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Abstract 

 
In most regions of the world, irrigation is vital for food production. 

However, under increased water demands due to population growth, 

economic development, and climate change in recent decades, there is likely 

to be a significant reduction in the amount of water available for irrigation. 

Therefore, it is imperative to make the best use of water that is available for 

irrigation. This applies to: 1) the optimal allocation of land and water 

resources for irrigation management to achieve maximum net return, subject 

to constraints on area and water allocations at the district or regional scale; 

and 2) the optimal irrigation scheduling of available water, as well as 

fertilizer, in order to maximise net return at the farm scale. In order to 

rigorously address these problems, metaheuristic optimization algorithms 

have been used extensively due to their abilities in terms of finding globally 

optimal or near-globally optimal solutions and relative ease of linkage with 

complex simulation models. However, the application of these algorithms to 

real-world problems has been challenging due to the generally large size of 

the search space and the computational effort associated with realistic long-

term simulation of crop growth and associated soil-water processes. 

In this thesis, general simulation-optimization frameworks for optimal 

irrigation management (including optimal crop and water allocation, and 

optimal irrigation water and fertilizer application scheduling) have been 

developed in order to make the application of metaheuristic optimization 

methods to the above problems more computationally efficient. As part of 

this approach the problems are represented in the form of decision graphs 

which are solved using ant colony optimization (ACO) as the optimization 

engine. The frameworks enable dynamic reduction of the size of the search 

space by using dynamic decision variable option (DDVO) adjustment 

during solution construction. This also ensures only feasible solutions are 

obtained as part of the stepwise solution generation process. In addition, the 

computational efficiency of the ACO algorithms within the framework for 

optimal crop and water allocation has been increased by biasing the options 

at each node in the decision-tree graph based on domain knowledge 
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(represented by a visibility factor, VF). Furthermore, the framework for 

optimal irrigation scheduling was linked with a process-based crop growth 

model to enable optimal or near-optimal irrigation water and fertilizer 

application schedules to be identified. 

This thesis is arranged as a series of three publications that present the main 

research contributions. The first paper introduces a generic simulation-

optimization framework for optimal crop and water allocation at the 

regional or district scale using decision-tree graphs, ACO and the search 

space reduction technique based on dynamically adjusting decision variable 

options during stepwise solution construction. The performance of this 

technique in terms of finding feasible solutions, solution quality, 

computational efficiency and convergence speed was compared with that of 

linear programming (LP) and a “standard” ACO approach using static 

decision variable options (SDVO) on a benchmark case study from the 

literature. The second paper extends the ACO formulation for optimal crop 

selection and irrigation water allocation in the first paper by incorporating 

domain knowledge through VFs to bias the search towards selecting crops 

that maximize net returns and water allocations that result in the largest net 

return for the selected crop, given a fixed total volume of water. This 

improvement enables locally optimal solutions related to the factors (i.e., 

crops and water) affecting net return to be identified, and enables promising 

regions of the search space to be explored. The benefits of this improved 

formulation were tested on the benchmark case study used in the first paper 

and a real-world case study based on an irrigation district located in Loxton, 

South Australia near the River Murray. In the final paper, the formulation 

for detailed optimal irrigation water and fertilizer application scheduling at 

the farm scale is introduced and applied to a case study considering corn 

production under center pivot irrigation in Colorado, USA. The Root Zone 

Water Quality Model 2 (RZWQM2) was used for this case study to simulate 

the detailed impacts of irrigation water and fertilizer application scheduling 

on crop growth at a fixed time step. The utility of the proposed framework 

was demonstrated in terms of finding better net returns while using less 

fertilizer and similar amounts of water, or similar net returns while using 
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less water and fertilizer, compared with the Microsoft Excel spreadsheet-

based Colorado Irrigation Scheduler (CIS) tool for annual crops.  
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CHAPTER 1  

 

Introduction 
 
In most regions of the world, irrigation is vital for food production. 

Water shortages for irrigation can potentially constrain agricultural 

production, while efficient crop water allocation can possibly increase crop 

yields, contributing to food security and sustainable socio-economic 

development (Young et al., 1994). Irrigation generally accounts for the 

largest percent of available total water, for example, about 70% in the world 

(Fry, 2005), about 80% in the basins of southern Spain (Reca et al., 2001) 

and up to 94% in the Murray-Darling Basin, Australia (Murray Darling 

Basin Authority, 2011). While the importance of irrigation should increase 

in the near future as a result of population growth (Dyson, 1999; Rosegrant 

and Ringler, 2000), economic development (Malla and Gopalakrishnan, 

1999), environmental needs (Burke et al., 2004), and the impact of climate 

change (Arnell, 1999; Liu et al., 2010), there is likely to be a significant 

reduction in the amount of water available for irrigation. Therefore, it is 

imperative to make the best use of water that is available for irrigation. This 

applies to: 1) the optimal allocation of land and water resources for 

irrigation management to achieve the maximum net return, subject to 

constraints on area and water allocations at the district or regional scale; and 

2) the optimal irrigation scheduling of available water, as well as fertilizer, 

in order to maximise net return at the farm scale.  

In order to address the above problems, optimization techniques have 

generally been applied in previous studies (Singh, 2012, 2014), including 

dynamic programming (Rao et al., 1988; Naadimuthu et al., 1999), 

nonlinear programming (Ghahraman and Sepaskhah, 2004), multi-objective 

programming (Lalehzari et al., 2015), and simulated annealing (Brown et 

al., 2010). Although these “conventional algorithms” (CAs) for optimization 

have the advantage of being simple and efficient to apply, they are 

somewhat limited in terms of handling nonlinear problems and by the “curse 
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of dimensionality” (i.e., the search space size grows exponentially with the 

number of state variables), as is the case in irrigation management (Singh, 

2014).  

In recent years, metaheuristic optimization algorithms have been used 

extensively to identify the optimal solutions for irrigation problems 

(Nicklow et al., 2010; Maier et al., 2014; Maier et al., 2015). This is 

because these algorithms are able to find globally optimal or near-globally 

optimal solutions. However, the application of these algorithms to real-

world problems is complicated by a number of factors (Maier et al., 2014), 

one of which is the generally large size of the search space, which may limit 

the ability to find globally optimal or near-globally optimal solutions in an 

acceptable time period. In addition, metaheuristic algorithms are also able to 

be linked with simulation models (e.g., crop growth models) that are 

commonly applied to evaluate objective functions in irrigation management. 

These models may take on simple forms, such as water production functions 

(Jensen (1968); Doorenbos and Kassam (1979)), to calculate crop yield 

response to water (Reca et al., 2001; Evans et al., 2003; Azamathulla et al., 

2008; Georgiou and Papamichail, 2008; Brown et al., 2010; Prasad et al., 

2011) or the FAO Penman-Monteith method crop evapotranspiration (ET) 

and the crop growth coefficient approach of Doorenbos and Pruitt (1977) to 

estimate crop water requirements (Shyam et al., 1994; Sethi et al., 2006; 

Khare et al., 2007). Although these quasi-empirical modelling approaches 

have been widely used in optimization studies due to their computational 

efficiency (Singh, 2012), they are unable to represent the underlying 

physical processes affecting crop water requirements, crop growth and 

agricultural management strategies (e.g., fertilizer application) in a realistic 

manner. These shortcomings have been addressed by more complex 

simulation models, such as ORYZA2000 (Bouman et al., 2001), RZQWM2 

(Bartling et al., 2012), AquaCrop (Vanuytrecht et al., 2014), EPIC (Zhang 

et al., 2015) and STICS (Coucheney et al., 2015). However, due to their 

relatively long runtimes (e.g., several minutes per evaluation), these models 

are normally used to simulate a small number of management strategy 

combinations (Camp et al., 1997; Rinaldi, 2001; Arora, 2006; DeJonge et 
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al., 2012; Ma et al., 2012b), rather than being used in combination with 

metaheuristic algorithms to identify (near) globally optimal solutions.  

A potential solution to the above problems (i.e., large size of search 

space and long simulation-optimization model run times) is to reduce the 

search space size, as this has been successfully applied in many application 

areas of water resources, such as the optimal design of water distribution 

systems (Gupta et al., 1999; Wu and Simpson, 2001; Kadu et al., 2008; 

Zheng et al., 2011, 2014), the optimal design of stormwater networks 

(Afshar, 2006, 2007), the optimal design of sewer networks (Afshar, 2012), 

the calibration of hydrologic models (Ndiritu and Daniell, 2001), the 

optimization of maintenance scheduling for hydropower stations (Foong et 

al., 2008a; Foong et al., 2008b) and the optimal scheduling of 

environmental flow releases in rivers (Szemis et al., 2012, 2014). Reduction 

in the size of the search space has the potential to enable near-globally 

optimal solutions to be found within a reasonable timeframe or the best 

possible solution to be found for a given computational budget. Of the 

metaheuristic algorithms, ant colony optimization (ACO) is particularly 

suited to problems where there is dependence between decision variables, 

such that the selected values of particular decision variables restrict the 

available options for other decision variables, as is often the case in 

scheduling and allocation problems (e.g., Afshar, 2007; Afshar and Moeini, 

2008; Foong et al., 2008a; Foong et al., 2008b; Szemis et al., 2012, 2014; 

Szemis et al., 2013). 

Another potential solution for addressing the difficulties of applying 

metaheuristics to solving real-world irrigation optimization problems is to 

improve computational efficiency by incorporating domain knowledge 

during the optimization process. This is  demonstrated in a number of other 

water resources planning and management problem domains (Kadu et al., 

2008; Zheng et al., 2011; Creaco and Franchini, 2012; Kang and Lansey, 

2012; Afshar et al., 2015; Bi et al., 2015). As the trial solutions of the 

metaheuristics, such as genetic algorithms (GAs), are modified from 

previous ones as the search progresses from one iteration to the next, the 
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incorporation of domain knowledge can generally only be achieved by 

seeding the initial population. As a result, these algorithms are unable to 

take advantage of the potential benefits of incorporating domain knowledge 

into the construction of trial solutions.  The use of ACO can overcome this 

limitation as trial solutions are constructed using past experience contained 

in the search space, which is presented in the form of a decision-tree graph.  

Therefore, ACO offers great potential for increasing the computational 

efficiency in relation to solving irrigation-related optimization problems via 

the incorporation of domain knowledge. 

1.1 Research objectives 

In order to address the problems outlined above, this thesis develops 

general simulation-optimization frameworks for irrigation management, 

including optimal crop and water allocation and optimal irrigation water and 

fertilizer application scheduling. As part of the frameworks, the problems 

are represented in the form of decision graphs and ACO is used as the 

optimization engine. Furthermore, reduction in the search space size and 

incorporation of domain knowledge during the optimization process are 

utilized to increase computational efficiency. Overall, this study has the 

following three main objectives: 

Objective 1: To develop a generic simulation-optimization framework for 

optimal crop and water allocation (Papers 1 and 2). 

Objective 1.1: To formulate a generic simulation-optimization 

framework that reduces search space size by incorporating dynamic decision 

variable options (Paper 1). 

Objective 1.2: To improve the computational efficiency of the generic 

simulation-optimization framework in Objective 1.1 by incorporating 

domain knowledge through the addition of visibility factors (VFs) (Paper 2). 

Objective 2: To develop a generic simulation-optimization framework for 

irrigation water and fertilizer application scheduling that reduces search 

space size by adjusting dynamic decision variable options (Paper 3). 
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Objective 3: To evaluate the utility of the frameworks in Objectives 1 and 2 

(Papers 1, 2 and 3). 

Objective 3.1: To apply the framework in Objective 1 to a benchmark 

case study from the literature, using simple crop production functions 

(Papers 1 and 2). 

Objective 3.2: To apply the framework in Objective 1 to a real-world 

case study in Loxton, South Australia, near the Murray River, using simple 

crop production functions (Paper 2). 

Objective 3.3: To apply the framework in Objective 2 to a case study in 

Colorado State, USA, using a detailed, process-based crop-growth model 

(Paper 3). 

1.2 Thesis overview  

This thesis is organized into five chapters, where the main contributions 

are presented in Chapters 2 to 4. Each of these chapters is presented in the 

form of a technical paper.  The first of these (Chapter 2) has been published 

in Environmental Modelling & Software and the second (Chapter 3) has 

been accepted for publication in the Journal of Water Resources Planning 

and Management. 

Chapter 2 introduces a simulation-optimisation framework for optimal 

crop and water allocation at the regional scale (Objective 1), where the 

problem is represented in the form of a decision-tree graph and ACO is used 

as the optimization engine. As part of the framework, the search space size 

is dynamically reduced by using dynamic decision variable option (DDVO) 

adjustment during stepwise solution construction (Objective 1.1). The 

options that violate any constraint are not available to be selected as a trial 

crop and a water allocation plan is constructed. The utility of the framework 

is then illustrated (Objective 3) by comparing it to linear programming (LP) 

and a “standard” ACO approach using static decision variable options 

(SDVO) using a benchmark case study from the literature (Objective 3.1). 
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Chapter 3 improves the computational efficiency of the ACO 

formulation for optimal crop selection and irrigation water allocation in the 

framework introduced in Chapter 2 (Objective 1). It does this by 

incorporating domain knowledge through VFs to bias the search towards 

selecting crops that maximize net returns and water allocations that result in 

the largest net return for the selected crop, given a fixed total volume of 

water available (Objective 1.2). The benefits of this improved formulation 

are tested on the benchmark case study in the first paper (Objective 3.1) and 

a real-world case study based on an irrigation district located in Loxton, 

South Australia near the River Murray (Objective 3.2). 

Chapter 4 introduces a simulation-optimisation framework for detailed 

irrigation water and fertilizer application scheduling at the farm scale 

(Objective 2), which represents the problem in the form of a decision-tree 

graph, uses ACO as the optimization engine and is linked with a complex, 

process-based crop growth model. To demonstrate the utility of the 

framework, it is applied to a realistic case study which uses the Root Zone 

Water Quality Model 2 (RZWQM2) for corn production under center pivot 

irrigation in Colorado, USA (Objective 3.3).  

The linking of each of the papers to the objectives is shown in Table 1-1. 

The scale, optimization problem addressed, ACO algorithmic improvements 

introduced, case studies considered and crop growth models used in each of 

the papers are summarised in Table 1-2. Although the manuscripts have 

been reformatted in accordance with University guidelines, and sections 

renumbered for inclusion within this thesis, the material within these papers 

is otherwise presented herein as published. A copy of the first paper “as 

published” is provided in Appendix A. 

Conclusions of the research within this thesis are provided in Chapter 

5, which summarises: 1) the research contributions, 2) limitations and 3) 

future directions for further research. 
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Table 1-1. Linking of each of the papers to the objectives 

 Objectives Paper 1 Paper 2 Paper 3 

1 To develop a generic simulation-optimization framework for optimal crop and water allocation X X  

1.1 To formulate a generic simulation-optimization framework that reduces search space size by 
incorporating dynamic decision variable options. 

X   

1.2 To improve the computational efficiency of the generic simulation-optimization framework in Objective 
1.1 by incorporating domain knowledge through the addition of VFs. 

 X  

2 To develop a generic simulation-optimization framework for irrigation water and fertilizer application 
scheduling that reduces search space size by adjusting dynamic decision variable options. 

  X 

3 To evaluate the utility of the frameworks in Objectives 1 and 2. X X X 

3.1 To apply the framework in Objective 1 to a benchmark case study from the literature, using simple crop 
production functions. 

X X  

3.2 To apply the framework in Objective 1 to a real-world case study in Loxton, South Australia, near the 
Murray River, using simple crop production functions. 

 X  

3.3 To apply the framework in Objective 2 to a case study in Colorado State, USA, using a detailed, 
process-based crop-growth model. 

  X 
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Table 1-2. Classification of the papers by the different features addressed 

  Paper 1 Paper 2 Paper 3 

Scale Regional X X  

Farm   X 
Optimization Problem Crop allocation X X  

Water allocation X X  
Irrigation water scheduling   X 

Fertilizer application scheduling   X 
ACO improvements Dynamic decision variable option adjustment X X X 

Visibility factors  X  
Case Study Benchmark case study introduced by Kumar and Khepar (1980) X X  

Loxton, SA near the Murray River  X  
Colorado, USA   X 

Crop Growth Model Crop production functions X X  
Process-based model   X 
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Abstract 

A general optimization framework is introduced with the overall goal of 

reducing search space size and increasing the computational efficiency of 

evolutionary algorithm application to optimal crop and water allocation. 

The framework achieves this goal by representing the problem in the form 

of a decision tree, including dynamic decision variable option (DDVO) 

adjustment during the optimization process and using ant colony 

optimization (ACO) as the optimization engine. A case study from literature 

is considered to evaluate the utility of the framework. The results indicate 

that the proposed ACO-DDVO approach is able to find better solutions than 

those previously identified using linear programming. Furthermore, ACO-

DDVO consistently outperforms an ACO algorithm using static decision 

variable options and penalty functions in terms of solution quality and 

computational efficiency. The considerable reduction in computational 

effort achieved by ACO-DDVO should be a major advantage in the 

optimization of real-world problems using complex crop simulation models. 
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2.1 Introduction 

Evolutionary algorithms (EAs) have been used extensively and have 

contributed significantly to the optimization of water resources problems in 

recent decades (Nicklow et al., 2010; Maier et al., 2014). However, the 

application of EAs to real-world problems presents a number of challenges 

(Maier et al., 2014). One of these is the generally large size of the search 

space, which may limit the ability to find globally optimal or near-globally 

optimal solutions in an acceptable time period (Maier et al., 2014). In order 

to address this problem, different methods to reduce the size of the search 

space have been proposed in various application areas to either enable near-

globally optimal solutions to be found within a reasonable timeframe or to 

enable the best possible solution to be found for a given computational 

budget. Application areas in which search space reduction techniques have 

been applied in the field of water resources include the optimal design of 

water distribution systems (WDSs) (Gupta et al., 1999; Wu and Simpson, 

2001; Kadu et al., 2008; Zheng et al., 2011, 2014), the optimal design of 

stormwater networks (Afshar, 2006, 2007), the optimal design of sewer 

networks (Afshar, 2012), the calibration of hydrologic models (Ndiritu and 

Daniell, 2001), the optimization of maintenance scheduling for hydropower 

stations (Foong et al., 2008a; Foong et al., 2008b) and the optimal 

scheduling of environmental flow releases in rivers (Szemis et al., 2012, 

2014). Some of the methods used for achieving reduction in search space 

size include: 

1. Use of domain knowledge. Domain knowledge of the problem under 

consideration has been widely applied for search space size reduction in 

specific application areas. For example, in the design of water 

distribution systems, the known physical relationships between pipe 

diameters, pipe length, pipe flows, and pressure head at nodes has been 

considered to reduce the number of diameter options available for 

specific pipes, thereby reducing the size of the search space significantly 

(Gupta et al., 1999; Kadu et al., 2008; Zheng et al., 2011; Creaco and 

Franchini, 2012; Zheng et al., 2014; Zheng et al., 2015). This enables the 

search process to concentrate on promising regions of the feasible search 
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space. Other examples of this approach include the design of watershed-

based stormwater management plans (Chichakly et al., 2013), optimal 

locations and settings of valves in water distribution networks (Creaco 

and Pezzinga, 2015), optimization of multi-reservoir systems (Li et al., 

2015), and model calibration (Dumedah, 2015).  

2. Level of discretization. When using discrete EAs, the level of 

discretization of the search space, which refers to the resolution with 

which continuous variables are converted into discrete ones, has also 

been used in order to reduce the size of the search space. As part of this 

approach, a coarse discretization of the search space is used during the 

initial stages of the search, followed by use of a finer discretization in 

promising regions of the search space at later stages of the search. 

Approaches based on this principle have been used for model calibration 

(Ndiritu and Daniell, 2001), the design of WDSs (Wu and Simpson, 

2001), and the design of sewer networks (Afshar, 2012). 

3. Dynamic decision trees. When ant colony optimization algorithms 

(ACOAs) are used as the optimization engine, solutions are generated by 

moving along a decision tree in a stepwise fashion. These decision trees 

can be adjusted during the solution generation process by reducing the 

choices that are available at a particular point in the decision tree as a 

function of choices made at preceding decision points (with the aid of 

domain knowledge of the problem under consideration). This approach 

has been applied successfully to scheduling problems in power plant 

maintenance (Foong et al., 2008a; Foong et al., 2008b), environmental 

flow management (Szemis et al., 2012, 2014), the design of stormwater 

systems (Afshar, 2007) and the optimal operation of single- or multi-

reservoir systems (Afshar and Moeini, 2008; Moeini and Afshar, 2011; 

Moeini and Afshar, 2013). 

One application area where search space reduction should be beneficial 

is optimal crop and water allocation. Here the objective is to allocate land 

and water resources for irrigation management to achieve maximum 

economic return, subject to constraints on area and water allocations (Singh, 
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2012, 2014). One reason for this is that the search spaces of realistic crop 

and water allocation problems are very large (Loucks and Van Beek, 2005). 

For example, in a study by Kuo et al. (2000) on optimal irrigation planning 

for seven crops in Utah, USA, the search space size was 5.6 x 1014 and in a 

study by Rubino et al. (2013) on the optimal allocation of irrigation water 

and land for nine crops in Southern Italy, the search space size was 3.2 x 

1032 and 2.2 x 1043 for fixed and variable crop areas, respectively.  

Another reason for considering search space size reduction for the 

optimal crop and water allocation problem is that the computational effort 

associated with realistic long-term simulation of crop growth can be 

significant (e.g., on the order of several minutes per evaluation). While 

simple crop models (e.g., crop production functions or relative yield – water 

stress relationships) have been widely used in optimization studies due to 

their computational efficiency (Singh, 2012), these models typically do not 

provide a realistic representation of soil moisture - climate interactions and 

the underlying physical processes of crop water requirements, crop growth, 

and agricultural management strategies (e.g., fertilizer or pesticide 

application). In order to achieve this, more complex simulation models, such 

as ORYZA2000 (Bouman et al., 2001), RZQWM2 (Bartling et al., 2012), 

AquaCrop (Vanuytrecht et al., 2014), EPIC (Zhang et al., 2015) and STICS 

(Coucheney et al., 2015) are typically employed. However, due to their 

relatively long runtimes, these models are normally used to simulate a small 

number of management strategy combinations (Camp et al., 1997; Rinaldi, 

2001; Arora, 2006; DeJonge et al., 2012; Ma et al., 2012b), rather than 

being used in combination with EAs to identify (near) globally optimal 

solutions. Given the large search spaces of optimal crop and water 

allocation problems, there is likely to be significant benefit in applying 

search-space size reduction methods in conjunction with hybrid simulation-

optimization approaches to this problem (Lehmann and Finger, 2014). 

Despite the potential advantages of search space size reduction, to the 

authors’ knowledge this issue has not been addressed thus far in previous 

applications of EAs to optimal crop and water allocation problems. These 
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applications include GAs (Nixon et al., 2001; Ortega Álvarez et al., 2004; 

Kumar et al., 2006; Azamathulla et al., 2008; Soundharajan and Sudheer, 

2009; Han et al., 2011; Fallah-Mehdipour et al., 2013; Fowler et al., 2015), 

particle swarm optimization (PSO) algorithms (Reddy and Kumar, 2007; 

Noory et al., 2012; Fallah-Mehdipour et al., 2013), and shuffled frog 

leaping (SFL) algorithms (Fallah-Mehdipour et al., 2013). In order to 

address the absence of EA application to search space size reduction for the 

optimal crop and water allocation problem outlined above, the objectives of 

this paper are: 

1. To develop a general framework for reducing the size of the search space 

for the optimal crop and water allocation problem. The framework makes 

use of dynamic decision trees and ant colony optimization (ACO) as the 

optimization engine, as this approach has been used successfully for 

search space size reduction in other problem domains (Afshar, 2007; 

Foong et al., 2008a; Foong et al., 2008b; Szemis et al., 2012, 2014). 

2. To evaluate the utility of the framework on a crop and water allocation 

problem from the literature in order to validate the results against a 

known benchmark. It should be noted that although the search space of 

this benchmark problem is not overly large and does not require running 

a computationally intensive simulation model, it does require the 

development of a generic formulation that is able to consider multiple 

growing seasons, constraints on the maximum allowable areas for 

individual seasons, different areas for individual crops, and dissimilar 

levels of water availability. Consequently, the results of this case study 

provide a proof-of-concept for the application of the proposed framework 

to more complex problems involving larger search spaces and 

computationally expensive simulation models. 

The remainder of this paper is organized as follows. A brief introduction 

to ACO is given in Section 2.2. The generic framework for optimal crop and 

water allocation that caters to search space size reduction is introduced in 

Section 2.3, followed by details of the case study and the methodology for 

testing the proposed framework on the case study in Section 2.4. The results 
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are presented and discussed in Section 2.5, while conclusions and 

recommendations are given in Section 2.6. 

2.2 Ant Colony Optimization (ACO) 

ACO is a metaheuristic optimization approach first proposed by Dorigo 

et al. (1996) to solve discrete combinatorial optimization problems, such as 

the traveling salesman problem. As ACO has been used in a number of 

previous studies (Maier et al., 2003; Zecchin et al., 2005; Zecchin et al., 

2006; Afshar, 2007; Foong et al., 2008a; Szemis et al., 2012), only a brief 

outline is given here. For a more extensive treatment of ACO, readers are 

referred to Dorigo and Di Caro (1999). ACO is inspired by the behavior of 

ants when searching for food, in that ants can use pheromone trails to 

identify the shortest path from their nest to a food source. In ACO, a colony 

(i.e., population) of artificial ants is used to imitate the foraging behavior of 

real ants for finding the best solution to a range of optimization problems, 

where the objective function values are analogous to path length. As part of 

ACO, the decision space is represented by a graph structure that represents 

the decision variables or decision paths of the optimization problem. This 

graph includes decision points connected by edges that represent options. 

Artificial ants are then used to find solutions in a stepwise fashion by 

moving along the graph from one decision point to the next.  

The probability of selecting an edge at a particular decision point 

depends on the amount of pheromone that is on each edge, with edges 

containing greater amounts of pheromone having a higher probability of 

being selected. While the pheromone levels on the edges are generally 

allocated randomly at the beginning of the optimization process, they are 

updated from one iteration to the next based on solution quality. An iteration 

consists of the generation of a complete solution, which is then used to 

calculate objective function values. Next, larger amounts of pheromone are 

added to edges that result in better objective function values. Consequently, 

an edge that results in better overall solutions has a greater chance of being 

selected in the next iteration. In this way, good solution components receive 

positive reinforcement. In contrast, edges that result in poor objective 
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function values receive little additional pheromone, thereby decreasing their 

chances of being selected in subsequent iterations. In fact, the pheromone on 

these edges is likely to decrease over time as a result of pheromone 

evaporation. In addition, artificial ants can be given visibility, giving locally 

optimal solutions a higher probability of being selected at each decision 

point. This is achieved by weighting these two mechanisms via pheromone 

and visibility importance factors, respectively. The basic steps of ACO can 

be summarized as follows: 

1. Define the number of ants, number of iterations, initial pheromone (τo) 

on each edge, pheromone importance factor (α), visibility importance 

factor (β), pheromone persistence (ρ) to enable pheromone evaporation, 

and pheromone reward factor (q) to calculate how much pheromone to 

add to each edge after each iteration. 

2. Calculate the selection probability p for each edge (path) of the decision 

tree, as illustrated here for the edge joining decision points A and B: 

p୅୆ = [τఽా(୲)]αൣఽా൧
β

∑ [τఽా(୲)]αൣఽా൧
βొఽ

ాసభ
                         (2.1) 

where t is the index of iteration, τAB(t) is the amount of pheromone on edge 

(A, B) at iteration t, AB is the visibility of edge (A, B), and NA is the set of 

all decision points neighboring decision point A. 

3. After all ants have traversed the decision tree and the objective function 

value corresponding to the solution generated by each ant has been 

calculated, update pheromone on all edges, as illustrated here for edge 

(A, B):  

τ୅୆(t + 1) = ρτ୅୆(t) + τ୅୆                        (2.2) 

where τAB is the pheromone addition for edge (A, B). 

It should be noted that there are different ways in which pheromone can 

be added to the edges, depending on which ACO algorithm is used. Any of 

these approaches can be applied to the proposed framework, as the proposed 
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framework is primarily concerned with dynamically adjusting the structure 

of the decision-tree graph and not the way optimal solutions can be found on 

this graph, which can be done with a variety of algorithms. The only 

difference between the ACO algorithms is the way the pheromone update in 

Equation 2.2 is performed. The pheromone can be updated on: 1) all of the 

selected paths, as in the ant system (AS) (Dorigo et al., 1996); 2) only the 

path of the global-best solution from the entire colony after each iteration, as 

in the elitist ant system (ASelite) (Bullnheimer et al., 1997); 3) the paths 

from the top ranked solutions, which are weighted according to rank (i.e., 

higher ranked solutions have a larger influence in the pheromone updating 

process), as in the elitist-rank ant system (ASrank) (Bullnheimer et al., 

1997); or 4) the path of the iteration-best solutions or the global-best 

solutions after a given number of iterations, as in the Max-Min Ant System 

(MMAS) (Stützle and Hoos, 2000). In this study, the MMAS algorithm is 

used as it has been shown to outperform the alternative ACO variants in a 

number of water resources case studies (e.g., Zecchin et al. (2006); Zecchin 

et al. (2007); Zecchin et al. (2012)). As part of this algorithm, pheromone 

addition is performed on each edge, as shown for edge AB for illustration 

purposes: 

߬஺஻(ݐ) = ߬஺஻௜௕ (ݐ) + ߬஺஻
௚௕(ݐ)                       (2.3) 

where ߬஺஻௜௕ and ߬஺஻ (ݐ)
௚௕(ݐ) are the pheromone additions for the iteration-

best solution (sib) and the global-best solution (sgb), respectively. While sib is 

used to update the pheromone on edge (A, B) after each iteration, sgb is 

applied with the frequency fglobal (i.e., ߬஺஻
௚௕(ݐ) is calculated after each fglobal 

iterations). ߬஺஻௜௕ and ߬஺஻ (ݐ)
௚௕(ݐ) are given by:  

߬஺஻௜௕ (ݐ) = ቊ
௤

௙൫௦೔್(௧)൯
(ܤ,ܣ)	݂݅			 ∈ (ݐ)௜௕ݏ

݁ݏ݅ݓݎℎ݁ݐ݋															0
                                 (2.4) 

߬஺஻
௚௕(ݐ) = ቊ

௤
௙൫௦೒್(௧)൯

(ܤ,ܣ)	݂݅			 ∈ 	݀݋݉	ݐ		݀݊ܽ	(ݐ)௚௕ݏ ௚݂௟௢௕௔௟ = 0

																															݁ݏ݅ݓݎℎ݁ݐ݋																														0
         (2.5) 
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where ݂൫ݏ௜௕(ݐ)൯ and ݂(ݏ௚௕(ݐ)) are objective function values of sib and sgb 

at iteration t, respectively; and q is the pheromone reward factor. 

In MMAS, the pheromone on each edge is limited to lie within a given 

range to avoid search stagnation, i.e., ߬௠௜௡(ݐ) ≤ ߬஺஻(ݐ) ≤ ߬௠௔௫(ݐ). The 

equations for ߬௠௜௡(ݐ) and ߬௠௔௫(ݐ) are given as follows: 

߬௠௔௫(ݐ) = ቀ ଵ
ଵିఘ

ቁ ଵ
௙൫௦೒್(௧ିଵ)൯

             (2.6) 

߬௠௜௡(ݐ) = ఛ೘ೌೣ(௧)൫ଵି ඥ௣್೐ೞ೟೙ ൯
(௔௩௚ିଵ) ඥ௣್೐ೞ೟೙               (2.7) 

where n is the number of decision points, avg is the average number of 

edges at each decision point, and pbest is the probability of constructing the 

global best solution at iteration t, where the edges chosen have pheromone 

trail values of ߬௠௔௫ and the pheromone values of other edges are ߬௠௜௡. 

Additionally, MMAS also uses a pheromone trail smoothing (PTS) 

mechanism that reduces the difference between edges in terms of 

pheromone intensities, and thus, strengthens exploration: 

߬஺஻∗ (ݐ) = ߬஺஻(ݐ) + ൫߬௠௔௫(ݐ)− ߬஺஻(ݐ)൯            (2.8) 

where  is the PTS coefficient (0 ≤  ≤ 1).  

As is the case with most metaheuristic optimization algorithms, the 

parameters controlling algorithm searching behavior are generally 

determined with the aid of sensitivity analysis (e.g., Simpson et al. (2001); 

Foong et al. (2008b); Szemis et al. (2012)). Although algorithm 

performance has been found to be insensitive to certain parameters (e.g., 

Foong et al. (2005)), and for some application areas guidelines have been 

developed for the selection of appropriate parameters based on problem 

characteristics and the results of large-scale sensitivity analyses (e.g., 

Zecchin et al. (2005)), parameter sensitivity is likely to be case study 

dependent. 

Over the last decade, ACO has been applied extensively to a range of 

water resources problems, including reservoir operation and surface water 
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management, water distribution system design and operation, urban 

drainage system and sewer system design, groundwater management and 

environmental and catchment management, as detailed in a recent review by 

Afshar et al. (2015). While ACO shares the advantages of other 

evolutionary algorithms and metaheuristics of being easy to understand, 

being able to be linked with existing simulation models, being able to solve 

problems with difficult mathematical properties, being able to be applied to 

a wide variety of problem contexts and being able to suggest a number of 

near-optimal solutions for consideration by decision-makers (Maier et al., 

2014; Maier et al., 2015), it is particularly suited to problems where there is 

dependence between decision variables, such that the selected value of 

particular decision variables restricts the available options for other decision 

variables, as is often the case in scheduling and allocation problems (e.g., 

Afshar (2007); Afshar and Moeini (2008); Foong et al. (2008a); Foong et al. 

