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Abstract

Membrane materials have been commonly used for decades in buildings. When acoustic

environments are concerned, the acoustic properties of these membrane structures are of

special interest.

This thesis aims to investigate acoustic properties of micro perforated membranes (MPMs)

and impervious membranes and enhance the sound insulation of double layer impervious

membranes by combining these with MPMs, thereby increasing the internal loss mechan-

isms of what is essentially a reactive wall. This thesis firstly develops a new model of an

impervious membrane, taking into consideration the tension and the internal damping due to

the membrane curvature.

The sound absorption of MPMs inserted between the impervious layers has been studied

by introducing a new boundary condition where the particle velocity at the hole wall bound-

ary is assumed to be equal to the membrane vibration velocity. The comparison between the

predicted and measured results demonstrates that MPM 1 to 3 can be considered impervious

due to their sufficiently small perforation radii, and MPM 4 is sound absorbing due to its

larger perforations.

Non-linear sound absorption of MPM 4 has been observed in the experiments. It was

found that the non-linear sound absorption coefficient is strongly dependent on both the

magnitude of the SPLs and the waveform of the excitation. Two analytical models were

developed for the non-linear acoustic impedance of MPMs. In the first model, the non-linear

impedance of MPMs is considered to be the sum of the linear impedance, and the non-linear

acoustic impedance dependent on the particle velocity within the perforations. The second

analytical model presented is inspired by the air motion equation and the mass continuity

equation considering the density variation in the time and spatial domains, and provides the

most accurate predicted results among the models considered in this study.

The analytical models have been developed to predict the STL of double layer impervious

membranes separated by a finite-sized air cavity, taking into consideration the fluid-structure

coupling on each membrane surface. Comparing the predicted results to the measured STLs,
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Contents

it is found that considering the sound absorbing boundaries of the cavity can enhance the

accuracy of the models.

STL measurements of double layer impervious membranes with four types of MPMs

have been conducted in a diffuse field to quantify the effectiveness of the MPM insertion.

The experimental results indicate that the MPM insertion can enhance the STL of the double

layer impervious membranes significantly at frequencies above the first resonance frequency

of the air cavity. MPMs 1 to 3 have similar main impacts on the STLs, however, MPM 4 has

a different effect because of its larger perforations.

The normal incidence and diffuse field models for the double layer impervious mem-

branes with inserted MPMs 1 to 3 were developed and the predicted results were compared

with the experimental results. The models with MPM 4 were developed by taking into con-

sideration the acoustic impedance of the MPM 4 due to its perforations. These developed

models can be used as tools for design of membrane structures.
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Chapter 1

Introduction

1.1 Introduction to multiple layer membrane structures
Membrane materials have commonly been used in buildings for decades. They are highly

valued for their light weight, low carbon footprint as far as the environment is concerned,

and their convenience for transportation and storage when not inflated.

These membrane materials can be used as permanent and temporary building materi-

als. For permanent use, lightweight membrane structures have been used as components

of roofs, walls or ceilings. Transparent membrane structures are particularly favoured for

ceilings because of their effective light transmission. Figure 1.1a is a picture of the Beijing

national aquatics centre, also known as the Water Cube, which is a permanent building with

membrane roof and walls.

(a) The ”Water Cube”: an example of a
permanent membrane structure.

(b) Champions League Dome in Madrid: an
example of a temporary membrane structure.

Figure 1.1: Examples of permanent and temporary membrane structures constructed from
membranes.

For temporary use, membrane structures usually consist of multiple membrane layers

connected together and between them lies a cavity pressurised to maintain rigidity. These
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inflatable structures have been used as temporary field hospitals, temporary theatres and

conference halls (Tectoniks 2010), as shown in Figure 1.1b.

However, the acoustic properties of these membrane structures may lead to some prob-

lems. For example, it has been reported that the Water Cube suffered from high noise levels

inside when it rained (Network 2015, WaterCube 2008), which was ascribed to the acous-

tic properties of the ETFE (Ethylene Tetrafluoroethylene) membranes used in the structure.

This issue has been addressed by using triple and quadruple layers of membranes to reduce

the noise (WaterCube 2008). For temporary membrane buildings, especially for these tem-

porary theatres and conference halls, the high acoustic transmissibility of the walls may lead

to significant community noise levels.

Together with their use as building materials, the sound insulation of membrane struc-

tures has also been investigated for decades. Impervious membranes can block sound trans-

mission and be used as noise barriers, although their sound insulation is not as effective as

conventional massive noise barriers (Mehra 2002). Hence, many efforts have been made to

enhance the sound insulation of membrane structures. For example, adding small weights

on the membrane surfaces (Hashimoto et al. 1996) and adding porous materials in the cavity

between the double membrane layers (Bolton et al. 1996, Sgard et al. 2000) have been in-

vestigated to improve the sound transmission loss of membrane structures. However, these

methods increase the overall mass and the overall thickness of the membrane structures.

It is known that membranes when coupled with backing air cavities can form effective ab-

sorbers. If membranes are perforated with holes in the order of one millimetre in diameter,

they form micro-perforated membranes and are categorised as sound absorbing materials.

Therefore, micro-perforated membrane (MPM) insertions are proposed in this thesis to en-

hance the sound transmission loss of multiple layer membrane structures. This combined

theoretical and experimental investigation on the sound transmission of membrane struc-

tures and MPMs also broadens the knowledge of the acoustic properties of the membrane

structures and MPMs. Potentially, these multiple layer membranes can be used as noise

barriers, and the analytical models developed in this thesis can be used in their design.
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1.2 Motivation and contributions of this thesis
This thesis aims to investigate acoustic properties of micro-perforated membranes, and im-

pervious membranes, to ultimately enhance the sound insulation of double layer impervious

membranes by combining these with micro-perforated membranes (MPMs), thereby increas-

ing the internal loss mechanisms of what is essentially a reactive wall. The investigation on

the acoustic properties of impervious membrane structures and MPMs is conducted both

theoretically and experimentally.

As mentioned in Section 1.1, membrane materials may not only insulate sound but may

also absorb sound.Impervious membranes can be used as noise barriers (Mehra 2002) due

to their effective sound insulation. Multiple-layer membrane structures with an air cavity

can be considered as membrane-type sound absorbers. The sound absorption of membranes

can be enhanced by perforating small holes on their surface, forming MPMs. These MPMs

are used as an alternative to porous sound absorbing material. Therefore, both the sound

absorption and sound transmission of membrane materials are investigated in this thesis. To

be specific, the sound absorption and transmission of single layer impervious membranes

are studied. A new analytical model for the acoustic impedance of a single layer impervious

membrane is developed by considering the internal damping due to the membrane curvature.

This model is validated with the measured sound absorption coefficients at normal incidence

in an impedance tube and the measured sound transmission loss in a diffuse sound field.

This thesis aims to capitalise on the sound absorption properties of MPMs and use this

to enhance the sound transmission loss of double layer impervious membranes. A novel

analytical model for the acoustic impedance of MPMs is developed, and its accuracy is

verified with the measured sound absorption of MPMs in an impedance tube. This model

is based on a new boundary condition where the particle velocity at the hole wall boundary,

which is assumed to be zero in Maa’s theory (Maa 1975), is assumed to be equal to the

membrane vibration velocity. This model extends the understanding of the coupling between

the acoustic impedance arising from membrane vibration and the acoustic impedance due to

the perforations of MPMs. It offers an accurate model for predicting the performance of

flexible finite-sized MPMs.

In this thesis, the non-linear sound absorption characteristics of MPMs has also been
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investigated experimentally and theoretically. Non-linearities in the sound absorption of

micro-perforated panels (MPPs) and orifices has been studied previously (Bodén 2007, In-

gard & Ising 1967, Maa 1994, Tayong et al. 2010), however, there is very limited research

on the non-linear sound absorption of MPMs. The previous analytical models for the non-

linear sound absorption of micro-perforated panels and orifices do not capture all the physics

and consequently do not adequately predict the behaviour under certain conditions. The re-

search on the non-linear sound absorption of MPMs in this thesis fulfils this gap and further

explores the physical mechanisms of the non-linearities observed in the MPM sound absorp-

tion. The effects of incident sound pressure levels for both broadband and monochromatic

noise sources are investigated experimentally. Moreover, analytical models of the sound ab-

sorption of MPMs for different types of sound sources are developed. These models not

only provide more accurate predicted results, but also better reflect the absorption physics

than previous models.

As stated earlier, capitalising on the sound absorption offered by MPMs, the sound trans-

mission of double layer impervious membranes without and with an internal MPM is in-

vestigated in this thesis. The sound transmission of double layer impervious membranes

(without an internal MPM) is modelled for both a normally-incident plane wave and in a

diffuse field. It is found that these models underestimate the sound transmission loss (STL)

experimentally observed. This underestimation is ascribed to sound absorption of the bound-

aries of the air cavity, which is neglected in previous models. By taking into consideration

the sound absorption of the boundaries, the newly developed model has good agreement with

the experimental results.

The effectiveness of inserting an MPM between two impervious membranes is measured

experimentally. Analytical models of double layer impervious membranes with an internal

MPM are developed for a normally-incident plane wave and also in a diffuse field. The

effects of the sound absorbing boundaries and the non-linear sound absorption are studied,

based on the previous research. The analytical models are useful tools to design and predict

the performance of membrane type noise barriers and improve the sound environment of

membrane buildings.
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1.3 Overview of this thesis
This thesis starts with an introduction to multiple layer membrane structures in Chapter 1,

followed by an overview of the thesis and a list of the publications arising from this study.

Rather than a single literature review chapter, due to the diverse aspects of this thesis, a

detailed literature review is included in each chapter from Chapters 2 to 7, culminating in the

particular research gaps pertinent to each chapter. This thesis consists of two major parts: the

study of the sound absorption of micro-perforated membranes; and the study of the sound

transmission of single and double layer impervious membranes without and with internal

micro-perforated membranes. Figure 1.2 shows a graphical overview of this thesis.

Chapter 1: Introduction

Chapter 2: Single layer

 impervious membranes

Chapter 3: Sound 

absorption of MPMs

Chapter 4: Experimental 

findings of non-linear sound 

absorption of MPMs

Chapter 5: Analytical 

modelling of non-linear 

sound absorption of MPMs

Chapter 6: STL of double

layer impervious

 membranes

Chapter 7: STL of double

layer impervious membranes 

with an internal MPM

Chapter 8: Conclusions
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Figure 1.2: Overview of this thesis. The dashed blocks represent the two main parts of this
thesis. The arrows show the relationship between the chapters.

Chapter 2 investigates the sound absorption and transmission of single layer impervi-

ous membranes. An analytical model which incorporates the internal damping due to the

membrane curvature is proposed and is validated by experiments and forms the foundation

of the research in this thesis on the sound absorption of MPMs and the design of combined

membranes used as noise barriers.

Based on the developed models for the acoustic impedance of rectangular and circu-
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lar impervious membranes in Chapter 2, the acoustic properties of MPMs and impervious

membranes are investigated in the subsequent chapters. Chapter 3 introduces a velocity con-

tinuity condition at the perforation boundary of MPMs. An accurate prediction method for

the acoustic impedance of MPMs is developed based on the velocity continuity condition

and is validated by experimental results.

When conducting the sound absorption experiments, non-linear sound absorption prop-

erties of the MPMs are observed with both broadband and monochromatic excitation. These

experimental findings are presented in Chapter 4. The effects of different types of sound

sources and different amplitudes of the incident sound pressure on the MPMs are studied.

The novel experimental findings are presented in Chapter 4.

To further investigate the non-linear sound absorption of MPMs excited by high SPLs,

Chapter 5 re-derives Maa’s non-linear MPP model and introduces a new non-linear model for

the prediction of the acoustic impedance of MPMs. This model provides accurate predicted

results and better reflects the physical system compared to previous models.

Chapter 6 investigates the sound transmission of double layer impervious membranes

separated by an air cavity. The effects of the incident sound angle, the high-order cross modes

of both the membranes and the air cavity, and the sound absorption at the boundary of the air

cavity are considered. The developed model shows good agreement with the experimental

results in a diffuse field.

To enhance the sound insulation of the double layer impervious membranes investigated

in Chapter 6, MPMs are inserted into the air cavity and the resulting behaviour is investigated

in Chapter 7. An analytical model for the combined membrane structure is developed and

validated in this chapter. It is found that the MPM contributes little to the transmission loss

below the fundamental cavity mode formed between the two impervious membranes. How-

ever, above the fundamental acoustic mode of the cavity, the transmission loss is increased

significantly and remains enhanced over the frequency range tested. The analytical models

are further developed by extending the models developed in Chapter 6. The effects of four

MPMs are studied, as well as the non-linear sound absorption. However, it is found that the

non-linear sound absorption of the MPM has negligible impact on the predicted STL.

This thesis investigates the sound absorption and sound transmission of MPMs and im-

pervious membranes in detail both theoretically and experimentally. Several new models are
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developed and validated by experimental results. These models extend the understanding of

the linear and non-linear sound absorption of MPMs and the sound transmission of mem-

brane structures, and hence can assist future research and design of MPMs and membrane

noise barriers.

1.4 Publications arising from this thesis
The journal and conference publications arising from this thesis are as follows:

Journal publications:

• Li, C., Cazzolato, B., and Zander, A. (2016). ”Acoustic impedance of micro perforated

membranes: Velocity continuity condition at the perforation boundary,” Journal of the

Acoustical Society of America 139(1), 93-103.

• Li, C., Cazzolato, B., and Zander, A. (2016). ”Non-linear effects of sound absorption

of micro-perforated membranes”, Journal of Sound and Vibration, under review.

• Li, C., Cazzolato, B., and Zander, A. (2016). ”Analytical modelling for non-linear

sound absorption of micro-perforated membranes”, Journal of the Acoustical Society

of America, in preparation.

Conference publications:

• Li, C., Cazzolato, B., and Zander, A. (2014). ”Boundary condition for the acoustic

impedance of lightweight micro-perforated panels and membranes”, In: Proceedings

of the 21st International Congress on Sound and Vibration (ICSV21), Beijing, China

vol. 3: 2726-2733.

• Li, C., Cazzolato, B., and Zander, A. (2013). ”Sound transmission loss of double

layer impervious membranes with an internal micro-perforated membrane”, In: An-

nual Conference of the Australian Acoustical Society 2013, Acoustics 2013: Science,

Technology and Amenity, Victor Harbor, South Australia: 68-74.
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Chapter 2

Acoustic properties of single layer imper-

vious membranes under tension

2.1 Introduction
This thesis aims to study the acoustic characteristics of double and triple layer membranes

used as noise barriers. Consequently, it is crucial to understand the acoustic properties of

a single membrane layer. This chapter investigates the acoustic properties of a single layer

impervious membrane under tension. A model which incorporates the internal damping due

to the membrane curvature is proposed. The model consists of two parts; the modelling of a

circular membrane excited by a normally incident plane wave, and the modelling of a rectan-

gular membrane in a diffuse field. To validate these models, the sound absorption coefficients

of impervious circular membranes are measured, as well as the sound transmission losses of

impervious rectangular membranes.

In this chapter, Section 2.1.1 summarises the previous research on the acoustic properties

of a single layer membrane, including pervious and impervious membranes. The gaps arising

from these studies and the contributions of this chapter are presented in Section 2.1.2. The

analytical modelling starts with the general motion equation of an impervious membrane

in Section 2.2.1. The expressions for the damping effect which have been widely used in

previous research and the proposed expression for the internal damping of an impervious

membrane are discussed in Sections 2.2.2.1 and 2.2.2.2. The motion equation including the

proposed internal damping is solved in the polar and Cartesian coordinate systems in Sec-

tions 2.2.3 and 2.2.4. Consequently, the sound absorption coefficients of circular impervious

membranes were measured in an impedance tube to validate the model in the polar coordin-

ate system and are presented in Section 2.3.1. The accuracy of the solution in the Cartesian
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coordinate system is verified by sound transmission loss testing conducted in a diffuse field,

and is presented in Section 2.3.2. The findings on the effect of the proposed damping expres-

sion on the sound absorption and transmission of an impervious membrane are discussed in

Section 2.4. There is also a conclusion in Section 2.5.

2.1.1 Literature review
Membrane structures have been available for decades as building materials used in archi-

tecture and in construction. These membrane structures are usually lightweight and easily

curved and are preferred for their acoustic properties.

Acoustic properties of single layer impervious membranes have been studied for dec-

ades. As early as 1954, Ingard (1954) investigated the sound transmission of an ideal mem-

brane stretched in a rigid tube and indicated that a membrane under high tension provides

high sound transmission loss over a broadband frequency range. Romilly (1964) extended

Ingard’s approximate results to series form and studied the resonance and antiresonance fre-

quencies of an ideal circular membrane in detail. Croome (1985) investigated the sound

absorption and transmission of flexible membranes, using a model which involved mass

only. Frommhold et al. (1994) indicated that when investigating the sound absorption of a

membrane absorber with a normally incident plane wave, the system could be considered as

a combination of a Helmholtz resonator and a plate absorber. Sakagami et al. (1996) studied

the effects of mass and tension on the sound absorption of a membrane backed by an air

cavity with obliquely incident plane waves. However, they assumed that the membrane is

infinite-sized and hence the finite size effects were neglected. Sakagami et al. (2002) ex-

tended this model to investigate the acoustic properties of double layer membranes with a

pervious membrane facing the incident sound.

Conventionally, membranes used as sound absorbing materials are combined with an air

cavity and a rigid wall. Sometimes, porous materials are inserted into the cavity to enhance

the sound absorption. Bosmans et. al. (1999) investigated the sound absorption and transmis-

sion of an impervious membrane combined with mineral wool or plastic foams in the cavity.

Their analytical model is in matrix form, which simplifies the calculation of multiple layer

structures. However, in their model, all the damping effects, including those arising from air,

energy dissipation on the membrane surface and membrane curvature, were neglected.
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Sakagami et al. (2005) explored the possibilities of using single and double layer mem-

branes as a space sound absorber. In their design, the air cavities and porous materials which

usually fill the air cavity are eliminated. By assuming that the sound is incident from both

sides of the membrane samples, the sound absorption of the membranes were studied in a

diffuse field. However, the sound absorption of this novel membrane space absorber was still

lower than that of the conventional porous materials, even when optimisations were applied.

The tension effects of the membranes were neglected in their research.

With the development of material technology, membranes made by metamaterials have

been investigated. Yang et al. (2008) analysed the sound transmission of a circular metama-

terial membrane with a small mass attached in its centre using finite element analysis. The

effect of negative dynamic mass was studied. It was found that the membrane reflects nearly

all the sound at a frequency between two eigenmodes. However, their simulation was con-

ducted in COMSOL Multiphysics and no analytical model was provided in their paper. Sim-

ilar research has been done by Zhang et al. (2012) with a theoretical model. In Zhang et

al.’s model, the spatial position of the additional mass varies and the effect of the position of

the mass has been investigated. Tian et al. (2014) extended Zhang et al.’s model to a model

where the additional mass was no longer a point mass but a ring mass.

Tension has been considered in these studies on sound transmission of metamaterial

membranes, however the damping effect has been neglected. In addition to preventing the

displacement being infinite at the resonance frequency, the damping effect of a membrane

under tension is also important in practice. There are two expressions typically used for

the damping of a membrane. Kinsler et al. (1999) indicated in their book that the effect of

damping could be considered as “a damping force” which is given by

−η
∂ξ

∂ t
, (2.1)

where η is the damping factor, ξ is the membrane vibration displacement and t is the time

variable. Obviously, this damping is related to the velocity of the membrane vibration.

Furthermore, Song & Bolton (2002, 2003) used a complex tension factor to represent the

effect of damping. In their derivation, the constant tension is expressed by

T = T0(1+ jη), (2.2)

where T is the tension per unit length on the membrane surface and T0 is the real-valued
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static tension. Equation (2.2) implies that the damping is not related to the velocity of the

membrane vibration, but represents energy dissipated by the membrane flexural vibration.

While the damping expressions in Equation (2.1) used by Kinsler et al. (1999) arise from

the velocity of the membrane vibration and the damping factor in Equation (2.2) used by

Song & Bolton (2002, 2003) is related to energy dissipation due to the membrane flexural

vibration, the damping due to the membrane curvature has been neglected in the previous

research. However, if a two dimensional case such as the vibration of a flexible string is

considered, the damping of the system is ascribed to the curvature of the string (Walstijn

2009). Similarly, in the three dimensional case of membrane vibration, the damping could

also be related to the curvature of the membrane. This curvature-related damping has been

barely discussed previously.

2.1.2 Gaps and contribution
This chapter aims to investigate the acoustic properties of a single layer impervious mem-

brane under constant tension by considering the internal damping due to the internal friction

effect arising from the membrane curvature. To include this damping, the motion equation

for vibration of a membrane under tension is discussed in Section 2.2.1. The conventional

expressions of damping and the presented expression are compared in Sections 2.2.2.1 and

2.2.2.2, respectively. The developed motion equation is solved in the polar and the Cartesian

coordinate systems in Sections 2.2.3 and 2.2.4.

To validate the model developed in the polar coordinate system, the sound absorption

coefficients of two types of impervious membranes are compared with the predicted results

in Section 2.3.1. The accuracy of the model of a rectangular membrane in a diffuse field is

verified with the measured sound transmission loss of two rectangular membranes in Sec-

tion 2.3.2. Good agreements are achieved between these predicted results and the measured

results. Discussions on the effects of the parameters on the sound absorption and transmis-

sion of impervious single layer membranes are presented in Section 2.4, followed by the

conclusion of this chapter in Section 2.5.

This chapter contributes new knowledge as it explores the modelling of the acoustic

properties of single layer impervious membranes using a new damping expression due to

the membrane curvature. Analytical models for the predictions of sound absorption and

12
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transmission of circular and rectangular membranes in plane wave and diffuse fields are

presented. These models are validated by experiments. Furthermore, this chapter discusses

the effects of tension and damping on circular and rectangular membranes in detail and

provides increased understanding of the effect of tension and internal damping on the sound

absorption and sound transmission of impervious membranes. These models are useful tools

when designing membrane-type sound absorbers and noise barriers in practice.

2.2 Analytical modelling of the acoustic properties of single

layer impervious membranes under tension
This section aims to develop a predictive model for the acoustic properties of a membrane un-

der constant tension and with internal damping due to the membrane curvature. Conventional

damping expressions and the newly developed expression are compared theoretically. The

motion equation considering the damping due to the membrane curvature has been solved in

a polar coordinate system for the sound absorption of a circular membrane with a normally-

incident plane wave, and in a Cartesian coordinate system for the sound transmission of

a rectangular membrane in a diffuse field. There are also discussions on the influence of

the different damping expressions on the sound absorption and transmission of single layer

impervious membranes.

2.2.1 Motion equation of the free vibration of a single layer tensioned

impervious membrane
In this section, the vibratory motion of a thin membrane under constant tension is investig-

ated. The membrane is assumed to be uniform with negligible bending stiffness and perfectly

elastic. A constant tension T is applied on the membrane surface (with units of newton per

unit length), as shown in Figure 2.1. If no additional force is involved, the motion equation

of the membrane for free vibration is given by (Kinsler et al. 1999)

T
(

∂ 2ξ (x,y, t)
∂x2 +

∂ 2ξ (x,y, t)
∂y2

)
= ρs

∂ 2ξ (x,y, t)
∂ t2 , (2.3)

where x and y are the position coordinates in the x- and y-axis, respectively, and ρs is the

surface density of the membrane (kg/m2). The left-hand side of Equation (2.3) represents

the force due to the membrane tension. The right-hand side of Equation (2.3) is the product

13
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of the unit mass multiplied by the acceleration ∂ 2ξ (x,y,t)
∂ t2 . Therefore, Equation (2.3) is based

on Newton’s second law and represents the motion of the membrane for free vibration.

T

T

T

T Membrane

Figure 2.1: Constant tension applied on the membrane surface.

If the membrane displacement ξ is rewritten as

ξ (x,y, t) = ξ (x,y)e jω t , (2.4)

where ω denotes the angular frequency, Equation (2.3) becomes

T
(

∂ 2ξ (x,y)
∂x2 +

∂ 2ξ (x,y)
∂y2

)
+ω

2
ρs ξ (x,y) = 0. (2.5)

The time variable t is eliminated in Equation (2.5). Note that Equation (2.5) is also a motion

equation of the membrane for free vibration.

Moreover, using the two dimensional Laplace operator ∇2, Equation (2.5) is simplified

as

T ∇
2
ξ (x,y)+ω

2
ρs ξ (x,y) = 0. (2.6)

Letting K2
mem = ω2 ρs

T yields

∇
2
ξ (x,y)+K2

mem ξ (x,y) = 0. (2.7)

Note that the two dimensional Laplace operator ∇2 in the Cartesian coordinate system is

expressed as

∇
2 =

∂ 2

∂x2 +
∂ 2

∂y2 . (2.8)

Conversely, the two dimensional Laplace operator in a polar coordinate system is given by

∇
2 =

∂ 2

∂R2 +
1
R

∂

∂R
, (2.9)

where R denotes the radial position coordinate in the polar coordinate system. In Equation

(2.9), the angle coordinate θ is neglected due to the isotropic vibration of the membrane. The

14
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substitution of Equations (2.8) and (2.9) into Equation (2.6) gives the forced motion equation

of membrane vibration in the Cartesian coordinate system and the polar coordinate system,

respectively.

2.2.2 Damping of a single layer tensioned impervious membrane
In Section 2.2.1, the effect of damping on the membrane vibration is neglected. However,

damping is important theoretically and practically. In theoretical analysis, considering damp-

ing can prevent the displacement being infinite at the resonance frequency. In practice, damp-

ing always exists in the system and therefore utilisation of damping improves the accuracy

of the prediction model.

The conventional damping expressions mentioned in Section 2.1.1 are investigated in

this section. The damping due to the membrane curvature is presented and theoretically

compared with the conventional damping forms.

2.2.2.1 Conventional constant damping

As mentioned in Section 2.1.1, there are two conventional expressions for the damping factor

of a membrane under tension. Kinsler et al. (1999) used “damping force” to express the effect

of viscous damping. The expression of this “damping force” is given by Equation (2.1). This

damping is related to the local velocity of the membrane vibration and represents a viscous

damping with a constant damping ratio η . Substituting Equation (2.1) into Equation (2.5)

gives

T ∇
2
ξ (x,y)+ω

2
ρs ξ (x,y)− jω ηξ (x,y) = 0. (2.10)

Equation (2.10) may be rewritten as

∇
2
ξ (x,y)+

ω2 ρs− jω η

T
ξ (x,y) = 0. (2.11)

Let this K2
mem = ω2 ρs− jω η

T and Equation (2.11) is simplified as

∇
2
ξ (x,y)+K2

memξ (x,y) = 0. (2.12)

Alternatively, the effect of damping can also be expressed as a complex tension (Song &

Bolton 2002, 2003), as shown in Equation (2.2). The imaginary part of this complex tension

represents the energy dissipation by the membrane, which is related to the local displacement

of the membrane. The energy dissipation is represented by a constant η . By substituting the
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complex tension into Equation (2.5), the motion equation of the membrane for free vibration

is given by

T (1+ jη)∇2
ξ (x,y)+ω

2
ρs ξ (x,y) = 0. (2.13)

Equation (2.13) is simplified as

∇
2
ξ (x,y)+

ω2 ρs

T (1+ jη)
ξ (x,y) = 0. (2.14)

Letting K2
mem = ω2 ρs

T (1+ jη) and substituting it into Equation (2.14) yields

∇
2
ξ (x,y)+K2

mem ξ (x,y) = 0. (2.15)

Comparing Equation (2.12) with (2.15), it is found that they are identical except for the

differing expressions for the parameter Kmem in each equation. This implies that the free

vibration of an impervious membrane under tension can be described in the forms of Equa-

tions (2.12) and (2.15). The parameters such as surface density, tension and damping, only

affect the factor Kmem. The expression for Kmem thus differs with the various representations

of the damping mechanisms.

2.2.2.2 Internal damping due to curvature

As mentioned previously, the conventional damping expressions shown in Equations (2.1)

and (2.2) neglect the internal damping due to the membrane curvature. In the two dimen-

sional case of the free vibration of a flexible string, the damping due to the string curvature

is expressed as (Walstijn 2009)

T
∂ 2ξ (x, t)

∂x2 +2η
∂ 3ξ (x, t)

∂ t∂x2 = ρstring
∂ 2ξ (x, t)

∂ t2 , (2.16)

where η denotes the internal damping ratio and ρstring denotes the mass per unit length of

the string. In Equation (2.16), the damping part 2η
∂ 3ξ (x)
∂ t∂x2 is not only related to the vibration

velocity of the string, but also related to the string curvature. This part denotes the internal

friction effect due to the string curvature.

By extending the one dimensional flexible string analysis to a two dimensional flexible

membrane, Equation (2.16) is changed to

T ∇
2
ξ (x,y, t)+2η

∂∇2ξ (x,y, t)
∂ t

= ρs
∂ 2ξ (x,y, t)

∂ t2 . (2.17)
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Eliminating the time variable t gives

T ∇
2
ξ (x,y)+2 jωη∇

2
ξ (x,y)+ω

2
ρsξ (x,y) = 0. (2.18)

Equation (2.18) may be simplified as

∇
2
ξ (x,y)+

ω2ρs

T +2 jωη
ξ (x,y) = 0. (2.19)

Letting K2
mem = ω2ρs

T+2 jωη
yields

∇
2
ξ (x,y, t)+K2

memξ (x,y) = 0. (2.20)

This is the motion equation of the free vibration of a membrane under tension, considering

the damping due to the membrane curvature.

Comparing Equation (2.20) with Equations (2.12) and (2.15), it is found that they are in

the same form except for the different expressions for Kmem. Note that the different expres-

sions for Kmem are ascribed to the different expressions of the damping effect arising from

different physical mechanisms. The differences are discussed further in Section 2.2.2.3.

2.2.2.3 Comparison of the expressions of damping

It is concluded from the motion equations of an impervious membrane vibrating under con-

stant tension that the motion equation follows the same form as shown in Equations (2.12),

(2.15) and (2.20). The only difference among these equations are the different expressions

of the factor K2
mem. Table 2.1 shows a comparison of the expressions for K2

mem.

Obviously, if the damping effect is neglected, the value of K2
mem is purely real, otherwise

it is complex. Since the order of magnitude of the damping coefficient is usually around

0.01, while that of the tension is usually three orders of magnitude higher than the damping

coefficient, it is presumed that the real parts of the conventional expressions of K2
mem (i.e.

expressions No. 2 and 3) should be close to each other. It is difficult to verify the imagin-

ary parts of the expressions by estimating the orders of magnitude of tension and damping.

Therefore, an example is utilised here to present the theoretical comparison of the four ex-

pressions. Assume that an impervious membrane with a surface density ρs = 0.485kg/m2,

is stretched under a constant tension T = 100N/m and its internal damping ratio is η = 0.01.

The K2
mem values calculated using each of the four expressions are shown in Figure 2.2. In

Figure 2.2a, the curves calculated using the first three expressions are identical, which veri-
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Table 2.1: Comparison of different expressions of K2
mem due to damping.

No. Expression K2
mem Source Physical meanings

1 K2
mem = ω2 ρs

T Equation (2.7) No damping

2 K2
mem = ω2 ρs− jω η

T Equation (2.1) (Kinsler et al.
1999)

”Damping force” due to vis-
cous damping

3
K2

mem =
ω2 ρs

T (1+ jη)

=
ω2 ρs(1− jη)

T (1+η2)

Equation (2.2) (Song & Bolton
2002, 2003)

Energy dissipated by the
membrane

4
K2

mem =
ω2ρs

T +2 jωη

=
ω2ρs (T −2 jωη)

T 2 +4ω2η2

Equation (2.16) presented model Friction effects due to the
membrane curvature

fies the presumption that the conventional expressions should be close to each other. The real

part predicted by the presented expression is close to those of the other expressions below

400 Hz and significantly lower than those of the other expressions in the middle and high

frequency ranges. It is shown in Figure 2.2b that although the calculated values using the first

expression is zero and is close to zero for expressions No. 2 and 3, the predicted values using

the presented expression are significantly greater in magnitude. Therefore, it is concluded

that the values of K2
mem predicted by the conventional expressions, including those without

damping, are very similar. Conversely, the values calculated using the presented expression

differ significantly from those conventional values. The significant difference implies a sig-

nificant effect of the membrane curvature on the acoustic properties of the membrane. The

accuracy of these expressions are verified by experiments in Section 2.3.
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Figure 2.2: Comparison of K2
mem expressed in different forms in Table 2.1. Surface density

ρs = 0.485kg/m2; tension T = 100N/m; internal damping ratio η = 0.01. Solid lines
represent K2

mem = ω2 ρs
T for no damping. Dashed lines and dotted lines represent two

conventional expressions for K2
mem = ω2 ρs− jω η

T (viscous damping) and K2
mem = ω2 ρs

T (1+ jη)

(energy dissipation), respectively. Dashed dotted lines represent K2
mem = ω2ρs

T+2 jωη
calculated

by the presented model for curvature damping.
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2.2.3 Acoustic impedance and sound absorption of a cricular impervi-

ous membrane with a normally-incident plane wave
The general motion equation of a membrane under tension and damping has been investig-

ated in Sections 2.3 and 2.2.2. It is known that Equation (2.7) is valid in both the Cartesian

coordinate system and the polar coordinate system, except that in each coordinate system the

Laplace operator ∇2 is expressed differently.

This section aims to solve the motion equation in the polar coordinate system and the

corresponding expressions for the acoustic impedance and sound absorption coefficient of

a circular impervious membrane under tension and with internal damping for each of the

damping representation of no damping, viscous damping, energy dissipation damping and

curvature damping. As shown in Figure 2.3, the impervious membrane is stretched on a

circular rim. The radius of the membrane and the internal radius of the rim are R0. Note that

the membrane is excited by a sound pressure pi which is incident on the membrane surface

normally. The membrane reflects back some of the sound energy with a reflected pressure

component, denoted by pr. Some of the sound is transmitted to the opposite side of the

membrane and this sound pressure is named as pt . Hence, the total sound pressure applied

on the membrane surface can be expressed as

∆p = pi + pr− pt . (2.21)

Membrane

pi

pr

pt

Rim

R0

R

Figure 2.3: A circular membrane stretched on a circular rim, where R0 is the radius of the
circular membrane and R is the radial coordinate on the membrane surface.

If the sound pressure ∆p is applied on the membrane surface, Equation (2.5) is given by

T ∇
2
ξ (x,y)+ω

2
ρs ξ (x,y) =−∆p. (2.22)

In Equation (2.22), the sum of T ∇2ξ (x,y) and ∆p is the total force applied on the mem-

brane surface, which equals the product of the unit mass ρs multiplied by the acceleration

−ω2 ξ (x,y). Therefore, Equation (2.22) also follows Newton’s second law and represents
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the forced vibration motion of a membrane under external pressure ∆p. Equation (2.22) can

be rewritten as

∇
2
ξ (x,y)+

ω2 ρs

T
ξ (x,y) =

−∆p
T

, or

∇
2
ξ (x,y)+K2

memξ (x,y) =
−∆p

T
,

(2.23)

where K2
mem = ω2 ρs

T . Equation (2.23) is the motion equation of the forced vibration of a

circular membrane without damping.

Adding the sound pressure −∆p to the right-hand side of Equation (2.10) yields the

forced motion equation of the membrane with damping force, which is given by

∇
2
ξ (x,y)+

ω2 ρs− jω η

T
ξ (x,y) =

−∆p
T

, or

∇
2
ξ (x,y)+K2

mem ξ (x,y) =
−∆p

T
,

(2.24)

where K2
mem = ω2 ρs− jω η

T . This equation represents the forced vibration of a circular mem-

brane, considering the damping force.

If the damping is considered as the sound energy dissipated by the membrane vibration,

it is necessary to use the complex tension T (1+ jη) (Song & Bolton 2002, 2003). In this

way, the forced vibration motion is expressed as

∇
2
ξ (x,y)+

ω2 ρs

T (1+ jη)
ξ (x,y) =

−∆p
T (1+ jη)

, or

∇
2
ξ (x,y)+K2

mem ξ (x,y) =
−∆p

T (1+ jη)
,

(2.25)

where K2
mem = ω2 ρs

T (1+ jη) .

In the presented model, the damping is considered due to the rate of change of membrane

curvature. Adding ∆p to Equation (2.19) yields

∇
2
ξ (x,y)+

ω2ρs

T +2 jωη
ξ (x,y) =

−∆p
T +2 jωη

, or

∇
2
ξ (x,y)+K2

memξ (x,y) =
−∆p

T +2 jωη
,

(2.26)

where K2
mem = ω2ρs

T+2 jωη
.

Equations (2.23), (2.24), (2.25) and (2.26) are inhomogeneous differential equations.

Each of their solutions is the sum of the solution of the corresponding homogeneous differ-

ential equation and its particular solution. Comparing these equations, it is found that the
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left-hand sides of these equations are identical, except that the expressions for Kmem differ

each equation. The differing expressions for Kmem have been discussed previously in Section

2.2.2.3. Therefore, the homogeneous differential equations are identical, and are given by

∇
2
ξ (R)+K2

mem ξ (R) = 0. (2.27)

Substituting the Laplace operator Equation (2.9) into Equation (2.27) yields the motion equa-

tion of the free vibration of a circular membrane in the polar coordinate system, which is

expressed as

∂ 2ξ (R)
∂R2 +

1
R

∂ξ (R)
∂R

+K2
mem ξ (R) = 0. (2.28)

Letting x = KmemR, the two differentials from Equation (2.28) become

∂ξ (R)
∂R

=
∂ξ (x)
∂

x
Kmem

= Kmem
∂ξ (x)

∂x
, (2.29)

and

∂ 2ξ (R)
∂R2 =

∂

[
Kmem

∂ξ (x)
∂x

]

∂
x

Kmem

= K2
mem

∂ 2ξ (x)
∂x2 . (2.30)

Substituting Equations (2.29) and (2.30) into Equation (2.28) gives

K2
mem

∂ 2ξ (x)
∂x2 +

Kmem

R
∂ξ (x)

∂x
+K2

mem ξ (x) = 0. (2.31)

Multiplying Equation (2.31) by R2 gives

K2
memR2 ∂ 2ξ (x)

∂x2 +KmemR
∂ξ (x)

∂x
+K2

memR2
ξ (x) = 0. (2.32)

Letting x = KmemR, Equation (2.32) is simplified as

x2 ∂ 2ξ (x)
∂x2 + x

∂ξ (x)
∂x

+ x2
ξ (x) = 0. (2.33)

Equation (2.33) is Bessel’s differential equation of the first kind and zero order, the solution

of which is given by (Temme 2011)

ξ (R) = AJ0(KmemR), (2.34)

where J0 is the Bessel function of the first kind and zero order and A is a constant depending

on the boundary condition of the membrane.

To calculate a particular solution of Equations (2.23), (2.24), (2.25) and (2.26), it is
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assumed that the particular solution is a constant. Hence, these equations are rewritten as

No damping K2
mem ξ (R) =

−∆p
T

, (2.35a)

Viscous damping K2
mem ξ (R) =

−∆p
T

, (2.35b)

Energy dissipation damping K2
mem ξ (R) =

−∆p
T (1+ jη)

, (2.35c)

Curvature damping K2
mem ξ (R) =

−∆p
T +2 jωη

. (2.35d)

Note that Equation (2.35a) seems identical with Equation (2.35b), however, since the ex-

pressions of Kmem differ, so do these equations. Substituting the expressions of Kmem into

Equation (2.35) yields

No damping
ω2 ρs

T
ξ (R) =

−∆p
T

, (2.36a)

Viscous damping
ω2 ρs− jω η

T
ξ (R) =

−∆p
T

, (2.36b)

Energy dissipation damping
ω2 ρs

T (1+ jη)
ξ (R) =

−∆p
T (1+ jη)

, (2.36c)

Curvature damping
ω2ρs

T +2 jωη
ξ (R) =

−∆p
T +2 jωη

. (2.36d)

The solutions of Equation (2.36) are

No damping ξ (R) =
−∆p
ω2 ρs

, (2.37a)

Viscous damping ξ (R) =
−∆p

ω2 ρs− jω η
, (2.37b)

Energy dissipation damping ξ (R) =
−∆p
ω2 ρs

, (2.37c)

Curvature damping ξ (R) =
−∆p
ω2ρs

. (2.37d)

Equations (2.37a), (2.37c) and (2.37d) are identical in form, because the factors related to

the tension T and the damping η are eliminated. However, Equation (2.37b) involves the

damping factor η .

The sum of Equations (2.34) and (2.37) forms the general solution of the inhomogeneous

differential equation for each of the damping representations, given by Equations (2.23),
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(2.24), (2.25) and (2.26). The solutions are obtained as

No damping ξ (R) = AJ0(KmemR)+
−∆p
ω2 ρs

, (2.38a)

Viscous damping ξ (R) = AJ0(KmemR)+
−∆p

ω2 ρs− jω η
, (2.38b)

Energy dissipation damping ξ (R) = AJ0(KmemR)+
−∆p
ω2 ρs

, (2.38c)

Curvature damping ξ (R) = AJ0(KmemR)+
−∆p
ω2ρs

. (2.38d)

As mentioned previously, the variable A in each solution is dependent on the boundary

condition. Since the membrane is assumed to be stretched on a circular rim, the boundary

condition is given by

ξ (R = R0) = 0. (2.39)

Applying this boundary condition to Equation (2.38) yields

No damping ξ (R = R0) = AJ0(KmemR0)+
−∆p
ω2 ρs

= 0, (2.40a)

Viscous damping ξ (R = R0) = AJ0(KmemR0)+
−∆p

ω2 ρs− jω η
= 0, (2.40b)

Energy dissipation damping ξ (R = R0) = AJ0(KmemR0)+
−∆p
ω2 ρs

= 0, (2.40c)

Curvature damping ξ (R = R0) = AJ0(KmemR0)+
−∆p
ω2ρs

= 0. (2.40d)

The solutions of Equation (2.40) are

No damping A =
∆p

ω2 ρs J0(KmemR0)
, (2.41a)

Viscous damping A =
∆p

(ω2 ρs− jω η)J0(KmemR)
, (2.41b)

Energy dissipation damping A =
∆p

ω2 ρs J0(KmemR0)
, (2.41c)

Curvature damping A =
∆p

ω2ρs J0(KmemR)
. (2.41d)

Substituting Equation (2.41) into Equation (2.38) yields
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No damping

ξ (R) =
∆pJ0(KmemR)

ω2 ρs J0(KmemR0)
+
−∆p
ω2 ρs

=
∆p

ω2 ρs

[
J0(KmemR)
J0(KmemR0)

−1
]
,

(2.42a)

Viscous damping

ξ (R) =
∆pJ0(KmemR)

(ω2 ρs− jω η)J0(KmemR)
+

−∆p
ω2 ρs− jω η

=
∆p

ω2 ρs− jω η

[
J0(KmemR)
J0(KmemR0)

−1
]
,

(2.42b)

Energy dissipation damping

ξ (R) =
∆pJ0(KmemR)

ω2 ρs J0(KmemR0)
+
−∆p
ω2 ρs

=
∆p

ω2 ρs

[
J0(KmemR)
J0(KmemR0)

−1
]
,

(2.42c)

Curvature damping

ξ (R) =
∆pJ0(KmemR)

ω2ρs J0(KmemR)
+
−∆p
ω2ρs

=
∆p

ω2ρs

[
J0(KmemR)
J0(KmemR0)

−1
]
.

(2.42d)

Similar to Equation (2.37), Equations (2.42a), (2.42c) and (2.42d) are identical, because the

factors related to the tension T and the damping η are eliminated and these factors affect

these equations by affecting the variable Kmem. However, Equation (2.42b) involves the

damping factor η .

Integrating the displacement over the membrane area and dividing by the area, the aver-

age displacement is expressed as

ξ̄ =

∫ R0
0 ξ (R)2πRdR

R0
2π

=





∆p
ω2ρs

[
2

KmemR0

J1(KmemR0)
J0(KmemR0)

−1
] for no damping, energy dissipation

and curvature damping;
∆p

ω2 ρs− jω η

[
2

KmemR0

J1(KmemR0)
J0(KmemR0)

−1
]

for viscous damping,

(2.43)

where J1 denotes the Bessel function of the first kind and first order.

Note that Equation (2.42) represents the displacement of the membrane vibration under
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sound excitation. The corresponding velocity is given by

v(R) =
∂ξ (R)e jω t

∂ t

=





j ω∆p
ω2ρs

[
J0(KmemR)
J0(KmemR0)

−1
] for no damping, energy dissipation

and curvature damping;
j ω∆p

ω2 ρs− jω η

[
J0(KmemR)
J0(KmemR0)

−1
]

for viscous damping.

(2.44)

Taking the integration over the membrane area and dividing by the area, the average velocity

is expressed as

v̄ =
∫ R0

0 v(R)2πRdR
R0

2π

=





j ω∆p
ω2ρs

[
2

KmemR0

J1(KmemR0)
J0(KmemR0)

−1
] for no damping, energy dissipation

and curvature damping;
j ω∆p

ω2 ρs− jω η

[
2

KmemR0

J1(KmemR0)
J0(KmemR0)

−1
]

for viscous damping.

(2.45)

Hence, the normalised acoustic impedance of the membrane is obtained by

zmem =
∆p

v̄ρ0 c0

=





ωρs
j ρ0 c0

[
2

KmemR0

J1(KmemR0)
J0(KmemR0)

−1
]−1 for no damping, energy dissipation

and curvature damping;
ω ρs− jη

j ρ0 c0

[
2

KmemR0

J1(KmemR0)
J0(KmemR0)

−1
]−1

for viscous damping,

(2.46)

where ρ0 is the density of air, c0 is the speed of sound in air and ρ0 c0 denotes the character-

istic impedance of air.

If the membrane is adjacent to an air cavity with a depth of D backed by a rigid wall,

the combination of the membrane, the cavity and the rigid wall is defined as an membrane

absorber. The total impedance of this absorber is given by

zall = zmem− j cot
ωD
c0

. (2.47)

Therefore, the sound absorption coefficient of the membrane absorber is expressed as (Maa

1975)

α =
4Re(zall)

(1+Re(zall))2 + Im(zall)2 , (2.48)

where Re denotes the real part of the impedance which is also known as resistance and Im

denotes the imaginary part of the impedance which is also known as reactance.
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Figure 2.4: Effects of the different expression of Kmem on the sound absorption coefficients
of a circular membrane. (Surface density ρs = 0.485kg/m2; tension T = 100N/m; internal

damping ratio η = 0.01.) Dashed lines and dotted lines represent two conventional
expressions for K2

mem = ω2 ρs− jω η

T (viscous damping) and K2
mem = ω2 ρs

T (1+ jη) (energy

dissipation), respectively. Dashed dotted lines represent K2
mem = ω2ρs

T+2 jωη
calculated by the

presented model for curvature damping.

An example is used here to investigate the effect of the different damping expressions

on the sound absorption of the combined membrane-type absorber. Assuming that a circular

membrane with a radius of R0 = 50mm and surface density ρs = 0.485kg/m2 is stretched

under a constant tension of T = 100N/m and the internal damping is η = 0.01, the sound

absorption coefficients of this membrane with cavity depth of D= 25mm are shown in Figure

2.4. Obviously, the predicted results using Equation (2.46) are significantly different for the

two differing expressions in Equation (2.46), which implies that the various representations

of the damping effect have had a significant impact on the calculated values of the sound

absorption of the membrane. The accuracy of these expressions is investigated in Section

2.3.1.

Note that in Figure 2.4, the values of the damping η were identical, although the damping

expressions represent different physical mechanisms, namely, the viscous damping, the en-

ergy dissipation and the membrane curvature. When the viscous damping is considered, the

real part of the acoustic impedance is close to zero, leading to a sound absorption coefficient
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close to zero. When energy dissipation damping is considered, multiple sound absorbing

peaks are observed due to the small damping ratio. Similar multiple sound absorbing peaks

have been observed in theoretical sound absorption coefficients of MPPs provided by Song

& Bolton (2002). The presented model for curvature damping demonstrates a smooth curve

which is similar to the sound absorption curves typically obtained for micro-perforated pan-

els and MPMs, implying that the presented damping expression based on curvature damping

is realistic.

2.2.4 Acoustic impedance and sound transmission of a rectangular im-

pervious membrane in a diffuse field
The sound absorption of a circular membrane has been investigated in Section 2.2.3. This

section aims to investigate the acoustic impedance and sound transmission of a rectangular

impervious membrane in a diffuse field. The modelling is firstly focussed on normally-

incident sound waves in Section 2.2.4.1, and the corresponding sound transmission loss

(STL) expression is developed in Section 2.2.4.2. By considering the oblique incidence

angle, θ , the model with normally-incident sound waves is extended to a diffuse field in

Section 2.2.4.3.

2.2.4.1 Motion equation of rectangular membrane vibration in the Cartesian coordin-

ate system

In Section 2.2.3, the motion equation of the free vibration of a single layer circular imper-

vious membrane under constant tension and damping was solved in the polar coordinate

system. The prediction method for the normalised acoustic impedance and sound absorption

is developed for a plane wave normally incident on the membrane surface.

pt

pi

pr

Frame

Membrane

ly

lx

Figure 2.5: A rectangular membrane of dimension lx ly stretched on a frame and excited by
incident sound pressure pi, with reflected pressure pr and transmitted pressure pt .

This section focusses on the sound transmission of a rectangular impervious membrane

28



2.2. Analytical modelling of the acoustic properties of single layer impervious membranes
under tension

in a diffuse field. The motion equation is solved in a Cartesian coordinate system. Assuming

that plane waves are normally incident on the membrane surface, the membrane is stretched

on a rectangular frame with a cross section area of lx ly, where lx is the width of the rectangu-

lar membrane and ly is the height of the rectangular membrane. As shown in Figure 2.5, the

membrane is excited by the normally incident sound pi. Some of the sound is reflected back

with pressure pr, and some is transmitted to the other side of the membrane, with pressure

pt . The vibration motion of the membrane is expressed by Equation (2.7). Substituting the

Laplace operator in the Cartesian coordinate system yields

∇
2
ξ (x,y)+K2

mem ξ (x,y) = 0,

∂ 2ξ (x,y)
∂x2 +

∂ 2ξ (x,y)
∂y2 +K2

mem ξ (x,y) = 0.
(2.49)

The displacement function ξ (x,y) is related to the x and y dimensions. Assuming that each

dimension is independent of the other, the function ξ (x,y) may be rewritten as

ξ (x,y) = X(x)Y (y), (2.50)

where X(x) denotes the function of the membrane displacement only related to the x co-

ordinate and Y (y) denotes that only related to the y coordinate. Substituting Equation (2.50)

into Equation (2.49) yields

Y (y)
∂ 2X(x)

∂x2 +X(x)
∂ 2Y (y)

∂y2 +K2
mem X(x)Y (y) = 0. (2.51)

Letting

K2
mem,x +K2

mem,y = K2
mem, (2.52)

where Kmem,x denotes the x-component of Kmem and Kmem,y denotes the y-component of

Kmem, then Equation (2.51) becomes

Y (y)
∂ 2X(x)

∂x2 +X(x)
∂ 2Y (y)

∂y2 +
(
K2

mem,x +K2
mem,y

)
X(x)Y (y) = 0,

Y (y)
[

∂ 2X(x)
∂x2 +K2

mem,x X(x)
]
+X(x)

[
∂ 2Y (y)

∂y2 +K2
mem,yY (y)

]
= 0.

(2.53)

To satisfy Equation (2.53), the two terms on the left-hand side must be equal to zero. Hence,

29



2.2. Analytical modelling of the acoustic properties of single layer impervious membranes
under tension

it is known that

∂ 2X(x)
∂x2 +K2

mem,x X(x) = 0, (2.54a)

∂ 2Y (y)
∂y2 +K2

mem,yY (y) = 0. (2.54b)

The solutions of Equation (2.54) are given by

X(x) = Ax sin(Kmem,xx)+Bx cos(Kmem,xx), (2.55a)

Y (y) = Ay sin(Kmem,yy)+By cos(Kmem,yy). (2.55b)

Applying the boundary condition

X(x = 0) = 0, (2.56a)

X(x = lx) = 0, (2.56b)

Y (y = 0) = 0, (2.56c)

Y (y = ly) = 0, (2.56d)

the values of the constants in Equation (2.55) are obtained as

Bx = 0, (2.57a)

By = 0, (2.57b)

and

sin(Kmem,xlx) = 0, (2.58a)

sin(Kmem,yly) = 0, (2.58b)

where

Kmem,x =
nx π

lx
, nx = 1,2,3, · · · (2.59a)

Kmem,y =
ny π

ly
, ny = 1,2,3, · · · (2.59b)

Equation (2.55) is simplified by the sum of the response of each mode is given by

X(x) = Ax sin(
nx π

lx
x), (2.60a)

Y (y) = Ay sin(
ny π

ly
y). (2.60b)
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Based on the modal analysis method, the solution of Equation (2.49) is expressed as

ξ (x,y) =
Nx

∑
nx=1

Ny

∑
ny=1

AnxAny sin(
nx π

lx
x)sin(

ny π

ly
y), (2.61)

where nx is the x-axis modal index, Nx is the maximum mode number of nx, ny is the y-axis

modal index and Ny is the maximum mode number of ny. Equation (2.61) can be rewritten

as

ξ (x,y) =
N

∑
n=1

An ξn(x,y), (2.62)

where

ξn(x,y) = sin(
nx π

lx
x)sin(

ny π

ly
y), n = Ny(nx−1)+ny. (2.63)

and N = Nx×Ny. Note that in Equation (2.62), the variable An is unknown. The determ-

ination of the An values depends on the coupling between the acoustic pressure and the

membrane vibration motion, which is examined in Section 2.2.4.2.

2.2.4.2 Coupling between acoustic pressure and membrane vibration and sound trans-

mission loss with normally incident sound

With the displacement of the membrane vibration expressed by Equation (2.62), the vibration

velocity of the membrane is obtained as

v(x,y) =
N

∑
n=1

jωAn ξn(x,y). (2.64)

Due to the continuity of the normal particle velocity on the two sides of the membrane, the

boundary conditions on each side are given by

pi− pr

ρ0 c0
= v(x,y), (2.65a)

pt

ρ0 c0
= v(x,y). (2.65b)

Equation (2.65) may be rewritten as

pr = pi−ρ0 c0 v(x,y), (2.66a)

pt = ρ0 c0 v(x,y). (2.66b)

Therefore, the sound pressure difference applied on the membrane surface is expressed as

∆p = pi + pr− pt = 2pi−2ρ0 c0 v(x,y) = 2pi−2ρ0 c0 jωξ (x,y). (2.67)
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When the membrane is excited by the incident sound pressure, the motion of the mem-

brane vibration and the sound field are coupled. Hence, the membrane motion equation when

forced by ∆p is expressed as

(T +2 jωη)∇2
ξ (x,y)+ω

2
ρsξ (x,y) =−∆p =−2pi +2ρ0 c0 jωξ (x,y). (2.68)

Equation (2.68) is simplified as

(T +2 jωη)∇2
ξ (x,y)+

(
ω

2
ρs−2ρ0 c0 jω

)
ξ (x,y) =−2pi. (2.69)

Substituting Equation (2.62) into Equation (2.69) yields

(T +2 jωη)∇2
N

∑
n=1

An ξn(x,y)+
(
ω

2
ρs−2ρ0 c0 jω

) N

∑
n=1

An ξn(x,y) =−2pi. (2.70)

Letting

ξm(x,y) = sin(
nx π

lx
x)sin(

ny π

ly
y), m = Ny(nx−1)+ny, (2.71)

multiplying each side of Equation (2.70) by ξm(x,y) and integrating over the membrane

surface area gives

(T +2 jωη)
∫ lx

0

∫ ly

0
ξm(x,y)∇2

N

∑
n=1

An ξn(x,y)dxdy+

(
ω

2
ρs−2ρ0 c0 jω

)∫ lx

0

∫ ly

0
ξm(x,y)

N

∑
n=1

An ξn(x,y)dxdy

=−2pi

∫ lx

0

∫ ly

0
ξm(x,y)dxdy.

(2.72)

Equation (2.70) is thus changed from one equation to a group of N equations given by Equa-

tion (2.72) which can be considered as a system of equations with respect to An and hence

can be solved using matrices. By solving these equations, the variable An is obtained with

respect to pi. Although the value of pi is unknown, the sound transmission loss (STL) is

defined as

ST L = 20× log10

(
1
τ

)
, (2.73)

where

τ =

∣∣∣∣
pt

pi

∣∣∣∣ . (2.74)
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Equation (2.72) can be considered in matrix form as an N×1 vector

A =




A1

A2

A3
...

AN




. (2.75)

The factor
∫ lx

0
∫ ly

0 ξm(x,y)∇2
∑

N
n=1 An ξn(x,y)dxdy in the left-hand side of Equation (2.72) is

rewritten as
∫ lx

0

∫ ly

0
ξm(x,y)∇2

N

∑
n=1

An ξn(x,y)dxdy

=
∫ lx

0

∫ ly

0
ξm(x,y)

N

∑
n=1

An

[
−
(

nx π

lx

)2

−
(

ny π

ly

)2
]

ξn(x,y)dxdy.

(2.76)

Letting

Cn =−
(

nx π

lx

)2

−
(

ny π

ly

)2

, n = Ny(nx−1)+ny, (2.77)

yields an N×1 vector

C =




C1

C2
...

Cn



. (2.78)

Assuming that

ψψψ111 =


C1
∫ lx

0
∫ ly

0 ξ1(x,y)ξ1(x,y)dxdy C2
∫ lx

0
∫ ly

0 ξ1(x,y)ξ2(x,y)dxdy . . . Cn
∫ lx

0
∫ ly

0 ξ1(x,y)ξn(x,y)dxdy

C1
∫ lx

0
∫ ly

0 ξ2(x,y)ξ1(x,y)dxdy C2
∫ lx

0
∫ ly

0 ξ2(x,y)ξ2(x,y)dxdy . . . Cn
∫ lx

0
∫ ly

0 ξ2(x,y)ξn(x,y)dxdy
...

... . . . ...

C1
∫ lx

0
∫ ly

0 ξm(x,y)ξ1(x,y)dxdy C2
∫ lx

0
∫ ly

0 ξm(x,y)ξ2(x,y)dxdy . . . Cn
∫ lx

0
∫ ly

0 ξm(x,y)ξn(x,y)dxdy



,

(2.79)
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then Equation (2.80) is simplified to
∫ lx

0

∫ ly

0
ξm(x,y)∇2

N

∑
n=1

An ξn(x,y)dxdy =
∫ lx

0

∫ ly

0
ξm(x,y)

N

∑
n=1

An

[
−
(

nx π

lx

)2

−
(

ny π

ly

)2
]

ξn(x,y)dxdy

= ψψψ111×A.

(2.80)

Similarly, the factor
∫ lx

0
∫ ly

0 ξm(x,y)∑
N
n=1 An ξn(x,y)dxdy is rewritten as

∫ lx

0

∫ ly

0
ξm(x,y)

N

∑
n=1

An ξn(x,y)dxdy = ψψψ222×A, (2.81)

where

ψψψ222 =




∫ lx
0
∫ ly

0 ξ1(x,y)ξ1(x,y)dxdy
∫ lx

0
∫ ly

0 ξ1(x,y)ξ2(x,y)dxdy . . .
∫ lx

0
∫ ly

0 ξ1(x,y)ξn(x,y)dxdy
∫ lx

0
∫ ly

0 ξ2(x,y)ξ1(x,y)dxdy
∫ lx

0
∫ ly

0 ξ2(x,y)ξ2(x,y)dxdy . . .
∫ lx

0
∫ ly

0 ξ2(x,y)ξn(x,y)dxdy
...

... . . . ...
∫ lx

0
∫ ly

0 ξm(x,y)ξ1(x,y)dxdy
∫ lx

0
∫ ly

0 ξm(x,y)ξ2(x,y)dxdy . . .
∫ lx

0
∫ ly

0 ξm(x,y)ξn(x,y)dxdy



.

(2.82)

The factor
∫ lx

0
∫ ly

0 ξm(x,y)dxdy in the right-hand side of Equation (2.72) is rewritten as

D =
∫ lx

0

∫ ly

0
ξm(x,y)dxdy =




∫ lx
0
∫ ly

0 ξ1(x,y)dxdy
∫ lx

0
∫ ly

0 ξ2(x,y)dxdy
...

∫ lx
0
∫ ly

0 ξm(x,y)dxdy



. (2.83)

Substituting Equations (2.80), (2.81) and (2.83) into Equation (2.72) yields the motion equa-

tion of the forced vibration of the membrane in matrix form, which is given by

[
(T +2 jωη)ψψψ111 +

(
ω

2
ρs−2ρ0 c0 jω

)
ψψψ222
]

A =−2piD. (2.84)

Therefore, the vector A is obtained as

A =
−2piD

(T +2 jωη)ψψψ111 +(ω2ρs−2ρ0 c0 jω)ψψψ222
. (2.85)

By substituting the vector A into Equation (2.62), integrating over the membrane area

and dividing by the membrane area, the average displacement of the membrane is given by

ξ̄ =
∑

N
n=1 An

∫ lx
0
∫ ly

0 ξn(x,y)dxdy
lxly

=
DDDTAAA
lxly

. (2.86)
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Hence, the average velocity v̄ is expressed as

v̄ =
∑

N
n=1 jω An

∫ lx
0
∫ ly

0 ξn(x,y)dxdy
lxly

=
jω
lxly

DDDTAAA, (2.87)

where DDDT is the transpose of vector DDD.

Based on the continuity of the normal particle velocity, the transmitted sound pressure pt

is obtained by substituting Equation (2.87) into Equation (2.66b), which is given by

pt = ρ0 c0 v̄ =
jωρ0 c0

lxly
DDDTAAA. (2.88)

Substituting Equations (2.85) and (2.88) into Equation (2.74) gives the expression of the

normal sound transmission coefficient

τ =

∣∣∣∣
pt

pi

∣∣∣∣=

∣∣∣∣∣∣

jωρ0 c0
lxly

DDDTAAA

pi

∣∣∣∣∣∣

=

∣∣∣∣
jωρ0 c0

lxly
DDDT −2

(T +2 jωη)ψψψ111 +(ω2ρs−2ρ0 c0 jω)ψψψ222
DDD
∣∣∣∣ .

(2.89)

Note that the parameter pi is eliminated in Equation (2.89). Therefore, the normal incidence

STL is obtained by substituting Equation (2.89) into Equation (2.92). Equation (2.89) is in

the same form as the expression derived by Zhang et al. (2012) for the sound transmission

of meta-material membranes, except that no additional mass is attached on the membrane

surface in the analysis presented here.

Since Equation (2.72) is based on the proposed curvature damping model, Equation

(2.89) is the expression for the normal sound transmission coefficient based on curvature

damping. If the conventional damping models are considered, Equation (2.89) becomes

τ =

∣∣∣∣
jωρ0 c0

lxly
DDDT −2

T ψψψ111 +(ω2ρs− jωη−2ρ0 c0 jω)ψψψ222
DDD
∣∣∣∣ (2.90)

for the viscous damping model, and

τ =

∣∣∣∣
jωρ0 c0

lxly
DDDT −2

(T + jη)ψψψ111 +(ω2ρs−2ρ0 c0 jω)ψψψ222
DDD
∣∣∣∣ (2.91)

for the the complex tension model. Furthermore, the expression for the STL is given by

(Bies & Hansen 2009)

ST L = 20 log10

(
1
τ

)
. (2.92)
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2.2.4.3 Sound transmission loss in a diffuse field

In Section 2.2.4.2, the expressions for the transmission coefficient and STL with a normally-

incident sound field were derived. This section aims to investigate the sound transmission

of a rectangular impervious membrane in a diffuse field. The transmission coefficient in a

diffuse field is defined as (Fahy & Gardonio 2007)

τdiffuse =

∫
θmax
0 τ(θ)sin(θ)cos(θ)dθ
∫

θmax
0 sin(θ)cos(θ)dθ

, (2.93)

where θ is the incidence angle of pi and θmax is the upper limit of θ . The value of θmax

is 90◦ theoretically, however, it is dependent on the experimental results in practice. It is

commonly accepted that θmax = 78◦. The corresponding STL of Equation (2.93) is the

STL in a diffuse field denoted by ST Ldiffuse. Moreover, Bies & Hansen (2009) provided

an approximate equation described as “the field incidence transmission loss”, which is given

by

ST Lfield = ST L−5.5, (2.94)

where the subtrahend may vary. Bies & Hansen (2009) mentioned that a value of 5.5 is

acceptable for predictions in 1/3 octave bands, and 4 should be used for octave band pre-

dictions. However, Fahy & Gardonio (2007) instead used 5 for 1/3 octave. Hence, the

subtrahend is an estimated value and depends on the experimental configuration.

pt

pi

pr

Frame

Membrane

ly

lx

Normal 

direction

Figure 2.6: A rectangular membrane stretched on a frame and excited by a sound pressure
with an obliquely incidence angle of θ .

