

A COMPARATIVE STUDY OF THE ENERGETICS, FAT METABOLISM AND COMPOSITION OF PLASMA FATTY ACIDS IN GROWING GOATS AND LAMBS

by

Abiliza E. Kimambo, B.Sc. (Agric.) Univ. of Dar es Salaam

Being a Thesis submitted in fulfilment of the requirements for the degree of Master of Agricultural Science.

Department of Animal Physiology, University of Adelaide, South Australia.

December, 1978

TABLE OF CONTENTS

		Page	
1.	Introduction	1	
1.1	General	1	
1.2	Physiology of goats and sheep	4	z ⁶
2.	Literature review	6	
2.1	Growth and body composition of ruminants	6	
2.2	Factors which affect body composition	8	
2.2.1	Age	8	
2.2.2	Nutrition of animal	10	Ŕ
2.2.2.1	Effect of plane of nutrition	11	
2.2.2.2	Composition of the feed	13	
2.2.2.3	Effect of frequency of feeding	16	
2.2.2.4	Body weight loss and re-alimentation	17	
2.2.3	Species, breed and sex	19	
2.2.4	Climate	23	
2.3	Plasma protein	2.3	
2.4	Basal metabolic rate	25	
2.5	Factors affecting metabolic rate	26	
2.5.1	Body size	27	
2.5.2	Species	28	
2.5.3	Breed	29	
2.5.4	Age	29	
2.5.5	Physiological condition	31	
2.5.6	Nutrition	31	
2.5.7	Environmental factors	32	
2.6	Water turnover	33	
2.7	Factors affecting water turnover	34	

e R

	5 X	
N.		Page
2.7.1	Species, breed and sex	35 -
2.7.2	Age	36
2.7.3	Physiological conditions	36
2.7.4	Nutrition	37
2.7.4.1	Quantity of food	37
2.7.4.2	Type of feed and composition	38
2.7.5	Other environmental factors	39
2.8	Plasma lipid classes and their long chain fatty acid composition and concentration in ruminants	40
2.8.1	Nomenclature of long chain fatty acids of plasma lipids	41
2.9	Factors affecting plasma lipid concentration and their fatty acid composition	43
2.9.1	Species, breed and sex of animal	44
2.9.2	Age of the animal	46
2.9.2.1	Effect of age on plasma lipids in ruminants	47
2.9.2.2	Effect of age on fatty acid composition of plasma lipids	49
2.9.3	Physiological conditions	52
2.9.3.1	Lactation and pregnancy	52
2.9.3.2	Starvation and fasting	54
2.9.4	Nutritional factors	55
2.9.4.1	The amount of feed taken	55
2.9.4.2	Type of feed and composition	57
2.9.4.3	Effect of feeding frequency on plasma lipids	61
2.9.4.4	Effect of feed on plasma lipids and fatty acid composition in young ruminants	63
2.9.5	Other environmental effects	64
2.9.5.1	Temperature	64
2.9.5.2	Seasonal variation	65

199

No. 1

	a 🗢	Page
2.9.6	Control of fat mobilization in ruminants	66
3.	Materials and methods	71
3.1	Experimental animals and management	71
3.1.1	Lambs	71
3.1.2	Goats	71
3.2	Diet and feeding	71
3.2.1	Lambs	71
3.2.2	Goats	73
3.3	Blood sampling	73
3.4	Growth and bioenergetic measurements	75
3.4.1	Body weight	75
3.4.2	Estimation of TOH spaces and water turnover rate	75
3.4.3	Sublimation of plasma samples and preparation for scintillation counting	76
3.4.3.1	Assay of tritium	76
3.4.3.2	Scintillation counting	77
3.4.3.3	Calculation of TOH space, water turnover rate, body protein and body fat	77
3.4.4	Determination of energy and nitrogen balance	78
3.4.4.1	Collection of urine and faeces	78
3.4.4.2	Determination of dry matter in urine, faeces and feed	79
3.4.4.3	Milling of samples	79
3.4.4.4	Determination of nitrogen in faeces and feed	79
3.4.4.5	Measurement of gross energy	80
3.4.5	Measurement of fasting metabolic rate	81
3.5	Plasma lipid analyses	82
3.5.1	Materials	82

