

Application of Micro Perforated and

Impervious Membranes for

Noise Barriers

Chenxi Li

School of Mechanical Engineering The University of Adelaide South Australia 5005 Australia

A thesis submitted for the degree of Doctor of Philosophy on the 5th of February 2016.

A	ostrac	et		viii
St	ateme	ent of O	riginality	ix
A	cknow	vledgem	ients	xi
Li	st of l	Figures		xxiv
Li	st of [Fables		XXV
Li	st of S	Symbol	5	xxxii
1	Intr	oductio	n	1
	1.1	Introd	action to multiple layer membrane structures	1
	1.2	Motiva	ation and contributions of this thesis	3
	1.3	Overv	iew of this thesis	5
	1.4	Public	ations arising from this thesis	7
2	Aco	ustic pr	operties of single layer impervious membranes under tension	9
	2.1	Introd	uction	9
		2.1.1	Literature review	10
		2.1.2	Gaps and contribution	12
	2.2	Analy	tical modelling of the acoustic properties of single layer impervious	
		memb	ranes under tension	13
		2.2.1	Motion equation of the free vibration of a single layer tensioned im-	
			pervious membrane	13
		2.2.2	Damping of a single layer tensioned impervious membrane	15
		2.2.3	Acoustic impedance and sound absorption of a cricular impervious	
			membrane with a normally-incident plane wave	20

		2.2.4	Acoustic impedance and sound transmission of a rectangular imper-	
			vious membrane in a diffuse field	28
	2.3	Experi	mental validation	39
		2.3.1	Sound absorption coefficient of single layer impervious membranes	39
		2.3.2	Diffuse field sound trasmission loss of single layer impervious mem-	
			branes	44
	2.4	Discus	sion on the effect of tension and damping on the sound absorption and	
		sound	transmission of single layer impervious membranes	49
	2.5	Conclu	isions	50
3	Sou	nd abso	rption of micro-perforated membranes	53
	3.1	Introdu	uction	53
		3.1.1	Literature review	53
		3.1.2	Gaps and contribution	56
	3.2	Analyt	ical modelling of the sound absorption of micro perforated membranes	56
		3.2.1	Motion equation of air particles in the perforations of MPMs	57
		3.2.2	Solution under rigid boundary condition	59
		3.2.3	Solution under flexible boundary condition	60
		3.2.4	Acoustic impedance of each perforation of a circular micro perfor-	
			ated membrane	64
		3.2.5	Total acoustic impedances due to the perforations of MPMs	65
		3.2.6	Combined acoustic impedance of MPMs and the sound absorption	
			coefficient of MPM absorbers	67
	3.3	Experi	mental validation for MPMs	69
		3.3.1	Experimental condition and parameter of MPM samples	69
		3.3.2	Determination of tension and internal damping	72
		3.3.3	Effects of thermo-viscous friction and viscous layer on acoustic im-	
			pedance of MPMs	73
		3.3.4	Comparison of the experimental and predicted sound absorption coef-	
			ficients of MPMs	77
		3.3.5	Structural resonance of the impedance tube	83

		3.3.6	Effect of perforation positions on the sound absorption of MPMs	84
	3.4	Conclu	usions	86
4	Non	linearit	y of the sound absorption of micro perforated membranes unde	r
	high	SPL ex	citation	89
	4.1	Introdu	uction	89
		4.1.1	Literature review	90
		4.1.2	Gaps and contributions	91
	4.2	Valida	tion of experimental method	92
		4.2.1	Two-microphone transfer-function method	92
		4.2.2	Measurement of the transfer function between each microphone and	
			the sound source	93
		4.2.3	Comparison of the measured sound absorption coefficients	94
	4.3	Experi	mental findings on the non-linearity of the sound absorption of MPMs	
		under	high SPL excitation	99
		4.3.1	Measurement of the sound absorption of MPMs under high SPL ex-	
			citation	99
		4.3.2	Sound absorption of MPMs excited by broadband noise	103
		4.3.3	Sound absorption of MPMs excited by a monochromatic source	110
		4.3.4	Reynolds number and the non-linear sound absorption of MPMs	116
		4.3.5	Effects of the type of sound excitation on the sound absorption of	
			MPMs	117
		4.3.6	Effect of the cavity depth on the sound absorption coefficient of	
			MPM 4 with a monochromatic source in the non-linear regime	130
	4.4	Conclu	isions	131
5	Ana	lytical	modelling of the non-linear sound absorption of micro perforated	d
	men	ıbranes	under moderate and high excitation	135
	5.1	Introdu	action	135
		5.1.1	Literature review	136
		5.1.2	Gaps and contributions	137

	5.2	Analyt	ical modelling of the sound absorption of micro perforated mem-	
		branes	under moderate and high excitation	138
		5.2.1	Previous models	138
		5.2.2	Simplified model based on the previous models with optimised end	
			correction	141
		5.2.3	Analytical model based on motion equation and density continuity .	142
	5.3	Param	eter determination and experimental validation for the sound absorp-	
		tion of	MPMs excited by broadband sound source	145
	5.4	Param	eter determination and experimental validation for the sound absorp-	
		tion of	MPMs excited by monochromatic sound sources	151
	5.5	Conclu	isions	157
6	Sour	nd trans	smission of double layer impervious membranes separated by an ai	r
	cavi	ty		161
	6.1	Introdu	uction	161
		6.1.1	Literature review	162
		6.1.2	Gaps and contributions	164
	6.2	Analyt	ical modelling and motion equations of double layer impervious mem-	
		branes	and the air cavity separating the membranes	165
		6.2.1	Motion of Membrane 1 at $z = 0$	166
		6.2.2	Sound propagation in the finite air cavity	169
		6.2.3	Motion of Membrane 2 at $z = D$	175
	6.3	Fluid-s	structure coupling and normal incidentce STL of double layer imper-	
		vious 1	nembranes separated by an air cavity	177
		6.3.1	Derivation for the STL of double layer impervious membranes sep-	
			arated by an air cavity	178
		6.3.2	Comparison with experimental results	182
	6.4	Fluid-s	structure coupling and diffuse field STL of double layer impervious	
		memb	ranes separated by an air cavity	184
		6.4.1	Derivation of the STL of double layer impervious membranes separ-	
			ated by an air cavity	185