To calculate the STL in a diffuse field, it is necessary to derive the expression for the

transmission coefficient with oblique sound incidence. When a rectangular impervious mem-

brane is excited by incident sound with an angle of θ , as shown in Figure 2.6, the boundary

conditions due to the continuity of the particle velocity in the normal direction are expressed
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as

(pi− pr)cos(θ)
ρ0 c0

= v(x,y), (2.95a)

pt cos(θ)
ρ0 c0

= v(x,y). (2.95b)

Note that v(x,y) is the vibration velocity of the membrane, hence it is also equal to the particle

velocity in the normal direction. Therefore, by rearranging Equation (2.95), the following is

obtained

pr = pi−
ρ0 c0v(x,y)

cos(θ)
, (2.96)

and

pt =
ρ0 c0 v(x,y)

cos(θ)
. (2.97)

Consequently, Equation (2.67) becomes

∆p = pi + pr− pt = 2pi−
2ρ0 c0 jω

cos(θ)
ξ (x,y), (2.98)

and the motion equation is expressed by

(T +2 jωη)∇2
ξ (x,y)+

[
ω

2
ρs−

2ρ0 c0 jω
cos(θ)

]
ξ (x,y) =−2pi. (2.99)

Note that Equation (2.99) is similar to Equation (2.69). Moreover, if θ = 0◦ then cos(θ) = 1,

and Equation (2.99) is identical to Equation (2.69). The similarity between Equations (2.99)

and (2.69) implies that the former can be solved following the same strategy used when

solving the latter. Therefore, the sound transmission coefficient with oblique incidence angle

θ is obtained as

τ =

∣∣∣∣∣∣
jωρ0 c0

lxly cos(θ)
DDDT −2

(T +2 jωη)ψψψ111 +
[
ω2ρs− 2ρ0 c0 jω

cos(θ)

]
ψψψ222

DDD

∣∣∣∣∣∣
. (2.100)

Similarly, if θ = 0◦ and cos(θ) = 1, Equation (2.100) is identical to Equation (2.74), which

implies the consistency of the derivation. By substituting Equation (2.100) into Equations

(2.93) and (2.92), the STL in a diffuse field, ST Ldiffuse, is obtained.

Note that this derivation is based on the proposed damping expression due to membrane
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2.2. Analytical modelling of the acoustic properties of single layer impervious membranes
under tension

curvature. If the conventional damping models are considered, Equation (2.100) becomes

τ =

∣∣∣∣∣∣
jωρ0 c0

lxly cos(θ)
DDDT −2

T ψψψ111 +
[
ω2ρs− jωη− 2ρ0 c0 jω

cos(θ)

]
ψψψ222

DDD

∣∣∣∣∣∣
(2.101)

for the viscous damping model, and

τ =

∣∣∣∣∣∣
jωρ0 c0

lxly cos(θ)
DDDT −2

(T + jη)ψψψ111 +
[
ω2ρs− 2ρ0 c0 jω

cos(θ)

]
ψψψ222

DDD

∣∣∣∣∣∣
(2.102)

for the the energy dissipation damping model.
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STL with curvature damping;T =100N/m;η =0.01

STL with viscous damping;T =100N/m;η =0.01

STL with energy dissipation damping;T =100N/m;η =0.01

STL with normal incidence;T =100N/m;η =0.01

STL with field incidence;T =100N/m;η =0.01

Figure 2.7: Effects of the different damping expressions η on the one-third octave STL of a
rectangular membrane. (Surface density ρs = 0.485kg/m2; tension T = 100N/m; internal
damping ratio η = 0.01; lx = 1m; ly = 1.5m; N = M = 150, θmax = 85◦). The dashed line
represents the STL in a diffuse field calculated using Equation (2.100). The dotted line and
dashed-dotted lines represent the predictions for viscous damping and energy dissipation
damping given by Equations (2.101) and (2.102), respectively. The thick solid line is the

prediction result for curvature damping with a normally incident plane wave. The thin solid
line is that for the field incidence for curvature damping using Equation (2.94).

Figure 2.7 shows a comparison of the predictions for the STL of a single layer membrane

in a diffuse field using Equations (2.100), (2.101) and (2.102). The parameters used for the

sample membrane are identical with that used in Section 2.2.4.2. The results predicted by

the curvature damping model, viscous damping model and energy dissipation model are

very similar because Equations (2.100), (2.101) and (2.102) are very similar except for the

different expressions for damping. The influence of the damping ratio is relatively small

38



2.3. Experimental validation

compared to the membrane tension and mass, and hence has a small impact on the predicted

STLs.

In Figure 2.7, the thick solid line shows the STL with a normally incident plane wave

predicted by Equation (2.89). The predicted STL in a diffuse field is close to that of the

normal incidence model in the low frequency range from 50 Hz to 125 Hz. However, the

former is lower than the latter from 125 Hz to 10 kHz. This indicates that the oblique

incidence of sound waves affects the STL in the high frequency range more significantly

than it does in the low frequency range. The thin solid line is the STL with field incidence

which is expressed by Equation (2.94). It agrees with the predicted STLs in a diffuse field

very well at the frequencies above 3150 Hz, however, in the low frequency range below 315

Hz, its values were negative. This is because Equation (2.94) is only valid at the frequencies

where f > ρ0c0
ρs

(Bies & Hansen 2009). In the case shown in Figure 2.7, f > ρ0c0
ρs

= 858 Hz,

implying that the field incidence transmission loss is expected to be below 858 Hz.

2.3 Experimental validation
The analytical models for the sound absorption of a circular impervious membrane with a

normally incident plane wave and the sound transmission of a rectangular impervious mem-

brane in a diffuse field were presented in Section 2.2. This section presents the experimental

validation for these developed models. The details of the experiments are presented in Sec-

tions 2.3.1 and 2.3.2.

2.3.1 Sound absorption coefficient of single layer impervious membranes
To validate the analytical model for the sound absorption of a circular impervious mem-

brane, sound absorption experiments were conducted in an impedance tube with a normally-

incident plane wave. The radius of the impedance tube is R0 = 50mm. Two circular mem-

brane samples with their parameters shown in Table 2.2 were tested. Figure 2.8 shows photo-

graphs of the samples. The sound absorption coefficient of each sample was measured with

two cavity depths of D = 25mm and D = 50mm. The measurement frequency range was

from 200 Hz to 1600 Hz. The two microphone transfer function method (as shown in Figure

2.9) was used to obtain the sound absorption coefficient (Chung & Blaser 1980a). Based on
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2.3. Experimental validation

this method, the sound absorption coefficient can be estimated by

α = 1−
∣∣∣∣
H12− e− jk0s

e jk0s−H12
e j2k0l1

∣∣∣∣
2

(2.103)

where H12 is the transfer function between the measured sound pressure at microphone 1

and 2, l1 and l2 are the distances from each microphone to the MPM surface, and s= l1− l2

is the distance between the microphones.
Table 2.2: Parameters of the impervious membranes.

Membrane number Material Surface density (kg/m2) Thickness (mm)
1 PVC 0.4850 0.42
2 PVC 0.9315 0.71

100 mm
100 mm

Figure 2.8: Photographs of two membrane samples used for sound absorption experiments.

Impedance tube

Loudspeaker
Sample

Rigid backing 

wall

Air cavity

Microphones
1 2

D

24 mm

56 mm1090 mm

 100 mmϕ

Figure 2.9: Measurement of the sound absorption coefficient using the two microphone
transfer function method in an impedance tube.

Note that the values of the tension T and the internal damping factor η are unable to

be measured directly. Hence the equivalent values of T and η used in the analytical model
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have been obtained by fitting the measured data to the prediction using the Matlab optimisa-

tion toolbox with the constraints (Waltz et al. 2006) of positive tension and damping ratio.

Moreover, the damping ratio is usually less than 0.05 in practice. The constraint of η for the

optimisation is extended from zero to one to find the global optimised η . Comparison of the

measured data to the predicted data using the conventional and the proposed expressions for

the internal damping factor is shown in Figures 2.10 to 2.13.

To assess the accuracy of the three prediction models for membrane damping, the coeffi-

cient of determination, R2
determination, for each model is defined as

R2
determination = 1−

Nfreq

∑
nfreq=1

(
αexperiment−αprediction

)2

Nfreq

∑
nfreq=1

(
αexperiment−αexperiment

)2
, (2.104)

where nfreq denotes the index of the measured frequency, Nfreq denotes the total number

of measured frequencies, αprediction denotes the predicted sound absorption coefficient and

αexperiment denotes the measured sound absorption coefficient. As R2
determination approaches

unity, the fidelity of the model increases.
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Experimental results

K2
mem = ω2

ρs−jω η

T
, T =102N/m,

η =1,R2
determination =-0.128

T = T (1 + jη), T =182N/m,
η =0.326,R2

determination =0.905
Proposed prediction,T =178N/m,
η =0.0122,R2

determination =0.909

Figure 2.10: Normal incidence sound absorption coefficients of Membrane 1 for
D = 25mm.

For all the membrane samples, the R2
determination of the presented model is the closest

to unity amongst the three prediction methods. Hence, the presented model provides the
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Experimental results

K2
mem = ω2

ρs−jω η

T
, T =101N/m,

η =1,R2
determination =-0.0294

T = T (1 + jη), T =81.1N/m,
η =0.154,R2

determination =0.69
Proposed prediction,T =135N/m,
η =0.00731,R2

determination =0.704

Figure 2.11: Normal incidence sound absorption coefficients of Membrane 2 for
D = 25mm.
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Experimental results

K2
mem = ω2

ρs−jω η

T
, T =99.1N/m,

η =1,R2
determination =-0.155

T = T (1 + jη), T =118N/m,
η =0.311,R2

determination =0.828
Proposed prediction,T =118N/m,
η =0.0107,R2

determination =0.843

Figure 2.12: Normal incidence sound absorption coefficients of Membrane 1 for
D = 50mm.

best agreement with the experimental results and is suitable for the prediction of the sound

absorption of impervious membranes.

The values of R2
determination using the viscous damping model were negative, implying the

inaccuracy of this model. The dashed curves represent the predicted sound absorption coef-

ficients using the viscous damping method. Oscillatory sound absorption peaks are shown
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Experimental results

K2
mem = ω2

ρs−jω η

T
, T =96.5N/m,

η =1,R2
determination =-0.23

T = T (1 + jη), T =491N/m,
η =0.717,R2

determination =0.673
Proposed prediction,T =108N/m,
η =0.00703,R2

determination =0.727

Figure 2.13: Normal incidence sound absorption coefficients of Membrane 2 for
D = 50mm.

on the curves due to the oscillation of its corresponding K2
mem. Similar oscillatory sound

absorption peaks were observed in Figure 2.4 and have been presented by Song & Bolton

(2002).

Although the predictions using the complex tension T (1+ jη) representing energy dis-

sipation damping show reasonable agreement with the measured results, it is noticed that

its R2
determination is lower than that of the proposed model. Moreover, the damping ratio is

usually less than 0.05 in practice. However, the optimal damping ratios obtained from the

optimisation using the complex tension T (1+ jη) model are 0.326 and 0.311 for Membrane

1 with cavity depths of 25 mm and 50 mm, and 0.154 and 0.717 for Membrane 2 with cavity

depths of 25 mm and 50 mm. These values for damping appear to be unrealistic. This may

also imply that the energy dissipation model is not realistic for the membranes used in this

thesis.

In this section, the proposed model for the sound absorption prediction of a circular

impervious membrane is validated by experiments. The conventional expressions for the

damping factor are compared with the proposed model and the experimental results. The

comparison indicates that the proposed model provides the best agreement with the meas-

ured sound absorption coefficients among the models investigated. The optimised tension

and damping ratio using the proposed model appear to be reasonable. Therefore, the pro-
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posed model can be used as a tool to predict the sound absorption properties of single layer

impervious membranes. The internal damping of the membrane structure under constant

tension is most likely ascribed to the membrane curvature.

Furthermore, the first natural frequency of a circular impervious membrane is given by

Kinsler et al. (1999)

fnatural =
2.405

√
T
ρs

2πR0
, (2.105)

where 2.405 is the first positive root of J0 = 0. The first natural frequencies of the circular

membrane samples used in Figures 2.10, 2.11, 2.12, and 2.13 are shown in Table 2.3. It is
Table 2.3: Natural frequencies of the circular membrane samples used in Figures 2.10, 2.11,

2.12, and 2.13.
Figure number T (N/m) ρs (kg/m2) D (mm) First natural frequency
Figure 2.10 178 0.485 25 fnatural =146 Hz
Figure 2.11 135 0.9315 25 fnatural =92 Hz
Figure 2.12 118 0.485 50 fnatural =119 Hz
Figure 2.13 108 0.9315 50 fnatural =82 Hz

demonstrated that all the first natural frequencies of the membrane samples are lower than

the lowest measured frequency (200 Hz), and hence the membrane samples are in the mass

controlled region of the fundamental mode. However, Equations (2.46) and (2.48) imply that

the sound absorption of the circular membranes is dependent on the real and imaginary parts

of the acoustic impedance, and hence is related to the tension and internal damping, as well

as the mass.

2.3.2 Diffuse field sound trasmission loss of single layer impervious mem-

branes
Sound transmission losses of two types of impervious membrane were measured to validate

the model proposed in Section 2.2.4.3. The measurement was conducted in the two rever-

beration chambers at the University of Adelaide of dimensions listed in Table 2.4. The para-

meters of the membrane samples are shown in Table 2.5. The sound pressure levels (SPLs)

of the source room and the receiver room were spatially and temporally averaged over three

minutes at the centre frequencies of the one-third octave bands between 50 Hz and 10 kHz.

The tension constant T and the damping ratio η are unable to be measured directly. The

values of T and η used in the analytical model were obtained by fitting the measured data to
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Table 2.4: Dimensions of the reverberation chambers used to measure the diffuse field STL.
Chambers Source chamber Receiver chamber Test window
Length (m) 6.085 6.840 N/A
Width (m) 5.175 5.565 1.005
Height (m) 3.355 4.720 1.510
Surface area (m2) 135.5 193.2 1.52
Volume (m3) 105.6 179.7 N/A

Table 2.5: Parameters of the impervious membranes.
Membrane number Material Surface density (kg/m2) Thickness (mm)
1 (same as that used
in Section 2.3.1)

PVC 0.4850 0.42

3 Rubber 0.9848 0.81

the prediction using the Matlab optimisation toolbox (Waltz et al. 2006).
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Experimental result
STL in diffuse field;T =119N/m;η =9.05e-08
STL with normal incidence;T =119N/m;η =9.05e-08

Figure 2.14: STL of Membrane 1 in a diffuse field calculated by the presented model using
Equation (2.100).

In the prediction, the maximum membrane model indices of eight for the width and

twelve for the length were used. The upper limit for the incidence angle θmax is 85◦. The

predicted results are compared with the measured results in Figures 2.14 and 2.15.

In Figure 2.14, the predicted diffuse field STL of Membrane 1 agrees well with the meas-

ured STL above 315Hz, which implies the accuracy of the proposed model. However, in the

low frequency range below 315Hz, the measured data differs from the predicted data. Similar

disagreement between the predicted and measured data is seen in Figure 2.15 for Membrane

3. The reason for the disagreement is due to the chamber properties. The sound fields in
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Experimental result
STL in diffuse field;T =148N/m;η =0.000188
STL with normal incidence;T =148N/m;η =0.000188

Figure 2.15: STL of Membrane 3 in a diffuse field calculated using Equation (2.100).

both the source chamber and the receiver chamber are assumed to be uniform. However,

according to ISO 140.4 (ISO140.4 2006), the sound field is non-uniform in the frequency

range below 400 Hz, because fewer modes are excited in the chambers and the wave length

is significantly longer in this frequency range than in the middle and high frequency range.

These non-uniform sound fields lead to inaccuracy of the measured STL in the low frequency

range.

In Figure 2.15, the predicted STL of Membrane 3 shows good agreement with the meas-

ured STL from 200 Hz to 4 kHz. Hence, the accuracy of the proposed model has been

verified. However, the measured STL is lower than the predicted STL from 4 kHz to 10 kHz.

This overestimation in the high frequency range has also been observed by Sewell (1970).

Although his research examined the STL of an infinite-sized limp lead panel and the upper

limit of the measured frequency range was 3200 Hz, he investigated the effect of different

boundary conditions on the predicted STL theoretically and found experimentally that the

diffuse field STL of massive panels in the middle and high frequency range was related to

the edge condition. The predicted STL could hence differ from the experimental results de-

pending on edge condition, such as simply-supported edges or clamped edges. Hence, it is

possible that the overestimation of the presented model is due to the neglected edge effects.

With regard to Membrane 1, the edge effect may have an unobservable impact on the pre-
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dicted STL due to its light weight. The further consideration of edge effects is beyond the

scope of this thesis.

Note that the magnitude of the optimised damping ratio η is 10−8 for Membrane 1 and

10−5 for Membrane 3, both of which are close to zero. This implies that they would be

expected to have similar responses as they are both lightly damped. The natural frequency

of a rectangular impervious membrane is given by (Kinsler et al. 1999)

f (n,m) =

√
T
ρs

2

√(
n
lx

)2

+

(
m
ly

)2

. (2.106)

The first natural frequencies of the membrane samples listed in Table 2.6 are lower than the

lower limit of the measured frequency range (50 Hz). Hence, the membrane samples behave

in the mass controlled region of the fundamental mode in the measured frequency range

where the mass is the governing factor and the tension and damping are of less importance

than the mass. This also explains the similarity between the predicted results using the three

models in Figure 2.7.
Table 2.6: Natural frequencies of the circular membrane samples used in Figures 2.14 and

2.15.
Figure number T (N/m) ρs (kg/m2) First natural frequency
Figure 2.14 119 0.485 f (1,1) =9 Hz
Figure 2.15 148 0.9848 f (1,1) =7 Hz
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Measured STL of the test window
STL used for the correciton

Figure 2.16: Diffuse field STL of the test window without a sample present.
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It should be noted that all the measured STLs presented have been subtracted by a cor-

rection based on the STL of the test window. This is because, theoretically, the STL of an

open window is equal to zero, however in practice, for small apertures the STL is a small

finite value varying with frequency (Martin 2008). The effect could be significant at low

frequencies below 200 Hz, as shown in Figure 2.16 where the solid line with circular mark-

ers shows the measured STL of the test window used in this study. The measured STL of

the test window is extremely high at 50 Hz and around 5 dB from 63 Hz to 160 Hz. The

measured STL of the membrane samples can be considered to be the total STL due to the

acoustic properties of both the open window and the membrane samples. Assuming that the

membrane motion and the air motion of the open window are completely decoupled, the total

STL can be expressed as

ST Ltotal = 20× log10

(
pair,1

pi

pi

pt

pt

pair,2

)
= ST Lwindow +ST Lsample, (2.107)

where pair,1 and pair,2 denote the sound pressure on two surfaces of the test window. Hence,

the STL of the sample is given by

ST Lsample = ST Ltotal−ST Lwindow. (2.108)

In an attempt to eliminate the effect of the window on the measured STLs of the samples,

the measured STLs of the membranes were subtracted by the STL of the test window using

Equation (2.108). However, it was found that subtracting the STL of the test window leads

to an overestimation of the predicted results in the middle and high frequency range. In the

frequency range above 200 Hz, the predicted results agree with the STL of the membranes

better if the latter is not subtracted by the STL of the test window. Therefore, a modified

correction has been used for the STLs of the membranes which is equal to the STL of the

test window at low frequencies (below 200 Hz) and is zero at frequencies above 200 Hz, as

illustrated in Figure 2.16.
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2.4. Discussion on the effect of tension and damping on the sound absorption and sound
transmission of single layer impervious membranes

2.4 Discussion on the effect of tension and damping on the

sound absorption and sound transmission of single layer

impervious membranes
In Section 2.2, the effects of the tension and damping ratio on the sound absorption and trans-

mission of single layer impervious membranes have been studied theoretically. Based on the

theoretical investigation, it is presumed that the damping ratio affects the sound absorption

of the membranes significantly. However, for the STL results, the two membrane samples

were in the mass controlled region and their damping ratios were found to be close to zero

based on the optimisation approach used here. The mass has a more important impact on the

STLs than the tension and damping ratio.

There are several reasons which may contribute to the different significance of the damp-

ing ratio on the sound absorption and sound transmission of a single layer membrane. Firstly,

the sound absorption coefficients and the STLs in a diffuse field were measured in different

frequency ranges. It is known that the damping and tension mainly affect the acoustic prop-

erties of membranes in the low frequency range (Fahy & Gardonio 2007). The measurement

range of the sound absorption coefficients is from 200 Hz to 1600 Hz, which is in a rel-

atively low frequency range compared to the measurement range of the STL experiments

which were measured at the centre frequencies of the one-third octave bands from 50 Hz

to 10 kHz. Hence, the STL experiments show more characteristics in the middle and high

frequency ranges and due to inaccuracies with the STL measurement it is difficult for the

STL tests to reveal the damping effect in the low frequency range.

Additionally, the frequency resolution may also affect the observation of the damping

effects. The sound absorption coefficients were measured at each frequency from 200 Hz

to 1600 Hz. However, the STLs were measured at the centre frequencies of the one-third

octave bands from 50 Hz to 10 kHz, which means 24 sets of data were obtained to represent

the STLs over a large frequency range. Consequently, more details of the frequency response

can be observed in the sound absorption data than in the STL data.

Moreover, the scale of the samples for the sound absorption experiments and for the

STL experiments differ significantly, as well as the sound field in each experiment. As
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mentioned in Section 2.3.1, the circular membranes are 0.0079 m2 in area, whereas the

rectangular samples for the STL experiments were 1.52m2 in area, such that the boundary

conditions would be expected to have differing influences on the results. The sound field in

the sound absorption experiments was a plane wave travelling in a direction normal to the

samples. By contrast, the rectangular membranes were measured in reverberation chambers

where sound waves are randomly obliquely incident on the membrane surface. Hence, in the

sound absorption experiments, a small membrane was measured in a simple sound field. In

the STL experiments, a large membrane was measured in a complicated sound field. It is

reasonable to presume that the rectangular membrane had significantly more modes excited

than the circular membrane. Hence, its vibration motion was more complicated than that of

the circular membrane, as well as the sound fields related to its motion. The complexity of

the sound fields may make the STL measurements less accurate than the sound absorption

coefficient measurements.

2.5 Conclusions
In this chapter, the acoustic properties of single layer impervious membranes were invest-

igated. A new analytical model was proposed for the prediction of the sound absorption

and transmission of single layer impervious membranes under tension. Conventional mod-

els usually consider the damping arising from viscus damping or energy dissipation on the

membrane surface. However, the proposed model includes the damping due to the membrane

curvature. This model is developed by extending the two-dimensional string vibration model

to the three-dimensional membrane vibration model. Consequently, the motion equation for

the membrane vibration, considering the damping due to membrane curvature, is derived.

The proposed motion equation has been solved in the polar coordinate system for a circular

membrane and in the Cartesian coordinate system for a rectangular membrane.

In the polar coordinate system, the expressions for the sound absorption coefficient and

acoustic impedance of the circular membrane with a normally-incident plane wave have been

derived. The predicted results of the developed model have been compared with those from

the conventional models. It has been found that the different damping expressions affect the

predicted results significantly. Sound absorption experiments of two impervious membranes

have been conducted to validate the proposed model. The experimental results verify that
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the prediction using the proposed model based on membrane curvature damping shows the

best agreement with the experimental results among the investigated models.

In the Cartesian coordinate system, the rectangular membrane is assumed to be excited

by normally and obliquely incident sound waves. Based on the proposed motion equation

and the modal superposition method, the expressions for the sound transmission coefficient

and transmission loss are derived for normal incidence and in a diffuse field. The similarity

between the theoretical prediction of the proposed damping expression and the conventional

damping expressions implies that the damping effect on the sound transmission can be neg-

lected. This presumption and the proposed model for the sound transmission prediction have

been validated by the measured STLs of two impervious membranes in a diffuse field.

Comparing the solutions for the polar and Cartesian coordinate systems, it is found that

the damping due to the membrane curvature affects the sound absorption significantly, how-

ever, it is close to zero for the sound transmission prediction. It is known that the proposed

damping expression results from the membrane curvature, which mainly affects the acous-

tic properties in the low frequency range. Hence, the significance of the damping on sound

absorption and the damping being close to zero on sound transmission may be due to the

measurement frequency range, the sampling ratio, the scale of the samples and the complex-

ity of the sound field for the STL experiments. Furthermore, the approach of estimating the

sample tension and damping ratio from the measured results appears to be more accurate

using narrowband results in the low frequency range obtained in the impedance tube, com-

pared with using one-third octave band results obtained from STL measurements using two

adjacent reverberation chambers.

This chapter introduced a new damping expression due to membrane curvature for the

modelling of the acoustic properties of single layer impervious membranes. The proposed

model was validated by experiments. The findings presented in this chapter increase the

understanding of the tension and damping effects on the sound absorption and transmission

of impervious membranes. The proposed models are useful tools to design membrane-type

sound absorbers and noise barriers in practice. They are the foundation of the design of

combined membranes used as sound barriers, which will be investigated further in Chapters

6 and 7.
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Chapter 3

Sound absorption of micro-perforated mem-

branes

3.1 Introduction
As mentioned in Chapter 1, although pressurised double layer impervious membranes can be

used as noise barriers, their sound reduction is less effective than that of traditional massive

noise barriers. It is believed that inserting sound absorbing materials into the cavity of double

walled impervious membranes can enhance their sound transmission loss. Sound absorbing

materials typically consist of porous materials and micro perforated materials. In this thesis,

micro perforated membranes (MPMs) are utilised for their flexibility and light weight, as

well as their ability to fit between the impervious membranes when the structure is collapsed.

Therefore it is necessary to investigate the sound absorption of MPMs.

In this chapter, a literature review of the sound absorption of micro perforated materials

is presented in Section 3.1.1, followed by gaps resulting from the literature review and the

contribution of this thesis in Section 3.1.2. A new model for the prediction of the acoustic

impedance of MPMs is introduced in Section 3.2. To validate this model, sound absorption

experiments on MPMs are conducted and the experimental results are shown in Section 3.3.

This chapter is concluded in Section 3.4.

3.1.1 Literature review
Sound absorbing materials typically consist of two broad categories: porous materials and

micro perforated materials. Porous materials, such as mineral wool, foams, wood wool and

glass wool, can provide effective broadband sound absorption with low cost and hence have

been widely used in noise control projects. Numerous researchers have used such materials

to enhance the sound transmission loss through membrane structures. Vries (2011) inserted
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porous materials into the cavities of triple layer membrane structures. Experimental results

show that filling the cavities between the membranes with porous materials enhances the

sound insulation of the triple membrane structure. However, the porous materials need to

be sufficiently thick to maintain effective sound absorption. For example, the glass wool

used in Vries’s work (2011) was 200 mm thick. Hence, the thickness and mass of these

porous materials prevent their use in applications where limited thickness and light weight

are required, as is the case in this thesis.

Micro perforated panels (MPPs) have been used in noise control projects for decades as

an alternative to conventional porous materials. Micro perforated panels (MPPs) are thin

panels perforated with sub-millimetre sized holes. When backed with an air cavity and a ri-

gid wall, the MPP exhibits effective sound absorption, and this combined structure is called a

micro perforated absorber (MPA). Although its sound absorbing bandwidth is relatively nar-

row compared with porous materials of similar thickness, the MPA is favoured for its unique

properties. Unlike porous materials, MPPs are able to be used in hospitals and electronic

industries where particles must be avoided (Pfretzschner et al. 2006). If MPPs are made of

metal panels, they are capable of reducing noise inside the engines of cars and aircraft due

to their resistance to high temperature. In addition, the analytical model for the prediction

of the sound absorption ability of MPPs is well developed, which offers the opportunity to

design MPPs to control specific sources of noise (Maa 1998). However, MPPs are usually

made of thin metal or plastic panels which make them relatively massive. Traditional MPPs

are rigid and hence unsuitable to be inserted into membrane structures, which are of interest

in this thesis.

Similar to MPPs, micro perforated membranes (MPMs) are thin membranes which are

perforated, often with millions of holes of sub millimetre diameter. MPMs have significant

advantages over MPPs due to the flexibility of membranes and have been widely used in

architecture and noise control projects. The sound absorption of MPMs has been investigated

for many years. Kang & Fuchs (1999) found that MPMs can absorb sound effectively.

To predict the sound absorption properties of MPPs and MPMs, it is crucial to model their

acoustic impedance. The classical analytical model for the prediction of the sound absorption

and acoustic impedance of MPPs was developed by Maa (1975) and has been widely used

since that time. In recent years, Wang et al. (2010) investigated the sound absorption of an
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MPP backed by an irregular-shaped cavity based on Maa’s theory. Using the classical theory,

Liu & Herrin (2010) investigated partitioning the backing cavity of the MPA to enhance the

absorption of normally incident plane waves. When Ruiz et al. (2011) investigated the sound

absorption of multiple-layer MPPs, the acoustic impedance of each layer was obtained using

the classic theory. Based on Maa’s model, Park (2013) also analysed the combination of

a micro perforated panel and a Helmholtz resonator. Herdtle et al. (2013) extended Maa’s

theory for micro perforated materials with tapered holes. However, these studies are all based

on Maa’s classic model and neglect the effect of the panel vibration.

Maa’s classic model assumes the panel to be rigid and as a consequence the effect of

the panel vibration is neglected. However, additional sound absorbing peaks, which are not

observed in Maa’s model, are observed in the low frequency range of experimental results

(Toyoda et al. 2010). These unexpected peaks are evidence of the effect of panel vibration

on the acoustic impedance of the MPA. This effect could be very significant when the panel

is very light and thin, or if membranes are used in the form of a micro-perforated membrane

(MPM).

The effect of the panel/membrane vibration on the acoustic impedance of an MPP/MPM

can be investigated analytically by using the electric-acoustic analogy to combine the acous-

tic impedance due to the structural vibration with the acoustic impedance of the perforations,

as predicted by Maa’s model. Lee et al. (2005) investigated the acoustic impedance of a flex-

ible rectangular MPP, where the finite size of the panel was considered based on a modal

approach. Bravo et al. (2012) extended the method of Lee et al. (2005) to a circular MPP.

Note that all three of these methods used Maa’s model to calculate the acoustic impedance

due to the perforation.

In Maa’s (1975) classic model, the particle velocity at the hole wall boundary is assumed

to be zero. This assumption is valid only if the panel/membrane vibration is negligible. The

particles at the hole wall boundary adhere to the hole wall and their velocity can be assumed

to be equal to the panel/membrane vibration velocity. If the panel/membrane vibration is

significant, then assuming the particle velocity to be zero at the wall will lead to errors. The

acoustic impedance due to the perforation is not constant, as in Maa’s model, but varies de-

pending on the position of the hole on the panel/membrane surface. This boundary condition

and the spatially varying acoustic impedance of the MPM are previously unexplored.
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3.1.2 Gaps and contribution
Since the flexible boundary condition and the spatially varying acoustic impedance of MPMs

have not been investigated previously, this study aims to investigate the acoustic impedance

and sound absorption of a finite-sized circular MPM under tension both theoretically and

experimentally. A new boundary condition is introduced which assumes that the velocity of

the air particles at the hole wall boundary is equal to the vibration velocity of the membrane.

Based on this boundary condition, a new model for the accurate prediction of the acoustic

impedance of flexible MPMs is developed and validated by experimental results. The good

agreement between the predicted and measured results demonstrates the accuracy of the

presented model.

This model is proposed as a tool to design lightweight flexible MPMs. The presented

model is also helpful for the prediction and design of the acoustic properties of the combin-

ation of impervious membranes and MPMs used as noise barriers in this thesis. This study

extends the classic micro perforated theory and offers an accurate model for predicting the

performance of flexible finite-sized MPMs. This study provides increased understanding

of the coupling between the membrane vibration impedance and the impedance due to the

perforations of micro perforated membranes.

3.2 Analytical modelling of the sound absorption of micro

perforated membranes
In this section, an analytical model using the proposed boundary condition is derived. The

derivation starts in Section 3.2.1 with the motion equation of air particles in a small hole.

The solutions of this equation using the conventional and the proposed boundary condition

are compared theoretically in Sections 3.2.2 and 3.2.3. The expressions for the acoustic

impedance due to each of the perforations and for the combined MPM are also presented in

Sections 3.2.4 and 3.2.5. The sound absorption and total impedance of an MPM absorber, i.e,

an MPM backed with a rigid wall and an air cavity between them, are presented in Section

3.2.6.
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3.2.1 Motion equation of air particles in the perforations of MPMs
When a sound wave travels through the small perforations of a micro perforated material, the

small hole could be considered as a small tube, and hence this problem becomes the classic

acoustic propagation problem in a tube with circular cross section. When dealing with tubes

of relatively large diameters, viscous effects are usually neglected. However, when the tube

diameter is small, such as in the case of a micro perforated material, the viscous loss plays

an important part and is necessary in the analytical modelling.

Hole
v(r)

r0

r0

Panel/membrane

v

r

Figure 3.1: Particle velocity v(r) in a hole of the micro perforated membrane or panel as a
function of the distance, r, from the centre line.

Assuming that a sound wave travels through the small hole of a micro perforated mem-

brane or panel with a hole of radius r0, the particle velocity, v, is a function of the distance r

from the centre of the hole to the position of the specific air particle due to viscous effects, as

shown in Figure 3.1. This relationship between the particle velocity in the hole and the sound

pressure applied on the membrane or panel surface is governed by the motion equation of

the air particle (Maa 1975) in the polar coordinate system

ρ0
∂v(r, t)

∂ t
− µ

r
∂

∂ r

(
r

∂v(r, t)
∂ r

)
=

∆p
h
, (3.1)

where v(r, t) is the velocity of the air particle in the tube, t is the time parameter, µ denotes the

viscous ratio of air, ρ0 denotes the density of air, ∆p denotes the pressure difference applied

between the front and back surfaces of the membrane/panel and h denotes the thickness of

the membrane/panel, which is also the length of the hole. The velocity can be expressed as

v(r, t) = v(r)e jω t , (3.2)

where ω denotes the angular frequency and is equal to 2π f , where f is the frequency. The
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partial derivative of the particle velocity with respect to the time variable t is obtained as

∂v(r, t)
∂ t

= j ω v(r)e jω t = j ω v(r, t). (3.3)

Substituting Equation (3.3) into Equation (3.1) and eliminating e jω t gives

ρ0 j ω v(r)− µ

r

[
∂v(r)

∂ r
+ r

∂ 2v(r)
∂ r2

]
=

∆p
h
. (3.4)

Equation (3.4) may be simplified as

∂ 2v(r)
∂ r2 +

1
r

∂v(r)
∂ r
− ρ0 j ω

µ
v(r) =−∆p

µh
. (3.5)

Letting K2
air =−

ρ0 j ω

µ
, Equation (3.5) can be written as

(
∂ 2

∂ r2 +
1
r

∂

∂ r
+K2

air

)
v(r) =−∆p

µh
. (3.6)

Equation (3.6) is an inhomogeneous differential equation. Its solution is the sum of the

solution of its homogeneous differential equation and a particular solution.

The homogeneous differential equation of Equation (3.6) is given by
(

∂ 2

∂ r2 +
1
r

∂

∂ r
+K2

air

)
v(r) = 0. (3.7)

Letting x = Kair r, the differentials in Equation (3.7) are

∂v(r)
∂ r

=
∂v(x)

∂

(
x

Kair

) = Kair
∂v(x)

∂x
, (3.8)

and

∂ 2v(r)
∂ r2 =

∂

(
Kair

∂v(x)
∂x

)

∂

(
x

Kair

) = K2
air

∂ 2v(x)
∂x2 . (3.9)

Substituting Equations (3.8) and (3.9) into Equation (3.7) gives

K2
air

∂ 2v(x)
∂x2 +

Kair

r
∂v(x)

∂x
+K2

air v(x) = 0. (3.10)

Multiplying by r2, Equation (3.10) becomes

x2 ∂ 2v(x)
∂x2 + x

∂v(x)
∂x

+ x2 v(x) = 0. (3.11)

Equation (3.11) is the Bessel differential equation of the first kind and zero order and its

solution is the Bessel function of the first kind and zero order, which is given by

v(x) = AJ0(x) = AJ0(Kair r), (3.12)
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where J0 is the Bessel function of the first kind and zero order and the constant A can be

obtained by applying the appropriate boundary condition.

To calculate a particular solution of Equation (3.6), it is assumed that the particular solu-

tion is a constant. This particular solution is expressed as

vparticular(r) =−
∆p

h µ K2
air
. (3.13)

Therefore, the solution of Equation (3.6) is the sum of Equations (3.12) and (3.13), which is

given by

v(r) = AJ0(Kairr)−
∆p

µ hK2
air
. (3.14)

To obtain the value of the unknown constant A, boundary conditions need to be applied.

The conventional rigid boundary condition and the proposed flexible boundary condition are

discussed in Sections 3.2.2 and 3.2.3, respectively.

3.2.2 Solution under rigid boundary condition
To solve Equation (3.14), it is necessary to define the boundary condition. Due to the vis-

cosity effects, the air particles at the hole wall boundary adhere to the hole wall and their

velocities are equal to the vibration velocity of the material. Maa (1975, 1997) assumed

that the panel vibration due to the incident sound pressure is negligible and the panel can

therefore be considered to be rigid, i.e,

v(r = r0) = 0. (3.15)

Based on Maa’s assumption, the particle velocity as a function of radius is obtained as

v(r) =
−∆p

h µ K2
air

[
1− J0(Kairr)

J0(Kairr0)

]
. (3.16)

Integrating over the area of the hole and dividing by the hole area yields the average particle

velocity

v̄ =
∫ r0

0 v(r)2π r dr
π r2

0

=
∆p

j ω ρ0 h

[
1− 2

Kair r0

J1(Kair r0)

J0(Kair r0)

]
,

(3.17)

where J1 is the Bessel function of the first kind and first order.

Based on the definition of acoustic impedance, the acoustic impedance of the hole Zperforation
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is given by

Zperforation =
∆p
v̄

= j ω ρ0 h
[

1− 2
Kair r0

J1(Kair r0)

J0(Kair r0)

]−1

. (3.18)

Therefore, the normalised impedance due to the perforation is expressed as

zperforation =
Zperforation

ρ0 c0 δ
=

j ω ρ0 h
ρ0 c0 δ

[
1− 2

Kairr0

J1(Kairr0)

J0(Kairr0)

]−1

, (3.19)

where c0 is the sound speed in air and δ is the perforation ratio of the micro perforated

material.

When the thickness of the material h is not much larger than the hole diameter d, Maa

(1975) indicated that an end correction for the hole needs to be considered. The acoustic

resistance is increased by 1
2
√

2ρ0 ω σ , where σ denotes the dynamic viscosity in air and is

equal to σ = µ

ρ0
. To consider the sound radiation at the ends of the holes, Maa (1975) used

an equivalent thickness of the material h+ 0.85d for the reactance term. Considering the

end correction and eliminating the constants and the Bessel functions, Equation (3.19) is

simplified as (Maa 1997)

zMaa =
0.147

d2
h
δ

(√
1+

x2

32
+

√
2

8
xd
h

)
+0.294×10−3 j ω h

δ


1+

1√
9+ x2

2

+0.85
d
h


 ,

(3.20)

where x is called the perforation constant and is expressed as d
√

f
10 .

Equation (3.20) is widely used to calculate the acoustic impedance of micro perforated

panels and is reported to show accurate agreement with experimental results. It should be

noted that Equations (3.19) and (3.20) are both based on the assumption that the panel vi-

bration velocity is equal to zero, and hence are valid only when the material vibration is

negligible and the material can be assumed to be rigid.

3.2.3 Solution under flexible boundary condition
Equation (3.20) is accurate in the cases where the material vibration is neglected. However,

for thin micro perforated panels and lightweight micro perforated membranes, the vibration

of the structure is significant and needs to be considered. Therefore, the proposed boundary

condition between a moving membrane, to be considered henceforth, and the air in the hole
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can be expressed as

v(r = r0) = vmembrane, (3.21)

where vmembrane denotes the vibration velocity of the membrane and is given in Chapter 2.

Substituting Equation (3.21) into Equation (3.14) gives

A =
vmembrane +

∆p
µ hK2

air

J0(Kairr0)
. (3.22)

Substituting Equation (3.22) into Equation (3.14), the particle velocity is obtained as

v(r) = vmembrane
J0(Kairr)
J0(Kairr0)

− ∆p
h µ K2

air

[
1− J0(Kairr)

J0(Kairr0)

]
. (3.23)

Integrating over the area of the hole and dividing by the hole area yields the average particle

velocity v̄ in the hole

v̄ =
∫ r0

0 v(r)2π r dr
π r2

0

= vmembrane
2

Kairr0

J1(Kairr0)

J0(Kairr0)
+

∆p
j ω ρ0 h

[
1− 2

Kairr0

J1(Kairr0)

J0(Kairr0)

]
.

(3.24)

Therefore, the normalised acoustic impedance of a single hole is expressed as

zperforation =
∆p

v̄ρ0 c0

=
1

ρ0 c0
vmembrane

∆p
2

Kairr0

J1(Kairr0)
J0(Kairr0)

+ ρ0 c0
j ω ρ0 h

[
1− 2

Kairr0

J1(Kairr0)
J0(Kairr0)

] .
(3.25)

Comparing Equation (3.25) with Equation (3.19), it could be observed that the factor

1
j ω ρ0 h

[
1− 2

Kairr0

J1(Kairr0)

J0(Kairr0)

]

in Equation (3.25) is similar to Equation (3.19). This similarity implies that this factor rep-

resents the average particle velocity of a hole under Maa’s rigid wall assumption. Therefore,

Equation (3.25) can be rewritten as

zperforation =
1

ρ0 c0
vmembrane

∆p
2

Kairr0

J1(Kairr0)
J0(Kairr0)

+ 1
zMaa δ

=
1

2
Kairr0

J1(Kairr0)
J0(Kairr0)

1
zmembrane

+ 1
zrigid δ

,
(3.26)

where zrigid denotes the acoustic impedance of a single hole under the rigid wall assumption

mentioned in Section 3.2.2 and can be obtained using Equation (3.19). Note that Equation

(3.19) neglects the end correction. If Equation (3.20) is used to calculate this impedance
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under the rigid panel condition instead, the end correction for the hole is included. Moreover,

letting vmembrane = 0 and eliminating the corresponding factors yields the expression for the

acoustic impedance of a perforation under the rigid wall assumption, which is consistent

with the expressions in Section 3.2.2.

vmembrane(R) R0

R0

R

Figure 3.2: Distribution of the membrane vibration velocity (vibrating in the fundamental
mode).

Equation (3.26) implies that the acoustic impedance of an MPM hole is a function of the

acoustic impedance of the hole under the rigid wall assumption and the acoustic impedance

of the membrane vibration in the vicinity of the hole. If it is a limp membrane, the membrane

vibration velocity is a constant over the membrane surface when excited by a plane wave and

the overall normal acoustic impedance of the MPM is obtained by combining the constant

impedance due to the membrane vibration and the impedance due to the perforations. How-

ever, in acoustic engineering projects, membrane materials are commonly fixed on a rigid

frame. Hence, the finite boundary condition of the fixed edge and the tension due to the

stretching of the membrane affect the acoustic impedance of the membrane. This acoustic

impedance of the finite sized membrane under tension will be a function of the position, as

shown in Figure 3.2, where the variable R denotes the distance from the centre of the circular

membrane to the perforation location. The effect of the holes on the membrane motion is

neglected. This figure illustrates that the membrane vibration velocity varies with spatial

position. Consequently, the acoustic impedance due to the membrane vibration also varies

depending on location. Therefore, the acoustic impedance obtained from Equation (3.2) also

varies depending on the position coordinates.

62



3.2. Analytical modelling of the sound absorption of micro perforated membranes

200 400 600 800 1000 1200 1400 1600
0.03

0.04

0.05

0.06

0.07

0.08

0.09

Frequency (Hz)

N
or

m
al

is
ed

 r
es

is
ta

nc
e 

of
 h

ol
es

at
 d

if
fe

re
nt

 p
os

iti
on

s

 

 

Rigid membrane
R=0 mm
R=10 mm
R=20 mm
R=30 mm
R=40 mm
R=50 mm

(a) Normalised resistance.
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(b) Normalised reactance.
Figure 3.3: Normalised resistance and reactance of a hole for five radial coordinates varying

from R = 0mm to R = 50mm. (Surface density ρp = 0.25kg/m2; tension T = 125N/m;
internal damping ratio η = 0.02; membrane radius R0 = 50mm; hole radius

r0 = 0.0292mm; membrane thickness h = 0.17mm; backing cavity depth D = 25mm;
perforation ratio δ = 0.15%. Note that the normalised reactance of each hole based on

Maa’s theory for a rigid membrane is also shown and it is consistent with that of
R = 50mm = R0.) Note that the tension T and the damping ratio η are necessary for the

prediction of the acoustic impedance of a membrane without perforations.
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3.2. Analytical modelling of the sound absorption of micro perforated membranes

3.2.4 Acoustic impedance of each perforation of a circular micro per-

forated membrane
The acoustic impedance of a hole in a circular MPM as a function of its radius is expressed

by Equation (3.26). This equation requires not only the structural parameters of the perfor-

ations but also the vibration velocity of the membrane. The latter is expressed in Section

2.2.3, Equation (2.44). Substituting Equation (2.44) into Equation (3.26) gives the acoustic

impedance of a perforation as

zperforation(R) =
1

2
Kairr0

J1(Kairr0)
J0(Kairr0)

ρ0 c0 j
ω ρp

[
J0(KmemR)
J0(KmemR0)

−1
]
+ 1

zMaa δ

, (3.27)

where K2
mem = ω2ρs

T+2 jωη
. Equation (3.27) is a function of the radial coordinate R, which

is related to the membrane geometry (not the radial coordinate r of the air particle in the

hole). The effect of the hole position on the hole impedance can be predicted using Equation

(3.27), although it is non-linear and hence is difficult to investigate analytically. Therefore,

an example is utilised here, where a circular micro perforated membrane with surface density

ρp = 0.25kg/m2, is stretched under a tension T = 125N/m and its internal damping ratio η

is 0.02. It is fixed on a rigid ring with a radius of R0 = 50mm. The perforation parameters

are: hole radius r0 = 0.0292mm; membrane thickness h = 0.17mm; backing cavity depth

D = 25mm; perforation ratio δ = 0.15%. The resistances and reactances of five holes at

different radii calculated using Equation (3.27), normalised by ρ0 c0, are shown in Figure

3.3. The radial coordinate R of these holes varies from R = 0mm to R = 50mm and has been

chosen to show the variability of the perforation impedance. The normalised resistances

and reactances of a hole calculated by Maa’s classic model (Equation (3.20)) are also shown.

Note that when R = 50mm, J0(KmemR0)
J0(KmemR0)

= 1 and the prediction of Equation (3.27) is consistent

with that of Equation (3.20) and thus Maa’s theory.

It can be concluded from Figure 3.3 that the acoustic impedance of a hole near the centre

of the membrane is more significantly affected by the membrane motion than that of a hole

near the edge of the membrane. This is because the membrane elements near the centre

vibrate more significantly than those near the membrane edge.

In addition, the effects of the membrane vibration on the perforation impedance occur

mainly in the low frequency range where the tension and the internal damping affect the
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3.2. Analytical modelling of the sound absorption of micro perforated membranes

membrane impedance significantly. In contrast, the surface density governs the membrane

impedance in the high frequency range (mass controlled) and no significant effect of the

membrane vibration on the perforation impedance is observed for a constant surface density.

3.2.5 Total acoustic impedances due to the perforations of MPMs
In Section 3.2.4, the acoustic impedance of each hole as a function of location is investigated.

Neglecting the interaction between the adjacent holes, these holes are connected in parallel.

Based on the electric-acoustic analogy, the overall acoustic impedance due to the perforations

is expressed as

ztotalperforation =
1

N
∑

n=1

r2
0 π

R2
0 π

zperforation(Rn)

, (3.28)

where n denotes the nth hole on the membrane surface, Rn denotes the radial coordinate of

the nth hole and N is the total number of holes. Figure 3.4 shows the position and number

of the perforations on the MPM surface. If zperforation is uniform, as it is in Maa’s rigid wall

model, Equation (3.28) can be rewritten as

ztotalperforation =
1

N

r2
0 π

R2
0 π

zperforation

=
zperforation

δ
, (3.29)

which is consistent with Equation (3.20).

MPM surface

First hole

nth hole

R0

Rn

r0

Figure 3.4: nth hole on the surface of an MPM, where R0 is the radius of the MPM, Rn is
the radial coordinate of the nth hole and r0 is the radius of the hole.

Although the expressions were derived in the polar coordinate system, the calculation

was conducted in Cartesian coordinate system. If the distance from the centre of one hole

to that of its adjacent hole is given as xskip and yskip, a mesh which represents the spatial

65



3.2. Analytical modelling of the sound absorption of micro perforated membranes

coordinates of the holes (x,y) on the MPM surface can easily be generated, as shown in

Figure 3.5. Assuming that the centre of the MPM is at (0,0) in the Cartesian coordinate

system, the distance from the centre of the MPM to the nth hole is given by

Rn =
√

x2 + y2. (3.30)

Substituting Equation (3.30) into Equation (3.27) gives the acoustic impedance of each per-

foration corresponding to its spatial coordinate in the Cartesian coordinate system. When

conducting the analysis, only the holes within the boundary of the MPM (Rn + r0<R0) were

used.

Figure 3.5: Cartesian grid of holes superimposed on an MPM, showing the holes included
in and excluded from Equation (3.28).

The same example used in Section 3.2.4 is investigated here to demonstrate the effect of

the membrane vibration on the overall impedance of the MPM. The overall acoustic imped-

ance predicted by the presented model is compared with that predicted by Maa’s model.

The normalised resistances and reactances predicted by the rigid-walled model and the

finite circular membrane of radius R0 = 50mm are shown in Figure 3.6. The resistance

predicted by Equation (3.28) is lower than that predicted by Maa’s rigid-wall model, while

the reactance of this flexible membrane model is higher than that of the rigid wall model

above 182 Hz. The most significant difference in the resistance and reactance is observed in

the low frequency range near 200 Hz. It could be concluded that the flexible wall assumption

leads to a significant change in the acoustic impedance caused by the perforation, especially

in the low frequency range.
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(a) Normalised resistance due to all of the holes.
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(b) Normalised reactance due to all of the holes.
Figure 3.6: Normalised resistance and reactance due to all of the holes on the MPM surface.
(Surface density ρp = 0.25kg/m2; tension T = 125N/m; internal damping ratio η = 0.02;

membrane radius R0 = 50mm; hole radius r0 = 0.0292mm; membrane thickness
h = 0.17mm; backing cavity depth D = 25mm; perforation ratio δ = 0.15%.)

3.2.6 Combined acoustic impedance of MPMs and the sound absorp-

tion coefficient of MPM absorbers
Note that Equation (3.28) considers only the acoustic impedance due to the perforations.

However, the acoustic impedance of an MPM is not only due to the perforations but also due
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3.2. Analytical modelling of the sound absorption of micro perforated membranes

to the membrane vibration (Kang & Fuchs 1999). To investigate the overall impedance of

the MPM system, it is thus necessary to consider the acoustic impedance of the membrane

vibration. If the impedance of the perforation and that of the membrane vibration are known,

then the overall impedance may be calculated using the electric-acoustic analogy, giving

zoverall =
1

1
ztotalperforation

+ 1
zvibration

, (3.31)

where ztotalperforation denotes the impedance due to the perforations obtained by Equation

(3.28) and zvibration denotes the membrane vibration impedance given by Equation (2.46).

Like MPPs, an MPM itself is an inefficient sound absorber (Maa 1997). However, an

MPM/MPP with a rigid backing wall and an air cavity between can be very effective in

absorbing sound. This MPM/MPP with a rigid backing wall and an air cavity is called an

MPM/MPP absorber. When a sound wave is incident normally, the normalised acoustic

impedance of the air cavity is given by

zD =− j cot
(

ω D
c0

)
, (3.32)

where D is the depth of the air cavity. This expression is more complicated when accounting

for the cross modes, which is beyond the scope of this chapter.

Once the overall impedance of the MPM and the impedance of the air cavity are obtained,

the impedance of the MPM absorber is expressed as

z = zoverall + zD. (3.33)

This is based on the electro-acoustic analogy which considers the MPM and the cavity as

series connected. Therefore, the sound absorption coefficient of an MPM absorber is given

by

α =
4Re(z)

(1+Re(z))2 + Im(z)2
, (3.34)

where Re(z) and Im(z) are the real and imaginary parts of z, respectively. They are also

known as the resistance and reactance of the acoustic impedance.

Moreover, the acoustic impedance of an air cavity is purely imaginary, as indicated in

Equation (3.32). Hence, the imaginary part of the MPM/MPP absorber is expressed as

Im(z) = Im(zoverall)+ zD, (3.35)
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where Im(zoverall) is the reactance of the MPMs/MPPs. If Equation (3.35) is equal to zero,

Equation (3.34) reaches its maximum. The corresponding frequency is the peak absorption

frequency of the MPM/MPP absorber. Obviously, this peak absorption frequency is only

affected by the cavity depth and the reactance of the MPMs/MPPs.

3.3 Experimental validation of the sound absorption of mi-

cro perforated membranes
The following sections explore the experimental validation of the model derived in Section

3.2. The experimental results are compared with the predicted results. Good agreements are

achieved and imply the accuracy of the presented model.

3.3.1 Experimental condition and parameter of MPM samples
To validate the model developed in this study, sound absorption experiments were carried

out in an impedance tube with normally incident plane waves. The radius of the impedance

tube is R0 = 50mm. The sound absorption coefficients of four commercially available MPMs

were measured using the two-microphone transfer function method (Chung & Blaser 1980a),

as shown in Figure 3.7. The four MPMs were tested for two cavity depths D, of 25 mm and

50 mm.

Impedance tube

Sound source
Samples

Rigid backing 

wall

Air cavity

Microphones
1 2

D

24 mm

56 mm1090 mm

 100 mmϕ

Figure 3.7: Schematic illustrating experimental configuration of sound absorption
coefficient measurements conducted in an impedance tube.

To predict the sound absorption of MPMs, it is crucial to measure the structural para-

meters of the MPMs, including the radius of the perforations r0. Four different MPMs were

tested, denoted MPM 1 to 4. The perforations of MPMs 1 to 3 were punched and the perfor-
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ations were irregular polygons, unlike the circular perforations of MPM 4. The photomic-

rographs of the perforations of MPM 1 and MPM 4 are shown in Figure 3.8 as examples.

Because of the irregular geometry of the holes in MPMs 1 to 3, the equivalent hole radius

r0 needs to be estimated by calculating the average area of 10 randomly selected holes and

determining the equivalent radius of the average area. The minimum, maximum and average

hole radius of MPMs 1 to 3 are shown in Table 3.1 for 10 randomly selected holes. The

standard deviation of the measured hole radius of each MPM is given as a measurement

error.
Table 3.1: Measured hole radius of MPMs. The equivalent hole radius was determined from

data fitting described in Section 3.3.2.

MPM Minimum hole radius

r0min (mm)

Maximum hole radius

r0max (mm)

Average hole radius

r0 (mm) of ten holes

Equivalent hole radius

r0 (mm)

1 0.016 0.030 0.026±0.004 0.0226

2 0.011 0.040 0.022±0.008 0.0211

3 0.009 0.042 0.029±0.010 0.0248

Table 3.2: Measured MPM parameters

MPM Surface density

ρp (kg/m2)

Hole radius

r0 (mm)

Membrane thickness

h (mm)

Equivalent distance

between hole

centres b (mm)

Perforation ratio

δ (%)

1 0.2501 0.0226±0.004 0.17 1.32 0.092

2 0.2503 0.0211±0.008 0.17 1.58 0.056

3 0.2448 0.0248±0.010 0.17 1.63 0.073

4 0.2506 0.255±0.031 0.17 5.29 0.730

Note that the perforations of MPM 4 were quite circular (as shown in Figure 3.8b), how-

ever in some cases the membrane material covered part of the hole area, as shown in Figure

3.8c. These areas need to be excluded during the calculation of the equivalent radius of MPM

4. Therefore, 20 holes on MPM 4 were randomly chosen and the equivalent radius measured

from each photomicrograph was used to obtain an average equivalent radius for input to the

analytical model. The physical parameters of the MPMs were measured and are shown in

Table 3.2. The experimental results are compared with the predictions of the model presen-

ted in Section 3.2. Note that there are two unknown variables; the membrane tension T and

the internal damping ratio η . These parameters can not be measured directly by experiments
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(a) MPM 1.

(b) MPM 4, example circular hole.

(c) MPM 4, example non-circular hole.
Figure 3.8: Photomicrographs of perforations of MPM 1 and MPM 4.
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as they are dependent on the mounting arrangements. The determination of these parameters

is described in Section 3.3.2.

3.3.2 Determination of tension and internal damping
It was not possible to measure the tension T and the damping ratio η directly by experiments.

Hence, the equivalent value set T , η and r0 used in the analytical model have been obtained

from the experimental measurements by fitting the measured data to the model using the

optimisation toolbox in Matlab under a number of constraints (Waltz et al. 2006): positive

tension; damping ratio less than 0.05; and hole radius varying from the minimum measured

value r0min to the maximum measured value r0max (listed in Table 3.1). The constrained

non-linear optimisation was based on the subspace trust region method. The obtained values

for T , η and r0 are predicted in Figures 3.14 to 3.21.

As shown in Table 3.2, the radii of the holes are small, as well as the centre to centre

distance of holes. Consequently, there are thousands of holes on each MPM. The signific-

ant number of holes makes the optimisation extremely time consuming. In order to reduce

computational time whilst still obtaining accurate results, data at only nine frequencies were

chosen to represent the characteristics of the sound absorption coefficient α .
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Figure 3.9: Experimental results of MPM 4 at nine frequencies chosen for the calculation of
the tension and the damping ratio.

Figure 3.9 uses MPM 4 as an example to illustrate the frequency selection. It is widely
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3.3. Experimental validation for MPMs

accepted that the indicators of the characteristics of the sound absorption of MPP/MPM are

the peak absorption frequency with the highest sound absorption coefficient and the fre-

quencies where half of the maximum sound absorption coefficient occur (Maa 1975). The

peak absorption frequency fαmax where the maximum sound absorption is achieved, is of

most significant importance and selected here. The frequency where half of the maximum

sound absorption coefficient is obtained fαhalf , is selected to indicate the sound absorbing

bandwidth. Although the reliable measurement range is from 200 Hz to 1600 Hz, measure-

ment errors may occur with this frequency range for many reasons, including the boundary

condition of the samples and the poor coherence between the microphones. Consequently,

the frequencies fmin= 250Hz and fmax= 1550Hz were chosen to indicate the properties of

the MPM absorption at low and high frequencies, whilst minimising the occurrence of the

measurement errors over the frequency range of interest. To increase the accuracy of the

optimisation, the middle frequency between fαmax and fαhalf is selected, as well as the middle

frequency between fαmax and fmax. Since the frequency bandwidth from fmin to fαhalf is re-

latively large, three frequencies are selected evenly between them. Therefore, data at these

nine frequencies have been chosen to represent the characteristics of the sound absorption of

MPM 4 and to reduce the time required for the optimisation. It is shown in Figure 3.9 that the

predicted sound absorption coefficient using the optimisation at these selected frequencies is

in very good agreement with the experimental results, which implies the applicability of this

frequency selection method.

3.3.3 Effects of thermo-viscous friction and viscous layer on acoustic

impedance of MPMs
When predicting the acoustic impedance due to the perforations of MPM 4 using Equation

(3.20), it was found that this equation underestimated the impedance. Similar underestim-

ation has been observed by Tayong et al. (2010). They indicated that in practice, Equation

(3.20) tends to underestimate the impedance due to the thermo-viscous friction. In Equation

(3.20), the thermo-viscous effect is included as a part of the end correction. However, the

impedance calculated is usually lower than the value measured in experiments. To correct

for this effect, Tayong et al. (2010) suggested the use of

Rs =
1
2

√
2ω ρ0 σ (3.36)
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to estimate the resistance due to the thermo-viscous friction, where σ is the dynamic vis-

cosity of air. They increased the normalised impedance due to the perforations by 4 Rs
ρ0 c0 δ

,

resulting in a good agreement between the experimental and predicted results..

The constants used in Equation (3.36) are purely real. Hence, only the real part of the

acoustic impedance obtained by Equation (3.20), i.e. the resistance, is affected by this addi-

tional thermo-viscous friction. However, tracing back to Rayleigh’s (1896) original deriva-

tion, Rs was expressed as

Rs =
1
2

√
2ω ρ0 σ(1+ j). (3.37)

However, the imaginary part of Equation (3.37) was omitted by Rayleigh (1896) later, pos-

sibly to simplify the derivation, and consequently Equation (3.37) was reduced to Equation

(3.36). Equation (3.36) has been widely cited thereafter (Ingard 1953, Maa 1975, Tayong

et al. 2010).

It is found that the resonance peak of the predicted result using Equation (3.36) is slightly

offset from that of the measured result, as shown in Figure 3.10. It is known from Equation

(3.35) that the resonance frequency of the MPM absorber is dependent on the reactance of

the absorber system. Therefore, it is reasonable to presume that the thermo-viscous friction

affects not only the resistance but also the reactance and use of Equation (3.36) hence leads

to the mismatch of the peak absorption frequency.

A comparison of the predicted results using the real and complex values of Rs is shown

in Figure 3.10. The frequency mismatch due to use of a real value for Rs is eliminated by

using the complex value given by Equation (3.37) and provides better agreement with the

experimental results. Thus, in the presented model for MPM 4, Equation (3.37) was utilised

instead of Equation (3.36) and 4 Rs
ρ0 c0 δ

was added to Equation (3.20). The prediction results

agree with the measured results, as shown in Figures 3.17 and 3.21.

The additional impedance arising from the thermo-viscous friction is only of importance

for the acoustic impedance of MPM 4. This is because of the significant difference between

the hole radii of MPMs 1 to 3 and the hole radius of MPM 4. Table 3.2 shows that the hole

radius of MPM 4 is ten times larger than the hole radii of MPMs 1 to 3. The thickness of the

viscous layer is given by Maa (1975) as

hviscous =

√
2×σ

ω
. (3.38)
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Figure 3.10: Comparison of results for use of real and complex values of Rs for the sound
absorption prediction of MPM 4 with D = 25mm.

Figure 3.11 shows the comparison of the hole radii of MPMs and the thickness of the vis-

cous layer calculated using Equation (3.38). Examination of Equation (3.38) reveals that the

thickness of the viscous layer is independent of the parameters of the MPMs and is a function

with respect to the frequency. The thickness of the viscous layer decreases with an increase

in frequency.
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Thickness of viscous layer
MPM 1 r0 = 0.026 mm
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MPM 3 r0 = 0.029 mm
MPM 4 r0 = 0.255 mm

Figure 3.11: Thickness of viscous layer hviscous, MPM hole diameters shown for illustration
purposes.
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For comparison, within the frequency range of interest the hole radii of MPMs 1 to 3

(r0 = 0.022mm to 0.029 mm) are smaller than the thickness of the viscous layer and the hole

radius of MPM 4 (r0 = 0.255mm) is larger than the thickness of the viscous layer. For MPMs

1 to 3, the hole radii are sufficiently small that the entire area of the holes is covered by the

viscous layer, which makes the particle velocity relatively small in these holes, as illustrated

in Figure 3.12a. This results in high acoustic impedance of MPMs 1 to 3 and limited air flow

through these holes. Hence, the thermo-viscous friction is negligible for MPMs 1 to 3.

(a) Viscous layer of MPM 3.
(b) Viscous layers of MPM 4 at 200 Hz

and 1600 Hz.
Figure 3.12: Viscous layers of MPMs 3 and 4. Note that schematic is not to scale.

As illustrated in Figure 3.12b, the hole radius of MPM 4 is larger than the thickness of

the viscous layer, which allows the air to flow through the holes easily. A rotational jet is

formed by the air flow through the holes, which increases the impedance of the perforations

(Ingard & Ising 1967). Therefore, the thermo-viscous friction affects MPM 4 only and may

be neglected for the other three MPMs.

Note that effective sound absorption of an MPM/MPP is usually related to high acoustic

impedance, especially high resistance. However, Maa (2006) used Figure 3.13 to illustrate

that extremely high resistance leads to ineffective sound absorption. Figure 3.13 shows the

sound absorption coefficients calculated with the normalised resistance varying from 1 to 5.

With an increase of the normalised resistance from 1 to 5, the sound absorption bandwidth

increases but the maximum sound absorption coefficient decreases proportionally. This is

consistent with the phenomenon observed on MPMs 1 to 3. As mentioned before, the hole

radii of the MPMs 1 to 3 are very small and the viscous layer covers the entire area of
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Figure 3.13: Low sound absorption due to high acoustic resistance of MPP ranging from 1
to 5 (Maa 2006).

the holes, resulting in the extremely high resistances of these MPMs. Hence, the sound

absorption arising from the perforations of MPMs 1 to 3 are low, as shown in the sound

absorption curves for these MPMs (Figures 3.14 to 3.16 and 3.18 to 3.20).