(2008b); Szemis et al., (2012, 2014); Szemis et al. (2013)). This is because 

the problem to be optimized is represented in the form of a decision-tree, as 

mentioned above, enabling solutions to be generated in a stepwise fashion 

and decision variable options to be adjusted based on selected values at 

previous nodes in the decision tree. In other words, as part of the process of 

generating an entire solution, the available options at nodes in the tree can 

be constrained based on the values of partial solutions generated at previous 

nodes. 

2.3 Proposed framework for optimal crop and water 
allocation 

2.3.1 Overview 

A simulation-optimization framework for optimal crop and water 

allocation is developed that is based on: 1) a graph structure to formulate the 

problem, 2) a method that adjusts decision variable options dynamically 

during solution construction to ensure only feasible solutions are obtained as 

part of the stepwise solution generation process in order to dynamically 

reduce the size of the search space, and 3) use of ACO as the optimization 

engine. The framework is aimed at identifying the seasonal crop and water 
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allocations that maximize economic benefit at district or regional level, 

given restrictions on the volume of water that is available for irrigation 

purposes. Use of the framework is expected to result in a significant 

reduction in the size of the search space for optimal crop and water 

allocation problems, which is likely to reduce the number of iterations 

required to identify optimal or near globally optimal solutions. 

 

Figure 2-1. Overview of the proposed simulation-optimization 
framework for optimal crop and water allocation. 

An overview of the framework is given in Figure 2-1. As can be seen, 

the first step is problem formulation, where the objective to be optimized 

(e.g., economic return) is defined, the constraints (e.g., maximum land area, 

annual water allocation, etc.) are specified, and the decision variables (e.g., 

crop type, crop area, magnitude of water application to different crops, etc.) 



 

24 

and decision variable options (e.g., available crops to select, options of 

watering levels, etc.) are stipulated. Herein, the level of discretization of the 

total area is also identified, so that the values of the sub-areas are able to 

reflect the characteristics of the problem considered. 

After problem formulation, the problem is represented in the form of a 

decision-tree graph. This graph includes a set of nodes (where values are 

selected for the decision variables) and edges (which represent the decision 

variable options). A crop and water allocation plan is constructed in a 

stepwise fashion by moving along the graph from one node to the next. In 

the next step, the method for handling constraints needs to be specified. As 

part of the proposed framework, it is suggested to dynamically adjust 

decision variable options during the construction of a trial crop and water 

allocation plan in order to ensure constraints are not violated. This is 

achieved by only making edges available that ensure that all constraints are 

satisfied at each of the decision points. However, as this is a function of 

choices made at previous decision points in the graph, the edges that are 

available have to be updated dynamically each time a solution is 

constructed. This approach is in contrast to the approach traditionally used 

for dealing with constraints in ACO and other evolutionary algorithms, 

which is to allow the full search space to be explored and to penalize 

infeasible solutions. However, the latter approach is likely to be more 

computationally expensive, as the size of the search space is much larger. 

Consequently, it is expected that the proposed approach of dynamically 

adjusting decision variable options will increase computational efficiency as 

this approach reduces the size of the search space and ensures that only 

feasible solutions can be generated during the solution construction process. 

As part of the proposed framework, ACO algorithms are used as the 

optimization engine because they are well-suited to problems that are 

represented by a graph structure and include sequential decision-making 

(Szemis et al., 2012), as is the case here. In addition, they have been shown 

to be able to accommodate the adjustment of dynamic decision variable 

options by handling constraints in other problem domains (Foong et al., 
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2008a; Szemis et al., 2012). As part of the optimization process, the 

evaluation of the objective function is supported by crop models. In this 

way, improved solutions are generated in an iterative fashion until certain 

stopping criteria are met, resulting in optimal or near-optimal crop and 

water allocations. Further details of the problem formulation, graph 

structure representation, method for handling constraints, crop model 

options, and ACO process are presented in subsequent sections. 

2.3.2 Problem formulation 

The process of problem formulation includes the following steps: 

1. Identify the number of the seasons (e.g., winter, monsoon, etc.), the 

seasonal (e.g., wheat) and annual (e.g., sugarcane) crops, the total 

cultivated area and the volume of available water.  

2. Identify economic data in the study region, including crop price, 

production cost, and water price.  

3. Specify decision variables (e.g., crop type, crop area, and irrigated 

water).  

4. Specify decision variable options. For crop type, a list of potential 

options is given by the crops identified in step 1 (e.g., wheat, sugarcane, 

cotton, etc.). For continuous variables (i.e., crop area and irrigated 

water), the specification of the options includes selection of the range 

and level of discretization for each decision variable. The level of 

discretization (e.g., sub-area or volume of irrigated water for each crop) 

can significantly impact on either the quality of solutions found or the 

search space size (due to the exponential growth of this size). A 

discretization that is too coarse could exclude the true global optimal 

solution, while a fine discretization could result in a significant increase 

in computational time. While the depth of irrigated water can be 

discretized depending on the type and capacity of irrigation system, the 

acreage of each sub-area can be set equal to a unit area (e.g., 1 ha) or be 

the same as that of a standard field in the studied region. The 
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discretization of area can also be implemented depending on soil type or 

land-use policy. Each sub-area should reflect different conditions (e.g., 

soil type, evapotranspiration, and rainfall in season, etc.), and thus the 

discretization process will support the planning of the cropping patterns 

more realistically. Consequently, instead of selecting the area and the 

depth of irrigated water for each crop, as part of the proposed 

framework, the total area of the studied region is discretized into a 

number of sub-areas with each sub-area requiring decisions on which 

crop type should be planted and how much water should be supplied to 

the selected crop. 

5. Specify the objective function and constraints. The objective function is 

to optimize the economic benefit and has the following form: 

F = Max ቊ∑ ∑ ∑ ቆA୧୨୩ × ቈ
Y୧୨୩൫W୧୨୩൯ × P୧୨ −

൫C୊୍ଡ଼୧୨ + W୧୨୩ × C୛൯
቉ቇ୒౏ఽ

୩ୀଵ
୒౟ౙ
୨ୀଵ

୒౩౛౗
୧ୀଵ ቋ          (2.9) 

where F is the total net annual return (currency unit, e.g., $ year-1), Nsea is 

the number of seasons in a year (an annual crop is considered as the same 

crop for all seasons in a year), Nic is the number of crops for season i (i = 1, 

2, …, Nsea; for annual crop, i = a), NSA is the number of sub-areas, Aijk is the 

area of crop j in season i in sub-area k (ha), Wijk is the depth of water 

supplied to crop j in season i in sub-area k (mm), Yijk is the yield of crop j in 

season i in sub-area k (depending on Wijk) (kg ha-1), Pij is the price of crop j 

in season i ($ kg-1), CFIXij is the fixed annual cost of crop j in season i ($ ha-1 

year-1), and CW is the unit cost of irrigated water ($ mm-1 ha-1).  

As noted in Section 2.3.1 the objective is to maximize the total net 

annual return at the district or regional level rather than the net return to 

individual irrigators. Hence, the framework represents the perspective of an 

irrigation authority or farmer co-operative. 

The objective function is maximized subject to limits on available 

resources, such as water and area of land. Consequently, the following 

constraints will be considered in order to provide a flexible and generic 

formulation: 
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 Constraints for maximum allowable area of each season Ai: 

∑ ∑ A୧୨୩
୒౏ఽ
୩ୀଵ

୒౟ౙ
୨	ୀ	ଵ ≤ A୧            (2.10) 

 Constraints for maximum allowable crop area AijMax for each season: 

∑ A୧୨୩
୒౏ఽ
୩ୀଵ ≤ A୧୨୑ୟ୶              (2.11) 

 Constraints for minimum allowable crop area AijMin for each season: 

∑ A୧୨୩
୒౏ఽ
୩ୀଵ ≥ A୧୨୑୧୬            (2.12) 

 Constraints for available volume of irrigation water W: 

∑ ∑ ∑ W୧୨୩ × A୧୨୩
୒౏ఽ
୩ୀଵ

୒౟ౙ
୨ୀଵ

୒౩౛౗
୧ୀଵ ≤ W          (2.13) 

2.3.3 Graph structure problem representation 

As discussed in Section 2.3.2, a crop and water allocation plan can be 

established by determining the crop type and the depth of irrigated water for 

the selected crop in each sub-area. Thus, the full decision-tree graph for the 

optimal crop and water allocation problem is as shown in Figure 2-2. 

The decision tree includes a set of decision points corresponding to the 

number of discrete sub-areas in the irrigated/studied area. At each decision 

point, a subset of decision points is used to consider each season in turn in 

order to decide which crop will be chosen to be planted at this sub-area in 

season i (i.e., Ci1, Ci2, …, CiNic), and then what depth of water (i.e., W1, W2, 

…, WNw) will be supplied to the selected crop. If the selected crop at a 

decision point is an annual crop, then that decision point only considers the 

depth of irrigated water for that crop and skips the other seasons. A 

complete crop and water allocation plan is developed once a decision has 

been made sequentially at each decision point. 
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Figure 2-2. Proposed decision-tree graph for the optimal crop and 
water allocation problem. 

It should be noted that the sequential solution generation steps are 

internal to the ACO process and do not reflect the sequence with which 

actual decisions are made, as the output of every ACO run is a complete 

annual crop and water allocation plan. While the order of solutions in the 

decision tree is likely to have an impact on the solutions obtained in a 

particular iteration, it would be expected that as the number of iterations 

increases, this effect would disappear as a result of the identification of 

globally optimal solutions via pheromone trail adjustment. It should also be 

noted that while the current formulation is aimed at identifying seasonal 

crop and water allocations, it could be extended to cater to more frequent 

(e.g., monthly, weekly, or daily) water allocations for the selected crops by 

adding the required number of decision points for water allocation. For 

example, if the frequency of water allocation decisions was changed from 

seasonally to monthly, there would be six decision points related to water 

allocation for each crop (one for each month), rather than a single seasonal 

decision point as shown in Figure 2-2. 
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2.3.4 Method for handling constraints 

The available decision variable options are adjusted dynamically by 

checking all constraints (Equations 2.10-2.13) at each decision point and 

removing any options (i.e., crops or irrigated water) that result in the 

violation of a constraint based on paths selected at previous decision points 

(i.e., the number of available decision variable options is dynamically 

adjusted during the stepwise solution construction process). As mentioned 

previously, the purpose of this process is to dynamically reduce the size of 

the search space during the construction of trial solutions by each ant in 

each iteration, which is designed to make it easier and more computationally 

feasible to identify optimal or near-optimal solutions. 

Details of how the decision variable options that result in constraint 

violation are identified for each of the constraints are given below. It should 

be noted that the four constraints in Equations 2.10-2.13 are considered for 

the choice of crops at the beginning of each season in a sub-area during the 

construction of a trial solution. However, to select the depth of irrigated 

water for the crop selected in the previous decision, only the constraint for 

available volume of irrigated water is checked. 

 Key steps for handling constraints for maximum allowable area for each 

season (Equation 2.10): 

1. Keep track of the total area allocated to each season as the decision tree 

is traversed from sub-area to sub-area. 

2. Add the area of the next sub-area in the decision tree to the already 

allocated area for each season. 

3. Omit all crops in a particular season and all annual crops from the 

choice of crops for this and subsequent sub-areas if the resulting area 

exceeds the maximum allowable area for this season. 

 Key steps for handling constraints for maximum allowable crop area 

(Equation 2.11): 



 

30 

1. Keep track of the total area allocated to each crop type as the decision 

tree is traversed from sub-area to sub-area. 

2. Add the area of the next sub-area in the decision tree to the already 

allocated area for each crop. 

3. Omit a particular crop from the choice of crops for this and subsequent 

sub-areas if the resulting area exceeds the maximum allowable area for 

this crop. 

 Key steps for handling constraints for minimum allowable crop area 

(Equation 2.12): 

1. Keep track of the total area allocated to each crop type as the decision 

tree is traversed from sub-area to sub-area. 

2. Sum the sub-areas in the decision tree remaining after this current 

decision. 

3. Restrict the crop choices at this and subsequent decisions (i.e. 

subsequent sub-areas) to the ones that have minimum area constraints 

that are yet to be satisfied if the total area remaining after the current 

decision is less than the area that needs to be allocated in order to satisfy 

the minimum area constraints. 

 Constraints for maximum available volume of irrigated water (Equation 

2.13): 

The key steps for handling this constraint for the choice of crops include: 

1. Keep track of the total volume of irrigation water allocated to all crops 

as the decision tree is traversed from sub-area to sub-area. 

2. Sum the volume of irrigation water for each crop in the decision tree 

remaining after this current decision. 

3. Restrict the crop choices at this and subsequent decisions (i.e. 

subsequent sub-areas) to the ones that have minimum area constraints 



 

31 

that are yet to be satisfied if the total volume of water remaining after 

the current decision is less than the volume of water that needs to be 

supplied in order to satisfy the minimum area constraints. 

The key steps for handling this constraint for the choice of the depth of 

irrigated water include: 

1. Keep track of the total volume of irrigation water allocated to crops as 

the decision tree is traversed from sub-area to sub-area. 

2. Calculate the available volume of irrigation water for the crop selected 

in the previous decision at this current decision. 

3. Omit the choices of the depth of irrigated water for the crop selected in 

the previous decision if the volumes of irrigation water corresponding to 

these choices exceed the available volume of water in Step 2. 

2.3.5 Crop models 

In the proposed framework, a crop model coupled with the ACO model 

is employed as a tool for estimating crop yield to evaluate the utility of trial 

crop and water allocation plans. Generally, the crop model can be a 

simplified form (e.g., regression equation of crop production functions or 

relative yield – water stress relationships) which has the advantage of 

computational efficiency, or a mechanistic, process-based form which is 

able to represent the underlying physical processes affecting crop water 

requirements and crop growth in a more realistic manner.  

2.3.6 Ant colony optimization model 

The ACO model is used to identify optimal crop and water allocation 

plans by repeatedly stepping through the dynamic decision tree (see Section 

2.3.4). At the beginning of the ACO process, a trial schedule is constructed 

by each ant in the population in accordance with the process outlined in 

Section 2.2. Next, the corresponding objective function values are 

calculated with the aid of the crop model and the pheromone intensities on 
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the decision paths are updated (see Section 2.2). These steps are repeated 

until the desired stopping criteria have been met. 

2.4  Case study 

The problem of optimal cropping patterns under irrigation introduced by 

Kumar and Khepar (1980) is used as the case study for testing the utility of 

the framework introduced in Section 2.3. As discussed in Section 2.1, 

various challenges (e.g., a large search space or relatively long runtimes) 

have restricted the application of complex crop models for solving optimal 

crop and water allocation problems. Although the search space in the Kumar 

and Khepar (1980) case study is not overly large and the study uses crop 

water production functions rather than a complex crop-growth model, the 

problem has a number of useful features, including: 

1. It requires a generic formulation, including multiple seasons, multiple 

crops, and constraints on available resources (e.g., a minimum and 

maximum area of each season, each crop, and water availability), as 

mentioned in Section 2.1. 

2. Due to its relative computational efficiency, it enables extensive 

computational trials to be conducted in order to test the potential 

benefits of the proposed framework in a rigorous manner, and thus, may 

play an important role in increasing the efficacy of the optimization of 

crop and water allocation plans utilizing complex crop model 

application. Consequently, the use of crop production functions for the 

proposed framework is important for providing a proof-of-concept prior 

to its application with complex crop simulation models.  

3. As optimization results for this case study have already been published 

by others, it provides a benchmark against which the quality of the 

solutions obtained from the proposed approach can be compared.  

Details of how the proposed framework was applied to this case study are 

given in the following sub-sections. 
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2.4.1 Problem formulation 

2.4.1.1 Identification of seasons, crops, cultivated area and available 

water 

The case study problem considers two seasons (winter and monsoon) 

with seven crop options: wheat, gram, mustard, clover (referred to as 

berseem in Kumar and Khepar, 1980), sugarcane, cotton and paddy. While 

sugarcane is an annual crop, the other crops are planted in winter (e.g., 

wheat, gram, mustard and clover) or the monsoon season (e.g., cotton and 

paddy) only. The total cultivated area under consideration is 173 ha and the 

maximum volume of water available is 111,275 ha-mm. Three different 

water availability scenarios are considered for various levels of water losses 

in the main water courses and field channels, corresponding to water 

availabilities of 100%, 90% and 75%, as stipulated in Kumar and Khepar 

(1980). 

2.4.1.2 Identification of economic data 

The economic data for the problem, consisting of the price and fixed 

costs of crops for the region, are given in Table 2-1. The water price is equal 

to 0.423 Rs mm-1 ha-1. 

Table 2-1. 
Details of crops considered, crop price, fixed costs of crop and the 
seasons in which crops are planted (from Kumar and Khepar, 1980). 

Season Crop Price of crop  
(Rs qt-1) 

Fixed costs of crop  
(Rs ha-1 year-1) 

Winter 

Wheat 122.5 2669.8 
Gram 147.8 1117.0 

Mustard 341.4 1699.55 
Clover 7.0 2558.6 

Annual Sugarcane 13.5 5090.48 

Summer 
Cotton 401.7 2362.55 
Paddy 89.0 2439.68 

Notes: Rs is a formerly used symbol of the Indian Rupee; qt is a formerly 

used symbol of weight in India. 
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2.4.1.3 Specification of decision variables  

As was the case in Kumar and Khepar (1980), two separate 

formulations were considered, corresponding to different decision variables. 

In the first formulation, the only decision variable was area, i.e., how many 

hectares should be allocated to each crop in order to achieve the maximum 

net return. In the second formulation, the decision variables were area and 

the depth of irrigated water applied to each crop. In this case study, as 

discussed in Section 2.3.2, the decision variables are which crop to plant in 

each sub-area, and the depth of irrigated water supplied to the selected crop.  

2.4.1.4 Specification of decision variable options 

The number of decision points for area is generally equal to the 

maximum area (i.e., 173 ha in this case) divided by the desired level of 

discretization, which is selected to be 1 ha here. This would result in 173 

decision points, each corresponding to an area of 1 ha to which a particular 

crop is then allocated (Figure 2-2). However, in order to reduce the size of 

the search space, a novel discretization scheme was adopted. As part of this 

scheme, the number of decision points for area was reduced from 173 to 29 

with 10, 10, and 9 points corresponding to areas of 5, 6, and 7 ha, 

respectively. As a choice is made at each of these decision points as to 

which crop choice to implement, this scheme enables any area between 5 

and 173 ha (in increments of 1 ha) to be assigned to any crop, with the 

exception of areas of 8 and 9 ha. For example: 

 An area of 6 ha can be allocated to a crop by selecting this crop at 1 of 

the 10 areas corresponding to an area of 6 ha and not selecting this crop 

at any of the decision points corresponding to areas of 5 and 7 ha. 

 An area of 27 ha can be allocated to a crop by selecting this crop at 4 of 

the 10 areas corresponding to an area of 5 ha and at 1 of the 9 areas 

corresponding to an area of 7 ha and not selecting this crop at any of the 

decision points corresponding to an area of 6 ha. 
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 An area of 173 ha can be allocated to a crop by selecting this crop at all 

of the decision points (i.e., 10x5 + 10x6 + 9x7 = 173). 

Based on the above discretization scheme, for each of the 29 decision 

points for each sub-area, there are six decision variable options for crop 

choice for Season 1 (i.e. N1c = 6, see Figure 2-2), including dryland, wheat, 

gram, mustard, clover and sugarcane, and three decision variable options for 

crop choice for Season 2 (i.e. N2c = 3, see Figure 2-2), including dryland, 

cotton and paddy. 

An obvious limitation of this scheme is that it is not possible to allocate 

areas of 1-4, 8 and 9 ha to any crop. However, the potential loss of 

optimality associated with this was considered to be outweighed by the 

significant reduction in the size of the solution space.  Another potential 

shortcoming of this scheme is that it leads to a bias in the selection of crops 

during the solution generation process (i.e., intermediate areas have higher 

possibilities of being selected than extreme values). While this has the 

potential to slow down overall convergence speed, it would be expected that 

as the number of iterations increases, this bias would disappear as a result of 

the identification of globally optimal solutions via pheromone trail 

adjustment. The potential loss in computational efficiency associated with 

this effect is likely to be outweighed significantly by the gain in 

computational efficiency associated with the decrease in the size of 

solutions space when adopting this coding scheme. 

It should be noted that in general terms, a discretization scheme of 1, 2 

and 4 can be used for any problem, as the sum of combinations of these 

variables enable the generation of any integer. However, if there is a lower 

bound that is greater than one, then alternative, case study dependent 

optimization schemes can be developed in order to reduce the size of the 

search space further, as demonstrated for the scheme adopted for the case 

study considered in this paper. This is because the number of decision points 

resulting from the selected discretization scheme is a function of the sum of 

the integer values used in the discretization scheme. For example, if a 

scheme of 1, 2 and 4 had been used in this study, the required number of 
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decision points for sub-area for each integer value in the scheme would have 

been 173/(1+2+4)=24.7. In contrast, for the adopted scheme, this was only 

173/(5+6+7)=9.6 (resulting in the adopted distribution of 10, 10, 9).  

Table 2-2.  
Optimization problem details for each of the two problem formulations 
considered. 

Formulati
on 

Water 
availabil

ity 

Decision 
variables 

No. of 
decision 
points 

for area 

No. of crop 
options for 
each sub-

area 

No. of 
irrigated 

water 
options 
for each 

crop 

Size of 
total 

search 
space 

1 
100% 

Crop 
type 29 

6 for Season 
1, 3 for 

Season 2  
1 2.5 x 

1036 90% 
75% 

2 

100% Crop 
type and 
depth of 
irrigated 

water 

29 
6 for Season 

1, 3 for 
Season 2  

150 for 
each crop 

4.1 x 
10162 

90% 

75% 

Note: The size of total search space is equal to (629 x 329) for Formulation 1 

and (629 x 329 x 15029 x 15029) for Formulation 2. 

For Formulation 2, decision variable options also have to be provided 

for the depth of irrigated water for each of the selected crops at each of the 

sub-areas (see Figure 2-2). Based on the irrigation depth that corresponds to 

maximum crop yield for the crop production functions (see Section 2.4.4) 

and an assumed discretization interval of 10 mm ha-1, the number of 

irrigated water options for each crop was 150 (i.e. NW = 150, see Figure 2-

2), corresponding to choices of 0, 10, 20, …, 1490 mm ha-1. 

Details of the decision variables, decision variable options, and search 

space size for three scenarios of both formulations are given in Table 2-2.  

2.4.1.5 Objective function and constraints 

As there are only two seasons, the objective function for both 

formulations is as follows in accordance with the general formulation of the 

objective function given in Equation 2.9: 
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F = 	Max

⎩
⎪
⎨

⎪
⎧ ∑ ∑ ቆAଵ୨୩ × ቈ

Yଵ୨୩൫Wଵ୨୩൯ × Pଵ୨ −
൫C୊୍ଡ଼ଵ୨ + Wଵ୨୩ × C୛൯

቉ቇଶଽ
୩ୀଵ

଺
୨ୀଵ

+ 		∑ ∑ ቆAଶ୨୩ × ቈ
Yଶ୨୩൫Wଶ୨୩൯ × Pଶ୨ −
൫C୊୍ଡ଼ଶ୨ + Wଶ୨୩ × C୛൯

቉ቇଶଽ
୩ୀଵ

ଷ
୨ୀଵ ⎭

⎪
⎬

⎪
⎫

      (2.14) 

where the variables were defined in Section 2.3.2. 

The objective function is subject to the following constraints, which are 

in accordance with those stipulated in Kumar and Khepar (1980). 

 Constraints for maximum allowable areas in winter and monsoon 

seasons: 

The total planted area of crops in each season must be less than or equal 

to the available area for that season. As stipulated in Kumar and Khepar 

(1980), the maximum areas Ai in the winter and monsoon seasons are 173 

and 139 ha, respectively. 

∑ ∑ A୧୨୩
ଶଽ
୩ୀଵ

୒౟ౙ
୨	ୀ	ଵ ≤ A୧                                (2.15) 

 Constraints for minimum and maximum allowable crop area: 

The area of a crop must be less than or equal to its maximum area and 

greater than or equal to its minimum area. At least 10% of the total area in 

the winter season (approximately 17 ha) has to be planted in clover, and the 

maximum areas of sugarcane and mustard are equal to 10% and 15% of the 

total area in the winter season (approximately 17 ha and 26 ha, 

respectively). 

∑ A୧୨୩
ଶଽ
୩ୀଵ ≤ A୧୨୑ୟ୶                       (2.16) 

∑ A୧୨୩
ଶଽ
୩ୀଵ ≥ A୧୨୑୧୬            (2.17) 

 Constraints for available volume of irrigated water 

The total volume of irrigated water applied to the crops is less than or 

equal to the maximum volume of water available for irrigation in the studied 

region. As mentioned above, three scenarios are considered with 75%, 90% 
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and 100% of water entitlement, respectively. The corresponding volumes of 

available water for these scenarios are 844,570, 1,001,780 and 1,112,750 

m3, respectively. 

∑ ∑ Wଵ୨୩ × Aଵ୨୩
ଶଽ
୩ୀଵ

଺
୨ୀଵ + ∑ ∑ Wଶ୨୩ × Aଶ୨୩

ଶଽ
୩ୀଵ

ଷ
୨ୀଵ ≤ W       (2.18) 

2.4.2 Graph structure representation of problem 

There are separate decision-tree graphs for Formulations 1 and 2. In 

Formulation 1, the graph includes 29 decision points corresponding to 29 

sub-areas, as discussed in Section 2.4.1. At each decision point, there are 

only two choices of crops corresponding to Seasons 1 and 2 as the depth of 

irrigated water for each crop is fixed (Figure 2-3). As can be seen, there are 

six crop options (dryland, wheat, gram, mustard, clover and sugarcane) in 

Season 1 (five crops in the winter season and one annual crop) and three 

options (dryland, cotton, and paddy) in Season 2 (i.e., the monsoon season). 

It should be noted that if sugarcane is selected, there is no crop choice for 

Season 2, as sugarcane is an annual crop. A complete solution is developed 

once the crops for all sub-areas are selected. 

In similar fashion to Formulation 1, the decision-tree graph for 

Formulation 2 also includes 29 decision points for area, but each decision 

point includes two choices of crops (one for each season) and two choices of 

the depth of irrigated water (one for each crop in each season). This graph 

has the same structure as the decision-tree graph in Figure 2-2, but includes 

two seasons, six crop options for Season 1, three crop options for Season 2, 

and 150 depth of irrigated water options for each crop (see section 2.4.1.4). 

After a crop is selected for each season at each decision point, the depth of 

irrigated water for the selected crop is determined (unless the crop is 

dryland in which case there is no irrigation option). Furthermore, at each 

decision point, if an annual crop (i.e., sugarcane) is selected in Season 1, 

there is only the choice of the depth of irrigated water for the annual crop. 

Although other choices in Season 2 are skipped in this case, the available 

area and depth of water after that decision point will be reduced by annual 
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crop use. A complete crop and water allocation plan is developed once a 

decision has been made sequentially at each decision point. 

 

Figure 2-3. A single decision point for area of the decision-tree graph 
for Formulation 1. 

2.4.3 Method for handling constraints 

In addition to the proposed dynamic decision variable options (DDVO) 

adjustment approach for dealing with constraints in ACO, the traditional and 

most commonly used method via the use of penalty functions was also 

implemented. This was undertaken in order to assess the impact on search 

space size reduction of the proposed DDVO approach. Details of both 

approaches are given below. 

2.4.3.1 DDVO adjustment approach 

As part of this approach, the decision trees for Formulations 1 and 2 

described in Section 2.4.2 were dynamically adjusted based on the 

procedure outlined in Section 2.3.4. An example of how this works for the 

case study is shown in Figure 2-4.  
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Crops in 
Season 1 

Cumulative 
Area 

Already 
Allocated 

Minimum 
Allowable 
Crop Area 

Maximum 
Allowable 

Crop 
Area 

Column (1) 
+ Sub-Area 
k (i.e., 6 ha) 

Constraints 
for 

Maximum 
Allowance 
Crop Area 

Constraints for 
Minimum 

Allowance Crop 
Area 

(0) (1) (2) (3) (4) (5) (6) 
Dryland 23 0 173 29 Available Not available 
Wheat 50 0 173 56 Available Not available 
Gram 48 0 173 54 Available Not available 

Mustard 22 0 26 28 
Not 

available Not available 

Clover 5 17 173 11 Available Available 
Sugarcane 10 0 17 16 Available Not available 

Total 158  17         
Figure 2-4. Example of decision variable option adjustment process for 
one decision point for Formulation 1. 

In this example, two constraints for maximum and minimum allowable 

crop area were considered to check the available crop options at decision 

point k (which corresponds to one of the 10 sub-areas with an area of 6 ha - 

see Section 2.4.1.4 - for the sake of illustration) in Formulation 1. In the 
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figure, the cumulative area that has already been allocated to each crop is 

shown in column (1) and the resulting total area allocated to each crop if 

this particular crop is selected at this decision point is shown in column (4). 

It is clear that when the constraint for maximum allowance crop area was 

checked, mustard could be removed as an option at this decision point 

(column (5)) because its total cumulative allocated area in column (4) was 

larger than the maximum allowable area for this crop in column (3), thereby 

reducing the size of the search space (Figure 2-4). When checking the 

minimum allowable area constraint by comparing the areas in columns (2) 

and (4), and comparing the remaining area after this decision point (i.e. 173 

– 158 – 6 = 9 ha) and the remaining minimum area at this decision point 

(i.e., 17 – 5 = 12 ha), clover provided the only feasible crop choice (column 

(6)) at this decision point. This enables all other crop choices to be removed, 

thereby further reducing the size of the search space and ensuring only 

feasible solutions are generated (Figure 2-4). 

2.4.3.2 Penalty function approach 

As part of the penalty function approach to constraint handling, there is 

no dynamic adjustment of decision variable options based on solution 

feasibility. Consequently, infeasible solutions can be generated and in order 

to ensure that these solutions are eliminated in subsequent iterations, a 

penalty value (P) is added to the objective function value (F) for these 

solutions. 

Penalty function values are generally calculated based on the distance of 

an infeasible solution to the feasible region (Zecchin et al., 2005; Szemis et 

al., 2012; Zecchin et al., 2012). Therefore, the following penalty functions 

were used for the constraints in Equations 2.10-2.13: 

 Penalty for maximum allowable area of each season Ai (corresponding 

to Equation 2.10): 

P(1) = ቐ
							0																																																																if	 ∑ ∑ A୧୨୩

୒౏ఽ
୩ୀଵ

୒౟ౙ
୨	ୀ	ଵ ≤ A୧

ቀ∑ ∑ A୧୨୩
୒౏ఽ
୩ୀଵ

୒౟ౙ
୨	ୀ	ଵ − A୧ቁ× 1,000,000						if	 ∑ ∑ A୧୨୩

୒౏ఽ
୩ୀଵ

୒౟ౙ
୨	ୀ	ଵ > A୧

     (2.19) 
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 Penalty for maximum allowable crop area AijMax (corresponding to 

Equation 2.11): 

P(2) = 	 ൝
					0																																																																		if	 ∑ A୧୨୩

୒౏ఽ
୩ୀଵ ≤ A୧୨୑ୟ୶

൫∑ A୧୨୩
୒౏ఽ
୩ୀଵ − A୧୨୑ୟ୶൯ × 1,000,000										if	 ∑ A୧୨୩

୒౏ఽ
୩ୀଵ > A୧୨୑ୟ୶

       (2.20) 

 Penalty for minimum allowable crop area AijMin (corresponding to 

Equation 2.12): 

P(3) = 	 ൝
						0																																																														if	 ∑ A୧୨୩

୒౏ఽ
୩ୀଵ ≥ A୧୨୑୧୬

൫A୧୨୑୧୬ − ∑ A୧୨୩
୒౏ఽ
୩ୀଵ ൯ × 1,000,000								if	 ∑ A୧୨୩

୒౏ఽ
୩ୀଵ < A୧୨୑୧୬

      (2.21) 

 Penalty for available volume of irrigated water W (corresponding to 

Equation 2.13): 

P(4) = 	 ቐ
			0																																																								if	 ∑ ∑ ∑ W୧୨୩ × A୧୨୩ ≤

୒౏ఽ
୩ୀଵ

୒౟ౙ
୨ୀଵ

୒౩౛౗
୧ୀଵ W

ቀ∑ ∑ ∑ W୧୨୩ × A୧୨୩
୒౏ఽ
୩ୀଵ

୒౟ౙ
୨ୀଵ

୒౩౛౗
୧ୀଵ − Wቁ × 1,000,000																	vice	versa

     (2.22) 

where the variables in Equations 2.19-2.22 are defined in Section 2.3.2. 

The following equation was used as the overall fitness function to be 

minimized during the optimization process: 

Min	f(. ) = 	 ଵ,଴଴଴,଴଴଴
ଵ,଴଴଴,଴଴଴ା୊

+ Penalty          (2.23) 

where F is given in Equation 2.14; and Penalty is the sum of four penalties 

in Equations 2.19-2.22. The form of this function, including the multiplier 

of 1,000,000, was found to perform best in a number of preliminary trials. 