		Page	
3.5.2	Methods	83	
3.5.2.1	Preparation of fat-free filter paper	83	
3.5.2.2	Washing of glassware	83	
3.5.2.3	Preparation of thin layer plates preparative TLC Plates	83	
3.5.2.4	Plasma lipid extraction	83	
3.5.2.5	Separation of FFA and triglycerides from other lipids	85	
3.5.2.6	Preparation of methyl esters	86	
3.5.2.7	GLC analyses of fatty acids methyl esters	87	
3.5.2.8	Identification and calculations	87	
3.6	Fat mobilization (adrenaline infusion)	88	
3.6.1	Preparation of animals	88	
3.6.2	Infusion and blood sampling	- 88	
25 Te			
4.	Results and Discussion	90	
4.1	Growth and bioenergetics	90	
4.1.1	Results	90	
4.1.1.1	Growth rate and food intake in goats and lambs	90	
4.1.1.2	Nitrogen and energy balance in goats and lambs	92	
4.1.1.3	Body composition in goats and lambs	96	
4.1.1.4	Fasting metabolic rate	100	
4.1.1.5	Water turnover rate	100	
4.1.2	Discussion	101	
4.1.2.1	Growth rate and food intake in goats and lambs	101	
4.1.2.2	Nitrogen and energy balance in goats and lambs	105	
4.1.2.3	Body composition of goats and lambs	107	20.

2

- 1940 - 1

•

4.1.2.4	Effect of age and feeding patterns on the fasting metabolic rate in goats and lambs	1.18
4.1.2.5	Effect of age and feeding patterns on the water turnover rate in lambs and goats	121
4.1.3	Summary	125
4.2	Plasma lipids, age and feeding patterns	130
4.2.1	Results	130
4.2.1.1	Plasma FFA in goats and lambs	130
4.2.1.2	Total saturated and unsaturated fatty acids	131
4.2.1.3	Individual free fatty acids	133
4.2.1.4	Plasma triglyceride in goats and lambs	139
4.2.1.5	Saturated and unsaturated triglyceride	139
4.2.1.6	Fatty acids	141
4.2.1.7	Total plasma lipids	145
4.2.2	Discussion	145
4.2.2.1	Plasma FFA and age	145
4.2.2.2	Effect of feeding pattern on fasting plasma FFA	149
4.2.2.3	Individual free fatty acids and age	150
4.2.2.4	Effect of feeding pattern on fatty acid composition of plasma FFA	156
4.2.2.5	Plasma triglyceride and age	159
4.2.2.6	Effect of feeding pattern on fasting plasma triglyceride	159
4.2.2.7	Individual triglyceride fatty acids and age	160
4.2.3	Summary	163
4.3	Diurnal variation in plasma lipids in goats	167
4.3.1	Results	167
4.3.1.1	Plasma FFA	167
4.3.1.2	Saturated and unsaturated FFA	167

Page

1

	· · · · · · · · · · · · · · · · · · ·	rage
4.3.1.3	Individual plasma FFA	168
4.3.1.4	Plasma triglyceride	171
4.3.1.5	Saturated and unsaturated triglyceride fatty acids	172
4.3.1.6	Individual triglyceride fatty acids	173
4.3.1.7	Plasma protein	176
4.3.2	Discussion	176
4.3.2.1	Plasma FFA	176
4.3.2.2	Plasma triglyceride	179
4.3.3	Summary	182
4.4	Effect of saline and adrenaline infusion on plasma lipids	184
4.4.1	Results	184
4.4.1.1	Plasma FFA in goats and lambs	184
4.4.1.2	Saturated and unsaturated fatty acids in goats and lambs	185
4.4.1.3	Individual FFA in goats and lambs	188
4.4.1.4	Plasma protein in goats	194
4.4.2	Discussion	194
4.4.2.1	Effect of saline infusion on total plasma FFA	195
4.4.2.2	Effect of adrenaline infusion on total FFA	195
4.4.2.3	Effect of feeding patterns	197
4.4.2.4	Plasma FFA after termination of adrenaline infusion	198
4.4.2.5	Effect of saline infusion on individual fatty acids	199
4.4.2.6	Effect of adrenaline infusion on individual fatty acids	200
4.4.2.7	Individual FFA after termination of adrenaline infusion	203