		6.4.2	Comparison with experimental results	188
	6.5	Effect	of the separating air cavity boundary sound absorption on the STL of	
		double	a layer impervious membranes	191
		6.5.1	Sound propagation in a finite-sized air cavity with sound absorbing	
			boundary	192
		6.5.2	Fluid-structure coupling and the diffuse field STL of double layer	
			impervious membranes separated by an air cavity with sound ab-	
			sorbing walls	193
		6.5.3	Comparison with experimental results	195
	6.6	Conclu	isions	198
7	Sou	nd tran	smission of double layer impervious membranes with an interna	al
	mic	ro-perfo	orated membrane	201
	7.1	Introdu	uction	201
		7.1.1	Literature review	202
		7.1.2	Gaps and contributions	203
	7.2	Increas	sing the STL of a double layer impervious membrane with an internal	
		MPM		204
		7.2.1	Design of the double layer impervious membrane with an internal	
			MPM	204
		7.2.2	Experimental results	206
	7.3	Analyt	cical modelling of double layer impervious membranes with an internal	
		MPM		210
		7.3.1	STL of double layer impervious membranes with an internal imper-	
			vious membrane (MPMs 1 to 3)	211
		7.3.2	STL of a double layer impervious membrane with an internal ab-	
			sorbing MPM	229
		7.3.3	Non-linear effect of high incident SPLs on the predicted STL of the	
			combined membrane structure	236
	7.4	Conclu	usions	239
8	Con	clusion		241
	0.011	- and to the	<i>,</i>	

Append	lix A P	ublications arising from this thesis	257
References			248
	8.4.6	Incorporation of internal MPMs in other multi-layer structures	248
	8.4.5	Effect of a grazing flow on the internal MPM surface	248
	8.4.4	Multiple layer internal MPMs	248
		ous membrane	247
	8.4.3	Optimisation of the distance from an internal MPM to each impervi-	
	8.4.2	Optimisation of the structural parameters of internal MPMs	247
	8.4.1	Coupling between membrane structures and reverberation chambers	247
8.4	Future	research	246
	MPM		245
8.3	Sound	transmission of double layer impervious membranes with an internal	
8.2	Linear	and non-linear sound absorption of micro-perforated membranes	242
8.1	Sound	absorption and transmission of single layer impervious membranes .	241

Abstract

Membrane materials have been commonly used for decades in buildings. When acoustic environments are concerned, the acoustic properties of these membrane structures are of special interest.

This thesis aims to investigate acoustic properties of micro perforated membranes (MPMs) and impervious membranes and enhance the sound insulation of double layer impervious membranes by combining these with MPMs, thereby increasing the internal loss mechanisms of what is essentially a reactive wall. This thesis firstly develops a new model of an impervious membrane, taking into consideration the tension and the internal damping due to the membrane curvature.

The sound absorption of MPMs inserted between the impervious layers has been studied by introducing a new boundary condition where the particle velocity at the hole wall boundary is assumed to be equal to the membrane vibration velocity. The comparison between the predicted and measured results demonstrates that MPM 1 to 3 can be considered impervious due to their sufficiently small perforation radii, and MPM 4 is sound absorbing due to its larger perforations.

Non-linear sound absorption of MPM 4 has been observed in the experiments. It was found that the non-linear sound absorption coefficient is strongly dependent on both the magnitude of the SPLs and the waveform of the excitation. Two analytical models were developed for the non-linear acoustic impedance of MPMs. In the first model, the non-linear impedance of MPMs is considered to be the sum of the linear impedance, and the non-linear acoustic impedance dependent on the particle velocity within the perforations. The second analytical model presented is inspired by the air motion equation and the mass continuity equation considering the density variation in the time and spatial domains, and provides the most accurate predicted results among the models considered in this study.

The analytical models have been developed to predict the STL of double layer impervious membranes separated by a finite-sized air cavity, taking into consideration the fluid-structure coupling on each membrane surface. Comparing the predicted results to the measured STLs, it is found that considering the sound absorbing boundaries of the cavity can enhance the accuracy of the models.

STL measurements of double layer impervious membranes with four types of MPMs have been conducted in a diffuse field to quantify the effectiveness of the MPM insertion. The experimental results indicate that the MPM insertion can enhance the STL of the double layer impervious membranes significantly at frequencies above the first resonance frequency of the air cavity. MPMs 1 to 3 have similar main impacts on the STLs, however, MPM 4 has a different effect because of its larger perforations.

The normal incidence and diffuse field models for the double layer impervious membranes with inserted MPMs 1 to 3 were developed and the predicted results were compared with the experimental results. The models with MPM 4 were developed by taking into consideration the acoustic impedance of the MPM 4 due to its perforations. These developed models can be used as tools for design of membrane structures.

Statement of Originality

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Chenxi Li

Acknowledgements

I would like to acknowledge all the people who contributed to this thesis and supported me in the last four years. I would like to thank the China Scholar Council (CSC) and the University of Adelaide for the scholarships I received while doing my PhD project.

First and foremost, I would like to give acknowledgement to my supervisors Professor Ben Cazzolato and Associate Professor Anthony Zander. This thesis could not be accomplished without their help, guidance and support.

I also thank Associate Professor Carl Howard for his suggestions about ANSYS; Dr Will Robertson, Dr Tao Zhu and Dr Peter Lanspeary for their assistance with experiments; and Dr Boyin Ding for his advice on both academic and daily life. I would like to give acknowledgement to Dr Zhao Tian and Mr Xiao Chen for their patience answering my silly questions on fluid dynamics. I would like to thank Mr Md Ayub for proofreading sections of this thesis, Dr Akhilesh Mimani for the discussions about 3-D sound propagation in a cavity, and my colleagues who share the office with me for the enjoyable time we spent together.

