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Abstract

Influenza has been the principal cause of pandemic events over the last cen-
tury. As such, strategies must be implemented to reduce the potential impact
of future pandemics. These epidemic control measures should be informed
by the epidemiological characteristics of the disease, but our current under-
standing of influenza is wanting. Here, we study one of the worst pandemics:
the 1918 “Spanish flu” pandemic. Viral descendants of the 1918 influenza
strain are still in circulation today, such as the 2009 influenza pandemic virus.
Hence, there is significant motivation to study the epidemiological charac-
teristics of the strain responsible for the 1918 pandemic to best inform the
development of control measures against future pandemics.

Past epidemiological studies of the 1918 pandemic have been restricted
to data and epidemic models that fail to account for important dynamics, or
ignore external factors which could potentially bias results. Here, we investi-
gate a previously unstudied data source of contained influenza outbreaks from
the 1918 pandemic that alleviates these issues. Data of 15 influenza outbreaks
aboard naval and passenger vessels travelling to Australia has been collated.
These on-board epidemics are natural pseudo experiments of influenza trans-
mission; contained outbreaks replicating transmission experiments with a
level of recorded detail unprecedented for the 1918 pandemic. To exploit the
data, we develop a novel stochastic epidemic model that accounts for features
salient to characterising the epidemiology of the 1918 pandemic strain; these
include asymptomatic infections, the pre-symptomatic infectious period and
prior immunity. To validate our approaches, an extensive investigation of
inference methods and parameter identifiability is conducted.

Parallel inference across multiple ship outbreaks is used to characterise
the 1918 pandemic influenza strain and enables comparison across pandemic
waves. We find that 1918 pandemic was caused by a highly transmissible
virus, and the reduced impact between the second and third pandemic waves

xi
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was a result of significantly increased population immunity. We find evidence
indicating individuals are infectious for a significant period of time (approxi-
mately 20 hours) before the development of symptoms. Most importantly, we
find transmission from non-symptomatic individuals, that is, infectious indi-
viduals that are asymptomatic or in the period prior to onset of symptoms,
was the dominant cause of infection aboard these ships.



Chapter 1

Introduction

Epidemics have been a consistent presence in humanity’s history. In the
modern day, diseases such as HIV/AIDS, measles, smallpox and the more
recent Ebola and Zika viruses have caused epidemics and pandemics respon-
sible for countless deaths [1, 16, 34, 59, 63]. As such, strategies must be
implemented to reduce the potential impact of any future epidemics. Crucial
to the development of these control measures is an in-depth understanding
of the epidemiological characteristics of the virus [25].

The most common cause of pandemic events is the influenza virus. Com-
monly known as the flu, influenza is a highly contagious viral disease trans-
mitted via water vapour emitted from the mouth and nose. Webster et al.
[78] contains a detailed description of the influenza virus. Here, we discuss
the influenza A type virus as associated with pandemic influenza. Influenza
pandemics usually originate from the emergence of a novel strain of the virus,
unique to previous endemic influenza strains [77, 78]. These strains develop
in other species by a process of antigenic shift (genetic combination of mul-
tiple viruses) before being transmitted to humans; the new strain is largely
unaffected by immune responses from previous attacks of the influenza virus.
Hence, the virus can rapidly spread within the unprotected population with
potentially global reach.

In the last century, there has been four influenza pandemics with true
global reach [78]. The worst of these was the 1918 “Spanish flu” pandemic,
which will be focus of this thesis and is discussed further below. The 1918 in-
fluenza pandemic was a natural disaster of catastrophic proportions, in both
scope and severity. Over the course of 1918-1919, the particular influenza
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2 Chapter 1. Introduction

virus is estimated to have infected a third of the world’s population and
caused approximately 50 million deaths [74]. However, the relevance of the
1918 pandemic to modern influenza cannot be understated. Alarmingly, al-
most all of today’s influenza A strains are descendants of the 1918 virus; this
includes the pandemic H1N1 virus, notably the cause of the 2009 influenza
pandemic [56, 74]. Hence, there is significant motivation for the epidemio-
logical factors responsible for the 1918 pandemic to be further understood.