2.4.4 Crop models 

As mentioned previously, this case study utilizes simple crop production 

functions, rather than complex mechanistic crop models. Details of these 

functions are given in Table 2-3. The area without crops, referred to as 

Dryland, was not irrigated and has a yield equal to zero. 
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Table 2-3. 
Crop water production functions (from Kumar and Khepar, 1980). 

Crop type 

Formulation 1 

Formulation 2 Irrigation 
water W  

(mm) 

Crop  
yield Y  
(qt ha-1) 

Wheat 307 36.60 Y = 26.5235 - 0.03274 W + 1.14767 W0.5 

Gram 120 18.21 Y = 15.4759 + 0.04561 W - 0.00019 W2 
Mustard 320 18.44 Y = 14.743 - 0.011537 W + 0.41322 W0.5 
Clover 716 791.20 Y = 25.5379 - 1.0692 W + 57.2238 W0.5 
Sugarcane 542 782.50 Y = -11.5441 + 2.92837 W - 0.0027 W2 
Cotton 526 13.76 Y = 6.6038 - 0.013607 W + 0.62418 W0.5 
Paddy 1173 47.25 Y = 5.9384 - 0.035206 W + 2.412043 W0.5 

2.4.5 Computational experiments 

Two computational experiments were implemented to test the utility of 

the proposed approach to search-space size reduction. The first experiment 

used static decision variable options (SDVO) in conjunction with the 

penalty function method for handling constraints (referred to as ACO-

SDVO henceforth), and the second used the proposed ACO-DDVO 

approach for handling constraints. Each computational experiment was 

conducted for the two formulations and three water availability scenarios in 

Table 2-2, and for eight different numbers of evaluations ranging from 

1,000 to 1,000,000. A maximum number of evaluations of 1,000,000 was 

selected as this is commensurate with the values used by Wang et al. (2015) 

for problems with search spaces of similar size. The pheromone on edges 

for both ACO-SDVO and ACO-DDVO were updated using MMAS.  

In order to select the most appropriate values of the parameters that 

control ACO searching behavior, including the number of ants, alpha, beta, 

initial pheromone, pheromone persistence and pheromone reward (see 

Section 2.2), a sensitivity analysis was carried out. Details of the parameter 

values included in the sensitivity analysis, as well as the values selected 

based on the outcomes of the sensitivity analysis, are given in Table 2-4. It 

should be noted that visibility factor β was set to 0 (i.e., ignoring the 

influence of visibility on searching the locally optimal solutions), as was the 

case in other applications of MMAS to scheduling problems (Szemis et al., 
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2012). Due to the probabilistic nature of the searching behavior of the ACO 

algorithms, the positions of starting points are able to influence the 

optimization results (Szemis et al., 2012). Thus, each optimization run was 

implemented with 10 replicates, i.e., 10 randomly generated values for 

starting points in the solution space. 

Table 2-4. 
Details of the ACO parameter values considered as part of the 
sensitivity analysis and the optimal values identified and ultimately 
used in the generation of optimization results presented. 

Parameter Values for sensitivity 
analysis Values selected 

Number of ants 50; 100; 200; 500; 1,000; 
2,000; 5,000; 10,000 100; 1,000; 10,000 

Alpha (α) 0.1, 0.5, 1.0, 1.2, 1.5 1.2 

Beta (β) 0 0 

Initial pheromone (τo) 
0.5, 1.0, 2.0, 5.0, 10.0, 

20.0 10.0 

Pheromone persistence (ρ) 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 
0.7, 0.8, 0.9 0.6 

Pheromone reward (q) 0.5, 1.0, 2.0, 5.0, 10.0, 
20.0, 50.0 20.0 

 

In addition, the best final solutions of the computational experiments 

from the ACOAs were compared with those obtained by Kumar and Khepar 

(1980) using linear programming (LP). 

2.5 Results and discussion 

2.5.1 Objective function value 

The best solutions from the ACO models over the 10 runs with different 

random starting positions (i.e., ACO-SDVO and ACO-DDVO) and those 

obtained by Kumar and Khepar (1980) using LP are given in Table 2-5. As 

can be seen, ACO outperformed LP for five out of the six experiments in 

terms of net returns. For Formulation 1, there was very little difference 

between the results from the ACO models and LP, in which the percentage 

deviations for three scenarios (i.e., 100%, 90% and 75% of water 

availability) were 0.48%, -0.06%, and 0.74%, respectively. This was as 
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expected since the problem formulation is linear. For 90% water 

availability, the net return using LP was slightly better than that of the ACO 

models (741,157.3 Rs vs. 740,731.4 Rs, respectively). However, this is 

because the optimal solution obtained using LP could not be found using 

ACO because of the discretization interval used. For Formulation 2, which 

is a nonlinear problem, ACO outperformed LP by between 5.58% and 

11.23% for ACO-DDVO and by between 4.46% and 11.21% for ACO-

SDVO. This demonstrates that the use of EAs is beneficial when solving 

realistic problems, which are likely to be non-linear. This difference is likely 

to be exacerbated for more complex problems. 

Table 2-5. 
Comparison between best-found solutions using the two ACO 
formulations (ACO-SDVO and ACO_DDVO) and those obtained by 
Kumar and Khepar (1980) which are used as a benchmark. 

Formulation Water 
Availability 

Net Return (Rs) 

Benchmark ACO-SDVO ACO-DDVO 

1 

100% 785,061.1 788,851.4 (0.48%) 788,851.4 (0.48%) 

90% 741,157.3 740,731.4 (-0.06%) 740,731.4 (-0.06%) 

75% 647,627.2 652,438.3 (0.74%) 652,438.3 (0.74%) 

2 

100% 800,652.6 890,404.0(11.21%) 890,600.7 (11.23%) 

90% 799,725.6 865,441.8 (8.22%) 873,190.2 (9.19%) 

75% 792,611.2 827,998.0 (4.46%) 836,839.2 (5.58%) 

Note: The bold numbers are the best-found solution. The numbers in 

parentheses are the percentage deviations of the optimal solutions obtained 

using the ACO algorithms relative to the benchmark results obtained by 

Kumar and Khepar (1980). Positive percentages imply that the ACO models 

performed better than the Benchmark, and vice versa. 

ACO-SDVO and ACO-DDVO performed very similarly in terms of the 

best solution found. For Formulation 1, as the search space size was 

relatively small (2.5 x 1036), identical solutions were found. However, with 

the larger search space size in Formulation 2 (2.1 x 10160), ACO-DDVO 
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obtained slightly better solutions (about 1% better for the two scenarios with 

tighter constraints) and the difference between these solutions increased for 

decreases in water availability. This is most likely because it is easier to find 

better solutions in the smaller search spaces obtained by implementing the 

proposed ACO-DDVO approach. 

2.5.2 Ability to find feasible solutions 

The ability of each algorithm to find feasible solutions after a given 

number of nominal evaluations was represented by the number of times 

feasible solutions were found from different starting positions in solution 

space (as represented by the 10 repeat trials with different random number 

seeds) (see Table 2-6).  

Table 2-6.  
The number of times feasible solutions were identified out of ten trials 
with different random number seeds for different numbers of function 
evaluations, constraint handling techniques and water availability 
scenarios for the two different formulations of the optimization 
problem considered. 

Formulation Water 
Availability 

Constraint 
Handling 

Number of Nominal Evaluations (x 1,000) 
1 2 5 10 50 100 500 1,000 

1 

100% 
SDVO 5 5 5 5 10 10 10 10 
DDVO 10 10 10 10 10 10 10 10 

90% 
SDVO 2 2 2 2 4 4 4 4 
DDVO 10 10 10 10 10 10 10 10 

75% 
SDVO 0 0 1 1 4 4 4 4 
DDVO 10 10 10 10 10 10 10 10 

2 

100% 
SDVO 9 9 9 9 10 10 10 10 
DDVO 10 10 10 10 10 10 10 10 

90% 
SDVO 9 9 9 9 10 10 10 10 
DDVO 10 10 10 10 10 10 10 10 

75% 
SDVO 7 8 8 8 9 9 9 9 
DDVO 10 10 10 10 10 10 10 10 

 

As expected, ACO-DDVO always found feasible solutions from all 10 

random starting positions for all trials (Table 2-6), as the DDVO adjustment 

guarantees that none of the constraints are violated. However, this was not 

the case for ACO-SDVO. As shown in Table 2-6, the ability of ACO-SDVO 
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to identify feasible solutions was a function of the starting positions in 

solution space.  It can also be seen that the ability to identify feasible 

solutions from different starting position decreased with a reduction in the 

size of the feasible region, as is the case for Formulation 1 compared with 

Formulation 2 and when water availability is more highly constrained. The 

ability to identify feasible regions increased with the number of function 

evaluations, but this comes at the expense of computational efficiency. 

2.5.3 Convergence of solutions 

The convergence of the feasible solutions (i.e., how quickly near-

optimal solutions were found) was evaluated against the best-found solution 

(Figure 2-5). It should be noted that the average and maximum net return 

values for ACO-SDVO were only calculated for the trials that yielded 

feasible solutions from among the 10 different starting positions in solution 

space. In general, Figure 2-5 shows that convergence speed for the ACO-

DDVO solutions is clearly greater than convergence speed for the ACO-

SDVO solutions. 

In Formulation 1, the difference between the average and maximum 

results from ACO-SDVO was fairly large at 50,000 and 1,000 – 2,000 

nominal evaluations for 75% and 100% water availability, respectively. As 

only one solution was found at 5,000 – 10,000 nominal evaluations for 75% 

water availability, the average and maximum results are identical. On the 

contrary, there was no large difference between these solutions for all three 

scenarios for ACO-DDVO. This demonstrates that the quality of the 

solutions from the various random seeds for ACO-DDVO was more 

consistent than that obtained from ACO-SDVO. In addition, the speed of 

convergence of the results from ACO-SDVO at the best-found solution had 

an increasing trend when the available level of water increased. The number 

of nominal evaluations to obtain this convergence were 500,000, 50,000 and 

50,000 for 75%, 90%, and 100% water availability, respectively. The 

corresponding solutions from ACO-DDVO always converged to the best-

found solution after 10,000 nominal evaluations. 
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Figure 2-5. Convergence of average and maximum optimal solutions 
obtaining from ACO. 

In Formulation 2, the search space and the number of feasible solutions 

were larger because of the increase in the number of decision variables 

(Table 2-2). As a result, there was a clear difference between the average 

and maximum solutions for ACO-SDVO. Furthermore, these solutions did 

not converge to the best-found solution, even with the maximum number of 

evaluations of 1,000,000. In contrast, although the difference between the 

350
400
450
500
550
600
650
700
750
800
850
900

1 2 5 10 50 100 500 1,000 

N
et

 R
et

ur
n 

(x
 1

00
0 

Rs
)

No. of  Nominal Evaluations (x 1000)

Formulation 1 - 100% of Water Availability

350
400
450
500
550
600
650
700
750
800
850
900

1 2 5 10 50 100 500 1,000 

N
et

 R
et

ur
n 

(x
 1

00
0 

Rs
)

No. of  Nominal Evaluations (x 1000)

Formulation 2 - 100% of Water Availability

350
400
450
500
550
600
650
700
750
800
850
900

1 2 5 10 50 100 500 1,000 

N
et

 R
et

ur
n 

(x
 1

00
0 

Rs
)

No. of  Nominal Evaluations (x 1000)

Formulation 1 - 90% of Water Availability

350
400
450
500
550
600
650
700
750
800
850
900

1 2 5 10 50 100 500 1,000 

N
et

 R
et

ur
n 

(x
 1

00
0 

Rs
)

No. of  Nominal Evaluations (x 1000)

Formulation 2 - 90% of Water Availability

350
400
450
500
550
600
650
700
750
800
850
900

1 2 5 10 50 100 500 1,000 

N
et

 R
et

ur
n 

(x
 1

00
0 

Rs
)

No. of  Nominal Evaluations (x 1000)

Formulation 1 - 75% of Water Availability

350
400
450
500
550
600
650
700
750
800
850
900

1 2 5 10 50 100 500 1,000 

N
et

 R
et

ur
n 

(x
 1

00
0 

Rs
)

No. of  Nominal Evaluations (x 1000)

Formulation 2 - 75% of Water Availability



 

49 

average and maximum results from ACO-DDVO increased compared to 

those from ACO-DDVO in Formulation 1, it was still markedly smaller than 

those from ACO-SDVO. The solutions obtained from ACO-DDVO always 

converged at 500,000 nominal evaluations for all three scenarios. 

Consequently, the results demonstrate that the method of handling 

constraints in ACO-DDVO resulted in much better convergence towards the 

best-found solution compared to that of ACO-SDVO, which is most likely 

due to the reduced size of the search space and the fact that the search is 

restricted to the feasible region when ACO-DDVO is used. 

2.5.4 Tradeoff between computational effort and solution quality 

The increased computational efficiency of ACO-DDVO compared with 

that of ACO-SDVO is demonstrated by the relationship between 

computational effort and solution quality (Figure 2-6). It should be noted 

that the best results over the 10 runs were used to calculate the deviation 

from the best-found solution and the % computational effort was calculated 

from the number of actual evaluations. As shown in Section 2.5.1, ACO-

DDVO and ACO-SDVO attained identical solutions for Formulation 1 and 

ACO-DDVO was able to find slightly better solutions than ACO-SDVO for 

Formulation 2. However, Figure 2-6 shows that these better solutions were 

obtained at a much reduced computational effort, ranging from 74.4 to 

92.7% reduction in computational effort for Formulation 1 and from 63.1 to 

90.9% reduction for Formulation 2 (for the same percentage deviation from 

the best found solution). In addition, near-optimal solutions could be found 

more quickly. For example, for Formulation 1 ACO-DDVO only needed a 

very small computational effort to reach a solution with 5% deviation from 

the best-found solution (about 1.5%, 5.3%, and 1.0% of total computational 

effort for 100%, 90% and 75% of water availability, respectively). The 

corresponding values for ACO-SDVO were 7.1%, 12.1%, and 39.9% of 

total computational effort, respectively. Similar results were found for 

Formulation 2, in which ACO-DDVO needed less than 5% of the total 

computational effort and ACO-SDVO required over 40% of the total 

computational effort for the two scenarios with tighter constraints. 
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Figure 2-6. Computational effort vs. solution quality for the different 
ACO variants, formulations and water availability scenarios. 

For this case study, the actual savings in CPU time are not that 

significant (~ 1.5 CPU hours was saved by using ACO-DDVO for 

Formulation 2 with 1,000,000 evaluations). However, if complex simulation 

models were used for objective function evaluation (where a single 

evaluation could take several minutes), a 63.1% reduction in computational 
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effort would result in significant time savings. For example, if the number 

of evaluations corresponding to this computational saving was reduced from 

872,204 to 322,181, the actual CPU time would be reduced by 5,500,230 

seconds (over 2 months) for a 10-sec. simulation model evaluation. This 

demonstrates that the proposed ACO-DDVO approach has the potential to 

significantly reduce the computational effort associated with the simulation-

optimization of crop and water allocation, while increasing the likelihood of 

finding better solutions.  

2.6 Summary and conclusions 

A general framework has been developed to reduce search space size for 

the optimal crop and water allocation problem when using a simulation-

optimization approach. The framework represents the constrained 

optimization problem in the form of a decision tree, uses dynamic decision 

variable option (DDVO) adjustment during the optimization process to 

reduce the size of the search space and ensures that the search is confined to 

the feasible region and uses ant colony optimization (ACO) as the 

optimization engine. Application of the framework to a benchmark crop and 

water allocation problem with crop production functions showed that ACO-

DDVO clearly outperformed linear programming (LP). While LP worked 

well for linear problems (i.e., Formulation 1 where the only decision 

variable was area), ACO-DDVO was able to find better solutions for the 

nonlinear problem (i.e., Formulation 2 with decision variable options for 

depth of irrigated water for each of the selected crops at each of the sub-

areas) and for more highly constrained search spaces when different levels 

of water availability were considered. The ACO-DDVO approach was also 

able to outperform a “standard” ACO approach using static decision 

variable options (SDVO) and penalty functions for dealing with infeasible 

solutions in terms of the ability to find feasible solutions, solution quality, 

computational efficiency and convergence speed. This is because of ACO-

DDVO’s ability to reduce the size of the search space and exclude infeasible 

solutions during the solution generation process. 



 

52 

It is important to note that while the results presented here clearly 

illustrate the potential of the proposed framework as a proof-of-concept, 

there is a need to apply it to more complex problems with larger search 

spaces, as well as in conjunction with more realistic irrigation demands 

(e.g., Foster et al. (2014)) and mechanistic crop growth simulation models 

(see Section 2.1). However, based on the demonstrated benefits for the 

simple case study considered in this paper, the proposed ACO-DDVO 

simulation-optimization framework is likely to have even more significant 

advantages when applied to real-world problems using complex crop 

models with long simulation times. 
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Abstract 

An improved ant colony optimization (ACO) formulation for the allocation 

of crops and water to different irrigation areas is developed. The 

formulation enables dynamic decision variable option (DDVO) adjustment 

and makes use of domain knowledge through visibility factors (VFs) to bias 

the search towards selecting crops that maximize net returns and water 

allocations that result in the largest net return for the selected crop, given a 

fixed total volume of water. The performance of this formulation is 

compared with that of other ACO algorithm variants (without and with 

domain knowledge) for two case studies, including one from the literature 

and one introduced in this paper for different water availability scenarios 

within an irrigation district located in Loxton, South Australia near the 

River Murray. The results for both case studies indicate that the use of VFs: 

1) increases the ability to identify better solutions at all stages of the search; 

and 2) reduces the computational time to identify near-optimal solutions. 

Furthermore, the savings in computational time obtained by using VFs and 

DDVO adjustment should be considerable for ACO application to problems 

such as detailed irrigation scheduling that rely on more complex crop 

models than those used in the case studies presented herein. 
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3.1 Introduction 

In recent years, ant colony optimization (ACO) has been used 

extensively to identify optimal solutions to a range of water resources 

problems (Afshar et al., 2015). One of the reasons for the popularity of 

ACO is that, like other metaheuristic optimization methods such as the more 

commonly used genetic algorithms (GAs), it is able to be linked with 

complex simulation models in order to identify globally optimal or near-

globally optimal solutions to complex water resource problems (Nicklow et 

al., 2010; Maier et al., 2014; Maier et al., 2015). However, unlike other 

metaheuristics, ACO is able to more easily facilitate the incorporation of 

system domain knowledge within the construction of trial solutions rather 

than by seeding initial populations, as has been done for Gas (Keedwell and 

Khu, 2006; Kadu et al., 2008; Zheng et al., 2011; Creaco and Franchini, 

2012; Kang and Lansey, 2012; Bi et al., 2015). This is because the trial 

solutions of ACO are constructed using past experience contained in the 

search space instead of modifying previous solutions, as is done when GAs 

are used (Maier et al., 2003). Consequently, ACO offers great potential in 

terms of increasing computational efficiency of the optimization process, 

which is particularly important in cases where complex simulation models 

are used for objective function or constraint evaluation. 

In ACO, problems are represented in the form of a decision-tree graph 

which artificial ants have to traverse in a stepwise fashion in order to 

generate trial solutions. As a result, the number of options available at each 

node in the decision tree can be adjusted based on choices made at previous 

nodes with the aid of domain knowledge about the system to be optimized. 

In addition, the edges of the graph at each node can be biased in accordance 

with an understanding of which of the available options are likely to result 

in locally optimal solutions (Dorigo and Di Caro, 1999). This provides a 

mechanism for combining the power of global optimization algorithms with 

system understanding and experience and is likely to enable better solutions 

to be identified more quickly, as less computational effort is likely to be 

expended on the exploration of poor regions of the solution space. The 

benefits of incorporating domain knowledge into ACO has previously been 
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demonstrated in a number of water resources planning and management 

problem domains (Afshar et al., 2015). Examples include optimal design of 

stormwater networks (Afshar, 2007, 2010), optimal maintenance scheduling 

for hydropower stations (Foong et al., 2008a; Foong et al., 2008b), optimal 

design of water distribution systems (Maier et al., 2003; Zecchin et al., 

2005; López-Ibáñez et al., 2008; Zecchin et al., 2012), optimal operation of 

reservoir systems (Afshar and Moeini, 2008; Moeini and Afshar, 2011; 

Moeini and Afshar, 2013), and scheduling of environmental flow releases in 

rivers (Szemis et al., 2012, 2014). 

The potential increase in computational efficiency via the incorporation 

of domain knowledge into ACO is particularly important in the application 

to real-world problems where search spaces are typically large and system 

simulation models are generally computationally demanding (Bonissone et 

al., 2006; Maier et al., 2014; Maier et al., 2015). An important application 

area where this is the case is optimal crop and water allocation (Singh, 2012, 

2014). However, to date, the application of EAs to this problem (e.g., Nixon 

et al. (2001), Ortega Álvarez et al. (2004), Kumar et al. (2006), Reddy and 

Kumar (2007), Azamathulla et al. (2008), Soundharajan and Sudheer 

(2009), Han et al. (2011), Noory et al. (2012), and Fallah-Mehdipour et al. 

(2013)) has ignored the potential of increasing computational efficiency by 

incorporating domain knowledge into the optimization process. The likely 

reason for this is that the incorporation of such knowledge is difficult to 

achieve when using the evolutionary algorithms that have been applied to 

this problem thus far (e.g., GAs).  

In order to address this shortcoming, Nguyen et al. (2016b) introduced a 

formulation that enables ACO to be used to identify crop and irrigation 

water allocations that maximize net return. As part of the formulation, a 

generic decision-tree graph for the problem was presented, enabling 

decisions to be made about seasonal allocation of crops to available plots of 

land and how much water to irrigate for each plot in order to maximize the 

net return. Computational efficiency was increased by dynamically reducing 

the size of the search space during the construction of each trial solution, 
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based on decisions made at previous nodes in the graph. The benefits of this 

formulation were demonstrated for a simple benchmark problem from the 

literature; however, the potential of increasing the computational efficiency 

of the algorithm by biasing the edges at each node based on domain 

knowledge (heuristic information) was not investigated. Therefore, the 

objectives of this paper are: 

1.  To extend the ACO formulation for optimal crop selection and irrigation 

water allocation developed by Nguyen et al. (2016) to include the use of 

domain knowledge to bias the selection of crops and water allocations at 

each node in the decision-tree graph in order to increase computational 

efficiency. 

2. To test the benefits of the improved formulation on the benchmark case 

study used by Nguyen et al. (2016) and a real-world case study based on 

an irrigation district located in Loxton, South Australia near the River 

Murray. 

The remainder of this paper is organized as follows. The Proposed ACO 

Formulation Incorporating Domain Knowledge section provides a brief 

overview of ACO and describes a novel approach for incorporating domain 

knowledge into ACO. This is followed by the Methodology, including 

details of the two cases studies used to evaluate the performance of the 

proposed formulation. Next, the four ACO algorithm variants evaluated in 

this study are summarized in the Computational Experiments section. 

Finally, the results of the two case studies are presented and discussed in the 

Results and Discussion section, followed by the Summary and Conclusions. 

3.2 Proposed ACO Formulation Incorporating Domain 
Knowledge 

ACO is a metaheuristic algorithm based on the foraging behavior of ants 

that enables them to find the shortest path connecting a food source and 

their nest (Dorigo et al., 1996). This is achieved by ants in a colony 

communicating with each other indirectly via pheromone.  Ants deposit 

pheromone on the paths they traverse and are also more likely to follow 



 

61 

paths with higher pheromone concentrations. As shorter paths take less time 

to traverse, more ants traverse them per unit time. This increases the 

pheromone concentration on these paths, making them more likely to be 

selected in future (see Maier et al. (2003)). 

In ACO, the decision space of the optimization problem is represented 

in terms of a graph that includes a set of nodes (or decision variables) and 

edges (or decision variable options). A solution to the problem is a set of 

edges that is selected in a stepwise fashion as ants move along the graph 

from one node (decision point) to the next, depositing pheromone as they 

go.  In a particular iteration, a number of ants will traverse the graph, each 

constructing independent trial solutions. At the end of an iteration, paths that 

lead to better overall solutions are rewarded with more pheromone, making 

them more likely to be selected in subsequent iterations. In this way, better 

solutions evolve as the number of iterations increases. 

The ACO decision-tree graph for the optimal crop and irrigation water 

allocation problem considered in this paper as proposed by Nguyen et al. 

(2016) is shown in Figure 3-1. As can be seen, the decision points of the 

graph correspond to which crop type should be planted in season i (Ci1, Ci2, 

…, CiNic) in a particular sub-area and how much water should be supplied to 

the selected crop (W1, W2, …, WNw). The above decisions are made for each 

season and sub-area. If an annual crop is chosen for a particular sub-area, 

the other seasons corresponding to this sub-area are ignored. A trial solution 

(i.e., crop and irrigation water allocation plan for each sub-area and each 

season) is constructed by an ant traversing the graph and selecting an edge 

at each node. As detailed in Nguyen et al. (2016), the objective of the 

optimization process is to determine the crop and irrigation water allocation 

plan that maximizes net return, subject to constraints on maximum 

allowable area for each season, minimum and maximum allowable area for 

each crop, and the available volume of irrigation water. 
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Figure 3-1. Decision-tree graph for the crop and water allocation 
problem. Nic is the number of crops for season i (i =1, 2, …; for annual 
crop, i = a); Nw is the number of options for the depth of irrigated water 
supplied to a crop 

 
The size of the search space can be reduced, and hence computational 

efficiency increased, by dynamically adjusting the number of edges at each 

decision point during the construction of each trial solution (Nguyen et al. 

2016). In order to achieve this, all constraints in relation to available water 

and allowable areas for particular crops in particular seasons are checked at 

each decision point and any options that violate any of the constraints are 

removed. The above process occurs dynamically every time an ant generates 

a trial solution in a particular iteration, so that different adjustments to the 

size of the search space are likely to be made each time an ant traverses the 

decision-tree graph. This is made possible because individual trial solutions 

in ACO are constructed in a step-wise manner by ants traversing graphs, 

thus enabling alteration of the decision-variable options available at decision 
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points based on selections made at previous decision points by a particular 

ant during a particular iteration, rather than having to define decision 

variable options statically at the beginning of the optimization process. 

At each node, the decision about which edge to select by an ant is made 

in accordance with the following decision policy (Dorigo et al. 1996): 

p୅୆ = [தఽా(୲)]ಉൣఽా൧
ಊ

∑ [தఽా(୲)]ಉൣఽా൧
ಊొఽ

ాసభ

                        (3.1) 

where pAB is the probability of selecting edge (A, B), t is the index of 

iteration, τAB(t) is the amount of pheromone on edge (A, B) at iteration t, 

AB is the visibility of edge (A, B), α is the pheromone importance factor, β 

is the visibility importance factor, and NA is the set of all edges that connect 

node A to the next node. 

As given in Equation 3.1, the probability of selecting each edge depends 

on two factors, pheromone concentration and visibility. As explained 

previously, pheromone deposition is the means by which ants communicate 

with each other in order to explore the search space.  As the number of 

iterations increases, pheromone concentrations that favor globally optimal 

solutions are identified. While real ants are almost completely blind and rely 

on pheromone trails for the identification of optimal solutions, the addition 

of visibility to the artificial ants used in ACO can increase computational 

efficiency, as it enables locally optimal solutions to be favored (Dorigo et al. 

1996; Maier et al. 2003; Foong et al. 2008a; Foong et al. 2008b; López-

Ibáñez et al. 2008; Zecchin et al. 2012). Consequently, visibility provides a 

means of including domain knowledge of the problem under consideration 

in the ACO process, as it enables a biased selection of edges at each node. 

For the optimal crop and water allocation problem considered in this 

paper, the domain knowledge (represented by a visibility factor, VF) that 

can be used to identify locally optimal solutions relates to factors that 

increase net return (i.e., the objective function), including which crop is 

selected and how much water is applied to the selected crop. Consequently, 
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separate VFs are required for the decision points for crop selection and 

water allocation, as detailed below. 

3.2.1 Visibility Factor for Crop Choice 

The VF for crop choice introduces bias so that crops that are likely to 

result in greater net return have a greater chance of being selected for each 

of the sub-areas, as follows:  

ୡ୰୭୮୨ = 1 − ଵ
୒ୖౠቀ୑୧୬൫୛ఽ౬౗౟ ,୛ొ౎౉౗౮ౠ൯ቁ

                        (3.2) 

where cropj is the VF for crop j, NRj is the net return of crop j, WAvai is the 

volume of water available at a decision point, and WNRMaxj is the volume of 

water that results in the maximum net return of crop j. Note that as the 

actual volume of water allocated to a particular crop is not known at the 

crop selection node (see Figure 3-1), the proposed formulation assumes that 

the volume of water allocated to a crop is either the volume that maximizes 

net return (WNRMaxj, as given in Equation 3.2) or the volume that is still 

available for allocation at the decision point under consideration (if this is 

less than WNRMaxj). WNRMaxj is obtained with the aid of a crop growth model 

used in this study as part of the optimization process (see the Methodology-

Overview section). The functional form of the VF shown in Equation 3.2 is 

suggested as it performed best among a number of candidate functional 

forms considered as part of preliminary trials. Note that if different sub-

areas have different soil types or are exposed to different meteorological 

conditions (e.g., rainfall, evapotranspiration), different VFs can be used for 

individual sub-areas to reflect any differences in optimal water requirements 

and net returns resulting from these differences. 

3.2.2 Visibility Factor for Water Allocation Choice 

The VF for water allocation choice introduces bias so that water 

allocations likely to result in greater net returns have a greater chance of 

being chosen for the selected crop in each of the sub-areas, as follows: 



 

65 

୨୵ = ൝
			0																					if	൫NR୨୵ = 	NR୨୵ଵ൯	and	(w > (1ݓ

1 − ଵ
୒ୖౠ౭

													if		(other	cases)																																						               (3.3) 

where jw is the VF for the level of water allocation w; NRjw and NRjw1 are 

the net returns of crop j for water allocations w and w1, respectively. 

Similar to WNRMaxj in Equation 3.2, the net return for a given water 

allocation is obtained with the aid of a crop growth model used in this study 

as part of the optimization process. The functional form of the VF shown in 

Equation 3.3 is suggested as it performed best among a number of candidate 

functional forms considered as part of preliminary trials.  

3.2.3 ACO Pheromone Updating Process 

After all ants in the colony have traversed the decision-tree graph and 

the objective function value corresponding to the solution generated by each 

ant has been calculated, pheromone values are updated so as to increase the 

chances that edges that contributed to better solutions receive more 

pheromone and are therefore more likely to be selected in subsequent 

iterations. The pheromone update for edge (A, B) is therefore given by 

Dorigo et al. (1996):  

τ୅୆(t + 1) = ρτ୅୆(t) + τ୅୆            (3.4) 

where ρ is the pheromone persistence factor, which accounts for the 

evaporation of pheromone from one iteration to the next and τAB is the 

pheromone addition for edge (A, B). 

In this paper, the Max-Min Ant System (MMAS) algorithm (Stützle and 

Hoos 2000) is used to calculate τAB, as it has been applied successfully to a 

number of water resources studies (Zecchin et al., 2006; Zecchin et al., 

2007; Afshar and Moeini, 2008; Szemis et al., 2012; Zecchin et al., 2012), 

including the crop and irrigation water allocation problem (Nguyen et al. 

2016). As part of this algorithm, pheromone addition on each edge is 

performed as follows (illustrated here for edge (A, B)): 

߬஺஻(ݐ) = ߬஺஻௜௕ (ݐ) + ߬஺஻
௚௕(ݐ)            (3.5) 
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where ߬஺஻௜௕ and ߬஺஻ (ݐ)
௚௕(ݐ) are the pheromone additions for the 

iteration-best solution (sib) and the global-best solution (sgb), respectively. 

While sib is used to update the pheromone on edge (A, B) after each 

iteration, sgb is applied with the frequency fglobal (i.e., ߬஺஻
௚௕(ݐ) is calculated 

after each fglobal iterations). ߬஺஻௜௕ and ߬஺஻ (ݐ)
௚௕(ݐ) are given by:  

߬஺஻௜௕ (ݐ) = ቊ
௤

௙൫௦೔್(௧)൯
(ܤ,ܣ)	݂݅			 ∈ (ݐ)௜௕ݏ

݁ݏ݅ݓݎℎ݁ݐ݋															0
           (3.6) 

߬஺஻
௚௕(ݐ) = ቊ

௤
௙൫௦೒್(௧)൯

(ܤ,ܣ)	݂݅			 ∈ 	݀݋݉	ݐ		݀݊ܽ	(ݐ)௚௕ݏ ௚݂௟௢௕௔௟ = 0

																															݁ݏ݅ݓݎℎ݁ݐ݋																														0
         (3.7) 

where ݂൫ݏ௜௕(ݐ)൯ and ݂(ݏ௚௕(ݐ)) are the objective function values of sib 

and sgb at iteration t, respectively; and q is the pheromone reward factor. 