I wish to acknowledge the assistance of Dr Erwin Gamboa and Associate Professor Reza Ghomashchi for measuring the radii of the MPM sample perforations. I'm also very grateful to the staff of the electronic and mechanical workshops in the School of Mechanical Engineering at the University of Adelaide for their assistance when manufacturing the samples and equipment used in this thesis. I would like to give special thanks to my lab neighbours, the staff of the electronic workshop, for their suffering of the loud noises I generated in the STL and non-linear sound absorption experiments.

I'm thankful to Dr Robyn Groves in the Writing Centre at the University of Adelaide and Ms Alison-Jane Hunter for assisting me with my academic writing for this thesis and the journal papers arising from this thesis. I wish to acknowledge the staff in the administration office and the finance team in the School of Mechanical Engineering, for their support over the last four years.

I wish to express my warm thanks to my friends for their friendship. Finally, I would like to thank my family for their encouragement and understanding.

List of Figures

Examples of permanent and temporary memorane structures constructed from	
membranes	1
Overview of this thesis. The dashed blocks represent the two main parts of	
this thesis. The arrows show the relationship between the chapters	5
Constant tension applied on the membrane surface.	14
Comparison of K_{mem}^2 expressed in different forms in Table 2.1. Surface dens-	
ity $ ho_{ m s}=0.485{ m kg/m^2};$ tension $T=100{ m N/m};$ internal damping ratio $\eta=$	
0.01. Solid lines represent $K_{\text{mem}}^2 = \frac{\omega^2 \rho_s}{T}$ for no damping. Dashed lines and	
dotted lines represent two conventional expressions for $K_{\text{mem}}^2 = \frac{\omega^2 \rho_s - j\omega \eta}{T}$	
(viscous damping) and $K_{\text{mem}}^2 = \frac{\omega^2 \rho_s}{T(1+j\eta)}$ (energy dissipation), respectively.	
Dashed dotted lines represent $K_{\text{mem}}^2 = \frac{\omega^2 \rho_s}{T + 2j\omega\eta}$ calculated by the presented	
model for curvature damping	19
A circular membrane stretched on a circular rim, where R_0 is the radius of	
the circular membrane and R is the radial coordinate on the membrane surface.	20
Effects of the different expression of K_{mem} on the sound absorption coeffi-	
cients of a circular membrane. (Surface density $\rho_s = 0.485 \text{ kg/m}^2$; tension	
$T = 100 \text{ N/m}$; internal damping ratio $\eta = 0.01$.) Dashed lines and dotted	
lines represent two conventional expressions for $K_{\text{mem}}^2 = \frac{\omega^2 \rho_s - j\omega \eta}{T}$ (viscous	
damping) and $K_{\text{mem}}^2 = \frac{\omega^2 \rho_s}{T(1+j\eta)}$ (energy dissipation), respectively. Dashed	
dotted lines represent $K_{\text{mem}}^2 = \frac{\omega^2 \rho_s}{T + 2j\omega\eta}$ calculated by the presented model for	
curvature damping.	27
A rectangular membrane of dimension $l_x l_y$ stretched on a frame and excited	
by incident sound pressure p_i , with reflected pressure p_r and transmitted	
pressure p_t	28
A rectangular membrane stretched on a frame and excited by a sound pres-	
sure with an obliquely incidence angle of θ	36
	membranes

2.7	Effects of the different damping expressions η on the one-third octave STL	
	of a rectangular membrane. (Surface density $ ho_{ m s}=0.485{ m kg/m^2};$ tension	
	$T = 100 \text{ N/m}$; internal damping ratio $\eta = 0.01$; $l_x = 1 \text{m}$; $l_y = 1.5 \text{m}$; $N =$	
	$M = 150$, $\theta_{\text{max}} = 85^{\circ}$). The dashed line represents the STL in a diffuse field	
	calculated using Equation (2.100). The dotted line and dashed-dotted lines	
	represent the predictions for viscous damping and energy dissipation damp-	
	ing given by Equations (2.101) and (2.102), respectively. The thick solid line	
	is the prediction result for curvature damping with a normally incident plane	
	wave. The thin solid line is that for the field incidence for curvature damping	
	using Equation (2.94)	38
2.8	Photographs of two membrane samples used for sound absorption experiments.	40
2.9	Measurement of the sound absorption coefficient using the two microphone	
	transfer function method in an impedance tube	40
2.10	Normal incidence sound absorption coefficients of Membrane 1 for $D = 25$ mm.	41
2.11	Normal incidence sound absorption coefficients of Membrane 2 for $D = 25$ mm.	42
2.12	Normal incidence sound absorption coefficients of Membrane 1 for $D = 50$ mm.	42
2.13	Normal incidence sound absorption coefficients of Membrane 2 for $D = 50$ mm.	43
2.14	STL of Membrane 1 in a diffuse field calculated by the presented model	
	using Equation (2.100)	45
2.15	STL of Membrane 3 in a diffuse field calculated using Equation (2.100). 	46
2.16	Diffuse field STL of the test window without a sample present	47
3.1	Particle velocity $v(r)$ in a hole of the micro perforated membrane or panel as	
0.11	a function of the distance. <i>r</i> . from the centre line.	57
3.2	Distribution of the membrane vibration velocity (vibrating in the funda-	
	mental mode).	62