3.3.4 Comparison of the experimental and predicted sound absorption

coefficients of MPMs
In this section, the measured results of MPMs 1 to 4 with an air cavity depth of D = 25mm

and D= 50mm are shown in Figures 3.14 to 3.18. The experimental condition is as described

in Section 3.3.1. These experimental results are compared with the prediction results of three

models: Maa’s classic rigid wall model (Equation (3.20)); the model of a membrane absorber

without perforation (Equation (2.46)) and the presented model (Equation (3.31)). If the

measured sound absorption curve is close to the prediction using Maa’s model (represented

by the dashed-dotted curves), this indicates that the perforations are the governing effect on

the sound absorption of the MPM absorber because this model dose not consider membrane

motion. The dotted curves in Figures 3.14 to 3.18 represent the results predicted considering

the MPMs as impervious membranes of equivalent surface density but without perforations.

In some figures, the predicted results of the different models are close, which makes it

difficult to identify the relative accuracy of these models. To quantify the accuracy of the

77



3.3. Experimental validation for MPMs

three models, the coefficient of determination R2
determination for each model is provided in

Figures 3.14 to 3.18. As R2
determination approaches unity, the fidelity of the model increases.

For MPMs 1 to 4, the R2
determination of the presented model is close to unity. Hence, the

presented model provides a good agreement with the experimental results and is suitable

for the prediction of the sound absorption of these MPMs. These results confirm that the

new boundary condition theory and the derived equations are valid for these MPM samples.

The negative R2
determination seen in the alternative models is because the error between the

measured data and the predicted result is larger than the difference between the measured

data and its mean. The negative R2
determination indicates the inaccuracy of the corresponding

model.
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Figure 3.14: Normal incidence sound absorption coefficients of MPM 1 for D = 25mm.

Comparing the experimental results of the MPMs, we can conclude that the predom-

inant absorption peaks of MPMs 1 to 3 are near the predominant absorption peaks of the

membranes without perforation. For MPM 4, Figures 3.17 and 3.21 indicate that the pre-

dominant absorption peak is in the high frequency range and to the three models considered,

corresponds most closely with the absorption peak for the predicted result using the flexible

membrane model. This may imply that when the perforations are small, as is the case for

MPMs 1 to 3, the MPM absorption is mainly due to the membrane itself. In these cases,

the perforations marginally broaden the sound absorption bandwidth but do not move the
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Figure 3.15: Normal incidence sound absorption coefficients of MPM 2 for D = 25mm.
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Figure 3.16: Normal incidence sound absorption coefficients of MPM 3 for D = 25mm.
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Figure 3.17: Normal incidence sound absorption coefficients of MPM 4 for D = 25mm.
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Figure 3.18: Normal incidence sound absorption coefficients of MPM 1 for D = 50mm.
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Figure 3.19: Normal incidence sound absorption coefficients of MPM 2 for D = 50mm.
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Figure 3.20: Normal incidence sound absorption coefficients of MPM 3 for D = 50mm.
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Figure 3.21: Normal incidence sound absorption coefficients of MPM 4 for D = 50mm.

absorption peaks significantly. When MPM 4 is considered, the perforations are the main

contributor to the sound absorption and the main absorption peak of the MPM is near the

theoretical absorption peak due to a combination of the perforations and the membrane mo-

tion.

As mentioned in Section 3.3.3, the structural parameters of MPMs 1 to 4 are all in a sim-

ilar range of values, except that MPM 4 has a hole diameter ten times larger than the other

three MPMs. The hole diameter and perforation ratio of MPM 4 are close to the structural

parameters of a classic MPP, which is typically around r0 = 1 mm and δ = 1%. The imped-

ance of the holes in MPM 4 is efficiently combined with the acoustic impedance due to the

membrane vibration to offer effective sound absorption. On the contrary, the perforations in

MPMs 1 to 3 are too small comparing to those in MPM 4, and the acoustic impedance due to

the perforations is thus too high to contribute to the sound absorption effectively. Extremely

high acoustic impedance leads to a poor sound absorption from MPP/MPM absorbers (Maa

2006).

Therefore, it is concluded that although the sound absorption bandwidths of MPM 1 to 3

have been marginally broadened due to the presence of the perforations, the sound absorp-

tion properties of these MPMs are mainly governed by the membrane itself. Considering the

expense of manufacturing the perforations, incorporating perforations of this size in com-
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mercial sound absorbing materials is likely to be ineffective. However, the sound absorption

values obtained for MPM 4 indicate the effectiveness of such micro perforated membranes

incorporating holes of a suitable size. To achieve their optimum sound absorption, MPMs

need to be carefully designed to couple the membrane vibration impedance and the imped-

ance due to the perforations effectively.

3.3.5 Structural resonance of the impedance tube
It is observed that there are small dips and peaks from 1200 Hz to 1260 Hz in the sound

absorption coefficient measurements shown in Figures 3.14 to 3.21. They occur in the ex-

perimental results of all the MPMs and are independent of the cavity depth D. Hence, these

are considered to be due to a structural resonance of the impedance tube itself.
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Figure 3.22: Magnitude of the transfer function between the acceleration of the impedance
tube vibration and the sound pressure inside the impedance tube.

To validate the assumption of the structural resonance of the impedance tube, the transfer

function between the acceleration of the impedance tube vibration and the sound pressure

inside the impedance tube was measured using the same arrangement described in Section

3.3.1, except that an accelerometer was attached on the tube to measure the acceleration of

the tube vibration. The magnitude of the transfer function is shown in Figure 3.22. It can be

observed from the figure that the tube vibrates significantly at 1245 Hz, which corresponds

to the small dips and peaks observed around 1250 Hz in Figures 3.14 to 3.21. Therefore, it is
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concluded that the vibration of the impedance tube affects the sound absorption coefficient

measured in the impedance tube at around 1250 Hz.

3.3.6 Effect of perforation positions on the sound absorption of MPMs
Based on the theory presented in Section 3.2, it is logical to assume that since the mem-

brane vibration affects the acoustic impedance of the perforations, the overall impedance

and sound absorption properties of an MPM could be affected by the perforation positions

since the vibration is not uniform over the membrane. This presumption is in contrast to the

conventional theories which assume that the overall impedance of a flexible micro perforate

(thin plate or membrane) is given by the coupled impedances of the material vibration and

the perforations based on electric-acoustic analogy or the average flow velocity. Hence, in

the conventional theories, the overall impedance is independent of the position of the perfor-

ations.

Group 1 with 73 holes on each MPM

Group 2 with 48 holes on each MPM

Figure 3.23: Photograph of the additional MPMs made using the MPM 1 material. There
are 73 and 48 holes of 0.31 mm radius drilled in each of the membranes respectively.

To validate the assumption of the position dependence of the hole impedance, four addi-

tional MPMs were made using the same material as MPM 1 and are shown in Figure 3.23.

In Section 3.3.4, it was shown that MPM 1 can essentially be considered unperforated due

to its low perforation ratio and small hole diameter.

The four additional MPMs may be categorised into two groups. In Group 1, each MPM
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Figure 3.24: Normal incidence sound absorption coefficients of the manufactured MPMs
with 73 holes, D = 25mm. The thick solid curve represents the measured sound absorption

coefficient of an MPM with 73 holes at a radius of R = 45 mm. The thin solid curve
represents the measured sound absorption coefficient of the manufactured MPM with 73

holes evenly distributed on the membrane surface. The thick and thin dashed curves are the
prediction results for each using the proposed method, respectively.
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Figure 3.25: Normal incidence sound absorption coefficients of the manufactured MPMs
with 48 holes, D = 25mm. The thick solid curve represents the measured sound absorption

coefficient of an MPM with 48 holes at a radius of R = 45 mm. The thin solid curve
represents the measured sound absorption coefficient of the manufactured MPM with 48

holes evenly distributed on the membrane surface. The thick and thin dashed curves are the
prediction results for each using the proposed method, respectively.
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was drilled with 73 holes, with hole radius r0 = 0.31 mm. The holes were arranged at R =

45 mm for one of the manufactured MPMs and were evenly distributed over the membrane

surface for the other. Therefore, in Group 1, the perforation ratios of two manufactured

MPMs are identical and equal to 0.29%. Similarly, for Group 2, each MPM was drilled

with 48 holes. The hole radius r0 is also 0.31 mm. Therefore, the perforation ratio for each

manufactured MPM in Group 2 is 0.19%. The holes were at R= 45 mm for one of the MPMs

and were evenly distributed for the other. In each group, the parameters of the MPMs are

identical. Based on the conventional theories, their sound absorption coefficients should be

identical, however, based on the proposed theory, their sound absorption coefficients might

differ due to the hole positions, i.e. the effect of the membrane vibration on the acoustic

impedance of the perforations.

The different perforation positions are shown in Figure 3.23. The sound absorption meas-

urements were conducted under the same experimental arrangement as described in Section

3.3.1. The measured sound absorption coefficients and the predicted results based on the

proposed method are compared for each MPM group in Figures 3.24 and 3.25.

Note that the values of the tension and damping are identical to those in Figure 3.14

because it is assumed that the perforations have no effect on the mechanical properties of

the membrane. The thick solid curves in Figures 3.24 and 3.25 are the measured sound

absorption coefficient curves for the manufactured MPMs with holes at R = 45 mm and

the thin solid curves are those for the manufactured MPMs with holes evenly distributed.

There are obvious differences between these curves which demonstrates the effect of the hole

positions on the acoustic impedance of the MPMs, and hence supports the proposed theory.

Moreover, the predicted curves are close to the experimental results for the corresponding

manufactured MPMs, which suggests that the proposed theory is accurate.

3.4 Conclusions
This chapter aimed to investigate the sound absorption of micro perforated membranes which

will be used later in this thesis in Chapter 7 as an insert between two inflated membranes.

A new method is introduced to predict the acoustic impedance and the sound absorption

coefficient of a micro perforated membrane (MPM). This method is based on a new boundary

condition where the particle velocity at the hole wall boundary, which is assumed to be zero
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in Maa’s theory, is assumed to be equal to the membrane vibration velocity. By applying

this new boundary condition to a circular membrane, it is shown that the acoustic impedance

due to the perforation is affected by the membrane vibration and becomes a function of the

membrane radial coordinates.

Using this new boundary condition, analytical models for the acoustic impedances of

both the impedances associated with the perforations and the membrane vibration imped-

ance are derived. The variability of the perforation impedance with the hole location is

investigated theoretically. The impedances due to the perforation and the membrane vibra-

tion are combined following the electro-acoustic analogy to present the overall impedance

of the MPM. This new model is validated by experimental results for MPMs.

Moreover, the effect of the viscous layer on the sound absorption of the MPMs are dis-

cussed. Comparing the thickness of viscous layers and the hole radii, it is found that MPMs

1 to 3 have small hole radii (approximately 25µm) so that the viscous layer covers the entire

hole area, resulting in extremely high acoustic impedance and ineffective sound absorption.

Furthermore, their sound absorption curves are close to the theoretical results of impervious

membranes with identical surface density, tension and damping ratio, which implies that the

effects of the micro perforations on MPMs 1 to 3 are negligible and they can be assumed

to be impervious membranes. However, MPM 4 which has larger holes (with a perfora-

tion radius of 255µm) not completely covered by the viscous layer, shows effective sound

absorption due to the perforations and the membrane vibration. Additionally, based on the

proposed theory, it is validated experimentally that the hole position affects the acoustic im-

pedance and sound absorption of MPMs, even if the MPM parameters, such as the hole radii,

the thickness and the perforation ratio, are identical.

This study extends the classic micro perforated theory and offers an accurate model for

predicting the performance of flexible finite-sized MPMs. It also provides increased under-

standing of the coupling between the membrane vibration impedance and the impedance due

to the perforations of micro perforated membranes.
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Chapter 4

Nonlinearity of the sound absorption of

micro perforated membranes under high

SPL excitation

4.1 Introduction
When measuring the sound absorption coefficients of the MPM samples, non-linear be-

haviour was observed when measuring the sound absorption of MPM 4 (surface density

ρp = 0.2506kg/m2, hole radius r0 = 0.255mm, membrane thickness h = 0.17mm, hole

spacing 5.29mm and perforation ratio δ = 0.730%) with high SPL excitation. This chapter

presents the experimental findings on the non-linearity of the sound absorption of MPM

4 excited by broadband and monochromatic sound signals. These results are essential for

analytical modelling of the non-linear acoustic impedance of the MPM which is presented

in Chapter 5, and are crucial for investigating the sound transmission in double impervious

membranes with an internal MPM investigated in Chapter 7.

In this chapter, previous research on the non-linear acoustic properties of an orifice and

MPPs is reviewed in Section 4.1.1. The resulting gaps and contributions of this chapter are

described in Section 4.1.2. To investigate the non-linear sound properties of the MPM, it is

crucial to validate the measurement method. This is presented in Section 4.2. Section 4.3

presents the experimental findings of the non-linear sound absorption of the MPM and further

explores the physical explanations for these findings. This is followed by the conclusion in

Section 4.4.
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4.1.1 Literature review
Micro perforated materials have been widely used for sound absorption, and have been in-

vestigated in both linear and non-linear regimes. Conventionally, micro perforated panels

(MPPs) are assumed to behave linearly under acoustic excitation (Bravo et al. 2012, Kang

& Fuchs 1999, Maa 1994) and the type of sound source is assumed to have no impact on

the measured sound absorption coefficient. By contrast, when samples are subjected to high

sound pressure levels (SPLs), non-linear effects have been observed. Ingard & Ising (1967)

indicated that the air flow travelling through an orifice under strong excitation forms a high

velocity jet. Maa (1994) derived an expression which represents the non-linear effect on the

resistance of MPPs under high excitation. Bodén (2007) investigated the non-linear imped-

ance of perforates under high SPL excitation and indicated that pure tone excitation leads to

a non-linear impedance dependent on the acoustic particle velocity at the frequency of the

pure tone; however, broadband excitation leads to a non-linear impedance at a certain fre-

quency dependent on the acoustic particle velocities at all excited frequencies. Tayong et al.

(2010) investigated the non-linear effects of sound sources at the peak absorption frequency

of MPP absorbers, both experimentally and theoretically, when subjected to very high SPLs

(145 dB re 20 µPa).

However, questions remain about the non-linear properties of micro perforated materi-

als. The previous research indicates that the non-linear properties of MPPs are closely re-

lated to the SPL magnitude; for example Maa (1994) indicated that theoretically non-linear

behaviour exists when the SPL is 129 dB re 20 µPa and above, and Tayong et al. (2010)

observed non-linear sound absorption of an MPP with an SPL of 145 dB re 20 µPa. There

is limited discussion on the threshold SPL at which the non-linear impedance starts to oc-

cur, which affects the sound absorption non-linearly. While the previous studies focussed on

MPPs, research on the non-linear performance of micro perforated membranes (MPMs) is

very limited. Previous studies also indicated that the resistance is the dominating factor of

the non-linearity of MPPs and the non-linear reactance impact is negligible (Ingard & Ising

1967, Tayong et al. 2010). However, it is unclear whether the SPL has a non-linear impact

on the reactance of MPMs in the non-linear regime.

The measurement methods used in previous research for the sound absorption coefficient

of an orifice, MPP or MPM in a non-linear regime can be categorised into three groups:
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the hot wire method to measure the air particle velocity, the two-microphone standing-wave

method and the two-microphone transfer-function method. The hot wire method is com-

monly used to measure the air particle velocity. Ingard & Ising (1967) used hot wires to

measure the air particle velocity behind an orifice in a rigid baffle when the incident sound

pressure was sufficiently high that the system was in a non-linear regime. This is one of

the early pieces of research which experimentally demonstrates the proportional relationship

between the sound pressure and the acoustic impedance of the orifice. Although the hot wire

method is valid for an orifice, it is not an ideal measurement method for MPPs and MPMs.

Comparing the size of hot wires to that of the perforations on conventional MPPs and MPMs,

it is found that the hot wires are so large that when measuring the particle velocity, it is diffi-

cult to eliminate the interaction between the perforations, which leads to measurement errors

and inaccurate results.

Before the transfer function method was introduced by Chung & Blaser (1980a), the

conventional way to measure the sound absorption coefficient of a sample was the standing

wave method. However, Zorumski & Parrott (1971) indicated that the standing wave method

is only valid for the measurement using a pure harmonic wave and is invalid when the sound

wave is distorted in a non-linear regime. They further developed a new method to measure

the spectral impedance of a sample in a non-linear regime, using an additional microphone

which is placed at the backing wall. Since then, this two-microphone method had been used

by Melling (1973a,b) and Cummings (1984, 1986).

Chung & Blaser (1980a) developed the two-microphone transfer-function method, which

is favoured by researchers for its convenient experimental process and accuracy. This method

is commonly used for sound absorption measurements in both linear and non-linear regimes.

Bodén (2007) and Tayong et al. (2010) investigated the non-linear acoustic properties of

samples using this method. Tayong et al. (2010) further indicated that this method is valid

when the sound propagation between the two microphones is linear.

4.1.2 Gaps and contributions
It is known from the literature review in Section 4.1.1 that there is very limited research

about the non-linear sound absorption of MPMs under high SPL excitation. The threshold

SPL where the non-linear properties start is unclear. It is also unknown whether the high
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SPL has no impact on the reactance of MPMs, as in the case of MPPs.

This chapter presents the experimental findings on the non-linear effects of sound sources

on the normal-incidence sound absorption of MPMs over a broadband frequency range. The

frequency-dependent value of the incident sound pressure level at the surface of the MPM

was varied from 15 dB re 20 µPa to 143 dB re 20 µPa. Significant non-linear behaviours of

MPMs are observed, even at SPLs considered low for non-linear effects to occur. The details

of the experiments are presented in Section 4.3 and the non-linear effects of sound sources

are discussed in the subsequent sections.

However, before presenting the experimental findings, the two-microphone transfer-function

method has been validated in Section 4.2. The transfer function between each microphone

and the sound source was measured and the transfer function between the microphones was

estimated, based on the former two measured transfer functions described in Section 4.2.2.

The sound absorption coefficients obtained from the estimated and measured transfer func-

tions are compared in Section 4.2.3. The agreement between these results indicates the

validation of the two-microphone transfer-function method.

4.2 Validation of experimental method
This section aims to validate the two-microphone transfer-function method. This method is

described in Section 4.2.1, as well as the validation method in Section 4.2.2. In the former,

the transfer function between two microphones was measured. Instead, in the latter, the

transfer function between each microphone and the sound source was measured to estim-

ate the transfer function between the two microphones. The sound absorption coefficients

obtained from the estimated and measured transfer functions are compared in Section 4.2.3

where a good agreement was achieved.

4.2.1 Two-microphone transfer-function method
This section describes the experimental set-up of the two-microphone transfer-function method

according to ISO10534 (1998) and ASTM E1050 (2012). The sound absorption experi-

ments were conducted in a steel impedance tube with a normally-incident plane wave. The

internal radius of the impedance tube is R0 = 50mm with a cut-off frequency of 1.7 kHz

(Kinsler et al. 1999). The measurement range is from 200 Hz to 1600 Hz. The two micro-
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phone transfer function method was used to obtain the sound absorption coefficient (Chung

& Blaser 1980a), as shown in Figure 4.1. The sound pressures were measured using two

microphones, from which the SPL on the surface of the MPM and the sound absorption

coefficient were determined. The microphones used in this measurement were 1/4 inch pre-

polarised microphones (Brüel & Kjær, type 4958). The loudspeaker was from the Brüel

& Kjær standing wave apparatus type 4002. In this section, the measurement followed the

standards ISO10534 (1998) and ASTM E1050 (2012), which implies that the transfer func-

tion between the two microphones was measured. The sound absorption coefficient can be

obtained by Equation (2.103).

Impedance tube

Loudspeaker
Sample

Rigid backing 

wall

Air cavity

Microphones
1 2

D

24 mm

56 mm1090 mm

Φ 100 mm

Photon

(with varied 

input voltage)

Amplifier

Ch 1

Ch 2

Figure 4.1: Measurement of sound absorption coefficient using two microphone transfer
function method in an impedance tube.

Moreover, it is observed in the experiments that the measured sound absorption coeffi-

cient is sensitive to the mounting condition of the MPM sample. To prevent a measurement

error due to the mounting condition, the MPM 4 sample used throughout was put into the

tube before the measurements started and was not taken out until all the measurements were

done.

4.2.2 Measurement of the transfer function between each microphone

and the sound source
Tayong et al. (2010) indicated that the two-microphone transfer-function method is valid

provided the sound wave propagates linearly in the impedance tube. In this section, the
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transfer functions between the microphones and the sound source, named as Hs1 and Hs2,

were measured, and are given by

Hs1 =
p1

psource
, (4.1)

and

Hs2 =
p2

psource
, (4.2)

where p1 denotes the measured sound pressure at microphone 1, p2 denotes that at micro-

phone 2 and psource denotes the voltage signal input into the power amplifier which drives the

sound source. Therefore, the transfer function between two microphones H12 is estimated by

H12 =
Hs2

Hs1
=

p2

p1
. (4.3)

Note that the term H12 may also be measured directly using the two-microphone transfer-

function method, as mentioned in Section 4.2.1.

4.2.3 Comparison of the measured sound absorption coefficients
This section compares the measured and estimated sound absorption coefficients obtained

with the two methods mentioned in Sections 4.2.1 and 4.2.2. Both white noise and a stepped

sine sweep were used as signals to generate the sound. The input voltage varied from 100 mV

to 200 mV which was sufficiently high that the impedance of the sample was in a non-linear

regime. The comparison is shown in Figures 4.2 to 4.5.

In Figures 4.2 to 4.5, the solid curves are the estimated sound absorption coefficients

obtained using the two measured transfer functions between each microphone and the sound

source, i.e. Equation (4.3). The dashed curves are the sound absorption coefficients obtained

using the measured transfer functions between two microphones following the standards

ISO10534 (1998) and ASTM E1050 (2012). In each figure, the solid curve agrees signi-

ficantly with the dashed curve over the measured frequency range, except around the tube

resonance frequency of 1250 Hz. This implies that the measured sound absorption coeffi-

cient usint the ISO/ASTM standards is identical to the estimated sound absorption coefficient

via two intermediate transfer functions.

Additionally, Figures 4.6 to 4.9 illustrate the coherence functions measured using the

methods in Sections 4.2.1 and 4.2.2. When white noise was used, these coherences were
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Figure 4.2: Comparison of the measured and estimated sound absorption coefficients of
MPM 4 obtained with the two methods mentioned in Sections 4.2.1 and 4.2.2. The input

voltage of the white noise was 100 mV.
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Figure 4.3: Comparison of the measured and estimated sound absorption coefficients of
MPM 4 obtained with the two methods mentioned in Sections 4.2.1 and 4.2.2. The input

voltage of the white noise was 200 mV.

higher than 0.95 over the measured frequency range, except for the frequencies around the

tube resonance frequency, 1250 Hz. As for the stepped sine sweep sound signal, all the

coherences were equal to unity, implying a better distortion immunity than for white noise.

95



4.2. Validation of experimental method

200 400 600 800 1000 1200 1400 1600
0

0.2

0.4

0.6

0.8

1

Frequency (Hz)

So
un

d 
ab

so
rp

tio
n 

co
ef

fi
ci

en
t α

 

 

Stepped sine sweep with V=100 mV

Transfer function between each
microphone and sound source
Transfer function between two microphones

Figure 4.4: Comparison of the measured and estimated sound absorption coefficients of
MPM 4 obtained with the two methods mentioned in Sections 4.2.1 and 4.2.2. The input

voltage of the stepped sine sweep was 100 mV.
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Figure 4.5: Comparison of the measured and estimated sound absorption coefficients of
MPM 4 obtained with the two methods mentioned in Sections 4.2.1 and 4.2.2. The input

voltage of the stepped sine sweep was 200 mV.

The consistence of the measured and estimated sound absorption coefficients and the

unity values for coherence illustrate that whilst the impedance is affected by the magnitude

of the incident SPL in a non-linear regime, the relationship between the incident and re-
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Figure 4.6: Comparison of the measured coherence between each microphone and the
sound source with that between the two microphones, using the two methods mentioned in

Sections 4.2.1 and 4.2.2. The input voltage of the white noise was 100 mV.
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Figure 4.7: Comparison of the measured coherence between each microphone and the
sound source with that between the two microphones, using the two methods mentioned in

Sections 4.2.1 and 4.2.2. The input voltage of the white noise was 200 mV.

flected sounds remains linear. Therefore, the sound propagation in the upstream side of the

impedance tube is linear and the two-microphone transfer-function method is still valid in

the case of an MPM excited by high SPLs in a non-linear regime.
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Figure 4.8: Comparison of the measured coherence between each microphone and the
sound source with that between the two microphones, using the two methods mentioned in

Sections 4.2.1 and 4.2.2. The input voltage of the stepped sine sweep was 100 mV.
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Figure 4.9: Comparison of the measured coherence between each microphone and the
sound source with that between the two microphones using the two methods mentioned in

Sections 4.2.1 and 4.2.2. The input voltage of the stepped sine sweep was 200 mV.
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4.3 Experimental findings on the non-linearity of the sound

absorption of MPMs under high SPL excitation
This section presents the experimental findings of the non-linear effects of high SPL ex-

citation with different sound signals on the sound absorption of thin flexible MPMs over a

broadband frequency range. The sound pressure levels used as excitation varied from 15

dB re 20 µPa to 143 dB re 20 µPa. Interesting non-linear properties of MPMs have been

observed even at relatively “low” SPLs. The set-up of the experiments are presented in Sec-

tion 4.2.1. The non-linear effects of high SPL excitation with different sound signals are

discussed in Sections 4.3.2 and 4.3.3. The effects of the different types of sound signals are

presented in Section 4.3.5. Based on these experimental findings and analysis, suggestions

as to the impact on sound absorption tests have been made in Sections 4.3.5 and 4.3.6.

4.3.1 Measurement of the sound absorption of MPMs under high SPL

excitation
To investigate the non-linear sound absorption of MPMs under high excitation, the sound

absorption experiments of an MPM were conducted with a normally-incident plane wave

in an impedance tube, which is described in Section 4.2.1. The parameters of the MPM

sample are presented in Section 4.3.1.1. The SPL of each microphone arising from the sound

source was measured simultaneously with the sound absorption coefficient measurement of

the MPM. The properties of the two groups of sound signals (broadband and monochromatic)

are discussed in Section 4.3.1.2. Since the aim of this section is to investigate the effect

of high SPL on the sound absorption of the MPM, the SPL at each individual excitation

frequency varies from 15 dB to 143 dB, as presented in Section 4.3.1.3. The measured sound

absorption under varying SPL excitations are analysed in Sections 4.3.2 and 4.3.3.

4.3.1.1 Parameters of the MPM sample

The MPM sample used in this section is identical with the MPM 4 used in Section 3.3.1.

As discussed in Chapter 3, the sound absorption of the MPMs 1 to 3 are mainly due to the

membrane vibration as their perforations are so small that air flow can barely travel through

the perforations. Since this chapter aims to investigate the non-linear sound absorption of

MPMs under high excitation and the non-linearity is closely related to the flow travelling
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through the perforations, MPMs 1 to 3 are unsuitable, and thus only MPM 4, with large

perforation radius, is used here. The parameters of MPM 4 are re-clarified in Table 4.1.

In the sound absorption experiments, the MPM was tested with an air cavity and a rigid

backing wall. The depth of the air cavity between the sample and the rigid wall was 25

mm. As mentioned in Chapter 3, the effective sound absorption coefficient is sensitive to

the mounting condition (in particular the tension) of the MPM sample. Hence, all tests were

conducted contiguously without disturbing the sample.

Table 4.1: Measured MPM parameters
Samples Surface density

ρp (kg/m2)
Hole radius
r0 (mm)

Thickness
h (mm)

Perforation ratio
δ (%)

MPM 4 0.2506 0.2553 0.17 0.73

4.3.1.2 Sound sources: white noise and a sine sweep

The source signal was generated by a Brüel & Kjær Photon Plus system. The signal from

the Photon Plus was amplified by a power amplifier to drive the loudspeaker. The SPLs in

the impedance tube were adjusted by changing the input voltage into the power amplifier of

the sound source in the Photon Plus. The input voltage varied from 0.1 mV to 200 mV (over

a range of three orders of magnitude).

Multiple types of source signals have been used for excitation, which can be categorised

into two types: broadband and monochromatic signals. The broadband signals investig-

ated here included white noise (Gaussian distribution), uniform random, pseudo random and

burst random signals. Monochromatic signals investigated included a stepped sine sweep

and a chirp with a linear sweep rate of 52 Hz/second. Sound absorption measurements were

conducted with all of the aforementioned source signals. Similar non-linear behaviours were

observed for each group of source signals. Therefore, in this chapter, white noise represents

the broadband excitation and the stepped sine sweep represents the monochromatic excita-

tion.

White noise is commonly used in sound absorption experiments, as it drives all audible

frequencies simultaneously in the desired frequency range; in this case from 200 Hz to 1600

Hz. Conversely, the stepped sine sweep is usually used to measure the frequency response

when good noise immunity is required or the system response is non-linear. This source

signal was configured to scan the desired frequencies from 200 Hz to 1600 Hz over a 10
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minute time span. When using a stepped sine sweep, the sound energy is concentrated at a

single frequency. Therefore, the SPL arising from a stepped sine sweep is higher than that

of white noise at a specific frequency for a given voltage. The estimated SPLs at the MPM

surface for the two excitation types shown in Figures 4.10 and 4.11 demonstrate this.

4.3.1.3 High SPL excitation

To investigate the effect of the incident SPL on the sound absorption of the MPM, it is crucial

to obtain the SPL on the surface of the MPM. However, the microphones were placed in the

positions shown in Figure 4.1, neither of which were at the surface of the MPM. Based

on the plane wave assumption and the distances between the microphones and the MPM

sample given in Figure 4.1, the incident SPL on the MPM surface was estimated using the

measured transfer function (Chung & Blaser 1980a) and the total sound pressure measured

with Microphone 1. Figures 4.10 and 4.11 illustrate the estimated SPL at the surface of the

MPM sample excited by white noise and stepped sine sweep signals, respectively. The data

was sampled at 4096 Hz, with a 212 point FFT, giving a 1 Hz bin width.
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Figure 4.10: Estimated sound pressure level (SPL dB re 20 µPa) of the incident sound at
the surface of the MPM with white noise excitation. The input voltage ranges from 0.1 mV

to 200 mV. The resultant overall SPLs are detailed in the legend.

Figures 4.10 and 4.11 show that with the increase of the input voltage, the SPL on the

membrane surface increases, regardless of the type of sound source signal. As presumed
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in Section 4.3.1.2, the SPL of the sine sweep (see Figure 4.11) is constantly higher than

that of white noise (see Figure 4.10) when the input voltage is identical, due to the different

methods of white noise and sine sweep noise generation. The peaks and valleys in the SPL

plots shown in Figures 4.10 and 4.11 are associated with axial resonances due to the finite

length of the impedance tube. When the input voltage is as low as 0.1 mV, the measured

SPLs for both sound source signals are noisy due to the poor coherence between the two

microphones. Note that the microphones are rated to SPLs of up to 140 dB re 20 µPa

(Kinsler et al. 1999). The majority of estimated SPLs were lower than 140 dB re 20 µPa,

except a few of those in the low frequency range with the stepped sine sweep excitation at

the maximum input voltage. It is not expected that these levels have diminished the accuracy

of the measurements since the coherence has remained high.
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Figure 4.11: Estimated sound pressure level (SPL dB re 20 µPa) of the incident sound at
the surface of the MPM with a stepped sine sweep excitation. The input voltage ranges

from 0.1 mV to 200 mV.

The curves in Figure 4.11 are smoother than those in Figure 4.10, illustrating the bet-

ter noise immunity of the stepped sine sweep noise. Note that the valley around 1250 Hz

represents a structural resonance of the impedance tube, which was confirmed suing accel-

erometers measured to the tube. The structural resonance of the impedance tube leads to

additional energy dissipation on the tube surface, and hence causes a decrease in the sound

pressure level around the resonance frequency.
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4.3.2 Sound absorption of MPMs excited by broadband noise
The sound absorption characteristics of the MPM were investigated for broadband excitation.

This included white noise (Gaussian distribution), uniform random noise, pseudo random

noise, burst random noise and pink noise.
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Figure 4.12: Measured sound absorption coefficients of the MPM with white noise
excitation. The input voltage ranged from 0.1 mV to 200 mV. The corresponding SPL at

the membrane surface is shown in Figure 4.10.

In this section, the sound absorption properties of the MPM, excited by white noise of

varying amplitudes, are discussed. The results for all other broadband excitations were sim-

ilar. Figure 4.12 illustrates that the sound absorption curves are consistent for the input

voltages from 0.1 mV to 10 mV. Note that at 10 mV (SPLoverall = 105 dB re 20 µPa) a small

change is observed which marks the onset of the non-linear behaviour. Therefore, it is reas-

onable to deduce that when the input voltage is below 10 mV, the sound absorption of the

MPM is in the linear regime, where the acoustic impedance of the MPM is dependent on that

of the perforation and the MPM vibration, and is independent of the characteristics of the

excitation type. Comparing Figure 4.12 with Figure 4.10, it is found that the corresponding

SPLs in this linear regime are relatively low, with no individual frequency exceeding 85.5 dB

re 20 µPa and the overall SPL was equal to or less than 105 dB re 20 µPa, which validates

the earlier conclusion by Maa (1996) that the non-linear effect of the sound source signal
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occurs with high excitation and that the sound absorption is constant for low excitations. For

the lowest amplitude excitation investigated (0.1 mV), the sound absorption curve exhibits

some noise due to the poor coherence between the two microphones. The valleys around

1250 Hz are ascribed to a structural resonance of the impedance tube.

200 400 600 800 1000 1200 1400 1600

−50

0

50

100

150

Frequency (Hz)

S
P

L 
of

 in
ci

de
nt

 s
ou

nd
 w

av
e

(d
B

 r
e 

20
µP

a)

 

 

V=0.1 mV; SPL
overall

=66.1 dB re 20µPa

V=0.5 mV; SPL
overall

=77.1 dB re 20µPa

V=1 mV; SPL
overall

=83.4 dB re 20µPa

V=5 mV; SPL
overall

=101 dB re 20µPa
 

 

V=10 mV; SPL
overall

=108 dB re 20µPa

V=50 mV; SPL
overall

=122 dB re 20µPa

V=100 mV; SPL
overall

=128 dB re 20µPa

V=200 mV; SPL
overall

=133 dB re 20µPa

Figure 4.13: Estimated sound pressure level (SPL dB re 20 µPa) of the incident sound at
the surface of the MPM with uniform random excitation. The input voltage ranges from

0.1 mV to 200 mV.

As the input voltage is increased to levels between 50 mV (SPLoverall = 119 dB re 20

µPa) and 200 mV (SPLoverall = 129 dB re 20 µPa), the incident sound pressure on the MPM

surface increases as does the sound absorption of the MPM. It should be noted that when

the non-linearity starts to affect the sound absorption, the overall incident SPL is 119 dB

re 20 µPa and the SPLs at individual frequencies do not exceed 101 dB re 20 µPa. These

values are significantly lower than the SPLs that have been considered to cause non-linear

effects on MPPs in previous research, such as the theoretical value of 129 dB (Maa 1996)

and the experimental value of 145 dB (Tayong et al. 2010). This implies that in the case of

MPMs, even moderate incident SPLs can result in significant non-linear effects on the sound

absorption coefficient.

The increase of the sound absorption coefficient in the non-linear regime is commonly

ascribed to the increase of the sound resistance due to the high incident SPL on the sample

surface and the effect of the reactance is usually neglected (Ingard & Ising 1967, Tayong
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Figure 4.14: Measured sound absorption coefficients of the MPM with uniform random
excitation. The input voltage ranged from 0.1 mV to 200 mV. The corresponding SPL at

the membrane surface is shown in Figure 4.13.
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Figure 4.15: Measured coherences between two microphones with uniform random
excitation. The input voltage ranged from 0.1 mV to 200 mV.

et al. 2010). However, it is known that the peak absorption frequency of the MPM absorber

is dependent on the reactance of the absorber system (i.e., the MPM and the air cavity). In

Figure 4.12, the sound absorption peak of the MPM absorber is reduced in frequency as

the sound pressure increases. Hence, it is deduced that the non-linearity due to the high
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Figure 4.16: Estimated sound pressure level (SPL dB re 20 µPa) of the incident sound at
the surface of the MPM with pseudo random excitation. The input voltage ranges from

0.1 mV to 200 mV.
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Figure 4.17: Measured sound absorption coefficients of the MPM with pseudo random
excitation. The input voltage ranged from 0.1 mV to 200 mV. The corresponding SPL at

the membrane surface is shown in Figure 4.16.

level white noise excitation affects not only the resistance but also the reactance of the MPM

absorber.

It should be noted that for all the cases considered, the coherence between the two mi-

106



4.3. Experimental findings on the non-linearity of the sound absorption of MPMs under
high SPL excitation

200 400 600 800 1000 1200 1400 1600
0

0.2

0.4

0.6

0.8

1

Frequency (Hz)

C
oh

er
en

ce

 

 

V=0.1 mV; SPL
overall

=85 dB re 20µPa

V=0.5 mV; SPL
overall

=76.5 dB re 20µPa

V=1 mV; SPL
overall

=82.9 dB re 20µPa

V=5 mV; SPL
overall

=101 dB re 20µPa

 

 

V=10 mV; SPL
overall

=107 dB re 20µPa

V=50 mV; SPL
overall

=127 dB re 20µPa

V=100 mV; SPL
overall

=127 dB re 20µPa

V=200 mV; SPL
overall

=133 dB re 20µPa

Figure 4.18: Measured coherences between two microphones with pseudo random
excitation. The input voltage ranged from 0.1 mV to 200 mV.
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Figure 4.19: Estimated sound pressure level (SPL dB re 20 µPa) of the incident sound at
the surface of the MPM with burst random excitation. The input voltage ranges from

0.1 mV to 200 mV.

crophone signals remained in excess of 0.982 with the exception of the 0.1 mV case, which

suffered from a poor signal to noise ratio, and the frequencies around 1250 Hz which were

affected by the structural resonance. Moreover, the transfer function between each micro-

phone and the sound source was measured and the corresponding coherence was close to

107



4.3. Experimental findings on the non-linearity of the sound absorption of MPMs under
high SPL excitation

200 400 600 800 1000 1200 1400 1600
0

0.2

0.4

0.6

0.8

1

Frequency (Hz)

So
un

d 
ab

so
rp

tio
n 

co
ef

fi
ci

en
t α

 

 

V=0.1 mV; SPL
overall

=64.5 dB re 20µPa

V=0.5 mV; SPL
overall

=73.3 dB re 20µPa

V=1 mV; SPL
overall

=72.8 dB re 20µPa

V=5 mV; SPL
overall

=91.2 dB re 20µPa

 

 

V=10 mV; SPL
overall

=104 dB re 20µPa

V=50 mV; SPL
overall

=118 dB re 20µPa

V=100 mV; SPL
overall

=124 dB re 20µPa

V=200 mV; SPL
overall

=130 dB re 20µPa

Figure 4.20: Measured sound absorption coefficients of the MPM with burst random
excitation. The input voltage ranged from 0.1 mV to 200 mV. The corresponding SPL at

the membrane surface is shown in Figure 4.19.
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Figure 4.21: Measured coherences between two microphones with burst random excitation.
The input voltage ranged from 0.1 mV to 200 mV.

unity. The sound absorption coefficient was estimated using these transfer functions and the

estimated sound absorption coefficient was found to be identical to that measured using the

transfer function between the two microphones. This shows that whilst the impedance is af-

fected by the magnitude of the incident SPL, the relationship between the incident sound and
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Figure 4.22: Estimated sound pressure level (SPL dB re 20 µPa) of the incident sound at
the surface of the MPM with pink noise excitation. The input voltage ranges from 0.1 mV

to 200 mV.
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Figure 4.23: Measured sound absorption coefficients of the MPM with pink noise
excitation. The input voltage ranged from 0.1 mV to 200 mV. The corresponding SPL at

the membrane surface is shown in Figure 4.22.

reflected sound remains linear. It is therefore demonstrated that, when conducting measure-

ments of sound absorption coefficients, the results will vary depending on the sound pressure

level, despite keeping levels relatively ”low” and maintaining adequate coherence between
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Figure 4.24: Measured coherences between two microphones with pink noise excitation.
The input voltage ranged from 0.1 mV to 200 mV.

the source and microphones.

Besides white noise, other broadband sound source signals, including uniform random

noise, pseudo random noise, burst random noise and pink noise, were used for the invest-

igation of the MPM non-linearity. Figures 4.13 to 4.24 show the estimated incident SPL

at the surface of the MPM, the measured sound absorption coefficients and the coherences

between the two microphones, when the MPM was excited by other broadband sound source

signals, respectively. Similar conclusions are obtained to those with white noise. Therefore,

the conclusions on the non-linear properties of the MPM are valid not only for white noise

with Gaussian distribution but also for many broadband sound source signals.

4.3.3 Sound absorption of MPMs excited by a monochromatic source
The sound absorption coefficient of the MPM was also investigated using monochromatic

source signals. A stepped sine sweep was used, as well as a chirp with a sweep rate of 52

Hz/second.

This section investigates the sound absorption of the MPM absorber with a stepped sine

sweep excitation with an input voltage varying from 0.1 mV to 200 mV. The results for

the chirp were similar. When the input voltage is lower than 1 mV and the incident SPLs

at individual frequencies do not exceed 101 dB re 20 µPa as shown in Figure 4.11, the
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sound absorption properties of the MPM absorber are in a linear regime and the results are

independent of the incident SPL as shown in Figure 4.25. There are noisy peaks on the sound

absorption curve for an input voltage of 0.1 mV due to the low signal to noise ratio and thus

the poor coherence between the two microphones. The dips around 1250 Hz arising from

the structural resonance of the impedance tube are also observed for these curves.

In the non-linear regime, where the input voltage is equal to 5 mV and higher, the sound

absorption coefficient of the MPM absorber increases with the increasing incident SPL. Note

that for the stepped sine sweep excitation, the incident SPL at which the non-linearity starts

to occur varies with frequency but is in the range of 80 dB re 20 µPa to 112 dB re 20 µPa (the

frequencies around the tube resonance frequency were excluded), which is also significantly

lower than that mentioned in previous studies.
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Figure 4.25: Measured sound absorption coefficients of the MPM with a stepped sine sweep
excitation. The input voltage ranged from 0.1 mV to 200 mV. The corresponding SPL at

the membrane surface is shown in Figure 4.11.

Unlike the smooth curves in the non-linear regime obtained with white noise excitation,

the sound absorption coefficient of the MPM under a stepped sine sweep excitation oscillates

with frequency, exhibiting small peaks at regular frequency intervals, such as 504 Hz, 633

Hz, 770 Hz and 914 Hz. Note that these small peaks are neither previously mentioned by

other researchers nor observed in the curves with white noise excitation. Moreover, the sound

absorption coefficients with pure tone signals were measured at these frequencies when the
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Figure 4.26: Measured sound absorption coefficients (solid line) of the MPM with a stepped
sine sweep excitation versus the incident SPL (dashed line). The input voltage was 50 mV.
The thin dashed lines show the frequencies of the local SPL maxima and the corresponding

peaks on the sound absorption curve.

input voltage was 10 mV. The measured sound absorption coefficients with pure tones were

similar to those with a stepped sine sweep excitation at these frequencies and the small peaks

were also observed. Comparing the measured sound absorption coefficients in Figure 4.25

with the estimated SPLs in Figure 4.11, it is observed that these peaks in the measured sound

absorption curves align with the SPL peaks due to the axial resonances in the impedance

tube, as is demonstrated in Figure 4.26. The thin dashed lines show the frequencies where

the SPLs peak. Although the frequencies of the small peaks in the sound absorption curve are

slightly higher than those of the local peaks in the SPL curve, the correspondence between

these frequencies is clear. This correspondence indicates the non-linear effect of the high

incident SPL on the sound absorption of the MPM absorber and further indicates that the

sound absorption coefficient is related to the incident SPL on the MPM surface. The physical

reasons for these non-linear phenomena are discussed in Sections 4.3.4 and 4.3.5.

Alongside the stepped sine sweep, a chirp (with a sweep rate of 52 Hz/second) was used

to investigate the non-linear sound absorption of the MPM. Figures 4.27 to 4.29 show the es-

timated incident SPL at the surface of the MPM, the measured sound absorption coefficients

and the coherences between the two microphones when the MPM was excited by the chirp
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noise. Similar conclusions are obtained to those with a stepped sine sweep. Figure 4.30

illustrates the correspondence between the measured sound absorption coefficient and the

estimated incident SPL of the MPM excited by an input voltage of 50 mV, which is similar

to that observed with a stepped sine sweep at the same input voltage. It is concluded that

these non-linear properties of the MPM are valid for a broad range of monochromatic source

signals.
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Figure 4.27: Estimated sound pressure level (SPL dB re 20 µPa) of the incident sound at
the surface of the MPM with a chirp excitation. The input voltage ranges from 0.1 mV to

200 mV.
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Figure 4.28: Measured sound absorption coefficients of the MPM with a chirp excitation.
The input voltage ranged from 0.1 mV to 200 mV. The corresponding SPL at the

membrane surface is shown in Figure 4.27.
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Figure 4.29: Measured coherences between two microphones with a chirp excitation. The
input voltage ranged from 0.1 mV to 200 mV.
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Figure 4.30: Measured sound absorption coefficients (solid line) of the MPM with a chirp
excitation versus the incident SPL (dashed line). The input voltage was 50 mV. The thin

dashed lines show the frequencies of the local SPL maxima and the corresponding peaks on
the sound absorption curve.
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4.3.4 Reynolds number and the non-linear sound absorption of MPMs
The acoustic non-linearity of an orifice or micro perforates is ascribed to the flow dynamics

within and behind the orifice or the micro perforates (Ingard & Ising 1967, Tayong et al.

2011). Ingard & Ising (1967) indicated that with high SPL excitation, the incoming irrota-

tional flow becomes rotational and hence forms a vortex and the flow separates behind the

orifice. Therefore, the commonly accepted indicator Reynolds number is utilised in this

section to study the flow properties.

The Reynolds number, Re in a pipe is defined as (Wang 1981)

Re =
2r0 v

σ
, (4.4)

where σ is the dynamic viscosity, and v denotes the particle velocity in the perforations of the

MPM. The particle velocity v in the perforations is unable to be measured directly because

of the limited size of the perforations. However, it can be calculated based on the volume

velocity continuity on the surface of the MPM. Using the two microphone transfer function

method, the acoustic velocity on the surface of the MPM is given by (Tayong et al. 2010) as

vsurface = j
p1

ρ0 c0

H cos(k0 l1)− cos(k0 l2)
sin(k0 s)

, (4.5)

where p1 denotes the measured sound pressure on microphone 1, H denotes the measured

transfer function between two microphones, k0 denotes the wavenumber in air which is ex-

pressed as k0 =
ω

c0
= 2π f

c0
. As shown in Figure 4.1, in this study l1 = 56 mm, s = 24 mm and

hence l2 = l1−s = 32 mm. Consequently, the particle velocity in the perforations is obtained

as

v =
vsurface

δ
. (4.6)

Figure 4.31 shows the measured Reynolds numbers of the particle velocity in the MPM

perforations with a stepped sine sweep and white noise when the input voltage increased

from 100 µV to 0.2 V. All the curves of the Reynolds numbers follow the same patten due

to the acoustic characteristics of the impedance tube, i.e. the oscillatory sound pressure in

the axial behaviour of the acoustic field and the structural vibration of the impedance tube

around 1250 Hz. However, the values of the Reynolds numbers differ and are proportional

to the incident sound pressure and hence the particle velocity in the perforations based on

Equations (4.6) and (4.4).
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Figure 4.31: Measured Reynolds numbers of the particle velocity in the MPM perforations
with a sine sweep and white noise. The input voltage varied from 0.1 mV to 200 mV.

4.3.5 Effects of the type of sound excitation on the sound absorption of

MPMs
In Sections 4.3.2 and 4.3.3, the effect of the incident SPL on the sound absorption of the

MPM has been studied with broadband noise and monochromatic noise excitation. It is

found that when the incident SPL is lower than the threshold SPL, the sound absorption

coefficient is independent of the incident SPL, demonstrating the linear phenomenon of the

sound absorption of MPMs under low SPL excitation. The sound absorption coefficient of

the MPM increases with the increase of the incident SPL, when the incident SPL is higher

than the threshold SPL, which implies a non-linearity of the sound absorption of MPMs

under high SPL excitation. These main trends are valid for both the white noise and stepped

sine sweep signals. Furthermore, they are valid for both broadband noise and monochromatic

source signals, although the threshold SPL is different with different sound source signals.

There are small peaks at some specific frequencies observed in the sound absorption

coefficient curves of the MPM when excited by a stepped sine sweep; however, these peaks

are not observed when the MPM is excited by white noise. Moreover, it is found in Section

4.3.3 that these small peaks are associated with the peaks of the SPL, which are ascribed to

resonances in the axial direction. Therefore, it is clear that the sound absorption of the MPM
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is affected by the type of sound source signal. This section aims to investigate the effect

of different sound source signals on the sound absorption of the MPM, for both linear and

non-linear regimes.

4.3.5.1 Effect of the type of sound sources on the sound absorption of MPM in a linear

regime

This section compares the sound absorption coefficients of the MPM excited by a sine sweep

and white noise in the linear regime. Since the sound absorption of the MPM in the linear

regime is dependent only on the perforations and the MPM vibration, the measured sound

absorption coefficients in the linear regime should be consistent, irrespective of the sound

source signal by which they are excited.

Figure 4.32 shows the measured sound absorption coefficients of the MPM excited by

a sine sweep and white noise, with the same input voltage of 5 mV. This input voltage

is relatively small and the sound absorptions of the MPM excited by both a sine sweep

and white noise are in the linear regime. Therefore, based on the presumption mentioned

in this section, the measured sound absorption curves in Figure 4.32 should be identical.

However, it is found that the sound absorption coefficient with white noise is slightly higher

than that with a sine sweep in the frequency range from 250 Hz to 580 Hz, while the former is

slightly lower than the latter, ranging between 620 Hz and 1300 Hz. The observed differences

between the sound absorption coefficients of the MPM excited by a sine sweep and white

noise are considered insignificant within experimental error.

Similar small differences have been observed by Chung & Blaser (1980b) when measur-

ing the sound absorption coefficient of foams. They measured the sound absorption coeffi-

cients of five samples which were cut from the same foam and found that the sound absorp-

tion coefficients slightly differed. They ascribed these differences to the non-uniformities

of the foam sample and the effects of cutting and mounting conditions. However, since

the MPM sample used here with white noise and a sine sweep is the same one, the differ-

ences observed in Figure 4.32 are possibly due to the mounting conditions. As described

in Chapter 2, the mounting condition of the circular membrane could affect the tension T

and internal damping η , and hence affect the sound absorption coefficient of the membrane.

These differences are sufficiently small that they could be neglected and the sound absorp-

tion coefficients obtained using either the sine sweep or white noise sound source signals can
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Figure 4.32: Measured sound absorption coefficients of the MPM excited by a sine sweep
and white noise with input voltage of 5 mV in linear regime.

be considered identical in this linear excitation regime in which the sound absorption of the

MPM is independent of the incident SPL and the type of sound source signal.

4.3.5.2 Effect of the type of sound sources on the sound absorption of MPM in a non-

linear regime

As described in Sections 4.3.2 and 4.3.3, the sound absorption coefficients of the MPM

increase with the increase of the incident SPL in the non-linear regime. This main trend

is valid for both types of sound source signals investigated: the white noise and the sine

sweep. However, there are small peaks at some specific frequencies in the sound absorption

coefficient curve for the MPM excited by a sine sweep. These small peaks disappear when

the MPM is excited by white noise. Moreover, it is found in Section 4.3.3 that these small

peaks match the peaks of the SPL, which are ascribed to the acoustic resonances in the

axial direction of the impedance tube. Therefore, it is obvious that the sound absorption

of the MPM is affected by the type of the sound source signal in the non-linear regime.

Consequently, it is important to understand the reason why the incident oscillatory SPL has

a more significant effect on the sound absorption of the MPM excited by a sine sweep than

that with white noise.

This section investigates the effect of different sound source signals on the sound absorp-
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tion coefficient of the MPM sample in the non-linear regime. The possible reasons for the

occurrence of the small peaks in the measured sound absorption coefficient curves excited

by a stepped sine sweep with input voltage above the threshold SPL are explored in this

section. The occurrence of the small peaks may be ascribed to the membrane resonance,

the increased depth of the air cavity under high SPL excitation and the time-dependent flow

which leads to the non-linearity of the sound absorption of an orifice and micro perforates

(Ingard & Ising 1967, Tayong et al. 2010). These possible reasons are discussed in Sections

4.3.5.2.1, 4.3.5.2.2 and 4.3.5.2.3, respectively.

4.3.5.2.1 Panel/membrane resonance

As mentioned in Chapter 3, it has commonly been observed by researchers that when thin

MPPs and MPMs are used as sound absorbing materials, the resonance of the material, i.e.

the thin panel or membrane, can affect the sound absorption coefficient significantly. Bravo

et al. (2012) indicated that the resonance of the thin panel leads to additional resonance peaks

on the measured sound absorption curves of thin MPPs and these peaks closely correspond

to the mechanical resonance frequencies of the panel. Therefore, since the MPM used in

this section can vibrate more significantly than MPPs, it is presumed that these small ab-

sorbing peaks observed in Figure 4.25 are possibly due to the mechanical resonances of the

membrane.

To verify this presumption, sound absorption measurements of an MPP sample were

conducted in the same impedance tube under the same condition as mentioned in Section

4.3.1. The structural parameters of the MPP sample are shown in Table 4.2. The air cavity

depth is also 25 mm.
Table 4.2: Measured MPP parameters

Samples Surface density
ρp (kg/m2)

Hole radius
r0 (mm)

Thickness
h (mm)

Perforation ratio
δ (%)

MPP 2.9430 0.3502 3 2.8

The measured sound absorption curves of the MPP excited by white noise and a sine

sweep are shown in Figures 4.33 and 4.34, respectively. Although the non-linear effect

of the incident SPL is not as significant as in the case of the MPM, similar main trends

are observed in the case of the MPP. When the MPP is excited by white noise, the sound

absorption coefficient of the MPP increases with the increase of the incident SPL if the

incident SPL is higher than the threshold SPL. Otherwise, the sound absorption coefficient
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Figure 4.33: Measured sound absorption coefficients of the MPP sample with white noise
excitation. The input voltage varied from 0.1 mV to 200 mV.
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Figure 4.34: Measured sound absorption coefficients of the MPP sample with a sine sweep
excitation. The input voltage varied from 0.1 mV to 200 mV.

is unrelated to the incident SPL.

Unlike the case of the MPM excited by white noise in a non-linear regime, the sound

absorption curves of the MPP excited by white noise with an input voltage of 100 mV and

200 mV have maximum values around the same frequency of 908 Hz. However, as shown in

Figure 4.12, the maximum sound absorption peak of the MPM excited by white noise with
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an input voltage of 100 mV and 200 mV reduces in frequency. Since the maximum sound

absorption peak of an MPP or MPM absorber is dependent on its resistance, this difference

implies that the high SPL excitation affects only the resistance of the MPP, however it has

significant influence on not only the resistance but also the reactance of the MPM.

Moreover, the theoretical resonance frequency of a circular thin panel is given by Kinsler

et al. (1999)

f1 = 0.47
h

R0

√
E

ρp (1−ν2)
, (4.7)

f2 = 3.88× f1, (4.8)

f3 = 8.70× f1, (4.9)

where E denotes the Young’s modulus which is 3.2 GPa for the MPP material investigated,

and ν is the Poisson’s ratio which is 0.3. The first three panel resonance frequencies are

shown in Table 4.3. It is observed that the second and third resonance frequencies are beyond

the measurement range of the impedance tube. Hence there is only one structural resonance

peak in Figure 4.33.
Table 4.3: First three panel resonance frequencies of the MPP sample

Material f1 (Hz) f2 (Hz) f3 (Hz)
MPP 642 2440 5585

When the MPP is excited by a sine sweep, similar linear and non-linear sound absorption

properties are observed, as shown in Figure 4.34. The maximum sound absorption peaks of

all the curves in Figure 4.34 are roughly consistent at 908 Hz. The consistence of these max-

imum sound absorption peaks confirms the conclusion obtained from Figure 4.33 that only

the resistance of MPPs is affected by the high SPL incidence, however, both the resistance

and reactance of MPMs are affected by the incident SPLs.

When the MPP was excited by a sine sweep with incident SPLs higher than the threshold

SPL, small peaks appeared in the sound absorption coefficient curves at 492 Hz, 1090 Hz

and 1360 Hz, which are not observed in Figure 4.33. The occurrence in Figure 4.34 and

disappearance in Figure 4.33 of the small peaks is very similar to the case of the MPM.

It is observed from Figure 4.33 that the panel resonance frequency is 640 Hz. Although

the sound absorption at this resonance frequency increased with the increase of the incident

SPL with a stepped sine sweep, this frequency mismatched the frequencies where the small
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peaks observed in Figure 4.34. There is only one panel resonance peak observed in Figure

4.33, however, there are several small peaks in absorption observed in Figure 4.34. Hence,

it is concluded that these peaks in absorption are unrelated to the panel resonance. There-

fore, the presumption that these small absorbing peaks have arisen from the panel/membrane

resonance is proved to be invalid.

4.3.5.2.2 Increased depth of air cavity

Since the MPM is lightweight and flexible, it is reasonable to deduce that the MPM could be

curved when excited by sound waves. The curvature under sound excitation affects the depth

of the air cavity between the MPM and the rigid termination of the impedance tube. This

changed air cavity depth could be a reason for the occurrence of the small peaks observed in

Figure 4.25.

To verify this presumption, the distance between the MPM sample and a rigid transpar-

ent termination of the impedance tube was measured using a laser sensor whilst the source

was driven with a white noise and sinusoidal wave excitation. The measurement set-up is

shown in Figure 4.35. The impedance tube is identical with that mentioned in Section 4.2.1,

however, to measure the distance, a transparent termination made of plastic was utilised in-

stead of the rigid end. A laser sensor, with a measurement error of ±0.02 mm, was directly

connected to the transparent end. Consequently, the laser signal was able to transmit through

the transparent wall of a thickness of 7 mm and the distance between the MPM and the

transparent wall was measured. Note that the air cavity depth was increased from 25 mm to

67.43±0.02 mm.

Impedance tube

Sound source
Samples

Transparent backing 

wall

Air cavity

Microphones
1 2

       D

Measured 

distance24 mm

56 mm1090 mm

Laser sensor

Figure 4.35: Measurement of the distance between the MPM sample and a rigid transparent
termination of the impedance tube.
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Since two types of sound source signals are of interest in this thesis, both white noise and

sinusoidal waves were used to excite the MPM when the distance was measured. The input

voltages of white noise were 100 mV and 200 mV. Sinusoidal waves at specific frequencies

were utilised to represent the frequency response of the sine sweep sound source. The in-

put voltages of the sinusoidal waves corresponded to the maximum used in Section 4.3.1.2,

namely 200 mV. Additionally, the distance from the MPM sample to the transparent end was

also measured without the sound excitation as a control group.
Table 4.4: Measured distance from the MPM sample to the transparent end

Excitation Measured distance from the MPM sample to the transparent end (mm)
No excitation (Control group) 67.43±0.02
White noise at 100 mV 67.45±0.02
White noise at 200 mV 67.62±0.02

The measured distance with white noise excitation is shown in Table 4.4. The distance

with white noise at 200 mV is 0.19± 0.02 mm higher than the measured distance without

sound excitation. When the input voltage is 100 mV, the difference between the measured

distance and the control group is less than the measurement error of the laser sensor. Hence,

the distance measured at 100 mV is considered identical to the control group. Therefore, it is

concluded that white noise can increase the cavity depth only when the input voltage is at the

maximum level investigated in this study, otherwise, the cavity depth is independent of the

level of the white noise. Comparing this conclusion with the findings obtained from Figure

4.12, it is deduced that the increased cavity depth due to white noise excitation is unrelated

to the increase of the sound absorption coefficient of the MPM.

To evaluate the effect of a sine sweep on the measured distance between the MPM sample

and the transparent end, two measurements were conducted. In the first measurement, the

MPM was excited with sinusoidal waves at the frequencies where these small sound absorb-

ing peaks occur in Figure 4.25 with the maximum input voltage considered in this study.

The distance between the MPM and the transparent wall was measured at these frequencies

to illustrate the relationship between these small peaks in the sound absorption curves and

the increased distance under high SPL excitation. The distances when the MPM was excited

by sinusoidal waves at the frequencies in the vicinity of the valleys in the sound absorption

curves were also measured for comparison. The measured frequencies are indicated in Table

4.5. The first measurement results are shown in Figure 4.36, and compared with the sound
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absorption coefficient curves with a sine sweep excitation.
Table 4.5: Frequencies used for the distance measurement where the peaks and valleys in

the sound absorption curves occur in Figure 4.25 with the maximum input voltage of
200 mV.

Frequency Frequencies with Frequencies with
number absorption peaks (Hz) absorption valleys (Hz)
1 504 517
2 633 683
3 770 809
4 914 N/A
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Figure 4.36: Measured cavity depth at frequencies given by Table 4.5 compared with the
sound absorption coefficients of the MPM excited by a stepped sine sweep with input

voltage ranging from 0.1 mV to 200 mV. Indicated cavity depths are for 200 mV input
voltage.

It is found in Figure 4.36 that although the cavity depth differed from the no-excitation

depth of 67.43 mm due to the high SPL excitation at a number of the frequencies given in

Table 4.5, the change in the cavity depth did not correspond for all of the peaks and valleys in

the sound absorption curves in Figure 4.25. Moreover, the depth increased more significantly

at frequencies from 504 Hz to 683 Hz. By contrast, at the frequencies from 770 Hz to 914 Hz,

the cavity depths are roughly identical to those without sound excitation. This implies that

the incident SPL has a more significant effect on the MPM in the lower range of frequency

investigated here than in a middle or high frequency range.
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Figure 4.36 illustrates that high SPL can increase the cavity depth at the specific frequen-

cies shown in Table 4.5. The relationship between the frequency and the cavity depth over

the measured frequency range is unclear. Hence, a second measurement was conducted to

clarify the change of the cavity depth over a broad frequency range. The experimental ar-

rangement was identical with that used in the first measurement, except that the frequencies

were the discrete frequencies from 250 Hz to 1600 Hz with an index of 50 Hz. The measured

cavity depth is shown in Figure 4.37, with error bars which illustrate the measurement error

of the laser sensor.
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Figure 4.37: Measured cavity depth at the discrete frequencies from 250 Hz to 1600 Hz
with an index of 50 Hz when the MPM was excited by a sine sweep with input voltage of

200 mV.

Figure 4.37 indicates that high sound excitation increases the cavity depth of the MPM

absorber in the frequency range below 800 Hz. The cavity depth is identical to that measured

without sound excitation in the frequency range above 800 Hz. This finding conforms to the

conclusion obtained in the first measurement that the cavity depth increases significantly at

frequencies from 504 Hz to 683 Hz; however, the cavity depths are roughly identical to that

without sound excitation at frequencies from 770 Hz to 914 Hz.

Figures 4.36 and 4.37 illustrate that although the cavity depth can be increased with high

SPL excitation in the low frequency range, the increased cavity depths do not correspond

solely to the small sound absorbing peaks observed in Figure 4.25. This implies that the
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increased cavity depth is unrelated to the small sound absorbing peaks of the MPM excited

by a sine sweep in the non-linear regime. Considering the data obtained in the cavity depth

measurement with white noise (shown in Table 4.4), it is further deduced that high SPL

excitation, no matter what type the sound source signal is, can increase the cavity depth of

the MPM, especially in the low frequency range. However, this increased cavity depth is

unrelated to the increase of the sound absorption coefficient of the MPM in the non-linear

regime.

4.3.5.2.3 Time-dependent flow

Previous research (Bodén 2007, Ingard & Ising 1967, Tayong et al. 2010) indicated that

when excited by high SPLs, the non-linear acoustic impedance of micro perforated panels

and orifices in a rigid baffle is dependent on the resulting fluid dynamics. Ingard & Ising

(1967) showed that the non-linearity of the sound absorption of an orifice in a rigid baffle

is due to the rotational flow and resulting vortex on the opposite side of the orifice. On the

upstream side of the orifice, the air flow is irrotational. When the air flow travels through

the orifice it becomes rotational and forms vortices, which increase in magnitude with an

increase in incident SPL. They further indicated that the real part of the acoustic impedance,

namely the resistance, is proportional to the amplitude of the air particle velocity within the

orifice. The rotational flow and resulting vortex on the rear of the baffle are time dependent

and based on Bernoulli’s law.

