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Abstract

The study of protein structure and interactions is pivotal in understanding the
function and malfunction of complex biological systems. The structures of some
proteins are unable to be determined using traditional high resolution biophysi-
cal techniques, requiring the development of amenable low resolution alternatives.
Chemical Crosslinking Mass Spectrometry (CXMS) is one technique which can be
used to probe protein structure through the formation of covalent linkages between
protein residues. The formation of these links is facilitated by chemical crosslinking

reagents.

Widespread use of the CXMS technique has been hampered primarily by analytical
challenges pertaining to the detection and identification of crosslinked species using
Mass Spectrometry (MS). Attempts to mitigate the challenges have been made by
modifying the structure of chemical crosslinkers through the addition of functional
groups such as affinity tags, isotope labels and cleavable bonds. Crosslinkers com-
bining more than one type of functional group (combination crosslinkers) present the
most promising targets for CXMS applications, combining the benefits of each func-
tional group. However, combination crosslinkers are not commercially available,
thus necessitating in-house synthesis. Incorporating more than one functionality
also results in more complex molecular structures and synthetic processes, making
the crosslinkers difficult to adapt to suit a particular experiment. Consequently, the

use of combination crosslinkers has been limited to date to a small number of studies.

The research presented in this thesis describes the development of a modular chemi-
cal crosslinker design and corresponding synthetic protocol for the synthesis of com-
bination crosslinkers. The modular crosslinker structure can be readily modified to
include a range of functional groups using a small number of different reactions,
including amide coupling and O-alkylation, and commercially available starting ma-
terials such as Boc-serine, from a minimum of five synthetic steps. The utility of the
synthetic process was validated through the synthesis of a crosslinker containing an
alkyne functional group, which can be used to attach a biotin affinity tag through

alkyne-azide Huisgen Cyclisation.
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Synthesis of two custom designed combination crosslinkers utilising alkyne tags and
cleavable bonds is also described. The function of the cleavable bonds was estab-
lished using collision induced dissociation processes within the mass spectrometer.
Ensuring that a crosslinker is effective in probing quaternary structure and protein-
protein interactions is essential as the investigation of these structures is a major
goal of CXMS. Therefore, a crosslinking assay using Staphylococcus aureus biotin
protein ligase, which forms homodimers when substrate bound, was also developed
using the commercially available crosslinkers Disuccinimidyl Suberate (DSS) and
Dithiobis(succinimidyl) Propionate (DSP), to enable the efficacy of crosslinkers syn-

thesised using the modular synthetic protocol to be determined.
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