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Abstract

The spatial distributions of organism abundance and diversity are often heterogeneous. This

includes the sub-centimetre distributions of microbes, which have ‘hotspots’ of high abun-

dance, and ‘coldspots’ of low abundance. Previously we showed that 300 μl abundance hot-

spots, coldspots and background regions were distinct at all taxonomic levels. Here we build

on these results by showing taxonomic micropatches within these 300 μl microscale hot-

spots, coldspots and background regions at the 1 μl scale. This heterogeneity among 1 μl

subsamples was driven by heightened abundance of specific genera. The micropatches

were most pronounced within hotspots. Micropatches were dominated by Pseudomonas,

Bacteroides, Parasporobacterium and Lachnospiraceae incertae sedis, with Pseudomonas

and Bacteroides being responsible for a shift in the most dominant genera in individual hot-

spot subsamples, representing up to 80.6% and 47.3% average abundance, respectively.

The presence of these micropatches implies the ability these groups have to create, establish

themselves in, or exploit heterogeneous microenvironments. These genera are often parti-

cle-associated, from which we infer that these micropatches are evidence for sub-millimetre

aggregates and the aquatic polymer matrix. These findings support the emerging paradigm

that the microscale distributions of planktonic microbes are numerically and taxonomically

heterogeneous at scales of millimetres and less. We show that microscale microbial hotspots

have internal structure within which specific local nutrient exchanges and cellular interactions

might occur.

Introduction

Prokaryotic communities drive biogeochemical cycling processes within aquatic habitats [1].

Despite the large-scale significance of these activities, many key chemical transformation pro-

cesses mediated by microbes occur within localised microenvironments [2, 3]. However,

aquatic microbial distributions and processes are often measured using bulk phase sampling

with a “mean field approach”, whereby large, multi-litre, volume samples are collected and
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microscale features, occurring at the microliter scale, are effectively averaged out [4–7]. This

approach misses microscale hotspots and microenvironments where microbial activity and

rates of biogeochemical transformation have been predicted to be orders of magnitude higher

than the background average [8–12].

Accumulating evidence suggests that aquatic microbes are often distributed heterogeneously

at the microscale, with hotspots in abundance sometimes exceeding background abundance by

up to 1–2 orders of magnitude [4]. These hotspots may represent microbial aggregation on par-

ticulate organic material [1], associations with phytoplankton cells and zooplankton [13, 14], or

behavioural responses to microscale patches of dissolved substrates caused by cell lysis, grazing

and excretion events [15]. Microscale aggregations of microbes associated with these processes

may be driven by localised growth enhancement or chemotaxis into chemical microniches [1, 8,

16–19]. There is indeed growing evidence that bacteria use behaviour to exploit microscopic

ephemeral nutrient patches [3, 8]. Variability in the chemotactic capacity and nutrient prefer-

ences of microbes as well as variable growth responses within microenvironments may subse-

quently lead to microscale partitioning of species [3, 20]. The mechanisms for the generation of

recently described coldspots [4, 21], which are areas of low microbial abundance, remain uncer-

tain, with the contribution of viral lysis and localised grazing suggested as possibilities. Lysis

events will produce intense local concentrations of viruses, which can spread as local epidemics

and produce regions of depleted bacterial abundance.

The presence of hotspots and coldspots are the units of microscale patchiness. The forma-

tion and maintenance of these hotspots, whether viral or bacterial, is a balance of aggregation

and dispersion [22–24]. Dispersion at the microscale in turbulent environments, such as rivers,

is driven by Kolmogorov eddies. These are the smallest possible eddies for a given fluid viscos-

ity [25]. Within rivers, where the viscosity is approaching that of pure water, the length of Kol-

mogorov eddies is approximately 1–10 mm [26, 27]. When heterogeneities and eddies are the

same size, mixing is the most efficient homogenising signal. This is relevant for this study as

our sampling interval is at the scale where homogeneity should dominate [23].

Although the high shear of Kolmogorov eddies efficiently erase microbial and nutrient sig-

nal gradients [28–30], many eddies are much larger, which allows conditions for clustering

[30]. This is due to low shear environments being characterised by eddies with long lifetimes.

The lifetimes of these Kolmogorov eddies differ depending on turbulence, with lifetimes of

approximately 1,000 seconds and lengths greater than 3 cm within freshwater systems [26, 30].

Shear then helps determine where hotspots and coldspots can form, their size and their life-

time [26, 30–32]. Low shear environments that are characterised by eddies with long lifetimes

allow microscale nutrient patch formation and consequently chemotactic swarming of bacte-

ria. The lower size limit of these nutrient patches is controlled by the Batchelor scale, which is

the smallest scale that nutrient gradients can occur before being dispersed by diffusion [27,

33]. Chemotactic bacteria are able to exploit ephemeral nutrient gradients above this Batchelor

scale, which leads to bacterial abundance hotspots [8, 15].

Although hotspots are a ubiquitous feature of microbial distributions their discrimination

has remained largely qualitative, being primarily identified as abundance regions that are ‘ele-

vated above’ or ‘exceed’ background variation across one or two sampling points [7, 34, 35]. In

addition, coldspots have lacked a definitive characterisation despite being observed in the

microscale distributions of microbial communities previously [7, 12, 36]. However, a quantita-

tive method developed by Dann et al. [4] discriminated hotspot, coldspot and background val-

ues via rank abundance analysis, separating sample values based on their slope and line of best

fit. Hotspots were shown to follow a power law best fit and have steep slopes, whereas cold-

spots and background values followed linear best fits, with coldspots having steeper slopes

than background values [4]. Here we expand on this analysis by using a Chow test to verify

Taxonomic composition of prokaryotic hotspots
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structural breaks in the rank abundance distribution, and utilising a more detailed assessment

of model fits.

Recently we demonstrated that 300 μl coldspots were more taxonomically similar to hot-

spots than the background, suggesting coldspots might represent dying hotspots or that hot-

spots are the growth of coldspots [37]. Whether the result is a hotspot or coldspot, the

processes that create these variations steepen local taxonomic gradients, which might lead to

gradients of metabolic capacity. Once these gradients form they can become self-reinforcing

[38–41] through bacterial chemotaxis and uptake, particularly in aquatic environments where

bacteria exhibit high speed motility and high performance chemotaxis [42].