This time-dependent flow offers an explanation for the occurrence of these small peaks

in the sound absorption curves of the MPM excited by a stepped sine sweep in Figures 4.25

and 4.26. Bodén (2007) investigated the non-linear impedance of perforates under high SPL

excitation and indicated that pure tone excitation leads to a non-linear impedance depend-

ent on the acoustic particle velocity at the frequency of the pure tone, however, broadband

excitation leads to a non-linear impedance at a certain frequency dependent on the acoustic

particle velocities at other frequencies. In other words, the acoustic impedance of perforated

panels is decoupled in the frequency domain when a monochromatic source signal, such as

a pure tone, is used. However, when perforated panels are excited by a broadband excita-

tion, such as white noise, their impedance at a particular frequency is dependent on multiple

frequency components because of the time dependence of the flow and associated vortices.

Hence, in the case of the MPM excited by a stepped sine sweep, the non-linear impedance

127



4.3. Experimental findings on the non-linearity of the sound absorption of MPMs under
high SPL excitation

of the MPM is dependent on the particle velocity arising from the high SPL at the excitation

frequency. Only this particular frequency component contributes to the sound absorption

and other frequency components are decoupled. By contrast, when white noise is used,

the non-linear impedance of the MPM is related to the particle velocities over a broadband

frequency range. The flows arising from each of the frequency components couple with

each other and all the frequency components of the broadband white noise contribute to the

overall impedance. Consequently, the sound absorption curves of the MPM with white noise

are smoother than those with the stepped sine sweep due to the coupling of the frequency

components. Therefore, the small peaks in the sound absorption curves are observed only for

monochromatic source signals, such as the stepped sine sweep and chirp noise, and match the

peaks of the incident SPLs (as shown in Figures 4.25 and 4.26). With broadband excitation,

the sound absorption curves are smooth due to the frequency coupling over a broadband

frequency range, as shown in Figure 4.10.

Since the non-linear sound absorption of the MPM is dependent on the incident SPL, the

sound absorption coefficients at similar SPLs were compared to further investigate the effect

of excitation type. It is found in Figures 4.10 and 4.11 that the SPL curve with white noise

at 50 mV is very close to that with a stepped sine sweep at 1 mV. Figure 4.38 compares the

measured sound absorption coefficients of the MPM with a stepped sine sweep and white

noise at the two voltages and the corresponding SPLs over the measured frequency range.

In Figure 4.38, the solid curve is the measured sound absorption coefficient of the MPM

excited by a stepped sine sweep at 1 mV and the dashed curve represents that excited by

white noise at 50 mV. It is observed that the measured sound absorption coefficient with

white noise is higher than that with a stepped sine sweep over a large frequency range, except

at frequencies around the tube resonance frequency of 1250 Hz. Comparison of Figures 4.10

and 4.11 shows that the corresponding incident SPLs are roughly equal, implying that the

increase in sound absorption with white noise excitation is not associated with the magnitude

of the incident SPL.

As mentioned previously, Ingard & Ising (1967) verified that the non-linearity of the

sound absorption of an orifice is due to the rotational flow and resulting vortex on the rear of

the perforations, which are time dependent. Hence, it is deduced that the dynamics of the air

flows excited by a stepped sine sweep and white noise differ in the time domain.
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Figure 4.38: Measured sound absorption coefficients of the MPM excited by a stepped sine
sweep with input voltage of 1 mV (solid line) and white noise with input voltage of 50 mV
(dotted line), and correspondingly measured SPLs (dashed line for a stepped sine sweep and

dashed-dotted line for white noise).

As described in Section 4.3.1.2, the stepped sine sweep excitation scans the measured

frequency range over a period of 10 minutes and excites a specific frequency at each time

step. Consequently, the air flow generated by the stepped sine sweep at each time step

concentrates the sound energy at the scanning frequency and gives rise to rotational flow and

vortices which are only related to the scanning frequency. Therefore, the fluid dynamics of

the vortices are relatively simple and only related to the scanning frequency.

However, when white noise excitation is used, all frequencies are excited simultaneously.

The air flow generated contains sound energy which relates to all the frequencies over the

measured frequency range. The rotational flow and vortices are dependent on frequency.

The fluid dynamics arising from each frequency component of the broadband white noise

excitation is coupled with those at the nearby frequencies and contributes to the overall fluid

behaviour. Therefore, the sound absorption of the MPM excited by white noise is higher than

that excited by a stepped sine sweep when the SPLs of the sound source signals are similar,

as shown in Figure 4.38.
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Figure 4.39: Measured sound absorption coefficients of the MPM with a stepped sine sweep
excitation versus the incident SPL. The black solid curve represents the measured sound
absorption coefficient with the input voltage of 100 mV and the cavity depth of 25 mm.

4.3.6 Effect of the cavity depth on the sound absorption coefficient of

MPM 4 with a monochromatic source in the non-linear regime
The previous sections in this study indicated that when the MPM was excited by the stepped

sine sound source signal (which is one of the monochromatic source signals used in this

study), the small peaks in the measured sound absorption curves align with the SPL peaks

due to the axial resonances in the impedance tube. This correspondence was presented by

the matched frequencies of the peaks and valleys observed in both the measured sound ab-

sorption coefficient curves and the estimated incident SPL curves. In Section 4.3.1.3, it was

found that the peaks and valleys in the estimated incident SPL curves are ascribed to the

axial resonances due to the finite length of the impedance tube. It is known from Figure 4.1

that the length of the impedance tube is the sum of the length of the tube from the source

to the MPM and the cavity depth. Hence, with a given length of the tube from the source

to the MPM, these peaks and valleys can be affected by the air cavity depth. This section

investigates the effect of the cavity depth on the non-linear sound absorption of the MPM

under a monochromatic sound source signal experimentally.

It should be noted that the previous measurements were conducted with the air cavity
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depth of 25 mm. In this section, the sound absorption coefficients of the MPM with the

stepped sine sound source signal at 10 mV and 100 mv were measured. The cavity depth

were doubled, i.e., D = 50 mm, in this section. The incident SPL and the measured sound

absorption coefficients are shown in Figure 4.39 compared to the results with D = 25 mm.

The black curves represents the measured sound absorption coefficient and the estimated

incident SPL with the input voltage of 100 mV and the cavity depth of 25 mm. The blue

curves represents those with the cavity depth of 50 mm and the input voltage of 100 mV.

Note that these are in the non-linear regime. The blue dotted curve represents the measured

sound absorption coefficient with the input voltage of 10 mV and the cavity depth of 50 mm

(i.e., in the linear regime). The thin dashed vertical lines show the frequencies of the local

SPL maxima and the corresponding peaks on the sound absorption curves.

Comparing the measured sound absorption coefficients with the input voltage of 100 mV

and 10 mV, it is found that the threshold voltage exists when D = 50 mm. When the input

voltage is sufficiently low, the MPM behaves in the linear regime. Otherwise, it exhibits the

non-linear sound absorption. Similar to Figure 4.26, peaks and valleys were observed in the

blue curves. The peaks and valleys in the sound absorption curve (i.e. the solid blue curve)

correspond to those in the SPL curve (i.e. the dashed blue curve). These findings indicate

that the non-linear sound absorption of the MPM is independent of the air cavity depth.

However, the blue vertical lines mismatch the black vertical lines and the amplitude of

the mismatch increases with the increase of the frequency. The mismatched frequencies

are ascribed to the axial resonances due to the length of the impedance tube. When the

cavity depth was doubled, the total length of the impedance tube was increased. Hence, the

resonance frequency in the axis of the length of the impedance tube was decreased and this

increase was more significant in the higher frequency range. The mismatched black and blue

vertical lines are associated to this phenomenon.

4.4 Conclusions
In this chapter, the effect of the incident SPL on the sound absorption of an MPM sample has

been studied with broadband excitation and monochromatic excitation in an impedance tube

with a normally-incident plane wave. The broadband sound source signal included white

noise (Gaussian distribution), uniform random noise, pseudo random noise, burst random
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noise and pink noise. The monochromatic source signal consisted of a stepped sine sweep

and a chirp. Similar conclusions are obtained for each group of sound source signals. The

sound pressure levels used as excitation varied from 15 dB to 143 dB re 20 µPa. The incid-

ent SPLs at the MPM surface were estimated using the measured transfer function and the

measured sound pressure at one of the two microphones used in the experiments.

The two microphone transfer function method is validated by experiments in the non-

linear regime. The transfer function between each microphone and the sound source was

measured and the sound absorption coefficient was estimated based on these transfer func-

tions. The estimated sound absorption coefficient was compared to that calculated, based

directly on the transfer function between the two microphones. The consistences of these

sound absorption coefficients verify the accuracy of the two microphone transfer function

method.

The experimental results indicate that, similar to the case of MPPs, there exists a threshold

SPL for which the sound absorption coefficient is consistent regardless of the SPL mag-

nitude. When the incident SPL exceeds the threshold SPL, the sound absorption coefficient

of the MPM increases with the increase of the incident SPL, which implies the existence

of a non-linearity in the sound absorption of MPMs under high SPL excitation. These non-

linear sound absorption coefficients have been observed with both white noise and a stepped

sine sweep sound source signal, although the threshold SPL is different for different sound

source signals. It is found that the threshold SPL of the MPM excited by either of the sound

source signals is moderate and significantly lower than the commonly accepted threshold

SPL values for the MPPs.

In the sound absorption curves of the MPM, for both a stepped sine sweep and white

noise, the maximum sound absorption frequency tends to move to the low frequency range

with moderate and high SPL magnitudes. This frequency shift implies that unlike the case

of MPPs where only resistance is considered relevant to the non-linear sound absorption, the

sound absorption of the MPM is affected by both resistance and reactance.

Small peaks at some specific frequencies are observed in the sound absorption coeffi-

cient curves with a stepped sine sweep excitation, however, these peaks are not present in the

curves with white noise. It was theorised that the occurrence of these small peaks may be

ascribed to a number of possible reasons, including the membrane resonance, the increased
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depth of the air cavity under high SPL excitation, and the time-dependent flow which is con-

sidered responsible for the non-linearity of the sound absorption of micro perforates (Ingard

& Ising 1967, Tayong et al. 2010). Based on the measurements of the sound absorption coef-

ficients of an MPP sample and the cavity depth between the MPM sample and a transparent

end, the former two reasons have been excluded.

Furthermore, the sound absorption curves of the MPMs excited with white noise are

higher than those with a stepped sine sweep at roughly equal incident SPLs. This behaviour

is related to the differing time-dependent flow generated by white noise and a stepped sine

sweep. With a stepped sine sweep, the frequency components are decoupled and the sound

absorption curves have small peaks which closely correspond to the peaks of the incident

SPL due to the axial resonance of the impedance tube. With white noise, the frequency

components are coupled and lead to complicated fluid dynamics. As a result, the small

peaks that are observed in the sound absorption curves with a stepped sine sweep disappear

in those curves with white noise. For the same reason, the sound absorption curves with

white noise are smoother than those with a stepped sine sweep, and can be higher than the

latter if their incident SPLs are roughly equal.

Moreover, the effect of the cavity depth on the non-linear sound absorption of the MPM

was investigated by comparing the experimental results with an air cavity depth of 25 mm

and 50 mm. It is found that the non-linear sound absorption phenomenons of the MPM

occur independently of the air cavity depth. However, the frequencies where the peaks and

valleys appear are associated with the axial resonances along the length of the impedance

tube, which includes the air cavity depth.

This chapter presents experimental findings on the linear and non-linear sound absorption

of micro perforated membranes. It reveals the effect of the time-dependent fluid dynamics

on the non-linear sound absorption of the MPMs over a broadband frequency range and is

fundamental knowledge for the analytical modelling of the non-linear acoustic impedance of

the MPM presented in the next chapter.

133



4.4. Conclusions

134



Chapter 5

Analytical modelling of the non-linear sound

absorption of micro perforated membranes

under moderate and high excitation

5.1 Introduction
Chapter 4 presents the experimental findings of the non-linear sound absorption of an MPM

under moderate and high incident sound pressure excitation. It is found that: 1) unlike

the previously investigated orifices and perforated panels, both the resistance and reactance

of the MPM are affected by the incident SPL in the non-linear regime; and 2) the peaks

in the sound absorption coefficient curves of the MPM excited by a monochromatic sound

source corresponds to the peaks of the incident SPL. Based on these experimental findings,

this chapter aims to develop an analytical model for the non-linear sound absorption of the

MPM excited by both broadband and monochromatic noise sources and explore the physical

meanings of the model.

This chapter starts with an introduction, where previous research is reviewed in Section

5.1.1 and the arising research gaps and contributions of this chapter are presented in Section

5.1.2. Analytical modelling for the non-linear sound absorption of the MPM under invest-

igation (MPM 4) with moderate and high SPL incidence is presented in Section 5.2. This

model further divides into two sections according to the sound source categorisation. The

analytical model for the broadband sound source is presented in Section 5.3 and that for the

monochromatic sound source in Section 5.4, followed by the conclusions of this chapter in

Section 5.5.
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5.1.1 Literature review
Perforates and micro perforated panels are used as an alternative sound absorbing material

instead of porous materials, especially in harsh conditions such as in aircraft engines. The

sound pressure in aircraft engines is extremely high, leading to high particle velocities within

the perforations of the perforates and micro perforated panels (MPPs). Hence, it is necessary

to investigate analytical models for the acoustic properties of perforates and MPPs under

high sound pressure level (SPL) excitation.

Ingard & Ising (1967) investigated the acoustic properties of an orifice in a rigid baffle

experimentally, an arrangement which could be considered as a simplified model of a perfor-

ated panel consisting of only one perforation. Ingard & Ising indicated that the non-linearity

of the orifice under high SPL is due to the rotational flow and vortices arising from the

high particle velocity. Ingard & Ising further pointed out that the non-linear resistance of

the orifice is proportional to the amplitude of the particle velocity within the orifice. They

developed an expression for the resistance due to the non-linear effect, which is given by

Renonlinear = ρ0|v|, (5.1)

where Renonlinear denotes the resistance of the non-linear impedance of the orifice. Note that

Equation (5.1) is derived based on experimental results.

As for the non-linear acoustic impedance of micro perforated panels, Maa (1996) derived

an expression based on the motion equation of air particles within the perforations and the

continuity of air density. According to Maa, since the Mach number v
c0

was relatively small,

the effect of the particle velocity on the acoustic impedance due to the perforations was neg-

ligible. The non-linear part of the acoustic impedance of an MPP under high SPL excitation

was ascribed to an end correction affected by the high speed air flow in the non-linear regime.

Maa further indicated that when a high SPL was applied, the deviation of the reactance was

very limited, however, the resistance could change significantly.

Bodén (2007) introduced a new method to calculate the non-linear acoustic impedance

of perforates and MPPs. The idea was to treat the non-linear factor as a separate input

for a linear two-input one-output system. In addition, two types of sound sources, pure

tones and broadband noise, were used to excite the perforate sample. The experimental

results indicated that the non-linear impedance with pure tone excitation was dependent on
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the instantaneous velocity at the pure tone frequency, while with broadband noise it was

related to the impedances at other frequencies. Hence, the acoustic impedance with pure tone

excitation is proportional to the instantaneous velocity. With broadband noise, the acoustic

impedance is proportional to the RMS velocity.

Tayong et al. (2010) investigated the non-linear acoustic properties of MPPs at their main

resonance frequency. This research is based on Forchheimer’s regime of flow velocity (McIn-

tosh & Lambert 1990). This method considered the non-linear impedance to be equal to the

sum of the linear impedance and the impedance due to non-linear effects. Good agreements

were achieved between the experimental and predicted results. However, in the prediction

process, some of the parameters were determined by curve fitting and their physical mean-

ings remain unknown.

5.1.2 Gaps and contributions
The research mentioned in Section 5.1.1 is related to orifices in rigid baffles, perforated pan-

els (i.e. perforates) and MPPs. Micro perforated membranes (MPMs) which are of particular

interest in this study, were barely investigated. Moreover, although there is some research

investigating both the resistance and reactance (Bodén 2007, Maa 1996, Tayong et al. 2010),

the reactance is assumed to be of less importance than the resistance. This is valid for the

cases of orifices in rigid baffles, perforated panels (i.e. perforates) and MPPs, however, the

experimental results shown in Chapter 4 demonstrated that the reactance plays an important

role in the case of MPMs.

Therefore, this chapter aims to analytically model the acoustic impedance of MPMs un-

der high SPL excitation. Two models have been developed following different strategies.

Based on the similarity of the previous models developed by the researchers mentioned in

Section 5.1.1, the first model of the non-linear acoustic impedance of MPMs is introduced in

Section 5.2. However, since this model is developed by summarising the previous models,

the physical meanings of the optimised parameters remain unknown. To explore the physical

meanings, the second model was developed by re-deriving Maa’s non-linear motion equa-

tions. Simplifying the second model, it is found that the optimised parameters represent the

average rates of the air density change in the time and spatial domains.

Note that some parameters in the model are determined by curve fitting and that the ex-
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perimental results were obtained with two types of sound source, as presented in Chapter 4.

As a result, in accordance with Bodén’s conclusion, the parameter determination and exper-

imental validation of this model is divided into Section 5.3 for broadband sound sources and

Section 5.4 for monochromatic sound sources, respectively. The good agreement between

the measured results and the results predicted using each model verified the accuracy of

each model. However, the second model is recommended for future research due to its clear

physical meanings of the optimised parameters. This chapter is concluded in Section 5.5.

5.2 Analytical modelling of the sound absorption of micro

perforated membranes under moderate and high excit-

ation
This section explores the analytical modelling of the non-linear sound absorption of micro

perforated membranes under moderate and high acoustic excitation. It starts with discussions

on three previous models for micro perforated panels under high excitation in Section 5.2.1.

All of them investigate the non-linear impedance of MPPs under high excitation, however,

using very different methods. Two models for the non-linear acoustic impedance of MPMs

under moderate and high excitation are presented in Sections 5.2.2 and 5.2.3.

5.2.1 Previous models
This section presents the previous models for the prediction of the non-linear sound ab-

sorption of MPPs under high excitation by predicting the non-linear acoustic impedance.

The models developed by Ingard & Ising (1967), Maa (1996) and Tayong et al. (2010) are

discussed. Bodén’s (2007) model is excluded because its prediction method is based on non-

linear signal analysis and the physical meanings of the non-linear impedance is unclear in his

equations. Note that the discussed models are all for the non-linear impedance of MPPs and

hence could be inaccurate for the modelling of MPMs. The non-linear acoustic impedance

of MPMs has not previously been investigated.

5.2.1.1 Ingard & Ising’s non-linear impedance model

In Ingard & Ising’s (1967) research, the experimental results indicated that the acoustic im-

pedance due to the non-linear effect of an orifice in a rigid baffle is proportional to the
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amplitude of the particle velocity within the orifice, and is given by Equation (5.1). If this

relationship is extended to the cases of MPPs and MPMs, the total acoustic impedance of an

MPP or MPM in the non-linear regime is given by

znonlinear Ingard = zlinear +ρ0|v|, (5.2)

where zlinear denotes the normalised acoustic impedance of the MPP or MPM in the linear

regime.

In Equation (5.2), the term ρ0|v| represents the non-linear impedance due to the high

acoustic excitation. The amplitude of the particle velocity within the orifice or the perfor-

ations |v| is used in this term. Hence, this term only changes the real part of the acoustic

impedance, i.e., the resistance. This is valid for orifices in a rigid baffle and MPPs where

there is limited motion of the baffle or panel. The change of the reactance of these materials

under high excitation is reported to be very limited (Melling 1973b). However, as mentioned

in Chapter 4, in the cases of MPMs, the variation of the resistance can be significant. There-

fore, Ingard & Ising’s model is presumably inaccurate for MPMs which are of particular

interest in this thesis.

5.2.1.2 Maa’s non-linear impedance model

Maa’s (1996) derivation starts with the motion equation considering particle velocity vari-

ation in the length direction of the orifice,

ρ0
∂v(r,xlength, t)

∂ t
+ρ0

∂v(r,xlength, t)
∂xlength

v(r,xlength, t)−
µ

r
∂

∂ r

(
r

∂v(r,xlength, t)
∂ r

)
=

∆p
h
, (5.3)

where xlength denotes the position coordinate in the length direction, and also applies the

mass continuity equation of the Navier-Stokes equations,

∂ρ

∂ t
+

∂ρ

∂xlength
v(r,xlength, t)+

∂v(r,xlength, t)
∂xlength

ρ = 0. (5.4)

By substituting Equation (5.4) into Equation (5.3), the motion equation is rewritten as

ρ0 j ω v(r)− µ

r

[
∂v(r)

∂ r
+ r

∂ 2v(r)
∂ r2

]
=

∆p
h

(
1− |v|

2

c2
0

)
. (5.5)

Comparing this equation with the linear motion equation of air particles within a per-

foration given by Equation (3.4), Maa noticed that when the term |v|2
c2

0
in Equation (5.5) is

relatively small, these two equations are identical. Therefore, Maa presumed that the high

particle velocity had a limited effect on the acoustic impedance and the non-linear impedance
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was ascribed to the end correction which was affected by the high particle velocity. He fur-

ther indicated that the real part of the non-linear end correction was due to the rotational jet

and vortex previously mentioned by Ingard & Ising (1967) and the imaginary part was pos-

sibly due to the flow jet blowing some air away. Therefore, the total non-linear impedances

of MPPs are given by Maa (1996) as

znonlinearMaa =
32µ

δc0

h
d2



√

1+
k2

Maa
32

+

√
2kMaad

8h


+ |v|

δc0

+ jω
h

δc0


1+

(
9+

k2
Maa
2

)− 1
2

+0.85
d
h

(
1+
|v|
δc0

)−1

 ,

= zlinear +
|v|
δc0

+ jω
−0.85d

δc0

|v|
δc0 + |v|

,

(5.6)

where kMaa =
d
2

√
ω ρ0

µ
is the MPP constant.

In Equation (5.6), the high particle velocity within the perforations affects both the resist-

ance and the reactance. Additionally, this equation implies that the non-linear impedance of

an MPP under high excitation is the sum of its linear impedance and the acoustic impedance

due to the high particle velocity, which is similar to Ingard & Ising’s method. However, since

Maa’s method is for the prediction of MPPs, it could be inaccurate for MPMs because the

mechanical vibration of a membrane is likely to be more significant than a panel relatively

rigid and hence have a more significant effect on the total impedance than the panel material.

5.2.1.3 Model based on the Forchheimer non-linear flow model and dimensional ana-

lysis

Tayong et al.’s (2010) method is based on Forchheimer’s regime of flow velocity (McIntosh

& Lambert 1990). In their method, the acoustic impedance due to the perforations is given

by

zperf =
32µh

d2

√

1+
k2

Maa
32

+ jωhρ0


1+

(
9+

k2
Maa
2

)− 1
2


 . (5.7)

The radiation impedance on the ends of the perforations is expressed as

zray =
(k0d)2

2
+ j

8k0d
3π

. (5.8)
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Hence, the linear acoustic impedance is given by

zlinear =
zperf +2zray +4Rs

δ
, (5.9)

where the term Rs represents the thermo-viscous fraction on the panel surface and is obtained

from Equation (3.36). Therefore, the non-linear impedance of an MPP is given by

znonlinearTayong = a
dc0

σδ

|v|
c0

+(1+b)Re(zlinear)+ jIm(zlinear), (5.10)

where the term adc0
σδ

is determined by dimensional analysis. The parameters a and b are

determined by curve fitting and their physical meanings are unclear.

Equation (5.10) may be rewritten as

znonlinearTayong = zlinear +a
dc0

σδ

|v|
c0

+bRe(zlinear). (5.11)

Equation (5.11) implies that, similar to Ingard & Ising and Maa’s methods, Tayong et al.’s

(2010) prediction method also assumed that the non-linear impedance of MPPs is the sum

of the linear impedance and the term representing the non-linear effect which is proportional

to the amplitude of the particle velocity within the perforations. However, their coefficient

of the particle velocity is determined by curve fitting, where as it is propotional to the air

density ρ0
c0

in Ingard & Ising’s method and 1
δc0

in Maa’s method. The latter methods can

be less accurate due to the lack of curve fitting. Moreover, the non-linear resistance is also

varied by the parameter b which represents three regimes: when an MPP is in the linear

regime, b = 0; when it is in the non-linear regime, b 6= 0; and b is arbitrary when an MPP is

in the transition regime.

5.2.2 Simplified model based on the previous models with optimised

end correction
The previous prediction models analysed in Section 5.2.1 follow similar strategies. They

assume that the non-linear acoustic impedance of an MPP consists of two parts, the linear

acoustic impedance of the MPP and the acoustic impedance arising from the non-linear ef-

fect. The latter is considered proportional to the amplitude of the particle velocity in the

perforations in all three models, although the coefficient of the particle velocity amplitude

differs in each model.

However, these models are for the prediction of MPPs, which implies that using these
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models may lead to inaccurate prediction for the acoustic impedance of MPMs, as described

in Chapter 3. Moreover, these models pay more attention to the non-linear resistance than

the non-linear reactance. The variation of the latter is commonly assumed to be very limited

and unimportant in these models. However, it is found in Chapter 4 that the high particle

velocity in the perforations has a more significant effect on the reactance of MPMs than on

that of MPPs.

A simplified model for the prediction of MPMs is presented here, following the approach

that both the non-linear resistance and reactance are of importance, and this is expressed as

znonlinearSimplified = zlinear +a
Re(v)

c0
+b j

Im(v)
c0

, (5.12)

where a and b are determined by curve fitting. This model consists of two parts, the linear

impedance of an MPM zlinear and the non-linear term aRe(v)
c0

+b j Im(v)
c0

. This method is similar

to Tayong et al.’s (2010) model, except that the linear impedance of the MPM is predicted

using the no-slip method mentioned in Chanpter 3 and that the complex particle velocity

is used here instead of the velocity amplitude used in Tayong et al.’s model. The different

coefficients a and b of the real and imaginary parts of the particle velocity imply that both the

real and imaginary parts of the particle velocity are assumed to contribute to the non-linear

impedance differently. The parameter determination and experimental validation using this

model with broadband and monochromatic sound sources are discussed in Sections 5.3 and

5.4, respectively.

5.2.3 Analytical model based on motion equation and density continu-

ity
Although there are several models for the prediction of the non-linear impedance of MPPs

and MPMs, the physical meanings of the coefficients used in these models are unclear (Tay-

ong et al. 2010). This section aims to explore the physical meanings of the coefficients of the

particle velocity within the MPM perforations and develop a new model where a different

strategy is applied.

In the linear regime, the particle flow within a perforation of an MPP or MPM is con-

sidered to be laminar. The particle motion is assumed to be only affected by the viscous

friction in the radial direction and the variation of the particle velocity in the length direc-
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tion, as shown in Figure 3.1, is neglected. However, if the particle travels with high velocity,

the flow in the perforation is separated in the length direction (Cummings 1986), as shown

in Figure 5.1. Considering the flow separation, the motion equation of the air particle in the

perforation is given by Equation (5.3) and the mass continuity equation of the Navier-Stokes

equations is given by Equation (5.4). These two equations are difficult to solve due to the

unknown terms ∂ρ

∂ t , ∂ρ

∂xlength
and ∂v(r,xlength)

∂xlength
. As mentioned in Section 5.2.1.2, Maa substi-

tuted Equation (5.4) into Equation (5.3) and obtained Equation (5.5), where the velocity part

was sufficiently small that it could be neglected. Hence, Maa concluded that the acoustic

impedance due to the perforations was barely affected by the high particle velocity.

Hole
v(xlength, r)

r0

r0

Panel/membrane

r
x-axis

Region of separated flow

Figure 5.1: Particle velocity v(xlength, r) in a hole of the micro perforated membrane or
panel as a function of the distance, r, from the centre line and the position coordinate xlength

in the length direction. The flow is separated in the length direction due to the high particle
velocity (Adapted from Cummings (1986)).

However, Equations (5.3) and (5.4) are solved differently in this section. The continuity

Equation (5.4) is rewritten as

∂v(r,xlength, t)
∂xlength

ρ =−∂ρ

∂ t
− ∂ρ

∂xlength
v(r,xlength, t). (5.13)

If the variation of density is small, ρ ≈ ρ0. It is assumed that ∂ρ

∂ t and ∂ρ

∂xlength
are approximately

constant and v(r,xlength, t) is considered as an input. Hence, Equation (5.13) is expressed

approximately as

∂v(r,xlength, t)
∂xlength

ρ ≈ ρ0
∂v(r,xlength, t)

∂xlength

≈−∂ρ

∂ t
− ∂ρ

∂xlength
v(r,xlength, t)

≈ a+bv

, (5.14)

where a and b are determined by curve fitting. Substituting Equation (5.14) into Equation
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(5.3) and eliminating the time variable t gives the motion equation as

ρ0
∂v(r,xlength, t)

∂ t
+(a+bv)v(r,xlength, t)−

µ

r
∂

∂ r

(
r

∂v(r,xlength, t)
∂ r

)
=

∆p
h
. (5.15)

Equation (5.15) is rearranged as

∂ 2v(r)
r2 +

1
r

∂v(r)
r
− ρ0 j ω +a+bv

µ
v(r) =−∆p

µh
. (5.16)

Letting K2
air =

−a−bv−ρ0 j ω

µ
, Equation (5.16) is rewritten as
(

∂ 2

∂ r2 +
1
r

∂

∂ r
+K2

air

)
v(r) =−∆p

µh
. (5.17)

Comparing Equation (5.17) with the motion equation in the linear regime (Equation (3.6)), it

is found that they are identical in form except that the expression for the term Kair is different

for each equation. Therefore, Equation (5.17) can be solved following the same method

presented in Chapter 3.

In addition, Equation (5.14) shows that

a =−∂ρ

∂ t
, (5.18)

and

b =− ∂ρ

∂xlength
. (5.19)

Therefore, the parameter a represents the average variation of the air density in the time do-

main, which is dependent on time and position coordinates and is assumed to be constant in

this chapter. The parameter b denotes the average variation of the air density in the length

direction in the spatial domain, which is also dependent on position coordinates and is as-

sumed to be constant here. Presumably, a and b are related to the particle velocities, and

hence are different for different particle velocity and different sound excitation types.

This model inspires exploration for the physical meanings of the optimised coefficients

of the particle velocity v. Substituting K2
air =

a+bv−ρ0 j ω

µ
into Equation (5.17) gives

(
∂ 2

∂ r2 +
1
r

∂

∂ r
+K2

airlinear

)
v(r)− a+bv

µ
v(r) =−∆p

µh
, (5.20)

where K2
airlinear

= −ρ0 j ω

µ
is the MPM constant in the linear regime. Equation (5.20) is rewritten

as

µh
(

∂ 2

∂ r2 +
1
r

∂

∂ r
+K2

airlinear

)
v(r)−h(a+bv)v(r) =−∆p. (5.21)
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Comparing Equation (5.21) with the linear motion equation, it is found that the first term in

the left hand side of the equation represents the air motion of laminar flow within a hole in the

linear regime, and the second term represents that of a separated flow due to the high particle

velocity in the non-linear regime. Therefore, by solving Equation (5.21) and eliminating

v(r), the normalised acoustic impedance of the MPM is expressed as

znonlinearpresented = zlinear +
h(a+bv)

δρ0c0
,

= zlinear +
ha

δρ0c0
+

hbv
δρ0c0

,

(5.22)

where zlinear is calculated using the no-slip condition in Chapter 3.

Considering that a is the derivative of the expression of the air density with respect to

time as shown in Equation (5.18), it is deduced that the constant term ha
δρ0c0

in Equation

(5.22) represents the normalised acoustic impedance over the surface of the MPM, arising

from the density change over the tube length in the time domain. Hence, this part is time

dependent and a represents the average rate of the air density change in the time domain.

Similarly, since b is the derivative of the expression of the air density with respect to

the position coordinate in the length direction as shown in Equation (5.19), the term hb
δρ0c0

represents the normalised acoustic impedance over the MPM surface, arising from the overall

density change in the length direction. This term is dependent on the particle velocity and b

represents the average rate of the air density change in the spatial domain along the length

direction of the perforations.

Therefore, the presented model is able to predict the non-linear acoustic impedance of

MPMs using Equation (5.22) with clear physical meanings of the optimised parameters. The

parameter determination and experimental validation using this model with broadband and

monochromatic sound sources are discussed in Sections 5.3 and 5.4, respectively.

5.3 Parameter determination and experimental validation

for the sound absorption of MPMs excited by broad-

band sound source
This section presents the validation of the analytical models for the non-linear impedance

of the MPM sample used in Chapter 4. The predicted results using the presented models
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mentioned in Sections 5.2.2 and 5.2.3 are compared with three previous models mentioned

in Section 5.2.1. In the results that are presented in this chapter, the following five models

and their abbreviations are used:

• Ingard and Ising model – implementation of Ingard & Ising’s (1967) model with Equa-

tion (5.2).

• Maa model – implementation of Maa’s (1996) model with Equation (5.6).

• Tayong et al. model – implementation of Tayong et al.’s (2010) model with their

parameters a and b determined from fit of experimental data to Equation (5.11).

• Presented simplified model – implementation of Equation (5.12) with a and b determ-

ined from fit of experimental data to Equation (5.12).

• Presented analytical model – implementation of the model developed in this study,

where a represents the average variation of the air density in the time domain, and

b denotes the average variation of the air density in the length direction in the spa-

tial domain. Their values were determined from fit of experimental data to Equation

(5.22).

The experimental results were obtained from a broadband sound source with varying input

voltage and the experimental arrangement is discussed in Chapter 4. Although five types

of broadband sound sources were used in the experiments, the non-linear sound absorption

properties were similar and only the experimental results with white noise are used in this

section to validate the models. The comparisons of the predicted results and the measured

results at different input voltages are shown in Figures 5.3 to 5.6. Note that the term zlinear

used in these models were equal to the total acoustic impedance of MPM 4 calculated using

the prediction method developed in Chapter 3.

As mentioned in Section 5.2, the particle velocity in the perforations is used as an input

in some of the models. The particle velocity in the perforations was estimated from the

measured transfer function and the measured sound pressure with microphone 1 (see Figure

4.10) using Equations (4.5) and (4.6). Since the non-linear impedance is related to the RMS

particle velocity within the holes (Bodén 2007), the RMS particle velocity is calculated using

vRMS =

√√√√∑
fmax
fmin

v2

Nfreq
. (5.23)
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Note that the RMS velocity is a complex value due to the complex value of v. Figure 5.2

shows the RMS velocity within the perforations versus the input voltage and the overall

incident SPL. It is observed that the amplitude of the particle velocity within the perforations

increased significantly in the non-linear regime and its phase was also changed.
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Figure 5.2: Amplitude and phase of RMS particle velocity within the perforations of the
MPM excited by white noise. The input voltage increased from 0.1 mV to 200 mV,

resulting in the overall incident SPL increasing from 70 dB re 20 µPa to 129 dB re 20 µPa.

The equivalent value set (a and b) used in the analytical model were obtained from the

experimental measurements by fitting the measured data to the model using the optimisation

toolbox in Matlab (Waltz et al. 2006). The optimised value sets are given in Figures 5.3, 5.4,

5.5 and 5.6.

In Figures 5.3 to 5.6, the coefficient of determination R2
det was used for each model

to quantify the accuracy of each prediction. The R2
det is the same as R2

determination used in

Chapters 2 and 3.

Figure 5.3 shows the predicted results using these five non-linear models in the linear

regime where the input voltage is relatively small, resulting in a relatively small particle

velocity. The non-linear effect is negligible in the results shown in this figure because the

particle velocity is sufficiently small that it barely affects the predicted acoustic impedance.

The peak absorption frequencies of the predicted results using Maa’s and Tayong et al.’s

models were less than that observed experimentally and the sound absorption bandwidths

147



5.3. Parameter determination and experimental validation for the sound absorption of
MPMs excited by broadband sound source

200 400 600 800 1000 1200 1400 1600
0

0.2

0.4

0.6

0.8

1

Frequency (Hz)

S
ou

nd
 a

bs
or

pt
io

n 
co

ef
fic

ie
nt

 
α

 

 

White noise
V=10mV

Measured

Ingard and Ising
R

det
2 =0.991

Maa
R

det
2 =0.907

Tayong et al.
R

det
2 =0.933

a=−0.00722
b=0.382

Simplified model
R

det
2 =0.994

a=9.83e+03
b=−1.47e+03

Presented
R

det
2 =0.994

a=822
b=−7.62e+04

Figure 5.3: Predicted and measured sound absorption coefficients of the MPM sample with
white noise excitation. The input voltage was 10 mV. The acoustic impedance is in the

linear regime.

were underestimated, which is due to the neglected acoustic impedance caused by the mem-

brane vibration (as discussed in Chapter 3). Ingard & Ising’s model and the two models

developed earlier show good agreement with the measured results. Since Ingard & Ising’s

model is for the non-linear acoustic impedance of an orifice in a rigid baffle, the linear

acoustic impedance used in this model is that of the MPM using the more accurate method

presented in Chapter 3, instead of Ingard & Ising’s original equation. Hence, in the linear

regime, the predicted result of Ingard & Ising’s model is approximately equal to that using

the presented model in Chapter 3. The two developed models have better agreement to the

experimental result than the previous models because the parameters were optimised to fit

the experimental data in the linear regime.

For excitation levels corresponding to the non-linear regime shown in Figures 5.4 to

5.5, the prediction from the presented two models, the presented simplified model and the

presented analytical model, are almost identical and show better agreement with the meas-

ured results than the other models because of the accurate prediction of the linear acoustic

impedance and the optimised coefficients of the complex particle velocity. Although Tayong

et al.’s model is less accurate in the linear regime than the two presented models, it shows

the third best agreement to the measured results in the non-linear regime and its accuracy
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Figure 5.4: Predicted and measured sound absorption coefficients of the MPM sample with
white noise excitation. The input voltage was 50 mV.
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Figure 5.5: Predicted and measured sound absorption coefficients of the MPM sample with
white noise excitation. The input voltage was 100 mV.

increases with an increase in the particle velocity. In Figure 5.6, Tayong et al.’s model is

seen to be more accurate than the other models. The consistency of the predicted results

using the two presented models is ascribed to the similarity of their prediction method, as

shown in Equations (5.12) and (5.22). The decreasing accuracy of the two presented models

may imply that these two models may be unsuitable if the particle velocity is too high.
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Figure 5.6: Predicted and measured sound absorption coefficients of the MPM sample with
white noise excitation. The input voltage was 200 mV.

Table 5.1 shows the values relating to the optimised parameters in the two presented

models. The last two columns represent the air density variation in the time domain and in

the length direction in the spatial domain, respectively. They are plotted in Figure 5.7. These

values are small in the linear regime and increase with the increase of the input voltage and

the corresponding increase in the incident SPL in the non-linear regime, which is consistent

with the physical phenomenon. The value of a is always positive because it is the derivative

of the expression for the air density with respect to time. The value of b can be negative

because it is the derivative of the expression for the air density with respect to the posi-

tion coordinate in the length direction. The negative value implies that the derivative of the

expression for the air density is opposite to the positive length direction.

Table 5.1: Optimised parameters for the non-linear acoustic impedance of the MPM exicted
by a white noise signal. The presented simplified model is given by Equation (5.12), and

the presented analytical model is given by Equation (5.22)

Input voltage (mV)
Presented simplified model Presented analytical model Total rate of air density change
a−b
c0

Real(v) b
c0

ah
δc0ρ0

bh
δc0ρ0

In time domain ah≈ h∂ρ

∂ t In space domain bh≈ h ∂ρ

∂xlength

10 0.046 -4.273 0.046 -4.263 0.140 -12.954

50 0.662 -2.314 0.660 -2.316 2.006 -7.038

100 0.769 0.590 0.767 0.588 2.329 1.785

200 0.917 1.625 0.918 1.623 2.788 4.930
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Figure 5.7: The values of ah≈ h∂ρ

∂ t and bh≈ h ∂ρ

∂xlength
using the optimised parameters for

the MPM excited by a white noise signal. The curves represent the total rates of air density
change in the time and spatial domains, respectively.

5.4 Parameter determination and experimental validation

for the sound absorption of MPMs excited by mono-

chromatic sound sources
This section validates the presented models for the sound absorption prediction of the MPM

excited by monochromatic sound signals. The experimental results used in this section are

those measured with a stepped sine sweep sound signal, as presented in Section 4.3.3. Al-

though the monochromatic sound signals used in Section 4.3.3 included the stepped sine

sweep and a chirp, the measured sound absorption coefficients with these signals have sim-

ilar properties and hence only the results with a stepped sine sweep are used in this section.

Unlike the cases with a broadband sound signal, the instantaneous particle velocities within

the perforations are used in this section instead of the RMS particle velocities used in Sec-

tion 5.3. The instantaneous particle velocities are shown in Figures 5.8 and 5.9. Note that

the zlinear used in these models were the total acoustic impedance of MPM 4 predicted using

the more accurate method developed in Chapter 3 given by Equation (3.31).

Figure 5.8 illustrates that the amplitude of the particle velocity within the perforations
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varies with frequency. It also increases with the increase of the input voltage and incident

SPL. Valleys are observed around 1250 Hz, where the structural tube resonance occurs. The

phase of the particle velocity within the perforations is shown in Figure 5.9. When the input

voltage and the incident SPL are relatively small (close to the linear regime), the phase of the

particle velocity changes rapidly in the frequency range from 800 Hz to 1 kHz. In contrast,

the phase of the particle velocity changes smoothly with high input voltage and the arising

high incident SPL in the non-linear regime.

200 400 600 800 1000 1200 1400 1600
0

5

10

15

20

25

30

35

Frequency (Hz)

A
m

pl
itu

de
 o

f 
pa

rt
ic

le
 v

el
oc

ity
in

 p
er

fo
ra

tio
ns

 (
m

/s
)

 

 

V=0.1 mV
V=0.5 mV
V=1 mV
V=5 mV
V=10 mV
V=50 mV
V=100 mV
V=200 mV

Figure 5.8: Amplitude of the instantaneous particle velocity within the perforations of the
MPM sample with stepped sine sweep excitation. The input voltage varied from 0.1 mV to

200 mV.

The comparisons of the predicted results and the measured results for various input

voltages are shown in Figures 5.10 to 5.15. Figure 5.10 illustrates the measured and pre-

dicted sound absorption coefficient of the MPM with an input voltage of 1 mV. Since the

input voltage is relatively low, the acoustic impedance and the sound absorption coefficient

are linear. Similar to the case of the MPM excited by the broadband sound signal in the lin-

ear regime presented in Section 5.3, Maa’s and Tayong et al.’s models are less accurate than

the other models because of their inaccurate prediction for the linear acoustic impedance

of the MPM. In Ingard & Ising’s model, the linear acoustic impedance of the MPM is pre-

dicted using the no-slip method developed in Chapter 3, and hence this model shows a better

agreement than Maa’s and Tayong et al.’s models. However, the coefficient of the particle
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Figure 5.9: Phase of the instantaneous particle velocity within the perforations of the MPM
sample with stepped sine sweep excitation. The input voltage varied from 0.1 mV to 200

mV.

velocity amplitude in Ingard & Ising’s model is equal to ρ0 which is relatively high, in com-

parison to the other models which affects the sound absorption prediction. The predicted

results using the presented simplified and analytical models better agree with the measured

results in comparison to the other models. Although the particle velocity is higher than that

in the cases with a broadband sound signal, the multiplicative terms for the particle velocity

in these two models are small. Therefore, the non-linear effect due to the particle velocity

are reduced in the presented simplified and analytical models, which is consistent with the

physical phenomenon and the experimental results.

Figures 5.11 to 5.15 show the comparison between the measured and predicted results

using the models. Similar to the case of the MPM excited by a broadband sound signal, the

two presented models are more accurate than the other models in the non-linear regime. The

increased accuracy of these models is ascribed to the optimised parameters. The non-linear

effect on the acoustic impedance of the MPM due to the high particle velocity is simulated

using two factors for which physical meanings are unknown in the presented simplified curve

fitting model. However, in the presented analytical model, the factors are assumed to rep-

resent the air density variation in time domain and in the length direction in spatial domain.

Hence, although the developed analytical model is slightly less accurate than the simplified
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Figure 5.10: Predicted and measured sound absorption coefficients of the MPM sample with
a stepped sine sweep excitation. The input voltage was 1 mV. This is in the linear regime.
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Figure 5.11: Predicted and measured sound absorption coefficients of the MPM sample
with stepped sine sweep excitation. The input voltage was 5 mV.

curve fitting model in Figure 5.15, it could be more reasonable than the latter due to its

clearer physical meaning. The decreasing accuracy of the two presented models may indic-

ate that these models are valid for a limited range of the particle velocity. If the particle

velocity is sufficiently high, the Reynolds number of the particle velocity could be high and

the fluid dynamics within the holes and neighbouring vicinity could be different from the
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Figure 5.12: Predicted and measured sound absorption coefficients of the MPM sample
with stepped sine sweep excitation. The input voltage was 10 mV.
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Figure 5.13: Predicted and measured sound absorption coefficients of the MPM sample
with stepped sine sweep excitation. The input voltage was 50 mV.

case investigated in this study.

Figure 5.16 illustrates the air density variations in the time domain and in the length

direction in the spatial domain, respectively. The air density variation in the time domain is

small in the linear regime and increases with the increase of the input voltage and the incident

SPL in the non-linear regime. This trend is consistent with that in the case of the MPM
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Figure 5.14: Predicted and measured sound absorption coefficients of the MPM sample
with stepped sine sweep excitation. The input voltage was 100 mV.
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Figure 5.15: Predicted and measured sound absorption coefficients of the MPM sample
with stepped sine sweep excitation. The input voltage was 200 mV.

excited by white noise. The air density variation in the length direction in the spatial domain

is roughly constant and is close to zero, which implies that the density in the length direction

not vary significantly. This can possibly be ascribed to the decoupled frequency response

when monochromatic sound signals are used. The fluid dynamics in the perforations and

on the MPM surface with the monochromatic sound signal are only related to the frequency
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using the optimised parameters for

the MPM excited by a stepped sine sweep. Plotted at the same scale as Figure 5.7, the
curves represent the total rates of air density change in the time and spatial domains,

respectively.

response at the excitation frequencies, not the coupled frequency responses as is the case for

broadband sound signals. Hence, the total variation of the air density in the spatial domain

is small when the stepped sine sweep signal is used.

5.5 Conclusions
This chapter explores the analytical modelling of the acoustic impedance of MPMs excited

by broadband and monochromatic sound signals in the non-linear regime. Two models are

developed following different strategies. Since the physical meanings of some parameters in

the previously published models are unknown, this chapter also aims to explore the physical

meanings of the parameters in the models developed here.

Three previous models for the non-linear acoustic impedance of MPPs and orifices on ri-

gid baffles are investigated, leading to the conclusion that the non-linear impedance of MPPs

are assumed to be the sum of their linear acoustic impedance and the acoustic impedance

due to the non-linear effect caused by the high air particle velocity within the perforations.

Hence, the first presented model is based on this assumption. The non-linear impedance of

MPMs is considered to be the sum of their linear impedance predicted by the no-slip method
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discussed in Chapter 3, and the acoustic impedance due to the non-linear effect for which

the real and imaginary part of the particle velocity within the perforations contribute to the

total impedance differently. Although this model shows good agreement with the experi-

mental results with broadband and monochromatic sound signals, the physical meanings of

the optimised parameters are not evident.

The second presented analytical model is inspired by the air motion equation and the

mass continuity equation considering the density variation in the time and spatial domains.

These equations were derived by Maa (1996) but are solved differently in this chapter. Two

parameters are used to represent the air density variations in the time domain and in the

length direction in the spatial domain. After simplifying the derived expression, it is found

that this expression is similar to the presented simplified model, but the parameters have clear

physical meanings. The parameter a represents the air density variations in the time domain

and the parameter b represents that in the length direction in the spatial domain. This model

provides the most accurate predicted results among the models considered in this study,

except in the case where the input voltage and the incident SPL are at their maximum value

considered of 200 mV. The decreasing accuracy of the presented models at the maximum

voltage of 200 mV might indicate the limit of these models. If the input voltage and the

incident sound pressure are sufficiently high, the particle velocity will also be high, as well as

the Reynolds number associated with the particle velocity. Hence, the fluid dynamics within

the holes and in the neighbouring sound field could be different from the case investigated in

this study and these two models might become invalid.

The two presented models have been validated using the experimental results obtained in

Chapter 4. Good agreements are achieved using these presented models with both broadband

and monochromatic sound signals in the non-linear regime. However, the second presented

analytical model based on the motion equation and the mass continuity equation is physically

meaningful. The optimised parameters represent the acoustic impedances due to the air

density variations in the time and spatial domains. The former increases with the increase of

the input voltage and incident SPL, with both broadband and monochromatic sound signals

in the non-linear regime. The latter increases when the broadband sound signals are used

for the coupling frequency response, and maintains a constant value close to zero when the

monochromatic sound signals are used due to the decoupled frequency response.
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This chapter developed two models for the prediction of the non-linear acoustic imped-

ance of MPMs, following different strategies. The comparisons of the experimental and

predicted results verifies that the presented models are able to predict the non-linear acous-

tic impedance of MPMs accurately. The presented analytical model provides clear physical

meanings for its optimised parameters and offers a new strategy for the exploration for the

physical phenomenon of the air fluid dynamics and non-linear acoustic impedance of MPMs

in the non-linear regime.
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Chapter 6

Sound transmission of double layer imper-

vious membranes separated by an air cav-

ity

6.1 Introduction
The sound absorption and transmission of finite-sized single layer impervious membranes

has been studied in Chapter 2. An analytical model has been developed for the acoustic im-

pedance of a finite-sized impervious membrane, with a constant tension over the membrane

surface and internal damping due to the membrane curvature. The accuracy of the model has

been verified by experimental results in normally-incident plane wave conditions and in a

diffuse field. This chapter aims to investigate the sound transmission of double layer imper-

vious membranes, separated by an air cavity, based on the developed model. The membranes

and the air cavity are finite-sized and hence the acoustic cross modes of the cavity and the

structural cross modes of the membrane are considered in this chapter. The modal analysis

method is used in this chapter and the analytical model is developed in the Cartesian coordin-

ate system. Experimental results of the sound transmission loss of double layer impervious

membranes with different air cavity depths are presented to validate the developed model.

Furthermore, an additional decay factor is included for the sound propagation in the air cav-

ity. This decay factor represents the sound absorption by the wooden walls of the air cavity

and is introduced to enhance the accuracy of the developed model.

Previous studies on the sound transmission of double layer impervious membranes are

summarised in Section 6.1.1. The gaps arising from these previous studies and the academic

contribution of this chapter are presented in Section 6.1.2. The analytical modelling for the
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sound transmission loss of double layer impervious membranes separated by an air cavity

starts in Section 6.2 with the modelling and the motion equations of each membrane and the

air motion in the air cavity. By coupling the fluid (air) and structure (impervious membranes)

motion, the expressions for the sound transmission coefficient and the sound transmission

loss are derived for a normally-incident plane wave condition in Section 6.3. Section 6.3

indicates that the normal incidence STL model is inaccurate because the experimental STLs

were measured in diffuse fields, and hence the effect of the incidence angle is considered in

Section 6.4 and the STL expression for diffuse fields is obtained and validated in this section.

Although the diffuse model shows good agreement with the measured results in the low fre-

quency range, it underestimates the STL in the frequency range higher than 1.6 kHz. Hence,

in Section 6.5, attenuation by air cavity walls is investigated. The model incorporating the

sound absorbing walls provides a relatively good agreement with the experimental results at

both low and high frequencies from 50 Hz to 10 kHz. Section 6.6 presents the conclusions

arising from this chapter.

6.1.1 Literature review
Double layer partitions have been used as noise barriers in many industries including auto-

motive, aerospace and building industries. The sound transmission properties of double layer

structures have been studied for decades and it has been verified that double layer massive

walls separated by an air cavity have better sound reduction than a single layer massive wall

(Bies & Hansen 2009).

The STL of double layer massive walls with either normally-incident plane waves or in

a diffuse field are classic problems in acoustics and have been investigated for many years

(Bies & Hansen 2009, Kinsler et al. 1999, London 1950). Bolton et al. (1996) investigated

the STL of aluminum double-panel structures and developed analytical models for different

boundary conditions. These models show good agreement with experimental results.

Since the partitions are usually linked, the coupling condition of the partitions has been

investigated. Wang et al. (2005) investigated double layer lightweight partitions with studs.

The comparison of the predicted results using their model and previously published exper-

imental data demonstrated the accuracy of their model. Similarly, Legault & Atalla (2010)

developed an analytical model for the STL of double layer partitions connected by vibration
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isolators and this model was also validated by experimental results.

Partitions can be made of many materials, such as masonry or concrete, metal panels

and membranes. The previous studies predominantly focus on masonry and concrete walls,

metal panels and sheets (Bies & Hansen 2009, Bolton et al. 1996, Kinsler et al. 1999, Legault

& Atalla 2010, London 1950, Wang et al. 2005). As for the membrane partitions, Vries

(2011) investigated the sound transmission loss of double layer membranes experimentally

and compared the experimental results with the predicted results, using previously mentioned

methods. However, as discussed in Chapter 2, when modelling membranes, tension and

damping have been expressed differently in the previous studies. Chapter 2 introduced a new

expression for the acoustic impedance of impervious membranes and this new expression has

not been applied previously to the STL prediction of double layer membranes.

Note that although the transfer matrix method is preferred by other researchers when

dealing with sound transmission and absorption of multiple layer structures (Lee & Xu

2009, Rousselet et al. 2014, Song & Bolton 2000), the modal analysis method is utilised

in this chapter to consider the finite and cross mode effects on both the membrane motion

and the sound propagation within the air cavity. The transfer matrix method is commonly

used to simulate the multiple layer impedance as the product of the acoustic impedance in

each layer as it is convenient to use and is favoured by many researchers (Lee & Xu 2009,

Rousselet et al. 2014, Song & Bolton 2000). However, this method is limited to cases where

the materials and the air cavities are assumed to be infinite normal to the solid surface and

is inaccurate in a diffuse field and with complicated mechanical coupling conditions, as in-

dicated by Sgard et al. (2000). Although Villot et al. (2001) provided a windowing method

to expand the prediction from the normally-incident condition to the diffuse field, the cal-

culation could be very complicated when dealing with the STL of double layer impervious

membranes in a diffuse field. The transfer matrix method was extended to complicated

mechanical coupling conditions by Vigran (2010) who used it to investigate a double-layer

partition with sound bridges. Although good agreement was achieved between the experi-

mental and predicted results using Vigran’s method, the calculation process was complicated

due to the finite effects and complicated boundary conditions. The transfer matrix method

shows limited advantages in finite cases, in the diffuse field and with complicated coupling

conditions. Therefore, modal superposition analysis is utilised in this chapter rather than
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the transfer matrix method because the finite sizes of the impervious membranes and the air

cavity have significant impact on the STL prediction.

6.1.2 Gaps and contributions
This chapter investigates the STL of double layer impervious membranes separated by an

air cavity, considering the effects of the cavity depth and pressurisation of the air cavity on

the STL. The analytical model for the membrane motion developed in Chapter 2 is applied

here to simulate these impervious membranes, which implies that the constant tension and

the internal damping due to the membrane curvature are incorporated in the model for the

double layer impervious membrane in Sections 6.2.1 and 6.2.3.

Assuming a normally-incident plane wave excitation, the fluid air and impervious mem-

brane structure motions are coupled and the expressions for the sound transmission coeffi-

cient and the sound transmission loss are derived in Section 6.3. To assess the performance

of the developed model, STL measurements were conducted in reverberation chambers as

mentioned in Chapter 2. The STLs were measured for double layer impervious membranes

separated by an air cavity. The two cavity depths considered were 70 mm and 140 mm. The

impervious membranes were made of the same material as described in Chapter 2. However,

since the membrane samples were mounted differently from the samples used in the previous

chapters and the tension and internal damping could be sensitive to the mounting condition,

numerical optimisation was applied in this chapter to estimate the tension and internal damp-

ing. Since the STLs were measured in diffuse fields (in reverberation chambers), the normal

incidence STL model is inaccurate due to the omission of the incidence angle. Hence, the

effect of the incidence angle is considered in Section 6.4. The STL expression in diffuse

fields is derived and validated in this section. Good agreement between the predicted and

measured results is achieved in the low frequency range. However, this model underestim-

ates the STL in the frequency range higher than 1.6 kHz. The underestimation is ascribed

to the walls of the air cavity. In the previous derivation detailed in Section 6.4, the walls are

assumed to be perfectly acoustically rigid. However, for the experiments undertaken in this

research, they are made of wood, which implies that they can absorb sound to some degree.

Hence, the sound propagation within the air cavity decays in practice and neglecting sound

decay in the cavity leads to the underestimation of the STL of this model.
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In Section 6.5, the air cavity walls are assumed to be sound absorbing and the effect

of these sound absorbing walls on the STL is investigated. A model considering the sound

absorbing walls was developed by re-deriving the air particle motion equations in the air

cavity. The results of this model are also compared with the experimental results and are in

relatively good agreement at frequencies between 50 Hz and 10 kHz, thus covering both low

and high frequencies.

This chapter is concluded in Section 6.6. The investigation increases our understanding

of the mechanism of membrane structures separated by a cavity. The effect of sound ab-

sorbing walls of the air cavity on the STL is studied. Therefore, the model developed in this

chapter is helpful for the prediction of STL in practice.

6.2 Analytical modelling and motion equations of double

layer impervious membranes and the air cavity separ-

ating the membranes
This section investigates the analytical modelling of double layer impervious membranes

separated by a finite-sized air cavity. The motion equation of each membrane and that of

the air motion within the cavity are developed and solved analytically. The modelling was

derived in the Cartesian coordinate system.

Figure 6.1 illustrates the transmission and reflection of a normally-incident plane wave in

the double layer impervious membrane structure. Two impervious membranes, Membrane 1

and 2, are parallel to each other, separated by an air cavity of depth D.

When a sound wave pi is normally incident on Membrane 1 of the double layer imper-

vious membrane structure, part of the sound energy is transmitted through Membrane 1 and

part is reflected back (pr), as in the case of single layer impervious membranes discussed

in Chapter 2. However, unlike the single layer impervious membranes studied in Chapter

2, the sound wave transmitted through Membrane 1 is then incident on Membrane 2 and is

named as pi2. The sound wave pi2 propagates in the finite-sized air cavity and is incident

on the surface of Membrane 2. The incident sound pi2 is partly reflected back by Membrane

2 and is also partly transmitted though Membrane 2. The transmitted sound is pt and the

reflected sound is pr2. Therefore, two sound waves exist in the air cavity: the incident sound
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Figure 6.1: Sound transmission of double layer impervious membranes separated by a finite
air cavity of a depth D. The sound wave is normally incident on the surface of Membrane 1.

on Membrane 2, pi2, and the reflected sound, pr2. Since the sound wave propagation in the

cavity can be predicted for a constant cavity depth D, it is possible to estimate the sound

pressures on the membrane surfaces in the air cavity.

The mechanism of each membrane motion is a forced vibration. The force is provided

by the sound pressure difference between the two surfaces of each membrane. Hence, the

motion equation of each membrane can be solved accordingly. The detailed derivation is

presented in the following sections.

6.2.1 Motion of Membrane 1 at z = 0

Assuming that Membrane 1 is placed at z = 0 and is parallel to the xy plane in Figure 6.1, it is

excited by the pressure difference between the incident sound pi, the reflected sound pr, the

transmitted sound pi2, which is also the incident sound on Membrane 2, and the sound pr2

reflected by Membrane 2. Letting the displacement of Membrane 1 be ξ1(x,y), the velocity

of Membrane 1, v1(x,y), is expressed as

v1(x,y) = jωξ1(x,y). (6.1)

Based on the continuity of the air particle velocity in the normal direction (i.e., the z direc-

tion), the relationship between the sound pressures and v1(x,y) on each surface of Membrane

1 is given by (Fahy & Gardonio 2007)

pi− pr

ρ0 c0
= v1(x,y) = jωξ1(x,y) (6.2)
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on the upstream surface facing the sound source and (Fahy & Gardonio 2007)

pi2− pr2

ρ0 c0
= v1(x,y) = jωξ1(x,y) (6.3)

on the other side facing the air cavity. Assuming that the incident sound pressures pi and pi2

are known, Equations (6.2) and (6.3) are rewritten as

pr = pi− v1(x,y) ρ0 c0 (6.4)

and

pr2 = pi2− v1(x,y) ρ0 c0. (6.5)

Therefore, the sound pressure difference on Membrane 1, ∆p1, is obtained as (Fahy & Gar-

donio 2007)

∆p1 = pi + pr− (pi2 + pr2)

= 2 pi− v1(x,y) ρ0 c0−2 pi2 + v1(x,y) ρ0 c0

= 2 pi−2 pi2.

(6.6)

Substituting Equation (6.6) into the left hand side of Equation (2.26) yields the motion

equation of Membrane 1 which is given by

(T +2 jωη)∇2
ξ1(x,y)+ω

2
ρs1ξ1(x,y) =−∆p =−2 pi +2 pi2, (6.7)

where ρs1 is the surface density of Membrane 1. Similarly to Equation (2.61), the solution

of Equation (6.7) is expressed in modal form by (Lee et al. 2005)

ξ1(x,y) =
N

∑
n=1

An1 ξn1(x,y), (6.8)

where (Lee et al. 2005)

ξn1(x,y) = sin(
nx π

lx
x)sin(

ny π

ly
y). (6.9)

Following the approach of Zhang et al. (2012), the modal components are vectorised via

n = Ny(nx−1)+ny, where nx and ny are the modal indices in the x- and the y-axes, Nx is the

maximum mode number of nx and Ny is the maximum mode number of ny and N = Nx×Ny.

Note that in Equation (6.8), the variable An1 is initially unknown.
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Substituting Equation (6.9) into Equation (6.7) gives

(T +2 jωη)∇2
N

∑
n=1

An1 ξn1(x,y)+ω
2
ρs1

N

∑
n=1

An1 ξn1(x,y) =−2 pi +2 pi2. (6.10)

Multiplying each side of Equation (6.10) by ξm(x,y) as defined by Equation (2.71) and in-

tegrating over the membrane surface area gives

(T +2 jωη)
∫ lx

0

∫ ly

0
ξm(x,y)∇2

N

∑
n=1

An1 ξn1(x,y)dxdy+

ω
2
ρs

∫ lx

0

∫ ly

0
ξm(x,y)

N

∑
n=1

An1 ξn1(x,y)dxdy

=−2
∫ lx

0

∫ ly

0
(pi− pi2)ξm(x,y)dxdy.

(6.11)

As presented in Chapter 2, Equation (6.11) can be solved in matrix form. The unknown

variable An1 is rewritten in the form of an N×1 vector

A1 =




An11

An12

An13
...

An1N




. (6.12)

Hence, Equation (6.11) is rewritten in matrix form as

[
(T +2 jωη)ψψψ111 +ω

2
ρs1ψψψ222

]
A1 =−2piD+2

∫ lx

0

∫ ly

0
pi2ξm(x,y)dxdy, (6.13)

where

Cn =−
(

nx π

lx

)2

−
(

ny π

ly

)2

, n = Ny(nx−1)+ny, (6.14)

ψψψ111 =




C1
∫ lx

0
∫ ly

0 ξ1(x,y)ξn11(x,y)dxdy C2
∫ lx

0
∫ ly

0 ξ1(x,y)ξn12(x,y)dxdy . . . Cn
∫ lx

0
∫ ly

0 ξ1(x,y)ξn1n(x,y)dxdy

C1
∫ lx

0
∫ ly

0 ξ2(x,y)ξn11(x,y)dxdy C2
∫ lx

0
∫ ly

0 ξ2(x,y)ξn12(x,y)dxdy . . . Cn
∫ lx

0
∫ ly

0 ξ2(x,y)ξn1n(x,y)dxdy
...

... . . . ...

C1
∫ lx

0
∫ ly

0 ξm(x,y)ξn11(x,y)dxdy C2
∫ lx

0
∫ ly

0 ξm(x,y)ξn12(x,y)dxdy . . . Cn
∫ lx

0
∫ ly

0 ξm(x,y)ξn1n(x,y)dxdy



,

(6.15)
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ψψψ222 =




∫ lx
0
∫ ly

0 ξ1(x,y)ξn11(x,y)dxdy
∫ lx

0
∫ ly

0 ξ1(x,y)ξn12(x,y)dxdy . . .
∫ lx

0
∫ ly

0 ξ1(x,y)ξn1n(x,y)dxdy
∫ lx

0
∫ ly

0 ξ2(x,y)ξn11(x,y)dxdy
∫ lx

0
∫ ly

0 ξ2(x,y)ξn12(x,y)dxdy . . .
∫ lx

0
∫ ly

0 ξ2(x,y)ξn1n(x,y)dxdy
...

... . . . ...
∫ lx

0
∫ ly

0 ξm(x,y)ξn11(x,y)dxdy
∫ lx

0
∫ ly

0 ξm(x,y)ξn12(x,y)dxdy . . .
∫ lx

0
∫ ly

0 ξm(x,y)ξn1n(x,y)dxdy



.