3.	3 Normalised resistance and reactance of a hole for five radial coordinates	
	varying from $R = 0$ mm to $R = 50$ mm. (Surface density $\rho_p = 0.25 \text{ kg/m}^2$;	
	tension $T = 125 \text{ N/m}$; internal damping ratio $\eta = 0.02$; membrane radius	
	$R_0 = 50 \text{ mm}$; hole radius $r_0 = 0.0292 \text{ mm}$; membrane thickness $h = 0.17 \text{ mm}$;	
	backing cavity depth $D = 25$ mm; perforation ratio $\delta = 0.15\%$. Note that the	
	normalised reactance of each hole based on Maa's theory for a rigid mem-	
	brane is also shown and it is consistent with that of $R = 50 \text{ mm} = R_0$.) Note	
	that the tension T and the damping ratio η are necessary for the prediction	
	of the acoustic impedance of a membrane without perforations	63
3.4	4 <i>n</i> th hole on the surface of an MPM, where R_0 is the radius of the MPM, R_n	
	is the radial coordinate of the <i>n</i> th hole and r_0 is the radius of the hole	65
3.:	5 Cartesian grid of holes superimposed on an MPM, showing the holes in-	
	cluded in and excluded from Equation (3.28).	66
3.	6 Normalised resistance and reactance due to all of the holes on the MPM	
	surface. (Surface density $\rho_p = 0.25 \text{ kg/m}^2$; tension $T = 125 \text{ N/m}$; internal	
	damping ratio $\eta = 0.02$; membrane radius $R_0 = 50$ mm; hole radius $r_0 =$	
	0.0292 mm; membrane thickness $h = 0.17$ mm; backing cavity depth $D =$	
	25 mm; perforation ratio $\delta = 0.15\%$.)	67
3.	7 Schematic illustrating experimental configuration of sound absorption coef-	
	ficient measurements conducted in an impedance tube	69
3.	8 Photomicrographs of perforations of MPM 1 and MPM 4	71
3.9	9 Experimental results of MPM 4 at nine frequencies chosen for the calculation	
	of the tension and the damping ratio.	72
3.	10 Comparison of results for use of real and complex values of R_s for the sound	
	absorption prediction of MPM 4 with $D = 25$ mm	75
3.	11 Thickness of viscous layer $h_{viscous}$, MPM hole diameters shown for illustra-	
	tion purposes.	75
3.	12 Viscous layers of MPMs 3 and 4. Note that schematic is not to scale	76
3.	13 Low sound absorption due to high acoustic resistance of MPP ranging from	
	1 to 5 (Maa 2006).	77
3.	14 Normal incidence sound absorption coefficients of MPM 1 for $D = 25$ mm.	78

3.15	Normal incidence sound absorption coefficients of MPM 2 for $D = 25$ mm.	79
3.16	Normal incidence sound absorption coefficients of MPM 3 for $D = 25$ mm.	79
3.17	Normal incidence sound absorption coefficients of MPM 4 for $D = 25$ mm.	80
3.18	Normal incidence sound absorption coefficients of MPM 1 for $D = 50$ mm.	80
3.19	Normal incidence sound absorption coefficients of MPM 2 for $D = 50$ mm.	81
3.20	Normal incidence sound absorption coefficients of MPM 3 for $D = 50$ mm.	81
3.21	Normal incidence sound absorption coefficients of MPM 4 for $D = 50$ mm.	82
3.22	Magnitude of the transfer function between the acceleration of the imped-	
	ance tube vibration and the sound pressure inside the impedance tube	83
3.23	Photograph of the additional MPMs made using the MPM 1 material. There	
	are 73 and 48 holes of 0.31 mm radius drilled in each of the membranes	
	respectively	84
3.24	Normal incidence sound absorption coefficients of the manufactured MPMs	
	with 73 holes, $D = 25 \text{ mm}$. The thick solid curve represents the meas-	
	ured sound absorption coefficient of an MPM with 73 holes at a radius of	
	R = 45 mm. The thin solid curve represents the measured sound absorption	
	coefficient of the manufactured MPM with 73 holes evenly distributed on	
	the membrane surface. The thick and thin dashed curves are the prediction	
	results for each using the proposed method, respectively	85
3.25	Normal incidence sound absorption coefficients of the manufactured MPMs	
	with 48 holes, $D = 25 \text{ mm}$. The thick solid curve represents the meas-	
	ured sound absorption coefficient of an MPM with 48 holes at a radius of	
	R = 45 mm. The thin solid curve represents the measured sound absorption	
	coefficient of the manufactured MPM with 48 holes evenly distributed on	
	the membrane surface. The thick and thin dashed curves are the prediction	
	results for each using the proposed method, respectively	85
4.1	Measurement of sound absorption coefficient using two microphone transfer	
	function method in an impedance tube	93

4.2	Comparison of the measured and estimated sound absorption coefficients	
	of MPM 4 obtained with the two methods mentioned in Sections 4.2.1 and	
	4.2.2. The input voltage of the white noise was 100 mV	95
4.3	Comparison of the measured and estimated sound absorption coefficients	
	of MPM 4 obtained with the two methods mentioned in Sections 4.2.1 and	
	4.2.2. The input voltage of the white noise was 200 mV	95
4.4	Comparison of the measured and estimated sound absorption coefficients	
	of MPM 4 obtained with the two methods mentioned in Sections 4.2.1 and	
	4.2.2. The input voltage of the stepped sine sweep was 100 mV	96
4.5	Comparison of the measured and estimated sound absorption coefficients	
	of MPM 4 obtained with the two methods mentioned in Sections 4.2.1 and	
	4.2.2. The input voltage of the stepped sine sweep was 200 mV	96
4.6	Comparison of the measured coherence between each microphone and the	
	sound source with that between the two microphones, using the two methods	
	mentioned in Sections 4.2.1 and 4.2.2. The input voltage of the white noise	
	was 100 mV	97
4.7	Comparison of the measured coherence between each microphone and the	
	sound source with that between the two microphones, using the two methods	
	mentioned in Sections 4.2.1 and 4.2.2. The input voltage of the white noise	
	was 200 mV	97
4.8	Comparison of the measured coherence between each microphone and the	
	sound source with that between the two microphones, using the two methods	
	mentioned in Sections 4.2.1 and 4.2.2. The input voltage of the stepped sine	
	sweep was 100 mV	98
4.9	Comparison of the measured coherence between each microphone and the	
	sound source with that between the two microphones using the two methods	
	mentioned in Sections 4.2.1 and 4.2.2. The input voltage of the stepped sine	
	sweep was 200 mV	98