Microbial microscale distributions are often restricted to abundance estimates [4, 7, 8,

10–12], with the occurrence of shifts in community composition changes at these small

scales less clear. However, taxonomic heterogeneity has been found among confined 1 μl

samples of seawater and oil-confined, ancient water droplets [9, 40], where organisms that

are rare in the bulk, background phase occur in regions of elevated local abundance. We

have recently shown that 300 μl hotspot, coldspot and background regions in freshwater are

taxonomically dissimilar. Here we extend upon these findings with the aim of investigating

the extent to which further heterogeneity exists within the internal structure of hotspots and

coldspots by analysing community composition at the 1 μl scale. We hypothesise taxonomic

heterogeneity exists between 1 μl hotspot, coldspot and background subsamples. As these

microbial hotspots and coldspots are critical microenvironments for cellular interactions

and nutrient exchange, understanding their taxonomic composition will aid further under-

standing in microbial diversity, environmental heterogeneity and ecosystem function.

Materials and methods

Sample collection

Samples were collected from the Murray River, South Australia (-35.1, 139.3) on July 2nd,

2014. The Murray River is Australia’s largest river and in addition to its ecological importance

provides significant levels of agricultural and domestic water supply, and is characterised by

highly regulated flows and turbid waters [43, 44]. At the time of sampling the pH was 7.8,

water temperature was 13.6˚C, total dissolved solids was 445 mg/L and electrical conductivity

was 445 μS/cm. Sampling occurred at the sediment-water interface of the river benthos. Sam-

ple collection was achieved using a two-dimensional micro-titre plate described previously,

which allows for a series of approximately 300 μl samples to be collected simultaneously [4,

21]. This device allows for the collection of 8 microscale vertical profiles, with each comprising

of 12 samples, separated by a distance of 0.9 cm, resulting in a matrix of samples spanning dis-

tances of 1.4 cm to 11.3 cm from the sediment-water interface. The sampling device was placed

vertically against the respective surface and removed in a vertical motion with a 16 cm x 16 cm

glass plate used as a cover to minimise mixing and turbulence when collecting samples. A

HydroLab DataSonde probe was used to measure environmental parameters. Specific permis-

sion to access the sampling site was not required. The field study did not involve endangered

or protected species.

For taxonomic identification, 100 μl samples were collected from each microplate well,

aliquoted into cryovials and frozen at -80˚C until further analyses. For enumeration, 200 μl

samples were collected from each microplate well, aliquoted into cryovials containing glu-

taraldehyde (0.5% final concentration) to fix bacterial cells and viral particles and stored in

the dark at 4˚C for 15 minutes. Samples were then quick frozen in liquid nitrogen and

stored at -80˚C prior to flow cytometric enumeration, which was performed within one

week of storage to avoid potential sample deterioration [45, 46].

Taxonomic composition of prokaryotic hotspots
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Flow cytometry

For flow cytometric enumeration, triplicate samples were prepared according to established

methods [43, 46, 47]. Briefly, samples were thawed, diluted 1:100 in Tris-EDTA buffer (0.2 μm

filtered, pH 8.0, 10 mM Tris, 1 mM EDTA) and stained with SYBR Green I nucleic acid dye

(1:20,000 final dilution; Molecular Probes). Virus-like particle (VLP) counts were optimised by

incubating samples in the dark at 80˚C for 10 minutes [4, 45, 48, 49]. Reference beads of 1 μm

diameter (Molecular Probes) were used as an internal concentration, size and fluorescence stan-

dard, and were added to samples in a final concentration of 105 beads ml-1 [4, 45, 50].

A FACSCanto II cytometer equipped with blue (488 nm, 20 mW, air-cooled), red (633 nm,

17 mW), and violet (405 nm, 30 mW) lasers and phosphate-buffered saline (PBS) solution

sheath fluid, was employed to analyse the samples [4]. Samples were run on a low flow rate for

2 minutes. For each sample, green fluorescence (SYBR I), right-angle light scatter (SSC) and

forward-angle light scatter (FSC) were recorded. Flow cytometric cytograms and histograms

were exported as FCS 3.0 files and analysed via FlowJo (Tree Star, Inc.) to enumerate prokary-

otic and VLP populations [44, 51].

Data analysis

Flow cytometric abundances of prokaryotic and VLP subpopulations were used to construct

two-dimensional contour plots in Surfer 10 (Golden Software). A minimum contour interval

value�1000 events ml−1 was chosen when constructing these plots as this was higher than the

maximum flow cytometric error, i.e. the background noise within triplicate blank control sam-

ples. This value is conservative due to the maximum flow cytometric error being < 24 events

ml-1. Correlations were performed on these two-dimensional distributions to determine

whether there was a relationship between the presence of prokaryotic and viral hotspots and

coldspots. Prokaryotic and VLP subpopulation correlations were determined via Pearson’s

coefficient with the a of 0.05 reduced via sequential Bonferroni correction (Holm 1979). All

possible subpopulation correlations were analysed to determine potential relationships

between prokaryotic and viral subpopulations. The spatial relationship of these hotspot, cold-

spot and background samples are dispersed throughout the sampling area (Figs 1 and S4).

Abundance hotspots, coldspots and background regions were defined using rank abundance

graphs as described previously [4, 21, 37] with amendments. In order to make distinctions

between the regions, two things were necessary: identify the location of breaks in the rank

abundance profile, and substantive differences between their distributions, e.g. linear vs non-

linear behaviour. Briefly, flow cytometric total prokaryote abundance counts from the sam-

pling wells were ranked from highest to lowest and assigned ranks. Hotspot regions have

previously been identified based on an observed power law distribution [4, 21, 37]. Exploratory

regression analysis for the highest 15–20 values on a rank-abundance plot revealed the likeli-

hood of similar behaviour within this dataset. Prior to detailed model fitting, to identify the

truncation point between the hotspot and background regions, the top 20% rank-abundance

points were log transformed. The optimal breakpoint between the hotspot and background

data was found using the strucchange package in R (3.7.3), using the supF criterion for two lin-

ear models (maximising the F-statistic, S1 Fig). The same test on non-transformed rank-abun-

dance data was used to identify a split between the background and coldspots, and, as

previously observed, an additional split within the background region, creating four distinct

sections in the rank abundance profile [4, 21]. All structural breaks were subsequently assessed

for significance using a Chow test (R 3.4.3). Regression methods and residuals analysis were

then used to fit models to each of the regions (Figs 2 and S2). Given the relatively small spread

of the data, and small subsample size introducing the potential for finite-size bias [52], we used