(6.16)

and

D =
∫ lx

0

∫ ly

0
ξm(x,y)dxdy =




∫ lx
0
∫ ly

0 ξ1(x,y)dxdy
∫ lx

0
∫ ly

0 ξ2(x,y)dxdy
...

∫ lx
0
∫ ly

0 ξm(x,y)dxdy



. (6.17)

Equation (6.13) represents the coupling between the forced membrane vibration and the

sound field in the air cavity. The expression for pi2 is further discussed in the following

section.

6.2.2 Sound propagation in the finite air cavity
This section investigates the sound propagation within the finite air cavity. It is assumed that

the cavity has the same cross section as the impervious membranes. Hence the width and

length of the air cavity are lx and ly. As discussed previously, there are two sound waves

propagating in the z-direction in the cavity, namely pi2 and pr2. Note that their directions

are opposite. The former travels in the positive z-direction and the latter in the negative

z-direction.

Since the cross section area of the panels under investigation is lx× ly = 1× 1.5 m2 =

1.5 m2, the sound propagations follows the 3-D standing wave theory in the frequency range

of interest here which is up to 10 kHz. The motion equation of air particles (Kinsler et al.

1999) is given by (Kinsler et al. 1999)

∇
2 p(x,y,z, t) =

1
c2

0

∂ 2 p(x,y,z, t)
∂ t2 , (6.18)

where p(x,y,z, t) = p(x,y,z)e jωt . Eliminating the time variable t yields (Kinsler et al. 1999)

∇
2 p(x,y,z) =

−ω2

c2
0

p(x,y,z). (6.19)

Letting k0 =
ω

c0
and substituting this into Equation (6.19), the motion equation is rewritten as
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(Kinsler et al. 1999)

∇
2 p(x,y,z)+ k2

0 p(x,y,z) = 0. (6.20)

The Laplace operator in the Cartesian coordinate system is given by (Kinsler et al. 1999)

∇
2 p(x,y,z) =

∂ 2 p(x,y,z)
∂x2 +

∂ 2 p(x,y,z)
∂y2 +

∂ 2 p(x,y,z)
∂ z2 . (6.21)

Assuming that the sound pressure in each dimension is independent of the other, p(x,y,z) is

rewritten as

p(x,y,z) = X0(x)Y0(y)Z0(z), (6.22)

where X0(x) denotes the sound pressure component in the x-direction within the cavity, Y0(x)

denotes that in the y-direction and Z0(x) denotes that in the z-direction. Substituting Equation

(6.22) into Equation (6.21) gives

∇
2 p(x,y,z) = Y0(y)Z0(z)

∂ 2X0(x)
∂x2 +X0(x)Z0(z)

∂ 2Y0(y)
∂y2 +X0(x)Y0(y)

∂ 2Z0(z)
∂ z2 . (6.23)

Similarly, k0 is expressed in the form of the sum of three independent components in the x-,

y- and z-directions as (Kinsler et al. 1999)

k2
0 = k2

0x + k2
0y + k2

0z, (6.24)

where k0x is the component of k0 in the x-direction within the cavity, k0y is that of k0 in the

y-direction and k0z is that of k0 in the z-direction.

Substituting Equations (6.22), (6.23) and (6.24) into Equation (6.20), it is rewritten as

Y0(y)Z0(z)
∂ 2X0(x)

∂x2 +X0(x)Z0(z)
∂ 2Y0(y)

∂y2 +X0(x)Y0(y)
∂ 2Z0(z)

∂ z2

+
(
k2

0x + k2
0y + k2

0z
)

X0(x)Y0(y)Z0(z) = 0.
(6.25)

Hence, Equation (6.25) is rearranged as

Y0(y)Z0(z)
[

∂ 2X0(x)
∂x2 + k2

0xX0(x)
]
+X0(x)Z0(z)

[
∂ 2Y0(y)

∂y2 + k2
0yY0(y)

]

+X0(x)Y0(y)
[

∂ 2Z0(z)
∂ z2 + k2

0zZ0(z)
]
= 0.

(6.26)
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Therefore, to satisfy Equation (6.26), the following equations are obtained

∂ 2X0(x)
∂x2 + k2

0xX0(x) = 0, (6.27a)

∂ 2Y0(y)
∂y2 + k2

0yY0(y) = 0, (6.27b)

∂ 2Z0(z)
∂ z2 + k2

0zZ0(z) = 0. (6.27c)

Assuming the air cavity has acoustically rigid boundaries parallel to the x- and y-axes and the

sound is travelling mainly in the z-direction, the solutions of Equation (6.27) are assumed to

be

X0(x) = A0x cos(k0xx)+B0x sin(k0xx), (6.28a)

Y0(y) = A0y cos(k0yy)+B0y sin(k0yy), (6.28b)

Z0(z) = A0ze− jk0zz, (6.28c)

where A0x, B0x, A0y, B0y and A0z are dependent on the boundary conditions.

Since the cavity is assumed to be acoustically rigid, the boundary conditions at the cross

section boundaries are

vx(x = 0) = 0, (6.29a)

vx(x = lx) = 0, (6.29b)

and

vy(y = 0) = 0, (6.30a)

vy(y = ly) = 0, (6.30b)

where vx denotes the air particle velocity in the x direction within the air cavity and vy denotes

that in the y direction. Moreover, considering continuity in the normal direction (i.e., the z

direction), two more boundary conditions are obtained, which are

vz(z = 0) = v1(x,y), (6.31a)

vz(z = D) = v2(x,y), (6.31b)

where v1(x,y) denotes the velocity of Membrane 1 and v2(x,y) denotes the velocity of Mem-

brane 2. Equations (6.31) indicate the coupling between the air particle velocities within the

cavity and that at the two membrane surfaces.
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Hence, to apply the boundary conditions, it is crucial to calculate the particle velocity in

the x, y and z directions appropriately. The particle velocities in the x, y and z directions are

defined as (Kinsler et al. 1999)

vx =−
1
ρ0

∫
∂ p(x,y,x, t)

∂x
dt, (6.32a)

vy =−
1
ρ0

∫
∂ p(x,y,x, t)

∂y
dt, (6.32b)

vz =−
1
ρ0

∫
∂ p(x,y,x, t)

∂ z
dt. (6.32c)

Substituting Equations (6.22) and (6.28a) into Equation (6.32a) yields the particle velocity

in the x direction, which is given by

vx =−
Y0(y)Z0(z)

ρ0

∫
∂X0(x)e jωt

∂x
dt

=−Y0(y)Z0(z)
ρ0

∫
∂A0x cos(k0xx)+B0x sin(k0xx)

∂x
e jωtdt

=−Y0(y)Z0(z)
ρ0

k0x [−A0x sin(k0xx)+B0x cos(k0xx)]
∫

e jωtdt

=
Y0(y)Z0(z)

jωρ0
k0x [A0x sin(k0xx)−B0x cos(k0xx)]e jωt .

(6.33)

Eliminating the time variable e jωt , the particle velocity in the x direction is expressed as

vx =
Y0(y)Z0(z)

jωρ0
k0x [A0x sin(k0xx)−B0x cos(k0xx)] . (6.34)

Similarly, the particle velocity in the y direction is obtained as

vy =
X0(x)Z0(z)

jωρ0
k0y
[
A0y sin(k0yy)−B0y cos(k0yy)

]
. (6.35)

Substituting Equation (6.34) into Equation (6.29a) yields

vx(x = 0) =
Y0(y)Z0(z)

jωρ0
k0x(−B0x) = 0. (6.36)

Hence, B0x = 0. Substituting Equation (6.34) into Equation (6.29b) yields

vx(x = lx) =
Y0(y)Z0(z)

jωρ0
k0xA0x sin(k0xlx) = 0. (6.37)

Hence, to satisfy sin(k0xlx)= 0, it is necessary to let k0xlx = uxπ where ux is the mode number

of air propagation in the x direction. Consequently,

k0x =
uxπ

lx
where ux = 0,1,2, · · · , (6.38)
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and the sound pressure component in the x direction is expressed as

X0(x) = A0x cos
(

uxπ

lx
x
)
. (6.39)

Similarly, substituting Equation (6.35) into Equation (6.30a) yields

vy(y = 0) =
X0(x)Z0(z)

jωρ0
k0y(−B0y) = 0. (6.40)

Hence, B0y = 0. Substituting Equation (6.40) into Equation (6.30b) yields

vy(y = ly) =
X0(x)Z0(z)

jωρ0
k0yA0y sin(k0yly) = 0. (6.41)

Hence, to satisfy sin(k0yly) = 0, it is necessary to let k0yly = uyπ where uy is the mode number

of air propagation in the y direction. Consequently,

k0y =
uyπ

ly
where uy = 0,1,2, · · · , (6.42)

and the sound pressure component in the y direction is expressed as

Y0(y) = A0y cos
(

uyπ

ly
y
)
. (6.43)

Therefore, substituting Equations (6.28c), (6.39) and (6.43) into (6.22) yields

p(x,y,z) = A0 cos
(

uxπ

lx
x
)

cos
(

uyπ

ly
y
)

e− jk0zz, (6.44)

where A0 represents the coefficient of each cross mode and is dependent on the boundary

conditions. Hence, by applying the definition of the particle velocity in the z direction given

by Equation (6.32c), the normal particle velocity is obtained as

vz(x,y,z, t) =−
1
ρ0

∫
∂ p(x,y,x, t)

∂ z
dt

=− 1
ρ0

∫ ∂A0 cos
(

uxπ

lx
x
)

cos
(

uyπ

ly
y
)

e− jk0zz

∂ z
e jωtdt

=−
A0 cos

(
uxπ

lx
x
)

cos
(

uyπ

ly
y
)

ρ0

∫
− jk0ze− jk0zze jωtdt

=
A0 cos

(
uxπ

lx
x
)

cos
(

uyπ

ly
y
)

ρ0 jω
jk0ze− jk0zze jωt

(6.45)
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and eliminating the time variable e jωt , Equation (6.45) is rewritten as

vz(x,y,z) =
A0 cos

(
uxπ

lx
x
)

cos
(

uyπ

ly
y
)

ρ0 jω
jk0ze− jk0zz

=
k0z

ωρ0
A0 cos

(
uxπ

lx
x
)

cos
(

uyπ

ly
y
)

e− jk0zz,

(6.46)

where

k0z =
√

k2
0− k2

0x− k2
0y =

√
k2

0−
(

uxπ

lx

)2

−
(

uyπ

ly

)2

. (6.47)

Equations (6.44) and (6.46) represent the sound pressure component and the particle

velocity in the z-direction in the air cavity. The sound is assumed to be travelling in the

positive z-direction. As mentioned previously in this section, two sound waves exist; namely

pi2 and pr2. The former propagates in the positive z-direction and the latter in the negative

z-direction. Hence, pi2 is expressed as

pi2(x,y,z) = Ai2 cos
(

uxπ

lx
x
)

cos
(

uyπ

ly
y
)

e− jk0zz, (6.48)

where Ai2 represents the coefficient of the air particles of the transmitted sound through

Membrane 1 within the air cavity and is dependent on the boundary conditions. Similarly,

pr2 is expressed as

pr2(x,y,z) = Ar2 cos
(

uxπ

lx
x
)

cos
(

uyπ

ly
y
)

e jk0zz, (6.49)

where Ar2 represents the coefficient of the air particles of each cross mode of the sound

reflected by Membrane 2 within the air cavity and is dependent on the boundary conditions.

Note that in Equation (6.49), e jk0zz is positive, showing that pr2 travels in the negative z-

direction.

Although the expressions for pi2 and pr2 are obtained, two unknown coefficients exist:

Ai2 and Ar2. These unknown coefficients are dependent on the boundary conditions and

hence represent the fluid-structural coupling between the membrane motions and the air

motion in the cavity. These solutions, the boundary conditions in the z-direction and the fluid-

structural coupling, are discussed in Section 6.3 for normally-incident plane wave conditions

and in Section 6.4 for a diffuse field.
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6.2.3 Motion of Membrane 2 at z = D

As shown in Figure 6.1, Membrane 2 is placed at z = D and is parallel to the xy plane. It is

excited by the pressure difference between the incident sound pi2, the reflected sound pr2,

and the transmitted sound pt . If the displacement of Membrane 2 is ξ2(x,y), the velocity of

Membrane 2 v2(x,y) at radial frequency ω is given by

v2(x,y) = jωξ2(x,y). (6.50)

Based on the continuity of air particle velocity in the normal direction (i.e., the z-direction),

the relationship between the sound pressures and v2(x,y) on each surface of Membrane 2 is

given by

pi2e− jk0zD− pr2e jk0zD

ρ0 c0
= v2(x,y) = jωξ2(x,y), (6.51)

on the upstream surface and

pt

ρ0 c0
= v2(x,y) = jωξ2(x,y), (6.52)

on the other side. Hence Equation (6.51) is rewritten as

pr2 = pi2e−2 jk0zD− v2(x,y) ρ0 c0e− jk0zD. (6.53)

Therefore, the sound pressure difference on Membrane 2, ∆p2, is expressed by

∆p2 = pi2e− jk0zD− pr2e jk0zD− pt

= 2pi2e− jk0zD− v2(x,y) ρ0 c0− pt

= 2pi2e− jk0zD−2ρ0 c0 v2(x,y).

(6.54)

Substituting Equation (6.54) into the left hand side of Equation (2.26) yields the motion

equation of Membrane 2 which is given by

(T +2 jωη)∇2
ξ2(x,y)+ω

2
ρs2ξ2(x,y) =−∆p2 =−2pi2e− jk0zD +2ρ0 c0 v2(x,y),

(T +2 jωη)∇2
ξ2(x,y)+

(
ω

2
ρs2−2 jωρ0 c0

)
ξ2(x,y) =−2pi2e− jk0zD,

(6.55)

where ρs2 is the surface density of Membrane 2. Similarly to Equation (2.61), the solution

of Equation (6.55) is expressed by the modal summation,

ξ2(x,y) =
N

∑
n=1

An2 ξn2(x,y), (6.56)
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where the mode shape function is given by,

ξn2(x,y) = sin(
nx π

lx
x)sin(

ny π

ly
y), n = Ny(nx−1)+ny. (6.57)

nx and ny are the modal indices in the x- and the y-axes and N = Nx×Ny. The variable An2

is an unknown.

Substituting Equation (6.57) into Equation (6.55) gives

(T +2 jωη)∇2
N

∑
n=1

An2 ξn2(x,y)+
[
ω

2
ρs2−2 jωρ0 c0

] N

∑
n=1

An2 ξn2(x,y) =−2pi2e− jk0zD.

(6.58)

Multiplying each side of Equation (6.58) by the term ξm(x,y) and integrating over the mem-

brane surface gives

(T +2 jωη)
∫ lx

0

∫ ly

0
ξm(x,y)∇2

N

∑
n=1

An2 ξn2(x,y)dxdy+

(
ω

2
ρs2−2 jωρ0 c0

)∫ lx

0

∫ ly

0
ξm(x,y)

N

∑
n=1

An2 ξn2(x,y)dxdy

=−2
∫ lx

0

∫ ly

0
pi2e− jk0zDξm(x,y)dxdy.

(6.59)

Similar to Section 6.2.1, Equation (6.59) can be solved in matrix form. The unknown variable

An2 is rewritten in the form of an N×1 vector

A2 =




An21

An22

An23
...

An2N




. (6.60)

Hence, Equation (6.59) is rewritten in matrix form as

[
(T +2 jωη)ψψψ333 +

(
ω

2
ρs2−2 jωρ0 c0

)
ψψψ444
]

A2 =−2
∫ lx

0

∫ ly

0
pi2e− jk0zDξm(x,y)dxdy,

(6.61)
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where

ψψψ333 =


C1
∫ lx

0
∫ ly

0 ξ1(x,y)ξn21(x,y)dxdy C2
∫ lx

0
∫ ly

0 ξ1(x,y)ξn22(x,y)dxdy . . . Cn
∫ lx

0
∫ ly

0 ξ1(x,y)ξn2n(x,y)dxdy

C1
∫ lx

0
∫ ly

0 ξ2(x,y)ξn21(x,y)dxdy C2
∫ lx

0
∫ ly

0 ξ2(x,y)ξn22(x,y)dxdy . . . Cn
∫ lx

0
∫ ly

0 ξ2(x,y)ξn2n(x,y)dxdy
...

... . . . ...

C1
∫ lx

0
∫ ly

0 ξm(x,y)ξn21(x,y)dxdy C2
∫ lx

0
∫ ly

0 ξm(x,y)ξn22(x,y)dxdy . . . Cn
∫ lx

0
∫ ly

0 ξm(x,y)ξn2n(x,y)dxdy



,

(6.62)

and

ψψψ444 =


∫ lx
0
∫ ly

0 ξ1(x,y)ξn21(x,y)dxdy
∫ lx

0
∫ ly

0 ξ1(x,y)ξn22(x,y)dxdy . . .
∫ lx

0
∫ ly

0 ξ1(x,y)ξn2n(x,y)dxdy
∫ lx

0
∫ ly

0 ξ2(x,y)ξn21(x,y)dxdy
∫ lx

0
∫ ly

0 ξ2(x,y)ξn22(x,y)dxdy . . .
∫ lx

0
∫ ly

0 ξ2(x,y)ξn2n(x,y)dxdy
...

... . . . ...
∫ lx

0
∫ ly

0 ξm(x,y)ξn21(x,y)dxdy
∫ lx

0
∫ ly

0 ξm(x,y)ξn22(x,y)dxdy . . .
∫ lx

0
∫ ly

0 ξm(x,y)ξn2n(x,y)dxdy



.

(6.63)

It is also not possible to solve Equation (6.61) because the term 2
∫ lx

0
∫ ly

0 pi2ξm(x,y)dxdy is

unknown and pi2 is dependent on the sound in the air cavity. Equation (6.61) represents the

coupling between the forced vibration of Membrane 2 and the sound field in the air cavity.

Comparing the two motion equations of the impervious membranes, it is found that it is

difficult to find their solutions because of the unknown term pi2. However, as discussed in

Section 6.2.2, pi2 can be determined by the boundary conditions. The expressions for pi2

and the STL of double layer impervious membranes with a normally-incident plane wave

are discussed in Section 6.3.

6.3 Fluid-structure coupling and normal incidentce STL of

double layer impervious membranes separated by an

air cavity
In Sections 6.2.1 to 6.2.3, the motion equations of two impervious membranes and the equa-

tion for the air motion within the cavity are discussed. By applying the boundary conditions

based on the normal velocity continuity on each membrane surface along with considera-

tion of the fluid-structure coupling, the relationship between the vibration mode and the air
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motion mode can be determined, along with the term pi2. Hence, the sound transmission

coefficient and the STL of the double layer impervious membranes can be predicted. The

prediction method for the sound transmission coefficient and the STL of these membranes

using this strategy is investigated in Section 6.3.1. The developed model is compared with

experimental results in Section 6.3.2 and the error between the experimental and predicted

results is also analysed.

6.3.1 Derivation for the STL of double layer impervious membranes

separated by an air cavity
Similar to the A1 and A2 vectors, the unknown variable B can be expressed in the form of an

N×1 vector as

B =




B1

B2

B3
...

BU




. (6.64)

Note that the air mode u starts from (0,0). For Membrane 2, it is known that z = D. Substi-

tuting Equations (6.64) and (6.49) into Equation (6.61) and letting z = D yields
[
(T +2 jωη)ψψψ333 +

(
ω

2
ρs2−2 jωρ0 c0

)
ψψψ444
]

A2

=−2
∫ lx

0

∫ ly

0
Bu cos

(
uxπ

lx
x
)

cos
(

uyπ

ly
y
)

e− jk0zDξm(x,y)dxdy.
(6.65)

Letting ζu(x,y) = cos
(

uxπ

lx
x
)

cos
(

uyπ

ly
y
)

and

ψψψ555 =


∫ lx
0
∫ ly

0 ξ1(x,y)ζ1(x,y)e− jk0zDdxdy
∫ lx

0
∫ ly

0 ξ1(x,y)ζ2(x,y)e− jk0zDdxdy . . .
∫ lx

0
∫ ly

0 ξ1(x,y)ζU(x,y)e− jk0zDdxdy
∫ lx

0
∫ ly

0 ξ2(x,y)ζ1(x,y)e− jk0zDdxdy
∫ lx

0
∫ ly

0 ξ2(x,y)ζ2(x,y)e− jk0zDdxdy . . .
∫ lx

0
∫ ly

0 ξ2(x,y)ζU(x,y)e− jk0zDdxdy
...

... . . . ...
∫ lx

0
∫ ly

0 ξm(x,y)ζ1(x,y)e− jk0zDdxdy
∫ lx

0
∫ ly

0 ξm(x,y)ζ2(x,y)e− jk0zDdxdy . . .
∫ lx

0
∫ ly

0 ξm(x,y)ζU(x,y)e− jk0zDdxdy



,

(6.66)

Equation (6.65) is rewritten as

[
(T +2 jωη)ψψψ333 +

(
ω

2
ρs2−2 jωρ0 c0

)
ψψψ444
]

A2 =−2ψψψ555B. (6.67)
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Hence,

B =

[
(T +2 jωη)ψψψ333 +

(
ω2ρs2−2 jωρ0 c0

)
ψψψ444
]

A2

−2ψψψ555
. (6.68)

Equation (6.68) shows the relationship between the modal amplitudes of the air motion of

the transmitted sound through Membrane 1 and the mechanical motion of Membrane 2 and

hence represents the coupling between the air motion and the vibration motion on the up-

stream surface of Membrane 2.

Since the coupling between the air motion and the vibration motion of Membrane 2 is

obtained, it is necessary to couple the air motion with the vibration motion of Membrane

1. At the downstream surface of Membrane 1, Equation (6.3) represents the relationship

between the air motion and the vibration motion of Membrane 1 based on particle velocity

continuity in the normal direction. However, pr2 is expressed with respect to pi2 and v2(x,y),

as shown in Equation (6.53). Substituting Equation (6.53) into Equation (6.3) yields
(

1− e−2 jk0zD
)

pi2 + jωρ0c0 ξ2 e− jk0zD = jωρ0c0 ξ1. (6.69)

Multiplying each side of Equation (6.69) by ξm(x,y) and integrating over the membrane

surface gives

U

∑
u=0

∫ lx

0

∫ ly

0
Bu cos

(
uxπ

lx
x
)

cos
(

uyπ

ly
y
)

ξm(x,y)dxdy−

U

∑
u=0

∫ lx

0

∫ ly

0
Bu cos

(
uxπ

lx
x
)

cos
(

uyπ

ly
y
)

e−2 jk0zDξm(x,y)dxdy+

jωρ0c0

U

∑
u=0

∫ lx

0

∫ ly

0
e− jk0zDAn2 ξn2(x,y)ξm(x,y)dxdy

= jωρ0c0

N

∑
n=1

∫ lx

0

∫ ly

0
An1 ξn1(x,y)ξm(x,y)dxdy

(6.70)

Equation (6.70) is rewritten in matrix form as

(ψψψ666−ψψψ777)B+ jωρ0c0ψψψ888A2 = jωρ0c0 ψψψ222A1, (6.71)
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where

ψψψ666 =




∫ lx
0
∫ ly

0 ξ1(x,y)ζ1(x,y)dxdy
∫ lx

0
∫ ly

0 ξ1(x,y)ζ2(x,y)dxdy . . .
∫ lx

0
∫ ly

0 ξ1(x,y)ζU(x,y)dxdy
∫ lx

0
∫ ly

0 ξ2(x,y)ζ1(x,y)dxdy
∫ lx

0
∫ ly

0 ξ2(x,y)ζ2(x,y)dxdy . . .
∫ lx

0
∫ ly

0 ξ2(x,y)ζU(x,y)dxdy
...

... . . . ...
∫ lx

0
∫ ly

0 ξm(x,y)ζ1(x,y)dxdy
∫ lx

0
∫ ly

0 ξm(x,y)ζ2(x,y)dxdy . . .
∫ lx

0
∫ ly

0 ξm(x,y)ζU(x,y)dxdy



,

(6.72)

ψψψ777 =


∫ lx
0
∫ ly

0 ξ1(x,y)ζ1(x,y)e−2 jk0zDdxdy
∫ lx

0
∫ ly

0 ξ1(x,y)ζ2(x,y)e−2 jk0zDdxdy . . .
∫ lx

0
∫ ly

0 ξ1(x,y)ζU(x,y)e−2 jk0zDdxdy
∫ lx

0
∫ ly

0 ξ2(x,y)ζ1(x,y)e−2 jk0zDdxdy
∫ lx

0
∫ ly

0 ξ2(x,y)ζ2(x,y)e−2 jk0zDdxdy . . .
∫ lx

0
∫ ly

0 ξ2(x,y)ζU(x,y)e−2 jk0zDdxdy
...

... . . . ...
∫ lx

0
∫ ly

0 ξm(x,y)ζ1(x,y)e−2 jk0zDdxdy
∫ lx

0
∫ ly

0 ξm(x,y)ζ2(x,y)e−2 jk0zDdxdy . . .
∫ lx

0
∫ ly

0 ξm(x,y)ζU(x,y)e−2 jk0zDdxdy



.

(6.73)

and

ψψψ888 =


∫ lx
0
∫ ly

0 ξ1(x,y)ξn21(x,y)e
− jk0zDdxdy

∫ lx
0
∫ ly

0 ξ1(x,y)ξn22(x,y)e
− jk0zDdxdy . . .

∫ lx
0
∫ ly

0 ξ1(x,y)ξn2n(x,y)e
− jk0zDdxdy

∫ lx
0
∫ ly

0 ξ2(x,y)ξn21(x,y)e
− jk0zDdxdy

∫ lx
0
∫ ly

0 ξ2(x,y)ξn22(x,y)e
− jk0zDdxdy . . .

∫ lx
0
∫ ly

0 ξ2(x,y)ξn2n(x,y)e
− jk0zDdxdy

...
... . . . ...

∫ lx
0
∫ ly

0 ξm(x,y)ξn21(x,y)e
− jk0zDdxdy

∫ lx
0
∫ ly

0 ξm(x,y)ξn22(x,y)e
− jk0zDdxdy . . .

∫ lx
0
∫ ly

0 ξm(x,y)ξn2n(x,y)e
− jk0zDdxdy



.

(6.74)

Substituting Equation (6.68) into Equation (6.73) gives

(ψψψ666−ψψψ777)
(T +2 jωη)ψψψ333 +

(
ω2ρs2−2 jωρ0 c0

)
ψψψ444

−2ψψψ555
A2 + jωρ0c0ψψψ888A2 = jωρ0c0 ψψψ222A1.

(6.75)

Additionally, it is assumed that the total number of modes of Membrane 1 is identical to that

of Membrane 2. Consequently, ψψψ111 = ψψψ333 and ψψψ222 = ψψψ444. Hence, the modal amplitude of

Membrane 1 is obtained with respect to the modal amplitude of Membrane 2 as

A1 =

[
(ψψψ666−ψψψ777)

(T +2 jωη)ψψψ333 +
(
ω2ρs2−2 jωρ0 c0

)
ψψψ444

−2ψψψ555 jωρ0c0 ψψψ222
+

ψψψ888
ψψψ222

]
A2. (6.76)

Equation (6.76) indicates the coupling between the modal amplitudes of two impervious

membranes. The term (T +2 jωη)ψψψ333 +
(
ω2ρs2−2 jωρ0 c0

)
ψψψ444 is associated with the mo-

tion equation of Membrane 2. The matrices ψψψ666, ψψψ777 and ψψψ888 relate to the air motion in the

cavity.
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Substituting the expression for pi2 into Equation (6.13) yields

[
(T +2 jωη)ψψψ111 +ω

2
ρs1ψψψ222

]
A1 =−2piD+2ψψψ666B. (6.77)

Substituting Equations (6.68) and (6.76) into Equation (6.77), it can be rewritten as

[
(T +2 jωη)ψψψ111 +ω

2
ρs1ψψψ222

]
[
(ψψψ666−ψψψ777)

(T +2 jωη)ψψψ333 +
(
ω2ρs2−2 jωρ0 c0

)
ψψψ444

−2ψψψ555 jωρ0c0 ψψψ222
+

ψψψ888
ψψψ222

]
A2

=−2piD+2ψψψ666

[
(T +2 jωη)ψψψ333 +

(
ω2ρs2−2 jωρ0 c0

)
ψψψ444
]

−2ψψψ555
A2.

(6.78)

Hence, the modal amplitude vector of Membrane 2, A2, is obtained as

A2 =
−2piD

[(T +2 jωη)ψψψ111 +ω2ρs1ψψψ222]
[
(ψψψ666−ψψψ777)ψψψ999

jωρ0c0 ψψψ222
+

ψψψ888
ψψψ222

]
−2ψψψ666ψψψ999

, (6.79)

where

ψψψ999 =

[
(T +2 jωη)ψψψ333 +

(
ω2ρs2−2 jωρ0 c0

)
ψψψ444
]

−2ψψψ555
. (6.80)

Equation (6.79) represents the vector of modal amplitudes of Membrane 2 with respect to

the incident sound pressure pi.

By substituting the vector A2 into Equation (6.56), and integrating over the membrane

surface and dividing by the membrane area, the spatially averaged displacement of the mem-

brane is given by

ξ2 =
∑

N
n=1 Bn

∫ lx
0
∫ ly

0 ξn2(x,y)dxdy
lxly

=
DDDTAAA222

lxly
. (6.81)

Hence, the average velocity v̄2 is expressed as

v2 =
jω
lxly

DDDTAAA222, (6.82)

where DDDT is the transpose of vector DDD.

Based on continuity of the normal particle velocity on the downstream surface of Mem-

brane 2, the transmitted sound pressure pt is obtained by substituting Equation (6.82) into

Equation (6.52), such that

pt = ρ0 c0 v2 =
jωρ0 c0

lxly
DDDTAAA222. (6.83)
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Further, substituting Equation (6.79) into Equation (6.83) yields

pt =
jωρ0 c0

lxly

−2piDDDTD

[(T +2 jωη)ψψψ111 +ω2ρs1ψψψ222]
[
(ψψψ666−ψψψ777)ψψψ999

jωρ0c0 ψψψ222
+

ψψψ888
ψψψ222

]
−2ψψψ666ψψψ999

. (6.84)

Equation (6.84) expresses the transmitted sound pressure pt with respect to the incident

sound pressure pi. Hence, the transmission coefficient for normal incidence is obtained as

τ =

∣∣∣∣
pt

pi

∣∣∣∣=

∣∣∣∣∣∣∣∣∣

jωρ0 c0
lxly

−2piDDDTD

[(T+2 jωη)ψψψ111+ω2ρs1ψψψ222]
[
(ψψψ666−ψψψ777)ψψψ999

jωρ0c0 ψψψ222
+

ψψψ888
ψψψ222

]
−2ψψψ666ψψψ999

pi

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣
jωρ0 c0

lxly

−2DDDTD

[(T +2 jωη)ψψψ111 +ω2ρs1ψψψ222]
[
(ψψψ666−ψψψ777)ψψψ999

jωρ0c0 ψψψ222
+

ψψψ888
ψψψ222

]
−2ψψψ666ψψψ999

∣∣∣∣∣∣
.

(6.85)

The sound transmission loss (STL) is expressed by (Bies & Hansen 2009)

ST L = 20× log10

(
1
τ

)
. (6.86)

Therefore, Equations (6.85) and (6.86) provides a prediction method for the sound transmis-

sion loss of double layer impervious membranes with normally-incident plane waves, taking

into consideration the effect of the constant tension applied on each membrane surface, the

internal damping arising from the membrane curvature and the finite effect of the membrane

boundaries and rigid cavity boundaries. A comparison of the results of this model with

experimental results is discussed in Section 6.3.2.

6.3.2 Comparison with experimental results
To assess the performance of the developed model, sound transmission loss measurements

were conducted in the reverberation chambers as detailed in Chapter 2. Both impervious

membranes are made of PVC, for which the surface density is 0.4850 kg/m2 and the thick-

ness is 0.42 mm as shown in Table 2.2. These two identical impervious membranes were

stretched slightly on two wooden frames. The determination of the constant tension and the

internal damping ratio were obtained using a curve fitting method, as discussed in Chapter 2.

Since the membranes are of the same dimension and the materials are considered identical

in construction, the tension and internal damping ratio are assumed to be the same for both

membranes. Two air cavity depths, D, were investigated, namely 70 mm and 140 mm.

Figures 6.2 and 6.3 compare the measured STLs with the predicted STLs of the double
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layer impervious membranes separated by air cavities with depths of 70 mm and 140 mm,

respectively. The length and width of the air cavity are identical to those of the membranes,

implying an identical cross section area of the air cavity and the membranes. The optim-

ised tension T and internal damping ratio η are shown in the legends. Note that the internal

damping ratio shown in each figure is close to zero. This zero internal damping is consist-

ent with the conclusion arising from the STL investigation of the single layer impervious

membrane in Chapter 2.
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Experimental results
STL with normal incidence;T=150N/m;η=0

Figure 6.2: STL of double layer impervious membranes separated by a finite air cavity with
a depth D = 70 mm. The dotted curve with black circles demonstrates the predicted STL

using Equation (6.86). The experimental results were obtained in a diffuse field.

It is found in Figures 6.2 and 6.3 that the predicted STLs steadily increase at those fre-

quencies lower than the first resonance frequency of the air cavity, i.e., 2500 Hz when D= 70

mm and 1250 Hz when D = 140 mm. However, at higher frequencies, the predicted STLs

show clear resonance peaks and significant differences from the measured STLs.

The resonance peaks imply that the significant differences on the STL curves at these fre-

quencies can be ascribed to the normal incidence condition used in the prediction method. As

mentioned previously, the prediction method developed in Section 6.3.1 is for a the normally-

incident plane wave condition. However, the experimental results were measured in the re-

verberation chambers, implying a diffuse field condition.

Figures 6.2 and 6.3 demonstrate similar resonant transmission trends to that of the predic-
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Experimental results
STL with normal incidence;T=78N/m;η=0

Figure 6.3: STL of double layer impervious membranes separated by a finite air cavity with
a depth D = 140 mm. The dotted curve with black circles demonstrates the predicted STL

using Equation (6.86). The experimental results were obtained in a diffuse field.

tions, shown by Fahy & Gardonio (2007). It is presumed that by considering the incidence

angle and taking the average over the angles, the prediction accuracy can be improved. The

STL prediction method in a diffuse field is developed and validated accordingly in Section

6.4.

6.4 Fluid-structure coupling and diffuse field STL of double

layer impervious membranes separated by an air cav-

ity
Section 6.3 investigated the analytical model for the STL of double layer impervious mem-

branes with a normally-incident plane wave. Comparison of the measured STL and the

predicted normal-incidence STL indicates that omission of the incidence angle leads to defi-

ciencies in the ability of model to predict the measured diffuse field STL. Hence, to improve

the accuracy of the analytical model developed in Section 6.3, the double layer impervious

membrane structure is assumed to be excited by an obliquely-incident plane wave in the

following section. By adjusting the incidence angle and taking an average over the angles,

the normal incidence STL model is extended to the diffuse field. The diffuse STL model
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is developed in Section 6.4.1 and compared with experimental results in Section 6.4.2. The

errors in the developed model are analysed in this section.

6.4.1 Derivation of the STL of double layer impervious membranes

separated by an air cavity
Figure 6.4 illustrates double layer membranes excited by an incident sound wave with an

oblique incidence angle of θ . Hence, Equations (6.2) and (6.3) are rewritten as

(pi− pr)cos(θ)
ρ0 c0

= v1(x,y) = jωξ1(x,y), (6.87)

and

(pi2− pr2)cos(θ)
ρ0 c0

= v1(x,y) = jωξ1(x,y). (6.88)

Hence, the sound pressures pr and pr2 are obtained from Equations (6.87) and (6.88) as

Frame

Membrane 1

ly

lx

Frame

ly
lx

Membrane 2

D

pi2

pr2

Air cavity

x

y

zo
pt

pi

pr

Normal 

direction

Figure 6.4: Sound transmission of double layer impervious membranes separated by a finite
air cavity with a depth of D. The sound wave is obliquely incident on the membrane surface

with an incidence angle θ .

pr = pi−
v1(x,y) ρ0 c0

cos(θ)
, (6.89)

and

pr2 = pi2−
v1(x,y) ρ0 c0

cos(θ)
. (6.90)
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Therefore, the sound pressure difference on Membrane 1, ∆p1, is obtained as (Fahy & Gar-

donio 2007)

∆p1 = pi + pr− (pi2 + pr2)

= 2 pi−
v1(x,y) ρ0 c0

cos(θ)
−2 pi2 +

v1(x,y) ρ0 c0

cos(θ)

= 2 pi−2 pi2.

(6.91)

For Membrane 2, the sound pressure expression on each surface is given by
(

pi2e− jk0zD− pr2e jk0zD
)

cos(θ)
ρ0 c0

= v2(x,y) = jωξ2(x,y) (6.92)

and

pt cos(θ)
ρ0 c0

= v2(x,y) = jωξ2(x,y), (6.93)

where the wave number is also affected by the incidence angle θ (Fahy & Gardonio 2007),

and is expressed as

k0z =
√
[k0 cos(θ)]2− k2

0x− k2
0y =

√
[k0 cos(θ)]2−

(
uxπ

lx

)2

−
(

uyπ

ly

)2

. (6.94)

Equation (6.92) is thus rewritten as

pr2 = pi2e−2 jk0zD− v2(x,y) ρ0 c0

cos(θ)
e− jk0zD. (6.95)

Therefore, the sound pressure difference on Membrane 2, ∆p2, is expressed by

∆p2 = pi2e− jk0zD− pr2e jk0zD− pt

= 2pi2e− jk0zD− v2(x,y) ρ0 c0

cos(θ)
− pt

= 2pi2e− jk0zD−2
v2(x,y) ρ0 c0

cos(θ)
.

(6.96)

Substituting Equation (6.96) into the motion equation of Membrane 2 yields its motion equa-

tion for obliquely-incident sound, which is expressed in matrix form as
{
(T +2 jωη)ψψψ333 +

[
ω

2
ρs2−2

jωρ0 c0

cos(θ)

]
ψψψ444

}
A2 =−2ψψψ555B. (6.97)

Hence,

B =

{
(T +2 jωη)ψψψ333 +

[
ω2ρs2−2 jωρ0 c0

cos(θ)

]
ψψψ444

}
A2

−2ψψψ555
. (6.98)
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Equation (6.71) for normal incidence is thus rewritten as

(ψψψ666−ψψψ777)B+
jωρ0c0

cos(θ)
ψψψ888A2 =

jωρ0c0

cos(θ)
ψψψ222A1. (6.99)

Substituting Equation (6.98) into Equation (6.99) yields

(ψψψ666−ψψψ777)

{
(T +2 jωη)ψψψ333 +

[
ω2ρs2−2 jωρ0 c0

cos(θ)

]
ψψψ444

}
A2

−2ψψψ555
+

jωρ0c0

cos(θ)
ψψψ888A2 =

jωρ0c0

cos(θ)
ψψψ222A1.

(6.100)

Hence,

A1 =




(ψψψ666−ψψψ777)

{
(T +2 jωη)ψψψ333 +

[
ω2ρs2−2 jωρ0 c0

cos(θ)

]
ψψψ444

}

−2ψψψ555
jωρ0c0
cos(θ) ψψψ222

+
ψψψ888
ψψψ222



A2. (6.101)

Assuming a normal incidence and letting θ = 0o, cos(θ) = cos(0o) = 1 and Equation (6.101)

reduces to Equation (6.76).

Consequently, the motion equation of Membrane 1 is expressed by

[
(T +2 jωη)ψψψ111 +ω

2
ρs1ψψψ222

]



(ψψψ666−ψψψ777)

{
(T +2 jωη)ψψψ333 +

[
ω2ρs2−2 jωρ0 c0

cos(θ)

]
ψψψ444

}

−2ψψψ555
jωρ0c0
cos(θ) ψψψ222

+
ψψψ888
ψψψ222



A2

=−2piD+2ψψψ666

{
(T +2 jωη)ψψψ333 +

[
ω2ρs2−2 jωρ0 c0

cos(θ)

]
ψψψ444

}
A2

−2ψψψ555
.

(6.102)

Letting

ψψψ10 =

[
(T +2 jωη)ψψψ333 +

[
ω2ρs2−2 jωρ0 c0

cos(θ)

]
ψψψ444

]

−2ψψψ555
, (6.103)

Equation (6.102) is simplified as

[
(T +2 jωη)ψψψ111 +ω

2
ρs1ψψψ222

]



(ψψψ666−ψψψ777)ψψψ10

jωρ0c0
cos(θ) ψψψ222

+
ψψψ888
ψψψ222



A2 =−2piD+2ψψψ666ψψψ10A2.

(6.104)

Note that if θ = 0o, ψψψ10 = ψψψ999 and Equation (6.104) reduces to Equation (6.78). Therefore,

A2 is a function with respect to the incident sound pi, which is given by

A2 =
−2piD

[(T +2 jωη)ψψψ111 +ω2ρs1ψψψ222]

{
(ψψψ666−ψψψ777)ψψψ10

jωρ0c0
cos(θ) ψψψ222

+
ψψψ888
ψψψ222

}
−2ψψψ666ψψψ10

,
(6.105)
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and the transmitted sound pressure is given by

pt =
jωρ0 c0

lxly cos(θ)
DTA2

=
jωρ0 c0DT

lxly cos(θ)
−2piD

[(T +2 jωη)ψ1 +ω2ρs1ψψψ222]

{
(ψψψ666−ψψψ777)ψψψ10

jωρ0c0
cos(θ) ψψψ222

+
ψψψ888
ψψψ222

}
−2ψψψ666ψψψ10

.
(6.106)

Hence, the transmission coefficient for a plane wave with an angle of incidence θ is obtained

as

τ(θ) =

∣∣∣∣
pt

pi

∣∣∣∣=

∣∣∣∣∣∣∣∣∣∣∣∣

jωρ0 c0DT

lxly cos(θ)
−2piD

[(T+2 jωη)ψ1+ω2ρs1ψψψ222]





(ψψψ666−ψψψ777)ψψψ10
jωρ0c0
cos(θ) ψψψ222

+
ψψψ888
ψψψ222



−2ψψψ666ψψψ10

pi

∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣

jωρ0 c0DT

lxly cos(θ)
−2D

[(T +2 jωη)ψ1 +ω2ρs1ψψψ222]

{
(ψψψ666−ψψψ777)ψψψ10

jωρ0c0
cos(θ) ψψψ222

+
ψψψ888
ψψψ222

}
−2ψψψ666ψψψ10

∣∣∣∣∣∣∣∣∣
.

(6.107)

When the incident sound is normal to the membrane surface, θ = 0 and Equation (6.107)

reduces to Equation (6.85). Substituting Equation (6.107) into Equation (2.93) yields the

expression for the sound transmission coefficient in a diffuse field τdiffuse. The sound trans-

mission loss (STL) in a diffuse field is given by

ST L = 20× log10

(
1

τdiffuse

)
, (6.108)

This diffuse field STL model is compared with experimental results in Section 6.4.2.

6.4.2 Comparison with experimental results
This section assesses the performance of the STL prediction model in a diffuse field by

comparing the predicted results to the measured results presented in Section 6.3.2. The

comparisons are shown in Figures 6.5 and 6.6 with cavity depths of D = 70 mm and D = 140

mm, respectively.

For a diffuse sound field, complicated resonant sound transmission is observed in the

narrowband predicted diffuse field STL results at the frequencies above the first resonance

frequency of the air cavity. The thin dashed curves illustrate the predicted STL using Equa-
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D=70mm

Experimental results
STL with normal incidence;T=150N/m;η=0
STL in diffuse field;T=150N/m;η=0
STL in diffuse field (1/3 octave average);T=150N/m;η=0

Figure 6.5: STL of double layer impervious membranes separated by a finite air cavity with
a depth D = 70 mm.
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D=140mm

Experimental results
STL with normal incidence;T=78N/m;η=0
STL in diffuse field;T=78N/m;η=0
STL in diffuse field (1/3 octave average);T=78N/m;η=0

Figure 6.6: STL of double layer impervious membranes separated by a finite air cavity with
a depth D = 140 mm.
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tion (6.108). The rapid shifts with frequency in the values of the predicted STL curves rep-

resent the complicated modal response of the air cavity cross section with the acoustic cross

modes excited to a sufficiently greater degree by the sound of non-zero angle of incidence.

An over-estimation of the diffuse field model below the first resonance frequency of the air

cavity has been observed in this study. Similar over-estimation has been reported by Bolton

et al. (1996) and Fahy & Gardonio (2007). Since the materials used in Bolton et al.’s (1996)

and Fahy & Gardonio’s (2007) research were panels, the over-estimation is probably due to

the air cavity resonance. The effects of the acoustic properties of the reverberation chambers

and the opening position on the STLs are neglected this study but can be investigated in the

future.

Note that the measured STLs were averaged over each 1/3 octave band considered, with

centre frequencies from 50 Hz to 10 kHz included in the analysis presented here. Hence, to

compare the predicted STL to the measured STL, it is necessary to take the average of the

predicted STL over each 1/3 octave band. The 1/3 octave band average STL is expressed by

(Bies & Hansen 2009)

ST L1/3 average = 10× log10


 N1/3

∑
fhigh
flow

τ2
diffuse


 , (6.109)

where flow and fhigh are the lower and upper limits of each 1/3 octave band and N1/3 is the

number of narrowband frequencies considered in each 1/3 octave band. The thick dashed

curves with black circles in Figures 6.5 and 6.6 represent the average STLs at the centre

frequency of each 1/3 octave band.

By considering the effect of the incidence angle and averaging over each 1/3 octave band,

the predicted STL is decreased, relative to the normal incidence prediction, at frequencies

lower than the first resonance frequency of the air cavity. This leads to a more accurate

prediction of the diffuse field experimental STL results, compared with the normal incid-

ence STL prediction model. At frequencies higher than the first resonance frequency of the

air cavity, the predicted diffuse field STLs show similar main trends with the experimental

measured STLs, however, the average predicted STLs are lower than the measured ones by

roughly 9 dB. Therefore it is concluded that the presented model in a diffuse field is able

to predict the STL of double layer impervious membranes more accurately in the frequency

range lower than the first resonance frequency of the air cavity, but it tends to underestimate
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the STL in the frequency range higher than the first resonance frequency of the air cavity.

It is suspected that the unpredicted sound energy loss is due to the sound absorption of

the wooden frames which form the boundary of the air cavity in the x- and y-axes. In the

models and results presented this far, the cavity boundary is assumed to be acoustically rigid.

Beranek et al. (2013) state that the sound absorption coefficient for solid timber is between

0.05 and 0.1 depending on frequency. The wooden frames were constructed from roughly

sawn pine leading to a rough surface which might increase the sound absorption coefficient

compared to dressed, more dense timbers. Additionally, considering wave guide theory and

the cross sectional area of the cavity, the sound absorption of the wooden boundary could

be more significant in the high frequency range than in the low frequency range. This pre-

sumption is consistent with the observation that the model in a diffuse field underestimates

the STL more significantly in the high frequency range than in the low frequency range.

Moreover, besides the wood frames, other factors, such as the coupling between the wood

frames, the coupling of the membranes to the wood frames, may also contribute to the addi-

tional sound energy loss in the air cavity. To simplify the analytical modeling, the additional

sound energy loss is considered as the result of sound absorbing boundaries of the air cav-

ity. Therefore, Section 6.5 investigates the effect of a sound absorbing cavity boundary on

the predicted STL. An analytical model is developed based on the previous models with the

additional consideration of a sound absorbing cavity boundary. Results obtained from this

sound absorbing model are also compared with the experimentally measured STLs.

6.5 Effect of the separating air cavity boundary sound ab-

sorption on the STL of double layer impervious mem-

branes
In Section 6.4, the normal incidence STL model developed in Section 6.3 is extended to

a diffuse field. Although the model for the diffuse field is more accurate than the normal

incidence STL model in the low frequency range below the first resonance frequency of the

air cavity, it underestimates the STL in the high frequency range above the first resonance

frequency of the air cavity. It is presumed in Section 6.4 that this underestimation is due to

the omission of the sound absorption of the boundary of the air cavity.
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This section aims to develop a model based on the previously developed diffuse field

model and further consider the effect of the sound absorption of the boundary of the air cav-

ity. The analytical model of the sound propagation in a finite-sized air cavity with sound ab-

sorbing boundaries is derived in Section 6.5.1. Based on the new sound propagation model,

the STL model is re-developed in Section 6.5.2 for a diffuse field. This model is compared

with experimental results in Section 6.5.3.

6.5.1 Sound propagation in a finite-sized air cavity with sound absorb-

ing boundary
The sound propagation in an air cavity with an acoustically rigid boundary was utilised in

Section 6.2.2. However, the boundary of the air cavity in the experiments considered in this

study was made of wood, implying that it would absorb sound to some degree. Hence, in

this section, the air cavity boundary is assumed to be a sound absorbing boundary due to the

sound absorbing surface of the air cavity and other factors, and the sound energy is attenuated

with the propagation in the z-direction. In addition from the results presented in Figures 6.5

and 6.6, it is estimated that this sound attenuation is frequency-dependent and has a more

significant effect in the high frequency range than in the low frequency range.

Hence, the sound absorption of the air cavity is modelled as a decay factor which is

frequency dependent. Following a similar strategy used by Howard & Cazzolato (2014) to

simulate the sound pressure decay due to thermal loss, it is assumed that the sound pressure

decay in the z-direction of the air cavity is expressed by e−β
ω

c0
z, where β represents the

coefficient of sound energy loss due to the sound absorbing walls. Since it was not possible

to measure the sound absorption coefficient of the sound absorbing boundary directly in the

experiments, the value of β was obtained by data optimisation. The optimisations were

conducted following the same method as that by which the tension and damping ratio were

determined.

Considering this decay factor, the general expression for the sound propagation within

the cavity, i.e., Equation (6.44), is rewritten as

p(x,y,z) = A0 cos
(

uxπ

lx
x
)

cos
(

uyπ

ly
y
)

e−β
ω

c0
ze− jk0zz. (6.110)
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Hence, pi2 is expressed as

pi2(x,y,z) = Ai2 cos
(

uxπ

lx
x
)

cos
(

uyπ

ly
y
)

e−β
ω

c0
ze− jk0zz. (6.111)

Similarly, pr2 is expressed as

pr2(x,y,z) = Ar2 cos
(

uxπ

lx
x
)

cos
(

uyπ

ly
y
)

e−β
ω

c0
ze jk0zz. (6.112)

Note that in Equation (6.112), the decay factor is still negative. If the sign of the decay factor

in Equation (6.112) is positive, the decay factor eβ
ω

c0
z is higher than unity and has no physical

meaning.

6.5.2 Fluid-structure coupling and the diffuse field STL of double layer

impervious membranes separated by an air cavity with sound ab-

sorbing walls
At Membrane 1, z= 0 and the decay factor e−β

ω

c0
z
= 1. Consequently, the pressure difference

and the motion equation remain the same as in the case of the diffuse model in Section 6.4.

However, at Membrane 2, Equation (6.92) is expressed by
(

pi2e− jk0zD− pr2e jk0zD
)

cos(θ)e−β
ω

c0
D

ρ0 c0
= v2(x,y) = jωξ2(x,y), (6.113)

and hence

pr2 = pi2e−2 jk0zD− v2(x,y) ρ0 c0

cos(θ)
eβ

ω

c0
De− jk0zD. (6.114)

The sound pressure difference on Membrane 2 is expressed by

∆p2 = pi2e−β
ω

c0
De− jk0zD− pr2e−β

ω

c0
De jk0zD− pt

= 2pi2e− jk0zDe−β
ω

c0
D−2

v2(x,y) ρ0 c0

cos(θ)
.

(6.115)

The motion equation of Membrane 2 in matrix form is altered to
{
(T +2 jωη)ψψψ333 +

[
ω

2
ρs2−2

jωρ0 c0

cos(θ)

]
ψψψ444

}
A2 =−2ψψψ555Be−β

ω

c0
D
, (6.116)

where the decay factor e−β
ω

c0
D is a frequency-dependent term. Hence,

B =

{
(T +2 jωη)ψψψ333 +

[
ω2ρs2−2 jωρ0 c0

cos(θ)

]
ψψψ444

}
eβ

ω

c0
DA2

−2ψψψ555
. (6.117)
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Equation (6.99) is rewritten as

(ψψψ666−ψψψ777)B+
jωρ0c0

cos(θ)
eβ

ω

c0
D

ψψψ888A2 =
jωρ0c0

cos(θ)
ψψψ222A1. (6.118)

Substituting Equation (6.117) into Equation (6.118) yields

(ψψψ666−ψψψ777)

{
(T +2 jωη)ψψψ333 +

[
ω2ρs2−2 jωρ0 c0

cos(θ)

]
ψψψ444

}
eβ

ω

c0
DA2

−2ψψψ555

+
jωρ0c0

cos(θ)
eβ

ω

c0
D

ψψψ888A2 =
jωρ0c0

cos(θ)
ψψψ222A1.

(6.119)

Hence,

A1 =




(ψψψ666−ψψψ777)

{
(T +2 jωη)ψψψ333 +

[
ω2ρs2−2 jωρ0 c0

cos(θ)

]
ψψψ444

}

−2ψψψ555
jωρ0c0
cos(θ) ψψψ222

+
ψψψ888
ψψψ222



eβ

ω

c0
DA2. (6.120)

Therefore, the motion equation of Membrane 1 is expressed by
[
(T +2 jωη)ψψψ111 +ω

2
ρs1ψψψ222

]



(ψψψ666−ψψψ777)

{
(T +2 jωη)ψψψ333 +

[
ω2ρs2−2 jωρ0 c0

cos(θ)

]
ψψψ444

}

−2ψψψ555
jωρ0c0
cos(θ) ψψψ222

+
ψψψ888
ψψψ222



eβ

ω

c0
DA2

=−2piD+2ψψψ666

{
(T +2 jωη)ψψψ333 +

[
ω2ρs2−2 jωρ0 c0

cos(θ)

]
ψψψ444

}
eβ

ω

c0
DA2

−2ψψψ555
.

(6.121)

Hence,

A2 =
−2piDe−β

ω

c0
D

[(T +2 jωη)ψψψ111 +ω2ρs1ψψψ222]

{
(ψψψ666−ψψψ777)ψψψ10

jωρ0c0
cos(θ) ψψψ222

+
ψψψ888
ψψψ222

}
−2ψψψ666ψψψ10

, (6.122)

and the transmitted sound pressure is given by

pt =
jωρ0 c0

lxly cos(θ)
DTA2

=
jωρ0 c0DT

lxly cos(θ)
−2piDe−β

ω

c0
D

[(T +2 jωη)ψ1 +ω2ρs1ψψψ222]

{
(ψψψ666−ψψψ777)ψψψ10

jωρ0c0
cos(θ) ψψψ222

+
ψψψ888
ψψψ222

}
−2ψψψ666ψψψ10

.
(6.123)
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Hence, the transmission coefficient at an angle of incidence θ is obtained as

τ(θ) =

∣∣∣∣
pt

pi

∣∣∣∣=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

jωρ0 c0DT

lxly cos(θ)
−2piDe

−β
ω
c0

D

[(T+2 jωη)ψ1+ω2ρs1ψψψ222]





(ψψψ666−ψψψ777)ψψψ10
jωρ0c0
cos(θ) ψψψ222

+
ψψψ888
ψψψ222



−2ψψψ666ψψψ10

pi

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣

jωρ0 c0DT

lxly cos(θ)
−2De−β

ω

c0
D

[(T +2 jωη)ψ1 +ω2ρs1ψψψ222]

{
(ψψψ666−ψψψ777)ψψψ10

jωρ0c0
cos(θ) ψψψ222

+
ψψψ888
ψψψ222

}
−2ψψψ666ψψψ10

∣∣∣∣∣∣∣∣∣
.

(6.124)

Since β is positive, the decay factor e−β
ω

c0
D is always less than unity and hence leads to a

decrease of the transmission coefficient. Substituting Equation (6.124) into Equations (2.93)

and (6.108) yields the STL expression in a diffuse field with a sound absorbing cavity bound-

ary. Moreover, when the sound absorbing boundary of the air cavity is considered, the trans-

mission coefficient is decreased leading to an increase in the predicted STL. The results

obtained from this model are compared with the experimental results in Section 6.5.3.

6.5.3 Comparison with experimental results
This section compares the predicted STLs using the model developed in Section 6.5.2 with

the experimentally measured STLs. The comparisons are shown in Figures 6.7 and 6.8

with cavity depths of 70 mm and 140 mm, respectively. In the prediction model, the value

of parameter β is optimised for each set of results displayed in the figure. The optimised

value is indicated in the figures. Similar to Figures 6.5 and 6.6, the thin dashed curves

illustrate the predicted results at discrete frequencies from 50 Hz to 10 kHz. The thick

dashed curves represent those results averaged over each 1/3 octave band. The STLs at the

centre frequencies of these 1/3 octave bands are shown as the black dots on the thick dashed

curve.

Comparing Figures 6.7 and 6.8 with Figures 6.5 and 6.6, it is found that the predicted

STLs are increased by applying the decay factor. This observation is consistent with the

presumption arising from the analytical model developed in Section 6.5.2.

It is found in Figures 6.7 and 6.8 that the predicted STLs have good agreement with the
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D=70mm

β = 0.2

Experimental results
STL with normal incidence;T=150N/m;η=0
STL in diffuse field;T=150N/m;η=0
STL in diffuse field (1/3 octave average);T=150N/m;η=0

Figure 6.7: STL of double layer impervious membranes separated by a finite air cavity with
a depth D = 70 mm. The sound absorbing boundary is modelled by the factor e−β

ω

c0
D.
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D=140mm

β = 0.05

Experimental results
STL with normal incidence;T=78N/m;η=0
STL in diffuse field;T=78N/m;η=0
STL in diffuse field (1/3 octave average);T=78N/m;η=0

Figure 6.8: STL of double layer impervious membranes separated by a finite air cavity with
a depth D = 140 mm. The sound absorbing boundary is modelled by the factor e−β

ω

c0
D.
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experimentally measured STLs in the frequency range above the first resonance frequency

of the air cavity. This implies that the sound absorbing boundary of the air cavity has a sig-

nificant impact on the STL of the combined structure in the high frequency range. The high

sound transmission loss in this frequency range is not only because of the sound attenuation

on the membrane surfaces, but also because of the sound absorption of the boundary within

the air cavity. However, in the low frequency range, the predicted STLs with the sound decay

due to the sound absorbing boundary are slightly higher than those predicted by the diffuse

model. This is because when the frequency is lower than the first resonance frequency of the

cavity, plane wave propagation is dominant and the sound absorption on the sound absorbing

boundary can be neglected. In general, this model is more accurate than the previous models

due to the incorporation of the additional sound decay on the sound absorbing boundary of

the air cavity.

Figure 6.9: Two mounting conditions of the double layer impervious membranes separated
by a finite air cavity with a depth D = 70 mm and D = 140 mm.

It is found in Figures 6.7 and 6.8 that the factor β is 0.2 for the 70 mm cavity and 0.05 for

the 140 mm cavity. This significant difference is due to mounting conditions. As illustrated

in Figure 6.9, when the membranes were separated by a 70 mm cavity, the sound absorbing

boundary only consists of the wooden walls. However, when the air cavity was 140 mm, the

sound absorbing boundary consists of the wooden walls, as well as a metal frame which is

fixed in the middle of the wooden frames. The metal frame has a acoustically rigid surface.

Hence, the sound absorption of the cavity boundary was decreased with the presence of the

metal frame.
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6.6 Conclusions
In this chapter, three analytical models have been developed to predict the STL of double

layer impervious membranes separated by a finite-sized air cavity. In all three models, the

motion equation of each of the impervious membranes includes a constant tension applied

on the membrane surface and internal damping due to the membrane curvature. The air

motion within the cavity is based on three-dimensional sound propagation theory. These

motion equations were solved based on the modal analysis method in matrix form. The fluid-

structure coupling on each membrane surface was applied to obtain the amplitude parameters

for each mode.

The first model assumes that the incident sound is normal to the membrane surface. The

predicted STLs show clear resonant sound transmission in the frequency range above the

first resonance frequency of the air cavity. However, the experimentally measured STLs

were obtained in a diffuse field. The difference between the predicted and measured STLs is

ascribed to the neglected effect of the incidence sound angle.

To improve the accuracy of the normal incidence STL model, the incident sound is as-

sumed to be oblique in the second model. By varying the incidence angle and averaging

the STLs with the angle of oblique incidence, the STLs in a diffuse field are obtained. This

model is more accurate than the normal incidence STL model in the low frequency range,

however, it tends to underestimate the STLs in the high frequency range. This underestima-

tion is presumed to be related to the sound absorbing boundary of the air cavity which may

have additional sound absorption in the high frequency range.

To consider the effect of the sound absorbing boundary of the air cavity on the predicted

STL, a third model was developed by introducing an additional sound decay factor into the

expressions for the sound propagation within the air cavity. This model has good agreement

with the measured STLs in the frequency range above the first resonance frequency of the

air cavity, implying that the high STLs are not only related to the sound attenuation of the

impervious membranes and the cavity, but also related to the sound absorption of the sound

absorbing boundary of the air cavity. Although this model tends to overestimate the STLs in

the low frequency range, it is the most accurate model amongst the three developed models

and can be used for research and design of membrane noise barriers.
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As mentioned previously, the coupling between the membranes and the separating air

cavity has been investigated in this study, however, the effects of the acoustic properties of

the reverberation chambers on the STLs are neglected this study. However, Poblet-Puig &

Rodrguez-Ferran (2012) investigated the effects of opening position, chamber properties and

indicated that they have a impact on the sound transmission. Hence, a possible extension to

this study is consideration of the coupling between the membrane structures and the rever-

beration chambers and the opening position for a more accurate prediction in the frequency

range below the first resonance frequency of the air cavity.
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Chapter 7

Sound transmission of double layer imper-

vious membranes with an internal micro-

perforated membrane

7.1 Introduction
In Chapter 6, the sound transmission of double layer impervious membranes has been in-

vestigated theoretically and experimentally. Although the predicted results agree with the

experimental results, which indicates the accuracy of the analytical models developed in

Chapter 6, the sound attenuation of the double layer impervious membranes is less effective

than conventional massive walls.

In an attempt to enhance the sound attenuation of double layer impervious membranes

this study investigates the use of an MPM (micro perforated membrane) inserted into the

air cavity between the two impervious membranes. The double layer impervious mem-

branes and the internal MPM are coupled with the two air cavities, which forms a combined

membrane-air structure.

Since the sound absorption properties of MPMs have been studied theoretically and ex-

perimentally in Chapter 3 and the sound transmission of double layer impervious membranes

has been investigated in Chapter 6, this chapter aims to investigate the effect of the internal

MPM on the sound transmission of the combined membrane structure. Section 7.1.1 reviews

the previous studies on the sound transmission and absorption of membranes, followed by

the gaps and contributions in Section 7.1.2. In Section 7.2, the effectiveness of the internal

MPM on the STL enhancement of the combined structure is illustrated by experimental res-

ults. The analytical model of the sound transmission of double layer impervious membranes
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with an internal MPM is developed in Section 7.3. This model is validated with the exper-

imental results shown in Section 7.2. A conclusion of this chapter is presented in Section

7.4.

7.1.1 Literature review
The experimental works of Mehra (2002) and Vries (2011) have demonstrated that, although

impervious membranes can provide some sound insulation, their sound transmission losses

are commonly lower than those of the more massive building materials which are used as

traditional noise barriers. Therefore, efforts have been made to enhance the sound insulation

of membrane structures.

Since the sound transmission is dependent on the surface density of materials, it is pre-

sumed that the STL of membrane structures can be increased by increasing the surface dens-

ity. Hashimoto et al. (1996, 1991) found that the sound insulation was improved by adding

small weights to the membrane surfaces. Similarly, Yang et al. (2008) placed a small mass

at the centre of a membrane-type acoustic meta-material. It has been demonstrated that the

performance of this configuration could exceed the mass law and increase the sound insula-

tion significantly in the low frequency range from 100 Hz to 1000 Hz. Zhang et al. (2012)

furthered Yang et al.’s work by investigating the sound transmission loss of the same materi-

als with different attached mass locations. However, adding additional small weights on the

membranes, no matter if the membranes are common materials or meta-materials, increases

the overall weight of the membrane structures significantly.

An alternative way to improve the transmission loss is by adding bulk porous materi-

als in the cavity between the double membrane layers. Porous materials are widely used

as sound absorbing materials and can provide efficient sound absorption with low cost. In

Vries (2011) master’s thesis, various absorption materials, including mineral wool, foams,

wood wool and glass wool, filled the cavities of triple layer membrane structures. From the

experimental results, it can be concluded that filling the cavities between the membranes

with porous materials could improve the sound insulation. These porous materials need to

be sufficiently thick to maintain effective sound absorption, particularly in the low frequency

range. Therefore, the overall thicknesses of the membrane structures are increased in ad-

dition to their mass. This detracts from the advantages of the membrane structures being
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lightweight and convenient for transportation and storage.