In MMAS, the pheromone on each edge is limited to lie within a given 

range to avoid search stagnation, i.e., ߬௠௜௡(ݐ) ≤ ߬஺஻(ݐ) ≤ ߬௠௔௫(ݐ). The 

equations for ߬௠௜௡(ݐ) and ߬௠௔௫(ݐ) are given as follows: 

߬௠௔௫(ݐ) = ቀ ଵ
ଵିఘ

ቁ ଵ
௙൫௦೒್(௧ିଵ)൯

                        (3.8) 

߬௠௜௡(ݐ) = ఛ೘ೌೣ(௧)൫ଵି ඥ௣್೐ೞ೟೙ ൯
(௔௩௚ିଵ) ඥ௣್೐ೞ೟೙              (3.9) 

where n is the number of decision points, avg is the average number of 

edges at each decision point, and pbest is the probability of constructing the 

global best solution at iteration t, where the edges chosen have pheromone 

trail values of ߬௠௔௫ and the pheromone values of other edges are ߬௠௜௡. 

Additionally, MMAS uses a pheromone trail smoothing (PTS) mechanism 

that reduces the difference between edges in terms of pheromone intensities, 

thus strengthening exploration. 

߬஺஻∗ (ݐ) = ߬஺஻(ݐ) + ൫߬௠௔௫(ݐ)− ߬஺஻(ݐ)൯                (3.10) 

where  is the PTS coefficient (0 ≤  ≤ 1). 
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The pheromone updating process is repeated until certain stopping 

criteria have been met, such as the completion of a fixed number of 

iterations or until there is no further improvement in the objective function. 

3.3 Methodology 

3.3.1 Overview 

This section provides details of how the approach outlined in the 

Proposed ACO Formulation Incorporating Domain Knowledge section is 

applied to the two case studies, including the benchmark case study used in 

Nguyen et al. (2016) and a real-world case study introduced in this paper 

based on an irrigation district located in Loxton, South Australia near the 

River Murray. A summary of the main steps in the methodology is given in 

Figure 3-2. In the first step the problem is formulated to: 1) identify the 

seasons (e.g., winter, monsoon), the seasonal crops (e.g., wheat), the annual 

crops (e.g., sugarcane), the total cultivated area and the volume of water 

available for irrigation purposes; 2) identify economic data (e.g., crop price, 

production cost, and water price) in the study region; 3) specify decision 

variables (e.g., crop type and the depth of irrigated water allocated to each 

sub-area); 4) specify decision variable options; and 5) specify the objective 

function (e.g., maximum economic return) and constraints on the 

availability of land and water resources.  

Next, trial crop and water allocations are generated in a stepwise fashion 

by moving along the decision-tree graph (Figure 3-1) from one node to the 

next. As outlined in the Proposed ACO Formulation Incorporating Domain 

Knowledge section, dynamic adjustment of decision variable options and 

the use of VFs to favor solutions that result in a local increase in net return 

are considered during the generation of trial solutions. In the next step, a 

crop growth model is used to calculate the objective function values for the 

developed trial crop and water allocation plans. In this study, crop 

production functions were used for this purpose as they are sufficiently 

computationally efficient to enable different optimization algorithm 

formulations to be compared in a more rigorous manner. Consequently, the 
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results of this study provide a proof-of-concept for the application of the 

proposed approach to problems using more computationally intensive and 

physically-based crop growth simulation models. 

 

Figure 3-2. Summary of the main steps in the methodology of optimal 
crop and water allocation using ACO formulation incorporating 
domain knowledge 

Based on the results of the evaluation of the trial solutions, the 

pheromone levels on the edges of the decision-tree graph are updated so as 

to favor crop choices and water allocations that lead to better solutions, as 

outlined in the Proposed ACO Formulation Incorporating Domain 

Knowledge section. This iterative loop of developing trial solutions using 

the ACO algorithm and evaluating their utility with the aid of the crop 

production functions is repeated until the specified stopping criteria have 

been met. In general, the stopping criterion is the completion of a certain 

number of evaluations. Details of the two case studies and how the above 

methodology was applied to them are given in the subsequent sections. 
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3.3.2 Case Study 1 

3.3.2.1 General Description 

This case study was introduced by Kumar and Khepar (1980) and 

considers seven crops (i.e., wheat, gram, mustard, clover (referred to as 

berseem in Kumar and Khepar 1980), sugarcane, cotton and paddy). Except 

for sugarcane, which is planted annually, all other crops are either planted in 

the winter (i.e., wheat, gram, mustard and clover) or monsoon season (i.e., 

cotton and paddy). The total cultivated area under consideration is 173 ha. 

The prices and total fixed costs of the different crops are shown in Table 3-

1. The water price is equal to 0.423 Rs mm-1 ha-1. 

Table 3-1.  
Economic Data for Crops and Crop Production Functions in Case 
Study 1 (from Kumar and Khepar, 1980) 

Crop 
Crop 
price  

(Rs qt-1) 

Crop total  
fixed cost  

(Rs ha-1 year-1) 
Crop production function 

Wheat 122.5 2669.8 Y = 26.5235 - 0.03274 W + 1.14767 W0.5 

Gram 147.8 1117.0 Y = 15.4759 + 0.04561 W - 0.00019 W2 

Mustard 341.4 1699.55 Y = 14.743 - 0.011537 W + 0.41322 W0.5 

Clover 7.0 2558.6 Y = 25.5379 - 1.0692 W + 57.2238 W0.5 

Sugarcane 13.5 5090.48 Y = -11.5441 + 2.92837 W - 0.0027 W2 

Cotton 401.7 2362.55 Y = 6.6038 - 0.013607 W + 0.62418 W0.5 

Paddy 89.0 2439.68 Y = 5.9384 - 0.035206 W + 2.412043 W0.5 

Note: Rs = Indian Rupee; qt = quintal; Y = crop yield (qt ha-1); W = depth 

of irrigated water (mm). 

3.3.2.2 Problem Formulation 

The two decision variables are which crop to plant on each sub-area, and 

the depth of irrigated water supplied to the selected crop (Figure 3-1). For 

each sub-area, there are six crop options for Season 1 (consisting of dryland, 

wheat, gram, mustard, clover and sugarcane) and three crop options for 

Season 2 (consisting of dryland, cotton and paddy). Here dryland refers to 

an area without crops, so it is not irrigated and has no yield. As suggested in 
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Nguyen et al. (2016), 150 options of the depth of irrigated water were 

considered for each crop, corresponding to 0, 10, 20, …, 1490 mm ha-1. 

Furthermore, the novel discretization scheme introduced by Nguyen et al. 

(2016) was applied to reduce the size of the search space. As part of this 

scheme, the total area was discretized into 29 sub-areas, 10 corresponding to 

an area of 5 ha, 10 to an area of 6 ha and 9 to an area of 7 ha. The 

corresponding search space size for this case study is equal to (629 x 329 x 

15029 x 15029) or approximately 4.1 x 10162. 

The objective function is given as: 

F = Max ቊ
∑ ∑ ൫Aଵ୨୩ൣYଵ୨୩Pଵ୨ − ൫C୊୍ଡ଼ଵ୨ + Wଵ୨୩C୛൯൧൯ଶଽ

୩ୀଵ
଺
୨ୀଵ

+∑ ∑ ൫Aଶ୨୩ൣYଶ୨୩Pଶ୨ − ൫C୊୍ଡ଼ଶ୨ + Wଶ୨୩C୛൯൧൯ଶଽ
୩ୀଵ

ଷ
୨ୀଵ

ቋ      (3.11) 

where F is the total net annual return (Rs year-1), A1jk and A2jk are the area 

of crop j at sub-area k in seasons 1 and 2 (ha), Y1jk and Y2jk are the yields of 

crop j at sub-area k in seasons 1 and 2 (kg ha-1), P1j and P2j are the prices of 

crop j in seasons 1 and 2 (Rs kg-1), CFIX1j and CFIX2j are the fixed annual cost 

of crop j in seasons 1 and 2 (Rs ha-1 year-1), W1jk and W2jk are the depth of 

irrigated water supplied to crop j at sub-area k in seasons 1 and 2 (mm), and 

CW is the unit cost of irrigated water (Rs mm-1 ha-1). 

The objective function is subject to the following constraints (as 

stipulated in Kumar and Khepar 1980): 

 Constraints for maximum allowable areas in each season 

For Season 1 (winter):            ∑ ∑ Aଵ୨୩
ଶଽ
୩ୀଵ

଺
୨	ୀ	ଵ ≤ 173         (3.12) 

For Season 2 (monsoon):       ∑ ∑ Aଶ୨୩
ଶଽ
୩ୀଵ

ସ
୨	ୀ	ଵ ≤ 139        (3.13) 

It is important to realize that the area allocated to sugarcane needs to be 

added to the accumulated area of Season 2 because sugarcane is an annual 

crop. Consequently, although there are only three crops in this season, 

Equation 3.13 is calculated for four crops, consisting of dryland, cotton, 

paddy and sugarcane. 
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 Constraints for minimum and maximum allowable crop areas 

ቊ
Aଵ୨୑୧୬ ≤ ∑ Aଵ୨୩

ଶଽ
୩ୀଵ ≤ Aଵ୨୑ୟ୶ 						j = 1, … ,6

Aଶ୨୑୧୬ ≤ ∑ Aଶ୨୩
ଶଽ
୩ୀଵ ≤ Aଶ୨୑ୟ୶ 						j = 1, … ,3

         (3.14) 

where A1jMin and A1jMax are the minimum and maximum areas of crop j 

allowed in Season 1 and A2jMin and A2jMax are the minimum and maximum 

areas of crop j allowed in Season 2. As stipulated by Kumar and Khepar 

(1980), the minimum area of clover is 17 ha, and the maximum areas of 

mustard and sugarcane are equal to 26 ha and 17 ha, respectively. The other 

minimum areas are 0, while the other maximum areas are 173 ha for each of 

the winter crops and 139 ha for each of the monsoon crops. 

 Constraints for available volume of irrigated water W 

∑ ∑ Wଵ୨୩	Aଵ୨୩
ଶଽ
୩ୀଵ

଺
୨ୀଵ + ∑ ∑ Wଶ୨୩	Aଶ୨୩

ଶଽ
୩ୀଵ

ଷ
୨ୀଵ ≤ W        (3.15) 

As was the case in Kumar and Khepar (1980), three different values of 

W were considered as part of three scenarios corresponding to 75%, 90% 

and 100% of water availability (corresponding to limits on the available 

volume of irrigated water of 84,457, 100,178, and 111,275 m3, 

respectively).  Crop production functions from Kumar and Khepar (1980) 

were used to estimate crop yield, as detailed in Table 3-1. 

3.3.3 Case Study 2 

3.3.3.1 General Description 

This case study is based on an irrigation district of 130 ha, including 50 

sub-areas of various sizes (see Table 3-2), located in Loxton, South 

Australia near the River Murray (Figure 3-3). In this case study, six typical 

crops, including wine grapes, apricots, almonds, oranges, irrigated wheat 

and potatoes, were selected to represent the major crop groups in Loxton 

(consisting of grapes, stone fruit, nuts, citrus, field crops and vegetable) as 

mentioned in King et al. (2012). These crops are harvested once per year. 
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The economic data of the crops for the studied region are summarized in 

Table 3-3. The water price is equal to AU$0.100 per m3 (King et al. 2012).  

 

Figure 3-3. Schematic of the sub-areas for Case Study 2 (inset satellite 
photo: Imagery © 2016 TerraMetrics, Map data © 2016 GBRMPA, 
Google; subarea photo: Imagery © 2016 CNES/Astrium, Cnes/Spot 
Image, DigitalGlobe, Map data © 2016 Google) 

 

Table 3-2.  
Sub-area Details for Case Study 2 

No. Area 
(ha) No. Area 

(ha) No. Area 
(ha) No. Area 

(ha)  No. Area 
(ha) 

1 4.7 11 1.3 21 3.0 31 3.5 41 1.7 
2 2.8 12 1.0 22 2.7 32 3.3 42 1.6 
3 1.6 13 2.9 23 1.0 33 3.8 43 2.1 
4 1.7 14 3.4 24 1.7 34 5.4 44 1.9 
5 2.1 15 2.5 25 2.5 35 1.0 45 1.0 
6 1.3 16 3.2 26 2.2 36 5.3 46 1.4 
7 1.9 17 4.5 27 4.7 37 2.1 47 1.7 
8 3.0 18 6.5 28 1.6 38 1.9 48 2.4 
9 2.8 19 2.3 29 1.8 39 2.7 49 1.8 

10 3.0 20 3.1 30 1.8 40 3.6 50 3.2 
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Table 3-3. 
Economic Data for Crops in Loxton, South Australia a 

Crop 
Price of 

crop (AU$ 
t-1) 

Irrigation 
costs (AU$ 
ha-1 year-1) 

Operating 
costs (AU$ ha-

1 year-1) 

Fixed capital costs 
of irrigation 

infrastructure b (AU$ 
ha-1 year-1) 

Wine 
grapes 1,400.0 286.0 3,650.0 2,623.9 

Apricots 1,100.0 3,389.0 6,285.0 2,476.9 
Almonds 7,000.0 486.0 4,413.0 2,473.3 
Oranges 300.0 586.0 5,284.0 2,598.6 
Irrigated 

wheat 290.0 180.0 345.0 566.0 

Potatoes 370.0 236.0 4,062.0 1,326.8 
a Source: King et al. (2012). 
b Based on applying pivot irrigation to wine grapes, apricots, almonds, and 

oranges; flood irrigation to wheat; and drip irrigation to potatoes. 

3.3.3.2 Problem Formulation 

The two decision variables are crop type and the volume of irrigated 

water applied to each sub-area (Figure 3-1). For each sub-area there are 

seven crop options consisting of dryland, wine grapes, apricots, almonds, 

oranges, irrigated wheat, and potatoes. The dryland option indicates that 

there is no irrigation and therefore a yield of zero. In addition, as the 

maximum water application rate for each crop is 9,000 m3 ha-1 (Table 3-4) 

and a discretization interval of 500 m3 ha-1 was assumed, there are 19 

options of irrigated water for each sub-area, corresponding to choices of 0, 

500, 1,000, …, 9,000 m3 ha-1. Consequently, the size of the total search 

space for case study 2 is (650 x 1950), which is approximately 1.6 x 10106. 

The objective function of this problem is given as: 

F = 	Max൛∑ ∑ ൫A୨୩	ൣY୨୩	P୨ − ൫C୊୍ଡ଼୨ + W୨୩	C୛൯൧൯ହ଴
୩ୀଵ

଻
୨ୀଵ ൟ       (3.16) 

where Ajk is the area of crop j at sub-area k (ha), Yjk is the yield of crop j at 

sub-area k (depending on Wjk) (kg ha-1), Pj is the price of crop j (AU$ kg-1), 

CFIXj is the fixed annual cost of crop j (AU$ ha-1 year-1), and Wjk is the depth 

of water supplied to crop j at sub-area k (m3 ha-1). The remaining variables 

have been defined previously in Equation 3.11. 
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Table 3-4. 
Crop Production Functions for Crops in Loxton, South Australia a 

Crop type Crop production function 

Wine grapes Y = 0.1093 W3 - 2.3108 W2 + 15.489 W - 8.3295 0 ≤ W ≤ 9,000 

Apricots Y = 0.1438 W3 - 3.035 W2 + 21.324 W - 32.318 0 ≤ W ≤ 9,000 

Almonds Y = 0.0155 W3 - 0.3584 W2 + 2.792 W - 4.357 0 ≤ W ≤ 9,000 

Oranges Y = 0.1938 W3 - 5.2001 W2 + 45.865 W - 82.849 0 ≤ W ≤ 9,000 

Irrigated wheat Y = 0.0008 W3 - 0.1492 W2 + 2.0857 W + 1.3937 0 ≤ W ≤ 9,000 

Potatoes Y = - 0.6915 W2 + 13.038 W - 9.1178 0 ≤ W ≤ 9,000 

Note: Y = crop yield (kg ha-1); W = volume of irrigated water (1,000 m3 ha-1). 
a Source: King et al. (2012).  

This objective function is subject to the following constraints:  

 Constraints for maximum allowable areas 

∑ ∑ A୨୩
ହ଴
୩ୀଵ

଻
୨	ୀ	ଵ ≤ 130              (3.17) 

 Constraints for minimum (AjMin) and maximum (AjMax) allowable crop 

area 

A୨୑୧୬ ≤ ∑ A୨୩
ହ଴
୩ୀଵ ≤ A୨୑ୟ୶           (3.18) 

where the values of AjMin and AjMax are given in Table 3-5. 

Table 3-5. 
Maximum and Minimum Areas for Different Crop Types for Case 
Study 2 

Crop j Crop type Minimum area 
(ha) 

Maximum area 
(ha) 

1 Wine grapes 0 100 
2 Apricots 0 130 
3 Almonds 0 130 
4 Oranges 0 130 
5 Irrigated wheat 0 50 
6 Potatoes 5 15 
7 Dryland 0 130 
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 Constraints for available volume of irrigated water W 

∑ ∑ W୨୩ × A୨୩
ହ଴
୩ୀଵ

଻
୨ୀଵ ≤ W           (3.19) 

According to King et al. (2012), there are five levels of annual water 

allocations in the study region that are provided to irrigators at the start of 

each season based on current reservoir storage and forecasts of inflows. In 

normal precipitation years, there are two types of water allocations 

including wet (95-100% allocation) and dry (80-95% allocation). During 

drought years, there are three types of water allocations including dry (60-

80% allocation), very dry (25-60% allocation), and extremely dry (less than 

25% allocation). In order to account for the different water allocation levels, 

six scenarios, corresponding to six different levels of W, were considered. 

These included allocations of 100%, 85%, 70%, 50%, 35% and 10% which 

cover each of the five water allocation levels, with two allocations (50% and 

35%) corresponding to the very dry allocation category as this spans a wide 

range of allocations (i.e., 25-60%). In the case of 100% water allocation, 

crops can be supplied at up to the 9,000 m3 ha-1 maximum water application 

rate and thus the total water availability of this allocation for the studied 

area (130 ha) is 1,170,000 m3. Consequently, the various percentage water 

allocations considered correspond to limits on available volume of irrigated 

water of 1,170,000 (100%), 994,500 (85%), 819,000 (70%), 585,000 (50%), 

409,500 (35%) and 117,000 m3 (10%), respectively. As mentioned above, 

crop production functions (Table 3-4) were used for the calculation of net 

returns and the dryland yield was considered to be zero.  

3.4 Computational Experiments 

Four ACO algorithm variants (Table 3-6) were applied to each case 

study, including: 1) a “standard” algorithm which uses static decision 

variable options (SDVOs) but does not incorporate domain knowledge 

through the use of VFs (henceforth referred to as ACO-SDVO); 2) an 

algorithm which uses SDVOs and incorporates domain knowledge through 

the use of VFs (henceforth referred to as ACO-SDVO-VF); 3) an algorithm 

that uses the dynamic decision variable option (DDVO) adjustment 
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introduced by Nguyen et al. (2016) but does not incorporate domain 

knowledge through the use of VFs (henceforth referred to as ACO-DDVO); 

and 4) an algorithm that uses the Nguyen et al. (2016) DDVO adjustment 

and incorporates domain knowledge through the use of VFs (henceforth 

referred to as ACO-DDVO-VF). The FORTRAN code developed for 

implementing the different ACO variants can be downloaded from Nguyen 

(2015). As was carried out by Nguyen et al. (2016), each algorithm was run 

for 1,000,000 function evaluations, with results compared after 1,000, 

2,000, 5,000, 10,000, 50,000, 100,000, 500,000 and 1,000,000 function 

evaluations. The MMAS algorithm was used for pheromone updating, as 

mentioned previously.  Based on the results of a sensitivity analysis, the best 

values of the ACO parameters were selected for each algorithm, case study 

and percent water availability, as summarized in Tables 3-7 and 3-8. 

In order to assess the relative merits of incorporating the VFs introduced 

in this paper, the results obtained using ACO-SDVO-VF and ACO-DDVO-

VF were compared with those obtained using the ACO-SDVO and ACO-

DDVO algorithms that do not use VFs (Table 3-6). Each experiment was 

repeated 30 times with different starting positions in solution space (i.e., 

different random number seeds). This enabled the null hypothesis that the 

mean objective function values of the algorithms using the VFs are not 

significantly better than those of the corresponding algorithms without the 

VFs to be tested using a Student’s t-test. This is similar to the process used 

by Zecchin et al. (2007) when assessing the relative performance of 

different ACO algorithms. In addition, for Case Study 1, the best results 

obtained using ACO were also compared with those obtained using linear 

programming by Kumar and Khepar (1980). 
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Table 3-6. 
Summary of Computational Experiments Conducted for each Case 
Study 

ACO algorithm 
variant 

Decision variable options 
Visibility factor Replicates 

Static Dynamic 
ACO-SDVO X 

  
30 

ACO-DDVO 
 

X 
 

30 
ACO-SDVO-VF X 

 
X 30 

ACO-DDVO-VF 
 

X X 30 
 

Table 3-7. 
ACO Parameter Values Selected Based on a Sensitivity Analysis 

Parameter Values considered Values selected 

Number of ants 50; 100; 200; 500; 1,000; 2,000; 
5,000; 10,000 100a and 1,000b 

Pheromone importance 
factor (α) 0.5, 1.0, 1.2, 1.5, 2.0 

See Table 3.8 
Visibility importance factor 
(β) 0, 0.5, 0.7, 1.0, 1.2, 1.5, 2.0 

Initial pheromone (τo) 0.5, 1.0, 2.0, 5.0, 10.0, 20.0 10.0 

Pheromone persistence (ρ) 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 
0.9 0.6 

Pheromone reward (q) 0.5, 1.0, 2.0, 5.0, 10.0, 20.0, 50.0 20.0 

Note: a = if the number of evaluations ≤ 10,000; b = if the number of evaluations ≤ 

1,000,000. 

Table 3-8. 
Pheromone Importance and Visibility Importance Factors (α, β) 
Selected (for each ACO Formulation, Percent Water Availability, and 
Case Study) Based on a Sensitivity Analysis 

 
Water availability 

(%) 
ACO-
SDVO 

ACO-
DDVO 

ACO-
SDVO-VF 

ACO-
DDVO-VF 

Cas
e 

Stud
y 1 

100 (1.2, 0) (1.2, 0) (1.2, 0.7) (1.2, 1.2) 
90 (1.2, 0) (1.2, 0) (1.2, 0.5) (1.2, 2.0) 
75 (1.2, 0) (1.2, 0) (1.2, 0.7) (1.2, 1.2) 

Cas
e 

Stud
y 2 

100 (1.5, 0) (1.2, 0) (1.2, 1.0) (1.0, 0.5) 
85 (1.2, 0) (1.5, 0) (1.2, 1.0) (1.5, 1.2) 
70 (1.2, 0) (1.5, 0) (1.2, 0.5) (1.2, 1.0) 
50 (1.2, 0) (1.5, 0) (1.2, 1.0) (1.0, 0.5) 
35 (1.2, 0) (1.5, 0) (1.2, 0.5) (1.5, 0.5) 
10 (1.2, 0) (1.2, 0) (1.2, 1.2) (1.2, 1.0) 
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3.5 Results and Discussion 

3.5.1 Impact of the Visibility Factors 

The average objective function (OF) values over the 30 trials from 

different random starting positions in solution space, as well as the p-values 

for the t-test which indicate the level of significance (i.e., a p-value of 0.05 

indicates significance at the 5% level) are shown in Table 3-9 for Case 

Study 1 and Tables 3-10 and 3-11 for Case Study 2.  In these tables, the 

percentage deviation of the mean value of the 30 runs from the best-found 

solution over all runs at a particular number of function evaluations for a 

particular water availability scenario is also given. 

As shown in Table 3-9 for Case Study 1, the addition of the VFs resulted 

in improved mean objective function values at all stages of the search (i.e., 

for all evaluation numbers considered) and for all water availability 

scenarios.  When comparing ACO-SDVO-VF with ACD-SDVO, the 

improvements in mean objective function values resulting from the addition 

of the VFs were significant at p < 0.0001.  The same was true when 

comparing ACO-DDVO-VF with ACO-DDVO, except for three cases 

where p = 0.0003 (90% water availability, 1,000,000 function evaluations), 

p = 0.0016 (100% water availability, 1,000,000 function evaluations) and p 

= 0.0001 (100% water availability, 500,000 function evaluations). 

Based on the results from Tables 3-10 and 3-11, the addition of the VFs 

also resulted in improved mean objective function values at all stages of the 

search (i.e., for all evaluation numbers considered) and for all water 

availability scenarios for Case Study 2.  However, the p-values were much 

more variable for Case Study 2 compared to Case Study 1.  When 

comparing ACO-SDVO-VF with ACO-SDVO, the former performed 

significantly better at the p < 0.05 level (i.e., the 95% confidence level) and 

above for all evaluation numbers for the 10%, 35%, 50% and 100% water 

availability scenarios, while for the other two scenarios (70% and 85% 

water availability) this was not the case for evaluation numbers of 50,000 

and above. When comparing ACO-DDVO-VF with ACO-DDVO, the 
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former only performed significantly better at the p < 0.05 level and above 

for all evaluation numbers for the 50% water availability scenario.  For the 

10% and 100% scenarios, the p < 0.05 significance level was not satisfied 

for evaluation numbers of 100,000 and above, while for the 35% and 75% 

scenarios the p < 0.05 level occurred at 50,000 evaluations and above.  

Finally, for the 85% water availability scenario, the p < 0.05 significance 

threshold was 10,000 evaluations. 

Overall, the results indicate that the addition of the VFs introduced in 

this paper led to significant improvements in the ability to find solutions 

with better objective function values.  This benefit is more pronounced for 

smaller numbers of evaluations, suggesting that the use of VFs can have 

significant benefits for problems for which the computational requirements 

are great and computational budgets are limited, such as when detailed, 

process-based crop growth models are used.  The results in Tables 3-9 to 3-

11 confirm the benefits of using the dynamic decision variable constraints 

(DDVO) introduced by Nguyen et al. (2016) and also suggest that the use of 

DDVO, in conjunction with VFs, results in the best overall ACO 

performance. 
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Table 3-9.  
Comparison of Average Objective Function Values (Total Net Annual Return in Rs Year-1) Obtained over 30 Trials, the Deviation 
of these Values from the Best-Found Solution (in Parentheses Below the Average Values) and the p-Values for the t-Tests 
comparing ACO Formulations With and Without VF for Different Evaluation Numbers for Case Study 1. 

Water availability No. of evaluations ACO-SDVO vs ACO-SDVO-VF ACO-DDVO vs ACO-DDVO-VF 
ACO-SDVO ACO-SDVO-VF p-value for t-test ACO-DDVO ACO-DDVO-VF p-value for t-test 

100% 1,000 565,932.3 707,730.4 < 0.0001 661,634.6 796,684.2 < 0.0001 
(36.45%) (20.52%) (25.70%) (10.54%) 

2,000 606,467.1 753,582.1 < 0.0001 701,541.2 830,964.0 < 0.0001 
(31.89%) (15.37%) (21.22%) (6.69%) 

5,000 651,481.0 826,891.0 < 0.0001 762,838.2 867,150.2 < 0.0001 
(26.84%) (7.14%) (14.34%) (2.63%) 

10,000 704,423.8 867,469.8 < 0.0001 802,504.5 878,966.9 < 0.0001 
(20.89%) (2.58%) (9.88%) (1.30%) 

50,000 770,186.0 879,862.0 < 0.0001 855,207.5 887,956.7 < 0.0001 
(13.51%) (1.19%) (3.97%) (0.29%) 

100,000 819,262.3 888,153.2 < 0.0001 874,009.5 889,928.1 < 0.0001 
(8.00%) (0.26%) (1.86%) (0.07%) 

500,000 872,905.9 890,426.3 < 0.0001 889,173.5 890,499.9 0.0001 
(1.97%) (0.00%) (0.15%) (0.00%) 

1,000,000 881,838.7 890,465.4 < 0.0001 890,046.4 890,529.5 0.0016 
(0.97%) (0.00%) (0.05%) (0.00%) 

90% 1,000 545,105.4 708,527.0 < 0.0001 647,114.1 784,343.3 < 0.0001 
(37.57%) (18.85%) (25.90%) (10.18%) 

2,000 608,342.3 765,390.2 < 0.0001 692,580.5 821,282.5 < 0.0001 
(30.33%) (12.34%) (20.69%) (5.95%) 

5,000 659,347.1 835,879.7 < 0.0001 747,986.9 849,461.1 < 0.0001 
(24.49%) (4.27%) (14.35%) (2.73%) 

10,000 695,005.5 852,861.7 < 0.0001 795,470.0 859,270.5 < 0.0001 
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Water availability No. of evaluations ACO-SDVO vs ACO-SDVO-VF ACO-DDVO vs ACO-DDVO-VF 
ACO-SDVO ACO-SDVO-VF p-value for t-test ACO-DDVO ACO-DDVO-VF p-value for t-test 

(20.40%) (2.32%) (8.91%) (1.60%) 
50,000 752,121.2 861,724.7 < 0.0001 835,106.5 866,212.5 < 0.0001 

(13.86%) (1.31%) (4.37%) (0.81%) 
100,000 791,330.5 868,887.5 < 0.0001 852,020.7 869,569.0 < 0.0001 

(9.37%) (0.49%) (2.43%) (0.42%) 
500,000 846,912.6 872,902.7 < 0.0001 868,906.6 872,909.2 < 0.0001 

(3.00%) (0.03%) (0.50%) (0.04%) 
1,000,000 856,367.6 873,149.7 < 0.0001 871,667.0 873,273.0 0.0003 

(1.92%) (0.00%) (0.18%) (0.00%) 
75% 1,000 516,907.6 703,384.8 < 0.0001 589,000.4 764,290.6 < 0.0001 

(38.38%) (16.15%) (29.78%) (8.89%) 
2,000 560,790.0 747,464.5 < 0.0001 645,478.4 793,265.6 < 0.0001 

(33.15%) (10.89%) (23.05%) (5.43%) 
5,000 616,682.8 798,435.3 < 0.0001 714,719.6 817,347.3 < 0.0001 

(26.48%) (4.82%) (14.80%) (2.56%) 
10,000 640,954.3 815,255.6 < 0.0001 758,497.2 824,559.1 < 0.0001 

(23.59%) (2.81%) (9.58%) (1.70%) 
50,000 709,464.2 827,565.1 < 0.0001 805,907.7 833,097.1 < 0.0001 

(15.42%) (1.34%) (3.93%) (0.68%) 
100,000 752,978.7 832,567.0 < 0.0001 817,627.6 836,382.8 < 0.0001 

(10.24%) (0.75%) (2.53%) (0.29%) 
500,000 814,688.6 837,100.3 < 0.0001 832,292.4 837,959.7 < 0.0001 

(2.88%) (0.21%) (0.78%) (0.11%) 
1,000,000 822,062.0 837,647.8 < 0.0001 835,136.3 838,293.5 < 0.0001 

(2.00%) (0.14%) (0.44%) (0.07%) 
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Table 3-10. 
Comparison of Average Objective Function Values (Total Net Annual Return in AU$ year-1) Obtained over 30 Trials, the 
Deviation of these Values from the Best-Found Solution (in Parentheses Below the Average Values) and the p-Values for the t-Tests 
comparing ACO Formulations With and Without VF for Different Evaluation Numbers for Case Study 2 (River Murray – Normal 
Precipitation Years) 

Water availability No. of evaluations ACO-SDVO vs ACO-SDVO-VF ACO-DDVO vs ACO-DDVO-VF 
ACO-SDVO ACO-SDVO-VF p-value for t-test ACO-DDVO ACO-DDVO-VF p-value for t-test 

100% 1,000 1,998,171 2,485,737 < 0.0001 2,477,420 2,588,004 0.0047 
(37.52%) (22.28%) (22.54%) (19.08%) 

2,000 2,529,891 2,948,301 < 0.0001 2,905,378 2,951,132 0.0517 
(20.90%) (7.81%) (9.16%) (7.72%) 

5,000 3,148,770 3,183,345 < 0.0001 3,168,960 3,186,494 < 0.0001 
(1.55%) (0.46%) (0.91%) (0.37%) 

10,000 3,186,217 3,195,066 0.0046 3,194,176 3,195,113 < 0.0001 
(0.37%) (0.10%) (0.13%) (0.10%) 

50,000 3,197,077 3,197,512 0.00913 3,197,344 3,197,357 0.0008 
(0.03%) (0.02%) (0.03%) (0.03%) 

100,000 3,197,577 3,197,908 0.01817 3,197,581 3,197,624 0.0588 
(0.02%) (0.01%) (0.02%) (0.02%) 

500,000 3,197,684 3,198,007 0.0434 3,197,900 3,198,118 0.1467 
(0.02%) (0.01%) (0.01%) (0.00%) 

1,000,000 3,197,729 3,198,055 0.0257 3,198,048 3,198,150 0.1559 
(0.01%) (0.00%) (0.00%) (0.00%) 
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Water availability No. of evaluations ACO-SDVO vs ACO-SDVO-VF ACO-DDVO vs ACO-DDVO-VF 
ACO-SDVO ACO-SDVO-VF p-value for t-test ACO-DDVO ACO-DDVO-VF p-value for t-test 

85% 1,000 2,026,555 2,485,737 < 0.0001 2,411,376 2,522,697 0.0013 
(36.63%) (22.28%) (24.60%) (21.12%) 

2,000 2,549,290 2,951,448 < 0.0001 2,875,900 2,972,386 < 0.0001 
(20.29%) (7.72%) (10.08%) (7.06%) 

5,000 3,112,901 3,182,822 < 0.0001 3,189,343 3,193,058 0.0346 
(2.67%) (0.48%) (0.28%) (0.16%) 

10,000 3,176,135 3,195,297 < 0.0001 3,197,197 3,197,312 0.07873 
(0.69%) (0.09%) (0.03%) (0.03%) 