Taxonomic composition of prokaryotic hotspots
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MATLAB (R2017b) to compare the fit of three two-parameter models for each region: linear

(y ¼ ax þ b), exponential (y ¼ celx) and power (y ¼ cx� b). Fit was assessed by maximising

Fig 1. Representative two-dimensional contour plot of total prokaryotic abundance showing hotspots, coldspots and background. Circles

indicate sample location and corresponding label. Faint gridlines indicate sampling intervals. Colour intensity scale in cells ml-1. Two-dimensional

contour plots were created via Surfer 10 (Golden Software, Inc.). Contour plots used a conservative minimum contour interval value of� 1000

events μl-1, which was higher than the maximum flow cytometric error of< 24 events μl-1.

https://doi.org/10.1371/journal.pone.0197224.g001
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R2 values and minimising mean square error (Table 1). Median abundance samples were

selected as background rather than the mean, as inclusion or exclusion of the hotspot and/or

coldspot values did not overly affect the median values [53]. Using this criteria, three of the

highest abundance hotspots (H1, H2 and H3), lowest abundance coldspots (C1, C2 and C3)

and median background samples (B1, B2 and B3) were chosen for taxonomic analyses, with

five to ten subsamples analysed from each hotspot, coldspot and background sample.

Quantitative PCR

Microplate well samples were analysed via quantitative PCR (qPCR) following methods

described previously [37]. Briefly, ten 1 μl water subsamples (R1-R10) were taken for the highest

hotspot, lowest coldspot and median background value and five 1 μl subsamples (R1-R5) were

taken for the next two highest hotspots, lowest coldspots and median background values. 1 μl

Fig 2. Rank abundance plot showing breaks and fitted distributions for hotspots (power), background (linear) and coldspots (power).

https://doi.org/10.1371/journal.pone.0197224.g002
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water samples were used in each 25 μl PCR reaction consisting of 16S rRNA region-specific for-

ward (27F) and reverse (519R) primers and KAPA Taq Ready Mix 2x (KAPA Biosystems).

(519R) were added to 1 μl water samples and stained with Universal KAPA SYBR Fast qPCR

Master Mix 2x (KAPA Biosystems). Stained samples were run through 42 cycles on a Rotor-

Gene to determine whether sufficient DNA amplification was achieved prior to direct PCR.

Direct PCR

Direct PCR amplification was performed as described previously [37]. Briefly, ten 1 μl subsam-

ples (R1-R10) were taken for the highest hotspot, lowest coldspot and median background

value and five 1 μl subsamples (R1-R5) were taken for the remaining two highest hotspots,

lowest coldspots and median background values. 1 μl water samples were used in each 25 μl

PCR reaction, which consisted of the 16S rRNA region-specific forward (27F) and reverse

(519R) primers and KAPA Taq Ready Mix 2x (KAPA Biosystems). Samples were run for 42

cycles on a Veriti 96 well Thermal Cycler (Applied Biosystems). From each reaction, 20 μl of

16S rRNA amplicon DNA was sequenced whilst the remaining 5 μl was run on an electropho-

resis agarose gel to check DNA quality and amplicon size. Negative controls were run for each

PCR with sterile filtered water in place of template. PCR products were then run on an agarose

gel (2%) to determine relative band intensity and amplification success. Barcoded samples

were pooled into equal proportions based on DNA concentrations and molecular weight and

were then purified with calibrated Ampure XP beads. Amplicons were then used for 2- by

300-bp Illumina MiSeq sequencing (Molecular Research, Shallowater, TX, USA), which was

performed following the manufacturer’s guidelines.

Bioinformatics

The resulting sequenced bacterial DNA was joined, quality filtered and length truncated with

sequences discarded if they contained > 0.5% expected errors for all bases or < 250 bp.

Sequences were also discarded if they lacked a recognisable barcode or forward PCR primer.

Full length de-replication and abundance sorting using a minimum size of 2 to ensure single-

tons removal were performed via the USEARCH pipeline [54]. Singleton removal ensured

potential spurious OTUs from sequencing artifacts and/or PCR errors were discarded [55, 56].

The cluster_otus command within the UPARSE pipeline in USEARCH v8 was used for OTUs

Table 1. Selected models for hotspots, background and coldspots together with R2 values and square error terms for linear and nonlinear distributions fitted to the

same data.

Location & selected model Model Sum sq. error R2 Adj R2 Mean sq. error

Hotspot: power Power 1.32E+12 0.9598 0.9558 3.64E+05

y ¼ 4:61E7 � x� 0:052 Exponential 3.28E+12 0.9007 0.8908 5.72E+05

Linear 3.49E+12 0.8943 0.8937 5.91E+05

Background (1): linear Power 4.73E+12 0.9846 0.9839 4.53E+05

y ¼ � 4:83E5x þ 4:53E7 Exponential 2.66E+12 0.9913 0.991 3.40E+05

Linear 4.34E+12 0.9859 0.9853 4.34E+05

Background (2): linear Power 7.65E+12 0.8705 0.8637 6.35E+05

y ¼ � 2:64E5x þ 3:85E7 Exponential 6.07E+12 0.8973 0.8919 5.65E+05

Linear 5.38E+12 0.909 0.9042 5.32E+05

Coldspot: power Power 3.38E+12 0.9836 0.9831 3.11E+05

y ¼ 3:59E9 � x� 1:31 Exponential 4.53E+12 0.978 0.9774 3.60E+05

Linear 7.98E+12 0.9612 0.9601 4.77E+05

https://doi.org/10.1371/journal.pone.0197224.t001
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clustering [55]. Reference-based chimeric filtering using the gold database was performed via

UCHIME [57, 58]. Reads were then globally mapped to OTUs using a 97% identity threshold.

The utax command in USEARCH v8 was used for taxonomic assignment via the RDP Classi-

fier [54, 58, 59]. OTU tables were created via python scripts and the resulting OTU tabbed text

file was used to determine average abundances of OTUs. Statistical analyses were performed in

PRIMER (Version 7) whereby OTU tables were square root overall transformed and used for

similarity percentage (SIMPER) analysis [60, 61]. SIMPER analyses determined the taxonomic

groups most responsible for driving dissimilarity within and between samples. Bray-Curtis

and Sorensen distance metric [60, 62] resemblance were performed to create dissimilarity

matrices for downstream analysis. The Bray-Curtis similarity coefficient between samples 1

and 2 is described by the following equation:

S17 ¼ 100 1 �

X

i
jyi1 � yi2j

X

i
yi1 þ
X

i
yi2

0

B
@

1

C
A ¼ 100:

X

i
minfyi1; yi2g

X

i
yi1þ

X

i
yi2

� �
,

2

Where yi1is the count for the ith species from sample 1, and
P

i . . .ð Þ is the summation over

those species [60, 62].