4.10	Estimated sound pressure level (SPL dB re 20 μ Pa) of the incident sound	
	at the surface of the MPM with white noise excitation. The input voltage	
	ranges from 0.1 mV to 200 mV. The resultant overall SPLs are detailed in	
	the legend	101
4.11	Estimated sound pressure level (SPL dB re 20 μ Pa) of the incident sound	
	at the surface of the MPM with a stepped sine sweep excitation. The input	
	voltage ranges from 0.1 mV to 200 mV.	102
4.12	Measured sound absorption coefficients of the MPM with white noise excit-	
	ation. The input voltage ranged from 0.1 mV to 200 mV. The corresponding	
	SPL at the membrane surface is shown in Figure 4.10	103
4.13	Estimated sound pressure level (SPL dB re 20 μ Pa) of the incident sound at	
	the surface of the MPM with uniform random excitation. The input voltage	
	ranges from 0.1 mV to 200 mV.	104
4.14	Measured sound absorption coefficients of the MPM with uniform random	
	excitation. The input voltage ranged from 0.1 mV to 200 mV. The corres-	
	ponding SPL at the membrane surface is shown in Figure 4.13	105
4.15	Measured coherences between two microphones with uniform random ex-	
	citation. The input voltage ranged from 0.1 mV to 200 mV	105
4.16	Estimated sound pressure level (SPL dB re 20 μ Pa) of the incident sound at	
	the surface of the MPM with pseudo random excitation. The input voltage	
	ranges from 0.1 mV to 200 mV.	106
4.17	Measured sound absorption coefficients of the MPM with pseudo random	
	excitation. The input voltage ranged from 0.1 mV to 200 mV. The corres-	
	ponding SPL at the membrane surface is shown in Figure 4.16	106
4.18	Measured coherences between two microphones with pseudo random excit-	
	ation. The input voltage ranged from 0.1 mV to 200 mV	107
4.19	Estimated sound pressure level (SPL dB re 20 μ Pa) of the incident sound	
	at the surface of the MPM with burst random excitation. The input voltage	
	ranges from 0.1 mV to 200 mV.	107

4.20	Measured sound absorption coefficients of the MPM with burst random ex-	
	citation. The input voltage ranged from 0.1 mV to 200 mV. The correspond-	
	ing SPL at the membrane surface is shown in Figure 4.19	108
4.21	Measured coherences between two microphones with burst random excita-	
	tion. The input voltage ranged from 0.1 mV to 200 mV	108
4.22	Estimated sound pressure level (SPL dB re 20 μ Pa) of the incident sound at	
	the surface of the MPM with pink noise excitation. The input voltage ranges	
	from 0.1 mV to 200 mV.	109
4.23	Measured sound absorption coefficients of the MPM with pink noise excita-	
	tion. The input voltage ranged from 0.1 mV to 200 mV. The corresponding	
	SPL at the membrane surface is shown in Figure 4.22	109
4.24	Measured coherences between two microphones with pink noise excitation.	
	The input voltage ranged from 0.1 mV to 200 mV	110
4.25	Measured sound absorption coefficients of the MPM with a stepped sine	
	sweep excitation. The input voltage ranged from 0.1 mV to 200 mV. The	
	corresponding SPL at the membrane surface is shown in Figure 4.11	111
4.26	Measured sound absorption coefficients (solid line) of the MPM with a stepped	
	sine sweep excitation versus the incident SPL (dashed line). The input voltage	
	was 50 mV. The thin dashed lines show the frequencies of the local SPL	
	maxima and the corresponding peaks on the sound absorption curve	112
4.27	Estimated sound pressure level (SPL dB re 20 μ Pa) of the incident sound at	
	the surface of the MPM with a chirp excitation. The input voltage ranges	
	from 0.1 mV to 200 mV	113
4.28	Measured sound absorption coefficients of the MPM with a chirp excitation.	
	The input voltage ranged from 0.1 mV to 200 mV. The corresponding SPL	
	at the membrane surface is shown in Figure 4.27	114
4.29	Measured coherences between two microphones with a chirp excitation. The	
	input voltage ranged from 0.1 mV to 200 mV	114

4.30	Measured sound absorption coefficients (solid line) of the MPM with a chirp	
	excitation versus the incident SPL (dashed line). The input voltage was	
	50 mV. The thin dashed lines show the frequencies of the local SPL maxima	
	and the corresponding peaks on the sound absorption curve	115
4.31	Measured Reynolds numbers of the particle velocity in the MPM perfora-	
	tions with a sine sweep and white noise. The input voltage varied from 0.1	
	mV to 200 mV.	117
4.32	Measured sound absorption coefficients of the MPM excited by a sine sweep	
	and white noise with input voltage of 5 mV in linear regime	119
4.33	Measured sound absorption coefficients of the MPP sample with white noise	
	excitation. The input voltage varied from 0.1 mV to 200 mV	121
4.34	Measured sound absorption coefficients of the MPP sample with a sine sweep	
	excitation. The input voltage varied from 0.1 mV to 200 mV	121
4.35	Measurement of the distance between the MPM sample and a rigid transpar-	
	ent termination of the impedance tube	123
4.36	Measured cavity depth at frequencies given by Table 4.5 compared with the	
	sound absorption coefficients of the MPM excited by a stepped sine sweep	
	with input voltage ranging from 0.1 mV to 200 mV. Indicated cavity depths	
	are for 200 mV input voltage	125
4.37	Measured cavity depth at the discrete frequencies from 250 Hz to 1600 Hz	
	with an index of 50 Hz when the MPM was excited by a sine sweep with	
	input voltage of 200 mV.	126
4.38	Measured sound absorption coefficients of the MPM excited by a stepped	
	sine sweep with input voltage of 1 mV (solid line) and white noise with	
	input voltage of 50 mV (dotted line), and correspondingly measured SPLs	
	(dashed line for a stepped sine sweep and dashed-dotted line for white noise).	129
4.39	Measured sound absorption coefficients of the MPM with a stepped sine	
	sweep excitation versus the incident SPL. The black solid curve represents	
	the measured sound absorption coefficient with the input voltage of 100 mV	
	and the cavity depth of 25 mm	130