	·	
4.4.2.8	Effect of feeding pattern on the response to adrenaline infusion	205
4.4.2.9	Effect of saline and adrenaline infusion on plasma protein	205
4.4.3	Summary	205
5.	Conclusion	209
6.	Appendix	214
	Bibliography	216

Page

SUMMARY

 This work studied the effect of feeding patterns on growth and body composition of goats from 9 days to 5 months and sheep from 1 month to 6 months. of age.

In addition, the effects of age and feeding frequency on patterns of fat mobilization and plasma fatty acid composition were determined at monthly intervals. Diurnal variation in plasma FFA and triglycerides over a 24-hour period was examined in 7 week-old goats. The response to infusion of a lipolytic agent, adrenaline, was examined when animals were 7 months old.

Body composition and water turnover rates were estimated using the dilution of injected tritiated water of a known radioactivity every 4 weeks.

Fasting metabolic rate was estimated at monthly intervals by measuring the rate of oxygen consumption using an open circuit metabolimeter.

After extraction of plasma lipids and separation into FFA and triglycerides, quantitation of their individual long chain fatty acids was achieved by GLC.

2) During milk feeding, goats gained relatively more body weight/ day than after weaning. Goats fed twice daily had slightly higher growth rate both before and after weaning than those fed once daily.

Between 2 and 7 months of age, a linear relationship existed between food consumption and age; lambs consumed 15% more than goats fed the same diet at the same age. Goats, although smaller than lambs between 2 and 7 months, grew 21% faster, ate relatively more feed/kg Bwt and had higher feed conversion efficiency. Goats and lambs had similar efficiency in the digestibility of nitrogen and energy, and utilization of dietary energy as metabolizable energy, but goats retained more of the dietary protein than lambs (35.8% and 27% respectively).

3) Three major body components, fat, protein and water, increased as the animals grew. The proportion of fat increased with age in both species, but declined slightly immediately after weaning. Lambs were found to be slightly fatter than goats at the same age. The increase in body fat per increase in body weight was significantly higher in lambs (270g/kg) than in goats (218g/kg). Multiple regression analyses showed that body weight had a greater influence on body fat than did age in lambs, while in goats, age had a greater influence than body weight. Lambs fed twice daily deposited more fat than the other two groups but this difference was not observed in goats.

Although total body water increased with age, its proportion to body weight declined.

Body protein increased with age and was significantly correlated to body weight in both species. The proportion of body protein to body weight was relatively constant with age and showed a slight decline at the age of 6 months in lambs and 5 months in goats.

Plasma protein in both species increased significantly with age to near adult values at 3 and 4 months. Lambs grazing in the paddocks had higher plasma protein than pen fed groups.

4) Higher fasting metabolic rates were observed during milk feeding in both species, and this decreased significantly at weaning. Goats generally had lower fasting metabolic rates than lambs. Feeding patterns had no significant effect on fasting metabolic rates in both species.

5) Water turnover rates were higher during milk feeding, decreasing significantly at 1 month of age in goats. Immediately after weaning, there was a decrease in water turnover, followed by a subsequent increase.

Grazing lambs had significantly higher water turnover during winter and early spring. Goats had lower water turnover rates than lambs.

6) The fasting plasma FFA concentration in goats and lambs was high during the first 2 months of life, reaching a peak after weaning. This was followed by a significant decrease from 3 months of age onwards. Feeding patterns had no significant effect on the concentration of plasma FFA in goats or lambs fed in pens, while the grazing lambs had a higher concentration of plasma FFA at 4 months which was coupled with a decrease in feed availability in the paddock. Lambs were found to mobilize more fat than the goats at all times.