Sorensen is explained by the following equation:

S8 ¼ 100:
2a

2aþ bþ c

Where for a similarity coefficient between samples 1 and 2, a represents the number of species

present in both samples, b represents the number present in sample 1 but absent from sample 2,

and c represents the numbers absent in sample 1 but present in sample 2 [60, 62]. Bray-Curtis

and Sorensen were both used to allow a balance between dominant and rare taxa sensitivity.

Specifically, Bray-Curtis is abundance-weighted as it uses species counts, and is therefore pri-

marily driven by the few dominant taxa present, whereas Sorensen weights taxa equally via the

use of presence-absence data, therefore being more sensitive to the vast majority of rare taxa

present [62]. The dissimilarity matrices generated were then used to perform PERMdisp, which

determined the level of dispersion between subsamples [51]. Metric multidimensional scaling

(MDS) using bootstrap average analysis was performed to determine the level of spread between

samples and produce smoothed 95% bootstrap regions for each sample type. Metric MDS ordi-

nation employed 500 bootstrap averages of the centroid of each sample to show where 95% of

the centroid averages lay within multivariate space. Presence vs. absence from overall trans-

formed data with Bray-Curtis resemblance was employed to determine subsample exclusivity of

bacterial sequences. The OTU abundances were assessed to determine the distribution that best

described the taxa abundance profiles for hotspot, background, and coldspot samples. Analysis

of the genus abundance distributions for each of the 60 samples was run using OTU raw

sequence counts rather than relative abundances to allow for the use of maximum likelihood

estimation (MLE). Following current best practise, we (a) only examined fits of models with

well-defined probability distributions and (b) used corrected Akaike Information Criterion

(AICc) ranks and weights to compare model fits [63]. MLE for each sample was undertaken via

the sads package in R (3.7.3) for 8 commonly observed ecological abundance distributions. Sub-

sequent fitting of the best performing distribution (Pareto) was done using Clauset et al.’s [52]

algorithm, which uses MLE to assess the optimal truncation point xmin and corresponding expo-

nent for the power law distribution p xð Þ ¼ cx� b (S1 Table). The association with the Pareto

density function, pðX ¼ xÞ ¼ axa
minx

� ð1þaÞ, where a is the Pareto shape parameter, is given by

Taxonomic composition of prokaryotic hotspots
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the simple relationship a ¼ b � 1. A goodness-of-fit hypothesis test was then undertaken

using the Kolmogorov-Smirnov (KS) test statistic Dn against its critical value to assess whether

the data fit the model, i.e. accepting the null hypothesis (S2 Table). The KS statistic is given

byDn ¼ supx jFnðxÞ � FðxÞj, where FnðxÞ describes the empirical cumulative distribution func-

tion and FðxÞ the cumulative distribution function for the MLE fitted Pareto model. As

n� 40, the KS critical values were calculated (sample-wise) by cv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 0:5�ln a

2ð Þ
p

ffiffi
n
p , where signifi-

cance level a ¼ 0:05. Sequences were uploaded to the Harvard Dataverse Network and can be

accessed at http://dx.doi.org/10.7910/DVN/SITGAO.

Results

Bacterial and viral abundance

Flow cytometric analysis identified 2 prokaryotic (low DNA [LDNA] and high DNA [HDNA])

subpopulations via dense regions in biparametric cytograms of SYBR Green fluorescence and side-

scatter (S3 Fig.). Prokaryotic abundances ranged from 5.6 × 106 to 3.6 × 107 cells ml−1 (mean =

1.7 × 107, SD = 8.7 × 106, n = 95) for the LDNA subpopulation, from 3.4 × 106 to 1.4 × 107 cells ml−1

(mean = 7.4 × 106, SD = 2.8 × 106, n = 95) for the HDNA subpopulation and from 9.2 × 106 to

4.6 × 107 cells ml−1 (mean = 2.5 × 107, SD = 1.1 × 107, n = 95) for total prokaryotes. One sample

well was empty after water collection, providing a total of 95 samples from the 96-well microplate.

Viral abundance was also determined via flow cytometry (See supplementary data).

Rank abundance analysis of the flow cytometric prokaryotic abundances was used to identify

hotspots and coldspots (Fig 2, Table 1). Significant structural breaks were present between hot-

spots and background (p-value 4.1E-9), background and coldspots (p-value<2.2E-16), and

within the background region (p-value 3.2E-14). Hotspots and coldspots could also be discrimi-

nated from background by the best fitting model being nonlinear–a power law–whereas the

background regions were well described by linear models (Figs 2 and S1, Table 1). For back-

ground data, there were negligible performance differences between linear and exponential

models, with the linear model being slightly better performing in background region 2, and

exponential model in background region 1. However, the exponential model parameters were

such that the fit was approximately linear within the relevant data range, and in the absence of

trends in the residuals, the more parsimonious linear model was chosen (S2 Fig, Table 1). The

two-dimensional distribution of prokaryotes was characterised by hotspots and coldspots in

abundance (Figs 1 and S4). LDNA had a maximum hotspot of 3.6 × 107 cells ml−1 and a mini-

mum coldspot of 3.7 × 106 cells ml−1 resulting in a 9.7-fold change in abundance over the sam-

pling area. HDNA had a maximum hotspot of 1.4 × 107 cells ml−1 and a minimum coldspot of

2.7 × 106 cells ml−1 resulting in a 5.2-fold change in abundance over the sampling area. From

one sampling well to the next, the largest change in abundance for LDNA was 5.9-fold, HDNA

was 3.7-fold and total prokaryotes was 4.5-fold per 0.9 cm. Hotspots and coldspots were also

present in the two-dimensional distribution of viruses (S4 Fig), however, there was no signifi-

cant correlation between the bacterial and viral subpopulation distributions (p-value� 0.07).