5.1	Particle velocity $v(x_{\text{length}}, r)$ in a hole of the micro perforated membrane or	
	panel as a function of the distance, r , from the centre line and the position	
	coordinate x_{length} in the length direction. The flow is separated in the length	
	direction due to the high particle velocity (Adapted from Cummings (1986)).	143
5.2	Amplitude and phase of RMS particle velocity within the perforations of the	
	MPM excited by white noise. The input voltage increased from 0.1 mV to	
	200 mV, resulting in the overall incident SPL increasing from 70 dB re 20	
	μ Pa to 129 dB re 20 μ Pa	147
5.3	Predicted and measured sound absorption coefficients of the MPM sample	
	with white noise excitation. The input voltage was 10 mV. The acoustic	
	impedance is in the linear regime.	148
5.4	Predicted and measured sound absorption coefficients of the MPM sample	
	with white noise excitation. The input voltage was 50 mV	149
5.5	Predicted and measured sound absorption coefficients of the MPM sample	
	with white noise excitation. The input voltage was 100 mV	149
5.6	Predicted and measured sound absorption coefficients of the MPM sample	
	with white noise excitation. The input voltage was 200 mV	150
5.7	The values of $ah \approx h \frac{\partial \rho}{\partial t}$ and $bh \approx h \frac{\partial \rho}{\partial x_{\text{length}}}$ using the optimised parameters	
	for the MPM excited by a white noise signal. The curves represent the total	
	rates of air density change in the time and spatial domains, respectively	151
5.8	Amplitude of the instantaneous particle velocity within the perforations of	
	the MPM sample with stepped sine sweep excitation. The input voltage	
	varied from 0.1 mV to 200 mV	152
5.9	Phase of the instantaneous particle velocity within the perforations of the	
	MPM sample with stepped sine sweep excitation. The input voltage varied	
	from 0.1 mV to 200 mV.	153
5.10	Predicted and measured sound absorption coefficients of the MPM sample	
	with a stepped sine sweep excitation. The input voltage was 1 mV. This is in	
	the linear regime.	154
5.11	Predicted and measured sound absorption coefficients of the MPM sample	
	with stepped sine sweep excitation. The input voltage was 5 mV	154

5.12	Predicted and measured sound absorption coefficients of the MPM sample	
	with stepped sine sweep excitation. The input voltage was 10 mV	155
5.13	Predicted and measured sound absorption coefficients of the MPM sample	
	with stepped sine sweep excitation. The input voltage was 50 mV	155
5.14	Predicted and measured sound absorption coefficients of the MPM sample	
	with stepped sine sweep excitation. The input voltage was 100 mV	156
5.15	Predicted and measured sound absorption coefficients of the MPM sample	
	with stepped sine sweep excitation. The input voltage was 200 mV	156
5.16	The values of $ah \approx h \frac{\partial \rho}{\partial t}$ and $bh \approx h \frac{\partial \rho}{\partial x_{\text{length}}}$ using the optimised parameters	
	for the MPM excited by a stepped sine sweep. Plotted at the same scale as	
	Figure 5.7, the curves represent the total rates of air density change in the	
	time and spatial domains, respectively.	157
6.1	Sound transmission of double layer impervious membranes separated by a	
	finite air cavity of a depth D . The sound wave is normally incident on the	
	surface of Membrane 1	166
6.2	STL of double layer impervious membranes separated by a finite air cavity	
	with a depth $D = 70$ mm. The dotted curve with black circles demonstrates	
	the predicted STL using Equation (6.86). The experimental results were	
	obtained in a diffuse field	183
6.3	STL of double layer impervious membranes separated by a finite air cavity	
	with a depth $D = 140$ mm. The dotted curve with black circles demonstrates	
	the predicted STL using Equation (6.86). The experimental results were	
	obtained in a diffuse field.	184
6.4	Sound transmission of double layer impervious membranes separated by a	
	finite air cavity with a depth of D . The sound wave is obliquely incident on	
	the membrane surface with an incidence angle θ	185
6.5	STL of double layer impervious membranes separated by a finite air cavity	
	with a depth $D = 70$ mm	189
6.6	STL of double layer impervious membranes separated by a finite air cavity	
	with a depth $D = 140$ mm.	189

6.7	STL of double layer impervious membranes separated by a finite air cavity	
	with a depth $D = 70$ mm. The sound absorbing boundary is modelled by the	
	factor $e^{-\beta \frac{\omega}{c_0}D}$	196
6.8	STL of double layer impervious membranes separated by a finite air cavity	
	with a depth $D = 140$ mm. The sound absorbing boundary is modelled by	
	the factor $e^{-\beta \frac{\omega}{c_0}D}$	196
6.9	Two mounting conditions of the double layer impervious membranes separ-	
	ated by a finite air cavity with a depth $D = 70$ mm and $D = 140$ mm	197
7.1	Geometry of the model of double layer impervious membranes with an in-	
	ternal microperforated membrane. Variable D_1 denotes the depth of the cav-	
	ity between Membrane 1 and the internal MPM, and D_2 denotes the depth of	
	the cavity between the internal MPM and Membrane 2. $D_1 = D_2 = 70$ mm.	205
7.2	Photograph of the STL measurement arrangement.	206
7.3	Measured sound transmission loss in one-third octave bands of double layer	
	impervious membranes without and with four different internal MPMs. $D_1 =$	
	$D_2 = 70 \text{ mm.}$	207
7.4	Difference between the measured STLs of double layer impervious mem-	
	branes with an internal MPM and that without an internal MPM	208
7.5	Predicted STL of single layer impervious membrane with surface density	
	equal to the sum of the surface densities of the two impervious membranes	
	and that of each MPM.	209
7.6	Sound propagation in double layer impervious membranes with an internal	
	microperforated membrane. Variable D_1 denotes the depth of the cavity	
	between Membrane 1 and the internal MPM, and D_2 denotes the depth of	
	the cavity between the internal MPM and Membrane 2. $D_1 = D_2 = 70$ mm.	212
7.7	STLs of double lover impervious membranes with the internal MDMs 1 to 3	
	STES of double layer impervious memoralies with the memarian wir wis 1 to 5.	
	The sound absorbing boundary is neglected.	228
7.8	The sound absorbing boundary is neglected	228
7.8	The sound absorbing boundary is neglected	228