50,000 3,196,938 3,197,436 0.0819 3,197,577 3,197,618 0.7956 
(0.04%) (0.02%) (0.02%) (0.02%) 

100,000 3,197,778 3,197,820 0.9069 3,197,670 3,197,917 0.288 
(0.01%) (0.01%) (0.02%) (0.01%) 

500,000 3,198,018 3,198,056 0.6549 3,197,922 3,198,155 0.0815 
(0.01%) (0.00%) (0.01%) (0.00%) 

1,000,000 3,198,092 3,198,111 0.8203 3,198,053 3,198,163 0.1295 
(0.00%) (0.00%) (0.00%) (0.00%) 
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Table 3-11. 
Comparison of Average Objective Function Values (Total Net Annual Return in AU$ year-1) Obtained over 30 Trials, the 
Deviation of these Values from the Best-Found Solution (in Parentheses Below the Average Values) and the p-Values for the t-Tests 
comparing ACO Formulations With and Without VF for Different Evaluation Numbers for Case Study 2 (River Murray – 
Drought Years) 

Water availability No. of evaluations ACO-SDVO vs ACO-SDVO-VF ACO-DDVO vs ACO-DDVO-VF 
ACO-SDVO ACO-SDVO-

VF 
p-value  
for t-test 

ACO-DDVO ACO-DDVO-VF p-value for t-
test 

70% 1,000 1,941,279 2,468,732 < 0.0001 2,399,936 2,598,329 < 0.0001 
(39.29%) (22.79%) (24.94%) (18.74%) 

2,000 2,474,036 2,940,475 < 0.0001 2,839,908 3,017,716 < 0.0001 
(22.62%) (8.04%) (11.18%) (5.62%) 

5,000 3,092,723 3,177,186 < 0.0001 3,182,876 3,185,093 0.02167 
(3.27%) (0.63%) (0.46%) (0.39%) 

10,000 3,174,491 3,191,884 < 0.0001 3,192,746 3,193,968 0.02337 
(0.72%) (0.17%) (0.15%) (0.11%) 

50,000 3,192,713 3,195,293 0.0821 3,196,095 3,196,180 0.4208 
(0.15%) (0.07%) (0.04%) (0.04%) 

100,000 3,195,924 3,196,152 0.738 3,196,391 3,196,414 0.3551 
(0.05%) (0.04%) (0.03%) (0.03%) 

500,000 3,197,233 3,197,247 0.3574 3,197,378 3,197,382 0.2442 
(0.01%) (0.01%) (0.00%) (0.00%) 

1,000,000 3,197,396 3,197,423 0.7885 3,197,459 3,197,479 0.8064 
(0.00%) (0.00%) (0.00%) (0.00%) 

50% 1,000 1,597,131 2,267,891 < 0.0001 2,112,120 2,338,744 < 0.0001 
(46.72%) (24.35%) (29.57%) (22.01%) 
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Water availability No. of evaluations ACO-SDVO vs ACO-SDVO-VF ACO-DDVO vs ACO-DDVO-VF 
ACO-SDVO ACO-SDVO-

VF 
p-value  
for t-test 

ACO-DDVO ACO-DDVO-VF p-value for t-
test 

2,000 2,101,179 2,710,367 < 0.0001 2,553,502 2,766,652 < 0.0001 
(29.91%) (9.58%) (14.85%) (7.75%) 

5,000 2,812,515 2,943,016 < 0.0001 2,930,579 2,935,671 0.02634 
(6.18%) (1.82%) (2.28%) (2.11%) 

10,000 2,935,203 2,965,683 0.0005 2,953,652 2,955,463 0.0239 
(2.08%) (1.07%) (1.51%) (1.45%) 

50,000 2,956,886 2,979,432 0.0233 2,967,134 2,981,524 0.0044 
(1.36%) (0.61%) (1.06%) (0.58%) 

100,000 2,980,347 2,989,604 0.02755 2,970,068 2,991,094 0.0006 
(0.58%) (0.27%) (0.96%) (0.26%) 

500,000 2,989,721 2,995,927 0.03249 2,972,670 2,998,187 < 0.0001 
(0.27%) (0.06%) (0.88%) (0.02%) 

1,000,000 2,991,437 2,997,675 0.0318 2,979,074 2,998,910 < 0.0001 
(0.21%) (0.00%) (0.66%) (0.00%) 

35% 1,000 1,170,280 1,823,726 0.0081 1,738,890 1,805,180 0.0209 
(54.99%) (29.86%) (33.12%) (30.57%) 

2,000 1,474,953 2,182,345 0.0285 2,079,631 2,143,743 0.0414 
(43.27%) (16.06%) (20.01%) (17.55%) 

5,000 1,528,140 2,518,042 0.0251 2,428,474 2,462,407 0.02634 
(41.23%) (3.15%) (6.60%) (5.29%) 

10,000 2,354,982 2,562,864 0.0014 2,475,551 2,532,633 0.0239 
(9.42%) (1.43%) (4.79%) (2.59%) 

50,000 2,470,212 2,564,565 0.0248 2,546,467 2,572,819 0.0725 
(4.99%) (1.36%) (2.06%) (1.04%) 
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Water availability No. of evaluations ACO-SDVO vs ACO-SDVO-VF ACO-DDVO vs ACO-DDVO-VF 
ACO-SDVO ACO-SDVO-

VF 
p-value  
for t-test 

ACO-DDVO ACO-DDVO-VF p-value for t-
test 

100,000 2,537,560 2,570,122 0.0061 2,555,555 2,574,947 0.1715 
(2.40%) (1.15%) (1.71%) (0.96%) 

500,000 2,546,848 2,576,867 0.0171 2,571,720 2,579,036 0.4932 
(2.04%) (0.89%) (1.09%) (0.81%) 

1,000,000 2,552,653 2,579,696 0.0129 2,578,593 2,586,769 0.3818 
(1.82%) (0.78%) (0.82%) (0.51%) 

10% 1,000 No feasible solution 616,966 No solution 
for ACO-

SDVO 

571,089 657,147 < 0.0001 
(18.38%) (24.45%) (13.07%) 

2,000 693,270 658,859 710,134 < 0.0001 
(8.29%) (12.84%) (6.06%) 

5,000 723,830 710,601 732,665 < 0.0001 
(4.25%) (6.00%) (3.08%) 

10,000 735,897 727,866 742,242 0.0002 
(2.65%) (3.71%) (1.81%) 

50,000 749,416 736,500 749,400 0.0022 
(0.86%) (2.57%) (0.86%) 

100,000 749,829 746,117 749,722 0.1592 
(0.81%) (1.30%) (0.82%) 

500,000 750,991 750,783 752,124 0.6258 
(0.65%) (0.68%) (0.50%) 

1,000,000 753,847 752,630 753,184 0.5277 
(0.28%) (0.44%) (0.36%) 
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3.5.2 Optimal Solutions 

The optimal solutions obtained using ACO-DDVO-VF (the best 

performing ACO algorithm) and the corresponding net returns for Case 

Study 1 are given in Table 3-12.  As can be seen, the same four crops 

(mustard, clover, sugarcane, cotton) were included in the optimal solutions 

for all three water availability scenarios.  In addition, the area allocated to 

each of these crops was also the same, and the total area is fully planted in 

winter and summer.  However, the volume of water applied to these crops 

was increased as the volume of available water increased from 75% to 90%, 

and then to 100%, thereby increasing the net return.  The major difference 

between the optimal solutions identified using ACO and LP was the 

inclusion of wheat in the LP solution, at the expense of including larger 

areas of clover. The whole area of wheat in the LP solutions (i.e., 113 ha) 

was transferred to clover in the ACO-DDVO-VF solutions due to the higher 

net return of clover. As shown in Table 3-12, this resulted in a marked 

decrease in net return for all water availability scenarios. 

The optimal solutions and the corresponding net returns for Case Study 

2 are given in Table 3-13.  As can be seen, wine grapes and potatoes feature 

in the optimum solutions for all water availability scenarios.  Potatoes were 

included because there was a minimum area constraint of 5 ha for this crop.  

In contrast, wine grapes were included because they resulted in the highest 

net return.  As the volume of available water increased from 10% to 35%, 

and then to 50%, the area allocated to wine grapes was increased until the 

maximum allowable area of 100 ha was reached, at which point almonds 

were added to the mix of crops and the amount of water applied to potatoes 

doubled from 2,500 m3 to 5,000 m3. As available water was increased 

further to 70%, the constraint for maximum total area of 130 ha was reached 

by increasing the area allocated to almonds.  Net return also increased by 

increasing the amount of water allocated to all three crops.  When water 

availability was increased to 85%, there was only a slight increase in the 

amount of water allocated to potatoes, but no further changes occurred when 

water availability reached 100%.  This is because the maximum allowable 
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area has been allocated, wine grapes have their optimal water allocation and 

the amounts of water that can be applied to the other two crops have reached 

their upper limit at an allocation of 85%; thus, there is no additional benefit 

by increasing the amount of water that is available. 
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Table 3-12. 
Details of Best Solutions Obtained Using Linear Programming (LP) and ACO-DDVO-VF for Case Study 1 

Water %  
(volume, m3) 

Algorithm  
(net return, Rs) 

Decision variable Crop Total 
Wheat Gram Mustard Clover Sugarcane Cotton Paddy Winter Summer 

100%  
(1,112,750) 

LP Area (ha) 113 0 26.0a 17.0b 17.0a 122 0 173a 139a 
(800,652.6) Water  

(mm ha-1) 
200 0 190 608.1 542.3 526.1 0 1,112,750a 

 ACO Area (ha) 0 0 26.0a 130 17.0a 122 0 173a 139a 
 (890,600.7) Water  

(mm ha-1) 
0 0 140 470 510 310 0 1,112,300 

90%  
(1,001,780) 

LP Area (ha) 113 0 26.0a 17.0b 17.0a 122 0 173a 139a 
(799,725.6) Water  

(mm ha-1) 
200 0 190 550 542.3 443.2 0 1,001,780a 

 ACO Area (ha) 0 0 26.0a 130 17.0a 122 0 173a 139a 
 (873,457.6) Water  

(mm ha-1) 
0 0 140 430 520 260 0 1,001,000 

75%  
(844,570) 

LP Area (ha) 113 0 26.0a 17.0b 17.0a 122 0 173a 139a 
(792,611.2) Water  

(mm ha-1) 
200 0 190 550 542.3 306.1 0 834,533 

 ACO Area (ha) 0 0 26.0a 130 17.0a 122 0 173a 139a 
 (838,840.8) Water  

(mm ha-1) 
0 0 100 360 480 220 0 844,000 

a At maximum value 
b At minimum value 
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Table 3-13. 
Details of Best Solutions Obtained Using ACO-DDVO-VF for Case Study 2 

Water % Net return 
(AU$) 

Decision variable Crop Total 
(volume, m3) Wine Grapes Apricots Almonds Oranges Wheat Potatoes 

100% 3,198,173 Area (ha) 100a 0 25 0 0 5.0b 130.0a 
(1,170,000) Water (m3 ha-1) 5,500 0 9,000a 0 0 9,000a 820,000 

85% 3,198,173 Area (ha) 100a 0 25 0 0 5.0b 130.0a 
(994,500) Water (m3 ha-1) 5,500 0 9,000a 0 0 9,000a 820,000 

70% 3,197,556 Area (ha) 100a 0 25 0 0 5.0b 130.0a 
(819,000) Water (m3 ha-1) 5,500 0 9,000a 0 0 8,500 817,500 

50% 2,999,943 Area (ha) 100a 0 20 0 0 5.0b 125 
(585,000) Water (m3 ha-1) 4,500 0 5,500 0 0 5,000 585,000a 

35% 2,599,976 Area (ha) 99.2 0 0 0 0 5.0b 104.2 
(409,500) Water (m3 ha-1) 4,000 0 0 0 0 2,500 409,300 

10% 755,929 Area (ha) 34.8 0 0 0 0 5.0b 39.8 
(117,000) Water (m3 ha-1) 3,000 0 0 0 0 2,500 116,900 

a At maximum value 
b At minimum value 
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3.6 Summary and Conclusions 

In this paper, an improved ACO formulation for the allocation of crops 

and water to different irrigation areas was introduced. The proposed 

formulation incorporates domain knowledge related to the factors affecting 

net return into the optimization process via the use of visibility factors 

(VFs). In addition, the formulation enables the number of decision variable 

options to be adjusted dynamically, as proposed by Nguyen et al. (2016). 

These novel improvements to the standard ACO approach enable the size of 

the search space to be reduced and enable better regions of the search space 

to be explored.  

In order to comprehensively evaluate overall efficacy, the proposed 

approach was applied to the case study introduced by Kumar and Khepar 

(1980), used by Nguyen et al. (2016) to evaluate the benefits of dynamic 

decision variable option adjustment, and a real-world case study based on an 

irrigation district located in Loxton, South Australia near the River Murray. 

Various water allocation scenarios were considered for the two case studies, 

and four ACO variants were tested including: 1) a standard algorithm which 

uses SDVOs but does not incorporate domain knowledge through the use of 

VFs (ACO-SDVO); 2) an algorithm which uses SDVOs and incorporates 

domain knowledge through the use of VFs (ACO-SDVO-VF); 3) an 

algorithm that uses the DDVO adjustment introduced by Nguyen et al. 

(2016) but does not incorporate domain knowledge through the use of VFs 

(ACO-DDVO); and 4) an algorithm that uses the Nguyen et al. (2016) 

DDVO adjustment and also incorporates domain knowledge through the use 

of VFs (ACO-DDVO-VF). 

The results obtained for both case studies indicate that the use of VFs 

increased the ability to identify better solutions at all stages of the search, 

especially at smaller numbers of function evaluations. This highlights the 

potential of using VFs to identify near-optimal solutions for problems such 

as detailed irrigation scheduling for individual crops where the use of more 

computationally expensive, mechanistic crop growth models may be 

required. 
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Abstract 

A generic simulation-optimization framework for optimal irrigation and 

fertilizer scheduling is developed, where the problem is represented in the 

form of a decision-tree graph, ant colony optimization (ACO) is used as the 

optimization engine and a process-based crop growth model is applied to 

evaluate the objective function. By using dynamic decision variable option 

(DDVO) adjustment, the framework is able to reduce the size of the search 

space during the process of trial solution construction, thereby increasing 

computational efficiency. A real-world case study for irrigation and 

fertilizer scheduling of corn production in eastern Colorado, USA is 

implemented to test the utility of the proposed framework, where various 

fixed irrigation time steps (i.e., 3-day, 5-day and 7-day), levels of water 

availability (i.e., 100%, 60%, 40% and 35%), and rates of fertilizer 

application (i.e., 50, 100, 150 and 200 kg N ha-1) are considered. The 

results from the case study indicate that ACO-DDVO is able to identify 

irrigation and fertilizer schedules that result in better net returns while 

using less fertilizer and similar amounts of water, or similar net returns 

while using less water and fertilizer, than those obtained using the 

Microsoft Excel spreadsheet-based Colorado Irrigation Scheduler (CIS) 

tool for annual crops. Another advantage of ACO-DDVO compared to CIS 

is the identification of both optimal irrigation and fertilizer schedules. 
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4.1 Introduction 

In many regions of the world, irrigation is vital for food production. 

While the importance of irrigation should increase in the near future as a 

result of population growth (Dyson, 1999), economic development 

(Schneider et al., 2011) and climate change (Döll, 2002), there will most 

likely be a reduction in the amount of water available for irrigation due to 

increased domestic (Rosegrant and Ringler, 2000), industrial, commercial 

(Malla and Gopalakrishnan, 1999) and environmental (Burke et al., 2004; 

Szemis et al., 2013) demands, as well as over-allocation of existing 

resources (Jury and Vaux, 2005) and the impact of climate change (Arnell, 

1999; Liu et al., 2010). Consequently, there is a need to identify irrigation 

management strategies (e.g., sequential irrigation scheduling) that maximize 

economic return for a given water allocation. However, this is not a trivial 

task due to the typically large search space for this type of problem (Nguyen 

et al., 2016b). This is because each irrigation management strategy involves 

a number of associated choices to be made in relation to various 

components, including crops (type, rotation, area planted), irrigation method 

and scheduling (magnitude, duration, and timing), as well as fertilizer 

application method and scheduling (magnitude and timing). 

In order to address the irrigation management strategy problem as 

described above, optimization, simulation, and combined simulation-

optimization approaches have typically been employed. For the optimization 

approach (Singh, 2012, 2014), irrigation has been scheduled using dynamic 

programming (Rao et al., 1988; Naadimuthu et al., 1999), nonlinear 

programming (Ghahraman and Sepaskhah, 2004) and multi-objective 

programming (Lalehzari et al., 2015) to maximize crop yield or economic 

profit. Although these “conventional algorithms” (CAs) for optimization 

have the advantage of being simple and efficient to apply, they are 

somewhat limited in terms of handling nonlinear and “curse of 

dimensionality” (i.e., the search space size grows exponentially) problems, 

such as those that occur in irrigation management (Singh, 2014). In the past 

decade, metaheuristic algorithms, such as evolutionary algorithms (EAs), 

have been used extensively to overcome the shortcomings of CAs for 
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solving computationally demanding (i.e., NP-hard) sequential irrigation 

scheduling problems. For example, development and evaluation of genetic 

algorithms (GAs) for the irrigation scheduling problem have been presented 

by Wardlaw and Bhaktikul (2004), Haq et al. (2008), Haq and Anwar 

(2010), Anwar and Haq (2013), and Sadati et al. (2014).  

The simulation approach for solving irrigation management problems 

varies widely in the level of model complexity and soil-water-plant process 

representation. Simplistic crop models used for irrigation management 

include: (a) those based on crop-water production functions (Jensen (1968); 

Doorenbos and Kassam (1979)) to calculate crop yield response to irrigation 

water (Reca et al., 2001; Evans et al., 2003; Azamathulla et al., 2008; 

Georgiou and Papamichail, 2008; Brown et al., 2010; Prasad et al., 2011; 

Nguyen et al., 2016a; Nguyen et al., 2016b); and (b) the FAO Penman-

Monteith method crop evapotranspiration (ET) and the crop growth 

coefficient approach of Doorenbos and Pruitt (1977) to estimate crop water 

requirements (Shyam et al., 1994; Sethi et al., 2006; Khare et al., 2007). 

While these quasi-empirical modeling approaches are computationally 

efficient, they are unable to represent the underlying physical processes 

affecting crop water requirements and crop growth in a realistic manner. 

This limits the usefulness of the results obtained and prevents investigation 

of certain management strategies (i.e., fertilizer application timing and rate) 

on the optimal trade-offs between water allocation and net return. To assess 

the impact of different irrigation management strategies in a more realistic 

manner (i.e., through a detailed description of ET and/or crop growth), a 

number of process-based soil water balance/dynamics (George et al., 2000; 

Shang et al., 2004; Shang and Mao, 2006) and crop growth (Ma et al., 

2012b; Sun and Ren, 2014; Seidel et al., 2015; Linker et al., 2016) 

modeling studies have been conducted. These have utilized well-known 

cropping and agroecosystem models, including CERES-Maize (Jones et al., 

1986), CROPGRO (Boote et al., 1998), RZQWM2 (Ma et al., 2012a), 

AquaCrop (Vanuytrecht et al., 2014), EPIC (Zhang et al., 2015), STICS 

(Coucheney et al., 2015), and SWAT (Arnold et al., 2012). 
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The above modeling studies have generally focused on a small number 

of irrigation management strategy combinations (e.g., Camp et al. (1997); 

Rinaldi (2001); Arora (2006); Ma et al. (2012b)). Consequently, there is a 

need to combine detailed process-based crop growth simulation models with 

optimization approaches so that better irrigation management solutions 

resulting in maximum net return can be identified more efficiently. The 

majority of simulation-optimization studies in the literature have employed 

conventional optimization algorithms (Cai et al., 2010; Karamouz et al., 

2012; Hejazi et al., 2013). An exception to this is the work of Kloss et al. 

(2012), who developed a stochastic simulation framework combining the 

CropWat (Smith, 1992), PILOTE (Mailhol et al., 1997), Daisy 

(Abrahamsen and Hansen, 2000), and APSIM (Keating et al., 2003) 

cropping system models with an evolutionary algorithm to optimize 

irrigation management and water productivity. In general, simulation-

optimization approaches utilizing CAs have been somewhat restricted due to 

the generally large size of the search space, which may limit the ability to 

find globally optimal or near-globally optimal solutions in an acceptable 

time frame. 

In addition to evolutionary algorithms such as GAs, other metaheuristic 

search algorithms, such as ant colony optimization (ACO) algorithms, have 

contributed significantly to a range of water resources problems (Afshar et 

al., 2015), including irrigation management problems (Nguyen et al., 2016a; 

Nguyen et al., 2016b). In ACO, the problems are represented in the form of 

a decision-tree graph which artificial ants have to traverse in a stepwise 

fashion in order to generate trial solutions. Therefore, use of ACO can 

increase the probability of finding globally optimal or near-globally optimal 

solutions and improve computational efficiency through reduction in search 

space size and incorporation of domain knowledge during the optimization 

process. Similar to other metaheuristic algorithms, another advantage of 

ACO for irrigation management problems is the ability to easily connect to 

simulation models (Maier et al., 2014; Maier et al., 2015). 
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Nguyen et al. (2016b) developed a general optimization framework for 

the crop and water allocation problem that utilized a dynamic decision tree 

graph and ACO as the optimization engine. The framework was 

subsequently extended (Nguyen et al., 2016a) to include the use of domain 

knowledge to bias the selection of crops and water allocations at each node 

in the decision-tree graph in order to increase computational efficiency. 

However, these studies only focused on the annual optimal crop and water 

allocation problem (i.e., each sub-area of the total area in the studied region 

required decisions on which crop should be planted and how much water 

should be supplied to the selected crop), but did not consider irrigation 

water scheduling throughout the year (i.e., timing and magnitude of water 

allocation) for each crop in a sub-area. In addition, both studies used crop 

water production functions to calculate yield (instead of a physically-based 

and more computationally expensive crop growth simulation model) and did 

not consider the application of fertilizer, which can have a significant 

influence on achieving maximum net return.  

As evidenced from the above discussion, many, if not most, existing 

simulation-optimization approaches for solving the irrigation management 

problem have either used simplified representations of crop growth 

processes (which has a number of disadvantages for irrigation scheduling 

problems) or mathematical optimization algorithms that are not especially 

amenable to linkage with process-based crop growth models. Furthermore, 

while metaheuristic algorithms can be linked to detailed crop growth 

models, there are often inherent issues with simulation run-times and size of 

search space (Loucks and Van Beek, 2005; Nguyen et al., 2016b). Despite 

the potential advantages of ACO with respect to search space size reduction, 

to the authors’ knowledge, ACO has not been combined with process-based 

crop simulation models to identify realistic irrigation and fertilization 

schedules that maximize net return for a given water allocation. This type of 

approach is needed to rigorously assess the large number of combinations 

associated with the different components of the irrigation scheduling 

problem. Consequently, the specific objectives of this paper are:  
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1. To develop an innovative metaheuristic simulation-optimization 

framework that links ant colony optimization (ACO) with a process-

based crop growth model, enabling optimal or near-optimal irrigation 

water and fertilizer application schedules to be identified. 

 

2. To demonstrate the proposed optimization framework for an irrigation 

management case study in eastern Colorado, USA. 

 

The remainder of this paper is organized as follows. A brief introduction 

to ACO is given in Section 4.2. The generic simulation-optimization 

framework for irrigation and fertilizer scheduling is introduced in Section 

4.3, followed by a case study description and methodology for evaluating 

the proposed framework with the case study in Section 4.4. The results and 

discussion are presented in Section 4.5 before a summary and conclusions 

are given in Section 4.6. 

4.2 Ant Colony Optimization (ACO) 

ACO is a metaheuristic optimization algorithm inspired by the foraging 

behavior of ants to identify the shortest path from their nest to a food source 

using pheromone trails (Dorigo et al., 1996). In ACO, the decision space of 

the optimization problem is represented by a graph, the nodes and edges of 

which represent decision variables and decision variable options, 

respectively.  A solution is constructed by an ant traversing the graph and 

selecting an edge at each node. As ants travel along a path, they deposit 

pheromone.  The paths that are traversed more often have higher pheromone 

concentrations and are more likely to be selected  by other ants in the future 

(Maier et al., 2003). An example of the pheromone distribution for the 

Travelling Salesman Problem (TSP) with 7 cities is shown in Figure 4-1, 

where the thicker edges (6-7-1-2-3-4-5) of the right-hand graph are 

proportional to the higher pheromone level. During each iteration of the 

ACO process, all members of a colony traverse the graph, each generating a 

solution. After each iteration, paths that led to better overall solutions are 

rewarded with more pheromone, making them more likely to be selected in 
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subsequent iterations. In this way, better solutions evolve as the number of 

iterations increases.  

 
Figure 4-1. An example of pheromone distribution for of a 7-city TSP 

 

At each decision point, the probability that an ant selects a particular 

edge (e.g., edge A,B) is given by the following equation (Dorigo et al., 

1996): 

p୅୆ = [தఽా(୲)]ಉൣఽా൧
ಊ

∑ [தఽా(୲)]ಉൣఽా൧
ಊొఽ

ాసభ

              (4.1) 

where t is the index of iteration, τAB(t) is the amount of pheromone on edge 

(A,B) at iteration t, AB is the visibility of edge (A,B), which provides a 

user-defined bias towards locally optimal solutions at the decision point 

under consideration,  NA is the set of all decision options at decision point 

A, α is the pheromone importance factor, and β is the visibility importance 

factor.  The pheromone update on each edge (e.g. edge A,B) after each 

iteration is given by the following equation (Dorigo et al., 1996): 

τ୅୆(t + 1) = ρτ୅୆(t) + τ୅୆(t)            (4.2) 

where τAB(t) is the pheromone addition for edge (A,B) during iteration t, 

which can be achieved using a range of approaches, such as the ant colony 

system, elitist ant system, elitist-rank ant system and min-max ant system 

(Zecchin et al., 2007). The ACO iterations continue until specific stopping 

criteria have been met, such as the completion of a specified number of 

iterations or until there is no further improvement in the objective function. 
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4.3 Proposed Simulation – Optimization Framework 

4.3.1 Overview 

An overview of the proposed ACO optimization – simulation framework 

for the irrigation and fertilizer scheduling problem is given in Figure 4-2. 

The first step in the framework is problem formulation, including 

specification of decision variables (e.g., irrigation method, magnitude and 

timing of irrigation water application, rate and timing of fertilizer 

application, etc.), stipulation of decision variable options (e.g., irrigation 

water and fertilizer application time step), identification of economic data 

(e.g., crop price, production cost, water cost, and fertilizer cost), 

specification of constraints (e.g., annual water allocation), and definition of 

the objective function (e.g., economic return). 

Next, optimal irrigation water and fertilizer application schedules are 

identified using ACO. As introduced in Section 4.2, ACO algorithms work 

in an iterative fashion, in that they generally start with a number 

(population) of randomly selected solutions (i.e., irrigation water and 

fertilizer application schedules). As part of the proposed framework, the 

utility of these solutions is assessed with the aid of a crop growth simulation 

model, before the ants use this information to select a new (and generally 

better) population of solutions. This loop is repeated until the stopping 

criteria are met. In this way, ACO algorithms can be linked with the crop 

growth simulation model so that the solutions developed are run through the 

model and the corresponding model outputs are used to calculate the 

objectives and constraints. The objectives and constraints are then passed 

back to the ACO algorithm to assist with the selection of trial solutions in 

the next iteration.  It should be noted that in order to assess the utility of a 

proposed irrigation or fertilizer application schedule with the aid of a crop 

growth simulation model, the model must be sufficiently detailed to enable 

all of the decision variables to be represented as model inputs. 
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Figure 4-2. Overview of proposed optimization – simulation framework 
for irrigation and fertilizer scheduling 

 

As ACO algorithms work with populations of solutions, it is generally 

possible to identify a number of near-optimal solutions. By using a global 

search technique in combination with a process-driven crop growth 

simulation model, the shortcomings of existing simulation-optimization 

approaches can be overcome, thus enabling the identification of realistic 

management strategies that maximize net return for a given water allocation.  

Details of the Problem Formulation, Optimization, and Simulation steps are 

given in the following sections. 

4.3.2 Problem Formulation 

The process of the problem formulation for irrigation and fertilizer 

scheduling includes the following main steps: 

 Specify decision variables and decision variable options 

In irrigation water and fertilizer application scheduling problems, the 

timing and magnitude of irrigation events and fertilizer applications are 

decision variables. The corresponding decision variable options are 
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irrigation time steps (e.g., daily, 3-day, weekly, etc.), the depth of irrigation 

water (e.g., 0.5 cm, 1.0 cm, etc.), when to apply fertilizer (e.g., pre-planting, 

pre-emergence, etc.) and the fertilizer application rate (e.g., 50 kg/ha, 100 

kg/ha, etc.). The water volume of the irrigation event will be selected 

depending on the capacity of the irrigation system. 

 Specify the objective function and constraints  

The proposed objective function for maximizing the net return has the 

following form:  

ܨ = ∑ ܺ ௜ܻ ௜ܲ
௡௬
௜ୀଵ −∑ ܺ ൭

௜ܥ + ∑ ௜ܹ௝ܥ௪௜
௡೔ೝೝ(೔)
௝ୀଵ

+∑ ௙௘௥௜ܥ௜௞ܴܧܨ
௡_௙௘௥(௜)
௞ୀଵ

൱௡௬
௜ୀଵ                  (4.3) 

where F is the total net return ($ year-1), ny is the number of years planted, 

n_irr(i) is the number of irrigation days in year i, n_fer(i) is the number of 

fertilizer applications in year i, X is the area of the crop planted (ha), Yi is 

the crop yield in year i (kg ha-1), Pi is the crop price in year i ($ kg-1), Ci is 

the fixed crop production cost in year i ($ ha-1), Wij is the depth of water 

supplied on irrigated day j of year i (cm), Cwi is the unit cost of irrigated 

water in year i ($ ML-1), FERik is the rate of fertilizer applied in application 

k of year i (kg ha-1), Cferi is the unit cost of fertilizer in year i ($ kg-1). 

The objective function is optimized subject to the following constraints: 

- Constraint for annual water availability: 

The total volume of irrigation water applied in a year must not exceed 

the corresponding available supply (including both surface water and 

ground water) in that year.  

∑ ௜ܹ௝
௡_௜௥௥(௜)
௝ୀଵ ܺ ≤ ௠ܹ௔௫௜                                 (4.4) 

where Wmaxi is the total volume of water available in year i. 

- Constraint for capacity of irrigation system: 
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The volume of irrigation water supplied in a day must not exceed the 

capacity of the irrigation system. 

௜ܹ௝ܺ ≤  (4.5)                                   ݎݎܫ

where Irr is the maximum capacity (cm day-1) of the irrigation system. 

4.3.3 Optimization Model 

4.3.3.1 Graph structure problem representation 

As discussed in Section 4.3.2, an irrigation and fertilizer schedule can be 

established by identifying the timing and magnitude of irrigation events and 

fertilizer applications. Therefore, there are two separate decision-tree graphs 

for irrigation and fertilizer scheduling as shown in Figures 4-3 and 4-4. 

 

Figure 4-3. Decision tree graph for irrigation scheduling for fixed 
irrigation time steps 

Note: W1N, W2N, etc = the depths of irrigation; other variables are defined in 
Equation 4.3. 
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For the irrigation water scheduling problem, the decision tree includes a 

set of decision points corresponding to the number of irrigation events 

(days) for the scheduling period (Figure 4-3). It should be noted that the 

irrigation time step is fixed and irrigation events only occur during the 

growth period of the crop (i.e., from the planting date to the harvesting 

date). As a planning horizon of more than one year is considered, the 

maximum period of irrigation is the sum of the crop growth periods. At the 

beginning of each decision point, a depth of irrigation water (i.e., W11, W12, 

…, W1N, W21, …, W[n_irr(ny)]N) is selected for each irrigation event. If the 

depth selected is zero, there is no irrigation event. A complete irrigation 

schedule is constructed once all decisions have been made from the start to 

the finish of the maximum irrigation period. 

 

Figure 4-4. Decision tree graph for fertilizer scheduling  

Note: R1N1, R2N1, etc = the rate of fertilizer application; other variables are 
defined in Equation 4.3. 

In a similar way to irrigation water scheduling, the fertilizer application 

scheduling decision tree includes a set of decision points corresponding to 

the number of fertilizer applications for the studied period (Figure 4-4).  As 

can be seen, a rate (i.e., R11, R12, …, R1N1, R21, …, R[n_fer(ny)]N1) for each 
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fertilizer application is selected at the beginning of each decision point.  In 

fact, the timings for these applications may be pre-plant or pre-emergence. 

A complete fertilizer schedule is constructed once a decision has been made 

sequentially at each decision point. 

4.3.3.2 Ant colony optimization model 

As mentioned in Section 4.3.1, the ACO model is used to identify 

optimal irrigation water and fertilizer application scheduling based on the 

decision trees in Figures 4-3 and 4-4. The ACO process is outlined in 

Section 4.2. In the framework, the constraint for the capacity of the 

irrigation system (Equation 4.5) can be included into the options for the 

irrigation depth. For example, if 2.5 cm is the daily capacity of the irrigation 

system, the options should be less than or equal to 2.5 cm. For the constraint 

of annual water availability, the method of dynamically adjusting decision 

variable options as introduced in the optimal crop and water allocation 

problem of Nguyen et al. (2016b) is applied to reduce search space size. In 

this method, all constraints are checked at each decision point to remove any 

infeasible options, thereby adjusting the decision variable options 

dynamically during the optimization process. The key steps for handling the 

constraint for annual water availability include: 

1. Keep track of the total volume of irrigation water used after each 

irrigation event as the solution is constructed along the decision tree. 