The average prokaryotic abundance within the samples used for taxonomic analysis was 2.7 x

107 cells ml-1 (SD = 0, n = 3) for the background samples, 4.5 x 107 cells ml-1 (SD = 4.5 x 107,

n = 3) for the hotspot samples and 0.93 x 107 cells ml-1 (SD = 1.2 x 105, n = 3) for the coldspot

samples (Fig 1, S3 Table).

Taxonomic profiles

For the hotspots, a total of 2,127,612 primer matched sequences were quality filtered to

yield 1,795,425 (84.4%) passed reads, 4,845 short reads discarded (< 250 bp) and 327,342
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low quality records discarded (expected errors > 0.5). Dereplication resulted in 442,770

unique reads and 371,806 singletons. OTU clustering using 97% identity produced 1,601

OTUs and 2,945 chimeras (4.1%). Out of the 1,601 OTUs, reference-based chimera detec-

tion identified 47 chimeric reads. Taxonomy assignment via the RDP Classifier produced a

total of 1,527 OTUs which contained 1,637,388 total reads. H1 contained between 38,357

and 115,285 reads (mean = 68426, std. dev. = 20971), H2 contained between 46,545 and

114,499 reads (mean = 87493, std, dev, = 26146.7) and H3 contained between 55,989 and

146,072 reads (mean = 103492, std. dev. = 31990.4).

For the coldspots, a total of 1,366,587 primer matched sequences were quality filtered to

yield 969,705 (71%) passed reads, 468 short reads discarded (< 250 bp) and 396,414 low

quality reads discarded (expected errors > 0.5). Dereplication resulted in 273,700 unique

reads and 233,597 singletons. OTU clustering at 97% identity produced 1,322 OTUs and

1121 chimeras (2.8%). Of the 1,322 OTUs, reference-based chimera detection revealed 46

were chimeric reads. Taxonomy assignment via the RDP Classifier produced a total of 1,264

OTUs which contained 879823 total reads. C1 contained between 18,612 and 52,884 reads

(mean = 36280, std. dev. = 10679.7), C2 contained between 34,271 and 63,451 reads

(mean = 46071, std. dev. = 11920.3) and C3 contained between 9,373 and 121,978

(mean = 57333, std. dev. = 41730.9).

For the background, a total of 1,300,203 primer matched sequences were quality filtered

producing 1,007,474 passed reads, 819 short reads discarded (< 250 bp) and 291,910 low

quality reads discarded (expected errors > 0.5). Dereplication resulted in 305,310 unique

reads and 264,902 singletons. OTU clustering at 97% identity produced 1,299 OTUs and

2,131 chimeras (5.3%). Of these 1,299 OTUs, reference-based chimera detection revealed 46

were chimeric reads. Taxonomy assignment via the RDP Classifier produced a total of 1,244

OTUs which contained 889,419 total reads. B1 contained between 18,344 and 99,216 reads

(mean = 68177, std. dev. = 46734.9), B2 contained between 15,399 and 31,150 reads

(mean = 23849, std. dev. = 6003.8) and B3 contained between 27,283 and 65,631 reads

(mean = 50699, std. dev. = 15027.6).

Phylogenetic profiles of the background subsamples showed 95% of subsamples were domi-

nated by Proteobacteria whilst 5% of subsamples were dominated by Firmicutes (S5C Fig). At

the genus level, 55% of background subsamples were dominated by Kaistia, 25% were domi-

nated by Geothrix, 15% were dominated by Lachnospiraceae and 5% were dominated by Para-
sporobacterium (Fig 3). At the genus level, SIMPER analysis of the individual samples revealed

similarities of 76.2, 74.6 and 74.1 for B1, B2 and B3, with a lower dissimilarity between B1 and

B3 (25.5) than B2 and B3 (26.6) and B2 and B1 (27.2) (S4 and S5 Tables). The main drivers for

similarity across background subsamples were Kaistia, Geothrix and Nocardioides, which con-

tributed to� 4.2% similarity, whilst the main drivers of dissimilarity among B1, B3, and B2

was Lachnospiraceae incertae sedis, which contributed to� 3.7% dissimilarity. PERMdisp anal-

ysis at the genus level revealed dispersions of 16.0 (SE 0.2) for B2, 16.4 (SE 0.4) for B3 and 15.9

(SE 0.5) for B1 between the background. No archaea were identified in the taxonomic profiles.

Hotspot subsamples revealed the most dominant phylum was Proteobacteria in 45% of sub-

samples, Actinobacteria in 35% of subsamples, Bacteroidetes in 15% of subsamples and Firmi-

cutes in 5% of subsamples (S5A Fig). At the genus level, 45% of subsamples were dominated

by Geothrix, 20% of subsamples were dominated by Nocardioides, 10% of subsamples were

dominated by Bacteroides or Parasporobacterium whilst Brevundimonas, Lachnospiraceae
incertae sedis and Pseudomonas each dominated a single hotspot subsample (Fig 3). SIMPER

analysis of the individual samples revealed similarities of 53.3 for H1, 57.5 for H2 and 61.2 for

H3and. Between sample positions there was lower dissimilarity between H2 and H3 (42.9)

than H3 and H1 (43.4) and H1 and H2 (46.5) (S4 and S5 Tables). SIMPER analysis revealed
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the main driver for similarity across the hotspot subsamples was Geothrix, which contributed

to� 5.5% similarity, whilst the main drivers for dissimilarity were different among hotspots,

with Bacteroides and Parasporobacterium contributing to� 3.2% dissimilarity between H2

and H3, Parasporobacterium and Lachnospiraceae incertae sedis contributing to� 2.6% dissim-

ilarity between H1 and H2 and Bacteroides and Pseudomonas contributing to� 2.2% dissimi-

larity between H3 and H1. PERMdisp analysis at the genus level revealed differences in

multivariate dispersion between the hotspots, H1 = 30.7 (SE 5.1), H2 = 26.9 (SE 1.6) and

H3 = 24.6 (SE 0.8).