The concentration of oleic acid was highest at 2 months of age followed by a decline in subsequent months. Its proportion to total FFA in both species declined with age, while that of stearic acid increased. This inverse relationship is associated with functional rumen development. Palmitic acid was highest during milk feeding, decreased immediately after weaning, then increased as the animals grew older. Palmitoleic and myristic acids were also higher during milk feeding and decreased with age. Linoleic acid did not change significantly with age in lambs, while it was highest in goats at 2 months of age. Goats were found to have lower saturated to unsaturated fatty acids ratios and lower stearic to oleic acid ratios than lambs.

Feeding once daily was found to increase the proportion of plasma unsaturated free fatty acids in the two species.

7) Fasting plasma triglyceride changed little with age in goats, while in lambs the concentration was significantly higher at 1 and 2 months and then decreased.

The individual triglyceride fatty acids in both species showed a close similarity to the fatty acid composition of plasma FFA. (g) Little diurnal variation in plasma FFA was observed in the two groups of goats. Feeding milk twice daily resulted in two peaks of plasma FFA. Individual plasma fatty acids also showed no diurnal variation. A steady increase in the concentration of plasma triglyceride to a peak 14 hours after feeding was observed in the group of goats fed milk once daily. Feeding milk twice daily resulted in the formation of two triglyceride concentration peaks resulting from the absorption of morning and evening feeds, but there was no variation in the concentration of individual triglyceride fatty acids at these times.

(9) Saline infusion induced a slight increase in the concentration of plasma FFA in lambs and a significant increase in goats.

Adrenaline infusion (10 μ g/kg body weight) for 30 min. increased the concentration of plasma FFA significantly in both species. Lambs showed a higher response to adrenaline infusion than goats.

A decrease in plasma FFA concentration 30 min. after cessation of adrenaline infusion was observed in the two species. The decline was faster in goats than in lambs.

At rest and during saline infusion, the highest proportion of the total FFA in lambs was stearic acid, whereas in goats it was oleic acid. Goats had a higher proportion of unsaturated fatty acids than lambs.

Adrenaline infusion in both species produced a significant increase in the concentration of five of the main fatty acids, in the following order:- oleic > stearic > palmitic> linoleic > and palmitoleic. Some minor fatty acids also increased.

The proportion of stearic acid to total plasma FFA decreased with adrenaline infusion, while that of oleic acid increased in both species. The proportion of palmitic acid increased in lambs and decreased in goats. The ratio of total saturated to unsaturated fatty acids decreased significantly during adrenaline infusion.

The concentration of each fatty acid decreased significantly on the termination of adrenaline infusion with the exception of stearic acid, which increased in lambs. The proportion of oleic acid to total fatty acids decreased rapidly to pre-adrenaline infusion levels, while that of stearic acid increased to pre-adrenaline infusion levels in goats, but was found to be even higher in lambs.

The proportion of saturated fatty acids increased in both species to pre-adrenaline infusion levels, while that of unsaturated fatty acids decreased.

Feeding patterns had no effect on the response to adrenaline infusion in the two species.

DECLARATION

I certify that this thesis does not incorporate, without acknowledgement, any material previously submitted for a degree or diploma in any university, and that to the best of my knowledge and belief it does not contain any material previously published or written by another person, except where due reference is made in the text.

ACKNOWLEDGEMENTS

I sincerely thank my supervisors, Professor W.V. Macfarlane and Dr. B.F. Good for their invaluable discussion and direction. Their enthusiasm for this project and their understanding of various fields studied in this work was of great help.

I am especially grateful to Dr. B. Howard for her assistance in the preparation of this thesis, to Mr. T.W. Hancock and Ms. L.I. Griffen for their assistance with the statistical and computer analyses of the results.

My sincere thanks to the Danish International Development Agency for their financial assistance.

All members of Animal Physiology have given considerable assistance in various ways during the course of this study.

The expert typing of Mrs. J. Johnson is gratefully acknowledged.

ABBREVIATIONS

FFA		Free fatty acids
TG	***	Triglycerides
GLC	613	Gas liquid chromatography
TLC		Thin layer chromatography
Cyc]	ic AM	P - Cyclic adenosine monophosphate