Biomimetic Synthesis of Meroterpenoid Natural Products Using Dearomatization Strategies

Thesis submitted for the degree of Doctor of Philosophy Department of Chemistry University of Adelaide

> Henry P. Pepper B. Sc. (Hons.) Chemistry

> > 2016

© 2016 Henry Patrick Pepper All Rights Reserved

CONTENTS

Acknowledgments	VI
Declaration	VII
List of Abbreviations	VIII
Abstract	XII
Chapter 1 - Thesis Introduction	1
1.1 Meroterpenoid Natural Products	2
1.2 Biomimetic Synthesis of Natural Products	6
1.3 Dearomatization Strategies in Organic Synthesis	8
References	12
Chapter 2 – Biomimetic Synthesis of Garcibracteatone	15
2.1 Introduction	17
2.1.1 Radical Cyclization Reactions in Organic Synthesis	17
2.1.2 Polycyclic Polyprenylated Acylphloroglucinol Natural Products	20
2.1.3 Biosynthesis of Polycyclic Polyprenylated Acylphloroglucinols	21
2.1.4 Previous Synthetic Work Targeting PPAP Natural Products	22
2.1.5 Radical Cyclizations in PPAP Biosynthesis	26
2.1.6 Garcibracteatone and Nemorosonol	28
2.1.7 Proposed Biosynthesis of Garcibracteatone and Nemorosonol	29
2.1.8 Project Aims	30
2.2 Results and Discussion	32
2.2.1 Retrosynthetic Analysis of Garcibracteateone and Nemorosonol	32
2.2.2 Synthesis of Allylated Model System	34
2.2.3 Synthesis of Prenylated Model System	36
2.2.4 Total Synthesis of (±)-Garcibracteatone	38
2.2.5 Structural Reassignment of Doitunggarcinones A and B	43
2.2.6 Attempted Optimization of Radical Cyclization Cascade Reaction	47
2.2.7 Total Synthesis of (-)-Garcibracteatone	48
2.2.8 Attempted Synthesis of Nemorosonol	53
2.3 Conclusion	56

2.4 Experimental	58
2.4.1 General Methods	58
2.4.2 Experimental Procedures	59
References	83
Appendix	86
Chapter 3 – Biomimetic Synthesis of Merochlorin A	113
3.1 Introduction	115
3.1.1 Halogenated Natural Products	115
3.1.2 Vanadium-Dependant Haloperoxidases: Nature's Halogenation Catalysts	116
3.1.3 Merochlorins A-D: Cyclic Chlorinated Marine Meroterpenoids	117
3.1.4 Proposed Biosynthesis of Merochlorins A and B	118
3.1.5 Project Aims	120
3.2 Results and Discussion	123
3.2.1 Initial Retrosynthesis of Merochlorins A and B	123
3.2.2 Synthesis of Di-O-Methyl Deschloro Merochlorin A	127
3.2.3 Introduction of Chlorine	130
3.2.4 Synthesis of Di-O-Methyl Merochlorin A	133
3.2.5 Total Synthesis of Merochlorin A	137
3.2.6 Synthesis of Merochlorin A Analogues	141
3.2.7 Biological Testing of Merochlorin Analogues	144
3.2.8 Subsequent Literature Research on the Merochlorins	145
3.3 Conclusion	149
3.4 Experimental	151
3.4.1 General Methods	151
3.4.2 Experimental Procedures	152
References	185
Appendix	187

Chapter 4 – Biomimetic Synthesis of Napyradiomycin Natural

Products	
4.1 Introduction	219
4.1.1 The α -ketol Rearrangement	221

4.1.2 Napyradiomycin Natural Products	223
4.1.3 Biological Activity of Napyradiomycins	232
4.1.4 Previous Synthetic Work Targeting Napyradiomycins	237
4.1.5 Proposed Biosynthesis of Naphthomevalin	242
4.1.6 Project Aims	245
4.2 Results and Discussion	247
4.2.1 Retrosynthetic Analysis of Naphthomevalin	247
4.2.2 Model System Synthesis	247
4.2.3 Synthesis of Di-O-Methyl Naphthomevalin	252
4.2.4 Investigation into the Total Synthesis of Naphthomevalin via Methyl Ether	
Protecting Group Strategy	255
4.2.5 Exploration of Alternative Protecting Group Strategies	262
4.2.6 Methoxy Methyl Ether Protecting Group Strategy	266
4.2.7 Late Stage Introduction of Chlorine	268
4.2.8 Total Synthesis of Naphthomevalin and A80915G	277
4.2.9 Total Synthesis of (+)-Napyradiomycin A1	282
4.3 Conclusion	287
4.4 Experimental	289
4.4.1 General Methods	289
4.4.2 Experimental Procedures	290
References	342
Appendix	344

ACKNOWLEDGMENTS

I would first like to thank my supervisors Dr. Jonathan George and Prof. Andrew Abell for allowing me to undertake my PhD. Without Jonathan's guidance, I would not have had the privilege of working on these fantastic research projects.

Thank you to all of the past and present members of the George group: Kevin, Justin, Michelle, Stephen, Hilton, Adrian, Lauren, Ben, Jemma and Stacey for consistently making lab 11 an enjoyable place to work.

Thank you to the staff at the University of Adelaide chemistry department, particulary to Phil Clements for running my High Field NMR spectra.