Fig 3. Genera profiles of (A) hotspot, (B) coldspot and (C) background subsamples. For clarity, only genera with average abundances� 2% are shown. �incertae sedis.
OTUs and associated abundance percentages determined via the RDP Classifier within the UPARSE pipeline [37, 41].

https://doi.org/10.1371/journal.pone.0197224.g003
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For the coldspot subsamples, phylogenetic profiles showed a dominance of Actinobacteria

in 95% of coldspot subsamples and Firmicutes in 5% of subsamples (S5B Fig). At the genus

level, 55% of coldspot subsamples were dominated by Geothrix, 20% of subsamples were domi-

nated by Nocardioides or Parasporobacterium, whilst 5% of subsamples were dominated by

Kaistia (Fig 3). At the genus level, SIMPER analysis of the individual samples revealed similari-

ties of 71.6, 70.3 and 66.0 for C1, C2, and C3, with a lower dissimilarity between C1 and C2

(29.2) than C1 and C3 (31.4) and C2 and C3 (31.7) (S4 and S5 Tables). SIMPER analysis

revealed the main drivers for similarity across the coldspot subsamples were Geothrix and

Nocardioides, which contributed to� 4.9% similarity (S4 Table). Comparisons between cold-

spots revealed the main driver for dissimilarity between C1, C2 and C3 was Parasporobacter-
ium, which contributed to� 1.6% dissimilarity. PERMdisp analysis using Bray-Curtis

matrices at the genus level revealed significantly different dispersions between coldspots, with

a dispersion of 18.8 (SE 0.8) for C2, 19.1 (SE 0.3) for C1 and 21.4 (SE 3.3) for C3.

Metric MDS analysis using Bray-Curtis matrices showed distinct separation between the

background, hotspots and coldspots, with the highest variation observed between hotspot sam-

ples rather than coldspot and background samples (Fig 4A). Sample wells grouped together

but a higher spread was observed between the hotspot sample wells (Fig 4A). To ensure these

groupings were not skewed by the few abundant taxa present, metric MDS analysis was carried

out using Sorensen matrices, which although showed an increased overlap between sample

region types, yielded similar overall results (Fig 4B).

Heterogeneity in taxonomic profiles. Subsample heterogeneity was observed due to

heightened abundance of specific taxa, with this heterogeneity most evident in the hotspot sub-

samples. For instance, Proteobacteria, Firmicutes and Bacteroidetes had heterogeneous

increases in relative abundance between hotspot subsamples (S5A Fig). Firmicutes and Proteo-

bacteria also exhibited heightened abundance within the background and coldspot subsamples

(S5B–S5C Fig).

Among the Proteobacteria Pseudomonas, Herbaspirillum and Brevundimonas were the

most dominant (Fig 3A). Whereas other hotspot subsamples contained multiple Proteobac-

teria genera at low abundances, namely Kaistia and Thiobacillus (Fig 3A). The coldspot sub-

samples with a heightened relative abundance of Proteobacteria was due to an increase in

Fig 4. Metric multidimensional scaling (MDS) analysis using Bray-Curtis dissimilarity (A) and Sorensen distance metric (B) of subsamples from hotspot H1 (pink

diamonds), H2 (grey crosses) and H3 (light blue circles), coldspot C1 (green squares), C2 (dark blue triangles) and C3 (red triangles), and background B1 (orange

triangles), B2 (green crosses) and B3 (purple stars). Metric MDS ordination employed 500 bootstrap averages of the centroid of each sample to show where 95% of the

centroid averages lie within multivariate space.

https://doi.org/10.1371/journal.pone.0197224.g004
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Kaistia (Fig 3B). The heightened abundance of Bacteroidetes within hotspot subsamples was

due to Bacteroides (Fig 3A).

Among the Firmicutes, Lachnospiraceae incertae sedis and Parasporobacterium dominated

the hotspot subsamples, whilst the remaining subsamples lacking heightened Firmicutes abun-

dance, were dominated by Paenibacillus (Fig 3A). The heightened relative abundance of Firmi-

cutes in the background, was due to Parasporobacterium Natronincola and Lachnospiraceae
incertae sedis. Parasporobacterium also exhibited heterogeneous dominance in the coldspot

subsamples (Fig 3B–3C).

To determine whether the dissimilarity between and within hotspots, coldspots and back-

ground was due to the genera exhibiting heightened relative abundance between subsamples,

specifically Pseudomonas, Parasporobacterium, Lachnospiraceae incertae sedis and Bacteroides,
these genera were removed and SIMPER analysis was performed. This resulted in minimal

change in average similarities within and between samples suggesting these genera are not

responsible for all the dissimilarity between and within sample regions (S4 and S5 Tables). To

determine whether the higher heterogeneity observed within the hotspots was due to the spe-

cific outlier subsamples from each hotspot, namely H1.8, H2.2 and H3.4, these samples were

removed, resulting in higher average similarities within H1 (63.8), H2 (60.4) and H3 (62.9). In

addition, comparisons between the hotspots showed a decreased average dissimilarity of 41.1

between H2 and H3, 38.1 between H1 and H3 and 40.2 between H2 and H1 (S4 and S5

Tables). However, after removal of the outlier hotspot subsamples, the level of dissimilarity

between hotspots was still higher than that observed in the other sample regions, indicating

the outlier subsamples were not the only contributor to the heterogeneity between hotspots

and coldspots and background regions.

Homogeneity in taxonomic profiles. Acidobacteria, Actinobacteria, Chloroflexi, Nitros-

pira, Planctomycetes, Thermotogae and Verrucomicrobia were present in all subsamples and

had relatively consistent average relative abundances between subsamples (S5 Fig). In addition,

Gemmatimonadetes was present in the hotspots and coldspots and Fusobacteria was present

in the hotspots (S5 Fig). Of these phyla, SIMPER analysis revealed the genera Geothrix, Nocar-
dioides, Flexibacter, Austwickia and Chryseoglobus, had abundances that were common

amongst subsamples, with the former most dominant for hotspots and coldspots, as well as

Kaistia, which dominated for background. These genera were the main drivers for similarity

between subsamples, hence indicating a common taxonomic community amongst subsamples

from hotspot, coldspot and background regions.

Rank abundance analyses

Genus abundance distributions were created using all hotspot, coldspot and background

regions (Figs 5 and 6). Using MLE to apply abundance distribution model fits to the taxo-

nomic data from each 1 μl subsample at the genus-level, the Pareto (power law) distribution

was clearly identified as the top ranked distribution for all samples, displaying the best (least)

AICc values and Aikake weights of ~1 (Fig 5, S1 Table). After truncation for optimal model fit,

and recalculation of the shape parameter, 58 of the 60 samples passed the goodness of fit test,

i.e. the null hypothesis that the data was drawn from a power law distribution was accepted

(5% significance threshold) (Fig 6, S2 Table). The 2 samples not fitting a power law were both

from hotspots, and excluded from calculation of the mean hotspot power exponent (S2 Table).

