occurs not only in hereditary

PH, but secondary PH and most PAH animal models. The success of our

highly novel pre-clinical BMPR2 cell therapy may lead the way for further

development of other BMPR2 therapies, as well as give significant insight

into the pathophysiology of this devastating disease.
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