MPPs (micro perforated panels) and MPMs have been considered as alternatives to con-

ventional sound absorbing porous materials, although since MPPs are made from rigid panels

these are inconvenient for transportation and storage. MPMs offer similar sound absorption

performance to conventional porous materials while being lighter and flexible as porous.

Based on the investigation on the sound absorption of MPMs in Chapters 3 to 5, it is as-

sumed that insertion of an MPM can enhance the sound transmission loss of the double layer

impervious membranes.

7.1.2 Gaps and contributions
Although the experiments by Vries (2011) have demonstrated that internal porous materials

enhance the sound insulation of double layer membranes, there is very limited research on

the effect of internal MPMs on the sound insulation of membrane structures. This chapter

aims to explore the impact of an internal MPM on the sound transmission of double layer

impervious membranes.

The design of the double layer impervious membranes with an internal MPM is presented

in Section 7.2.1. The effectiveness of this design on the enhancement of the STL of the

combined structure is quantified in Section 7.2.2 by experiments. It is demonstrated that

the MPM insertion can be used as an effective method to increase the sound insulation of

membrane structures in future noise control projects.

In addition to the experimental investigation, analytical modelling of the STL of double

layer impervious membranes with an internal MPM has been undertaken and is presented

in Section 7.3. The analytical model for the STL in a diffuse field is based on the models

developed in Chapters 3 and 6. Since it is found in Chapter 4 that the MPM 4 (with surface

density ρp = 0.2506kg/m2, hole radius r0 = 0.255mm, membrane thickness h = 0.17mm,

hole spacing 5.29mm and perforation ratio δ = 0.730%) exhibits a non-linear sound absorp-

tion under high incident SPL, the effect of the non-linear sound absorption on the STL of the

combined membrane structure is studied in Section 7.3.3. The analytical model developed

in Section 7.3 is extended to the non-linear region based on the non-linear sound absorption

theory developed in Chapter 5.

Therefore, this chapter not only introduces an effective design to improve the sound
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insulation of double layer impervious membranes by inserting an MPM into the air cavity,

it also develops two theoretical models for this design. The effects of the internal MPM

and its non-linear sound absorption on the STL of the combined membrane structure in a

diffuse field are investigated using these two models. Hence, the developed models extend

the understanding of the sound transmission of double layer impervious membranes with an

internal MPM and can be useful for membrane noise barrier design in future engineering

projects.

7.2 Increasing the STL of a double layer impervious mem-

brane with an internal MPM
This section aims to describe the design of the double layer impervious membranes with an

internal MPM in detail and verify the effectiveness of the internal MPM on the STL enhance-

ment. In Section 7.2.1 the design is presented and the experimental results are discussed in

Section 7.2.2.

7.2.1 Design of the double layer impervious membrane with an internal

MPM
In an attempt to improve the sound transmission loss of double layer impervious membranes

studied in Chapter 6, an MPM was inserted into the air cavity between the two membranes.

Four types of MPMs were used as the internal MPMs. The sound absorption of these MPMs

for normally-incident plane waves has been studied in Chapter 3 and their parameters are

shown in Table 3.2. The surface density of the impervious membranes is compared with

those of the MPMs in Table 7.1.
Table 7.1: Parameters of the impervious membranes and MPMs.

Material Surface density (kg/m2) Thickness (mm)
Impervious membranes (PVC) 0.4850 0.42
MPM 1 0.2501 0.17
MPM 2 0.2403 0.17
MPM 3 0.2448 0.17
MPM 4 0.2506 0.17

Figure 7.1 illustrates the design of the double layer impervious membrane structure with

an internal MPM. Two impervious membranes, Membrane 1 and 2, are parallel to each
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other and an MPM is placed between them. The cavity depth between Membrane 1 and

the internal MPM is D1 and that between the internal MPM and Membrane 2 is D2. In this

chapter, D1 = D2 = 70 mm.

pt

pi

pr

Wooden

frame

Membrane 1 Membrane 2

D1 D2

MPM

Wooden

frame

Figure 7.1: Geometry of the model of double layer impervious membranes with an internal
microperforated membrane. Variable D1 denotes the depth of the cavity between Membrane
1 and the internal MPM, and D2 denotes the depth of the cavity between the internal MPM

and Membrane 2. D1 = D2 = 70 mm.

When the incident sound pi strikes Membrane 1, some of the sound energy is reflected

back which is known as pr and some is transmitted through Membrane 1. The transmitted

sound travels in Air Cavity 1 until it reaches the internal MPM where some of its sound

energy is reflected back by the internal MPM and the remaining sound energy is transmit-

ted through the internal MPM and enters Air Cavity 2. Similarly, some of this transmitted

sound is reflected back into Air Cavity 2 by Membrane 2 and some is transmitted through

Membrane 2, giving rise to the transmitted pressure pt . The transmission coefficient of the

combined membrane structure is obtained by calculating the ratio of the transmitted sound

pressure to the incident sound pressure. The presence of the MPM results in increased damp-

ing in the cavity, which consequently increases the transmission loss through the partition.

The MPM is effective at reducing the amplitude of all odd order axial cavity modes which

have a velocity maxima in the centre of the two impervious membranes, assuming rigid-

walled cavity modes. In addition to the sound absorption from the internal MPM, the sound

absorbing boundary of the air cavities can also absorb sound energy, as discussed in Chapter

6. Since the cavity walls in the experiments conducted in this study are made of wood, they

are not perfectly acoustically rigid and their sound absorption could be significant, especially

in the frequency range higher than the resonance frequency of the air cavity.
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7.2.2 Experimental results
The design of the double layer impervious membranes with an internal MPM has been

presented in Section 7.2.1. It is presumed that the internal MPM can absorb sound energy

and hence increases the sound transmission loss of the combined membrane structure. This

presumption is demonstrated with the experimental results presented in this section.

lx=1 m

ly=1.5 m

Membrane

samples

Testing

window

Rigid 

wall

Figure 7.2: Photograph of the STL measurement arrangement.

Four MPMs with different parameters were stretched slightly over four wooden frames

which were identical to the frames used to mount the impervious membranes. Each MPM

and covered frame was inserted between the double layer impervious membranes and the

sound transmission loss was measured in the reverberation chambers used in Chapters 2 and

6, as shown in Figure 7.2. The depth of each air cavity was 70 mm. The measured STLs of

the double layer impervious membranes without and with each internal MPM are shown in

Figure 7.3.
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Figure 7.3: Measured sound transmission loss in one-third octave bands of double layer
impervious membranes without and with four different internal MPMs. D1 = D2 = 70 mm.

In Figure 7.3, the measured STL of double layer impervious membranes with each of the

four MPMs is compared to that of double layer impervious membranes without an internal

MPM (used in Chapter 6). The presence of the MPM creates two air cavities and their

depths are both 70 mm. In the absence of the MPM, the cavity depth was 140 mm. Hence,

the thickness for all partitions remained of 140 mm and consequently the sound absorption

from the sound absorbing boundaries was considered identical for each case. Therefore, the

variations on the measured STL curves of those with an internal MPM from that without the

internal MPM are associated only with the presence of the MPM.

It is clear from Figure 7.3 that when the MPM is inserted the sound insulation of double

layer impervious membrane structures is improved in the middle and high frequency range.

In the low frequency range from 50 Hz to 500 Hz, all the curves are approximately equal,

which implies that all four internal MPMs have negligible impact on the sound insulation of

the double layer membrane structure at low frequencies, as could be predicted from the mass

law. From 630 Hz to 1 kHz, the STLs of the double layer structures with MPMs 1 and 2

are lower than those with no MPM, while those with MPMs 3 and 4 are close to those with

no MPM (solid blue curve). The significant enhancement due to MPM insertion starts from

1250 Hz, which is the first resonance frequency of an air cavity with a depth of 140 mm.
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Therefore, it is concluded that the enhancement due to the MPM insertion is significant at

the frequencies above the first resonance frequency of the air cavity. At frequencies below

the cavity resonance, the effect of the MPM insertion on the STL is negligible.
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Figure 7.4: Difference between the measured STLs of double layer impervious membranes
with an internal MPM and that without an internal MPM.

Figure 7.4 shows the difference between the measured STLs of the double layer imper-

vious membranes with each internal MPM and that without an internal MPM. This figure

illustrates the enhancement in the STL due to the MPM insertion more clearly than Figure

7.3. In the frequency range from 50 Hz to 500 Hz, the curves with four MPMs are very

similar but slightly higher than zero, which implies the limited enhancement of the MPM

insertion in this frequency range. From 500 Hz to 1000 Hz, the STL difference with MPM 4

is positive and the others are negative. This implies that in this frequency range only MPM

4 is able to improve the sound insulation of the double layer impervious membranes. By

contrast, the other MPMs decrease the measured STL slightly.

In the frequency range above 1250 Hz, all four MPMs improve the STL of the double

layer impervious membranes significantly. MPM 3 demonstrates the most significant en-

hancement of STL among all four MPMs. The maximum increase in STL with MPM 3 is

6.6 dB at 4 kHz. The curve with MPM 4 peaks at 3.8 dB at 1600 Hz. The curves of MPM

1 and MPM 2 share a similar upward trend but the increase of MPM 1 is greater than that of
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MPM 2 from 1250 Hz to 5 kHz. The enhancement of MPM 2 is more effective than that of

MPM 1 from 6300 Hz to 10 kHz. This peak value is at a frequency significantly lower than

the peak frequencies with the other MPMs. This difference is associated to the properties of

the MPMs. It has been indicated in Chapter 3 that MPMs 1 to 3 have very small diameter

perforations. They can be considered as impervious membranes, however MPM 4 shows

effective sound absorption due to its larger diameter perforations. Consequently, MPM 4 has

a different effect on the STL of double layer impervious membranes compared to MPMs 1

to 3.

Note that the frequency 1250 Hz is the first resonance frequency of the air cavity when

the depth is 140 mm. Likewise, the resonance frequency for the 70 mm cavities is 2500 Hz.

The enhancement of the MPM insertion in the STL curve is significant at the frequencies

above the first resonance frequency of the air cavity. MPMs 1 to 3 show a similar general

trend of an increased STL, but the magnitude varies slightly for each MPM. MPM 4 has a

different effect on the STL of double layer impervious membranes compared to MPMs 1 to

3 due to the larger perforations of MPM 4.
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Figure 7.5: Predicted STL of single layer impervious membrane with surface density equal
to the sum of the surface densities of the two impervious membranes and that of each MPM.

In an attempt to investigate the mechanism of the enhancement of the internal MPM on

the STL of membrane structures, it is initially assumed that only the surface densities of

the membranes have an impact on the predicted STL. Hence, the mass of the membrane
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structure is only considered and this model is a pure mass model. Figure 7.5 shows the

predicted results using this pure mass model. It is found from Figure 7.5 that the predicted

results for double layer impervious membranes using the pure mass model are lower than

those with different internal MPMs inserted. This can be ascribed to the increased total mass

due to the internal MPMs. However, the predicted results with different internal MPMs are

overlapping due to the similar surface densities of the internal MPMs, as presented in Table

7.1. By contrast, the experimentally measured STLs in Figures 7.3 and 7.4 demonstrate

that the measured STLs differ for each of the different MPMs. Therefore, the pure mass

model is not valid in this study, and a new analytical model for the double layer impervious

membranes with an internal MPM is needed.

7.3 Analytical modelling of double layer impervious mem-

branes with an internal MPM
In Section 7.2 it was demonstrated that inserting an MPM between two impervious mem-

branes can increase the sound transmission loss. To investigate the mechanism behind this

increase, this section aims to develop a theoretical model for the STL prediction of the double

layer impervious membranes with an internal MPM. This model is based on a combination

of the models developed in Chapter 6 and the impedance prediction for the MPMs based

on the non-slip method developed in Chapter 3. Note that the investigation in Chapter 3

found that the four MPMs used in this project can be categorised into two groups: MPMs

1 to 3, which can be considered as impervious membranes because of their insufficiently

small perforations; and MPM 4 which has larger perforations than MPMs 1 to 3 and can

be considered sound absorbing. Hence, in this section, the derivation for the STL of double

layer impervious membranes with an internal MPM has been carried out in two parts: the

derivation for that with MPMs 1 to 3 in Section 7.3.1, and the derivation for that with MPM

4 in Section 7.3.2.

Since MPM 4 shows non-linear sound absorption when excited by high incident SPLs,

the effect of the non-linear sound absorption on the predicted STL is also investigated in

Section 7.3.3. These developed models have been validated by experimental results in the

corresponding sections.
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7.3.1 STL of double layer impervious membranes with an internal im-

pervious membrane (MPMs 1 to 3)
This section develops the analytical model for the STL prediction of double layer impervious

membranes with an internal MPM by extending the double layer membrane model developed

in Chapter 6 to a model with three layers of membranes separated by two air cavities with

identical depth D1 = D2 = 70 mm. The STL model with a normally-incident plane wave is

developed in Section 7.3.1.1 and then is extended to a diffuse field in Section 7.3.1.2. These

models have been validated in Section 7.3.1.3.

The internal MPM mentioned in this section is one of the three MPMs (1 to 3) used in

Chapter 3. As mentioned in Chapter 3, the perforations in MPMs 1 to 3 are insufficiently

small for the air to travel through these perforations. As a result, these MPMs can be con-

sidered as impervious membranes. Therefore, the modelling in this section is for the STL of

triple layer impervious membranes separated by two air cavities, D1 and D2.

7.3.1.1 STL of double layer impervious membranes with an internal impervious MPM

with normally-incident plane wave

Consider the partition configuration shown in Figure 7.6 similar to the case of sound propaga-

tion in the double layer impervious membranes discussed in Chapter 6. When the sound wave

pi is incident on Membrane 1, some of the sound is reflected back, denoted pr. Some of the

incident sound energy is transmitted through Membrane 1 and enters the first air cavity with

a cavity depth of D1. The sound pressure of this transmitted sound in Air Cavity 1 is named

pi2. The sound pi2 continues propagating in Air Cavity 1 until it meets the internal MPM,

where some of the sound is reflected (known as pr2) and some of the sound is transmitted.

The sound transmitted by the MPM enters Air Cavity 2, and is named as pi3. The incident

sound pi3 is also partly reflected back and partly transmitted by Membrane 2. The reflected

sound pressure in Air Cavity 2 is known as pr3. The sound pressure transmitted by Mem-

brane 2 is considered as the transmitted sound of the entire membrane system and is known

as pt . Therefore, the transmission coefficient of the membrane structure is dependent on the

ratio of pt and pi.

Assume that the particle velocity in the z-direction on the entire surface of Membrane

1 is v1. Hence, due to the velocity continuity in the z-direction, the particle velocity in the
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Figure 7.6: Sound propagation in double layer impervious membranes with an internal
microperforated membrane. Variable D1 denotes the depth of the cavity between Membrane
1 and the internal MPM, and D2 denotes the depth of the cavity between the internal MPM

and Membrane 2. D1 = D2 = 70 mm.

z-direction on the left-hand surface of Membrane 1 can be expressed as a function of the

sound pressures pi and pr which is given by (Fahy & Gardonio 2007)

v1 =
pi− pr

ρ0c0
. (7.1)

Rearranging Equation (7.1) yields the expression of pr as

pr = pi−ρ0c0v1. (7.2)

Similarly, on the right-hand surface of Membrane 1, the relationship between the sound

pressures pi2, pr2 and the particle velocity in the z-direction, v1, is expressed as

pi2− pr2

ρ0c0
= v1, (7.3)

and hence, the sound pressure reflected by the internal MPM is given by

pr2 = pi2−ρ0c0v1. (7.4)

Therefore, the sound pressure difference applied across Membrane 1 is given by

∆p1 = pi + pr− (pi2 + pr2)

= 2pi−ρ0c0v1− (2pi2−ρ0c0v1)

= 2pi−2pi2.

(7.5)

Equation (7.5) is identical to Equation (6.6) in Chapter 6, which implies that although an

internal MPM is added in this model, the sound pressure difference on Membrane 1 is ex-
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pressed in the same form to that without the internal MPM. Note that although they are in

the same form, the value of pi2 differs from that in Chapter 6 due to the existence of the

internal MPM. Note that the terms pi2, pr2, pi3 and pr3 are functions with respect to the local

position coordinate (x,y).

Assuming that the particle velocity in the z-direction on each surface of the internal MPM

is vMPM, similar relationships are obtained based on the particle velocity in the z-direction

with respect to pi2, pr2, pi3 and pr3, namely

pi2e− jk0zD1− pr2e jk0zD1

ρ0c0
= vMPM, (7.6)

and

pi3− pr3

ρ0c0
= vMPM. (7.7)

Rewriting these equations yields the expressions for pr2 and pr3 as

pr2e jk0zD1 = pi2e− jk0zD1−ρ0c0vMPM,

pr2 = pi2e−2 jk0zD1−ρ0c0vMPMe− jk0zD1,
(7.8)

and

pr3 = pi3−ρ0c0vMPM. (7.9)

Hence, the sound pressure difference applied on the MPM surfaces is obtained as

∆pMPM = pi2e− jk0zD1 + pr2e jk0zD1− (pi3 + pr3)

= 2pi2e− jk0zD1−ρ0c0vMPM−2pi3 +ρ0c0vMPM

= 2pi2e− jk0zD1−2pi3.

(7.10)

In Equation (7.10), the first term represents the sound pressure of the incident sound in the

first cavity having travelled a distance of D1.

For Membrane 2, the particle velocity continuity in the z-direction is represented by

pi3e− jk0zD2− pr3e jk0zD2

ρ0c0
= v2. (7.11)

Hence, the reflected sound pressure in the second air cavity is expressed by

pr3e jk0zD2 = pi3e− jk0zD2−ρ0c0v2,

pr3 = pi3e−2 jk0zD2−ρ0c0v2e− jk0zD2.
(7.12)

Note that on the right-hand side of Membrane 2, there exists only the transmitted sound pt
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through the entire membrane-cavity combined structure. From the particle velocity continu-

ity in the z-direction, the transmitted sound pressure pt is obtained as

pt = ρ0c0v2. (7.13)

Consequently, the sound pressure difference on the surface of Membrane 2 is given by

∆p2 = pi3e− jk0zD2 + pr3e jk0zD2− pt

= 2pi3e− jk0zD2−2ρ0c0v2.
(7.14)

Equation (7.14) is in the same form as Equation (6.54) in Chapter 6, which represents the

sound pressure difference on Membrane 2 without the internal MPM.

The sound pressure differences on the impervious membranes and the MPM are determ-

ined by Equations (7.5), (7.10) and (7.14), respectively. Substituting these equations into

their motion equations gives their forced vibration response. As for the impervious mem-

branes, the motion equation for Membrane 1 is given by

(T +2 jωη)∇2
ξ1(x,y)+ω

2
ρs1ξ1(x,y) =−∆p1 =−2 pi +2 pi2, (7.15)

and for Membrane 2,

(T +2 jωη)∇2
ξ2(x,y)+ω

2
ρs2ξ2(x,y) =−∆p2 =−2pi3e− jk0zD2 +2ρ0c0 v2(x,y),

(T +2 jωη)∇2
ξ2(x,y)+

(
ω

2
ρs2−2 jωρ0c0

)
ξ2(x,y) =−2pi3e− jk0zD2.

(7.16)

Note that Equation (7.15) is identical to Equation (6.7). Equation (7.16) is similar to Equa-

tion (6.55) except that pi is replaced by pi3. Since the internal MPM is considered to be an

impervious membrane, the motion equation of the internal MPM is given by

(TMPM +2 jωηMPM)∇2
ξMPM(x,y)+ω

2
ρsMPMξMPM(x,y) =−∆pMPM

(TMPM +2 jωηMPM)∇2
ξMPM(x,y)+ω

2
ρsMPMξMPM(x,y) =−2pi2e− jk0zD1 +2pi3,

(7.17)

where ξMPM represents the displacement of the internal MPM in the z-direction, TMPM de-

notes the tension applied on the MPM surface, ηMPM denotes the internal damping ratio of

the MPM and ρsMPM denotes the surface density of the MPM.

These motion equations can be solved using linear algebra as presented in Chapter 6. To

solve these expressions, the modal amplitudes of the membrane motions and the air motion

were assumed to be unknown vectors in Equations (6.13) and (6.61). Consequently, these

unknown vectors were solved using the motion equations of the impervious membranes and
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the air cavity with respect to the incident sound pressure pi. Since the STL is dependent on

the sound transmission coefficient which is the ratio of pt and pi, the incident sound pressure

was eliminated and the expression for the STL (Equations (6.85), (6.86), (6.107) and (6.108))

was obtained in Chapter 6.

As in Chapter 6, in this chapter A1 and A2 are defined to be the vectors which represent

the modal amplitudes of ξ1 and ξ2. Using a similar strategy, AMPM is defined to be the vector

representing the modal amplitude of ξMPM. Assuming that AMPMn represents the nth mode

of the MPM motion, the vector AMPM is given by

AMPM =




AMPM1

AMPM2

AMPM3
...

AMPMN




. (7.18)

Hence, the displacement of Membrane 1 is expressed by the modal summation

ξ1(x,y) =
N

∑
n=1

An1 ξn1(x,y), (7.19)

where the mode shape functions of the transverse membrane vibration are given by

ξn1(x,y) = sin
(

nx π

lx
x
)

sin
(

ny π

ly
y
)
, n = Ny(nx−1)+ny. (7.20)

The displacement of Membrane 2 is given by

ξ2(x,y) =
N

∑
n=1

An2 ξn2(x,y), (7.21)

where

ξn2(x,y) = sin
(

nx π

lx
x
)

sin
(

ny π

ly
y
)
, n = Ny(nx−1)+ny. (7.22)

These expressions are identical to Equations (6.8), (6.9), (6.56), and (6.57) in Chapter 6,

which implies although an internal MPM is used in this chapter, the motions of the imper-

vious membranes are expressed in the same form as those without an internal MPM due

to their similar acoustic and vibration mechanisms. Assuming that the perforations on the

MPM have negligible impact on the MPM motion, the displacement of the MPM is given by

ξMPM(x,y) =
N

∑
n=1

AMPMn ξMPMn(x,y), (7.23)
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where

ξMPMn(x,y) = sin
(

nx π

lx
x
)

sin
(

ny π

ly
y
)
, n = Ny(nx−1)+ny. (7.24)

Let the vectors B1 and B2 represent the modal amplitudes associated with the modes in

Air Cavities 1 and 2. Note that there is only one vector, namely B, representing the air cavity

modes in Chapter 6. However, it is necessary to utilise B1 and B2 in this chapter for the two

air cavities separated by the internal MPM. Hence,

B1 =




Bu11

Bu12

Bu13
...

Bu1U




, (7.25)

and

B2 =




Bu21

Bu22

Bu23
...

Bu2U




. (7.26)

Using the same approach to model the sound propagation in a 3-D cavity employed in Sec-

tion 6.2.2, the sound pressures pi2 and pi3 are given by

pi2(x,y) =
u1U

∑
u1=0

Bu1u ζu1(x,y), (7.27)

where ζu1(x,y)= cos
(

u1xπ

lx
x
)

cos
(

u1yπ

ly
y
)

represents the acoustic mode shapes of Air Cavity

1, and

pi3(x,y) =
u2U

∑
u2=0

Bu2u ζu2(x,y), (7.28)

where ζu2(x,y) = cos
(

u2xπ

lx
x
)

cos
(

u2yπ

ly
y
)

are the acoustic mode shape function for Air Cav-

ity 2.

Substituting Equations (7.19) and (7.27) into Equation (7.15), then multiplying each side
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of the equation by ξm(x,y) and integrating over the membrane surface gives

[
(T +2 jωη)ψψψCmn1 +ω

2
ρs1ψψψmn1

]
A1 =−2 piD+2ψψψmu1B1, (7.29)

where

Cn =−
(

nx π

lx

)2

−
(

ny π

ly

)2

, n = Ny(nx−1)+ny, (7.30)

ψψψCmn1 =


C1
∫ lx

0
∫ ly

0 ξ1(x,y)ξn11(x,y)dxdy C2
∫ lx

0
∫ ly

0 ξ1(x,y)ξn12(x,y)dxdy . . . Cn
∫ lx

0
∫ ly

0 ξ1(x,y)ξn1n(x,y)dxdy

C1
∫ lx

0
∫ ly

0 ξ2(x,y)ξn11(x,y)dxdy C2
∫ lx

0
∫ ly

0 ξ2(x,y)ξn12(x,y)dxdy . . . Cn
∫ lx

0
∫ ly

0 ξ2(x,y)ξn1n(x,y)dxdy
...

... . . . ...

C1
∫ lx

0
∫ ly

0 ξm(x,y)ξn11(x,y)dxdy C2
∫ lx

0
∫ ly

0 ξm(x,y)ξn12(x,y)dxdy . . . Cn
∫ lx

0
∫ ly

0 ξm(x,y)ξn1n(x,y)dxdy



,

(7.31)

ψψψmn1 =


∫ lx
0
∫ ly

0 ξ1(x,y)ξn11(x,y)dxdy
∫ lx

0
∫ ly

0 ξ1(x,y)ξn12(x,y)dxdy . . .
∫ lx

0
∫ ly

0 ξ1(x,y)ξn1n(x,y)dxdy
∫ lx

0
∫ ly

0 ξ2(x,y)ξn11(x,y)dxdy
∫ lx

0
∫ ly

0 ξ2(x,y)ξn12(x,y)dxdy . . .
∫ lx

0
∫ ly

0 ξ2(x,y)ξn1n(x,y)dxdy
...

... . . . ...
∫ lx

0
∫ ly

0 ξm(x,y)ξn11(x,y)dxdy
∫ lx

0
∫ ly

0 ξm(x,y)ξn12(x,y)dxdy . . .
∫ lx

0
∫ ly

0 ξm(x,y)ξn1n(x,y)dxdy



,

(7.32)

D =
∫ lx

0

∫ ly

0
ξm(x,y)dxdy =




∫ lx
0
∫ ly

0 ξ1(x,y)dxdy
∫ lx

0
∫ ly

0 ξ2(x,y)dxdy
...

∫ lx
0
∫ ly

0 ξm(x,y)dxdy



, (7.33)

and

ψψψmu1 =


∫ lx
0
∫ ly

0 ξ1(x,y)ζu11(x,y)dxdy
∫ lx

0
∫ ly

0 ξ1(x,y)ζu12(x,y)dxdy . . .
∫ lx

0
∫ ly

0 ξ1(x,y)ζu1U (x,y)dxdy
∫ lx

0
∫ ly

0 ξ2(x,y)ζu11(x,y)dxdy
∫ lx

0
∫ ly

0 ξ2(x,y)ζu12(x,y)dxdy . . .
∫ lx

0
∫ ly

0 ξ2(x,y)ζu1U (x,y)dxdy
...

... . . . ...
∫ lx

0
∫ ly

0 ξm(x,y)ζu11(x,y)dxdy
∫ lx

0
∫ ly

0 ξm(x,y)ζu12(x,y)dxdy . . .
∫ lx

0
∫ ly

0 ξm(x,y)ζu1U (x,y)dxdy



.

(7.34)
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Equation (7.29) represents the motion of Membrane 1 in matrix form. On the left hand side,

the term (T +2 jωη)ψψψCmn1A1 represents the effects of the constant tension and the internal

damping on the membrane motion, and ω2ρs1ψψψmn1A1 represents that of the membrane mass.

The terms on the right hand side represent the sound pressure difference across Membrane

1, including the incident sound and the sound generated in Air Cavity 1. Following the same

strategy, the motion equation of the internal MPM is expressed in matrix form
[
(TMPM +2 jωηMPM)ψψψCmMPM +ω

2
ρsMPMψψψmMPM

]
AMPM =−2ψψψmu1D1B1 +2ψψψmu2B2,

(7.35)

where

ψψψCmMPM =



∫ lx
0
∫ ly

0 C1ξ1(x,y)ξMPM1(x,y)dxdy
∫ lx

0
∫ ly

0 C2ξ1(x,y)ξMPM2(x,y)dxdy . . .
∫ lx

0
∫ ly

0 Cnξ1(x,y)ξMPMn(x,y)dxdy
∫ lx

0
∫ ly

0 C1ξ2(x,y)ξMPM1(x,y)dxdy
∫ lx

0
∫ ly

0 C2ξ2(x,y)ξMPM2(x,y)dxdy . . .
∫ lx

0
∫ ly

0 Cnξ2(x,y)ξMPMn(x,y)dxdy
...

... . . . ...
∫ lx

0
∫ ly

0 C1ξm(x,y)ξMPM1(x,y)dxdy
∫ lx

0
∫ ly

0 C2ξm(x,y)ξMPM2(x,y)dxdy . . .
∫ lx

0
∫ ly

0 Cnξm(x,y)ξMPMn(x,y)dxdy



,

(7.36)

ψψψmMPM =



∫ lx
0
∫ ly

0 ξ1(x,y)ξMPM1(x,y)dxdy
∫ lx

0
∫ ly

0 ξ1(x,y)ξMPM2(x,y)dxdy . . .
∫ lx

0
∫ ly

0 ξ1(x,y)ξMPMn(x,y)dxdy
∫ lx

0
∫ ly

0 ξ2(x,y)ξMPM1(x,y)dxdy
∫ lx

0
∫ ly

0 ξ2(x,y)ξMPM2(x,y)dxdy . . .
∫ lx

0
∫ ly

0 ξ2(x,y)ξMPMn(x,y)dxdy
...

... . . . ...
∫ lx

0
∫ ly

0 ξm(x,y)ξMPM1(x,y)dxdy
∫ lx

0
∫ ly

0 ξm(x,y)ξMPM2(x,y)dxdy . . .
∫ lx

0
∫ ly

0 ξm(x,y)ξMPMn(x,y)dxdy



,

(7.37)

ψψψmu1D1 =


∫ lx
0
∫ ly

0 ξ1(x,y)ζu11(x,y)e
− jk0zD1dxdy

∫ lx
0
∫ ly

0 ξ1(x,y)ζu12(x,y)e
− jk0zD1dxdy . . .

∫ lx
0
∫ ly

0 ξ1(x,y)ζu1U (x,y)e
− jk0zD1dxdy

∫ lx
0
∫ ly

0 ξ2(x,y)ζu11(x,y)e
− jk0zD1dxdy

∫ lx
0
∫ ly

0 ξ2(x,y)ζu12(x,y)e
− jk0zD1dxdy . . .

∫ lx
0
∫ ly

0 ξ2(x,y)ζu1U (x,y)e
− jk0zD1dxdy

...
... . . . ...

∫ lx
0
∫ ly

0 ξm(x,y)ζu11(x,y)e
− jk0zD1dxdy

∫ lx
0
∫ ly

0 ξm(x,y)ζu12(x,y)e
− jk0zD1dxdy . . .

∫ lx
0
∫ ly

0 ξm(x,y)ζu1U (x,y)e
− jk0zD1dxdy



.

(7.38)
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and

ψψψmu2 =


∫ lx
0
∫ ly

0 ξ1(x,y)ζu21(x,y)dxdy
∫ lx

0
∫ ly

0 ξ1(x,y)ζu22(x,y)dxdy . . .
∫ lx

0
∫ ly

0 ξ1(x,y)ζu2U (x,y)dxdy
∫ lx

0
∫ ly

0 ξ2(x,y)ζu21(x,y)dxdy
∫ lx

0
∫ ly

0 ξ2(x,y)ζu22(x,y)dxdy . . .
∫ lx

0
∫ ly

0 ξ2(x,y)ζu2U (x,y)dxdy
...

... . . . ...
∫ lx

0
∫ ly

0 ξm(x,y)ζu21(x,y)dxdy
∫ lx

0
∫ ly

0 ξm(x,y)ζu22(x,y)dxdy . . .
∫ lx

0
∫ ly

0 ξm(x,y)ζu2U (x,y)dxdy



.

(7.39)

Similarly, the motion equation of Membrane 2 is given by

[
(T +2 jωη)ψψψCmn2 +

(
ω

2
ρs2−2 jωρ0c0

)
ψψψmn2

]
A2 =−2ψψψmu2D2B2, (7.40)

where

ψψψCmn2 =


C1
∫ lx

0
∫ ly

0 ξ1(x,y)ξn21(x,y)dxdy C2
∫ lx

0
∫ ly

0 ξ1(x,y)ξn22(x,y)dxdy . . . Cn
∫ lx

0
∫ ly

0 ξ1(x,y)ξn2n(x,y)dxdy

C1
∫ lx

0
∫ ly

0 ξ2(x,y)ξn21(x,y)dxdy C2
∫ lx

0
∫ ly

0 ξ2(x,y)ξn22(x,y)dxdy . . . Cn
∫ lx

0
∫ ly

0 ξ2(x,y)ξn2n(x,y)dxdy
...

... . . . ...

C1
∫ lx

0
∫ ly

0 ξm(x,y)ξn21(x,y)dxdy C2
∫ lx

0
∫ ly

0 ξm(x,y)ξn22(x,y)dxdy . . . Cn
∫ lx

0
∫ ly

0 ξm(x,y)ξn2n(x,y)dxdy



,

(7.41)

ψψψmn2 =


∫ lx
0
∫ ly

0 ξ1(x,y)ξn21(x,y)dxdy
∫ lx

0
∫ ly

0 ξ1(x,y)ξn22(x,y)dxdy . . .
∫ lx

0
∫ ly

0 ξ1(x,y)ξn2n(x,y)dxdy
∫ lx

0
∫ ly

0 ξ2(x,y)ξn21(x,y)dxdy
∫ lx

0
∫ ly

0 ξ2(x,y)ξn22(x,y)dxdy . . .
∫ lx

0
∫ ly

0 ξ2(x,y)ξn2n(x,y)dxdy
...

... . . . ...
∫ lx

0
∫ ly

0 ξm(x,y)ξn21(x,y)dxdy
∫ lx

0
∫ ly

0 ξm(x,y)ξn22(x,y)dxdy . . .
∫ lx

0
∫ ly

0 ξm(x,y)ξn2n(x,y)dxdy



,

(7.42)
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and

ψψψmu2D2 =


∫ lx
0
∫ ly

0 ξ1(x,y)ζu21(x,y)e
− jk0zD2dxdy

∫ lx
0
∫ ly

0 ξ1(x,y)ζu22(x,y)e
− jk0zD2dxdy . . .

∫ lx
0
∫ ly

0 ξ1(x,y)ζu2U (x,y)e
− jk0zD2dxdy

∫ lx
0
∫ ly

0 ξ2(x,y)ζu21(x,y)e
− jk0zD2dxdy

∫ lx
0
∫ ly

0 ξ2(x,y)ζu22(x,y)e
− jk0zD2dxdy . . .

∫ lx
0
∫ ly

0 ξ2(x,y)ζu2U (x,y)e
− jk0zD2dxdy

...
... . . . ...

∫ lx
0
∫ ly

0 ξm(x,y)ζu21(x,y)e
− jk0zD2dxdy

∫ lx
0
∫ ly

0 ξm(x,y)ζu22(x,y)e
− jk0zD2dxdy . . .

∫ lx
0
∫ ly

0 ξm(x,y)ζu2U (x,y)e
− jk0zD2dxdy



.

(7.43)

By rearranging Equation (7.40), the expression for B2 with respect to A2 is obtained as

B2 =
(T +2 jωη)ψψψCmn2 +

(
ω2ρs2−2 jωρ0c0

)
ψψψmn2

−2ψψψmu2D2
A2. (7.44)

Substituting Equations (7.44) and (7.9) into Equation (7.7), multiplying each side of the

equation by ξm(x,y) and integrating over the membrane surface yields

(ψψψmu2−ψψψ2mu2D2)B2 + jωρ0c0ψψψmn2D2A2 = jωρ0c0ψψψmMPMAMPM (7.45)

where

ψψψ2mu2D2 =


∫ lx
0
∫ ly

0 ξ1(x,y)ζu21(x,y)e
−2 jk0zD2dxdy

∫ lx
0
∫ ly

0 ξ1(x,y)ζu22(x,y)e
− jk0zD2dxdy . . .

∫ lx
0
∫ ly

0 ξ1(x,y)ζu2U (x,y)e
−2 jk0zD2dxdy

∫ lx
0
∫ ly

0 ξ2(x,y)ζu21(x,y)e
−2 jk0zD2dxdy

∫ lx
0
∫ ly

0 ξ2(x,y)ζu22(x,y)e
−2 jk0zD2dxdy . . .

∫ lx
0
∫ ly

0 ξ2(x,y)ζu2U (x,y)e
−2 jk0zD2dxdy

...
... . . . ...

∫ lx
0
∫ ly

0 ξm(x,y)ζu21(x,y)e
−2 jk0zD2dxdy

∫ lx
0
∫ ly

0 ξm(x,y)ζu22(x,y)e
−2 jk0zD2dxdy . . .

∫ lx
0
∫ ly

0 ξm(x,y)ζu2U (x,y)e
−2 jk0zD2dxdy



.

(7.46)

and

ψψψmn2D2 =


∫ lx
0
∫ ly

0 ξ1(x,y)ξn21(x,y)e
− jk0zD2dxdy

∫ lx
0
∫ ly

0 ξ1(x,y)ξn22(x,y)e
− jk0zD2dxdy . . .

∫ lx
0
∫ ly

0 ξ1(x,y)ξn2n(x,y)e
− jk0zD2dxdy

∫ lx
0
∫ ly

0 ξ2(x,y)ξn21(x,y)e
− jk0zD2dxdy

∫ lx
0
∫ ly

0 ξ2(x,y)ξn22(x,y)e
− jk0zD2dxdy . . .

∫ lx
0
∫ ly

0 ξ2(x,y)ξn2n(x,y)e
− jk0zD2dxdy

...
... . . . ...

∫ lx
0
∫ ly

0 ξm(x,y)ξn21(x,y)e
− jk0zD2dxdy

∫ lx
0
∫ ly

0 ξm(x,y)ξn22(x,y)e
− jk0zD2dxdy . . .

∫ lx
0
∫ ly

0 ξm(x,y)ξn2n(x,y)e
− jk0zD2dxdy



,

(7.47)
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Substituting Equation (7.44) into Equation (7.45) yields

(ψψψmu2−ψψψ2mu2D2)
(T +2 jωη)ψψψCmn2 +

(
ω2ρs2−2 jωρ0c0

)
ψψψmn2

−2ψψψmu2D2
A2 + jωρ0c0ψψψmn2D2A2

= jωρ0c0ψψψmMPMAMPM.

(7.48)

Hence,

AMPM =

[
(ψψψmu2−ψψψ2mu2D2)

(T +2 jωη)ψψψCmn2 +
(
ω2ρs2−2 jωρ0c0

)
ψψψmn2

−2ψψψmu2D2 jωρ0c0ψψψmMPM
+

ψψψmn2D2
ψψψmMPM

]
A2.

(7.49)

Equation (7.49) represents the modal amplitude of the internal MPM expressed in terms of

the modal amplitude of Membrane 2. It is very similar to Equation (6.76) in Chapter 6 which

represents the relationship between the modal amplitudes of the two impervious membranes

without an internal MPM. Letting

ψψψAMPMA2
= (ψψψmu2−ψψψ2mu2D2)

(T +2 jωη)ψψψCmn2 +
(
ω2ρs2−2 jωρ0c0

)
ψψψmn2

−2ψψψmu2D2 jωρ0c0ψψψmMPM
+

ψψψmn2D2
ψψψmMPM

,

(7.50)

Equation (7.49) may be simplified to

AMPM = ψψψAMPMA2
A2. (7.51)

The matrix ψψψAMPMA2
is considered a ”transfer matrix” which links the modal amplitudes of

Membrane 2 and the internal MPM.

In the motion equations the terms related to the tension, internal damping and mass occur

repeatedly in the derivation process. To simplify the equations, these terms can be replaced

with specific variables. Let

γγγ111 = (T +2 jωη)ψψψCmn1 +ω
2
ρs1ψψψmn1, (7.52)

γγγMPM = (TMPM +2 jωηMPM)ψψψCmMPM +ω
2
ρsMPMψψψmMPM (7.53)

γγγ222 = (T +2 jωη)ψψψCmn2 +
(
ω

2
ρs2−2 jωρ0c0

)
ψψψmn2. (7.54)

Substituting Equation (7.54) into Equation (7.50) yields

ψψψAMPMA2
=

(ψψψmu2−ψψψ2mu2D2)γγγ222
−2ψψψmu2D2 jωρ0c0ψψψmMPM

+
ψψψmn2D2
ψψψmMPM

. (7.55)
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Substituting Equations (7.55) and (7.44) into Equation (7.35) gives

γγγMPMAMPM =−2ψψψmu1D1B1 +2ψψψmu2B2,

γγγMPMψψψAMPMA2
A2 =−2ψψψmu1D1B1 +2ψψψmu2

γγγ222
−2ψψψmu2D2

A2,

B1 =

(
γγγMPMψψψAMPMA2

−2ψψψmu1D1
− ψψψmu2γγγ222

2ψψψmu1D1ψψψmu2D2

)
A2,

(7.56)

where

ψψψB1A2
=

γγγMPMψψψAMPMA2

−2ψψψmu1D1
− ψψψmu2γγγ222

2ψψψmu1D1ψψψmu2D2
. (7.57)

Substituting Equations (7.57) and (7.8) into Equation (7.3), multiplying each side of the

equation by ξm(x,y) and integrating over the membrane surface yields

(ψψψmu1−ψψψ2mu1D1)B1 + jωρ0c0ψψψmMPMD1AMPM = jωρ0c0ψψψmn1A1,

(ψψψmu1−ψψψ2mu1D1)ψψψB1A2
A2 + jωρ0c0ψψψmMPMD1ψψψAMPMA2

A2 = jωρ0c0ψψψmn1A1,
(7.58)

where

ψψψmMPMD1 =


∫ lx
0
∫ ly

0 ξ1ξMPM1e− jk0zD1dxdy
∫ lx

0
∫ ly

0 ξ1ξMPM2e− jk0zD1dxdy . . .
∫ lx

0
∫ ly

0 ξ1ξMPMne− jk0zD1dxdy
∫ lx

0
∫ ly

0 ξ2ξMPM1e− jk0zD1dxdy
∫ lx

0
∫ ly

0 ξ2ξMPM2e− jk0zD1dxdy . . .
∫ lx

0
∫ ly

0 ξ2ξMPMne− jk0zD1dxdy
...

... . . . ...
∫ lx

0
∫ ly

0 ξmξMPM1e− jk0zD1dxdy
∫ lx

0
∫ ly

0 ξmξMPM2e− jk0zD1dxdy . . .
∫ lx

0
∫ ly

0 ξmξMPMne− jk0zD1dxdy



.

(7.59)

Hence,

A1 =
(ψψψmu1−ψψψ2mu1D1)ψψψB1A2

+ jωρ0c0ψψψmMPMD1ψψψAMPMA2

jωρ0c0ψψψmn1
A2

=

[
(ψψψmu1−ψψψ2mu1D1)ψψψB1A2

jωρ0c0ψψψmn1
+

ψψψmMPMD1ψψψAMPMA2

ψψψmn1

]
A2.

(7.60)

Letting

ψψψA1A2
=

(ψψψmu1−ψψψ2mu1D1)ψψψB1A2

jωρ0c0ψψψmn1
+

ψψψmMPMD1ψψψAMPMA2

ψψψmn1
, (7.61)

and substituting it and γγγ111 into Equation (7.29) yields

γγγ111A1 =−2 piD+2ψψψmu1B1,

γγγ111ψψψA1A2
A2 =−2 piD+2ψψψmu1ψψψB1A2

A2.
(7.62)
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Hence,

(
γγγ111ψψψA1A2

−2ψψψmu1ψψψB1A2

)
A2 =−2 piD, (7.63)

and

A2 =
−2 piD

γγγ111ψψψA1A2
−2ψψψmu1ψψψB1A2

. (7.64)

Therefore, the transmitted sound pressure is expressed by

pt = ρ0c0v2 =
jωρ0c0

lxly
DTA2

=
jωρ0c0

lxly

−2DT piD
γγγ111ψψψA1A2

−2ψψψmu1ψψψB1A2

.

(7.65)

Consequently, the transmission coefficient is defined as (Bies & Hansen 2009)

τ =

∣∣∣∣
pt

pi

∣∣∣∣=
∣∣∣∣

jωρ0c0

lxly

−2DTD
γγγ111ψψψA1A2

−2ψψψmu1ψψψB1A2

∣∣∣∣ . (7.66)

If the sound absorbing walls of the air cavities are considered, Equation (7.66) is given by

τ =

∣∣∣∣
pt

pi

∣∣∣∣=
∣∣∣∣∣

jωρ0c0

lxly

−2DTD e−β
ω

c0
(D1+D2)

γγγ111ψψψA1A2
−2ψψψmu1ψψψB1A2

∣∣∣∣∣ . (7.67)

Therefore, the STL is calculated by (Fahy & Gardonio 2007)

ST L = 20 log10
1
τ
. (7.68)

7.3.1.2 STL of double layer impervious membranes with an internal impervious MPM

in a diffuse field

In Section 7.3.1.1, the expression for the STL with a normally-incident plane wave has been

developed. However, similar to Chapter 6, the experimental results for the model validation

were obtained in a diffuse field. Hence, it is necessary to develop an expression for the STL

of double layer impervious membranes with an internal MPM in a diffuse field. This section

re-derives the STL expression considering the impact of the oblique incidence angle, which

is incorporated to develop the STL expression in a diffuse field. This derivation is based on

the motion equations and the particle velocity continuity in the normal direction.

Assuming that the incident sound is oblique to the membrane surface with an angle of θ ,

then based on Snell’s law, Equations (7.1), (7.2), (7.3) and (7.4) may be written as

v1 =
(pi− pr)cos(θ)

ρ0c0
, (7.69)
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pr = pi−
ρ0c0v1

cos(θ)
, (7.70)

(pi2− pr2)cos(θ)
ρ0c0

= v1, (7.71)

and

pr2 = pi2−
ρ0c0v1

cos(θ)
. (7.72)

Therefore, the sound pressure difference applied on Membrane 1 is obtained as

∆p1 = pi + pr− (pi2 + pr2)

= 2pi−
ρ0c0v1

cos(θ)
−
(

2pi2−
ρ0c0v1

cos(θ)

)

= 2pi−2pi2.

(7.73)

Hence, the motion equation of Membrane 1 remains the same as Equation (7.29).

For the internal MPM, Equations (7.6), (7.7), (7.4) and (7.9) may be written as
(

pi2e− jk0zD1− pr2e jk0zD1
)

cos(θ)
ρ0c0

= vMPM, (7.74)

(pi3− pr3)cos(θ)
ρ0c0

= vMPM, (7.75)

pr2e jk0zD1 = pi2e− jk0zD1− ρ0c0vMPM

cos(θ)
,

pr2 = pi2e−2 jk0zD1− ρ0c0vMPMe− jk0zD1

cos(θ)
,

(7.76)

and

pr3 = pi3−
ρ0c0vMPM

cos(θ)
. (7.77)

Hence, the sound pressure difference across the MPM surface is

∆pMPM = pi2e− jk0zD1 + pr2e jk0zD1− (pi3 + pr3)

= 2pi2e− jk0zD1− ρ0c0vMPM

cos(θ)
−2pi3 +

ρ0c0vMPM

cos(θ)

= 2pi2e− jk0zD1−2pi3.

(7.78)

Hence, the motion equation of the internal MPM also remains the same as Equation (7.35).
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For Membrane 2, Equations (7.11) and (7.9) are re-expressed by
(

pi3e− jk0zD2− pr3e jk0zD2
)

cos(θ)
ρ0c0

= v2, (7.79)

pr3e jk0zD2 = pi3e− jk0zD2− ρ0c0v2

cos(θ)
,

pr3 = pi3e−2 jk0zD2− ρ0c0v2e− jk0zD2

cos(θ)
.

(7.80)

Also because of the particle velocity continuity in the z-direction, the transmitted sound

pressure pt is obtained as

pt cos(θ) = ρ0c0v2. (7.81)

Consequently, the sound pressure difference across the impervious membrane surface is

given by

∆p2 = pi3e− jk0zD2 + pr3e jk0zD2− pt

= 2pi3e− jk0zD2− 2ρ0c0v2

cos(θ)
.

(7.82)

Hence, the matrix form of the motion equation of Membrane 2 is re-expressed by
[
(T +2 jωη)ψψψCmn2 +

(
ω

2
ρs2−2 jω

ρ0c0

cos(θ)

)
ψψψmn2

]
A2 =−2ψψψmu2D2B2, (7.83)

Therefore, B2 is given by

B2 =
(T +2 jωη)ψψψCmn2 +

(
ω2ρs2−2 jω ρ0c0

cos(θ)

)
ψψψmn2

−2ψψψmu2D2
A2 =

γγγ222
−2ψψψmu2D2

A2,
(7.84)

where

γγγ222 = (T +2 jωη)ψψψCmn2 +

(
ω

2
ρs2−2 jω

ρ0c0

cos(θ)

)
ψψψmn2. (7.85)

Equation (7.45) is changed to

(ψψψmu2−ψψψ2mu2D2)B2 + jω
ρ0c0

cos(θ)
ψψψmn2D2A2 = jω

ρ0c0

cos(θ)
ψψψmMPMAMPM (7.86)

Hence,

AMPM =

[
(ψψψmu2−ψψψ2mu2D2)

γγγ222

−2ψψψmu2D2 jω ρ0c0
cos(θ)ψψψmMPM

+
ψψψmn2D2
ψψψmMPM

]
A2, (7.87)
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and

ψψψAMPMA2
=

(ψψψmu2−ψψψ2mu2D2)γγγ222

−2ψψψmu2D2 jω ρ0c0
cos(θ)ψψψmMPM

+
ψψψmn2D2
ψψψmMPM

. (7.88)

Since the motion equations of Membrane 1 and the internal MPM remain unchanged, the

expressions of B1 and ψψψB1A2
also remain unchanged.

Equation (7.45) is changed to

(ψψψmu1−ψψψ2mu1D1)ψψψB1A2
A2 + jω

ρ0c0

cos(θ)
ψψψmMPMD1ψψψAMPMA2

A2 = jω
ρ0c0

cos(θ)
ψψψmn1A1.

(7.89)

Consequently,

A1 =
(ψψψmu1−ψψψ2mu1D1)ψψψB1A2

+ jω ρ0c0
cos(θ)ψψψmMPMD1ψψψAMPMA2

jω ρ0c0
cos(θ)ψψψmn1

A2

=

[
(ψψψmu1−ψψψ2mu1D1)ψψψB1A2

jω ρ0c0
cos(θ)ψψψmn1

+
ψψψmMPMD1ψψψAMPMA2

ψψψmn1

]
A2

, (7.90)

and

ψψψA1A2
=

(ψψψmu1−ψψψ2mu1D1)ψψψB1A2

jω ρ0c0
cos(θ)ψψψmn1

+
ψψψmMPMD1ψψψAMPMA2

ψψψmn1
, (7.91)

Since the motion equations of Membrane 1 and the internal MPM remain unchanged, the

expression for A2 is unchanged. Therefore, the transmitted sound pressure is expressed by

pt =
ρ0c0

cos(θ)
v2 =

jω ρ0c0
cos(θ)

lxly
DTA2

=
jω ρ0c0

cos(θ)

lxly

−2DT piD
γγγ111ψψψA1A2

−2ψψψmu1ψψψB1A2

.

(7.92)

Consequently, the transmission coefficient is defined as

τ(θ) =

∣∣∣∣
pt

pi

∣∣∣∣=
∣∣∣∣∣

jω ρ0c0
cos(θ)

lxly

−2DTD
γγγ111ψψψA1A2

−2ψψψmu1ψψψB1A2

∣∣∣∣∣ . (7.93)

If the sound absorbing walls of the air cavities are considered, Equation (7.66) is given by

τ(θ) =

∣∣∣∣
pt

pi

∣∣∣∣=
∣∣∣∣∣

jω ρ0c0
cos(θ)

lxly

−2DTD e−β
ω

c0
(D1+D2)

γγγ111ψψψA1A2
−2ψψψmu1ψψψB1A2

∣∣∣∣∣ . (7.94)

Note that Equations (7.93) and (7.94) are for an obliquely-incident plane wave with an in-

cidence angle of θ . The transmission coefficient in a diffuse field is expressed by

τdiffuse =

∫
θmax
0 τ(θ)sin(θ)cos(θ)dθ
∫

θmax
0 sin(θ)cos(θ)dθ

, (7.95)
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which is identical to Equation (2.93) in Chapter 2. Therefore, the STL in a diffuse field is

expressed by

ST Ldiffuse = 20 log10
1

τdiffuse
. (7.96)

These models are compared to the experimental results in Section 7.3.1.3.

7.3.1.3 Comparison with experimental results

In this section, the predicted results using the model developed in Sections 7.3.1.1 and 7.3.1.2

are compared to the measured STL of the double layer impervious membranes with an in-

ternal MPM (for MPM 1 to 3). The sound transmission loss measurements were conducted

using the reverberation chambers presented in Chapter 2. The impervious membranes are

made of PVC, for which the surface density and thickness are shown in Table 7.1. The para-

meters of MPMs 1 to 3 are also shown in Table 7.1. The air cavity depths, D1 and D2, are

both 70 mm.

Since the MPMs investigated in this section (MPMs 1 to 3) are assumed to be impervious

due to their small perforations, the sound transmission performance of each is dependent on

their tension T , the internal damping ratio η , and most importantly, the surface density ρs.

The surface density of each of the MPMs shown in Table 7.1 are very similar. Therefore, the

predicted results using the model presented in this section are close to each other and hence

only the predicted results for MPM 1 are shown in Figures 7.7 and 7.8.

Figures 7.7 shows a comparison of the measured STLs with the three MPMs and the

predicted STLs using the models with a normally-incident plane wave and in a diffuse field,

neglecting the sound absorption of the sound absorbing boundaries. Figures 7.8 presents a

comparison with the sound absorbing boundaries where the wall sound absorption coefficient

is β = 0.05. The determination of β has been described in Chapter 6. The blue curves with

blue dots represent the predicted STLs using the normal incidence model at each centre

frequency of the 1/3 octave bands from 50 Hz to 10 kHz. The thin dashed green curves

represent the predicted STL using the diffuse field model over narrow frequency bands in the

same frequency range. The thick green curves with green dots represent the STLs averaged

over each 1/3 octave bands.

It is found in Figure 7.7 that the predicted STL using the normal incidence model is

higher than that using the diffuse field model in the low frequency range from 50 Hz to 500
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Figure 7.7: STLs of double layer impervious membranes with the internal MPMs 1 to 3.
The sound absorbing boundary is neglected.
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Figure 7.8: STLs of double layer impervious membranes with the internal MPMs 1 to 3.
The sound absorbing boundary is considered as a factor e−β

ω

c0
(D1+D2) where β = 0.05.
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Hz. Similar overestimation with the normal incidence model has been observed in Chapter 6

and is ascribed to the presence of the separating cavity. When the frequency is over 500 Hz,

the predicted STL using the normal incidence model shows clear resonances corresponding

to cavity modes. Since the cross modes were considered, predicted results using the diffuse

field model has a better agreement with the measured STL at each centre frequency of the

1/3 octave bands than the normal incidence model. Figure 7.8 demonstrates that use of the

sound absorption factor to model for the influence of the sound absorbing boundaries can

further enhance the accuracy of the developed model, which is consistent with the effect of

the sound absorbing boundaries observed in Chapter 6.

7.3.2 STL of a double layer impervious membrane with an internal ab-

sorbing MPM
As mentioned previously, it has been found in Chapter 3 that MPMs 1 to 3 behave as im-

pervious membranes whilst MPM 4 can be considered as porous and therefore sound ab-

sorbing. Section 7.3.1 has investigated the analytical model of the double layer impervious

membranes with an internal MPM using MPMs 1 to 3. In Section 7.3.1, the internal MPM

was considered impervious, and hence, its motion equation and γγγMPM are similar to those of

impervious membranes.

This section aims to investigate the analytical model of the double layer impervious mem-

branes with an absorbing internal MPM, (namely MPM 4 in this study). MPM 4 has suffi-

ciently large perforations, and hence, has significant sound absorption, as shown in Chapter

3. It has been found in Chapter 3 that the sound absorption properties of MPM 4 is dependent

on its acoustic impedance. The acoustic impedance of an absorbing MPM is the combination

of the acoustic impedance due to the membrane vibration and the perforations. Therefore, it

is necessary to calculate the total acoustic impedance of the MPM considering the acoustic

impedance due to the perforations and that due to the membrane vibration.

In this section, the acoustic impedance of the internal absorbing MPM is investigated in

Section 7.3.2.1. This acoustic impedance is substituted into the motion equation of the in-

ternal MPM and the new expression of γγγMPM is obtained in Section 7.3.2.2. By substituting

the new expression of γγγMPM into the models developed in Sections 7.3.1.1 and 7.3.1.2, the

expressions of the STLs with the internal MPM in the normally-incident plane wave condi-
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tion and in a diffuse field are developed. Prediction using these models are compared with

the experimental results in Section 7.3.2.3.

7.3.2.1 Acoustic impedance of the internal absorbing MPM

This section aims to investigate the acoustic impedance of a rectangular micro-perforated

membrane. Similar to the model developed in Chapter 3, the acoustic impedance of each

perforation is assumed to be affected by the local vibration velocity of the MPM, however,

the effect of the perforations on the membrane motion is neglected. Hence, the motion

equation of the membrane vibration is given by

(TMPM +2 jωηMPM)∇2
ξMPM(x,y)+ω

2
ρsMPMξMPM(x,y) =−∆pMPM, (7.97)

which can be expressed as a finite modal summation given by

[
(TMPM +2 jωηMPM)ψψψCmMPM +ω

2
ρsMPMψψψmMPM

]
AMPM =−∆pMPMD. (7.98)

Therefore, rearranging Equation (7.98) gives

AMPM =
−∆pMPMD

(TMPM +2 jωηMPM)ψψψCmMPM +ω2ρsMPMψψψmMPM
, (7.99)

where AMPM represents the modal amplitude of the MPM. The average particle velocity of

the MPM is obtained as

vMPM =
jω
lx ly

DTAMPM

=
jω
lx ly

−DT∆pMPMD
(TMPM +2 jωηMPM)ψψψCmMPM +ω2ρsMPMψψψmMPM

.

(7.100)

Therefore, the average acoustic impedance due to the vibration of the absorbing MPM is

given by

Zmembrane =
∆pMPM

vMPM

=
1

jω
lx ly

−DTD
(TMPM+2 jωηMPM)ψψψCmMPM+ω2ρsMPMψψψmMPM

.
(7.101)

Substituting Equation (7.101) into Equations (3.26) and (3.28) gives the acoustic impedance

of the perforations on the absorbing MPM, Zperforation, taking into consideration the effect of

the membrane vibration. Substituting Zperforation and Equation (7.101) into Equation (3.31)

gives the overall acoustic impedance of the absorbing MPM.
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7.3.2.2 Motion equation of the internal absorbing MPM

Although the overall impedance of the absorbing MPM, ZMPM, is obtained in Section 7.3.2.1,

it is necessary to express it in the form of a motion equation in order to estimate the STL of

the double layer impervious membranes with the internal absorbing MPM. The relationship

between the sound pressure difference on the MPM surfaces and ZMPM (Bravo et al. 2012,

Lee et al. 2005, Takahashi & Tanaka 2002) is expressed by

ZMPM
[
(1−δ )vMPM +δvperforation

]
= ∆pMPM. (7.102)

The average particle velocity of the perforations vperforation can be obtained based on the

definition of the acoustic impedance, which is given by

vperforation =
∆pMPM

Zperforation
. (7.103)

Substituting Equation (7.103) into Equation (7.102) yields

ZMPM

[
(1−δ )vMPM +δ

∆pMPM

Zperforation

]
= ∆pMPM

ZMPMvMPM =
1−δ

ZMPM
Zperforation

1−δ
∆pMPM.

(7.104)

Hence, the pressure difference across the MPM is given by

∆pMPM =
1−δ

1−δ
ZMPM

Zperforation

ZMPMvMPM, (7.105)

and the motion equation of the internal MPM 4 is

−∆pMPM =− 1−δ

1−δ
ZMPM

Zperforation

ZMPMvMPM. (7.106)

Therefore, the motion equation of the internal absorbing MPM in matrix form is

−∆pMPMD =− 1−δ

1−δ
ZMPM

Zperforation

ZMPM jωψψψmMPMAAAMPM, (7.107)

and the new expression for γγγMPM is obtained as

γγγMPM =− 1−δ

1−δ
ZMPM

Zperforation

ZMPM jωψψψmMPM. (7.108)

Substituting Equation (7.108) into the models developed in Sections 7.3.1.1 and 7.3.1.2 gives

the STL models of the double layer impervious membranes with the internal absorbing MPM

in the normally-incident plane wave condition and in a diffuse field, respectively. These mod-

els are compared with the experimental results in Section 7.3.2.3 for the absorbing internal
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MPM considered in this study, MPM 4.

7.3.2.3 Comparison with experimental results

In this section, the STL models of the double layer impervious membranes with the in-

ternal absorbing MPM are compared with the experimental results. The STL measurement

was conducted using the reverberation chambers described in Chapter 2. Similar to Sec-

tion 7.3.1.3, the impervious membranes are made of PVC, for which the surface density and

thickness are shown in Table 2.2. The parameters of the internal absorbing MPM are also

shown in Table 3.1. The air cavity depths, D1 and D2, are 70 mm. The tensions and damping

ratios of the impervious membranes and MPM 4 are assumed to be consistent with those in

Section 7.3.1.3.

Neglecting the impact of the sound absorbing boundaries of the air cavities, Figure 7.9

shows a comparison between the measured STL and the STLs predicted by the normal incid-

ence and diffuse field models. Similar to the models described in Section 7.3.1, the predicted

results from the normal incidence model show significant cavity resonances above 800 Hz.

The predicted results of the diffuse field model have a reasonable agreement with the meas-

ured STL in the frequency range below 3150 Hz, however, this model under-estimates the

STL in the frequency range over 4000 Hz.
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Figure 7.9: STL of double layer impervious membranes with the internal MPM 4. The
sound absorbing boundary is neglected.
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As mentioned in Chapter 6, this under-estimation is ascribed to neglecting the impact of

the sound absorbing boundaries of the air cavities. Figure 7.10 shows the measured STL and

the predicted STLs with the sound absorbing factor β = 0.05. Since the predicted STL in

the high frequency range is increased, it is concluded that the sound absorbing factor β can

enhance the accuracy of the developed models, which is consistent with the conclusions in

previous chapters.
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Figure 7.10: STL of double layer impervious membranes with the internal MPM 4. The
sound absorbing boundary is considered as a factor e−β

ω

c0
(D1+D2) where β = 0.05.

To explore the effect of the perforations, MPM 4 was assumed to be an impervious mem-

brane for the results presented in Figures 7.11 and 7.12. In other words, the acoustic im-

pedance due to the perforations was neglected in Figures 7.11 and 7.12. The models used

to predict these STLs were those developed in Section 7.3.1. The tension and damping ratio

values were used in the model identical to those used for MPM 1 to 3, while the differing

values of surface density of MPM 4 was used.

As clearly shown in Figures 7.11 and 7.12, these models over-estimate the STL in the

frequency range below 800 Hz, whereas the models considering the perforations shown in

Figures 7.9 and 7.10, agree better with the measured STLs in the frequency range below 800

Hz. Assuming that the internal MPM is a space absorber with an air cavity depth of D2 = 70

mm, its main sound absorption peak is in the frequency range below 800 Hz, as shown in

Figure 7.13. Hence, more sound energy was absorbed by MPM 4 due to its sound absorption
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Figure 7.11: STL of double layer impervious membranes with the internal MPM 4. The
sound absorbing boundary is neglected. The MPM 4 is assumed to be an impervious

membrane, as in the cases in Section 7.3.1.
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Figure 7.12: STL of double layer impervious membranes with the internal MPM 4. The
MPM 4 is assumed to be an impervious membrane, as in the cases in Section 7.3.1. The

sound absorbing boundary is considered as a factor e−β
ω

c0
(D1+D2) where β = 0.05.
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Figure 7.13: Estimated normal incidence sound absorption coefficient of MPM 4 with a
cavity depth D = 70 mm.

performance than MPMs 1 to 3 which were considered impervious. The presented model

considering the sound absorption of the MPM 4 is more realistic than the model presented

in Section 7.3.1 which neglects the sound absorption due to the perforations.

However, in the frequency range above 800 Hz, the predicted results using the models

with the assumption of an impervious MPM 4 are closer to the measured STLs than those

using the models considering the effect of the perforations. This is ascribed to the multiple

sound absorption peaks of the MPM in the high frequency range, i.e. the sound absorption

peaks at 2744 Hz, 5066 Hz, 7499 Hz and 10 kHz in Figure 7.13. These multiple sound ab-

sorption peaks which are unique for the micro-perforated materials, affect the sound propaga-

tion in the high frequency range, and consequently, the deviation of the predicted STL from

its average value is significant. Hence, the average STL in 1/3 octave spectrum is not as

smooth as those predicted by the model assuming an impervious MPM and could be lower

than the measured STLs at some frequencies, as shown in Figures 7.9 and 7.10. When the

MPM is assumed to be impervious, the multiple sound absorption peaks disappear and the

predicted STL is mainly affected by the surface density of the MPM.