The exponent value of -2.7 from the coldspot region was identified as an outlier by Grubb’s

test (p-value <1E-10, R 3.7.3) and also excluded from mean value calculations. The mean

exponent for the hotspots, -1.90, was significantly lower than the means for the coldspots

Taxonomic composition of prokaryotic hotspots

PLOS ONE | https://doi.org/10.1371/journal.pone.0197224 May 22, 2018 13 / 22

https://doi.org/10.1371/journal.pone.0197224


(-1.77) and background (-1.78) (1-way ANOVA, MATLAB R2017b; the multiple comparison

p-values for coldspots and background were 2.0E-5 and 2.1E-5 respectively).

Fig 5. Violin plots of square root-transformed dAICc values for MLE fitted genus abundance distributions across all 60 samples. A value of 0 indicates the best-fitting

distribution; higher dAICc values indicate poorer fits.

https://doi.org/10.1371/journal.pone.0197224.g005

Fig 6. Representative power laws from sample genus abundance distributions for (A) hotspots (B) background and (C) coldspots.

https://doi.org/10.1371/journal.pone.0197224.g006
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Discussion

Here we report heterogeneity between the taxonomic profiles of 1 μl subsamples taken from

300 μl hotspots, coldspots and background regions, hence supporting our hypothesis (Figs 3

and S3). This heterogeneity was most extreme within hotspot subsamples and was due to the

presence of hotspots within hotspots, here termed ‘micropatches’. These micropatches were

1 μl hotspot subsamples characterised by heightened relative abundance of specific individual

genera, whilst the remaining hotspot subsamples showed consistent relative abundances of all

genera. Consistent relative abundances of genera common to most subsamples may indicate

balanced succession and exploitation, where all bacterial genera have the ability to take advan-

tage of growth inducing signals such as nutrient patches [3, 64]. Whereas, exclusive dominance

of specific genera may indicate specialist responses to specific localised environmental condi-

tions [38, 39, 65].

Whether considering the few abundant taxa via Bray-Curtis dissimilarity (Fig 4A) or the

many rare taxa via Sorensen distance metric (Fig 4B), distinct separation was observed between

hotspot, coldspot and background samples as well as between sample wells of the same sample

type. This suggests 300 μl microbial patches have taxonomically distinct groupings, which

appear to remain coherent for extended periods. The highest dissimilarity and dispersion, as

revealed by SIMPER, PERMdisp and MDS analysis, was between the hotspot subsamples,

which is indicative of the higher taxonomic heterogeneity observed between these subsamples,

indicating distinct community structure at the 1 μl scale (Fig 3). The taxonomic heterogeneity

observed within 1 μl subsamples here is consistent with the previous findings of Long and

Azam [9] who demonstrated heterogeneous species richness and composition across 1 μl seawa-

ter samples. In addition, Meckenstock [40] found heterogeneity within the OTU profiles of 1 μl

samples from oil-confined, ancient water droplets. Patterns in the relative abundance of Proteo-

bacteria, Firmicutes and Bacteroidetes were principally responsible for the heterogeneous com-

position of communities between hotspot subsamples indicating these phylogenetic groups play

key roles in microbial microenvironment structure at the 1 μl scale (Figs 3A and S3A). Micro-

patches of Proteobacteria abundance is consistent with previous observations in freshwater sys-

tems, where a high incidence of Proteobacteria attachment to suspended particles has been

demonstrated [66, 67]. Proteobacteria represent 20–50% total bacterial abundance within sus-

pended river particles and biofilms, whilst their abundance is much lower in free-living bacterial

communities [66, 67], therefore suggesting micropatches are due to particulate matter that leads

to heightened abundance of specific taxa. Pseudomonas was the primary genus responsible for

this elevated Proteobacteria abundance in one of the H2 hotspot subsamples (Fig 3A). As Pseu-
domonas is common within aquatic environments, and can indicate zoonotic or anthropogenic

inputs [67, 68], its elevated abundance could correlate to particulate matter influx from the

houseboats and cattle farming lands that surround the sampling site. In the individual micro-

patch of hotspot H1 that contained an elevated abundance of Proteobacteria, Brevundimonas
was the primary genus present (Fig 3A). As Brevundimonas is often associated with high levels

of organic compounds, particulate matter from cellular components may explain its elevated

abundance [67, 68]. The elevated abundance of Firmicutes occurred in micropatches from hot-

spot H1 (S1A Fig). Firmicutes are abundant within sediment environments [69] but can also

serve as important faecal-indicators in environmental water systems [70], again suggesting the

micropatches are due to particles, in this instance, faecal or sediment-associated. Lachnospira-
ceae incertae sedis had elevated abundance in a micropatch from hotspot H1, whilst Parasporo-
bacterium had elevated abundance in several micropatches from hotspot H1 (Fig 3A).

Lachnospiraceae incertae sedis is anaerobic and involved in rumen biohydrogenation, therefore

its abundance may be due to the presence of faecal particles from ruminant animals, which
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corresponds to the surrounding agricultural farming lands [71]. Parasporobacterium is an

anaerobic bacterium typically isolated from freshwater benthos, therefore its heightened relative

abundance may indicate resuspension of sediment into the water column [72]. As the river sam-

pled is characterised by highly regulated flows and turbid waters, shearing of biofilms on the

sediment-water interface is likely to occur. Lastly, elevated Bacteroidetes relative abundance in

the micropatch hotspot subsample H3.4 (S1A Fig) was primarily driven by increases in the rela-

tive occurrence of Bacteroides whilst the most abundant Bacteroidetes genus within the remain-

ing hotspot subsamples was Flexibacter (Fig 3A). As some Bacteroidetes are anaerobic bacteria

responsible for specialised degradation of complex macro-molecules, they are typically found

on suspended particles or in the anoxic regions of microbial biofilms as these contain refractory

materials [66, 73]. Therefore, the heightened Bacteroidetes abundance may again, indicate the

sampling of organic particles, such as river snow, or the shedding, detachment or disruption of

cells from a biofilm containing a high concentration of this particular phylum [66, 74, 75].

Micropatches were due specifically to Pseudomonas, Parasporobacterium, Lachnospiraceae
incertae sedis and Bacteroides, as they exhibited largely varying relative abundance proportions

between subsamples, with heightened relative abundance within individual hotspot subsamples

(Fig 3). Removal of these genera from the community composition yielded little difference to

the similarity within and between sample types (S4 and S5 Tables), indicating these individual

genera were not solely responsible for the heterogeneity between and within sample regions.

