

ADELAIDE UNIVERSITY

Geology and Geophysics

The Poodla Granite in the Olary Domain,

South Australia:

Intrusive Relationships, Alteration and implications for

Cu-Au mineralisation

Justin L. Payne

Supervisors: Andreas Schmidt-Mumm John Foden

November 2003

This paper is submitted as partial fulfilment for the Honours degree of Bachelor of Science (Geology)

CONTENTS

CONTENTS
LIST OF FIGURES
LIST OF TABLES
ABSTRACT
1. INTRODUCTION
2. REGIONAL GEOLOGY
3. RESULTS
3.1 Structural setting and relative age constraints of the Poodla Granite area
3.1.1 PETROGRAPHIC ANALYSIS OF META-SEDIMENTARY ENCLAVES
3.2 Breccia
3.3 Petrographical, whole rock and mineral analysis of Poodla Granite
3.4 Alteration
3.4.1 CHEMICAL ANALYSIS OF ALTERATION
3.5 Fluid Inclusion Studies
3.6 Sm/Nd and Sr Isotopes
4. INTERPRETATION OF RESULTS
4.1 Age and Genesis of the Poodla Granite
4.2 Alteration
5. REGIONAL CU-AU IMPLICATIONS
5.1 Timing and fluid movement mechanisms of Cu-Au mineralisation
5.2 Regional Cu-Au mineralisation and alteration fluids
6. CONCLUSION
ACKNOWLEDGEMENTS
REFERENCES
FIGURE CAPTIONS
FIGURE CAF HUNS

LIST OF FIGURES

1. Location and Simplified Regional Geology Map	52
2. Stratigraphy and levels of intrusive emplacement	53
3. Outcrop map of study area	54
4. Stereonets	55
5. Photomicrographs and field photographs	56
6. Primitive Mantle-Normalised Incompatible Element Plots	57
7. Tectonic discrimination, aluminous and granite classification diagrams	59
8. Harker diagrams	62
9. Isocon Diagram	63
10. Relative increase/decrease of major elements due to alteration	64
11. Fluid Inclusion Photomicrographs	65
12. Rb/Sr isotope "error chron"	66
13. ɛNd/Age plot of Poodla Granite and other Olary Domain intrusives	67
14. P-T plots showing liquidi and iso-T _h lines for fluid inclusions	68
15. Poodla and Regional Au concentrations	70

LIST OF TABLES

1. Regional Tectonic Summary	45
2. Tectonothermal summary of Study area	46
3. Whole Rock analysis (XRF) data	47
4. Mineral Composition	48
5. Trace Element gain/loss during various styles and extents of alteration	49
6. Fluid Inclusion Analysis results	50
7. Sm/Nd and Rb/Sr isotope results	51

ABSTRACT

The Palaeoproterozoic Poodla Granite within the Olary Domain, Curnamona Province, South Australia, has been suggested as a direct contributor to Cu-Au mineralisation within the region on the basis of age correlations.

Alteration present within the Poodla Granite consists of four styles that have been interpreted as two events. The first event includes pervasive potassic alteration followed by pervasive Na-Ca alteration. Sm/Nd isotope analysis indicates fluids for this event were sourced from the Willyama Supergroup sediments. The second event consists of Ca-Na-Si fracture-controlled sodic and alteration with associated actinolite/clinopyroxene brecciation. Utilisation of magmatic major element trends obtained from a natural analogue (Mt Angelay Complex, Cloncurry District) has allowed greater accuracy in chemical characterisation of alteration. Fluid inclusion analysis has identified two distinct fluids involved in the later fracture-controlled sodic and Ca-Na-Si alteration event. Namely, a low salinity (18-26wt% NaCl equivalent) and a high salinity (35-45wt% NaCl equivalent) fluid. A later fluid mobilisation event related to the Palaeozoic Delamerian Orogeny is indicated by re-equilibration of the Rb/Sr isotopic system.

New age constraints from other granites in the I-type suite, to which Poodla Granite belongs, suggest the Poodla Granite did not have direct hydrothermal input into regional Cu-Au mineralisation. Analysis of alteration chemistry suggests that Cu and Au mobilisation occurred during the first alteration event. These results offer evidence for previously untested Cu-Au mineralising models within the region and may encourage

exploration for Cu-Au resources.

Key Words : Curnamona Province, I-type granite, Alteration, Cu-Au mineralisation