Therefore, it is concluded that the developed models are valid for the prediction of the

STL of double layer impervious membranes with the internal MPM 4 in the frequency range

below the main MPM absorption frequency, which for MPM 4 is 800 Hz. In the high fre-
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quency range, the model which incorporates the impedance of the MPM perforations is less

accurate than those models developed in Section 7.3.1.

7.3.3 Non-linear effect of high incident SPLs on the predicted STL of

the combined membrane structure
In Section 7.3.2, the acoustic impedance of the internal MPM is assumed to be independent

of the incident sound pressure, such that the internal MPM was assumed to behave linearly.

However, based on the discussion in Chapter 4, the sound absorption from the MPM is non-

linear when it is excited by high sound pressures. Hence, this section aims to investigate the

non-linear effect of an internal MPM on the STL of the double layer impervious membranes.

It is necessary to estimate the sound pressure in the cavities to determine if the internal

MPM is in the non-linear regime. The estimation of the sound pressure level in Air Cavity 1

is presented in Section 7.3.3.1 and Section 7.3.3.2 develops the analytical model for the STL

considering the non-linear sound absorption from the internal MPM, MPM 4. This model is

based on the non-linear model developed in Chapter 5. The experimental validation of this

non-linear model is shown in Section 7.3.3.3.

7.3.3.1 Incident sound pressure in Air Cavity 1

This section investigates the average sound pressure pi2 in the first air cavity, Air Cavity

1. This estimated sound pressure is assumed to be the incident sound on the surface of the

internal MPM, MPM 4. The sound pressure level SPLsource in the source chamber was ob-

tained instantaneously during the STL measurement and its corresponding sound pressure is

denoted by psource. However, SPLsource is not the incident sound pressure, pi, of the com-

bined membrane system, but the sum of the incident sound pressure, pi, and the reflected

sound pressure pr. The average sound pressure pr can be expressed as

pr =
jωρ0c0

lxly
DTA1

=
jωρ0c0

lxly
DT

ψψψA1A2
A2

=
jωρ0c0

lxly

−2DTψψψA1A2
D

γγγ111ψψψA1A2
−2ψψψmu1ψψψB1A2

pi.

(7.109)
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Hence, the average incident sound pressure is given by

pi =
psource

1+ jωρ0c0
lxly

−2DTψψψA1A2
D

γγγ111ψψψA1A2
−2ψψψmu1ψψψB1A2

. (7.110)

According to the motion equation of Membrane 1, the average incident sound pressure in the

first air cavity pi2 is expressed by

pi2 =

[
(T +2 jωη)ψψψCmn1 +ω2ρs1ψψψmn1

]
A1 +2pi

2
. (7.111)
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Figure 7.14: Measured SPL in the source chamber and the estimated SPL in Air Cavity 1
for MPM 4 as the internal absorbing MPM. The cavity depth is D1 +D2 = 140 mm.

Figure 7.14 shows a comparison of the measured SPL in the source chamber and the

estimated SPL in Air Cavity D1. In the low frequency range, the SPLs are close to each

other, indicating the poor sound insulation at these frequencies. This has been verified in

Chapters 2 and 6. However, the SPL in Air Cavity 1 decreases with frequency in the middle

and high frequency range. This implies that the high STL occurs in the high frequency range.

Since the non-linear sound absorption of the internal MPM, MPM 4, is closely related to the

high SPL, the non-linear sound absorption of the internal absorption membrane is expected

to affect the STL more significantly in the low frequency range than in the high frequency

range.
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7.3.3.2 Non-linear acoustic impedance of the internal absorbing MPM

Based on the analytical model developed in Chapter 5, the acoustic impedance of an internal

absorption membrane in the non-linear regime can be expressed as

ZMPMnonlinear = ZMPM +
ha
δ

+
hbv
δ

= ZMPM +
ha
δ

+
hbpi2

δρ0c0
. (7.112)

Substituting Equation (7.112) into the models developed in Section 7.3.2 gives the predicted

STL of the double layer impervious membranes with the internal absorption membrane in

the non-linear regime. This model is compared against the experimental results in Section

7.3.3.3. The values of a and b in Equation (7.112) were determined by the curve fitting

optimisation in Chapter 5.

7.3.3.3 Comparison with experimental results

This section presents the experimental comparison with the non-linear STL model developed

in Section 7.3.3. The comparison between the experimental results and the predicted results

are shown in Figure 7.15. Note that in the non-linear model, the acoustic impedance of

the MPM is dependent on the particle velocity v, and hence the incident sound pressure on

the MPM surface. The incident sound pressure can be determined using Equation (7.111)

according to the sound pressure level measured in the source chamber. Note that in the

STL experiments, the SPL in the source chamber was measured at the central frequency of

each one third octave band. However, the predicted results are obtained in narrow frequency

bands and averaged in each 1/3 octave band. Hence, when using the non-linear model, it is

impossible to calculate the STLs in narrow frequency bands due to the lack of the measured

narrowband SPLs in the source chamber at these frequencies. Consequently, it is impossible

to obtain the octave STLs. Hence, the predicted STL was calculated at each centre frequency

of the 1/3 octave bands. Thus, the predicted STL in the high frequency range can be affected

significantly by the modes of the air cavities and is inaccurate due to a lack of averaging over

the 1/3 octave bands. In the low frequency range, the STL in Figure 7.15 is very similar to

that shown in Figure 7.10 and the difference is less than 1 dB, implying that the non-linear

effect of the MPM 4 is negligible in the STL prediction, and thus non-linear effects have a

negligible impact on the STL of the combined structure of impervious membranes with an

internal absorption MPM.
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7.4 Conclusions
This chapter investigated the the enhancement of the sound insulation of double layer imper-

vious membranes with an internal MPM. It consists of two parts, the experimental validation

of the effectiveness of the MPM insertion, and the analytical modelling for the STL of these

combined membrane structures.

In order to validate the effectiveness of the MPM insertion, the STL measurements of

double layer impervious membranes with four types of MPMs have been conducted in a dif-

fuse field. The experimental results presented in Section 7.2 indicate that the MPM insertion

can enhance the STL of the double layer impervious membranes significantly at the frequen-

cies above the first resonance frequency of the air cavity. Based on the conclusions obtained

in Chapter 3, the MPMs are categorised into two groups; MPMs 1 to 3 which can be assumed

to be impervious due to their insufficiently small perforations, and MPM 4 which is sound

absorbing because of its large perforations. MPMs 1 to 3 show similar main trends with

increased STL curves but the magnitude of the increased STL with each MPM is different.

MPM 4 has a different effect on the STL of double layer impervious membranes compared

to MPMs 1 to 3 because of its sufficiently large perforations.
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The impact of an internal MPM on the STL of double layer impervious membranes has

been investigated analytically in Section 7.3.1. The analytical modelling was also categorised

into two groups; one for MPMs 1 to 3, and the other for MPM 4. The normal incidence and

diffuse field models for the double layer impervious membranes with MPMs 1 to 3 were

developed in Section 7.3.1 and the predicted results using them were compared with the

experimental results. It was found that by taking into consideration the sound absorbing

boundaries of the air cavities the accuracy of these models is improved, especially in the

high frequency range. The models for the double layer impervious membranes with MPM

4 were developed by taking into consideration the acoustic impedance of MPM 4 due to the

perforations. The total acoustic impedance of MPM 4 was calculated following the strategy

presented in Chapter 3. The comparison between the experimental and predicted results

indicates that the developed model is accurate for the prediction of the STL of double layer

impervious membranes with the internal MPM 4 in the frequency range below 800 Hz. In

the high frequency range, the multiple sound absorption peaks arising from MPM 4 have

significant impact on the predicted STL, and these models are less accurate than the models

which assume the MPM to be impervious. Moreover, the non-linear model of the STL with

MPM 4 was also investigated. However, it was found that the non-linear sound absorption

of MPM 4 has negligible impact on the predicted STL since the experimental tests were

undertaken at sufficiently low SPLs for any non-linear effects to be observed.

For future work, the acoustic modes of the reverberation chambers can be taken into

consideration. Considering the coupling between the membrane structures and the reverber-

ation chambers could possibly increase the accuracy of the presented models over a broad

frequency range. The non-linear sound absorption of the MPM is negligible in this study

due to the low SPLs in Air Cavity 1. However, this SPL can be increased by applying new

sound sources which are able to generate sufficiently high SPLs in the source chamber. The

impact of the non-linear sound absorption of the internal MPM can be studied in the future if

sufficiently high incident SPLs are expected to occur in practice for the intended application.

240



Chapter 8

Conclusions

This thesis aimed to investigate acoustic properties of micro-perforated membranes (MPMs)

and impervious membranes, and enhance the sound insulation of double layer impervious

membranes by combining these with MPMs, thereby increasing the internal loss mechanisms

of what is essentially a reactive wall. Therefore, this thesis consists of two major parts, the

study of the sound absorption of micro-perforated membranes, and the study of the sound

transmission of single and double layer impervious membranes without and with internal

micro-perforated membranes.

8.1 Sound absorption and transmission of single layer im-

pervious membranes
Unlike the conventional models of single layer impervious membranes which usually con-

sider the damping arising from viscous damping (Kinsler et al. 1999) or energy dissipation

(Song & Bolton 2002, 2003) on the membrane surface, in this thesis a new analytical model

is proposed for the prediction of the sound absorption and sound transmission of single layer

impervious membranes under tension incorporating the internal damping due to the mem-

brane curvature. Based on the new model, expressions for the sound absorption coefficient

and acoustic impedance of a circular membrane with normally-incident plane waves have

been derived. The predicted results from the developed model have been compared with

those of the conventional models. Sound absorption experiments of two impervious mem-

branes have been conducted to validate the proposed model. The experimental results verify

that the prediction using the proposed model has the best agreement with the experimental

results among the investigated models. In addition to the sound absorption study, the sound

transmission coefficient and transmission loss of a rectangular membrane have also been
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studied with normally-incident plane waves, as well as in a diffuse sound field. The pro-

posed model for the sound transmission prediction was validated by comparing predicted

results against measured STLs for two different impervious membranes in a diffuse field.

Comparing the sound absorption and transmission models, it was found that whilst the

damping due to the membrane curvature significantly affects the sound absorption, it can

be neglected for the sound transmission prediction. The proposed models are useful tools

to design a membrane-type sound absorber and noise barriers in practice. They are the

foundation of the design of the combined membranes used as sound barriers and the double

layer impervious membranes with internal MPMs that were also investigated in this thesis.

8.2 Linear and non-linear sound absorption of micro-perforated

membranes
To investigate the sound absorption of micro-perforated membranes, a new method is intro-

duced to predict the acoustic impedance and the sound absorption coefficient of a micro-

perforated membrane (MPM). This method is based on a new boundary condition where the

particle velocity at the hole wall boundary, which is assumed to be zero in Maa’s theory,

is assumed to be equal to the membrane vibration velocity. By applying this new bound-

ary condition to a circular membrane, it is shown that the acoustic impedance due to the

perforation is affected by the membrane vibration and becomes a function of the location

of the perforation on the membrane surface. The variability of the perforation impedance

with the hole location is investigated theoretically. The impedances due to the perforation

and the membrane vibration are combined following the electro-acoustic analogy to present

the overall impedance of the MPM. This new model is validated by experimental results for

MPMs.

It is found that when MPMs have small hole radii (� 1 mm in diameter), their sound

absorption curves are close to the theoretical results of impervious membranes with identical

surface density, tension and damping ratio. This implies that the effects of the micro perfor-

ations on the MPMs are negligible. However, when an MPM has holes of optimal diameter

(∼ 1 mm), it shows effective sound absorption due to the perforations and the motion of the

membrane itself. The presented model extends the classic micro-perforated theory and of-
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fers an accurate model for predicting the performance of flexible finite-sized MPMs. It also

provides increased understanding of the coupling between the membrane vibration imped-

ance and the impedance due to the perforations of micro-perforated membranes.

The previous research on the sound absorption of MPMs by others is for the linear re-

gime. However, when an MPM is excited by high incident sound pressure levels, the sound

absorption shows significant non-linear behaviour. The effect of the magnitude of the incid-

ent SPL on the sound absorption of an MPM sample has been studied with both broadband

excitation and monochromatic excitation in an impedance tube with normally-incident plane

waves. The broadband sound sources included white noise (Gaussian distribution), uniform

random noise, pseudo-random noise, burst random noise and pink noise. The monochro-

matic sources consisted of a stepped sine sweep and a chirp. The experimental results in-

dicate that, similar to the case of micro-perforated panels, there exists a threshold SPL for

which the sound absorption coefficient is consistent, regardless of the SPL magnitude. When

the incident SPL exceeds the threshold SPL, the sound absorption coefficient of the MPM

increases with increasing SPL, which implies the existence of a non-linearity in the sound ab-

sorption of MPMs under high SPL excitation. These non-linear sound absorption coefficients

have been observed with both broadband excitation and monochromatic excitation, although

the threshold SPL is different for different sound sources. It is found that the threshold SPL

of MPMs excited by both types of sound source is moderate and significantly lower than the

commonly accepted threshold SPL values for micro-perforated panels.

In the sound absorption curves of the MPMs generated by both broadband excitation and

monochromatic excitation, it was observed that the maximum sound absorption frequency

tends to decrease with moderate and high SPL magnitudes. This frequency shift implies

that the sound absorption of the MPM is affected by both the acoustic resistance and react-

ance. The latter is conventionally considered irrelevant to the non-linear sound absorption of

micro-perforated panels.

Small peaks at some specific frequencies are also observed in the sound absorption coef-

ficient curves with a stepped sine sweep excitation, however, these peaks are not present in

the curves with white noise. Furthermore, the sound absorption curves of the MPMs excited

with white noise are higher than those with a stepped sine sweep at roughly equal incid-

ent SPLs. These behaviours are related to the time-dependent flow generated by broadband
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excitation and monochromatic excitation. With a monochromatic excitation, the frequency

components are decoupled and the sound absorption curves have small peaks which closely

correspond to the peaks of the incident SPL due to axial resonances within the impedance

tube. With broadband excitation, the frequency components are coupled and lead to complic-

ated fluid dynamics. As a result, the small peaks that are observed in the sound absorption

curves with a stepped sine sweep do not appear for white noise excitation. For the same

reason, the sound absorption curves with white noise are smoother than those with a stepped

sine sweep, and can be higher than the latter for equal magnitude incident SPLs.

To explore the analytical modelling of the acoustic impedance of MPMs excited by

broadband and monochromatic sound signals in the non-linear regime, a new model is de-

veloped, inspired by the air motion equation and the mass continuity equation considering

the density variation in the time and spatial domains. These equations were derived by Maa

(1996) but are solved differently in this thesis. Two parameters are used to represent the

total air density variations in the time domain and in the direction perpendicular to the mem-

brane surface in the spatial domain. After simplifying the derived expression, it is found that

this expression is similar to several previous models, but the parameters have clear phys-

ical meanings. One of them represents the total air density variations in the time domain

and the other represents those in the direction perpendicular to the membrane surface in the

spatial domain. This model provides the most accurate predicted results among the models

investigated, except in the case where the input voltage and the incident SPL are at their

maxima. It is found that the total air density variations in the time domain increase with an

increase in the incident SPL, for both broadband and monochromatic sound signals when

in the non-linear regime. The total air density variations in the spatial domains increase for

the broadband sound signals, and maintain constant at close to zero for the monochromatic

sound signals. The presented analytical model provides clear physical meanings for its op-

timised parameters and offers a new strategy of the exploration for the physical phenomenon

of the fluid dynamics of the air and non-linear acoustic impedance of MPMs when driven in

the non-linear regime.
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8.3 Sound transmission of double layer impervious mem-

branes with an internal MPM
To predict the STL of double layer impervious membranes separated by a finite-sized air cav-

ity, three analytical models have been developed for different conditions; namely that with

normally-incident plane waves, that in a diffuse field, and that with sound absorbing walls

of the air cavity. In all three models, the motion equation of each impervious membrane

includes tension applied to the membrane surface and the internal damping due to the mem-

brane curvature. The air motion within the cavity is modelled based on three-dimensional

sound propagation theory. The normal incidence model was extended to the diffuse field and

was found to be more accurate than the normal incidence STL model in the low frequency

range, however, it tends to underestimate the STLs in the high frequency range. This un-

derestimation is presumed to be related to the wooden walls of the air cavity, which may

absorb sound in the high frequency range. To consider the effect of the absorption of sound

by the wooden walls, the model was further developed by introducing an additional sound

decay factor into the expressions for the sound propagation within the air cavity. This model

showed good agreement with the measured STLs in the frequency range higher than the first

resonance frequency of the air cavity, implying that the high STLs are not only related to

the sound attenuation of the impervious membranes and the cavity, but also related to the

sound absorption of the wooden boundary of the air cavity. Although this model tends to

overestimate the STLs in the low frequency range, it is the most accurate model amongst

the three developed models in the high frequency domain and can be used for research and

design on the membrane noise barriers.

To enhance the sound transmission loss of the double layer impervious membranes, an

MPM was inserted between the two impervious membranes. The STL measurements of

double layer impervious membranes with each of four types of MPMs inserted demonstrated

that the MPM insertion can enhance the STL of the double layer impervious membranes

significantly at the frequencies above the first resonance frequency of the air cavity. MPMs

which are assumed to be impervious for their sufficiently small perforations, show similar

main trends on the increased STL curves, but the magnitude of the STL for each MPM is

different. MPMs which have sufficiently large perforations can also enhance the STL of
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double layer impervious membranes.

Consequently, the analytical modelling was also categorised into two groups; one for the

small diameter perforations (MPMs 1 to 3), and the other for the larger diameter perforations

(MPM 4). The normal and diffuse models for the double layer impervious membranes with

MPMs 1 to 3 were developed and validated with the experimental results. It has been found

that considering the sound absorption along the boundaries of the air cavity can improve

the accuracy of these models, especially in the high frequency range. The models for the

double layer impervious membranes with MPM 4 were developed by considering the acous-

tic impedance of the membrane arising from the perforations. The comparison between the

experimental and predicted results with MPM 4 indicates that the developed models are ac-

curate for the prediction of the STL of double layer impervious membranes with an internal

perforated membrane in the frequency range below the frequency of the main absorption

peak of the MPM. It is observed in the predicted results that the multiple sound absorption

peaks of the perforated membrane absorber at higher frequencies have a significant impact

on the predicted STL in the high frequency range, however these predicted high levels of

absorption do not appear to be realistic in practice and hence these models are less accurate

than the models which assume the MPM to be impervious. Moreover, the non-linear model

of the STL with MPM 4 was also investigated. However, it was found that the non-linear

sound absorption of the MPM 4 has a negligible impact on the predicted STL.

In closing, the sound absorption and sound transmission of both MPMs and impervious

membranes have been investigated both theoretically and experimentally. Several new mod-

els have been developed and validated by the experimental results. These models explore the

physical mechanism of the linear and non-linear sound absorption of MPMs and the sound

transmission of membrane structures, and hence can give assistance to future research and

design of MPMs, membrane noise barriers and membrane buildings.

8.4 Future research
The outcome from this thesis raise a number of unanswered questions that are beyond the

scope of the current work. A number of potential applications of the developed concept of

internal MPMs for increased STL of multiple layer membrane structures are presented in the

following sections.
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8.4.1 Coupling between membrane structures and reverberation cham-

bers
As mentioned previously, the presented models for the STLs of membranes separated by an

air cavity overestimate the STL at the frequencies below the first resonance frequency of

the air cavity. The overestimation may be ascribed to the unmodelled coupling between the

finite-sized membranes and reverberation chambers which is not accurately represented by

the diffuse field model utilised in this thesis. A possible extension to this study is considera-

tion of the coupling between the membrane structures and the reverberation chambers which

takes into account their geometry and modal response for a more accurate prediction in the

frequency range below the first resonance frequency of the air cavity.

8.4.2 Optimisation of the structural parameters of internal MPMs
It is known from Chapter 3 that the sound absorption of an MPM is dependent on its struc-

tural parameters. When the MPM is inserted between two impervious membranes, the sound

absorption properties of the MPM have significant impact on the sound transmission loss of

the combined membrane structure, as presented in Chapter 7. Therefore, the sound trans-

mission loss of double layer impervious membranes with an internal MPM can be improved

by optimising the structural parameters of the MPM such as its perforation radius and its

thickness.

8.4.3 Optimisation of the distance from an internal MPM to each im-

pervious membrane
The experimental results presented in Chapter 7 demonstrate that the sound transmission loss

of double layer impervious membranes with an internal MPM can be improved around the

main sound absorption frequency of the MPM absorber. Since the main sound absorption

frequency of the MPM absorber is dependent on the acoustic impedance of the MPM as well

as the cavity depth, the low frequency STL can be improved by increasing the cavity depth

which is the distance from the internal MPM to each impervious membrane in this study.

Adjusting the distance between the MPM and the impervious membranes could be helpful

when designing noise barriers to block noise at specific frequencies.
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8.4. Future research

8.4.4 Multiple layer internal MPMs
In this study, there was a single layer internal MPM. However, it is presumed that multiple

layer MPMs can be used in practice. Further research can be conducted on the optimised

parameters of these multiple layer MPMs and the effect of the air cavity between two neigh-

bouring MPMs on the STL of the combined membrane structures. Note that the paramet-

ers of each MPM are not necessarily identical to the parameters of the other. Since Miasa

et al. (2007) indicated experimentally that multiple-sized micro-perforated panels can en-

hance the sound absorption coefficient and broaden the main sound absorption frequency

band, presumably internal MPMs with different perforation sizes can enhance the STL of

the membrane structure over a broad frequency range.

8.4.5 Effect of a grazing flow on the internal MPM surface
Moreover, it is found that the membrane structures are usually inflated with air when they

are used as temporary buildings. Hence, if internal MPMs are used to improve the sound

transmission loss of the membrane structure, a grazing flow may exist on the surfaces of

the internal MPMs. Rao & Munjal (1986) found that a grazing flow can increase the acous-

tic resistance of a perforated panel. Hence, the presence of the grazing flow may possibly

increase the acoustic resistance of the internal MPMs and consequently increase the sound

transmission loss of the membrane structure. This may be of interest for further research.

8.4.6 Incorporation of internal MPMs in other multi-layer structures
The internal MPMs considered in this thesis for enhancing the STL of impervious mem-

branes may also have application to multi layer building constructions and aircraft structures,

where they may be able to provide decreased mass compared with conventional porous ma-

terials, and thus potential fuel savings. An investigation of both the optimal MPM arrange-

ment in terms of STL and mass reduction is considered a worthy area for investigation.
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The classic analytical model for the sound absorption of micro perforated materials is well

developed and is based on a boundary condition where the velocity of the material is assumed to be

zero, which is accurate when the material vibration is negligible. This paper develops an analytical

model for finite-sized circular micro perforated membranes (MPMs) by applying a boundary

condition such that the velocity of air particles on the hole wall boundary is equal to the membrane

vibration velocity (a zero-slip condition). The acoustic impedance of the perforation, which varies

with its position, is investigated. A prediction method for the overall impedance of the holes and

the combined impedance of the MPM is also provided. The experimental results for four different

MPM configurations are used to validate the model and good agreement between the experimental

and predicted results is achieved. VC 2016 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4939489]

[MV] Pages: 93–103

I. INTRODUCTION

Micro perforated panels (MPPs) are thin panels perfo-

rated with sub-millimetre sized holes, and have been used in

noise control for decades as an alternative to conventional

porous materials. When backed with an air cavity and a rigid

wall, the MPP shows effective sound absorption, and this

combined structure is called a micro perforated absorber

(MPA). Although its sound absorbing bandwidth is relatively

narrow compared to a porous material of similar thickness,

the MPA is favoured for its unique properties. Unlike porous

materials, MPPs are used in hospitals and electronic indus-

tries where particles must be avoided (Pfretzschner et al.,
2006). Metal MPPs can be used in harsh conditions instead

of porous materials. For example, they are used inside the

engines of cars and aircraft due to their resistance to high

temperature. In addition, the analytical model for the predic-

tion of the sound absorption of MPPs is well developed,

which offers the opportunity to design MPPs to control

specific sources of noise (Maa, 1998).

The classical analytical model for the prediction of the

sound absorption and acoustic impedance of MPPs was

developed by Maa (1975) and has been widely used since

that time. In recent years, Wang et al. (2010) investigated

the sound absorption of an MPP backed by an irregular-

shaped cavity based on Maa’s theory. Using the classical

theory, Liu and Herrin (2010) investigated partitioning the

backing cavity of the MPA to enhance the absorption of nor-

mally incident plane waves. When Ruiz et al. (2011) investi-

gated the sound absorption of multiple-layer MPPs, the

acoustic impedance of each layer was obtained using the

classical theory. Based on Maa’s model, Park (2013) also

analysed the combination of a MPP and a Helmholtz resona-

tor. Herdtle et al. (2013) extended Maa’s theory for micro

perforated materials with tapered holes. However, these

studies are all based on Maa’s classical model and neglect

the effect of the panel vibration.

Maa’s classical model assumes the panel to be rigid and

as a consequence the effect of the panel vibration is

neglected. However, additional sound absorbing peaks,

which are not observed in Maa’s model, are observed in the

low frequency range of experimental results (Toyoda et al.,
2010). These unexpected peaks are evidence of the effect of

panel vibration on the acoustic impedance of the MPA. This

effect could be very significant when the panel is very light

and thin, or if membranes are used in the form of a micro-

perforated membrane (MPM).

To investigate this effect of the panel/membrane vibra-

tion on the acoustic impedance of an MPP/MPM, Kang and

Fuchs (1999) coupled the acoustic impedance of a limp

membrane with the acoustic impedance due to the perfora-

tions and derived an expression for the total acoustic imped-

ance of an infinite MPM. They achieved this using the

electric-acoustic analogy to combine the acoustic impedance

due to the structural vibration with the acoustic impedance

of the perforations as predicted by Maa’s model. Thus, the

effect of the size of the membrane was neglected in their

model. Similarly, Lee et al. (2005) investigated the acoustic

impedance of a flexible rectangular MPP, where the finite

size of the panel was considered based on a modal approach.

Bravo et al. (2012) extended the method of Lee et al. (2005)

to a circular MPP. Takahashi and Tanaka (2002) coupled the

acoustic impedances due to the MPP vibration and the perfo-

rations by spatially averaging the flow velocity through the

perforations.

Note that all these methods used Maa’s model to calcu-

late the acoustic impedance due to the perforations, assum-

ing that the vibration of the panel/membrane has no effect

on the acoustic impedance of the perforations. In Maa’s

(1975) classical model, the particle velocity at the hole walla)Electronic mail: chenxi.li@adelaide.edu.au
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boundary is assumed to be zero. Although Takahashi and

Tanaka (2002) investigated the relative velocity at the air-

solid interface in the perforation, their alternative method to

couple the acoustic impedances due to the perforations and

the plate vibration still calculated the acoustic impedance

due to the perforation using Maa’s theory based on the rigid

wall assumption. However, if the panel/membrane vibration

is significant, the particles at the hole wall boundary adhere

to the hole wall due to the no-slip boundary condition and

their velocity can be assumed to be equal to the panel/mem-

brane vibration velocity. Hence, the acoustic impedance due

to the perforation is not constant as in Maa’s model but

varies depending on the position of the hole on the panel/

membrane surface. The spatially varying acoustic impedance

implies that for thin membranes for which vibration is not

negligible, the membrane vibration could have a significant

effect on the acoustic impedance of the perforation, which

has been neglected in previous research. This no-slip bound-

ary condition which assumes the particle velocity at the per-

foration wall boundary is equal to the vibration velocity of

the material, and the spatially varying acoustic impedance of

MPMs is previously unexplored.

This paper aims to investigate the acoustic impedance

and sound absorption of a finite-sized circular MPM under

tension using a new boundary condition which assumes that

the velocity of the air particles at the hole wall boundary are

equal to the vibration velocity of the membrane surrounding

the hole. The new no-slip boundary condition is introduced

in Sec. II A. Based on this new boundary condition, an

expression for the variable acoustic impedance of the perfo-

ration is obtained. In this expression, the vibration velocity

of the membrane remains unknown. The vibration velocity

and the acoustic impedance of the circular membrane are

investigated in Sec. II B. In the developed model, the hole di-

ameter and the perforation ratio are assumed to be suffi-

ciently small that the effect of the holes on the motion of the

membrane can be neglected. The acoustic impedance of

holes located in different positions is compared in Sec. II C.

The overall impedance of the holes is derived and compared

with that of Maa’s classic model in Sec. II D. To validate the

developed model, sound absorption experiments were car-

ried out on four different MPMs and the experimental results

are compared with the model predictions in Sec. III. Good

agreement is obtained between the experimental and the pre-

dicted results for three of the MPM samples, and demon-

strates the accuracy of this model. To further investigate the

proposed model, four additional MPMs were manufactured

and the effect of the hole position on the sound absorption of

MPMs was studied in Sec. III C. The good agreement

achieved for the four additional MPMs also validates the

proposed model.

II. ANALYTICAL MODELING

In Sec. II A, an analytical model using the proposed

boundary condition is derived. The derivation starts with the

motion equation of air particles in a small hole. The solu-

tions of this equation using the conventional and the pro-

posed boundary condition are compared theoretically. The

expressions for the acoustic impedance due to each of the

perforations and for the combined MPM are also presented.

A. Acoustic impedance and boundary condition of
flexible MPMs

1. Motion equation of air particles in a small hole

When a sound wave is traveling through the small hole

of a MPM or panel with a hole radius of r0, the particle

velocity v is a function of the distance, r, from the centre of

the hole to the position of the specific air particle, as shown

in Fig. 1. This relationship between the particle velocity in

the hole and the sound pressure applied on the membrane or

panel surface is governed by the motion equation of the air

particle (Maa, 1975),

@2

@r2
þ 1

r

@

@r
þ K2

air

� �
v rð Þ ¼ �Dp

lh
; (1)

where K2
air ¼ �jðq0 x=lÞ, x denotes the angular frequency

and is equal to 2 p f , where f is the frequency, l denotes the

dynamic viscosity of air, q0 denotes the density of air, Dp
denotes the pressure difference applied between the front

and back surfaces of the membrane/panel, r denotes the

radial coordinate relative to the local coordinates of each

perforation, and h denotes the thickness of the membrane/

panel, which is also the length of the hole. Equation (1) is

an inhomogeneous differential equation and its general

solution is

v rð Þ ¼ AJ0 Kairrð Þ � Dp

l h K2
air

; (2)

where J0 is the Bessel function of the first kind and zero

order and the constant A can be obtained by applying the

appropriate boundary condition.

2. The conventional rigid wall boundary condition

To solve Eq. (2), it is necessary to determine the bound-

ary condition. Due to the effect of viscosity, the air particles

at the hole wall boundary adhere to the hole wall and their

velocities are equal to the vibration velocity of the material.

FIG. 1. Particle velocity v(r) in a hole of radius r0 of the MPM or panel as a

function of the distance, r, from the perforation axis in the local coordinate

of each perforation.
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Maa (1975, 1997) assumed that the panel vibration due to

the incident sound pressure is negligible and the panel can

therefore be considered to be rigid, i.e.,

vðr ¼ r0Þ ¼ 0: (3)

Based on Maa’s assumption, the particle velocity as a func-

tion of radius is obtained as

v rð Þ ¼ �Dp

h l K2
air

1� J0 Kairrð Þ
J0 Kairr0ð Þ

� �
; (4)

and the average velocity over the hole area is expressed as

�v ¼

ðr0

0

v rð Þ2p rdr

p r2
0

¼ Dp

jxq0 h
1� 2

Kairr0

J1 Kairr0ð Þ
J0 Kairr0ð Þ

� �
; (5)

where J1 is the Bessel function of the first kind and first order.

The normalized acoustic impedance is therefore given by

z ¼ Dp

�vq0 c0 d
¼ j xq0 h

q0 c0 d
1� 2

Kairr0

J1 Kairr0ð Þ
J0 Kairr0ð Þ

� ��1

; (6)

where c0 is the sound speed in air and d is the perforation

ratio of the panel. When an end correction for the hole is

considered, Eq. (6) is rewritten as (Maa, 1997)

zMaa ¼
0:147

d2

h

d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

32

r
þ

ffiffiffi
2
p

8

x d

h

 !

þ 0:294� 10�3 j x h

d
1þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

9þ x2

2

r þ 0:85
d

h

0
B@

1
CA;
(7)

where d is the diameter of the holes and equal to 2 r0, and x
is called the perforation constant and is expressed as

d
ffiffiffiffiffiffiffiffiffiffi
f=10

p
.

Equation (7) is widely used to calculate the acoustic

impedance of MPPs and is reported to show accurate

agreement with experimental results. It should be noted

that Eq. (7) is based on the assumption that the panel vibra-

tion velocity is equal to zero, and is valid only when the

panel vibration is negligible and the panel can be assumed

rigid.

3. The proposed boundary condition

For lightweight MPMs, to be considered henceforth, the

vibration of the membrane is significant and needs to be

considered. Therefore, the proposed boundary condition

between the membrane motion and the air in the hole can be

expressed as

vðr ¼ r0Þ ¼ vmembrane; (8)

where vmembrane denotes the vibration velocity of the mem-

brane. Substituting Eq. (8) into Eq. (2) gives

A ¼
vmembrane þ

Dp

l h K2
air

J0 Kairr0ð Þ : (9)

Substituting Eq. (9) into Eq. (2), the particle velocity is

obtained as

v rð Þ ¼ vmembrane

J0 Kairrð Þ
J0 Kairr0ð Þ �

Dp

h l K2
air

1� J0 Kairrð Þ
J0 Kairr0ð Þ

� �
:

(10)

Integrating over the area of the hole yields the average parti-

cle velocity

�v ¼

ðr0

0

v rð Þ 2 p rdr

p r2
0

¼ vmembrane

2

Kairr0

J1 Kairr0ð Þ
J0 Kairr0ð Þ

þ Dp

j xq0 h
1� 2

Kairr0

J1 Kairr0ð Þ
J0 Kairr0ð Þ

� �
: (11)

Therefore, the normalized acoustic impedance of a single

hole is expressed as

zhole ¼
Dp

�vq0 c0

¼ 1

q0 c0

vmembrane

Dp

2

Kairr0

J1 Kairr0ð Þ
J0 Kairr0ð Þ þ

q0 c0

j x q0 h
1� 2

Kairr0

J1 Kairr0ð Þ
J0 Kairr0ð Þ

� � : (12)

Comparing Eq. (12) with Eq. (6), it could be observed that the factor ð1=j xq0 hÞ½1� ð2=Kairr0Þ½J1ðKairr0Þ=J0ðKairr0Þ�� in Eq.

(12) is similar to Eq. (5). This similarity implies that this factor represents the average particle velocity of a hole under Maa’s

rigid wall assumption. Therefore, Eq. (12) can be rewritten as

zhole ¼
1

q0 c0

vmembrane

Dp

2

Kairr0

J1 Kairr0ð Þ
J0 Kairr0ð Þ þ

1

zMaa d

¼ 1

2

Kairr0

J1 Kairr0ð Þ
J0 Kairr0ð Þ

1

zmembrane

þ 1

zMaa d

; (13)
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where zmembrane denotes the normalized acoustic impedance

of the membrane, which can be obtained from the motion

equation of membrane vibration, and zMaa d denotes the

acoustic impedance of a single hole under Maa’s rigid wall

assumption. If Eq. (7) is used to calculate this impedance,

the end correction for the hole is included.

Equation (13) implies that the acoustic impedance of an

MPM hole is a function of the acoustic impedance of the

hole under the rigid wall assumption and the acoustic imped-

ance of the membrane vibration in the vicinity of the hole. If

it is a limp membrane, the membrane vibration velocity is a

constant over the membrane surface when excited by a plane

wave and the overall normal acoustic impedance of the

MPM is obtained by combining the constant impedance due

to the membrane vibration and the impedance due to the per-

forations. However, in acoustic engineering projects, mem-

brane materials are commonly fixed on a rigid frame. Hence,

the finite boundary condition of the fixed edge and the ten-

sion due to the stretching of the membrane affect the acous-

tic impedance of the membrane. This acoustic impedance of

the finite sized membrane under tension will be a function of

the position, as shown in Fig. 2. Therefore, the acoustic im-

pedance obtained from Eq. (13) also varies depending on the

position coordinates.

B. Motion equation and impedance of membranes
considering the viscosity effects on the hole walls

In Eq. (13), the vibration velocity of the membrane

vmembrane is unknown. It is assumed in this paper that the hole

diameter and the perforation ratio are sufficiently small such

that the mechanical properties of the membrane (that is, the

effective surface density and stiffness) are unaffected by the

presence of the perforations (Burgemeister and Hansen,

1996). When a circular membrane is fixed on a circular rim

with a radius of R0 and driven by a sound pressure Dp, its

motion equation in a polar coordinate system is given by

(Kinsler et al., 1999)

Tr2nðRÞ þ x2qp nðRÞ ¼ �Dp; (14)

where T is the tension per unit length applied on the mem-

brane surface, nðRÞ is the membrane displacement, R

denotes the radial position coordinate on the membrane

surface, which has a maximum value at the radius of the

membrane R0, qp is the surface density of the membrane,

and Dp ¼ p1 � p2.

As in the case of a string (Walstijn, 2009), the internal

damping plays an important part in the vibration of a mem-

brane. Extending the expression of the internal damping of a

string in the work of Walstijn (2009) to that of a membrane,

Eq. (14) may be rewritten as

Tr2nðRÞ þ 2 j xgr2nðRÞ þ x2qp nðRÞ ¼ �Dp; (15)

where g is the internal damping ratio of the membrane. Note

that the damping is related to the curvature of the tensioned,

circular membrane in this work, which differs from the con-

ventional expression of complex tension T � ð1þ j gÞ as

seen in the work of Song and Bolton (2003) and the book of

Kinsler et al. (1999).

The general solution of Eq. (15) is given by

n Rð Þ ¼ B J0 Kmem Rð Þ � Dp

x2 qp

; (16)

where K2
mem ¼ x2 qp=ðT þ 2 j xgÞ and the constant B

depends on the boundary condition of the membrane vibra-

tion nðR ¼ R0Þ ¼ 0. Applying this boundary condition yields

B ¼ Dp

x2 qp

1

J0 Kmem R0ð Þ (17)

and

n Rð Þ ¼ Dp

x2 qp

J0 Kmem Rð Þ
J0 Kmem R0ð Þ � 1

� �
: (18)

Hence, the velocity varying with the radial coordinate is

given by

vmembrane Rð Þ ¼ jxn Rð Þ ¼ jx
Dp

x2 qp

J0 Kmem Rð Þ
J0 Kmem R0ð Þ � 1

� �
;

(19)

and the corresponding normalized acoustic impedance is

expressed as

zmembrane Rð Þ ¼ Dp

q0 c0 vmembrane Rð Þ

¼
x2 qp

q0 c0 jx
J0 Kmem Rð Þ
J0 Kmem R0ð Þ � 1

� ��1

: (20)

Integrating over the surface of the membrane and dividing

by the membrane area, p R2
0, yields the space average vibra-

tion velocity and the space average normalized acoustic

impedance

�vmembrane ¼ jx
Dp

x2 qp

2

Kmem R0

J1 Kmem R0ð Þ
J0 Kmem R0ð Þ � 1

� �
(21)

and
FIG. 2. Distribution of the membrane vibration velocity (vibrating in the

fundamental mode).
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�zmembrane ¼
x qp

j q0 c0

2

Kmem R0

J1 Kmem R0ð Þ
J0 Kmem R0ð Þ � 1

� ��1

: (22)

C. Acoustic impedance of each perforation of a
circular MPM

The acoustic impedance of a hole in a circular MPM as

a function of its radius is expressed by Eq. (13). Substituting

Eq. (20) into Eq. (13) gives the acoustic impedance of a

hole as

zhole Rð Þ¼ 1

2

Kairr0

J1 Kairr0ð Þ
J0 Kairr0ð Þ

q0c0 j

xqp

J0 KmemRð Þ
J0 KmemR0ð Þ�1

� �
þ 1

zMaad

;

(23)

where Eq. (23) is a function of the radial coordinate R, which

is related to the membrane geometry (not the radial coordi-

nate r of the air particle in the hole). The effect of the

hole position on the hole impedance can be predicted using

Eq. (23), although it is non-linear and is therefore difficult to

investigate analytically. Therefore, an example is utilised

here, where a circular MPM with surface density

qp ¼ 0:25 kg=m2, is stretched under a tension T ¼ 125 N=m

and its internal damping ratio is g ¼ 0:02. It is fixed on a

rigid ring with a radius of R0 ¼ 50 mm. The perforation

parameters are: hole radius r0 ¼ 0:0292 mm; membrane

thickness h ¼ 0:17 mm; backing cavity depth D ¼ 25 mm;

perforation ratio d ¼ 0:15%. The resistances and reactances

of five holes at different radii calculated using Eq. (23),

normalized by q0 c0, are shown in Figs. 3(a) and 3(b).

The radial coordinate R of these holes varies from R ¼ 10 to

R ¼ 50 mm and has been chosen to show the variability of

the perforation impedance. The normalized resistances

and reactances of a hole calculated by Maa’s classic model

[Eq. (7)] are also shown in these figures. Note that when

R ¼ 50 mm; J0ðKmemR0Þ=J0ðKmemR0Þ ¼ 1 and the predic-

tion of Eq. (23) is consistent with that of Eq. (7) and thus

Maa’s theory.

It can be concluded from Figs. 3(a) and 3(b) that the

acoustic impedance of a hole near the centre of the mem-

brane is more significantly affected by the membrane motion

than that of a hole near the edge of the membrane. This is

because the membrane elements near the centre vibrate more

significantly than those near the membrane edge.

In addition, the effects of the membrane vibration on the

perforation impedance occur mainly in the low frequency

range where the tension and the internal damping affect the

membrane impedance significantly. In contrast, the surface

density governs the membrane impedance in the high fre-

quency range (mass controlled) and no significant effect of

the membrane vibration on the perforation impedance is

observed for a constant surface density.

D. Combined acoustic impedance of the MPM system

In Sec. II, the acoustic impedance of each hole as a

function of location was investigated. Neglecting the interac-

tion between the holes, the overall acoustic impedance due

to the perforations is expressed as a sum over all holes,

zperforation ¼
1

XN

n¼1

r2
0 p

R2
0 p

zhole Rnð Þ

; (24)

where n denotes the nth hole on the membrane surface, Rn

denotes the radial coordinate of the nth hole, and N is the

total number of holes. If zhole is uniform, as it is in Maa’s

model, Eq. (24) can be rewritten as

zperforation ¼
1

N

r2
0 p

R2
0 p

zhole

¼ zhole

d
; (25)

which is consistent with Eq. (7).

The same example used in Sec. II C is investigated in

this section to demonstrate the effect of the membrane vibra-

tion on the overall impedance of the MPM. The overall

acoustic impedance predicted by the presented model is

compared to that predicted by Maa’s model. The normalized

resistances and reactances predicted by the rigid-walled

model and the finite circular membrane of radius R0

¼ 50 mm are shown in Figs. 4(a) and 4(b). The resistance

predicted by Eq. (24) is lower than that predicted by Maa’s

rigid-wall model, while the reactance of this flexible wall

model is higher than that of the rigid wall model above the

fundamental resonance frequency. The most significant dif-

ference in the resistance and reactance is observed in the low

frequency range near 200 Hz. It could be concluded that the

FIG. 3. Normalized resistance and reactance of a hole for five radial coordinates varying from R ¼ 10 to R ¼ 50 mm.
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flexible wall assumption leads to a significant change in the

acoustic impedance caused by the perforation, especially in

the low frequency range.

Note that Eq. (24) considers only the acoustic imped-

ance due to the perforations. To investigate the overall

impedance of the MPM system, it is also necessary to con-

sider the acoustic impedance of the membrane vibration.

If the impedance of the perforation and that of the mem-

brane vibration are known, then the overall impedance

may be calculated using the electric-acoustic analogy,

giving

zoverall ¼
1

1

zperforation

þ 1

zvibration

; (26)

where zperforation denotes the impedance due to the perfora-

tions obtained by Eq. (24) and zvibration denotes the mem-

brane vibration impedance given by Eq. (22). Once the

overall impedance of the MPM system is obtained, the im-

pedance of the MPM backed by an air cavity and a rigid wall

is expressed as

z ¼ zoverall � jcot
x D

c0

� �
; (27)

where D is the depth of the air cavity. Therefore, the sound

absorption coefficient of an MPM with a backing cavity is

given by

a ¼ 4 Re zð Þ
1þ Re zð Þð Þ2 þ Im zð Þ2

; (28)

where ReðzÞ and ImðzÞ are the real and imaginary parts of z,

respectively.

III. EXPERIMENTAL VALIDATION

Sections III A–III C explore the experimental validation

of the model derived in Sec. II. The experimental results are

compared with the predicted results and the limitations of

the assumptions used in the proposed model are also

discussed.

A. Experimental parameters

To validate the model developed in this paper, sound

absorption experiments were carried out in an impedance

tube and at frequencies below the cutoff frequency to ensure

plane wave incidence. The radius of the impedance tube was

R0 ¼ 50 mm. The sound absorption coefficients of four com-

mercially available MPMs were measured using the two-

microphone transfer function method (Chung and Blaser,

1980). The four MPMs were tested for two cavity depths D
of 25 and 50 mm.

To predict the sound absorption of MPMs, it is crucial

to measure the structural parameters of the MPMs, including

the radius of the perforations r0. The perforations of MPMs

1 to 3 were punched and the perforations were irregular pol-

ygons, unlike the circular perforations of MPM 4. The pho-

tomicrographs of the perforations of MPM 1 and MPM 4 are

shown in Fig. 5 as examples. Because of the irregular geom-

etry of the holes in MPMs 1 to 3, the equivalent hole radius

r0 needs to be estimated. The minimum, maximum, and

average hole radius of MPMs 1 to 3 are shown in Table I for

FIG. 4. Normalized resistance and reactance due to all of the holes on the MPM surface.

FIG. 5. Photomicrographs of perfora-

tions of MPM 1 and MPM 4.
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10 randomly selected holes. The factor std is the standard

deviation of the measured hole radius of each MPM.

Note that the perforations of MPM 4 were quite circular;

however, in some cases the membrane material covered part

of the hole area, as shown in Fig. 5(b). These areas need to

be excluded during the calculation of the equivalent radius

of MPM 4. Therefore, 20 holes on MPM 4 were randomly

chosen and the equivalent radius measured from each photo-

micrograph was used to obtain an average equivalent radius

for input to the analytical model.

The physical parameters of the MPMs were measured

and are shown in Table II. The experimental results are com-

pared to the predictions of the model presented in Sec. III B.

It was not possible to directly measure the tension T and the

damping ratio g by experiments. Hence, the equivalent value

set T, g, and r0 used in the analytical model have been

obtained from the experimental measurements by fitting the

measured data to the model using the optimization toolbox

in MATLAB under a number of constraints (Waltz et al.,
2006): positive tension; damping ratio less than 0.05; and

hole radius varying from the minimum measured value r0 min

to the maximum measured value r0 max (listed in Table I).

The constrained non-linear optimization was based on the

subspace trust region method. The obtained values for T, g,

and r0 are shown in Figs. 6 and 7.

B. Experimental results and discussions

The experimental results of the four MPMs with an air

cavity depth of D ¼ 25 mm are shown in Fig. 6 and those for

D ¼ 50 mm are shown in Fig. 7. These experimental results

are compared to the prediction results of three models:

Maa’s classic rigid wall model [Eq. (7)]; the model of a

membrane absorber without perforation [Eq. (22)], and the

presented model [Eq. (26)]. In Figs. 6 and 7, the dashed-

dotted curves are the prediction results of Maa’s model,

which neglects the membrane vibration effect; the prediction

results for an unperforated membrane are shown as dotted

curves; and the predictions obtained from the new model are

shown as dashed curves. Furthermore, to verify the novelty

of the proposed method, the proposed predictions of the four

MPMs were compared with the method of Kang and Fuchs

(1999) which is given by

zKang and Fuchs ¼
1

1

zMaa

þ 1

1þ jx
qp

q0 c0

: (29)

The sound absorption coefficients of MPMs 1 to 3 pre-

dicted using Maa’s model are low compared to the experi-

mental results because the hole diameters are smaller than

the range of applicability of Maa’s model (roughly around

1 mm), which consequently leads to high calculated

normalized acoustic impedances. High normalized acoustic

impedance is usually considered as the main reason for the

effective sound absorption of micro perforated materials.

However, Maa (2006) illustrated that when the normalized

resistance of an MPP increases from one to five, its sound

absorption coefficient decreases proportionally. Therefore,

high resistances and low sound absorptions of MPMs are

observed here using Maa’s model due to the small perfora-

tions considered for MPMs 1 to 3.

To assess the accuracy of the three models for predic-

tion, the coefficient of determination R2
determination for each

model is shown in Figs. 6 and 7, and is given by

R2
determination ¼ 1�

XNfreq

nfreq¼1

aexperiment � apredictionð Þ2

XNfreq

nfreq¼1

aexperiment � aexperimentð Þ2
; (30)

where nfreq denotes the index of the measured frequency,

Nfreq denotes the total number of measured frequencies,

aprediction denotes the predicted sound absorption coefficient,

and aexperiment denotes the measured sound absorption coeffi-

cient. As R2
determination approaches unity, the fidelity of the

model increases.

For MPMs 1 to 4, the R2
determination of the presented

model is close to unity. Hence, the presented model provides

a good agreement with the experimental results and is suita-

ble for the prediction of the sound absorption of these

MPMs. These results confirm that the new boundary condi-

tion theory and the derived equations are valid for these

MPM samples. The negative R2
determination is because the error

between the measured data and the predicted result is larger

than the difference between the measured data and its mean.

The negative R2
determination indicates the inaccuracy of the cor-

responding model.

It is noticed that there are small dips and peaks from

1200 to 1260 Hz in Figs. 6 and 7. They occur in the experi-

mental results of every MPM. These are because of a struc-

tural resonance of the impedance tube itself.

When calculating the acoustic impedance due to the per-

forations of MPM 4, it was found that Eq. (7) underestimated

TABLE I. Measured hole radius of MPMs. The equivalent hole radius was

determined from data fitting.

MPM

Minimum hole

radius

r0min (mm)

Maximum

hole radius

r0max (mm)

Average hole

radius r0 (mm)

of ten holes

Equivalent

hole radius

r0 (mm)

1 0.016 0.030 0.026 (std¼ 0.004) 0.0226

2 0.011 0.040 0.022 (std¼ 0.008) 0.0211

3 0.009 0.042 0.029 (std¼ 0.010) 0.0248

TABLE II. Measured MPM parameters.

MPM

Surface

density

qpðkg=m2Þ

Hole

radius

r0 (mm)

Membrane

thickness

h (mm)

Equivalent distance

between hole

centres b (mm)

Perforation

ratio d (%)

1 0.2501 0.0226 0.17 1.32 0.092

2 0.2503 0.0211 0.17 1.58 0.056

3 0.2448 0.0248 0.17 1.63 0.073

4 0.2506 0.255

(std¼ 0.031)

0.17 5.29 0.730
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the impedance due to the thermo-viscous friction. This has

also been observed by Tayong et al. (2010), who used

Rs ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 xq0 n

p
; (31)

to estimate the resistance due to the thermo-viscous friction,

where n is the dynamic viscosity. They added 4ðRs=q0 c0 dÞ to

the normalized impedance due to the perforations. The value of

Eq. (31) is purely real and represents the resistance due to the

thermo-viscous friction only. However, in Rayleigh’s (1896)

original derivation, Rs was expressed as a complex value

Rs ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 xq0 n

p
1þ jð Þ: (32)

Therefore, in the presented model for MPM 4, Eq. (32)

was used and 4ðRs=q0 c0 dÞ was added to Eq. (7). The

FIG. 7. Normal incidence sound absorption coefficients of MPMs 1 to 4 for D ¼ 50 mm.

FIG. 6. Normal incidence sound absorption coefficients of MPMs 1 to 4 for D ¼ 25 mm.
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prediction results agree with the measured results, as shown

in Figs. 6(d) and 7(d).

Note that the additional impedance due to the thermo-

viscous friction is only of significance for the acoustic im-

pedance of MPM 4. This can be ascribed to the significant

difference between the hole radii of MPMs 1 to 3 and the

hole radius of MPM 4. It is observed in Table II that the

latter is 10 times larger than the former. The thickness of

the viscous layer is defined by Maa (1975) as

hviscosity ¼
ffiffiffiffiffiffiffiffiffiffiffi
2� l

x

r
; (33)

where for air l ¼ 1:56� 10�5m2=s. As shown in Fig. 8, the

hole radii of MPMs 1 to 3 are smaller than the thickness of

the viscous layer such that the entire hole is covered by the

viscous layer which limits the particle velocity in these

holes. This results in high acoustic impedance of MPMs 1 to

3 and limited air flow through these holes. Hence, the

thermo-viscous friction can be neglected. However, the hole

radius of MPM 4 is larger than the thickness of the viscous

layer and air can flow through the holes in MPM 4 more eas-

ily. The air flow through the holes forms a rotational jet and

increases the impedance of the perforations. The flexibility

of the membrane material can also contribute to the imped-

ance of the thermo-viscous friction. Therefore, the additional

impedance due to thermo-viscous friction was added to

MPM 4 only and was neglected for the other three MPMs.

Comparing the experimental results of the MPMs, we

could also conclude that the main absorption peaks of MPMs

1 to 3 are near the main absorption peaks of the membranes

without perforation. As for MPM 4, the main absorption

peak moves to the high frequency range and is near the main

absorption peak for the predicted result of the rigid mem-

brane model. This may imply that when the perforation is

small as is the case for MPMs 1 to 3, the MPM absorption

is mainly due to the membrane itself. In these cases, the per-

forations marginally broaden the sound absorption band-

width but do not move the absorption peaks significantly.

When MPM 4 is considered, the perforations are the main

contributor to the sound absorption and the main absorption

peak of the MPM is near the theoretical absorption peak due

to the perforations.

In Figs. 6 and 7, the thin solid curves represent the pre-

dicted results based on the method of Kang and Fuchs

(1999). Their method is a simplified one which assumes that

the acoustic impedance due to the membrane vibration is

only dependent on the surface density of the membrane. The

finite effect of the membrane vibration on the acoustic

impedance is simplified by using a constant 1 in the term of

1þ jxðqp=q0 c0Þ, as seen in Eq. (29). Consequently, this

model is less accurate than the proposed model which con-

siders the response of a finite circular impervious membrane

by solving its motion equation and optimizing the corre-

sponding tension and damping. The mismatch of the experi-

mental results and the predicted results using Kang and

Fuchs’s model validates this conclusion on the relative accu-

racy of the two models. Therefore, the proposed model is

considered more accurate than the conventional Kang and

Fuchs’s model.

The structural parameters of MPMs 1 to 4 are all in a sim-

ilar range of values, except that MPM 4 has a hole diameter

an order of magnitude larger than the other three MPMs. The

hole diameter and perforation ratio of MPM 4 are close to the

structural parameters of a classic MPP, which is typically

around r0 ¼ 1 mm and d ¼ 1%. The impedance of the holes

in MPM 4 is efficiently combined with the acoustic impedance

due to the membrane vibration to offer effective sound absorp-

tion. On the contrary, the perforations in MPMs 1 to 3 are too

small, and the acoustic impedance due to the perforations is

thus too high to effectively contribute to the sound absorption.

Extremely high acoustic impedance leads to a poor sound

absorption from MPP/MPM absorbers (Maa, 2006).

Therefore, it is concluded that although the sound

absorption bandwidths of MPMs 1 to 3 have been marginally

broadened, the sound absorption properties of these MPMs

are mainly governed by the membrane itself. Considering

the expense of manufacturing the perforations, incorporating

perforations of this size in commercial sound absorbing

materials is likely to be ineffective. However, the sound

absorption values obtained for MPM 4 indicate the effective-

ness of such MPMs incorporating holes of suitable size. To

achieve their optimum sound absorption, MPMs need to be

carefully designed to effectively couple the membrane vibra-

tion impedance and the impedance due to the perforations.

The presented theory is proposed as a tool to design such

MPMs.

C. Effect of perforation positions on the sound
absorption of MPMs

Based on the theory presented in Sec. II, it is logical to

assume that since the membrane vibration affects the acous-

tic impedance of the perforations, the overall impedance and

sound absorption properties of an MPM could be affected by

the perforation positions since the vibration is not uniform

over the membrane. By contrast, this presumption is differ-

ent from the conventional theories which assume that the

overall impedance of a flexible micro perforate (thin plate or

membrane) is given by the coupled impedances of the mate-

rial vibration and the perforations based on electric-acoustic

analogy or average flow velocity. Hence, in the conventional

theories, the overall impedance is independent of the posi-

tion of the perforations.

FIG. 8. Thickness of viscous layer hviscosity in the perforations compared

with the hole radii of MPMs 1 to 4.
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To validate this assumption, four additional MPMs were

made using the same material as MPM 1. In Sec. III B, it

was shown that MPM 1 can essentially be considered unper-

forated due to its low perforation ratio and small hole

diameter.

The four additional MPMs may be categorized into two

groups. In Group 1, each MPM was drilled with 73 holes,

which hole radius r0 ¼ 0:31 mm. The holes were arranged at

R ¼ 45 mm for one of the manufactured MPMs and were

evenly distributed over the membrane surface for the other.

Therefore, in Group 1, the perforation ratios of two manufac-

tured MPMs are identical and equal to 0.29%. Similarly, for

Group 2, each MPM was drilled with 48 holes. The hole ra-

dius r0 is also 0.31 mm. Therefore, the perforation ratio for

each manufactured MPM in Group 2 is 0.19%. The holes

were at R ¼ 45 mm for one of the MPMs and were evenly

distributed for the other. In each group, the parameters of the

MPMs are identical. Based on the conventional theories,

their sound absorption coefficients should be identical; how-

ever, based on the proposed theory, their sound absorption

coefficients might differ due to the hole positions, i.e., the

effect of the membrane vibration on the acoustic impedance

of the perforations.

Figure 9 shows the photograph of the four additional

MPMs. The different perforation positions are illustrated in

Fig. 9. The sound absorption measurements were conducted

under the same experimental set up as described in Sec.

III B. The measured sound absorption coefficients and the

predicted results based on the proposed method are com-

pared for each group in Figs. 10 and 11.

Note that the values of the tension and damping are

identical to those in Fig. 6(a) because it is assumed that the

perforations have no effect on the mechanical properties of

the membrane. The thick solid curves in Figs. 10 and 11 are

the measured sound absorption coefficient curves for the

manufactured MPMs with holes at R ¼ 45 mm and the thin

solid curves are those for the manufactured MPMs with

holes evenly distributed. There are obvious differences

between these curves which demonstrates the effect of the

hole positions on the acoustic impedance of the MPMs, and

hence supports the proposed theory. Moreover, the predicted

curves are close to the experimental results for the corre-

sponding manufactured MPMs, which suggested that the

proposed theory is accurate.

IV. SUMMARY

A new method for the prediction of the acoustic imped-

ance and the sound absorption coefficient of a MPM is intro-

duced in this paper. This method is based on a new boundary

condition where the particle velocity at the hole wall bound-

ary, which is assumed to be zero in Maa’s theory, is assumed

to be equal to the local membrane vibration velocity. By

applying this new boundary condition to a circular membrane,

it is shown that the acoustic impedance due to the perforation

is affected by the membrane vibration and becomes a function

of the membrane radial coordinates.

FIG. 9. Photograph of the additional MPMs made using the MPM 1 mate-

rial. There are 73 and 48 (0.31 mm holes) drilled in each of the membranes,

respectively.

FIG. 10. Normal incidence sound absorption coefficients of the manufac-

tured MPMs with 73 holes, D ¼ 25 mm.

FIG. 11. Normal incidence sound absorption coefficients of the manufac-

tured MPMs with 48 holes, D ¼ 25 mm.
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Using this new boundary condition, analytical models

for the acoustic impedances of both the impedance associ-

ated with the perforations and the membrane vibration im-

pedance are derived. The variability of the perforation

impedance with hole location is investigated theoretically.

The impedances due to the perforation and the membrane

vibration are combined following the electric-acoustic anal-

ogy to present the overall impedance of the MPM. This new

model is validated by experimental results for MPMs.

Moreover, based on the proposed theory, it is validated

experimentally that the hole position affects the acoustic im-

pedance and sound absorption of MPMs, even if the MPM

parameters, such as the hole radii, the thickness, and the per-

foration ratio, are identical.

This study extends the classic micro perforated theory

and offers an accurate model for predicting the performance

of flexible finite-sized MPMs. This study provides increased

understanding of the coupling between the membrane vibra-

tion impedance and the impedance due to the perforations of

MPMs.
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Abstract

The non-linear sound absorption of micro-perforated membranes (MPMs) has

been studied experimentally. The experimental findings presented in this paper

indicate that even moderate incident sound pressure levels (SPLs) can have

significant non-linear effects on the sound absorption coefficient. Unlike micro-

perforated panels (MPPs) under high excitation, both the acoustic resistance

and reactance of MPMs are affected by moderate incident SPLs. The non-linear

sound absorption of MPMs is affected by the time-dependent flow arising from

the acoustic sources. Several types of acoustic excitation are investigated and

it is found that the sound absorption coefficient is strongly dependent on both

the magnitude of the SPLs and the waveform of excitation.

Keywords: non-linear sound absorption, micro-perforated membrane, acoustic

impedance, broadband source, monochromatic source

PACS: 43.55.Ev, 43.25.Ed

1. Introduction

Micro-perforated materials have been widely used for sound absorption, and

have been investigated in both linear and non-linear regimes. Conventionally,

micro-perforated panels (MPPs) are assumed to behave linearly under acoustic

excitation [1, 2, 3] and the type of sound source is assumed to have no impact

on the measured sound absorption coefficient. By contrast, when samples are
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subjected to high sound pressure levels (SPLs) non-linear effects have been ob-

served. Ingard and Ising indicated that the air flow travelling through an orifice

under strong excitation forms a high velocity jet [4]. Maa derived an expression

which represents the non-linear effect on the resistance of MPPs under high

excitation [1]. Tayong et al. investigated the non-linear effects of sound sources

at the peak absorption frequency of MPP absorbers both experimentally and

theoretically when subjected to very high SPLs (145 dB re 20 µPa) [5].

However, some questions about the non-linear properties of micro-perforated

materials remain unclear. The previous research indicates that the non-linear

properties of MPPs are closely related to the SPL magnitude; for example Maa

indicated that theoretically the non-linear behaviour exists when the incident

SPL is 129 dB re 20 µPa and above [1], and Tayong et al. observed non-linear

sound absorption of an MPP with an SPL of 145 dB re 20 µPa [5]. There

is limited discussion on the threshold SPL at which the non-linear impedance

starts to drive changes in the sound absorption coefficient. While the previous

studies focussed on MPPs, research on the non-linear performance of micro-

perforated membranes (MPMs) is very limited. Previous studies also indicated

that the resistance is the dominating factor of the non-linearity of MPPs and

the impact of the non-linear reactance is negligible [4, 6]. However, it is unclear

whether these assumptions also apply to MPMs.

This paper presents the experimental findings on the non-linear effects of

sound sources on the normal-incidence sound absorption of MPMs over a broad-

band frequency range. The frequency-dependent value of the incident sound

pressure level at the MPM surface was varied from 15 dB re 20 µPa to 143 dB

re 20 µPa. Significant non-linear behaviour in the MPMs is observed even at

SPLs considered too low for non-linear behaviour. The details of the experi-

ments are presented in Section 2 and the non-linear effects of sound sources are

discussed in the subsequent sections.
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2. Measurement of the sound absorption of MPMs under high SPL

excitation

To investigate the non-linear sound absorption of MPMs under high exci-

tation, sound absorption experiments were conducted with normally-incident

plane-waves in a steel impedance tube. The internal radius of the impedance

tube is R0 = 50 mm with a cut-off frequency of 1.7 kHz [7]. The measurement

frequency range was from 200 Hz to 1600 Hz. The two-microphone transfer

function method [8] was used to obtain the sound absorption coefficient, as

shown in Figure 1. The sound pressures were measured using two microphones,

from which the SPL on the MPM surface and sound absorption coefficient were

determined. The microphones used in this measurement were Brüel & Kjær,

type 4958, 1/4 inch prepolarized microphones.

Impedance tube

Loudspeaker
Sample

Rigid backing 

wall

Air cavity

Microphones
1 2

D

24 mm

56 mm1090 mm

 100 mm

B&K 

Photon+Amplifier

ϕ

Figure 1: Schematic of the experimental layout for the measurement of sound absorption

coefficient using the two-microphone transfer function method in an impedance tube.