7.9	STL of double layer impervious membranes with the internal MPM 4. The	
	sound absorbing boundary is neglected.	232
7.10	STL of double layer impervious membranes with the internal MPM 4. The	
	sound absorbing boundary is considered as a factor $e^{-\beta \frac{\omega}{c_0}(D_1+D_2)}$ where $\beta =$	
	0.05	233
7.11	STL of double layer impervious membranes with the internal MPM 4. The	
	sound absorbing boundary is neglected. The MPM 4 is assumed to be an	
	impervious membrane, as in the cases in Section 7.3.1	234
7.12	STL of double layer impervious membranes with the internal MPM 4. The	
	MPM 4 is assumed to be an impervious membrane, as in the cases in Section	
	7.3.1. The sound absorbing boundary is considered as a factor $e^{-\beta \frac{\omega}{c_0}(D_1+D_2)}$	
	where $\beta = 0.05$	234
7.13	Estimated normal incidence sound absorption coefficient of MPM 4 with a	
	cavity depth $D = 70$ mm	235
7.14	Measured SPL in the source chamber and the estimated SPL in Air Cavity 1	
	for MPM 4 as the internal absorbing MPM. The cavity depth is $D_1 + D_2 =$	
	140 mm	237
7.15	STL of double layer impervious membranes with internal MPM 4. The	
	sound absorbing boundary is considered as a factor $e^{-\beta \frac{\omega}{c_0}(D_1+D_2)}$ where $\beta =$	
	0.05. The non-linear variables are shown in the figure.	239

List of Tables

2.1	Comparison of different expressions of K_{mem}^2 due to damping	18
2.2	Parameters of the impervious membranes	40
2.3	Natural frequencies of the circular membrane samples used in Figures 2.10,	
	2.11, 2.12, and 2.13	44
2.4	Dimensions of the reverberation chambers used to measure the diffuse field	
	STL	45
2.5	Parameters of the impervious membranes	45
2.6	Natural frequencies of the circular membrane samples used in Figures 2.14	
	and 2.15	47
3.1	Measured hole radius of MPMs. The equivalent hole radius was determined	
	from data fitting described in Section 3.3.2.	70
3.2	Measured MPM parameters	70
4.1	Measured MPM parameters	100
4.2	Measured MPP parameters	120
4.3	First three panel resonance frequencies of the MPP sample	122
4.4	Measured distance from the MPM sample to the transparent end	124
4.5	Frequencies used for the distance measurement where the peaks and valleys	
	in the sound absorption curves occur in Figure 4.25 with the maximum input	
	voltage of 200 mV.	125
5.1	Optimised parameters for the non-linear acoustic impedance of the MPM	
	exicted by a white noise signal. The presented simplified model is given by	
	Equation (5.12) , and the presented analytical model is given by Equation (5.22))150
7.1	Parameters of the impervious membranes and MPMs	204

List of Tables

List of Symbols

η	Damping ratio	11
ξ	Membrane vibration displacement	11
t	Time variable	11
Т	Tension per unit length	11
T_0	Real static tension	11
X	Position coordinate in x-axis	13
у	Position coordinate in y-axis	13
$ ho_s$	Surface density of membrane	13
ω	Angular frequency	14
∇^2	Two dimensional Laplace operator	14
R	Radial position in the polar coordinate system	14
η	Internal damping ratio	16
$ ho_{ m string}$	Mass per unit length of the string	16
R_0	Radius of a circular membrane	20
p_i	Incident sound pressure	20
<i>p</i> _r	Reflected sound pressure	20
p_t	Transmitted sound pressure	20
Δp	Differential sound pressure applied across the membrane surface	20
J_0	Bessel function of the first kind and zero order	22
J_1	Bessel function of the first kind and first order	25
$ ho_0$	Density of air	26
c ₀	Speed of sound	26
D	Depth of air cavity	26
Re	Real part of impedance, resistance	26
Im	Imaginary part of impedance, reactance	26
l_x	The width of the rectangular membrane	29
l_y	The height of the rectangular membrane	29

X(x)	Function of the membrane displacement only related to the x	
	coordinate	29
Y(y)	Function of the membrane displacement only related to the y	
	coordinate	29
n_{χ}	x-axis modal index	31
N_x	Maximum mode number of n_x	31
n_y	y-axis modal index	31
N_y	Maximum mode number of n_y	31
θ	incidence angle of p_i	36
$ heta_{ m max}$	Upper limit of θ	36
STL _{diffuse}	STL in a diffuse field	36
l_1	Distance from microphone 1 to the MPM surface	40
l_2	Distance from microphone 2 to the MPM surface	40
S	Distance between the microphones	40
$R_{\rm determination}^2$	Coefficient of determination	41
n _{freq}	Index of the measured frequency	41
N _{freq}	Total number of measured frequencies	41
$\alpha_{ m prediction}$	Predicted sound absorption coefficient	41
$\alpha_{\mathrm{experiment}}$	Measured sound absorption coefficient	41
r_0	Radius of a perforation	57
V	Air particle velocity in a perforation	57
r	Radial coordinate in a perforation	57
t	Time parameter	57
μ	Viscous ratio of air	57
Δp	Pressure difference between the front and back surfaces of the	
	membrane/panel	57
h	Thickness of the membrane/panel	57
ω	Angular frequency	57
f	Frequency	57
J_0	Bessel function of the first kind and zero order	59
J_1	Bessel function of the first kind and first order	59