This confirms micropatches are not due to the enrichment of a single genus, rather they are

influenced by the type, combination and abundance of genera present, and therefore implies

inter-organism interactions are more complex than the simple enrichment of a single genus.

Furthermore, the removal of micropatch hotspot subsamples led to an increase in similarity

between and within sample regions confirming the largest heterogeneity existed within the sin-

gle 1 μl micropatch subsamples from hotspots. Hotspots remained the most heterogeneous of

the sample regions despite removing the most heterogeneous subsamples from each hotspot

sample (S4 and S5 Tables), confirming that hotspots are taxonomically distinct from coldspots

and background regions. Therefore hotspots, coldspots and background regions are distinct

taxonomic microenvironments with heterogeneity present within each of these sample types

down to the 1 μl scale. Homogeneity was also observed within the hotspot, coldspot and back-

ground subsamples (Figs 3 and S3). After the removal of the micropatch hotspot subsamples,

Geothrix, Nocardioides, Flexibacter, Austwickia and Chryseoglobus, were identified as the main

drivers for similarity between subsamples as they had abundances that were common amongst

subsamples. This indicates a common taxonomic community exists amongst subsamples from

hotspot, coldspot and background regions. The abundant common taxonomic community is

likely to be homogeneous in absolute abundance, but the rarer organisms in this community

will increase in relative abundance within hotspot regions therefore causing the shifts observed

in the most abundant genera between hotspot subsamples. For this to be possible, according to

community assembly theory, these less abundant species can avoid local extinction and out

compete other more abundant species if they are able to have a competitive advantage, become

replenished from surrounding sources or access a different ecological niche [76].

Previously discrimination of microbial hotspots and coldspots had remained largely qualita-

tive, with the former being primarily defined as abundance regions that are ‘elevated above’ or

‘exceed’ background variation across one or two sampling points [7, 34, 35]. Dann et al. [4] pro-

vided a quantitative method for discriminating hotspot, coldspot and background abundance val-

ues via rank abundance analysis, with sample values being separated based on their slope and line

of best fit [4, 21, 37]. Here we expand on this analysis by using Chow tests to show significant

structural breaks within these rank abundance distributions (Figs 2 and S1, Table 1). Background

values were best described by a linear model, whereas hotspot and coldspot values had a
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nonlinear model–power law–best-fit (Fig 2, Table 1). It has previously been shown that random

noise appears as linear [77], which indicates here that the background abundance values are due

to random processes, such as has been observed previously in fractional Brownian motions [77],

with no one sample value being more likely to be more common than any other sample value. A

linear or random trend can be indicative of equilibrated additive and reductive processes [4].

Such additive processes in bacterial and viral communities could be reproduction or aggregation,

whilst reductive processes could relate to grazing, decay or lysis events. Conversely, the hotspot

and coldspot samples were identified via a clear structural discontinuity between the characteris-

tic behaviours expected in cases of randomness (i.e. the background values), leading to a nonlin-

ear power law best-fit for these sample values (Fig 2). Power law trends indicate nonrandomness

and thus for the hotspots may indicate a favouring towards additive processes, whilst reductive

processes may be favoured for the coldspots, resulting in a non-equilibrated state when compared

to the background samples [4, 21, 77]. By using these rank abundance graphs, two linear trends

were identified within the background region, therefore creating four distinct sections in the rank

abundance profile (Fig 2, Table 1). Two linear trends have been observed previously within back-

ground values and were attributed to the presence of different randomisation processes [4, 21].

For instance, one linear trend may indicate an equilibrium between grazing and aggregation,

whilst the second linear trend may indicate an equilibrium between reproduction and lysis. In

order to distinguish between these randomisation processes experimental work is necessary.

Taxonomic distributions within the 1 μl subsamples from hotspot, coldspot and background

samples revealed a power law best-fit for all sample types (Fig 5), with hotspots exhibiting signif-

icantly steeper mean exponent values when compared to the coldspots (Fig 6, S2 Table). These

findings are in line with previous work by Mitchell [78] and Seymour et al. [7], which showed

exponent values at and below −1 indicate high levels of structural complexity with considerable

self-organisation and strong patches [78]. Here, this high level of structural complexity was

observed as distinct taxonomic partitioning and high levels of taxonomic heterogeneity between

1 μl subsamples, with this being most extreme for hotspot samples (Figs 3 and 4).

Conclusion

Here we report genetic heterogeneity among 1 μl subsamples retrieved from 300 μl microbial

hotspots, coldspots and background regions that were determined by bacterial abundance pat-

terns. This heterogeneity was typically driven by heightened relative abundance of specific

genera, with this pattern most apparent within hotspot subsamples. Heterogeneity between

subsamples revealed hotspot regions were characterised by either consistent abundances in

genera common to most subsamples or the dominance of specific individual genera, here

termed ‘micropatches’. These micropatches revealed a complex internal structure within hot-

spots. The genera exhibiting heightened abundance generally contained members of the Fir-

micutes, Proteobacteria and Bacteroidetes, implying the ability of these groups to exploit

heterogeneous microenvironments and due to the particle-association of these phyla and

respective genera, indicated particulate matter may be causing these distinct micropatches.

Here we expand on previous rank abundance discrimination of microbial abundance hot-

spots and coldspots by showing distinct and significant structural breaks occur between a linear

background and hotspot and coldspot values that follow a power law trend. Taxonomic distri-

butions were best explained by a power law, with hotspots characterised by steeper exponent

values than the background and coldspots, owing to their higher level of structural complexity.

We present this robust quantitative method for use in future studies on patch dynamics.

Previously, microscale heterogeneity studies have focussed on numerical differences [4, 7,

11, 12, 21, 48] and here we extend the work to include taxonomic gradients by showing that
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across a few millilitres there are strong and extensive taxonomic changes. As microbial hot-

spots and coldspots are important microenvironments for nutrient exchange and cellular

interactions, understanding their taxonomic makeup will aid further understanding in envi-

ronmental heterogeneity, microbial diversity and ecosystem function.
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ing the heightened abundance of Firmicutes, Proteobacteria and Bacteroidetes. For clarity,

only phyla representing > 2% average abundance are shown. OTUs determined via RDP Clas-

sifier within the UPARSE pipeline.

(TIF)
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