The parameters of the tested MPM are shown in Table 1. In the sound

absorption experiments, the MPM was combined with a 25 mm air cavity and

a rigid backing wall. Since the effective sound absorption coefficient is sensitive

to the mounting condition (in particular the tension) of the MPM sample, all

tests were conducted continuously without disturbing the sample.
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Table 1: Measured MPM parameters

Surface density

ρp (kg/m2)

Hole radius

r0 (mm)

Thickness

h (mm)

Perforation ratio

δ (%)

0.2506 0.2553 0.17 0.73

The source signal was generated by a Brüel & Kjær Photon Plus system and

the SPLs in the impedance tube were adjusted by changing the output voltage

of the signal generator in the Photon Plus. The output voltage varied from

0.1 mV to 200 mV (a range of over three orders of magnitude). The signal from

the Photon Plus was amplified by a power amplifier to drive the loudspeaker.

Multiple types of source signals have been used for excitation, which can

be categorised into two types: broadband and monochromatic signals. The

broadband signals investigated here included white noise (Gaussian distribu-

tion), uniform random, pseudo random and burst random. Monochromatic sig-

nals investigated included a stepped sine sweep and a chirp with a linear sweep

rate of 52 Hz/second. Sound absorption measurements were conducted with all

of the mentioned source signals. Similar non-linear behaviour was observed for

each group of source signals. Therefore, in this paper the white noise results

represent broadband excitation and the stepped sine sweep results represent

monochromatic excitation.

White noise is commonly used in sound absorption experiments as it drives

all audible frequencies simultaneously in the desired frequency range; in this case

from 200 Hz to 1600 Hz. Conversely, the stepped sine sweep is usually used to

measure the frequency response when good noise immunity is required or the

system response is non-linear. This source was configured to scan the desired

frequencies from 200 Hz to 1600 Hz over a 10 minute time span. When using

a stepped sine sweep, the sound energy is concentrated at a single frequency.

Therefore, the SPL arising from a stepped sine sweep is higher than that of

white noise at a specific frequency for a given voltage. The estimated SPLs at

the MPM surface for two excitation types shown in Figures 2 and 3 demonstrate

this.
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To investigate the effect of the incident SPL on the sound absorption of

the MPM, it is crucial to obtain the SPL on the MPM surface. However,

the microphones were placed in the positions shown in Figure 1, neither of

which were at the MPM surface. Based on the plane wave assumption and

the distances between the microphones and the MPM sample given in Figure

1, the incident SPL on the MPM surface was estimated using the measured

transfer function [8] and the total sound pressure measured with Microphone 1.

Figures 2 and 3 illustrate the estimated SPL at the surface of the MPM sample

excited by white noise and stepped sine sweep signals, respectively. The data

was sampled at 4096 Hz, with a 212 point FFT, giving a 1 Hz bin width.
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Figure 2: Estimated sound pressure level (SPL dB re 20 µPa) of the incident sound at the

surface of the MPM with white noise excitation. The output voltage ranges from 0.1 mV to

200 mV and resulting overall SPLs are detailed in the legend.

The peaks and valleys in the SPL plots shown in Figures 2 and 3 are associ-

ated with axial resonances due to the finite length of the impedance tube. When

the output voltage is as low as 0.1 mV, the measured spectra for both sound

sources exhibit noise due to the poor coherence between the two microphones.

The curves in Figure 3 are smoother than those in Figure 2 illustrating the
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Figure 3: Estimated sound pressure level (SPL dB re 20 µPa) of the incident sound at the

surface of the MPM with stepped sine sweep excitation. The output voltage ranges from

0.1 mV to 200 mV.

better noise immunity of the stepped sine sweep noise. Note that the valley

around 1250 Hz represents a structural resonance of the impedance tube. The

structural resonance of the impedance tube leads to additional energy dissipa-

tion on the tube surface, and hence causes a decrease in sound pressure level

around the resonance frequency.

3. Sound absorption of MPMs excited by broadband noise

The sound absorption characteristics of the MPM were investigated for

broadband excitation. This included white noise (Gaussian distribution), uni-

form random, pseudo random and burst random.

In this section, the sound absorption properties of the MPM excited by white

noise of varying amplitudes are discussed. The results for all other broadband

excitation were similar. Figure 4 illustrates that the sound absorption curves are

consistent for the output voltages from 0.1 mV to 10 mV. Note that at 10 mV

(SPLoverall = 105 dB re 20 µPa) a small change is observed which marks the
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onset of the non-linear behaviour. Therefore, it is reasonable to deduce that

when the output voltage is below 10 mV, the sound absorption of the MPM is

in the linear regime. In this linear regime, the acoustic impedance of the MPM

is only dependent on the perforation geometry and the MPM vibration, and is

independent of the characteristics of the excitation type. Comparing Figure 4

to Figure 2, it is found that the corresponding SPLs in this linear regime are

relatively low with no individual frequency exceeding 86 dB re 20 µPa and the

overall SPL does not exceed 105 dB re 20 µPa, which supports the conclusion by

Maa [9] that the non-linear effects occur with high excitation and that the sound

absorption is constant for low excitation. For the lowest amplitude excitation

investigated (0.1 mV), the sound absorption curve exhibits some noise due to

the poor coherence between the two microphones. The valleys around 1250 Hz

are ascribed to a structural resonance of the impedance tube.
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Figure 4: Measured sound absorption coefficients of the MPM with white noise excitation.

The output voltage ranged from 0.1 mV to 200 mV. The corresponding SPL at the membrane

surface is shown in Figure 2.

As the output voltage is increased to levels between 50 mV (SPLoverall = 119

dB re 20 µPa) and 200 mV (SPLoverall = 129 dB re 20 µPa), the incident
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sound pressure on the MPM surface increases as does the sound absorption of

the MPM. It should be noted that when the non-linearity starts to affect the

sound absorption, the overall incident SPL is 119 dB re 20 µPa and the SPLs

at individual frequencies do not exceed 101 dB re 20 µPa. These values are

significantly lower than the SPL quoted in previous research; e.g. the theoretical

value of 129 dB [9] and the experimental value of 145 dB [5]. This implies that

in the case of MPMs, even moderate incident SPLs can result in significant

non-linear effects on the sound absorption coefficient.

The increase in the sound absorption coefficient in the non-linear regime is

commonly ascribed to an increase in the acoustic resistance, and the effect of

the reactance is usually neglected [4, 5]. However, it is known that the peak

absorption frequency of the MPM absorber is dependent on the reactance of the

absorber system (i.e., the coupled MPM and air cavity). In Figure 4, the sound

absorption peak of the MPM absorber is reduced in frequency as the sound

pressure increases. Hence, it is deduced that the non-linearity associated with

the high level white noise excitation affects not only the resistance but also the

reactance of the MPM absorber.

It should be noted that for all the cases considered, the coherence between

the two microphone signals remained in excess of 0.982, with the exception

of the 0.1 mV case, which suffered from poor signal to noise ratios, and the

frequencies around 1250 Hz which were affected by the structural resonances.

Moreover, the transfer function between each microphone and the sound source

was measured and the corresponding coherence was close to unity. The sound

absorption coefficient was estimated using these transfer functions and the esti-

mated sound absorption coefficient was found to be identical to that measured

using the transfer function between the two microphones. This shows that al-

though the impedance is affected by the magnitude of the incident SPL, the

relationship between the incident sound and reflected sound remains linear. It

is therefore demonstrated that when conducting measurements of sound absorp-

tion coefficients the results will vary depending on sound pressure level, despite

keeping levels relatively ”low” and maintaining adequate coherence between the
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source and microphones.

4. Sound absorption of MPMs excited by a monochromatic source

The sound absorption coefficient of the MPM was also investigated using

monochromatic sources. A stepped sine sweep was used, as well as a chirp with

a sweep rate of 52 Hz/second.

This section investigates the sound absorption of the MPM absorber with

stepped sine sweep excitation with an output voltage varying from 0.1 mV to

200 mV. The results for the chirp were similar. When the output voltage was

lower than 1 mV and the incident SPLs at individual frequencies did not exceed

101 dB re 20 µPa, as shown in Figure 3, the sound absorption properties of

the MPM absorber are in a linear regime and the results are independent of

the incident SPL as shown in Figure 5. There are noisy peaks in the sound

absorption curve for the output voltage of 0.1 mV due to the low signal to noise

ratio and thus the poor coherence between the two microphones. The dips

around 1250 Hz arising from the structural resonance of the impedance tube

are also observed for these curves.

In the non-linear regime, where the output voltage was equal to 5 mV and

higher, the sound absorption coefficient of the MPM absorber increased with

increasing incident SPL. Note that for the stepped sine sweep excitation the

incident SPL at which the non-linearity starts to occur varies with frequency

but is in the range of 80 dB re 20 µPa to 112 dB re 20 µPa (the frequencies

around the tube resonance frequency were excluded), which is also significantly

lower than that mentioned in previous studies. This is significant, as 80 dB re

20 µPa approaches the SPLs seen in some environments where MPMs are used

to control interior noise levels.

Unlike the smooth curves in the non-linear regime obtained with white noise

excitation, the sound absorption coefficient of the MPM under stepped sine

sweep excitation oscillates with frequency, exhibiting small peaks at regular fre-

quency intervals, such as 504 Hz, 633 Hz, 770 Hz and 914 Hz. Note that these
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Figure 5: Measured sound absorption coefficients of the MPM with stepped sine sweep exci-

tation. The output voltage ranged from 0.1 mV to 200 mV. The corresponding SPL at the

membrane surface is shown in Figure 3.

small peaks are neither previously mentioned by other researchers nor observed

in the curves with white noise excitation. Comparing the measured sound ab-

sorption coefficients in Figure 5 to the estimated SPLs in Figure 3, it is observed

that these peaks in the measured sound absorption curves align with the SPL

peaks associated with the axial resonances in the impedance tube, as is demon-

strated in Figure 6. The thin dashed lines show the frequencies where the SPLs

peak. Although the frequencies of the small peaks in the sound absorption curve

are slightly higher than those of the local peaks in the SPL curve, the corre-

spondence between these frequencies is clear. This correspondence highlights

the non-linear effect of the high incident SPL on the sound absorption of the

MPM absorber and further indicates that the sound absorption coefficient is

related to the incident SPL on the MPM surface.
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Figure 6: Measured sound absorption coefficients (solid line) of the MPM with stepped sine

sweep excitation versus the incident SPL (dashed line). The output voltage was 50 mV. The

thin dashed lines show the frequencies of the local SPL maxima and the corresponding peaks

in the sound absorption curve.

5. Effects of the time-dependent flow generated by the excitation type

on the sound absorption of MPMs

As described in Sections 3 and 4, the sound absorption coefficients of the

MPM increase with an increase in the incident SPL in the non-linear regime.

This trend is not only observed for both the white noise and stepped sine sweep

signals, but was also seen for all broadband noise and monochromatic sources.

However, there are small peaks at specific frequencies observed in the sound

absorption coefficient curves of the MPM when excited by stepped sine sweep

(and the chirp) which are not observed when the MPM is excited by white

noise. Moreover, it is found in Section 4 that these small peaks are associated

with peaks in the SPL which are ascribed to acoustic resonances in the axial

direction. Therefore, it is clear that the sound absorption of the MPM is affected

by the type of excitation. This section investigates the effect of excitation type

by analysing the fluid dynamics and frequency coupling of the MPM absorber

under different excitations.
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Previous research [4, 10, 5] indicated that when excited by high SPLs the

non-linear acoustic impedance of micro-perforated panels and orifices in a rigid

baffle is dependent on the resulting fluid dynamics. Ingard & Ising showed that

the non-linearity of the sound absorption of an orifice in a rigid baffle is due

to the rotational flow and resulting vortex on the opposite side of the orifice

[4]. On the upstream side of the orifice, the air flow is irrotational. When the

air flow travels through the orifice it becomes rotational and forms vortices,

which increase in magnitude with an increase in incident SPL. They further

indicated that the real part of the acoustic impedance, namely the resistance, is

proportional to the amplitude of the air particle velocity within the orifice. The

rotational flow and resulting vortex on the rear of the baffle are time dependent

and based on Bernoulli’s law.

This time-dependent flow offers an explanation for the occurrence of these

small peaks in the sound absorption curves of the MPM excited by stepped

sine sweep in Figures 5 and 6. Bodèn investigated the non-linear impedance of

perforates under high SPL excitation and indicated that pure tone excitation

leads to a non-linear impedance dependent on the acoustic particle velocity

at the frequency of the pure tone, however, broadband excitation leads to a

non-linear impedance at a certain frequency dependent on the acoustic particle

velocities at other frequencies [10]. In other words, the acoustic impedance of

perforated panels is decoupled in the frequency domain when a monochromatic

source, such as a pure tone, is used. However, when perforated panels are excited

by a broadband excitation, such as white noise, their impedance at a particular

frequency is dependent on multiple frequency components because of the time

dependence of the flow and associated vortices.

Hence, in the case of the MPM excited by a stepped sine sweep, the non-

linear impedance of the MPM is dependent on the particle velocity arising from

the high SPL at only the excitation frequency. Only this particular frequency

component contributes to the sound absorption. By contrast, when white noise

is used, the non-linear impedance of the MPM is related to the particle velocities

over a broadband frequency range. The flow arising from each of the frequency

12



components couple with each other and all the frequency components of the

broadband white noise contribute to the overall impedance. Consequently, the

sound absorption curves of the MPM with white noise are smoother than those

with the stepped sine sweep due to the coupling of the frequency components.

Therefore, the small peaks in the sound absorption curves are observed only

for monochromatic sources, such as the stepped sine sweep and chirp excita-

tion, and match the peaks of the incident SPLs (as shown in Figures 5 and 6).

With broadband excitation, the sound absorption curves are smooth due to the

frequency coupling over a broadband frequency range, as shown in Figure 2.
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Figure 7: Measured sound absorption coefficients of the MPM excited by stepped sine sweep

with output voltage of 1 mV (solid line) and white noise with output voltage of 50 mV (dotted

line), where the SPLs (dashed line for stepped sine sweep and dashed-dotted line for white

noise) were similar.

Since the non-linear sound absorption of the MPM is dependent on the inci-

dent SPL, the sound absorption coefficients at similar SPLs were compared to

further investigate the effect of excitation type. It is found in Figures 2 and 3

that the SPL curve with white noise at 50 mV is very close to that with stepped

sine sweep at 1 mV. Figure 7 compares the measured sound absorption coeffi-

cients of the MPM with stepped sine sweep and white noise at the two voltages

13



and the corresponding SPLs over the measured frequency range. In Figure 7,

the solid curve is the measured sound absorption coefficient of the MPM excited

by a stepped sine sweep at 1 mV and the dashed curve represents that excited by

white noise at 50 mV. It is observed that the measured sound absorption coeffi-

cient with white noise is higher than that of the stepped sine sweep over a large

frequency range, except the frequencies around the tube resonance frequency of

1250 Hz. Comparison of Figures 2 and 3 shows that the corresponding incident

SPLs are roughly identical, implying that the increase of sound absorption with

white noise excitation is not associated with the magnitude of the incident SPL.

As mentioned previously, Ingard & Isingverified that the non-linearity of

the sound absorption of an orifice is due to the rotational flow and resulting

vortex on the rear of the perforations, which are time dependent [4]. Hence, it

is deduced that the dynamics of the air flow excited by the stepped sine sweep

and white noise differ in the time domain.

As described in Section 2, the stepped sine sweep excitation scans the mea-

sured frequency range over a period of 10 minutes and excites a specific fre-

quency at each time step. Consequently, the air flow generated by the stepped

sine sweep at each time step concentrates the sound energy at a single excitation

frequency and gives rise to rotational flow and vortices which are only related

to the excitation frequency. Therefore, the fluid dynamics of the vortices are

relatively simple and only related to the excitation frequency. However, when

white noise excitation is used, all frequencies are excited simultaneously. The

air flow generated contains sound energy which relates all the frequencies over

the measured frequency range. The rotational flow and vortices are dependent

on frequency. The fluid dynamics arising from each frequency component of the

broadband white noise excitation is coupled with those at the nearby frequencies

and contributes to the overall fluid behaviour. Therefore, the sound absorption

of the MPM excited by white noise is higher than that excited by stepped sine

sweep when the SPLs of the sound sources are similar as shown in Figure 7.
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6. Conclusions

The effect of the incident SPL on the sound absorption of an MPM sample

has been studied with broadband excitation and monochromatic excitation in an

impedance tube with a normally-incident plane-wave. The frequency-dependent

value of the incident sound pressure level at the MPM surface was varied from

15 dB re 20 µPa to 143 dB re 20 µPa. The sound absorption coefficients of the

MPM were measured using the two-microphone transfer function method. The

incident SPLs at the MPM surface were estimated using the measured transfer

function and the measured sound pressure at one of the microphones.

The experimental results indicate that similar to the case of MPPs, there

exists a threshold SPL below which the sound absorption coefficient is consistent

regardless of SPL magnitude. When the incident SPL exceeds the threshold

SPL, the sound absorption coefficient of the MPM increases, which implies the

existence of a non-linearity in the sound absorption of MPMs under high SPL

excitation. This non-linear behaviour in sound absorption coefficients has been

observed with both white noise and stepped sine sweep excitation, although

the threshold SPL is different for different excitation type. It is found that the

threshold SPL of the MPMs excited by either of the sound sources is significantly

lower than the commonly accepted non-linear threshold SPL values for MPPs.

For both stepped sine sweep and white noise excitation of MPMs, the fre-

quency of maximum sound absorption decreases as the incident SPL increases.

This frequency shift implies that unlike the case of MPPs, where only resistance

is considered relevant to the non-linear sound absorption, the sound absorption

of MPMs is affected by both resistance and reactance.

Small peaks at specific frequencies are observed in the sound absorption co-

efficient curves with stepped sine sweep excitation, however, these peaks are

not present in the curves with white noise. It was observed that the sound

absorption curves of the MPMs excited with white noise are higher than those

with stepped sine sweep at roughly equal incident SPLs. This behaviour is re-

lated to the differing time-dependent flow generated by white noise and stepped

15



sine sweep excitation. With a monochromatic noise source, the frequency com-

ponents are decoupled and the sound absorption curves have small local max-

ima which closely correspond to the local peaks in the incident SPL associated

with the axial resonances of the impedance tube. With broadband excitation,

the frequency components are coupled and lead to complicated fluid dynamics.

Hence, the small local maxima observed in the sound absorption curves with

monochromatic sources are not present in the curves for broadband excitation.

For the same reason, the sound absorption curves with broadband excitation

are smoother than those for monochromatic sources, and can be higher than

the latter if their incident SPLs are roughly equal.
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Theories of the acoustic impedance of micro perforated panels and membranes for normally
incident waves have been well developed for decades. These theories are mainly based on the
assumption that the particle velocity at the boundary of the hole wall is equal to zero. This
assumption is valid when the panel/membrane is massive and does not vibrate. This paper
aims to investigate the effects of the panel/membrane vibration on the acoustic impedance
of micro perforated structures. When the panel/membrane is lightweight and vibrates, the
particle velocity at the boundary of the hole wall is assumed equal to the velocity of the
panel/membrane vibration. Based on this alternate boundary condition a new expression for
the acoustic impedance of micro perforated panels and membranes is developed. This expres-
sion may be used for the prediction of the sound absorption of lightweight micro perforated
panels and membranes.

1. Introduction

Theories of the acoustic impedance of micro perforated panels for normally incident waves have been
well developed for decades. Maa [1] [2] introduced an accurate theory for the sound absorption of
rigid micro perforated panels. Ruiz et al. [4] and Miasa and Okuma [5] used this theory in their studies
investigating the sound absorption of multiple-layer micro perforated panels. Wang et al. [6] used
Maa’s theory to investigate the sound absorption of a micro perforated panel backed by an irregular-
shaped cavity. Liu and Herrin [7] enhanced the micro perforated panel attenuation by partitioning
the adjoining cavity and Maa’s theory has also been utilised to calculate the impedance of the micro
perforated panel. Park [8] also used Maa’s theory to analyse a micro perforated panel combined with
an Helmholtz resonator.

Maa’s classic theory is based on the assumption that the particle velocity at the hole wall bound-
ary is equal to zero. This assumption is valid when the panel/membrane is massive and the vibration
of the panel/membrane itself is negligible. For a flexible micro perforated panel/membrane, Kang and
Fuchs [9] used the electrical acoustic analogy to develop the following expression for its impedance

zall =
1

1
zMPP

+ 1
zmech

(1)

where zmech denotes the normal specific acoustic impedance of the flexible material and will be re-
ferred to the acoustic impedance of the flexible material without perforation in this paper. The term
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zMPP in Equation (1) denotes the normalized specific acoustic impedance of the perforation and is
calculated using Maa’s theory. A similar expression has been obtained by Lee et al. [10] using a
modal analysis approach instead of the electrical acoustic analogy.

As mentioned before, the particle velocity at the hole wall boundary is assumed to be zero in
Maa’s theory and this assumption is valid when the material vibration is negligible due to the sound
pressure. However, when the panel/membrane is lightweight and vibrates due to the sound pressure,
the effect of the material vibration on the acoustic impedance and the sound absorption needs to be
investigated. This study focuses on the theory of the sound absorption of flexible lightweight micro
perforated panels and membranes and provides a method to predict their sound absorption coefficient
when the effects of their vibration and their surface density are significant.

2. Acoustic impedance of micro perforated panels and membranes

When a sound wave travels through the small hole of a micro perforated material with a hole diameter
of r0, the medium particles at the hole wall boundary adhere to the hole wall and their velocities are
equal to the vibration velocity of the material. If there is a difference between the material vibration
velocity vvibration and the medium particle velocity v(r) in the hole, as shown in Figure 1(a), a sound
velocity gradient will exist. This sound velocity gradient, which is a function of the radius vector,
leads to a relative motion between the nearby layers of medium particles. Due to the viscosity of
air, there are viscous shear losses and hence sound energy losses in the micro perforated material.
It should be noted, if the material impedance is equal to the medium impedance and the vibration

(a) Material vibration velocity 6=
medium particle velocity.

(b) Material vibration velocity =
medium particle velocity.

Figure 1: Particle velocity in a hole of the micro perforated material along with velocity of the
structure.

velocity of the material vvibration is equal to the particle velocity of the medium v(r), as shown in
Figure 1(b), the sound velocity gradient and the viscous shear losses disappear. Therefore, the sound
velocity gradient in the direction normal to the particle velocity is crucial for the sound absorption
from a micro perforated material.

If the material vibration velocity differs from the medium particle velocity, the aerial motion
equation [2] in the hole of the micro perforated material is expressed as

(
∂2

∂r2
+

1

r

∂

∂r
+K2

)
v = −∆p

ηt
(2)

where K2 = −j ρ0ω
η

, ω denotes angular frequency (equal to 2 π f where f is the frequency), η denotes
the dynamic viscosity of air, ρ0 denotes the density of air, v is the particle velocity in the hole, r is the
radius vector in the hole, ∆p is the sound pressure difference between the two ends of the hole and t
is the length of the hole.

Equation (2) is an inhomogeneous differential equation and its solution is the sum of its partic-
ular solution and the general solution of its homogeneous differential equation. The general solution
of Equation (2) is

v(r) = − ∆p

ηtK2
+ AJ0(Kr). (3)
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where J0 is the Bessel function of the first kind and the zero order and A depends on the boundary
condition. Equation (3) is the function of the particle velocity in the hole with respect to the radius
vector r.

In Maa’s theory [1] the boundary condition is based on the assumption that the particle velocity
at the hole wall boundary is equal to zero, which means v(r = r0) = 0, where r0 is the hole radius.
Therefore, the sound particle velocity deceases from v(r = 0) to zero at the hole wall boundary in
Maa’s theory. This can be considered as a special case of viscous shear loss theory in which the
material vibration velocity is equal to zero. Applying this boundary condition we obtain the particle
velocity function expressed as

v(r) = − ∆p

ηtK2

(
1− J0(Kr)

J0(Kr0)

)
. (4)

The average velocity v̄ over the cross-section of the material is obtained taking the integral and av-
eraging over the area of the hole. Therefore, the normalised characteristic acoustic impedance of the
rigid walled micro perforated material is expressed as

zmassive =
∆p

v̄ σ ρ0 c0

=
jωt

σc0

(
1− 2

Kr0

J1(Kr0)

J0(Kr0)

)−1

(5)

where c0 is the sound speed in air, σ the perforation ratio and J1 is the Bessel function of the first
kind and first order. Equation (5) is consistent with the characteristic impedance developed by Maa
[1]. If we account for the end correction in the hole [1] and the equivalent thickness is given by
te = t+ 0.85 d, then the impedance equation Equation (5) may be expressed as

zmassive =
∆p

v̄ σ ρ0c0

=
jωte
σc0

(
1− 2

Kr0

J1(Kr0)

J0(Kr0)

)−1

+
1

2

√
2ω ρ0 η

σ ρ0 c0

. (6)

The acoustic impedance can be expressed in terms of the acoustic resistance and reactance, which are
crucial to the prediction of sound absorption coefficient. These are related by

zimpedance = rresistance + j ωmreactance (7)

where zimpedance denotes the acoustic impedance and rresistance and mreactance the corresponding resis-
tance and reactance, respectively.

3. Boundary condition of lightweight micro perforated panels and mem-
branes

The boundary condition of zero particle velocity at the hole wall boundary implies that the vibration
velocity of the micro perforated material is equal to zero. This is valid when the micro perforated ma-
terial itself is rigid and does not vibrate under the sound pressure ∆p. Massive panels and membranes,
such as metal panels and thick membranes, behave in this way. However, with the development of
new materials, extremely lightweight panels and membranes are available. These lightweight materi-
als may vibrate under sound pressure. Therefore, it is of interest to investigate the acoustic impedance
of lightweight micro perforated materials considering the vibration of the material itself.

When a lightweight material vibrates under sound pressure ∆p and this vibration velocity differs
from the particle velocity, the particle velocity gradient ranges from v(r = 0) to the vibration velocity
of the material at the hole wall boundary. This is a general case of the viscous shear loss theory.
Assuming that the vibration velocity is vvibration, the particle velocity at the hole wall boundary can
be written as

v(r = r0) = − ∆p

ηteK2
+ AJ0(Kr0) = vvibration. (8)
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Then the function of the aerial particle velocity in the hole with respect to the radius vector r is
obtained as

v(r) = vvibration
J0(Kr)

J0(Kr0)
− ∆p

ηteK2

(
1− J0(Kr)

J0(Kr0)

)
. (9)

Thus the normalised characteristic impedance of the lightweight panel/membrane is given by

zlightweight =
∆p

v̄ σ ρ0c0

=
1

− 2
Kr0

σρ0c0
1

zmech

J1(Kr0)
J0(Kr0)

+ 1
zmassive

, (10)

where zmassive is given by Equation (6) and zmech denotes the acoustic impedance of the panel or
membrane itself and is defined as zmech = ∆p

vvibration
. If the effect of the vibration velocity is neglected

Equation (10) reduces to zmassive. Equation (10) is related to the vibration velocity of the material.
Comparing Equations (6) and (10) we find that unlike the massive panel, the acoustic impedance

of the lightweight panel or membrane consists of, not only the acoustic impedance due to the perfora-
tion, but also the mechanical impedance of the lightweight panel or membrane. The material vibration
velocity influences the overall impedance in the form of the mechanical impedance of the material
zmech.

4. Vibration velocity and mechanical impedance of a lightweight limp
panel/membrane

When a limp sheet is considered, no matter whether it is a membrane or a panel, its mechanical
impedance is expressed as [3]

zmech = jωm, (11)

where m is the surface density of the sheet. The vibration velocity is derived from the definition of
the mechanical impedance as

vvibration =
∆p

zmech

=
∆p

jωm
. (12)

Therefore, substituting Equation (11) into Equation (10) gives the acoustic impedance of a perforated
lightweight panel or membrane

zlightweight =
1

− 2
Kr0

σρ0c0
jωm

J1(Kr0)
J0(Kr0)

+ 1
zmassive

. (13)

When calculating zmassive Equation (6) is used. Hence, the end correction effects are considered.
Compared with the expression of the acoustic impedance of massive material in Equation (6),

Equation (13) has an additional variable m. When m is relatively large, σρ0c0
jωm

approaches zero and
consequently zlightweight tends to zmassive. When m is relatively small, it may affect the acoustic
impedance. Hence− 2

Kr0

σρ0c0
jωm

J1(Kr0)
J0(Kr0)

can be considered to be a correction for the acoustic impedance
of lightweight micro perforated materials due to their vibration velocity.

Note that σρ0c0
iωm

is imaginary andK is complex and consequently the Bessel functions of the first
kind (both the zero and first orders) are complex. Therefore, the surface density m influences both
the resistance and the reactance of the acoustic impedance.

Although, in Equation (1), zmech presents the effect of the material vibration on the whole
structure, the impact of the panel/membrane vibration on the perforation impedance is neglected.
Equation (13) differs from Equation (1) in that there is an additional coefficient for the mechanical
impedance of the material. This coefficient − 2

Kr0
σρ0c0

J1(Kr0)
J0(Kr0)

includes the perforation ratio σ and
the Bessel functions, and is related to the boundary condition at the hole wall.
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5. Effects of surface density m on sound absorption and acoustic
impedance

This section investigates the effect of the surface density m on the sound absorption and acoustic
impedance of the lightweight micro perforated materials via an example using the previously devel-
oped analytical model. The sound absorption coefficient of an MPP with a backing cavity is expressed
as

α(ω) =
4 rresistance

[rresistance]
2 +

[
ωmreactance − cot

(
ωD
c0

)]2 , (14)

where D is the backing cavity depth. Considering a massive micro perforated material, with known
structural parameters, such as the radius of the hole, the length of the hole and the perforation ratio,
the acoustic impedance of this material can be obtained using Equation (6). For lightweight materials
the surface density is necessary and Equation (13) should be utilised instead of Equation (6). Figure 2
illustrates the prediction results for the sound absorption coefficients for a hole of radius r0 = 0.5mm,
a hole length of t = 1mm, a perforation ratio σ = 1% and the material surface densitym varying from
1kg/m2 to 0.0001kg/m2. The micro perforated material is assumed to be backed by an air cavity of
depth D 100mm and a rigid wall.
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Figure 2: Sound absorption coefficient of example micro perforated absorbers with 100mm backing
cavity. Solid line is the prediction result of zmassive. The dashed lines are the prediction results of

zlightweight with m varying from 1kg/m2 to 0.0001kg/m2.
In Figure 2, the solid line is the sound absorption coefficient obtained using Equation (6) and the

dashed lines are those for the various surface densities examined. For surface densities from 1kg/m2

to 0.1kg/m2, the curves are almost identical to the solid line. When the surface density decreases
to 0.01kg/m2, the prediction result with the velocity correction is slightly larger than that without
the velocity correction. When the surface density is 0.001kg/m2, the peak absorption coefficient is
0.89, the absorption bandwidth is broadened and the first resonance frequency moves from 320Hz to
400Hz. With a decrease of the surface density to 0.0001kg/m2 the absorption peaks at 1100Hz for
the lightweight panel and the absorption bandwidths of all the resonance peaks are broadened. With
the decrease of the surface density, the lightweight micro perforated material tends to vibrate and as
a consequence, the sound absorption is enhanced.

Figures 3(a) and (b) show the corresponding normalised acoustic resistances and reactances
of the micro perforated materials, calculated using Equation (7). Generally, with a decrease of the
surface density, the normalised acoustic resistance tends to increase, especially in the high frequency
range above 1250 Hz, and the normalised acoustic reactance tends to decrease. When the surface
density is between 1 kg/m2 to 0.1 kg/m2, both the resistance and reactance are close to those of
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massive micro perforated materials, which is consistent with the corresponding sound absorption
curves with the same surface densities shown in Figure 2.
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Figure 3: Normalised acoustic resistance and reactance of example micro perforated panels. Solid
lines are the prediction results of zmassive. The dashed lines are the prediction results of zlightweight

with m varying from 1kg/m2 to 0.0001kg/m2.
Equation (13) presents the effect of the material vibration on the acoustic impedance of the

perforation. However, when the impact of the vibration of the flexible panel surface is considered, the
acoustic impedance of the combined flexible micro perforated absorber is expressed as

zall =
1

1
zlightweight

+ 1
zmech

. (15)

This equation is similar to Equation (1) except that zlightweight is utilised instead of zmassive as in
Equation (1). Figure 4 shows the prediction results using Equation (15) and Figures 5(a) and 5(b) are
the corresponding normalised acoustic resistance and reactance, respectively.
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Figure 4: Sound absorption coefficient of example micro perforated absorbers with 100mm backing
cavity. Solid line is the prediction result of zmassive. The dashed dotted lines are the prediction results

of Equation (15) with m varying from 1kg/m2 to 0.0001kg/m2.
With the decrease of the surface density m from 1kg/m2 to 0.001kg/m2, the sound absorp-

tion increases. When the surface density m is 0.0001kg/m2, the prediction result of Equation (15)
is smaller than that of Equation (13). This is probably because that although the normalised reac-
tances given by Equation (15) are similar to those of Equation (13), the normalised resistances for
the various panels given by Equation (15) are much smaller, especially when the surface density m
is 0.0001kg/m2. This implies that the flexible panel surface density mainly impacts the normalised
resistance. Since the effects of the material vibration on both the impedance of the micro perforation
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and that of the flexible panel are considered in Equation (15), this equation is considered representa-
tive of the sound absorption of flexible micro perforated panel/membrane absorbers.
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Figure 5: Normalised acoustic resistance and reactance of example micro perforated panels. Solid
lines are the prediction results of zmassive. The dashed dotted lines are the prediction results of

Equation (15) with m varying from 1kg/m2 to 0.0001kg/m2.
Note that the term 2

Kr0

J1(Kr0)
J0(Kr0)

is repeated in both Equations (6) and (13), and this term is
dependent on the radius of the hole and the frequency and not related to the surface density. To
investigate the effect of the surface density on the sound absorption and to simplify the derivation
process, we substitute

2

Kr0

J1(Kr0)

J0(Kr0)
= a+ j b (16)

where a and b are the real and imaginary parts of this complex number. The real parts of Equations
(6) and (13) are given by

Re(zmassive) = −ωte
σc0

b

1− 2 a+ a2 + b2
(17)

and
Re(zlightweight) = −ωte

σc0

b
1

ρ0te

m2 + 1
m

− 2 am+ (1 + b2)(ρ0te +m)
(18)

respectively. The denominator of Equation (18) is a function of m

f(m) =
m2

ρ0te +m
− 2 am+ (1 + b2)(ρ0te +m). (19)

The first and second derivatives of this function with respect of m are given by

f ′(m) =
m(2ρ0te +m)

(ρ0te +m)2
− 2a+ 1 + b2 (20)

and

f ′′(m) =
2ρ2

0(te)
2

(ρ0te +m)3
. (21)

Equation (21) is positive. Therefore, Equation (19) has minimum values and these minima are the
roots of Equation (20). Additionally, m is real and the expression of m0 at which Equation (19) is
minimum is given by

m0 = ρ0te

(
1√

2 + b2 − 2a
− 1

)
. (22)

At m = m0, Equation (19) reaches its minimum and the resistance of the micro perforated material
has its maximum. Because a and b are only dependent onK and r0, the term 1−2 a+a2+b2 is between
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0.2 and 1 when r0 = 0.5mm. For the example dimensions and material surface densities considered
here, m is typically equal to or smaller than 1kg/m2 and t is 1mm. Then we could roughly conclude
that the order of magnitude of the function value of Equation (19) is less than −3 and the resistance
using Equation (13) is likely to be larger than that obtained using Equation (6). This conclusion is
observed by Figure 3(a). Therefore, for a decrease in surface density, the resistance initially increases
and hence the sound absorption increases up to a point.

6. Conclusion

This paper theoretically investigates the sound absorption and the acoustic impedance of flexible
lightweight micro perforated materials. The resistance of micro perforated material is mainly due to
the viscous shear loss in the holes of the material. This viscous shear loss is caused by the difference
between the particle velocity in the center of the hole and that at the hole wall boundary. For conven-
tional massive micro perforated materials, the particle velocity at the hole wall boundary is assumed
to be zero and an accurate theory has been developed based on this assumption by Maa [1][2]. For the
lightweight micro perforated materials which are of interest in this paper, a new boundary condition is
introduced. These lightweight materials may vibrate under sound pressure and the particle velocity at
the hole wall boundary is assumed to be equal to the vibration velocity of the material. This vibration
velocity affects the acoustic impedance in the form of the mechanical impedance of the material and
a correction is needed for the calculation of the impedance of lightweight micro perforated materials.
Since the mechanical impedance of a limp sheet is expressed as a function of its surface density and
the angular frequency [3], the effect of the surface density on the sound absorption coefficient and the
acoustic impedance is investigated here. Generally, with a decrease of the surface density, the sound
absorption coefficient increases; the resonance bandwidths broaden; the resistance increases; and the
reactance decreases. This theoretical analysis provides understanding on the sound absorption and the
acoustic impedance of lightweight micro perforated materials and may be of use for the prediction of
the performance of lightweight materials and their use in acoustic engineering applications.
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ABSTRACT 
Double layer impervious membranes are commonly used as building materials. This paper provides results of exper-

iments that show the effect on sound transmission loss associated with the incorporation of a microperforated mem-

brane (MPM) layer. Four types of MPMs with different perforation ratios are considered inserted between the two 

impervious membranes and the effects of the perforation ratio on the sound transmission loss of the combined system 

are investigated. The measurements employ two reverberation chambers and are conducted in accordance with the 

AS/NZS ISO 717.1 standard (2004). The test results show that an internal MPM is able to significantly increase the 

sound insulation of double layer impervious membranes. This double layer structure with an internal MPM is suitable 

for lightweight sound barriers and is promising and worthy of further study. 

INTRODUCTION 

Double layer membranes have been available for decades as 

building materials. They are highly valued for their light 

weight, their low carbon footprint as far as the environment is 

concerned, and their convenience for transportation and stor-

age when not inflated. Although in practice portable double 

layer membrane structures are generally inflated, the mem-

branes examined in this paper were not inflated. 

When the acoustic environment is of interest in a building 

which consists of membrane structures, an understanding of 

the acoustic properties of these membrane structures becomes 

crucial. There are many publications on the acoustic proper-

ties of membrane structures (Bosmans et al. 1999; Guigou-

Carter & Villot 2004; Kiyama et al. 1998), in particular their 

sound absorption and sound insulation. The latter is of partic-

ular interest in this paper. The experimental work of Mehra 

(2002) has demonstrated that, although pressurised inflatable 

membranes have effective sound insulation, their sound 

transmission losses are commonly lower than those of the 

more massive building materials which are used as traditional 

sound barriers.  

Therefore, efforts have been made to enhance the sound insu-

lation of membrane structures. Adding small weights to the 

membrane surfaces has been considered an effective method. 

Hashimoto et al. (1996; 1991) found that the sound insulation 

was improved by this strategy, especially in the low frequen-

cy range. Similarly, Yang et al. (2008) placed a small mass at 

the centre of a membrane-type acoustic meta-material. It has 

been indicated that the performance of this configuration 

could exceed the mass law and increase the sound insulation 

significantly in the low frequency range from 100 Hz to 1000 

Hz. Zhang et al. (2012) furthered Yang et al.'s work by in-

vestigating the sound transmission losses of the same materi-

als with different attached mass locations. The experiments 

and predictions demonstrated that the attached mass strongly 

affected the first transmission loss valley and peak in the 

sound transmission loss vs. frequency plot, while the second 

transmission loss valley depended on the properties of the 

membrane itself. However, adding additional small weights 

on the membranes, no matter if the membranes are common 

materials or meta-materials, increases the overall weight of 

the membrane structures. 

 

Besides additional small weights, adding porous materials in 

the cavity between the double membrane layers is another 

way to improve the sound insulation of membrane structures. 

Porous materials are widely used as sound absorbing materi-

als and can provide efficient sound absorption with low cost. 

In Vries’s (2011) master thesis, various absorption materials, 

including mineral wool, foams, wood wool and glass wool, 

filled the cavities of triple layer membrane structures. From 

the experimental results, it can be concluded that filling the 

cavities between the membranes with porous materials could 

improve the sound insulation. These porous materials need to 

be sufficiently thick to maintain effective sound absorption, 

particularly in the low frequency range. Therefore, the overall 

thicknesses of the membrane structures are increased in addi-

tion to their mass. This detracts from the advantages of the 

membrane structures being lightweight and convenient for 

transportation and storage. 

The microperforated panel (MPP) offers an alternative choice 

as a sound absorbing material. It is a thin panel (typically 

made of wood, plastic or metal) perforated with millions of 

holes with sub millimetre diameter. An MPP absorber (MPA) 

consists of an MPP, an acoustically rigid backing wall and an 

air cavity between them. The detailed research on MPPs 

(Maa 1975, 1998) indicates that microperforation provides 

high acoustic resistance and consequently MPAs can provide 

effective acoustic absorption, especially in the frequency 

range near their resonance frequency. However, traditional 

MPPs are rigid, therefore unsuitable for the membrane struc-

tures which are the focus of this paper. 

Like MPPs, a microperforated membrane (MPM) is a thin 

membrane on which millions of holes with sub millimetre 

diameter are perforated. This material provides a significant 

advantage over microperforated panels due to the flexibility 

of the membrane. Kang & Fuchs (1999) derived expressions 

to predict the sound absorption of an MPM and found that 

they can absorb sound effectively. In Geetre’s (2011) re-

search, the sound insulation of MPMs was investigated. Ex-

perimental results confirmed their effectiveness in providing 

sound insulation in the high frequency range. However, the 

flexibility of the MPM also leads to its fragility. It is difficult 

to use an MPM as the surface material of a sound absorbing 
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or sound insulating structure where the surface is likely to be 

abraded. 

This study aims to explore a realistic structure to improve the 

sound insulation of double layer membranes which maintain 

the advantages of being lightweight, flexible and easy to 

store. A double layer impervious membrane structure with an 

internal microperforated membrane is proposed. This pro-

posed structure is able to maintain all the advantages of 

membrane structures, owing to the flexibility of the MPM. 

The MPM is assumed to act as a sound absorbing material in 

the cavity and to contribute to the enhancement of the sound 

insulation. This assumption is confirmed by the measure-

ments of the sound transmission loss of the proposed struc-

ture. The details of this design and the measurements will be 

described in the following sections.  

DOUBLE LAYER IMPERVIOUS MEMBRANE 
WITH AN INTERNAL MICROPERFORATED 
MEMBRANE 

To create a membrane-type structure with enhanced sound 

insulation, an MPM was inserted into the cavity between two 

impervious membrane layers, instead of conventional porous 

materials. An MPM is able to absorb sound energy effective-

ly, as is the case with the MPP. The experimental and analyt-

ical work of Kang and Fuchs (1999) on the sound absorption 

of microperforated membranes indicates that the impedance 

of the MPM depends on the impedance caused by the mi-

croperforation and the acoustic impedance of the membrane 

itself without perforation. Therefore, it is reasonable to pre-

sume that the internal MPM contributes to the sound insula-

tion of membrane structures. The geometry of the model of 

the proposed structure is shown in Figure 1. 

 
Figure 1. Geometry of the model of double layer impervious 

membranes with an internal microperforated membrane. 

Variable �� denotes the depth of the cavity between the im-

pervious membrane on the incidence side and the MPM and �� the depth of the cavity between the MPM and the imper-

vious membrane on the receiver side. In this study, �� ��� � 70 mm. 

In previous research on both MPP and MPMs, it is clear that 

the sound absorption abilities of MPP and MPMs are de-

pendent on the parameters that characterise the structure, 

such as the hole diameter, the thickness of the panel or mem-

brane and the perforation ratio. Four types of MPMs are uti-

lised in this study and their parameters are listed in Table 1. 

The measurements and the experimental results are discussed 

in the following sections. 

 

 

 

Table 1. Structural parameters of MPMs tested 

Membranes 

tested 

Material Surface 

density 

(g m2⁄ ) 

Thick-

ness 

(mm) 

Perfo-

ration 

ratio 

(%) 

Hole 

diame-

ter 

(mm) 

MP membranes 

A 10 PVC 243.6 0.17 1.4 0.1 

A 20 PVC 250.3 0.17 2.5 0.15 

A 30 PVC 244.8 0.17 4.4 0.2 

A 40 PVC 250.6 0.17 0.8 0.5 

Impervious membranes 

Source side PVC 485 0.42 N/A N/A 

Receiver 

side 

PVC 485 0.42 N/A N/A 

MEASUREMENTS OF SOUND TRANSMISSION 
LOSS 

To quantify the level of sound insulation, sound transmission 

loss (STL) or sound reduction index is defined as 

��� � 10	log�� ���� � 10	log�� ��i�t�,																		(1)	
where " is the sound transmission coefficient, #i the incident 

sound intensity and #t the transmitted sound intensity. All the 

sound transmission experiments have been done in the two 

reverberation rooms at the University of Adelaide of dimen-

sion shown in Table 2. The sound pressure levels (SPLs) of 

the source room and the receiver room were averaged over 

three minutes at the centre frequencies of one-third octave 

frequency bands from 50 Hz to 10 kHz. The calculation of 

STLs was in accordance with the standard AS/NZS ISO 

717.1 (2004). The analysis of the collected data is presented 

in the Experimental Results section. 

Table 2. Dimension of the reverberation rooms 

Rooms Length 

(m) 

Width 

(m) 

Height 

(m) 

Surface 

area (m�) 

Volume 

(m$) 

Source 

room 

6.085 5.175 3.355 135.5 105.6 

Receiver 

room 

6.840 5.565 4.720 193.2 179.7 

Test 

window 

1.510 1.005 N/A 1.52 N/A 

EXPERIMENTAL RESULTS 

Figure 2 shows the sound insulation properties of double 

layer impervious membranes with and without the MPM 

present. Commonly, STL is used to quantify the sound reduc-

tion of structures. When the experiments are conducted in 

reverberation rooms as the case is in this paper, there are 

errors caused by the effects of the opening in which the test 

samples are mounted. Theoretically, the sound transmission 

loss of an open window is assumed to be zero.  However, 

Martin (2008) found that the sound transmission loss of a 

finite open window is not zero in practice, but has small finite 

value varying with frequency. This is especially problematic 

when small apertures are used. Therefore, the measured STL 

of a test sample mounted in a finite window is the sum of the 

test-sample STL and the open-window STL and errors occur. 

To avoid these errors, sound insertion loss (IL) is utilised 

instead of sound transmission loss (STL). Sound insertion 
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loss (IL) is defined (Ingard 1994) as the difference of the 

sound pressure levels with and without the partition at a fixed 

position in the receiver side. In this study, the sound insertion 

loss (IL) is considered as the difference of the sound trans-

mission loss with and without test samples. Therefore, the 

utilisation of the sound insertion loss (IL) here can remove 

the effect of the open window on the test results and increase 

their accuracy and reliability. 

 
Figure 2. Sound insertion loss of double layer membrane 

structure with and without MPM. The blue solid curve is the 

sound insertion loss of double layer membrane structure 

without MPM; the green, red, cyan and purple solid curves 

are those with MPM A10, A20, A30 and A40, respectively.  

It is clear in Figure 2 that the MPP insertion is able to en-

hance the sound insulation properties of double layer imper-

vious membrane structures in the middle and high frequency 

range. In the low frequency range from 50 Hz to 500 Hz, all 

the curves are approximately equal. This implies that all four 

internal MPMs do not affect the sound insulation of the dou-

ble layer membrane structure at low frequencies. From 630 

Hz to 1 kHz, the insertion losses of the double layer struc-

tures with A10 (green curve) and A20 (red curve) are lower 

than those with no MPM (blue curve), while those with A30 

(cyan curve) and A40 (purple curve) are close to those with 

no MPM (blue curve). The enhancement of MPP insertion 

starts from 1250 Hz.  

 
Figure 3. Increase of sound insertion loss. The blue curve is #�noMPP − #�noMPP; the green curve is #�10 − #�noMPP; the red 

curve is #�20 − #�noMPP; the cyan curve is #�30 − #�noMPP; 

the purple curve is #�40 − #�noMPP; where #�noMPP denotes 

the sound insertion loss of double layer membrane structure 

without MPM insertion and #�10, #�20, #�30 and #�40 are 

those with MPM A10, A20, A30 and A40, respectively. 

Figure 3 presents the differences of the ILs without the MPM 

and those with A10, A20, A30 and A40 membranes, respec-

tively. From 1250 Hz to 10 kHz, the MPM A30, which has 

the highest perforation ratio, demonstrates the most signifi-

cant enhancement of IL among all four MPMs. The maxi-

mum increase in IL from the A30 membrane is 6.6 dB at 4 

kHz. In the same frequency range, the curve of A40 peaks at 

3.8 dB of 1600. The curves of A10 and A20 share a similar 

upward trend but the increase of A10 is greater than that of 

A20 from 1250 Hz to 5 kHz. The enhancement of A20 is 

more effective than that of A10 from 6300 Hz to 10 kHz.  

It is concluded from the experimental results that the effec-

tiveness of the proposed MPM insertion on the sound insula-

tion of the double layer impervious membranes has been 

validated by the experimental results. The main effects of the 

MPM insertion consists of two aspects: 1) the enhancement 

of the MPM insertion occurs from 1250 Hz to 10 kHz; 2) the 

MPM with the highest perforation ratio provides the most 

significant increase of the IL among all MPMs considered. 

DISCUSSION 

This section focuses on the causes of the two effects of the 

MPM insertion on the sound insulation of the double imper-

vious membranes. The effects of the membrane surface den-

sities, the cavity between the double impervious layers and 

the MPM structural parameters are discussed. 

Effect of the membrane surface densities 

The surface densities of materials usually play a crucial part 

in their sound insulation properties. Based on the well-known 

mass law, the STL with normal  incidence ���n is expressed 

as (Fahy 1985) 

���n � 10 log�� )1 + ��+,×.�	/010 ��2,															(2)	
where 3 is the surface density of the membrane, 4 is the 

frequency, 5� is the density of air and 6� is the speed of 

sound in air. The STL with random incidence is given by 

(Fahy 1985) 

���r � ���n − 10	log10(0.23 × ���n),        (3) 

The ���r is only valid when it is over 15 dB (Ver & Beranek 

2005). If there are several layers of completely decoupled 

materials, the overall STL is 

���all � 10 log�� 9�1i�1t 	 �2i�2t 	… �ni�nt;,															(4)	
where #1i to #ni denote the incident sound intensities of each 

layer and #1t to #nt the transmitted sound intensities of each 

layer. According to Equation (1), Equation (4) is rewritten as 

���all � ���1 + ���2 + ⋯+ ���n,															(5)	
where ���1 to ���n are the sound transmission losses of 

each decoupled layer. 

Therefore, the STLs of the double layer impervious mem-

branes with normal incidence can be predicted in two ways. 

Firstly, when the double layer structure is assumed to act like 

one layer with doubled mass, the STL is given by 

���DMM(mass	law) � 10 log�� )1 + ��+,×�×.�	/010 ��2.       (6) 

This model is named as the doubled mass model (DMM). 

Secondly, if the double membrane layers are assumed to be 

completely decoupled (CDM), two models are developed 

based on Equation (5). Let ���single(mass	law)n denote the 

prediction of the sound transmission of the single layer im-

pervious membrane with normal incidence. Equation (5) 

could be rewritten as 
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���ABC(DEFF	GEH)� � 2 × ���single(mass	law)n 

� 20 × log�� )1 + ��+,×.�	/010 ��2. (7) 

Equation (7) is the prediction of the STL with normal inci-

dence and for the random incidence correction it is necessary 

to utilise Equation (3). Alternatively, we could obtain the 

STL of the single layer impervious membrane with random 

incidence ���single(mass	law)r directly by using Equations (2) 

and (3). Then the STL of the double layer structure is given 

by 

���ABC(DEFF	GEH)� � 2 × ���single(mass	law)r ,     (8) 

where  

���single(mass	law)r � ���single(mass	law)n − 10	log10I0.23 ×���single(mass	law)nJ.																(9)	

 
Figure 4. Prediction of the sound transmission loss of the 

double layer impervious membranes based on mass law (ran-

dom incidence). The blue dotted curve is the experimental 

results of the sound insertion loss of double layer membrane 

structure without MPM; the green, red, cyan and purple dot-

ted curves are those with MPM A10, A20, A30 and A40, 

respectively. The blue solid curve presents the DMM predic-

tion of the sound transmission loss of double layer impervi-

ous membranes. The green and red solid curves are the pre-

dictions using the two CDM methods. 

 

 
Figure 5. Sound field of the double layer impervious mem-

branes without the MPMs. 

Figure 4 presents the STL prediction of the double layer im-

pervious membranes using the DMM method and the two 

CDM methods. As can be seen in Figure 4, with the A30 

MPM present, in the middle and high frequency range the 

double layer membrane structure approaches the theoretically 

maximum IL offered by the two completely decoupled single 

layer membranes. The prediction results of the second CDM 

method have a great agreement with the experimental results 

from 1250 Hz to 6300 Hz. This implies that the two impervi-

ous membranes act like two completely decoupled mem-

branes in a diffuse field above 1250 Hz. As shown in Figure 

5, without the MPMs the transmitted sound wave from the 

first impervious membrane could be considered as randomly 

incident upon the surface of the second impervious mem-

brane. 

When the MPMs are considered, a similar prediction of the 

STL of the double layer impervious membranes with the 

internal MPMs could be done using the DMM and CDM 

method. However, all four of the MPMs are lightweight and 

have almost the same surface densities. A comparison of the 

surface densities of the MPMs to those of the impervious 

membranes is shown in Table 2.  Although the surface densi-

ties of the MPMs are almost identical, the experimental re-

sults show different STL enhancement of the structure with 

different MPM insertions. MPM A30 provides the most sig-

nificant enhancement of IL amongst all four MPMs. This 

implies that the enhancement of the sound insulation is due to 

the differences in the perforation ratios of the MPMs. 

Effect of the impedance of the impervious mem-
branes 

The sound transmission through a material is related to its 

acoustic impedance. The sound transmission coefficient of 

the membrane is expressed as (Kinsler et al. 1999) 

" � �t�i � L	M(�NM)O,                           (10) 

where P is the normalised acoustic impedance of the materi-

al. Hence, the STL can be predicted according to the defini-

tion of the STL and Equation (1) and is given by 

��� � 10	log10 9(�NQ)OL	Q ;.                      (11) 

Note that this STL is for normal incidence and the STL with 

random incidence can be obtained by Equation (3). 

For a tension-free impervious membrane of infinite size, the 

normalised acoustic impedance is given by (Kang & Fuchs 

1999) 

Pimpervious � UNV	W	./010 ,                  (12) 

where X is the acoustic resistance depends on the mounting 

conditions of the membrane as well as its construction, Y is 

the angular frequency and equal to 2	Z	4. Although the sur-

face density is easily determined, the acoustic resistance of-

fered by the impervious membrane is dependent on both the 

fabric construction and mounting arrangement therefore must 

be experimentally determined. For the impervious membrane 

tested, this was found to be 1500 Pa∙s/m$ (see Appendix).  

The STL prediction of the double layer impervious mem-

branes can be calculated using the DMM and CDM methods, 

as is the case with the STL prediction using the mass law. In 

the DMM prediction, Equation (12) becomes 

Pdouble	impervious � 2	 �UNV	W	./010 �.               (13) 

Therefore, the STL using the DMM method is expressed as 

���DMM(impedance) � 10	log10 `a�N�	�bcd	e	fg0h0 �iO
j	�bcd	e	fg0h0 � k.   (14) 
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Equation (3) is also used to obtain the random incidence cor-

rection. 

Based on the CDM method, the sound transmission loss of a 

single layer impervious membrane is given by 

���single(impedance)n � 10	log10 l��Nbcd	e	fg0h0 �OL	�bcd	e	fg0h0 � m.      (15) 

As is the case when the mass law is considered, there are also 

two ways to calculate the STL of the double layer structures 

based on the CDM method. Letting the ���single(mass	law)n in 

Equation (7) be ���single(impedance)n and the STL using CDM 

method is obtained as 

���CDM(impedance)1 � 20	log10 l��Nbcd	e	fg0h0 �OL	�bcd	e	fg0h0 � m	.      (16) 

Note that this prediction result is the STL with normal inci-

dence and to obtain that with random incidence, Equation (3) 

is utilised as the last step. The other possibility is to calculate 

the STL of the single layer impervious membrane with ran-

dom incidence and to double the calculation results. The 

prediction result is expressed as 

���CDM(impedance)2 � 2 × ���single(impedance)r,     (17) 

where  

���single(impedance)r � ���single(impedance)n − 

10	log10I0.23 × ���single(impedance)nJ.						(18)	

 
Figure 6. Prediction of the sound transmission loss of the 

double layer impervious membranes using the membrane 

impedance (random incidence). The blue dotted curve is the 

experimental results of the sound insertion loss of double 

layer membrane structure without MPM; the green, red, cyan 

and purple dotted curves are those with MPM A10, A20, A30 

and A40, respectively. The blue, green and red solid curves 

present the DMM and CDM predictions of the sound trans-

mission loss of double layer impervious membranes based on 

the mass law. The blue, green and red dashed curves are 

those predictions using the membrane impedance. 

The STL results are shown in Figure 6 and are compared to 

the three predictions based on the mass law. As can be seen 

in Figure 6, the prediction of the STL using the first CDM 

method with the membrane impedance has good agreement 

with the experimental result of the IL of the double layer 

impervious membranes. This probably indicates that the 

transmitted sound wave from the first impervious membrane 

could be constrained by the MPMs (due to the perforation) 

and be normally incident on the surface of the second imper-

vious membrane. Figure 7 presents the sound field of this 

model. This result is similar to that observed for double layer 

walls with fibrous absorber in the wall space, where “the 

effect of the sound absorbing material in the airspace results 

in refraction of the oblique-incidence sound toward the nor-

mal” (Beranek & Ver 1992, p302). 

 
Figure 7. Sound field of the double layer impervious mem-

branes with the internal microperforated membrane. 

Effect of the cavity depth between the double im-
pervious membrane layers 

Note that the cavity depth �� + �� is equal to 140 mm and �� � ��. The frequency of the fundamental acoustic cavity 

mode 4cavity is expressed as 

4cavity � 10�×(pqNpO),                             (19) 

where 6� is the speed of sound in air. For the configuration 

tested, 4cavity � 1225	Hz which is exactly the frequency 

where the IL shown in Figures 2 to 3 shows a significant 

improvement due to the presence of the MPMs. This implies 

that the improvement with the MPM starts from the funda-

mental acoustic frequency of the cavities between the imper-

vious membranes. Therefore, the benefit delivered by the 

MPM is associated with damping of the cavity modes that 

exist between the two impervious membranes. 

Effect of the MPM structural parameters 

As mentioned previously, both the perforation and the flexi-

bility of the MPM contribute to its sound absorption. When 

the flexibility is included, the impedance of the MPM can be 

as (Kang & Fuchs 1999) 

PMPM � QMPP×QMQMPPNQM,                                (20) 

where PM � X + t	Y	3., 3. is the surface density of the 

MPM and PMPP denotes the normalised acoustic impedance 

related to the perforation. The variable PMPP could be consid-

ered as the normalised acoustic impedance of the MPP which 

has the same structural parameters with the MPM. The nor-

malised acoustic impedance of MPP developed by Maa 

(1975) is 

PMPP � √�vwxy + VW/0x 0.85z + VW/0{x )1 − �w|}V ~qIw|}VJ~0Iw|}VJ2}�,	(21)	
where � � ��|5�Y/� (i.e. the MPP constant), �� is the radi-

us of the hole, �� is the Bessel function of the zeroth order 

and �� the Bessel function of the first order, � is the thickness 

of the panel or membrane, � denotes the perforation ratio and 
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� is the air viscosity coefficient. The predictions of the MPM 

acoustic impedances are shown in Figure 8. The MPM A30 

has the lowest resistance and reactance above 1250 Hz 

among the four MPMs considered here. 

 
(a) Normalised resistance of MPMs 

 
(b) Normalised reactance of MPMs 

Figure 8. Normalised resistance and reactance of MPMs. The 

green, red, cyan and purple curves present the normalised 

resistances and reactance of MPM A10, A20, A30 and A40, 

respectively. 

Using the completely decoupled model, the STLs of the dou-

ble layer impervious membranes with the MPM insertion are 

predicted. Figure 9 presents the comparison between the 

experimental results and the prediction of the CDM method 

with Equation (20). Although the predictions are slightly 

lower than the experimental results, their main trends are 

very similar. The differences between the predictions and the 

experiments are caused by several aspects. The size of both 

the impervious membranes and the MPMs is assumed to be 

infinite when calculating the acoustic impedances. The stiff-

ness of all the membranes is also neglected, as are the reso-

nances of the enclosed cavities between the membranes. 

These will be investigated in the future research. 

 

(a) With the internal MPM A10 

 
(b) With the internal MPM A20 

 
(c) With the internal MPM A30 

 
(d) With the internal MPM A40 

Figure 9. Prediction of the STL of the double layer impervi-

ous membranes with the internal MPMs using the membrane 

impedance and the CDM method (random incidence). 

In general, the insertion of MPMs can increase the sound 

insulation properties of the double layer impervious mem-

branes above the fundamental acoustic cavity mode, from 

1250 Hz to 10 kHz. The surface densities and the sound ab-

sorption abilities of the MPMs  contribute to the enhance-

ment of the sound insulation. The improvement in the sound 

insulation of the double impervious membranes with the 

MPM insertion is related to the structural parameters of the 

MPMs, especially the perforation ratio. With the advantages 

mentioned previously of being lightweight, flexible and easy 

to store, the proposed double layer membrane structure in-

corporating an internal MPM is promising and worthy of 

further study. 

CONCLUSIONS 

A design of double layer impervious membranes with an 

internal MPM is proposed in this study to enhance the sound 

insulation of the double layer structure. Based on the previ-

ous research, it is assumed that the MPM could act as an 

internal sound absorbing layer and enhance the sound insula-
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tion of the double layer structure. This assumption is validat-

ed by the test results. It is shown that the MPM contributes 

little to the transmission loss below the fundamental cavity 

mode (formed between the two impervious membranes). 

However, above the fundamental acoustic mode of the cavity, 

the transmission loss is increased significantly and remains 

enhanced over the frequency range tested. The mechanism 

for the enhancement is likely to be due to the increased 

damping of the acoustic modes within the cavity associated 

with the acoustic resistance across the inserted MPM. The 

proposed structure meets the needs of lightweight sound bar-

riers. Further studies will be done on the detailed effects of 

the parameters of the MPM on the sound insulation of double 

layer impervious membrane structures. 
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APPENDIX: CALCULATION OF ACOUSTIC 
RESISTANCE OF THE MEMBRANES 

The variable X in Equation (12) denotes the acoustic re-

sistance of the membrane and is dependent on the mounting 

conditions. Since it is difficult to measure X in the STL ex-

periments, the prediction of the STL of the single layer im-

pervious membrane is utilised to determine its value. Figure 

10 is the prediction for the STL of the single layer impervi-

ous membrane using its acoustic impedance. Three different 

values of X were used and X equal to 1500 provided the best 

agreement between the predicted and experimental results. 

Additionally, when the value of X is varied, only the low 

frequency response is affected. This trend is realistic because 

the boundary conditions should mainly affect the STL in the 

low frequency range. Therefore, since the mounting condi-

tions of all the impervious membranes and the MPMs are 

consistent, X is assumed to be 1500 Pa∙s/m$ in all the calcu-

lation methods presented. 

 
Figure 10. Comparison of the prediction and the experimental 

results of the STLs of the single layer impervious membrane. 

The dashed curve is the experimental result, the blue solid 

curve is the prediction based on the membrane impedance 

when X is equal to 1500 Pa∙s/m$. The green and red solid 

curves are those when X are equal to 1000	Pa∙s/m$ and 

2000	Pa∙s/m$, respectively. 

0

5

10

15

20

25

30

↓ Prediction (R=2000)

Frequency (Hz)

S
o

u
n

d
 i

n
se

rt
io

n
 l

o
ss

 (
IL

) 
(d

B
)

5
0

6
3

8
0

1
0
0

1
2
5

1
6
0

2
0
0

2
5
0

3
1
5

4
0
0

5
0
0

6
3
0

8
0
0

1
0
0
0

1
2
5
0

1
6
0
0

2
0
0
0

2
5
0
0

3
1
5
0

4
0
0
0

5
0
0
0

6
3
0
0

8
0
0
0

1
0
0
0
0

↓ Prediction (R=1000)

 

 

Experimental results

Prediction (R=1500)


	TITLE: Application of Micro Perforated and Impervious Membranes for Noise Barriers
	Contents
	Abstract
	Statement of Originality
	Acknowledgements
	List of Figures
	List of Tables
	List of Symbols

	Chapter 1 Introduction
	Chapter 2 Acoustic properties of single layer impervious membranes under tension
	Chapter 3 Sound absorption of micro-perforated membranes
	Chapter 4 Nonlinearity of the sound absorption of micro perforated membranes under high SPL excitation
	Chapter 5 Analytical modelling of the non-linear sound absorption of micro perforated membranes under moderate and high excitation
	Chapter 6 Sound transmission of double layer impervious membranes separated by an air cavity
	Chapter 7 Sound transmission of double layer impervious membranes with an internal micro perforated membrane
	Chapter 8 Conclusions
	References
	Appendix A Publications arising from this thesis
	Paper
	Paper
	Paper
	Paper