1.1 1918 Influenza Pandemic

The 1918 influenza pandemic may be the ‘mother of all pandemics’ [74],
but it is still a relatively unknown quantity for its many atypical pandemic
qualities. The geographical origin of the pandemic is open to debate, but
it is thought to have originated within the USA in March 1918 [61]. Over
the next few months, the virus spread across Europe, Asia and North Africa;
eventually reaching Australia in July 1918. This period is known as the
first wave of the pandemic; the smallest of three waves. The first wave was
characterised by mortality rates not dissimilar to seasonal influenza [40, 61].
A highly fatal second wave re-emerged in September and spread globally
until November-December. The second wave demonstrated much greater
virulence than the previous wave. This wave had a significant increase in
morbidity and mortality rates, and was infamously deadly to healthy adults;
atypical of pandemic influenza [77]. A third wave re-emerged in early 1919,
although was not as severe as the second wave and only appeared within
some countries [74]. The three waves of the 1918 pandemic are notable as
while influenza pandemic waves are not uncommon, the rapid progression
of all three waves in approximately 12 months and the differing levels of
virulence is unprecedented. There are several theories as to the cause of
the wave behaviour and the extreme morbidity of the disease. Factors such
as the increasing presence of immunity and antigenic drift (viral genetic
mutation) between waves are thought to have contributed, but the exact
cause is unclear [74]. Hence, many questions about the epidemiology of the
1918 influenza pandemic remain unanswered. As many viral descendants of
the pandemic strain are in circulation today, it remains a notable worst case
scenario of influenza pandemics. Hence, the virus requires comprehensive
epidemiological characterisation to best inform the development of control
measures against potential future attacks.

There have been numerous mathematical studies of the 1918 pandemic
due to its significance, to varying degrees of success. These previous stud-
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ies typically use data from citywide case/mortality records [11, 17, 23, 54],
household studies [26], or institutional records such as schools or military
bases [19, 48, 49, 70]. As such, these investigations suffer from the typical
pitfalls of epidemic characterisation: the complications of unknown external
factors. Unidentified dynamics such as heterogeneous-mixing populations
and externally-introduced transmission are notoriously difficult to account
for, and require the use of questionable assumptions and complicated mod-
elling approaches. Often inappropriate models are used that approximate
or ignore these dynamics, but such methods could fail to capture, or possi-
bly bias, the estimation of important characteristics. Here, we characterise
the 1918 pandemic by investigating a previously unstudied data source of
contained outbreaks that mitigates some of these difficulties.

The 1918 pandemic coincided with the end of WWI, and the mass trans-
portation of troop and trading vessels during this period played a critical role
in the global spread of the disease. In response, the Australian government
implemented national maritime quarantine of all vessels attempting to enter
Australia. Influenza and maritime quarantine [20] is a service publication of
the Australian quarantine during the 1918 pandemic. The report contains a
register of all ships entering Australia during this time, and includes detailed
records from aboard vessels that have travelled to Australia while carrying
influenza-infected passengers. The resulting on-board epidemics are natural
pseudo experiments of pandemic influenza transmission; contained outbreaks
replicating transmission experiments with a level of recorded detail unprece-
dented for the 1918 pandemic. As the Australian Director of Quarantine,
J.H.L. Cumpston, states:

‘The conditions on a ship at sea offer an almost ideal opportunity
for studying the natural history of any infectious disease’ [20].

The contained nature and records of the outbreaks alleviates some of the
external factors described previously and allows for better identification of
the true dynamics. Here, we have collated data of 15 influenza outbreaks
aboard ships (predominately naval vessels) with documentation including:
daily resolution case counts, port arrival/departure dates, use of inocula-
tions/quarantine measures and timings, and all landings of healthy and in-
fected passengers. The collection of data gives an unparalleled picture of
the evolution of a contained outbreak of the 1918 pandemic influenza strain.
The data is used to epidemiologically characterise the 1918 pandemic by
conducting inference using epidemic models.
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1.2 Epidemic Models

Mathematical models for the spread of an infectious disease through a pop-
ulation are known as epidemic models. Epidemic models are commonly for-
mulated as compartmental models, where an individual’s infection status is
denoted by their progression through a series of status-defined compartments
[3, 4, 41]. The movement between compartments is governed by a set of
parameters, which provides insight into the behaviour of an epidemic. The
original and most common compartmental model is the SIR model, developed
by Kermack and McKendrick [41, 43]. The SIR model represents transmis-
sion of a disease with immediate infectiousness upon infection and complete
immunity post recovery. Hence, a population of individuals is divided into
compartments of Susceptible (S) - able to be infected, Infectious (I) - infected
and infectious, Recovered (R) - recovered and now immune to further infec-
tion. For clarity, a diagram of the possible compartments an individual can
be within the SIR system is given in Figure 1.1.