Thank you to our collaborators and those who have directly assisted my research throughout my PhD. Thank you to Dr. Christopher Sumby and Dr. Witold Bloch for assistance with X-ray crystallography. Thank you to Yuji Nakano at Monash University for running our chiral HPLC experiments. Thank you to Prof. Lixin Zhang at the Institute of Microbiology, Chinese Acadamy of Sciences for conducting our antibacterial assays. Thank you to Prof. Bradley Moore and Dr. Stefan Diethelm at the Scripps Institution of Oceanography for performing the chemoenzymatic experiments, and for general intellectual contribution in the area of halogenated meroterpenoid natural products.

Finally I would like to thank my family for their support throughout my PhD.

DECLARATION

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis, when deposited in the University of Adelaide Library, being made available for loan and photocopying, subject to the provisions of the copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, *via* the University's digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Henry Patrick Pepper

Date

LIST OF ABBREVIATIONS

AIBN	Azobisizobutyronitrile
aq	Aqueous
ATP	Adenosine Triphosphate
BCG	Mycobacteria Bovis
BRSM	Based on Recovered Starting Material
bs	Broad Singlet
CAM	Ceric Ammonium Molybdate
CAN	Ceric Ammonium Nitrate
CA SC5314	Candia Abicans SC5314
CD	Circular Dichroism
CoA	Coenzyme A
COSY	Correlated Spectroscopy
cm ⁻¹	Wavenumber(s)
d	Doublet
DDT	para-Dichlorodiphenyltrichloroethane
DBE	Double Bond Equivalence
DBU	1,8-Diazabicycloundec-7-ene
DDQ	2,3-Dichloro-5,6-Dicyano-1,4-Benzoquinone
DEAD	Diethyl Azodicarboxylate
DHP	3,4-Dihydro-2 <i>H</i> -pyran

DIBAL-H	Diisobutylaluminium Hydride
DMSO	Dimethyl Sulfoxide
DMF	N,N-dimethylformamide
dppf	1,1'-Bis(diphenyphosphino)ferrocene
EDDA	Ethylenediaminediacetate
EI	Electron Impact
ESI	Electrospray Ionization
EtOAc	Ethyl Acetate
Grubbs II	Grubbs' Second Generation Catalyst
h	hour(s)
HMBC	Heteronuclear Multiple Bond Connectivity
HMPA	Hexamethylphosphoramide
HMQC	Heteronuclear Multiple Quantum Coherence
HPLC	High Performance Liquid Chromatography
IC ₅₀	Half Maximal Inhibitory Concentration
IR	Infrared Spectrum
J	Coupling Constant
KHMDS	Potassium Hexamethyldisilazide
LDA	Lithium Diisopropylamide
m	Multiplet
m/z	Mass Units

MES	2-(<i>N</i> -methylmorpholino)-ethanesulfonic Acid
MIC	Minimum Inhibitory Concentration
МОМ	Methoxymethyl
mp	Melting Point
MPAP	Monocyclic Polyprenylated Acylphloroglucinol
MRSA	Methicillin Resistant Staphylococcus Aureus
MS	Mass Spectrum
NBS	N-Bromosuccinimide
NCS	N-Chlorosuccinimide
NaHMDS	Sodium Hexamethyldisilazide
NMP	N-methyl-2-Pyrrolidine
NMR	Nuclear Magnetic Resonance
NOE	Nuclear Overhauser Effect
NOESY	Nuclear Overhauser Effect Spectroscopy
PA01	Pseudomonas Aeruginosa
РІЗК	Phosphatidylinositol 3-Kinase
PPAP	Polycyclic Polyprenylated Acylphloroglucinol
PP	Pyrophosphate
ppm	Parts Per Million
PPTS	Pyridinium para-Toluenesulfonate
<i>p</i> -TsOH	para-Toluenesulfonic Acid

q	quartet
R _f	Retention Factor
ROESY	Rotating Frame Nuclear Overhauser Effect Spectroscopy
S	Singlet
SA	Staphylococcus Aureus
SAR	Structure Activity Relationship
rt	Room Temperature
t	Triplet
TBS	tert-Butyltrimethylsilyl
TBAF	Tetrabutylammonium Fluoride
TES	Triethylsilyl
Tf	Trifluoromethylsulfonate
THC	Tetrahydrocannabinol
THF	Tetrahydrofuran
THN	1,3,6,8-Tetrahydroxynaphthalene
THP	Tetrahydropyran
TIPS	Triisopropylsilyl
TLC	Thin Layer Chromatography
TMS	Tetramethylsilane
UV	Ultraviolet Light
VHPO	Vanadium Dependent Haloperoxidase

ABSTRACT

Synthetic efforts towards various meroterpenoid natural products based on biosynthetic speculation were undertaken in order to gain biosynthetic insight and to develop efficient syntheses of some structurally complex, biologically active compounds.

The first total synthesis of the PPAP natural product garcibracteatone was achieved in four linear steps from phloroglucinol (0.6% overall yield). The key biomimetic synthetic step was an oxidative radical cyclization cascade reaction, where four new carbon-carbon bonds, four new carbocyclic rings and five new stereocentres were formed in the one step.

The first total synthesis of merochlorin A was achieved in five linear steps from methyl-3,5dimethoxyphenylacetate (6% overall yield). The key biomimetic synthetic step was a [5 + 2]cycloaddition reaction induced be oxidative dearomatization to form the bicyclo[3.2.1]octane core.

The first total synthesis of the napyradiomycin natural product naphthomevalin was achieved in 11 steps from methyl-3,5-dimethoxyphenylacetate (1.4% overall yield). The key biomimetic synthetic step was a thermal α -ketol rearrangement reaction to form the naphthoquinone core of the napyradiomycins. The synthetic naphthomevalin was additionally converted into A80915G *via* a biomimetic S_N2 epoxidation reaction, and into napyradiomycin A1 *via* a chemoenzymatic reaction.