2. Calculate the remaining volume of irrigation water that is available for 

the irrigation event at this current decision. 

3. Omit the choices of the depth of irrigated water for the irrigation event if 

the volumes of irrigation water corresponding to these choices exceed 

the available volume of water in Step 2. 

4.3.4 Simulation Model 

In the proposed framework for irrigation management, a crop model that 

is integrated with the ACO model is employed as a tool for estimating crop 
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yield to evaluate the trial irrigation management strategies. As discussed in 

Section 4.1, a mechanistic, process-based crop model (e.g., CROPGRO, 

RZWQM2) was selected, as it can provide a realistic representation of soil 

moisture-climate interactions and the underlying physical processes of crop 

water requirements, crop growth, and agricultural management strategies 

(e.g., irrigation water and fertilizer application). When linked with the ACO 

model, a mechanistic crop growth model is able to calculate the value of the 

objective function (e.g., the net return) that does not contain the decision 

variables directly, as is the case here (Soundharajan and Sudheer, 2009). 

4.4 Case Study 

In order to test the utility of the proposed framework, the case study of 

irrigation water and fertilizer application scheduling of corn production 

introduced by Gleason (2013) is applied. The case study utilizes data from a 

field experiment initiated in 2010 near Greeley, Colorado (latitude N40.46°, 

longitude W104.58°, altitude 1429 m above mean sea level). The field was 

planted with corn in early May of each year of the study from 2010-2012. 

The soil at the site is an Olney fine sandy loam (fine-loamy, mixed, 

superactive, mesic Ustollic Haplargids) and is fairly uniform throughout the 

200 cm soil profile. Soil bulk density in the corn field was determined using 

a Madera probe (Precision Machine Company Inc., Lincoln, NE) and 

methods described by Evett (2008). Two samples were taken from the field 

at the end of the 2011 growing season at depths of 0-15, 15-30, 30-45, 45-

60, 60-90, and 90-105 cm and again at the beginning of the 2012 growing 

season at the same depths. The permanent wilting point (PWP) for each soil 

layer was determined using a WP4-T Dewpoint PotentiaMeter (Decagon 

Devices, Inc., Pullman WA). A soil water retention curve (SWRC) was 

created to obtain gravimetric water content at 1.5 MPa tension. Volumetric 

water content at PWP was then calculated using methods described by Evett 

(2008). Field capacity (FC) for each soil layer was determined in situ by soil 

core sampling 24 hours after several deep irrigation/precipitation events in 

2011. Gravimetric water content at FC determined in 2011 was used to 

calculate volumetric water content at FC for all years. Total plant available 

water content (TAW) was determined using the equation TAW = FC - PWP, 
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and TAW was calculated for each soil layer sampled. Additional soil core 

samples were taken from the corn field on a weekly basis throughout each 

growing season using a JMC Backsaver handle and a “dry” sampling tube 

with a core diameter of 1.905 centimeters (Clements Associates Inc., 

Newton, IA). The soil samples were taken at the same depth increments as 

described above, weighed to obtain fresh mass, and then oven dried at 

105oC until a constant mass was obtained. Gravimetric (g g-1) and 

volumetric (cm3 cm-3) water content in the corn field was then determined 

using methods described by Evett (2008).  

Weather data were recorded on site with a standard Colorado 

Agricultural Meteorological Network 

(http://ccc.atmos.colostate.edu/∼coagmet) weather station (GLY04). 

Missing data at the beginning of the study were estimated with data from a 

nearby station 800 m to the east (GLY03). Average daily temperature 

during the growing season was 18.2oC in 2010, 17.9oC in 2011, and 17.3oC 

in 2012. Corresponding growing season precipitation in each year was 24.5 

cm, 23.7 cm, and 21.1 cm, respectively. The 26.3 ha field was divided into 9 

m by 44 m small plots. Maize (‘Dekalb 52-59’) was planted at an average 

rate of 85,000 seeds per hectare with 0.76 m row spacing on May 12 in 2010 

and May 11 in 2011 and 2012, and harvested on November 6 in 2010, 

November 12 in 2011, and October 29 in 2012. Fertilizer as urea-

ammonium-nitrate (UAN) was applied at planting.   The application rates 

were 134 kg N ha-1 in 2010, 160 kg N ha−1 in 2011, and 146 kg N ha−1 in 

2012. The corn field was irrigated via a center pivot irrigation system. The 

irrigation system and irrigation water application was maintained and 

managed by a cooperative grower who participated in the study. Irrigation 

application efficiency of the system was estimated to be 90%, based on 

guidelines outlined by Martin et al. (2007). Irrigation was applied every 3-7 

days, total irrigation amounts were 46.9 cm in 2010, 41.7 cm in 2011, and 

39.5 cm in 2012. The amount of crop water used (actual ET) for the field 

was estimated on a daily basis based on reference ET demand, a crop 

coefficient, rainfall, and soil water deficit (FAO 56, Allen et al., 1998). 
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4.4.1 Problem Formulation 

In this case study, the decision variables are the timing and magnitude of 

irrigation events and fertilizer applications. Fixed time steps between 

irrigation events of either 3-, 5- and 7-days were used. The annual irrigation 

period started on 15 May and ended on 30 September, i.e., the maximum 

number of decision points was 144 (48 per year). The maximum daily depth 

of irrigation was 2.54 cm and five options for irrigation depth were 

considered (0, 0.635, 1.27, 1.905 and 2.54 cm). The two possible fertilizer 

applications for each year were pre-planting (i.e., before 2 May) and a mid-

summer application on 1 July. The fertilizer (NO3-N and NH4-N) rate 

options were 0, 50, 100, 150, and 200 kg N ha-1. In this case study, the unit 

cost of water for center pivot irrigation was considered to be negligible. 

Other economic data for the problem are given in Table 4-1.  

Table 4-1.  
Economic data from 2010-2012 for agricultural production in 
Colorado, US 

Items 2010 2011 2012 

Crop price ($ kg-1)a 0.237 0.271 0.299 

Fixed crop production cost ($ ha-1)b 1,171.6 1,299.1 1,483.0 

Fertilizer cost ($ kg-1)c 0.418 0.509 0.529 

Source: a Agricultural prices, the National Agricultural Statistics Service 

(NASS), Agricultural Statistics Board, United States Department of 

Agriculture (USDA); b Estimated Production Costs and Returns, Colorado 

State University; c Fertilizer Prices, United States Department of Agriculture 

(USDA). 

 

The objective function of this problem is given as:  

ܨ = ∑ ܺ ௜ܻ ௜ܲ
ଷ
௜ୀଵ −∑ ܺ൫ܥ௜ + ∑ ௙௘௥௜ଶܥ௜௞ܴܧܨ

௞ୀଵ ൯ଷ
௜ୀଵ                     (4.6) 

where the variables were defined in Section 4.3.2. 

There were no constraints in this case study, as the constraint for the 

capacity of the irrigation system was included into the options for irrigation 
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depth. Although annual water availability was not limited, different levels of 

available water were tested to evaluate their impacts on net return. 

4.4.2 Optimization model 

The decision space of the irrigation water scheduling problem 

considered is represented by the graph in Figure 4-3. The decision tree of 

fertilizer application included six decision points (two per year), each of 

which is the choice of fertilizer application rate.  The Max-Min Ant System 

(MMAS) algorithm was used as the ACO optimization engine, as MMAS 

has been applied successfully in a number of water resources case studies 

(e.g., Zecchin et al. (2006); Zecchin et al. (2007); Afshar and Moeini 

(2008); Szemis et al. (2012); Zecchin et al. (2012); Nguyen et al. (2016b); 

Nguyen et al. (2016a)). As part of this algorithm, pheromone addition for 

edge (A,B) (Equation 4.2) is given by: 

߬஺஻(ݐ) = ߬஺஻௜௕ (ݐ) + ߬஺஻
௚௕(ݐ)                                (4.7) 

where ߬஺஻௜௕ and ߬஺஻ (ݐ)
௚௕(ݐ) are the pheromone additions for the iteration-

best solution (sib) and the global-best solution (sgb), respectively. While sib is 

used to update the pheromone on edge (A, B) after each iteration, sgb is 

applied with the frequency fglobal (i.e., ߬஺஻
௚௕(ݐ) is calculated after each fglobal 

iteration). ߬஺஻௜௕ and ߬஺஻ (ݐ)
௚௕(ݐ) are given by:  

߬஺஻௜௕ (ݐ) = ቊ
௤

௙൫௦೔್(௧)൯
(ܤ,ܣ)	݂݅			 ∈ (ݐ)௜௕ݏ

݁ݏ݅ݓݎℎ݁ݐ݋															0
                              (4.8) 

߬஺஻
௚௕(ݐ) = ቊ

௤
௙൫௦೒್(௧)൯

(ܤ,ܣ)	݂݅			 ∈ 	݀݋݉	ݐ		݀݊ܽ	(ݐ)௚௕ݏ ௚݂௟௢௕௔௟ = 0

																															݁ݏ݅ݓݎℎ݁ݐ݋																														0
         (4.9) 

where ݂൫ݏ௜௕(ݐ)൯ and ݂(ݏ௚௕(ݐ)) are the objective function values of sib and 

sgb at iteration t, respectively; and q is pheromone reward factor. 

In MMAS, the pheromone on each edge is limited to lie within a given 

range in order to avoid search stagnation, i.e., ߬௠௜௡(ݐ) ≤ ߬஺஻(ݐ) ≤ ߬௠௔௫(ݐ). 

The equations for ߬௠௜௡(ݐ) and ߬௠௔௫(ݐ) are given as follows: 
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߬௠௔௫(ݐ) = ቀ ଵ
ଵିఘ

ቁ ଵ
௙൫௦೒್(௧ିଵ)൯

                           (4.10) 

߬௠௜௡(ݐ) = ఛ೘ೌೣ(௧)൫ଵି ඥ௣್೐ೞ೟೙ ൯
(௔௩௚ିଵ) ඥ௣್೐ೞ೟೙                      (4.11) 

where n is the number of decision points, avg is the average number of 

edges at each decision point, and pbest is the probability of constructing the 

global best solution at iteration t, where the edges chosen have pheromone 

trail values of ߬௠௔௫ and the pheromone values of other edges are ߬௠௜௡. 

Additionally, MMAS also uses a pheromone trail smoothing (PTS) 

mechanism that reduces the difference between edges in terms of 

pheromone intensities, and thus, strengthens exploration. 

߬஺஻∗ (ݐ) = ߬஺஻(ݐ) + ൫߬௠௔௫(ݐ)− ߬஺஻(ݐ)൯                   (4.12) 

where  is the PTS coefficient (0 ≤  ≤ 1).  

4.4.3 Simulation Model 

The Root Zone Water Quality Model (RZWQM2, version 3.0) with the 

Decision Support Systems for Agrotechnology Transfer (DSSAT, version 

4.5) CERES-Maize crop module was used to evaluate the objective 

function. RZWQM2 was selected because it has been successfully applied 

in numerous studies for crop yield estimation, including Saseendran et al. 

(2010), Islam et al. (2012), Ma et al. (2012b), Qi et al. (2012), and 

Saseendran et al. (2014).  

4.4.3.1 RZWQM2 description  

RZWQM2 is a process-oriented agricultural systems model that 

integrates various physical, chemical and biological processes and simulates 

the impacts of soil-crop-nutrient management practices on soil water, crop 

production, and water quality under different climate conditions (Ahuja et 

al., 2000). The crop simulation modules (CSM) in the DSSAT 4.5 package 

facilitate detailed growth and development simulations of 16 different crops 

(Jones et al., 2003). The soil and water routines of RZWQM2 are linked 
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with the CSM-DSSAT 4.5 crop modules in the current version of 

RZWQM2 (Ma et al., 2009). RZWQM2 uses the Green-Ampt equation for 

infiltration and Richards’ equation for redistribution of water in the soil 

profile (Ahuja et al., 2000). Potential evapotranspiration is calculated using 

the extended Shuttleworth-Wallace equation, which is the Penman-Monteith 

equation modified to include partial crop canopy and the surface crop 

residue dynamics on aerodynamics and energy fluxes (Farahani and 

DeCoursey, 2000).  The soil carbon/nitrogen dynamic module contains two 

surface residue pools, three soil humus pools and three soil microbial pools. 

N mineralization, nitrification, denitrification, ammonia volatilization, urea 

hydrolysis, and microbial population processes are simulated in detail 

(Shaffer et al., 2000). Management practices simulated in the model include 

tillage, applications of irrigation, application of manure and fertilizer at 

different rates and times by different methods, planting and harvesting 

operation, and surface crop residue dynamics (Rojas and Ahuja, 2000). The 

DSSAT 4.5-CERES (Crop Environment Resource Synthesis) crop plant 

growth module for corn was used in this study. The DSSAT 4.5-CERES-

Maize plant growth module in RZWQM2 simulates phenological stage, 

vegetative and reproductive growth, and crop yield and its components. This 

module calculates net biomass production using the radiation use efficiency 

(RUE) approach. Biomass production per day is a product of photosynthetic 

active radiation intercepted by the canopy and the RUE. Water stress effects 

on photosynthesis are simulated by CERES using empirically calculated 

stress factors, with respect to potential transpiration and crop water uptake 

(Ritchie and Otter-Nacke, 1985).   

4.4.3.2 RZWQM2 parameterization 

RZWQM2 was calibrated for yield, biomass, leaf area index (LAI), and 

soil water content for the 2010 experimental year. The model was first 

manually calibrated with a set of RZWQM2-DSSAT plant cultivar 

parameters (P1, P2, P5, G2, G3, and PHINT) from Ma et al. (2012b) and a 

laboratory derived soil water retention curve (SWRC). The manually 

calibrated set of plant parameters simulated plant biomass, yield, and LAI 
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reasonably well for 2010; however, the soil water content was not simulated 

well with a Root Mean Square Deviation (RMSD) of 23% for total profile 

soil water and 27% for soil water content. Automated calibration was then 

performed with the laboratory-measured SWRC to optimize the above 

RZWQM2-DSSAT plant cultivar parameters to improve soil water content 

simulation. The autocalibration was performed using a single-objective 

calibration tool based on the Shuffled Complex Evolution (SCE) algorithm 

(Duan et al., 1992). The SCE algorithm has been widely used in multiple 

agroecosystem model calibration arenas (i.e., hydrology, crop growth, soil 

erosion, land surface modeling, etc.) and has generally been found to be 

robust, effective, and efficient (Duan, 2003). In this study, the sum of 

squares of residuals was selected as the objective function to be minimized. 

After autocalibration, simulated yield and biomass for 2010 were both 

within 10% of the observed values. In addition, simulated anthesis day was 

88 days after planting (DAP) and simulated physiological maturity date was 

146 DAP, which were within 5% of observed dates in the field. Simulated 

maximum LAI was 4.74 versus the observed 4.54 and simulated RMSD was 

0.653 for LAI, 0.44 cm3 cm−3 for soil water content, and 4.35 cm for soil 

profile water. RZWQM2 was used with the calibrated plant cultivar 

parameters to simulate crop yield for 2011 and 2012. 

4.4.4 Computational experiments 

The irrigation water schedule obtained from the Microsoft Excel 

spreadsheet-based Colorado Irrigation Scheduler (CIS) tool for annual crops 

(Gleason, 2013) was used as a benchmark against which to compare the 

results from the proposed ACO framework. The CIS was applied to 

calculate daily total soil water deficit, which can be compared to a 

management allowed depletion value for scheduling irrigation events for 

crops in Colorado. A potential advantage of the proposed ACO approach is 

that it utilizes knowledge of future rainfall events, whereas the CIS does not 

(i.e., actual rainfall data, corresponding to perfect knowledge of future 

rainfall, are used when the RZWQM2 model is run for a particular irrigation 

and fertilizer schedule developed using ACO). The irrigation schedules 
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from the application of CIS for corn production during 2010-2012 were 

presented in Gleason (2013). The fertilizer (NO3-N and NH4-N) rates of two 

applications each year for pre-planting (i.e., before 2 May) and mid-summer 

on 1 July were assumed to be 100 kg N ha-1 in this paper. 

Six computational experiments were conducted to test the utility of the 

proposed framework in terms of the impact of using different levels of water 

availability and different irrigation intervals (Table 4-2). As mentioned 

previously, three potential fixed irrigation intervals were considered, namely 

3-, 5- and 7-days. As the maximum amount of water that can be delivered 

on a given day is restricted by the capacity of the available irrigation 

infrastructure (2.54 cm day-1), the maximum total amount of water that can 

be applied is reduced as the irrigation interval is increased.  This is shown in 

Table 4-2, where the maximum total amount of water that can be delivered 

when a 3-day irrigation interval is used is designated as 100%, which is 

reduced to 60% and 44% when the irrigation interval is increased to 5- and 

7-days, respectively.  In order to be able to separate the impact of irrigation 

interval and total water availability, 60% and 44% water availability levels 

were also applied with an irrigation interval of 3 days.  In order to be able to 

compare the results between the proposed ACO framework and Gleason 

(2013) in terms of water use, a 3-day irrigation interval was also combined 

with a water availability level of 35% (about 42.7 cm year-1), as this level 

was just below the smallest annual amount of irrigation water used in 

Gleason (2013) (i.e., 46.1 cm in 2010), whereas the other three irrigation 

levels considered (i.e. 100%, 60% and 44%) all correspond to irrigation 

depths that are greater than this. 

The ACO algorithm described in Section 4.3.3.2 that uses the method of 

dynamically adjusting decision variable options (henceforth referred to as 

ACO-DDVO) was used in all experiments. Each experiment was 

implemented for 10 different numbers of objective function evaluations, 

ranging from 250 to 2,500, to enable algorithm convergence to be 

examined. A sensitivity analysis was carried out to select the most 

appropriate values of the ACO parameters (see Table 4-3). Due to the 
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probabilistic nature of the searching behavior of ACO, each experiment was 

repeated 30 times from different starting points in the solution space using 

the selected values of the ACO parameters given in Table 4-3.  All 

computational experiments were implemented on e-Research South 

Australia’s Tizard supercomputer, which includes 48 SGI computer nodes 

connected by a high-speed QDR Infiniband network, 48 cores (4 AMD 

6238 12-core 2.6Ghz CPUs) and 128GB memory (2.7GB per core) for each 

node, as well as a total of 2304 cores with a peak performance of 24 

TFLOPS. 

Table 4-2.  
Details of computational experiments. 

Experiment 

No. of 
decision 

points for 
irrigation 

Choices 
for 

irrigation 
days 

Choices 
for 

irrigation 
water 

Choices 
for 

fertilizer 

Water 
Availability 

Size of 
total 

search 
space 

1 144 3-day 

0, 0.635, 
1.27, 

1.905 and 
2.54 cm 

0, 50, 
100, 150, 
and 200 

kg N ha-1 

100% 7.0 x 
10104 

2 144 3-day 

0, 0.635, 
1.27, 

1.905 and 
2.54 cm 

0, 50, 
100, 150, 
and 200 

kg N ha-1 

60% 7.0 x 
10104 

3 144 3-day 

0, 0.635, 
1.27, 

1.905 and 
2.54 cm 

0, 50, 
100, 150, 
and 200 

kg N ha-1 

44% 7.0 x 
10104 

4 144 3-day 

0, 0.635, 
1.27, 

1.905 and 
2.54 cm 

0, 50, 
100, 150, 
and 200 

kg N ha-1 

35% 7.0 x 
10104 

5 87 5-day 

0, 0.635, 
1.27, 

1.905 and 
2.54 cm 

0, 50, 
100, 150, 
and 200 

kg N ha-1 

60% 1.0 x 
1065 

6 63 7-day 

0, 0.635, 
1.27, 

1.905 and 
2.54 cm 

0, 50, 
100, 150, 
and 200 

kg N ha-1 

44% 1.7 x 
1048 
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Table 4-3.  
The ACO parameter values considered as part of the sensitivity analysis and 
their values selected. 

Parameter Values for sensitivity analysis Values 
selected 

Number of ants 10; 20; 50; 100 50 

Pheromone importance factor 
(α) 0.1, 0.5, 1.0, 1.2, 1.5 1.0 

Initial pheromone (τo) 0.5, 1.0, 2.0, 5.0, 10.0, 20.0 10.0 

Pheromone persistence (ρ) 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 
0.8, 0.9 0.6 

Pheromone reward (q) 0.5, 1.0, 2.0, 5.0, 10.0, 20.0, 50.0 20.0 
 

4.5 Results and discussion 

4.5.1 Impact of using different water availability and irrigation intervals  

The best total net return obtained over the 3-year period investigated 

(2010-2012) from the 30 ACO runs for each experiment, as well as the 

corresponding total irrigation water used, the total fertilizer used and the 

number of function evaluations required to achieve this result, are shown in 

Table 4-4.  The values of net return, irrigation water used and fertilizer used 

obtained by Gleason (2013) are also shown, as these values were used as a 

benchmark against which to compare the ACO results.  Table 4-4 shows 

that the best net return was found in Experiments 1-3, even though the total 

amount of water that was available in these experiments was significantly 

different (i.e. 100%, 60% and 44%). This suggests that the total amount of 

water that can be applied is much greater than that needed to produce 

optimal net returns, highlighting the potential benefits of using a formal 

optimization approach (such as the one presented in this paper) to not only 

maximize net return, but to reduce the amount of water that is used to 

achieve this. Table 4-4 also shows that once the total amount of available 

water was reduced to 35% (Experiment 4), there was a slight reduction in 

net return from $7760.7 to $7611.9 (1.9% reduction) with the full usage of 

the available water (i.e., 42.7 cm per year, as shown in Figure 4-8), 
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suggesting that the minimum amount of total irrigation water required to 

maximize net return is likely to be between 44 and 35%. 

Table 4-4.  
Comparison between best-found solutions for 2010-2012 (over the 30 
trials from different starting positions) of the various ACO experiments 
and those obtained by Gleason (2013), which are used as a benchmark 

Experiment Net Return 
($) 

Irrigation water 
(cm) 

Fertilizer 
(kg) 

No. of 
Evaluations 

1 7,760.7 169.6 1,000 980 

 (1.80%) (-13.44%) (16.67%)  
2 7,760.7 169.6 1,000 980 

 (1.80%) (-13.44%) (16.67%)  
3 7,760.7 150.5 1,000 2,201 

 (1.80%) (-0.67%) (16.67%)  
4 7,611.9 127.5 1,000 2,258 

 (-0.15%) (14.72%) (16.67%)  
5 7,760.7 158.8 1,000 987 

 (1.80%) (-6.22%) (16.67%)  
6 6,309.8 130.2 1,000 2,474 

 (-17.23%) (12.91%) (16.67%)  
Gleason 
(2013) 7,623.4 149.5 1,200 N/A 

Note: The numbers in bold are the best overall solution. The numbers in 

parentheses are the percentage deviations of the best-found solutions from 

the experiments using ACO relative to the solutions from Gleason (2013). 

Positive percentages imply that the experiments performed better than 

Gleason (2013) and vice versa. 

Comparison of the results from Experiments 2 and 5 indicate that 

increasing the irrigation interval from 3 to 5 days did not have an impact on 

net return or fertilizer usage when the same amount of total irrigation water 

was available, although the number of evaluations required to identify the 

optimal solution when an irrigation interval of 5 days was used was greater 

(Table 4-4) despite the reduced size of the search space (Table 4-2). This 

suggests that it is slightly more difficult to find a solution that results in the 

optimal net return when a greater irrigation interval is used, which is not 

unexpected. When the irrigation interval was increased to 7 days 

(Experiment 6), the optimum net return could no longer be obtained, even 

though the reduced total amount of water available was not a restricting 
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factor, as shown by the results of Experiment 3. This indicates that the 

available irrigation water needs to be applied at intervals of less than 7 days 

for the case study considered in order maximize net returns. 

The convergence behavior of the ACO runs for the different 

experiments, as well as the differences in the best and average results from 

the 30 runs with different random number seeds, are shown in Figures 4-5 

and 4-6. As can be seen for Experiments 1-5, the ACO algorithms 

converged very quickly (Figure 4-5).  In addition, the variation in results 

between the 30 runs from different starting positions was quite small. This 

highlights the potential of using the proposed ACO formulation in 

conjunction with computationally expensive process-based crop growth 

models, as optimal solutions can be identified within a relatively small 

number of function evaluations and the impact of the starting position does 

not play a large role, which enables the number of required replicates to be 

reduced.  This is an important consideration, as a single run of 2,500 

evaluations took approximately 60 hours of computer time. 

 

Figure 4-5. Maximum and average solutions for all computational 
experiments 
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Figure 4-6. Maximum and average solutions for Experiments 1, 2 and 3 

 
In general, convergence rate decreased and the spread in solutions 

increased with the degree of problem difficulty, such as reducing the 

amount of water available (Experiments 1-4, Figures 4-5 and 4-6) and 

increasing the irrigation interval (Experiments 5 and 6, Figure 4-5).  These 

effects were particularly noticeable for Experiment 6, where the best net 

return that could be identified was 18.7% less than the best found value. 

This was due to the inability of the 7-day minimum irrigation interval to 

provide sufficient water at the times it is needed for optimal crop growth, as 

mentioned above.  Consequently, computational efficiency issues could be a 

potential problem as the degree of difficulty of the problem considered 

increases. 

4.5.2 Comparison with benchmark results of Gleason (2013) 

As shown in Table 4-4, the maximum net return identified with the aid 

of the proposed ACO approach was 1.8% higher than that identified by 

Gleason (2013).  This improved net return was achieved with a 16.67% 

reduction in fertilizer use and a small 0.67% increase in irrigation water use 

(Experiment 3).  However, as the amount of available irrigation water was 

set as a constraint during the ACO runs, it is likely that the maximum net 

return could be identified with the aid of ACO with the same water usage as 

Gleason (2013), given that a slightly reduced net return was identified in 

Experiment 4 (0.15% less than that identified by Gleason (2013), but with a 
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14.72% reduction in the amount of water used and 16.67% reduction in the 

amount of fertilizer used).  These results highlight the efficacy of the 

proposed approach, although it should be noted that the results obtained 

using the ACO algorithm made use of perfect knowledge of actual rainfall, 

which was not the case in the approach used by Gleason (2013). 

The distributions of net return, water applied and fertilizer applied over 

the three years considered for Experiments 3 and 4 compared with those of 

Gleason (2013) are shown in Figures 4-7 and 4-8, respectively.  As can be 

seen, the net returns obtained using ACO were higher in 2012, whereas the 

opposite applies in 2010.  In Experiment 3, in which the ACO approach 

resulted in an overall greater net return, the net return obtained using ACO 

was greater in 2011. In contrast, in Experiment 4, in which the ACO 

approach resulted in a slightly lower overall net return, the net return 

obtained by Gleason (2013) was slightly higher in 2011. For both 

Experiments 3 and 4, ACO water usage was relatively constant across the 

three years considered, whereas the amount of irrigation water applied by 

Gleason (2013) varied noticeably from year to year.  Unlike water usage, 

fertilizer usage across years was constant for Gleason (2013), as this was 

one of the modelling assumptions, as discussed previously.  However, the 

reverse was true when the ACO approach was employed. For Experiment 3, 

the greatest amount of fertilizer was applied in 2010 (significantly greater 

than that applied by Gleason, 2013), followed by much smaller amounts 

(significantly smaller than those applied by Gleason, 2013) in 2011 and 

2012.  In contrast, for Experiment 4, the greatest amount of fertilizer was 

applied in 2011 (noticeably greater than that applied by Gleason, 2013), 

with much smaller amounts (significantly smaller than those applied by 

Gleason, 2013) applied in 2010, and particularly in 2012.  This highlights 

the potential benefits of using the formal optimization approach presented in 

this paper in being able to identify optimal irrigation and fertilizer schedules 

that are customized to the specific circumstances under consideration, 

leading to either increased net returns with similar water usage and reduced 

fertilizer usage (as in Experiment 3), or similar net returns with reduced 

water and fertilizer usage (as in Experiment 4). 
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Figure 4-7. Comparison of water applied, fertilizer, and net return 
between Experiment 3 using ACO and Gleason (2013).  The water 
applied, fertilizer and total net return used in Gleason (2013) are used 
as a benchmark and assigned values of 100%. 

 

 

Figure 4-8. Comparison of water applied, fertilizer, and net return 
between Experiment 4 using ACO and Gleason (2013).  The water 
applied, fertilizer and total net return used in Gleason (2013) are used 
as a benchmark and assigned values of 100%. 

 

The detailed irrigation schedules for Experiment 3 and those obtained by 

Gleason (2013) are given in Figure 4-9. As can be seen, even though the 

total amount of irrigation water applied by Gleason (2013) from one year to 

the next was more variable than that applied using ACO (Figure 4-7), the 

pattern (amount and timing) of application was more regular and the vast 

majority of irrigation events were confined to July and August.  In contrast, 

even though the total amount of water applied by using the ACO approach 

was reasonably constant from year to year, the pattern of application was 

rather irregular, with significant variation in the amount of water applied 

and in the application timing. In addition, the application of irrigation water 

was less confined to the July/August window. This again highlights the 
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potential advantages of using a formal optimization approach to customize 

irrigation schedules, although some of this customization is likely to be in 

response to rainfall patterns, which were assumed to be known as part of the 

ACO approach, but not by Gleason (2013), as discussed previously. 

 

  

 

 

Figure 4-9. Irrigation scheduling for the best-found solution from ACO 
Experiment 3 and those obtained from Gleason (2013). 
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4.6 Summary and conclusions 

A generic simulation-optimization framework for optimal irrigation and 

fertilizer scheduling was developed and tested, where the problem is 

represented in the form of a decision-tree graph, ant colony optimization 

(ACO) is used as the optimization engine, and a mechanistic, process-based 

crop growth model is used to estimate crop yield. By dynamically adjusting 

the number of decision variable options (DDVO) during the solution 

generation process, the framework is able to reduce the size of the search 

space during the process of trial solution construction, thereby increasing 

computational efficiency.  

In order to test the utility of the proposed framework, it was applied to a 

case study introduced by Gleason (2013) to determine optimal irrigation and 

fertilizer schedules for corn production in eastern Colorado, USA. The Root 

Zone Water Quality Model (RZWQM2) was used to simulate crop growth 

at a daily time step. Six experiments were conducted investigating the 

impact of different fixed irrigation time steps (3-, 5- and 7- days) and 

different levels of water availability (100%, 60%, 44% and 35%).  Each 

experiment was repeated 30 times from different starting positions in the 

solution space.  The results of the experiments were compared with those 

obtained by Gleason (2013).  

The results from the case study highlight the efficacy of the proposed 

ACO-DDVO approach, as it was able to identify irrigation water and 

fertilizer application schedules that resulted in almost an identical net return 

(0.15% less) to those obtained by Gleason (2013) while using significantly 

less water (14.72%) and fertilizer (16.67%). In addition, irrigation and 

fertilizer schedules were identified that resulted in an increased net return 

(1.8%) compared with those developed by Gleason (2013) while using 

significantly less fertilizer (16.67%) and only slightly more water (0.67%).  

However, the schedules developed using the proposed ACO-DDVO 

approach made use of perfect knowledge of rainfall, the impact of which 

should be investigated as part of future studies (see e.g., Szemis et al., 2014 

and Delgoda et al., 2016).  The optimal ACO results were obtained using a 
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relatively small number of function evaluations (< 2,500, corresponding to 

approximately 60 hours of computing time for each replicate) and were 

reasonably robust to different starting positions in solution space, 

highlighting the potential of the proposed approach for linking global 

optimization methods with advanced crop growth models in order to 

identify optimal or near-optimal irrigation and fertilizer schedules within 

feasible computational budgets. 
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CHAPTER 5  

 

Conclusion 
 

Irrigation management, which consists of crop and water allocation and 

irrigation water and fertilizer application scheduling, plays an important role 

for food production, especially in the context of the increasing constraints 

that are placed on the amount of irrigation water available. Consequently, 

the identification of optimal crop and water allocation plans and optimal 

irrigation water and fertilizer application schedules designed to maximise 

economic benefit is vitally important.  While the use of metaheuristic 

optimisation algorithms is well suited to this task, as these algorithms can be 

linked with existing crop-growth models, their application also presents a 

number of challenges.  One such challenge is being able to identify globally 

optimal or near-optimal solutions for large search spaces within a 

reasonable computational effort. This problem is exacerbated when process-

based models are used for objective function evaluation, due to their 

relatively high computational expense. In order to address this issue, two 

simulation-optimization frameworks using ant colony optimisation were 

introduced in this thesis, which are able to: 1) improve computational 

efficiency by dynamically adjusting decision variable options during the 

optimisation run, and 2) guiding the search to more promising regions of the 

search space through incorporation of domain knowledge via visibility 

factors (VFs). The first framework is suited to the allocation of crop and 

water at the district or regional scale, while the second framework is 

designed to cater to irrigation water and fertilizer application scheduling at 

the farm scale. 

5.1 Research Contribution 

The overall contribution of this research is the development and testing 

of two simulation-optimization frameworks for optimal irrigation 

management using ant colony optimization (ACO) algorithms.  In the first 
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framework, optimal crop and water allocation schedules at the regional or 

district scale are identified to maximize net return, subject to limits on the 

available land and water resources. The benefits of this framework are 

demonstrated using a benchmark case study from the literature and a real-

world case study based on an irrigation district located at Loxton, South 

Australia, near the River Murray.  The second framework produces optimal 

irrigation water and fertilizer application schedules for obtaining the 

maximum net return at the farm scale and is applied to a real case study in 

eastern Colorado, USA. 

