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ABSTRACT 
 

Synthetic efforts towards various meroterpenoid natural products based on biosynthetic 

speculation were undertaken in order to gain biosynthetic insight and to develop efficient 

syntheses of some structurally complex, biologically active compounds. 

 

The first total synthesis of the PPAP natural product garcibracteatone was achieved in four 

linear steps from phloroglucinol (0.6% overall yield). The key biomimetic synthetic step was 

an oxidative radical cyclization cascade reaction, where four new carbon-carbon bonds, four 

new carbocyclic rings and five new stereocentres were formed in the one step. 

 

The first total synthesis of merochlorin A was achieved in five linear steps from methyl-3,5-

dimethoxyphenylacetate (6% overall yield). The key biomimetic synthetic step was a [5 + 2] 

cycloaddition reaction induced be oxidative dearomatization to form the bicyclo[3.2.1]octane 

core. 

 

The first total synthesis of the napyradiomycin natural product naphthomevalin was achieved 

in 11 steps from methyl-3,5-dimethoxyphenylacetate  (1.4% overall yield). The key 

biomimetic synthetic step was a thermal α-ketol rearrangement reaction to form the 

naphthoquinone core of the napyradiomycins. The synthetic naphthomevalin was additionally 

converted into A80915G via a biomimetic SN2 epoxidation reaction, and into 

napyradiomycin A1 via a chemoenzymatic reaction. 
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