Z _{perforation}	Acoustic impedance of the perforation	59
δ	Perforation ratio of MPP/MPM	60
d	Hole diameter	60
σ	Dynamic viscosity in air	60
x	Perforation constant	60
Vmembrane	Vibration velocity of membranes	61
\overline{v}	Average particle velocity in perforations	61
R	Distance from the centre of the circular membrane to the perfor-	
	ation location	62
η	Internal damping ratio of MPMs	64
n	<i>n</i> th hole on MPM surface	65
R_n	Radial coordinate of the <i>n</i> th hole	65
Ν	Total number of holes	65
<i>x</i> _{skip}	Centre to centre distance of holes on x axis	65
Yskip	Centre to centre distance of holes on y axis	65
x	Hole x coordinate	66
у	Hole y coordinate	66
D	Depth of air cavity between MPP/MPM and its rigid backing wall	68
$\operatorname{Re}(z)$	Resistance of acoustic impedance	68
$\operatorname{Im}(z)$	Reactance of acoustic impedance	68
$Im(z_{overall})$	Reactance of MPMs	69
$f lpha_{ m max}$	Resonance frequency where the maximum sound absorption is	
	achieved	73
$f lpha_{ m half}$	Frequency where half of the maximum sound absorption coeffi-	
	cient is obtained	73
f_{\min}	Lowest analysis frequency	73
f_{\max}	Highest analysis frequency	73
R_s	Acoustic impedance of a perforation due to thermo-viscous fric-	
	tion	74
H_{s1}	Transfer function between microphone 1 and the sound source .	94
H_{s2}	Transfer function between microphone 2 and the sound source .	94

p_1	Measured sound pressure at microphone 1	94
<i>p</i> ₂	Measured sound pressure at microphone 2	94
p_{source}	Voltage signal input into the power amplifier	94
H_{12}	Transfer function between microphones 1 and 2	94
Re	Reynolds number	116
p_1	Measured sound pressure on microphone 1	116
Н	Measured transfer function between two microphones	116
k_0	Wavenumber in air	116
E	Young's modulus	122
V	Poisson's ratio	122
Re _{nonlinear}	Resistance of the non-linear impedance	136
Zlinear	Normalized acoustic impedance of the MPP or MPM in the lin-	
	ear regime	139
x _{length}	Position coordinate in the length direction	139
$k_{\text{Maa}} = \frac{d}{2} \sqrt{\frac{\omega \rho_0}{\mu}}$	MPP constant	140
a	Parameter determined by curve fitting	141
b	Parameter determined by curve fitting	141
p_{i2}	Incident sound on Membrane 2	165
p_{r2}	Reflected sound on Membrane 2	165
$\xi_1(x,y)$	Displacement of Membrane 1	166
$v_1(x,y)$	Velocity of Membrane 1	166
Δp_1	Sound pressure difference on Membrane 1	167
$ ho_{s1}$	Surface density of Membrane 1	167
$X_0(x)$	Sound pressure component in the <i>x</i> -direction within the cavity .	170
$Y_0(x)$	Sound pressure component in the <i>y</i> -direction within the cavity .	170
$Z_0(x)$	Sound pressure component in the <i>z</i> -direction within the cavity .	170
k_{0x}	Component of k_0 in the x-direction within the cavity	170
k_{0y}	Component of k_0 in the y-direction within the cavity	170
<i>k</i> _{0<i>z</i>}	Component of k_0 in the <i>z</i> -direction within the cavity	170
v_x	Air particle velocity in the <i>x</i> direction within the air cavity	171
vy	Air particle velocity in the <i>y</i> direction within the air cavity	171

$v_1(\mathbf{x}, \mathbf{v})$	Velocity of Membrane 1	171
$v_1(x,y)$	Velocity of Membrane 2	171
$V_2(x,y)$	Mode number of the air propagation in the x direction	172
	Mode number of air propagation in the v direction	172
<i>u_y</i>	Coefficient of each areas made of sin particles within the sin particular	173
A_0	Coefficient of each cross mode of air particles within the air cavity	1/3
A_{i2}	Coefficient of each cross mode of the air particles of the trans-	
	mitted sound through Membrane 1 within the air cavity	174
A_{r2}	Coefficient of each cross mode of the sound reflected by Mem-	
	brane 2 within the air cavity	174
$\xi_2(x,y)$	Displacement of Membrane 2	175
$v_2(x,y)$	Velocity of Membrane 2	175
Δp_2	Sound pressure difference on Membrane 2	175
$ ho_{s2}$	Surface density of Membrane 2	175
D^{T}	Transpose of vector D	181
$f_{ m low}$	Lower limit of each 1/3 octave band	190
$f_{ m high}$	Upper limit of each 1/3 octave band	190
$N_{1/3}$	Number of narrowband frequencies considered in each 1/3 octave	
	band	190
β	Coefficient of sound energy loss due to the sound absorbing walls	192
D_1	Cavity depth between Membrane 1 and the internal MPM	205
D_2	Cavity depth between the internal MPM and Membrane 2	205
p_{i2}	Incident sound pressure in Air Cavity 1	211
p_{r2}	Reflected sound pressure in Air Cavity 2	211
<i>Pi</i> 3	Incident sound pressure in Air Cavity 2	211
p_{r3}	Reflected sound pressure in Air Cavity 2	211
VMPM	Particle velocity in the z-direction on each surface of the internal	
	MPM	213
$\xi_{ m MPM}$	Displacement of the internal MPM in the <i>z</i> -direction	214
$\mathbf{A}_{\mathrm{MPM}}$	Vector representing the modal amplitude of ξ_{MPM}	215
B ₁	Vector representing the modal amplitudes in Air Cavity 1	216
B ₂	Vector representing the modal amplitudes in Air Cavity 2	216

SPL _{source}	Measured sound pressure level in the source chamber	236
<i>p</i> _{source}	Measured sound pressure in the source chamber	236