The specific research contributions to address the objectives stated in the 

Introduction are as follows: 

1. A generic simulation-optimization framework for optimal crop and 

water allocation at the regional or district scale using decision-tree 

graphs and ACO is developed in Paper 1. This framework is able to 

dynamically reduce the size of the search space, as only feasible 

solutions are obtained by using dynamic decision variable option 

(DDVO) adjustment during the process of solution construction. A 

benchmark crop and water allocation problem from the literature 

with crop production functions was used to test the utility of the 

framework. The results showed that the proposed framework is able 

to find better solutions for nonlinear problems and for more highly 

constrained search spaces (i.e., different levels of water availability) 

than linear programming. Due to the ability to reduce the search 

space size and exclude infeasible solutions during the solution 

generation process, the proposed ACO-DDVO approach also 

outperformed a “standard” ACO approach using static decision 

variable options (SDVO) and penalty functions for dealing with 

infeasible solutions in terms of the ability to find feasible solutions, 

solution quality, computational efficiency and convergence speed. 

The results also demonstrated the potential of the proposed 

framework for application to real-world problems using complex 

crop models with long simulation times. 
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2. The framework for optimal crop and water allocation is improved by 

incorporating domain knowledge via the use of VFs to bias the 

selection of crops (i.e., crops likely to result in greater net return are 

assigned a greater chance of being selected for each of the sub-areas) 

and water allocations (i.e., water allocations likely to result in greater 

net returns are given a greater chance of being chosen for the 

selected crop in each of the sub-areas) at each node in the decision-

tree graph (Paper 2). This improvement enables locally optimal 

solutions related to the factors (i.e., crops and water) affecting net 

return to be identified, and enables better regions of the search space 

to be explored. The overall effectiveness of the framework was 

validated using the benchmark case study and a real-world case 

study based on an irrigation district located in Loxton, South 

Australia, next to the River Murray. The results obtained for both 

case studies demonstrated that the use of VFs increases the ability to 

identify better solutions, especially at smaller numbers of function 

evaluations, and thus reduces the computational time to identify 

near-optimal solutions.  

3. A generic simulation-optimization framework for optimal irrigation 

water and fertilizer application scheduling at the farm scale is 

developed, where the problem is represented in the form of a 

decision-tree graph and ACO is used as the optimization engine 

(Paper 3). In this framework, the ACO model is linked with a 

process-based crop growth model, which can provide a realistic 

representation of soil moisture-climate interactions and the 

underlying physical processes of crop water requirements, crop 

growth, and agricultural management strategies (e.g., irrigation 

water and fertilizer application) in order to evaluate trial irrigation 

management strategies. Furthermore, this framework allows for 

dynamically adjusting decision variable options during the solution 

generation process in order to eliminate infeasible solutions, thereby 

dynamically reducing the search space size of the problem. The 

utility of the framework was demonstrated using a case study with 
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the Root Zone Water Quality Model (RZWQM2) for corn 

production under center pivot irrigation in eastern Colorado, USA. 

The results from the case study indicate that the proposed framework 

is able to identify irrigation water and fertilizer application schedules 

that result in better net returns, while using less fertilizer and similar 

amounts of water, or similar net returns, while using less water and 

fertilizer, than those obtained using the Microsoft Excel spreadsheet-

based Colorado Irrigation Scheduler (CIS) tool for annual crops. 

Furthermore, the framework also takes advantage of identifying both 

optimal irrigation water and fertilizer application schedules, which is 

not the case for CIS. 

5.2 Limitations 

The limitations of this research are discussed below. 

1. In Papers 1 and 2, a discretization scheme was suggested to reduce 

the search space size of the benchmark problem. However, this 

scheme is limited in terms of obtaining all the values of decision 

variables and biasing the selection of the decision variables during 

the solution generation process, as intermediate values have higher 

possibilities of being selected than extreme values. Although this 

limitation is handled in the case study, it needs to be considered for 

each specific case. 

2. In Papers 1 and 2, the search space of the benchmark problem is not 

overly large, and the simulation model (i.e., crop production 

functions) used is simplistic and has a low computational overhead. 

In order to demonstrate the generality of the method, there is a need 

to apply the proposed framework to more complex problems with 

larger search spaces and more computationally expensive, 

mechanistic crop growth simulation models. 

3. The two proposed frameworks only consider a single, economic 

objective (i.e., maximize net return).  However, there would be value 

in expanding the frameworks to consider multiple objectives, such as 
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social objectives (e.g., to minimize the total water shortage of the 

whole system) and environmental objectives (e.g., to minimize the 

excess leaching of fertilizer into groundwater).  

4. The generic simulation-optimisation framework for optimal crop and 

water allocation at the regional scale developed in Chapter 2 and 

applied in Papers 1 and 2 is aimed at achieving the maximum total 

net benefits of crop production of the system as a whole. In many 

irrigation systems, individual irrigators make decisions regarding 

which crops to plant and how much water to use. This will limit the 

ability to attain the optimum for the system as a whole. 

5. The utility of the proposed frameworks has been demonstrated via 

the three case studies (from simple to complex), as their application 

enabled optimal solutions to be identified within a given 

computational budget. However, application of the frameworks has 

not necessarily identified solutions to support real-world decision 

makers, particularly in places where future hydrometeorological 

conditions are unknown. 

6. Although economic factors (e.g., input and output prices) have been 

included in the proposed frameworks, there is no consideration of 

the sensitivity of the optimal irrigation schedules obtained to 

different pricing assumptions.  

5.3 Future Work 

From the above limitations, some future studies are recommended below. 

1. As the performance of ACO algorithms for a particular problem 

depends on the trade-off between the exploitation and exploration 

mechanisms, which are represented by the pheromone and visibility 

operators, the different algorithms are expected to generate a variety 

of different final levels of performance (Zecchin et al., 2012). 

Therefore, research into the searching behaviour of ant colony 

optimization algorithms for irrigation management should be 
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considered. In addition, comparisons of the performance of ACO 

and other metaheuristic algorithms should also be carried out. 

2. Other objectives (e.g., social, environmental or ecological 

objectives) need to be considered to evaluate the impact of 

agricultural production on related problems, such as shortage of 

irrigation water or pollution of groundwater. This is an opportunity 

to develop new frameworks to address these problems and methods 

to quantify them. 

3. The trade-off between the various objectives of irrigation 

management problems or between irrigation water and other water 

uses (e.g., ecological flow) is very important. This presents 

opportunities to extend the proposed framework to multi-objective 

frameworks for irrigation management. 

4. Research is needed into the effects of decisions made by individual 

irrigators on the performance of the overall system. Agent based 

modelling could be used to study this issue in conjunction with the 

frameworks developed in this research. 

5. In the proposed framework for optimal irrigation water and fertilizer 

application scheduling, the irrigation water and fertilizer application 

schedules are developed using perfect knowledge of rainfall. 

Therefore, future studies on the impact of perfect knowledge of 

rainfall should be investigated. 

6. As economic sensitivities are important for real-world irrigation 

scheduling, there is a need to take into account this factor in further 

studies. Furthermore, risk management should be also addressed to 

evaluate the impact of price sensitivities. 
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A general optimization framework is introduced with the overall goal of reducing search space size and
increasing the computational efficiency of evolutionary algorithm application to optimal crop and water
allocation. The framework achieves this goal by representing the problem in the form of a decision tree,
including dynamic decision variable option (DDVO) adjustment during the optimization process and
using ant colony optimization (ACO) as the optimization engine. A case study from literature is
considered to evaluate the utility of the framework. The results indicate that the proposed ACO-DDVO
approach is able to find better solutions than those previously identified using linear programming.
Furthermore, ACO-DDVO consistently outperforms an ACO algorithm using static decision variable op-
tions and penalty functions in terms of solution quality and computational efficiency. The considerable
reduction in computational effort achieved by ACO-DDVO should be a major advantage in the optimi-
zation of real-world problems using complex crop simulation models.

© 2015 Elsevier Ltd. All rights reserved.
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Description: ACO-DDVO and ACO-SDVO are two applications of ant

colony optimization (ACO) for optimal crop and water
allocation. While ACO-DDVO can reduce the search space
size by dynamically adjusting decision variable options
during the optimization process, ACO-SDVO uses static
decision variable options and penalty functions.
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Available Since: 2015
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1. Introduction

Evolutionary algorithms (EAs) have been used extensively and
have contributed significantly to the optimization of water re-
sources problems in recent decades (Nicklow et al., 2010; Maier
et al., 2014). However, the application of EAs to real-world prob-
lems presents a number of challenges (Maier et al., 2014). One of
these is the generally large size of the search space, whichmay limit
the ability to find globally optimal or near-globally optimal solu-
tions in an acceptable time period (Maier et al., 2014). In order to
address this problem, different methods to reduce the size of the
search space have been proposed in various application areas to
either enable near-globally optimal solutions to be found within a
reasonable timeframe or to enable the best possible solution to be
found for a given computational budget. Application areas inwhich
search space reduction techniques have been applied in the field of
water resources include the optimal design of water distribution
systems (WDSs) (Gupta et al., 1999; Wu and Simpson, 2001; Kadu
et al., 2008; Zheng et al., 2011, 2014), the optimal design of
stormwater networks (Afshar, 2006, 2007), the optimal design of
sewer networks (Afshar, 2012), the calibration of hydrologicmodels
(Ndiritu and Daniell, 2001), the optimization of maintenance
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scheduling for hydropower stations (Foong et al., 2008a, 2008b)
and the optimal scheduling of environmental flow releases in rivers
(Szemis et al., 2012, 2014). Some of the methods used for achieving
reduction in search space size include:

1. Use of domain knowledge. Domain knowledge of the problem
under consideration has been widely applied for search space
size reduction in specific application areas. For example, in the
design of water distribution systems, the known physical re-
lationships between pipe diameters, pipe length, pipe flows, and
pressure head at nodes has been considered to reduce the
number of diameter options available for specific pipes, thereby
reducing the size of the search space significantly (Gupta et al.,
1999; Kadu et al., 2008; Zheng et al., 2011; Creaco and Franchini,
2012; Zheng et al., 2014, 2015). This enables the search process
to concentrate on promising regions of the feasible search space.
Other examples of this approach include the design of
watershed-based stormwater management plans (Chichakly
et al., 2013), optimal locations and settings of valves in water
distribution networks (Creaco and Pezzinga, 2015), optimization
of multi-reservoir systems (Li et al., 2015), andmodel calibration
(Dumedah, 2015).

2. Level of discretization. When using discrete EAs, the level of
discretization of the search space, which refers to the resolution
with which continuous variables are converted into discrete
ones, has also been used in order to reduce the size of the search
space. As part of this approach, a coarse discretization of the
search space is used during the initial stages of the search, fol-
lowed by use of a finer discretization in promising regions of the
search space at later stages of the search. Approaches based on
this principle have been used for model calibration (Ndiritu and
Daniell, 2001), the design ofWDSs (Wu and Simpson, 2001), and
the design of sewer networks (Afshar, 2012).

3. Dynamic decision trees. When ant colony optimization algo-
rithms (ACOAs) are used as the optimization engine, solutions
are generated by moving along a decision tree in a stepwise
fashion. These decision trees can be adjusted during the solution
generation process by reducing the choices that are available at
a particular point in the decision tree as a function of choices
made at preceding decision points (with the aid of domain
knowledge of the problem under consideration). This approach
has been applied successfully to scheduling problems in power
plant maintenance (Foong et al., 2008a, 2008b), environmental
flow management (Szemis et al., 2012, 2014), the design of
stormwater systems (Afshar, 2007) and the optimal operation of
single- or multi-reservoir systems (Afshar and Moeini, 2008;
Moeini and Afshar, 2011, 2013).

One application area where search space reduction should be
beneficial is optimal crop andwater allocation. Here the objective is
to allocate land and water resources for irrigation management to
achieve maximum economic return, subject to constraints on area
andwater allocations (Singh, 2012, 2014). One reason for this is that
the search spaces of realistic crop and water allocation problems
are very large (Loucks and Van Beek, 2005). For example, in a study
by Kuo et al. (2000) on optimal irrigation planning for seven crops
in Utah, USA, the search space size was 5.6 � 1014 and in a study by
Rubino et al. (2013) on the optimal allocation of irrigation water
and land for nine crops in Southern Italy, the search space size was
3.2 � 1032 and 2.2 � 1043 for fixed and variable crop areas,
respectively.

Another reason for considering search space size reduction for
the optimal crop and water allocation problem is that the compu-
tational effort associated with realistic long-term simulation of
crop growth can be significant (e.g., on the order of several minutes
per evaluation). While simple crop models (e.g., crop production
functions or relative yield e water stress relationships) have been
widely used in optimization studies due to their computational
efficiency (Singh, 2012), these models typically do not provide a
realistic representation of soil moisture e climate interactions and
the underlying physical processes of crop water requirements, crop
growth, and agricultural management strategies (e.g., fertilizer or
pesticide application). In order to achieve this, more complex
simulation models, such as ORYZA2000 (Bouman et al., 2001),
RZQWM2 (Bartling et al., 2012), AquaCrop (Vanuytrecht et al.,
2014), EPIC (Zhang et al., 2015) and STICS (Coucheney et al., 2015)
are typically employed. However, due to their relatively long run-
times, these models are normally used to simulate a small number
of management strategy combinations (Camp et al., 1997; Rinaldi,
2001; Arora, 2006; DeJonge et al., 2012; Ma et al., 2012), rather
than being used in combinationwith EAs to identify (near) globally
optimal solutions. Given the large search spaces of optimal crop and
water allocation problems, there is likely to be significant benefit in
applying search-space size reduction methods in conjunction with
hybrid simulationeoptimization approaches to this problem
(Lehmann and Finger, 2014).

Despite the potential advantages of search space size reduction,
to the authors’ knowledge this issue has not been addressed thus
far in previous applications of EAs to optimal crop and water allo-
cation problems. These applications include GAs (Nixon et al., 2001;
Ortega �Alvarez et al., 2004; Kumar et al., 2006; Azamathulla et al.,
2008; Soundharajan and Sudheer, 2009; Han et al., 2011; Fallah-
Mehdipour et al., 2013; Fowler et al., 2015), particle swarm opti-
mization (PSO) algorithms (Reddy and Kumar, 2007; Noory et al.,
2012; Fallah-Mehdipour et al., 2013), and shuffled frog leaping
(SFL) algorithms (Fallah-Mehdipour et al., 2013). In order to address
the absence of EA application to search space size reduction for the
optimal crop and water allocation problem outlined above, the
objectives of this paper are:

1. To develop a general framework for reducing the size of the
search space for the optimal crop and water allocation problem.
The framework makes use of dynamic decision trees and ant
colony optimization (ACO) as the optimization engine, as this
approach has been used successfully for search space size
reduction in other problem domains (Afshar, 2007; Foong et al.,
2008a, 2008b; Szemis et al., 2012, 2014).

2. To evaluate the utility of the framework on a crop and water
allocation problem from the literature in order to validate the
results against a known benchmark. It should be noted that
although the search space of this benchmark problem is not
overly large and does not require running a computationally
intensive simulationmodel, it does require the development of a
generic formulation that is able to consider multiple growing
seasons, constraints on the maximum allowable areas for indi-
vidual seasons, different areas for individual crops, and dis-
similar levels of water availability. Consequently, the results of
this case study provide a proof-of-concept for the application of
the proposed framework to more complex problems involving
larger search spaces and computationally expensive simulation
models.

The remainder of this paper is organized as follows. A brief
introduction to ACO is given in Section 2. The generic framework for
optimal crop and water allocation that caters to search space size
reduction is introduced in Section 3, followed by details of the case
study and the methodology for testing the proposed framework on
the case study in Section 4. The results are presented and discussed
in Section 5, while conclusions and recommendations are given in
Section 6.
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2. Ant colony optimization (ACO)

ACO is a metaheuristic optimization approach first proposed by
Dorigo et al. (1996) to solve discrete combinatorial optimization
problems, such as the traveling salesman problem. As ACO has been
used in a number of previous studies (Maier et al., 2003; Zecchin
et al., 2005, 2006; Afshar, 2007; Foong et al., 2008a; Szemis et al.,
2012), only a brief outline is given here. For a more extensive
treatment of ACO, readers are referred to Dorigo and Di Caro (1999).
ACO is inspired by the behavior of ants when searching for food, in
that ants can use pheromone trails to identify the shortest path
from their nest to a food source. In ACO, a colony (i.e., population) of
artificial ants is used to imitate the foraging behavior of real ants for
finding the best solution to a range of optimization problems,
where the objective function values are analogous to path length.
As part of ACO, the decision space is represented by a graph
structure that represents the decision variables or decision paths of
the optimization problem. This graph includes decision points
connected by edges that represent options. Artificial ants are then
used to find solutions in a stepwise fashion by moving along the
graph from one decision point to the next.

The probability of selecting an edge at a particular decision
point depends on the amount of pheromone that is on each edge,
with edges containing greater amounts of pheromone having a
higher probability of being selected. While the pheromone levels
on the edges are generally allocated randomly at the beginning of
the optimization process, they are updated from one iteration to
the next based on solution quality. An iteration consists of the
generation of a complete solution, which is then used to calculate
objective function values. Next, larger amounts of pheromone are
added to edges that result in better objective function values.
Consequently, an edge that results in better overall solutions has a
greater chance of being selected in the next iteration. In this way,
good solution components receive positive reinforcement. In
contrast, edges that result in poor objective function values
receive little additional pheromone, thereby decreasing their
chances of being selected in subsequent iterations. In fact, the
pheromone on these edges is likely to decrease over time as a
result of pheromone evaporation. In addition, artificial ants can be
given visibility, giving locally optimal solutions a higher proba-
bility of being selected at each decision point. This is achieved by
weighting these two mechanisms via pheromone and visibility
importance factors, respectively. The basic steps of ACO can be
summarized as follows:

1. Define the number of ants, number of iterations, initial phero-
mone (to) on each edge, pheromone importance factor (a),
visibility importance factor (b), pheromone persistence (r) to
enable pheromone evaporation, and pheromone reward factor
(q) to calculate how much pheromone to add to each edge after
each iteration.

2. Calculate the selection probability p for each edge (path) of the
decision tree, as illustrated here for the edge joining decision
points A and B:

pAB ¼ ½tABðtÞ�a½hAB�bPNA
B¼1½tABðtÞ�a½hAB�b

(1)

where t is the index of iteration, tAB(t) is the amount of pheromone
on edge (A, B) at iteration t, hAB is the visibility of edge (A, B), and NA
is the set of all decision points neighboring decision point A.

3. After all ants have traversed the decision tree and the objective
function value corresponding to the solution generated by each
ant has been calculated, update pheromone on all edges, as
illustrated here for edge (A, B):

tABðtþ 1Þ ¼ rtABðtÞ þ DtAB (2)

where DtAB is the pheromone addition for edge (A, B).
It should be noted that there are different ways in which

pheromone can be added to the edges, depending on which ACO
algorithm is used. Any of these approaches can be applied to the
proposed framework, as the proposed framework is primarily
concerned with dynamically adjusting the structure of the
decision-tree graph and not the way optimal solutions can be
found on this graph, which can be done with a variety of algo-
rithms. The only difference between the ACO algorithms is the way
the pheromone update in Equation (2) is performed. The phero-
mone can be updated on: 1) all of the selected paths, as in the ant
system (AS) (Dorigo et al., 1996); 2) only the path of the global-best
solution from the entire colony after each iteration, as in the elitist
ant system (ASelite) (Bullnheimer et al., 1997); 3) the paths from
the top ranked solutions, which are weighted according to rank
(i.e., higher ranked solutions have a larger influence in the pher-
omone updating process), as in the elitist-rank ant system
(ASrank) (Bullnheimer et al., 1997); or 4) the path of the iteration-
best solutions or the global-best solutions after a given number of
iterations, as in the MaxeMin Ant System (MMAS) (Stützle and
Hoos, 2000). In this study, the MMAS algorithm is used as it has
been shown to outperform the alternative ACO variants in a
number of water resources case studies (e.g., Zecchin et al., 2006,
2007, 2012). As part of this algorithm, pheromone addition is
performed on each edge, as shown for edge AB for illustration
purposes:

DtABðtÞ ¼ DtibABðtÞ þ Dt
gb
ABðtÞ (3)

where DtibABðtÞ and Dt
gb
ABðtÞ are the pheromone additions for the

iteration-best solution (sib) and the global-best solution (sgb),
respectively. While sib is used to update the pheromone on edge (A,
B) after each iteration, sgb is applied with the frequency fglobal (i.e.,

Dt
gb
ABðtÞ is calculated after each fglobal iterations). DtibABðtÞ and

Dt
gb
ABðtÞ are given by:

DtibABðtÞ ¼

8><
>:

q

f
�
sibðtÞ

� if ðA;BÞ2sibðtÞ

0 otherwise

(4)

Dt
gb
ABðtÞ ¼

8><
>:

q

f
�
sgbðtÞ

� if ðA;BÞ2sgbðtÞand t mod fglobal ¼ 0

0 otherwise

(5)

where f ðsibðtÞÞ and f ðsgbðtÞÞ are objective function values of sib and
sgb at iteration t, respectively; and q is the pheromone reward
factor.

In MMAS, the pheromone on each edge is limited to lie within a
given range to avoid search stagnation, i.e., tminðtÞ � tABðtÞ � tmaxðtÞ.
The equations for tminðtÞ and tmaxðtÞ are given as follows:

tmaxðtÞ ¼
�

1
1� r

�
1

f
�
sgbðt � 1Þ� (6)
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tminðtÞ ¼
tmaxðtÞ

�
1� ffiffiffiffiffiffiffiffiffiffi

pbestn
p �

ðavg � 1Þ ffiffiffiffiffiffiffiffiffiffi
pbestn

p (7)

where n is the number of decision points, avg is the average number
of edges at each decision point, and pbest is the probability of con-
structing the global best solution at iteration t, where the edges
chosen have pheromone trail values of tmax and the pheromone
values of other edges are tmin. Additionally, MMAS also uses a
pheromone trail smoothing (PTS) mechanism that reduces the
difference between edges in terms of pheromone intensities, and
thus, strengthens exploration:

t*ABðtÞ ¼ tABðtÞ þ dðtmaxðtÞ � tABðtÞÞ (8)

where d is the PTS coefficient (0 � d � 1).
As is the case with most metaheuristic optimization algo-

rithms, the parameters controlling algorithm searching behavior
are generally determined with the aid of sensitivity analysis (e.g.,
Simpson et al., 2001; Foong et al., 2008b; Szemis et al., 2012).
Although algorithm performance has been found to be insensitive
to certain parameters (e.g., Foong et al., 2005), and for some
application areas guidelines have been developed for the selection
of appropriate parameters based on problem characteristics and
the results of large-scale sensitivity analyses (e.g., Zecchin et al.,
2005), parameter sensitivity is likely to be case study dependent.

Over the last decade, ACO has been applied extensively to a
range of water resources problems, including reservoir operation
and surface water management, water distribution system design
and operation, urban drainage system and sewer system design,
groundwater management and environmental and catchment
management, as detailed in a recent review by Afshar et al. (2015).
While ACO shares the advantages of other evolutionary algorithms
and metaheuristics of being easy to understand, being able to be
linked with existing simulation models, being able to solve prob-
lems with difficult mathematical properties, being able to be
applied to a wide variety of problem contexts and being able to
suggest a number of near-optimal solutions for consideration by
decision-makers (Maier et al., 2014, 2015), it is particularly suited to
problems where there is dependence between decision variables,
such that the selected value of particular decision variables restricts
the available options for other decision variables, as is often the
case in scheduling and allocation problems (e.g., Afshar, 2007;
Afshar and Moeini, 2008; Foong et al., 2008a, 2008b; Szemis
et al., 2012, 2013, 2014). This is because the problem to be opti-
mized is represented in the form of a decision-tree, as mentioned
above, enabling solutions to be generated in a stepwise fashion and
decision variable options to be adjusted based on selected values at
previous nodes in the decision tree. In other words, as part of the
process of generating an entire solution, the available options at
nodes in the tree can be constrained based on the values of partial
solutions generated at previous nodes.

3. Proposed framework for optimal crop and water allocation

3.1. Overview

A simulationeoptimization framework for optimal crop and wa-
ter allocation is developed that is based on: 1) a graph structure to
formulate the problem, 2) a method that adjusts decision variable
options dynamically during solution construction to ensure only
feasible solutions are obtained as part of the stepwise solution gen-
eration process in order to dynamically reduce the size of the search
space, and3)useofACOas theoptimizationengine. The framework is
aimed at identifying the seasonal crop and water allocations that
maximize economic benefit at district or regional level, given re-
strictions on the volume of water that is available for irrigation pur-
poses. Use of the framework is expected to result in a significant
reduction in the size of the search space for optimal crop and water
allocation problems, which is likely to reduce the number of itera-
tions required to identify optimal or near globally optimal solutions.

An overview of the framework is given in Fig. 1. As can be seen,
the first step is problem formulation, where the objective to be
optimized (e.g., economic return) is defined, the constraints (e.g.,
maximum land area, annual water allocation, etc.) are specified,
and the decision variables (e.g., crop type, crop area, magnitude of
water application to different crops, etc.) and decision variable
options (e.g., available crops to select, options of watering levels,
etc.) are stipulated. Herein, the level of discretization of the total
area is also identified, so that the values of the sub-areas are able to
reflect the characteristics of the problem considered.

After problem formulation, the problem is represented in the
form of a decision-tree graph. This graph includes a set of nodes
(where values are selected for the decision variables) and edges
(which represent the decision variable options). A crop and water
allocation plan is constructed in a stepwise fashion by moving
along the graph from one node to the next.

In the next step, themethod for handling constraints needs to be
specified. As part of the proposed framework, it is suggested to
dynamically adjust decision variable options during the construc-
tion of a trial crop and water allocation plan in order to ensure
constraints are not violated. This is achieved by only making edges
available that ensure that all constraints are satisfied at each of the
decision points. However, as this is a function of choices made at
previous decision points in the graph, the edges that are available
have to be updated dynamically each time a solution is constructed.
This approach is in contrast to the approach traditionally used for
dealing with constraints in ACO and other evolutionary algorithms,
which is to allow the full search space to be explored and to
penalize infeasible solutions. However, the latter approach is likely
to be more computationally expensive, as the size of the search
space is much larger. Consequently, it is expected that the proposed
approach of dynamically adjusting decision variable options will
increase computational efficiency as this approach reduces the size
of the search space and ensures that only feasible solutions can be
generated during the solution construction process.

As part of the proposed framework, ACO algorithms are used as
the optimization engine because they are well-suited to problems
that are represented by a graph structure and include sequential
decision-making (Szemis et al., 2012), as is the case here. In addi-
tion, they have been shown to be able to accommodate the
adjustment of dynamic decision variable options by handling
constraints in other problem domains (Foong et al., 2008a; Szemis
et al., 2012). As part of the optimization process, the evaluation of
the objective function is supported by crop models. In this way,
improved solutions are generated in an iterative fashion until
certain stopping criteria are met, resulting in optimal or near-
optimal crop and water allocations. Further details of the problem
formulation, graph structure representation, method for handling
constraints, crop model options, and ACO process are presented in
subsequent sections.

3.2. Problem formulation

The process of problem formulation includes the following
steps:

1. Identify the number of the seasons (e.g., winter, monsoon, etc.),
the seasonal (e.g., wheat) and annual (e.g., sugarcane) crops, the
total cultivated area and the volume of available water.



Fig. 1. Overview of the proposed simulationeoptimization framework for optimal crop and water allocation.
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2. Identify economic data in the study region, including crop price,
production cost, and water price.

3. Specify decision variables (e.g., crop type, crop area, and irri-
gated water).

4. Specify decision variable options. For crop type, a list of potential
options is given by the crops identified in step 1 (e.g., wheat,
sugarcane, cotton, etc.). For continuous variables (i.e., crop area
and irrigated water), the specification of the options includes
selection of the range and level of discretization for each deci-
sion variable. The level of discretization (e.g., sub-area or vol-
ume of irrigated water for each crop) can significantly impact on
either the quality of solutions found or the search space size
(due to the exponential growth of this size). A discretization that
is too coarse could exclude the true global optimal solution,
while a fine discretization could result in a significant increase
in computational time.While the depth of irrigatedwater can be
discretized depending on the type and capacity of irrigation
system, the acreage of each sub-area can be set equal to a unit
area (e.g., 1 ha) or be the same as that of a standard field in the
studied region. The discretization of area can also be imple-
mented depending on soil type or land-use policy. Each sub-area
should reflect different conditions (e.g., soil type, evapotrans-
piration, and rainfall in season, etc.), and thus the discretization
process will support the planning of the cropping patterns more
realistically. Consequently, instead of selecting the area and the
depth of irrigated water for each crop, as part of the proposed
framework, the total area of the studied region is discretized
into a number of sub-areas with each sub-area requiring de-
cisions on which crop type should be planted and how much
water should be supplied to the selected crop.
5. Specify the objective function and constraints. The objective
function is to optimize the economic benefit and has the
following form:

F ¼ Max

8<
:
XNsea

i¼1

XNic

j¼1

XNSA

k¼1

�
Aijk �

h
Yijk

�
Wijk

�
� Pij

�
�
CFIXij þWijk � CW

�i�9=
;

(9)

where F is the total net annual return (currency unit, e.g., $ year�1),
Nsea is the number of seasons in a year (an annual crop is consid-
ered as the same crop for all seasons in a year), Nic is the number of
crops for season i (i ¼ 1, 2,…, Nsea; for annual crop, i ¼ a), NSA is the
number of sub-areas, Aijk is the area of crop j in season i in sub-area
k (ha), Wijk is the depth of water supplied to crop j in season i in
sub-area k (mm), Yijk is the yield of crop j in season i in sub-area k
(depending on Wijk) (kg ha�1), Pij is the price of crop j in season i
($ kg�1), CFIXij is the fixed annual cost of crop j in season i
($ ha�1 year�1), and CW is the unit cost of irrigated water
($ mm�1 ha�1).

As noted in Section 3.1 the objective is to maximize the total net
annual return at the district or regional level rather than the net
return to individual irrigators. Hence, the framework represents the
perspective of an irrigation authority or farmer co-operative.

The objective function is maximized subject to limits on avail-
able resources, such as water and area of land. Consequently, the
following constraints will be considered in order to provide a
flexible and generic formulation:
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� Constraints for maximum allowable area of each season Ai:

XNic

j ¼ 1

XNSA

k¼1

Aijk � Ai (10)

� Constraints for maximum allowable crop area AijMax for each
season:

XNSA

k¼1

Aijk � AijMax (11)

� Constraints for minimum allowable crop area AijMin for each
season:

XNSA

k¼1

Aijk � AijMin (12)

� Constraints for available volume of irrigation water W:

XNsea

i¼1

XNic

j¼1

XNSA

k¼1

Wijk � Aijk � W (13)

3.3. Graph structure problem representation

As discussed in Section 3.2, a crop and water allocation plan can
be established by determining the crop type and the depth of
irrigated water for the selected crop in each sub-area. Thus, the full
decision-tree graph for the optimal crop and water allocation
problem is as shown in Fig. 2.

The decision tree includes a set of decision points corresponding
to the number of discrete sub-areas in the irrigated/studied area. At
each decision point, a subset of decision points is used to consider
each season in turn in order to decide which crop will be chosen to
be planted at this sub-area in season i (i.e., Ci1, Ci2, …, CiNic), and
thenwhat depth of water (i.e., W1, W2,…, WNw) will be supplied to
the selected crop. If the selected crop at a decision point is an
annual crop, then that decision point only considers the depth of
irrigated water for that crop and skips the other seasons. A com-
plete crop and water allocation plan is developed once a decision
has been made sequentially at each decision point.

It should be noted that the sequential solution generation steps
are internal to the ACO process and do not reflect the sequencewith
which actual decisions aremade, as the output of every ACO run is a
complete annual crop and water allocation plan. While the order of
solutions in the decision tree is likely to have an impact on the
solutions obtained in a particular iteration, it would be expected
that as the number of iterations increases, this effect would
disappear as a result of the identification of globally optimal solu-
tions via pheromone trail adjustment. It should also be noted that
while the current formulation is aimed at identifying seasonal crop
and water allocations, it could be extended to cater to more
frequent (e.g., monthly, weekly, or daily) water allocations for the
selected crops by adding the required number of decision points for
water allocation. For example, if the frequency of water allocation
decisions was changed from seasonally to monthly, there would be
six decision points related to water allocation for each crop (one for
each month), rather than a single seasonal decision point as shown
in Fig. 2.

3.4. Method for handling constraints

The available decision variable options are adjusted dynami-
cally by checking all constraints (Equations (10)e(13)) at each
decision point and removing any options (i.e., crops or irrigated
water) that result in the violation of a constraint based on paths
selected at previous decision points (i.e., the number of available
decision variable options is dynamically adjusted during the
stepwise solution construction process). As mentioned previously,
the purpose of this process is to dynamically reduce the size of the
search space during the construction of trial solutions by each ant
in each iteration, which is designed to make it easier and more
computationally feasible to identify optimal or near-optimal
solutions.

Details of how the decision variable options that result in
constraint violation are identified for each of the constraints are
given below. It should be noted that the four constraints in Equa-
tions (10)e(13) are considered for the choice of crops at the
beginning of each season in a sub-area during the construction of a
trial solution. However, to select the depth of irrigated water for the
crop selected in the previous decision, only the constraint for
available volume of irrigated water is checked.

� Key steps for handling constraints for maximum allowable area
for each season (Equation (10)):

1. Keep track of the total area allocated to each season as the de-
cision tree is traversed from sub-area to sub-area.

2. Add the area of the next sub-area in the decision tree to the
already allocated area for each season.

3. Omit all crops in a particular season and all annual crops from
the choice of crops for this and subsequent sub-areas if the
resulting area exceeds the maximum allowable area for this
season.

� Key steps for handling constraints for maximum allowable crop
area (Equation (11)):

1. Keep track of the total area allocated to each crop type as the
decision tree is traversed from sub-area to sub-area.

2. Add the area of the next sub-area in the decision tree to the
already allocated area for each crop.

3. Omit a particular crop from the choice of crops for this and
subsequent sub-areas if the resulting area exceeds the
maximum allowable area for this crop.

� Key steps for handling constraints for minimum allowable crop
area (Equation (12)):

1. Keep track of the total area allocated to each crop type as the
decision tree is traversed from sub-area to sub-area.

2. Sum the sub-areas in the decision tree remaining after this
current decision.

3. Restrict the crop choices at this and subsequent decisions (i.e.
subsequent sub-areas) to the ones that have minimum area
constraints that are yet to be satisfied if the total area remaining
after the current decision is less than the area that needs to be
allocated in order to satisfy the minimum area constraints.

� Constraints for maximum available volume of irrigated water
(Equation (13)):

The key steps for handling this constraint for the choice of crops
include:

1. Keep track of the total volume of irrigationwater allocated to all
crops as the decision tree is traversed from sub-area to sub-area.

2. Sum the volume of irrigationwater for each crop in the decision
tree remaining after this current decision.
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Fig. 2. Proposed decision-tree graph for the optimal crop and water allocation problem.
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3. Restrict the crop choices at this and subsequent decisions (i.e.
subsequent sub-areas) to the ones that have minimum area
constraints that are yet to be satisfied if the total volume of
water remaining after the current decision is less than the vol-
ume of water that needs to be supplied in order to satisfy the
minimum area constraints.

The key steps for handling this constraint for the choice of the
depth of irrigated water include:

1. Keep track of the total volume of irrigation water allocated to
crops as the decision tree is traversed from sub-area to sub-area.

2. Calculate the available volume of irrigation water for the crop
selected in the previous decision at this current decision.

3. Omit the choices of the depth of irrigated water for the crop
selected in the previous decision if the volumes of irrigation
water corresponding to these choices exceed the available vol-
ume of water in Step 2.
3.5. Crop models

In the proposed framework, a crop model coupled with the ACO
model is employed as a tool for estimating crop yield to evaluate
the utility of trial crop and water allocation plans. Generally, the
crop model can be a simplified form (e.g., regression equation of
crop production functions or relative yield e water stress re-
lationships) which has the advantage of computational efficiency,
or a mechanistic, process-based formwhich is able to represent the
underlying physical processes affecting crop water requirements
and crop growth in a more realistic manner.

3.6. Ant colony optimization model

The ACO model is used to identify optimal crop and water
allocation plans by repeatedly stepping through the dynamic de-
cision tree (see Section 3.4). At the beginning of the ACO process, a
trial schedule is constructed by each ant in the population in
accordance with the process outlined in Section 2. Next, the cor-
responding objective function values are calculated with the aid of
the crop model and the pheromone intensities on the decision
paths are updated (see Section 2). These steps are repeated until the
desired stopping criteria have been met.

4. Case study

The problem of optimal cropping patterns under irrigation
introduced by Kumar and Khepar (1980) is used as the case study
for testing the utility of the framework introduced in Section 3. As
discussed in Section 1, various challenges (e.g., a large search space
or relatively long runtimes) have restricted the application of
complex crop models for solving optimal crop and water allocation
problems. Although the search space in the Kumar and Khepar
(1980) case study is not overly large and the study uses crop wa-
ter production functions rather than a complex crop-growthmodel,
the problem has a number of useful features, including:
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1. It requires a generic formulation, including multiple seasons,
multiple crops, and constraints on available resources (e.g., a
minimum and maximum area of each season, each crop, and
water availability), as mentioned in Section 1.

2. Due to its relative computational efficiency, it enables extensive
computational trials to be conducted in order to test the po-
tential benefits of the proposed framework in a rigorous
manner, and thus, may play an important role in increasing the
efficacy of the optimization of crop and water allocation plans
utilizing complex crop model application. Consequently, the use
of crop production functions for the proposed framework is
important for providing a proof-of-concept prior to its applica-
tion with complex crop simulation models.

3. As optimization results for this case study have already been
published by others, it provides a benchmark against which the
quality of the solutions obtained from the proposed approach
can be compared.

Details of how the proposed framework was applied to this case
study are given in the following sub-sections.

4.1. Problem formulation

4.1.1. Identification of seasons, crops, cultivated area and available
water

The case study problem considers two seasons (winter and
monsoon) with seven crop options: wheat, gram, mustard, clover
(referred to as berseem in Kumar and Khepar, 1980), sugarcane,
cotton and paddy. While sugarcane is an annual crop, the other
crops are planted in winter (e.g., wheat, gram, mustard and clover)
or the monsoon season (e.g., cotton and paddy) only. The total
cultivated area under consideration is 173 ha and the maximum
volume of water available is 111,275 ha-mm. Three different water
availability scenarios are considered for various levels of water
losses in the main water courses and field channels, corresponding
to water availabilities of 100%, 90% and 75%, as stipulated in Kumar
and Khepar (1980).

4.1.2. Identification of economic data
The economic data for the problem, consisting of the price and

fixed costs of crops for the region, are given in Table 1. The water
price is equal to 0.423 R mm�1 ha�1.

4.1.3. Specification of decision variables
As was the case in Kumar and Khepar (1980), two separate

formulations were considered, corresponding to different decision
variables. In the first formulation, the only decision variable was
area, i.e., how many hectares should be allocated to each crop in
order to achieve the maximum net return. In the second formula-
tion, the decision variables were area and the depth of irrigated
water applied to each crop. In this case study, as discussed in Sec-
tion 3.2, the decision variables are which crop to plant in each sub-
Table 1
Details of crops considered, crop price, fixed costs of crop and the seasons in which c

Season Crop Price of

Winter Wheat 122.5
Gram 147.8
Mustard 341.4
Clover 7.0

Annual Sugarcane 13.5
Summer Cotton 401.7

Paddy 89.0

Notes: Rs is a formerly used symbol of the Indian Rupee; qt is a formerly used symb
area, and the depth of irrigated water supplied to the selected crop.

4.1.4. Specification of decision variable options
The number of decision points for area is generally equal to the

maximum area (i.e., 173 ha in this case) divided by the desired level
of discretization, which is selected to be 1 ha here. This would result
in 173 decision points, each corresponding to an area of 1 ha to
which a particular crop is then allocated (Fig. 2). However, in order
to reduce the size of the search space, a novel discretization scheme
was adopted. As part of this scheme, the number of decision points
for area was reduced from 173 to 29 with 10, 10, and 9 points cor-
responding to areas of 5, 6, and 7 ha, respectively. As a choice is
made at each of these decision points as to which crop choice to
implement, this scheme enables any area between 5 and 173 ha (in
increments of 1 ha) to be assigned to any crop, with the exception of
areas of 8 and 9 ha. For example:

� An area of 6 ha can be allocated to a crop by selecting this crop at
1 of the 10 areas corresponding to an area of 6 ha and not
selecting this crop at any of the decision points corresponding to
areas of 5 and 7 ha.

� An area of 27 ha can be allocated to a crop by selecting this crop
at 4 of the 10 areas corresponding to an area of 5 ha and at 1 of
the 9 areas corresponding to an area of 7 ha and not selecting
this crop at any of the decision points corresponding to an area
of 6 ha.

� An area of 173 ha can be allocated to a crop by selecting this crop
at all of the decision points (i.e., 10 � 5 þ 10 � 6 þ 9 � 7 ¼ 173).

Based on the above discretization scheme, for each of the 29
decision points for each sub-area, there are six decision variable
options for crop choice for Season 1 (i.e. N1c ¼ 6, see Fig. 2),
including dryland, wheat, gram, mustard, clover and sugarcane,
and three decision variable options for crop choice for Season 2 (i.e.
N2c ¼ 3, see Fig. 2), including dryland, cotton and paddy.

An obvious limitation of this scheme is that is not possible to
allocate areas of 1e4, 8 and 9 ha to any crop. However, the potential
loss of optimality associated with this was considered to be out-
weighed by the significant reduction in the size of the solution
space. Another potential shortcoming of this scheme is that it leads
to a bias in the selection of crops during the solution generation
process (i.e., intermediate areas have higher possibilities of being
selected than extreme values). While this has the potential to slow
down overall convergence speed, it would be expected that as the
number of iterations increases, this bias would disappear as a result
of the identification of globally optimal solutions via pheromone
trail adjustment. The potential loss in computational efficiency
associated with this effect is likely to be outweighed significantly
by the gain in computational efficiency associated with the
decrease in the size of solutions space when adopting this coding
scheme.

It should be noted that in general terms, a discretization scheme
rops are planted (from Kumar and Khepar, 1980).

crop (Rs qt�1) Fixed costs of crop (Rs ha�1 year�1)

2669.8
1117.0
1699.55
2558.6
5090.48
2362.55
2439.68

ol of weight in India.
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of 1, 2 and 4 can be used for any problem, as the sum of combi-
nations of these variables enable the generation of any integer.
However, if there is a lower bound that is greater than one, then
alternative, case study dependent optimization schemes can be
developed in order to reduce the size of the search space further, as
demonstrated for the scheme adopted for the case study consid-
ered in this paper. This is because the number of decision points
resulting from the selected discretization scheme is a function of
the sum of the integer values used in the discretization scheme. For
example, if a scheme of 1, 2 and 4 had been used in this study, the
required number of decision points for sub-area for each integer
value in the scheme would have been 173/(1 þ 2 þ 4) ¼ 24.7. In
contrast, for the adopted scheme, this was only 173/
(5 þ 6 þ 7) ¼ 9.6 (resulting in the adopted distribution of 10, 10, 9).

For Formulation 2, decision variable options also have to be
provided for the depth of irrigated water for each of the selected
crops at each of the sub-areas (see Fig. 2). Based on the irrigation
depth that corresponds to maximum crop yield for the crop pro-
duction functions (see Section 4.4) and an assumed discretization
interval of 10 mm ha�1, the number of irrigated water options for
each crop was 150 (i.e. NW ¼ 150, see Fig. 2), corresponding to
choices of 0, 10, 20, …, 1490 mm ha�1.

Details of the decision variables, decision variable options, and
search space size for three scenarios of both formulations are given
in Table 2.
4.1.5. Objective function and constraints
As there are only two seasons, the objective function for both

formulations is as follows in accordance with the general formu-
lation of the objective function given in Equation (9):

F ¼ Max

8<
:
X6
j¼1

X29
k¼1

�
A1jk �

h
Y1jk

�
W1jk

�
� P1j

�
�
CFIX1j þW1jk � CW

�i�

þ
X3
j¼1

X29
k¼1

�
A2jk �

h
Y2jk

�
W2jk

�
� P2j

�
�
CFIX2j þW2jk � CW

�i�9=
;

(14)

where the variables were defined in Section 3.2.
The objective function is subject to the following constraints,

which are in accordancewith those stipulated in Kumar and Khepar
(1980).

� Constraints for maximum allowable areas in winter andmonsoon
seasons:

The total planted area of crops in each season must be less than
or equal to the available area for that season. As stipulated in Kumar
and Khepar (1980), the maximum areas Ai in the winter and
Table 2
Optimization problem details for each of the two problem formulations considered.

Formulation Water
availability

Decision variables No. of decision
points for area

No. of
for ea

1 100% Crop type 29 6 for S
90%
75%

2 100% Crop type and depth
of irrigated water

29 6 for S
90%
75%

Note: The size of total search space is equal to (629 � 329) for Formulation 1 and (629 �
monsoon seasons are 173 and 139 ha, respectively.

XNic

j ¼ 1

X29
k¼1

Aijk � Ai (15)

� Constraints for minimum and maximum allowable crop area:

The area of a crop must be less than or equal to its maximum
area and greater than or equal to its minimum area. At least 10% of
the total area in the winter season (approximately 17 ha) has to be
planted in clover, and the maximum areas of mustard and sugar-
cane are equal to 10% and 15% of the total area in the winter season
(approximately 17 ha and 26 ha, respectively).

X29
k¼1

Aijk � AijMax (16)

X29
k¼1

Aijk � AijMin (17)

� Constraints for available volume of irrigated water

The total volume of irrigated water applied to the crops is less
than or equal to the maximum volume of water available for irri-
gation in the studied region. As mentioned above, three scenarios
are considered with 75%, 90% and 100% of water entitlement,
respectively. The corresponding volumes of available water for
these scenarios are 844,570, 1,001,780 and 1,112,750 m3,
respectively.

X6
j¼1

X29
k¼1

W1jk � A1jk þ
X3
j¼1

X29
k¼1

W2jk � A2jk � W (18)

4.2. Graph structure representation of problem

There are separate decision-tree graphs for Formulations 1 and
2. In Formulation 1, the graph includes 29 decision points corre-
sponding to 29 sub-areas, as discussed in Section 4.1. At each de-
cision point, there are only two choices of crops corresponding to
Seasons 1 and 2 as the depth of irrigated water for each crop is
fixed (Fig. 3). As can be seen, there are six crop options (dryland,
wheat, gram, mustard, clover and sugarcane) in Season 1 (five
crops in the winter season and one annual crop) and three options
(dryland, cotton, and paddy) in Season 2 (i.e., the monsoon sea-
son). It should be noted that if sugarcane is selected, there is no
crop choice for Season 2, as sugarcane is an annual crop. A com-
plete solution is developed once the crops for all sub-areas are
selected.

In similar fashion to Formulation 1, the decision-tree graph for
Formulation 2 also includes 29 decision points for area, but each
decision point includes two choices of crops (one for each season)
and two choices of the depth of irrigatedwater (one for each crop in
crop options
ch sub-area

No. of irrigated water
options for each crop

Size of total search space

eason 1, 3 for Season 2 1 2.5 � 1036

eason 1, 3 for Season 2 150 for each crop 4.1 � 10162

329 � 15029 � 15029) for Formulation 2.
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Fig. 3. A single decision point for area of the decision-tree graph for Formulation 1.
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each season). This graph has the same structure as the decision-tree
graph in Fig. 2, but includes two seasons, six crop options for Season
1, three crop options for Season 2, and 150 depth of irrigated water
options for each crop (see Section 4.1.4). After a crop is selected for
each season at each decision point, the depth of irrigated water for
the selected crop is determined (unless the crop is dryland inwhich
case there is no irrigation option). Furthermore, at each decision
point, if an annual crop (i.e., sugarcane) is selected in Season 1,
there is only the choice of the depth of irrigated water for the
annual crop. Although other choices in Season 2 are skipped in this
case, the available area and depth of water after that decision point
will be reduced by annual crop use. A complete crop and water
allocation plan is developed once a decision has been made
sequentially at each decision point.

4.3. Method for handling constraints

In addition to the proposed dynamic decision variable options
(DDVO) adjustment approach for dealing with constraints in ACO,
the traditional and most commonly used method via the use of
penalty functions was also implemented. This was undertaken in
order to assess the impact on search space size reduction of the
proposed DDVO approach. Details of both approaches are given
below.

4.3.1. DDVO adjustment approach
As part of this approach, the decision trees for Formulations 1

and 2 described in Section 4.2 were dynamically adjusted based on
the procedure outlined in Section 3.4. An example of how this
works for the case study is shown in Fig. 4. In this example, two
constraints for maximum and minimum allowable crop area were
considered to check the available crop options at decision point k
(which corresponds to one of the 10 sub-areas with an area of 6 ha
e see Section 4.1.4e for the sake of illustration) in Formulation 1. In
the figure, the cumulative area that has already been allocated to
each crop is shown in column (1) and the resulting total area
allocated to each crop if this particular crop is selected at this de-
cision point is shown in column (4). It is clear that when the
constraint for maximum allowance crop areawas checked, mustard
could be removed as an option at this decision point (column (5))
because its total cumulative allocated area in column (4) was larger
than the maximum allowable area for this crop in column (3),
thereby reducing the size of the search space (Fig. 4). When
checking the minimum allowable area constraint by comparing the
areas in columns (2) and (4), and comparing the remaining area
after this decision point (i.e. 173 � 158 � 6 ¼ 9 ha) and the
remainingminimum area at this decision point (i.e., 17� 5¼12 ha),
clover provided the only feasible crop choice (column (6)) at this
decision point. This enables all other crop choices to be removed,
thereby further reducing the size of the search space and ensuring
only feasible solutions are generated (Fig. 4).
4.3.2. Penalty function approach
As part of the penalty function approach to constraint handling,

there is no dynamic adjustment of decision variable options based
on solution feasibility. Consequently, infeasible solutions can be
generated and in order to ensure that these solutions are elimi-
nated in subsequent iterations, a penalty value (P) is added to the
objective function value (F) for these solutions.

Penalty function values are generally calculated based on the
distance of an infeasible solution to the feasible region (Zecchin
et al., 2005; Szemis et al., 2012; Zecchin et al., 2012). Therefore,
the following penalty functions were used for the constraints in
Equations (10)e(13):

� Penalty for maximum allowable area of each season Ai (cor-
responding to Equation (10)):
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Fig. 4. Example of decision variable option adjustment process for one decision point for Formulation 1.
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Pð1Þ ¼

8>>>><
>>>>:

0 if
PNic

j ¼ 1

PNSA

k¼1
Aijk � Ai PNic

j ¼ 1

PNSA

k¼1
Aijk �Ai

1
A� 1;000;000 if

PNic

j ¼ 1

PNSA

k¼1
Aijk>Ai

(19)

� Penalty for maximum allowable crop area AijMax (corre-
sponding to Equation (11)):
Pð2Þ ¼

8>>>><
>>>>:

0 if
PNSA

k¼1
Aijk � AijMax PNSA

k¼1
Aijk � AijMax

!
� 1;000;000 if

PNSA

k¼1
Aijk >AijMax

(20)

� Penalty for minimum allowable crop area AijMin (correspond-
ing to Equation (12)):
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8>>>>0 if
PNSA

Aijk � AijMin
Pð3Þ ¼
<
>>>>:

k¼1 
AijMin �

XNSA

k¼1

Aijk

!
� 1;000;000 if

PNSA

k¼1
Aijk <AijMin

(21)

� Penalty for available volume of irrigated water W (corre-
sponding to Equation (13)):
Pð4Þ ¼

8>>>><
>>>>:

0 if
PNsea

i¼1

PNic

j¼1

PNSA

k¼1
Wijk � Aijk � W

 PNsea

i¼1

PNic

j¼1

PNSA

k¼1
Wijk � Aijk �W

1
A� 1;000;000 if

PNsea

i¼1

PNic

j¼1

PNSA

k¼1
Wijk � Aijk >W

(22)
where the variables in Equations (19) and (22) are defined in Sec-
tion 3.2.

The following equation was used as the overall fitness function
to be minimized during the optimization process:

Min fð$Þ ¼
1;000;000

1;000;000þ F
þ Penalty (23)

where F is given in Equation (14); and Penalty is the sum of four
penalties in Equations (19) and (22). The form of this function,
including the multiplier of 1,000,000, was found to perform best in
a number of preliminary trials.

4.4. Crop models

As mentioned previously, this case study utilizes simple crop
production functions, rather than complex mechanistic crop
models. Details of these functions are given in Table 3. The area
without crops, referred to as Dryland, was not irrigated and has a
yield equal to zero.

4.5. Computational experiments

Two computational experiments were implemented to test the
utility of the proposed approach to search-space size reduction. The
first experiment used static decision variable options (SDVO) in
conjunction with the penalty function method for handling con-
straints (referred to as ACO-SDVO henceforth), and the second used
the proposed ACO-DDVO approach for handling constraints. Each
computational experiment was conducted for the two formulations
and three water availability scenarios in Table 2, and for eight
different numbers of evaluations ranging from 1000 to 1,000,000. A
Table 3
Crop water production functions (from Kumar and Khepar, 1980).

Crop type Formulation 1

Irrigation water W (mm) Crop y

Wheat 307 36.60
Gram 120 18.21
Mustard 320 18.44
Clover 716 791.20
Sugarcane 542 782.50
Cotton 526 13.76
Paddy 1173 47.25
maximum number of evaluations of 1,000,000 was selected as this
is commensurate with the values used by Wang et al. (2015) for
problems with search spaces of similar size. The pheromone on
edges for both ACO-SDVO and ACO-DDVO were updated using
MMAS.

In order to select the most appropriate values of the parameters
that control ACO searching behavior, including the number of ants,
alpha, beta, initial pheromone, pheromone persistence and pher-
omone reward (see Section 2), a sensitivity analysis was carried
out. Details of the parameter values included in the sensitivity
analysis, as well as the values selected based on the outcomes of
the sensitivity analysis, are given in Table 4. It should be noted that
visibility factor b was set to 0 (i.e., ignoring the influence of visi-
bility on searching the locally optimal solutions), as was the case in
other applications of MMAS to scheduling problems (Szemis et al.,
2012). Due to the probabilistic nature of the searching behavior of
the ACO algorithms, the positions of starting points are able to
influence the optimization results (Szemis et al., 2012). Thus, each
optimization run was implemented with 10 replicates, i.e., 10
randomly generated values for starting points in the solution
space.

In addition, the best final solutions of the computational ex-
periments from the ACOAs were compared with those obtained by
Kumar and Khepar (1980) using linear programming (LP).
5. Results and discussion

5.1. Objective function value

The best solutions from the ACO models over the 10 runs with
different random starting positions (i.e., ACO-SDVO and ACO-
DDVO) and those obtained by Kumar and Khepar (1980) using LP
are given in Table 5. As can be seen, ACO outperformed LP for five
out of the six experiments in terms of net returns. For Formulation
1, there was very little difference between the results from the ACO
models and LP, in which the percentage deviations for three sce-
narios (i.e., 100%, 90% and 75% of water availability) were 0.48%,
�0.06%, and 0.74%, respectively. This was as expected since the
problem formulation is linear. For 90% water availability, the net
return using LP was slightly better than that of the ACO models
Formulation 2

ield Y (qt ha�1)

Y ¼ 26.5235 e 0.03274 W þ 1.14767 W0.5

Y ¼ 15.4759 þ 0.04561 W � 0.00019 W2

Y ¼ 14.743 e 0.011537 W þ 0.41322 W0.5

Y ¼ 25.5379 e 1.0692 W þ 57.2238 W0.5

Y ¼ �11.5441 þ 2.92837 W � 0.0027 W2

Y ¼ 6.6038 e 0.013607 W þ 0.62418 W0.5

Y ¼ 5.9384 e 0.035206 W þ 2.412043 W0.5



Table 4
Details of the ACO parameter values considered as part of the sensitivity analysis and the optimal values identified and ultimately used in the generation
of optimization results presented.

Parameter Values for sensitivity analysis Values selected

Number of ants 50; 100; 200; 500; 1000; 2000; 5000; 10,000 100; 1000; 10,000
Alpha (a) 0.1, 0.5, 1.0, 1.2, 1.5 1.2
Beta (b) 0 0
Initial pheromone (to) 0.5, 1.0, 2.0, 5.0, 10.0, 20.0 10.0
Pheromone persistence (r) 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 0.6
Pheromone reward (q) 0.5, 1.0, 2.0, 5.0, 10.0, 20.0, 50.0 20.0

Table 5
Comparison between best-found solutions using the two ACO formulations (ACO-SDVO and ACO_DDVO) and those obtained by Kumar and Khepar (1980) which are used as a
benchmark.

Formulation Water availability Net return (Rs)

Benchmark ACO-SDVO ACO-DDVO

1 100% 785,061.1 788,851.4 (0.48%) 788,851.4 (0.48%)
90% 741,157.3 740,731.4 (�0.06%) 740,731.4 (�0.06%)
75% 647,627.2 652,438.3 (0.74%) 652,438.3 (0.74%)

2 100% 800,652.6 890,404.0 Rs (11.21%) 890,600.7 (11.23%)
90% 799,725.6 865,441.8 Rs (8.22%) 873,190.2 (9.19%)
75% 792,611.2 827,998.0 Rs (4.46%) 836,839.2 (5.58%)

Note: The bold numbers are the best-found solution. The numbers in parentheses are the percentage deviations of the optimal solutions obtained using the ACO algorithms
relative to the benchmark results obtained by Kumar and Khepar (1980). Positive percentages imply that the ACO models performed better than the Benchmark, and vice
versa.
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(741,157.3 Rs vs. 740,731.4 Rs, respectively). However, this is
because the optimal solution obtained using LP could not be found
using ACO because of the discretization interval used. For Formu-
lation 2, which is a nonlinear problem, ACO outperformed LP by
between 5.58% and 11.23% for ACO-DDVO and by between 4.46%
and 11.21% for ACO-SDVO. This demonstrates that the use of EAs is
beneficial when solving realistic problems, which are likely to be
non-linear. This difference is likely to be exacerbated for more
complex problems.

ACO-SDVO and ACO-DDVO performed very similarly in terms of
the best solution found. For Formulation 1, as the search space size
was relatively small (2.5 � 1036), identical solutions were found.
However, with the larger search space size in Formulation 2
(2.1 � 10160), ACO-DDVO obtained slightly better solutions (about
1% better for the two scenarios with tighter constraints) and the
difference between these solutions increased for decreases inwater
availability. This is most likely because it is easier to find better
solutions in the smaller search spaces obtained by implementing
the proposed ACO-DDVO approach.
Table 6
The number of times feasible solutions were identified out of ten trials with different rand
techniques and water availability scenarios for the two different formulations of the opt

Formulation Water availability Constraint handling Number of

1

1 100% SDVO 5
DDVO 10

90% SDVO 2
DDVO 10

75% SDVO 0
DDVO 10

2 100% SDVO 9
DDVO 10

90% SDVO 9
DDVO 10

75% SDVO 7
DDVO 10
5.2. Ability to find feasible solutions

The ability of each algorithm to find feasible solutions after a
given number of nominal evaluations was represented by the
number of times feasible solutions were found from different
starting positions in solution space (as represented by the 10 repeat
trials with different random number seeds) (see Table 6). As ex-
pected, ACO-DDVO always found feasible solutions from all 10
random starting positions for all trials (Table 6), as the DDVO
adjustment guarantees that none of the constraints are violated.
However, this was not the case for ACO-SDVO. As shown in Table 6,
the ability of ACO-SDVO to identify feasible solutions was a function
of the starting position in solution space. It can also be seen that the
ability to identify feasible solutions fromdifferent starting positions
decreasedwith a reduction in the size of the feasible region, as is the
case for Formulation 1 compared with Formulation 2 and when
water availability is more highly constrained. The ability to identify
feasible regions increased with the number of function evaluations,
but this comes at the expense of computational efficiency.
om number seeds for different numbers of function evaluations, constraint handling
imization problem considered.

nominal evaluations (� 1000)
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Fig. 5. Convergence of average and maximum optimal solutions obtaining from ACO.
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5.3. Convergence of solutions

The convergence of the feasible solutions (i.e., how quickly near-
optimal solutions were found) was evaluated against the best-
found solution (Fig. 5). It should be noted that the average and
maximum net return values for ACO-SDVO were only calculated for
the trials that yielded feasible solutions from among the 10
different starting positions in solution space. In general, Fig. 5
shows that convergence speed for the ACO-DDVO solutions is
clearly greater than convergence speed for the ACO-SDVO
solutions.
In Formulation 1, the difference between the average and
maximum results from ACO-SDVO was fairly large at 50,000 and
1000e2000 nominal evaluations for 75% and 100% water avail-
ability, respectively. As only one solution was found at
5000e10,000 nominal evaluations for 75% water availability, the
average and maximum results are identical. On the contrary, there
was no large difference between these solutions for all three sce-
narios for ACO-DDVO. This demonstrates that the quality of the
solutions from the various random seeds for ACO-DDVO was more
consistent than that obtained from ACO-SDVO. In addition, the
speed of convergence of the results from ACO-SDVO at the best-
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found solution had an increasing trend when the available level of
water increased. The number of nominal evaluations to obtain this
convergence were 500,000, 50,000 and 50,000 for 75%, 90%, and
100% water availability, respectively. The corresponding solutions
from ACO-DDVO always converged to the best-found solution after
10,000 nominal evaluations.

In Formulation 2, the search space and the number of feasible
solutions were larger because of the increase in the number of
decision variables (Table 2). As a result, there was a clear difference
between the average and maximum solutions for ACO-SDVO.
Furthermore, these solutions did not converge to the best-found
solution, even with the maximum number of evaluations of
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Fig. 6. Computational effort vs. solution quality for the different
1,000,000. In contrast, although the difference between the
average and maximum results from ACO-DDVO increased
compared to those from ACO-DDVO in Formulation 1, it was still
markedly smaller than those from ACO-SDVO. The solutions ob-
tained from ACO-DDVO always converged at 500,000 nominal
evaluations for all three scenarios. Consequently, the results
demonstrate that the method of handling constraints in ACO-
DDVO resulted in much better convergence towards the best-
found solution compared to that of ACO-SDVO, which is most
likely due to the reduced size of the search space and the fact that
the search is restricted to the feasible region when ACO-DDVO is
used.
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5.4. Tradeoff between computational effort and solution quality

The increased computational efficiency of ACO-DDVO compared
with that of ACO-SDVO is demonstrated by the relationship be-
tween computational effort and solution quality (Fig. 6). It should
be noted that the best results over the 10 runs were used to
calculate the deviation from the best-found solution and the %
computational effort was calculated from the number of actual
evaluations. As shown in Section 5.1, ACO-DDVO and ACO-SDVO
attained identical solutions for Formulation 1 and ACO-DDVO was
able to find slightly better solutions than ACO-SDVO for Formula-
tion 2. However, Fig. 6 shows that these better solutions were ob-
tained at a much reduced computational effort, ranging from 74.4
to 92.7% reduction in computational effort for Formulation 1 and
from 63.1 to 90.9% reduction for Formulation 2 (for the same per-
centage deviation from the best found solution). In addition, near-
optimal solutions could be found more quickly. For example, for
Formulation 1 ACO-DDVO only needed a very small computational
effort to reach a solution with 5% deviation from the best-found
solution (about 1.5%, 5.3%, and 1.0% of total computational effort
for 100%, 90% and 75% of water availability, respectively). The cor-
responding values for ACO-SDVO were 7.1%, 12.1%, and 39.9% of
total computational effort, respectively. Similar results were found
for Formulation 2, in which ACO-DDVO needed less than 5% of the
total computational effort and ACO-SDVO required over 40% of the
total computational effort for the two scenarios with tighter
constraints.

For this case study, the actual savings in CPU time are not that
significant (~1.5 CPU hours was saved by using ACO-DDVO for
Formulation 2 with 1,000,000 evaluations). However, if complex
simulation models were used for objective function evaluation
(where a single evaluation could take several minutes), a 63.1%
reduction in computational effort would result in significant time
savings. For example, if the number of evaluations corresponding to
this computational saving was reduced from 872,204 to 322,181,
the actual CPU time would be reduced by 5,500,230 s (over 2
months) for a 10-s simulation model evaluation. This demonstrates
that the proposed ACO-DDVO approach has the potential to
significantly reduce the computational effort associated with the
simulationeoptimization of crop and water allocation, while
increasing the likelihood of finding better solutions.

6. Summary and conclusions

A general framework has been developed to reduce search space
size for the optimal crop and water allocation problemwhen using
a simulationeoptimization approach. The framework represents
the constrained optimization problem in the form of a decision tree,
uses dynamic decision variable option (DDVO) adjustment during
the optimization process to reduce the size of the search space and
ensures that the search is confined to the feasible region and uses
ant colony optimization (ACO) as the optimization engine. Appli-
cation of the framework to a benchmark crop and water allocation
problem with crop production functions showed that ACO-DDVO
clearly outperformed linear programming (LP). While LP worked
well for linear problems (i.e., Formulation 1where the only decision
variable was area), ACO-DDVO was able to find better solutions for
the nonlinear problem (i.e., Formulation 2 with decision variable
options for depth of irrigated water for each of the selected crops at
each of the sub-areas) and for more highly constrained search
spaces when different levels of water availability were considered.
The ACO-DDVO approach was also able to outperform a “standard”
ACO approach using static decision variable options (SDVO) and
penalty functions for dealing with infeasible solutions in terms of
the ability to find feasible solutions, solution quality, computational
efficiency and convergence speed. This is because of ACO-DDVO's
ability to reduce the size of the search space and exclude infeasible
solutions during the solution generation process.

It is important to note that while the results presented here
clearly illustrate the potential of the proposed framework as a
proof-of-concept, there is a need to apply it to more complex
problems with larger search spaces, as well as in conjunction with
more realistic irrigation demands (e.g., Foster et al., 2014) and
mechanistic crop growth simulation models (see Section 1). How-
ever, based on the demonstrated benefits for the simple case study
considered in this paper, the proposed ACO-DDVO simu-
lationeoptimization framework is likely to have even more sig-
nificant advantages when applied to real-world problems using
complex crop models with long simulation times.
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