S I R
Infection Recovery

Figure 1.1: Compartment diagram of SIR system.

Compartmental models can be designed to replicate specific disease dy-
namics. To appropriately model influenza, the course of infection must be
scrutinized to inform the model development [15, 69]. Once an individual is
infected with influenza, there exists a period of time until the individual is
infectious to others, denoted the latency period. They are then infectious for
a period of time before developing clinically observable symptoms; this pe-
riod is denoted the pre-symptomatic infectious period. After the development
of observable symptoms, the individual can be observed as a clinical illness.
The individual will remain infectious to others until they recover from the
virus, where they will exhibit a duration of immunity from further infection.

Although, not all individuals who contract the virus will be observed as
a clinical illness. There is also the possibility of asymptomatic infections,
where infected individuals display mild or zero symptoms, or are unable to
have their infection recognised, and are not clinically observed. The sus-
ceptibility of the population should also be scrutinized, via prior immunity.
Prior immunity is the proportion of the host population with immunity to
the disease prior to epidemic onset; this arises either from a previous wave of
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the pandemic or prior attacks of a related seasonal influenza strain. Asymp-
tomatic infections and prior immunity are particularly important to pan-
demic influenza, where case recognition rates can be low and immunity can
be gained from past pandemic waves [48, 49]. Past modelling approaches (in-
cluding those previously mentioned) rarely account for all of these dynamics
as the complexity of the model required inhibits analysis. Hence, to accu-
rately characterise pandemic influenza, complicated disease dynamics must
be included within the model.

1.3 Epidemic Inference

Epidemiological characterisation is informed by conducting parameter infer-
ence on outbreak data using epidemic models. Dependent on the model
choice, there are numerous quantities of interest that can be derived from
epidemic inference. Of particular importance, Fraser et al. [25] lists the fac-
tors needed to be estimated to determine effective control measures for an
epidemic. Here, we detail and expand on these parameters, including some
that have previously been studied for the 1918 pandemic but lack sufficient
evidence. The basic reproduction number, R0, is defined as the expected num-
ber of secondary infections caused by an average infectious individual in an
otherwise susceptible population [41]. If R0 is greater than one, it indicates
the spread of disease may reach epidemic levels. As such, an accurate esti-
mate of R0 is critical in understanding the likelihood of disease invasion and
its potential impact. Previous studies of the 1918 pandemic using city-wide
data estimate R0 between 1.4 - 2.0 [54], but as R0 is population dependent,
estimates from schools and military base outbreaks can be as high as 20
[25, 49]. Hence, there is much uncertainty about influenza transmission rates
in contained environments.

There are several epidemiological periods of interest as they determine
the rate of epidemic growth. The incubation period is the time between an
individuals infection and development of symptoms [64]. Previous studies
have estimated the incubation period (sometimes approximated by the la-
tency period) as 1.3 - 2.0 days [48, 54]. The generation time is the time
between a primary individual’s infection and their first transmission to an-
other individual [64]. There is minimal conclusive evidence of the generation
time for the 1918 pandemic influenza, due to its R0 dependence, but previ-
ous estimates have been around 2.3 - 3.0 days [26, 48, 54]. The incubation
period and generation time can determine the rate of epidemic growth in the
number of observed cases, and hence deserve consideration alongside R0.
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Prior immunity is also an important factor to consider for pandemic in-
fluenza. Previous studies have shown that prior immunity increased between
waves [49], where the exact immune proportion is dependent on the popu-
lation. This is not surprising as previous attacks of seasonal influenza can
reduce susceptibility to pandemic influenza, and immunity can be gained
from earlier waves of the pandemic [48]. Prior immunity estimates suggest
the susceptible population prior to the first wave was the range of 50 - 80%
[26, 48, 49]. Although, there is little in the literature estimating the pro-
portion of susceptibility in later waves. The symptomatic proportion, the
proportion of influenza infections that present observable symptoms, is also
of interest. Past studies have found estimates are varied, ranging from as
low as 38% to as high as 91% [48]. The number of asymptomatic infections
is related to prior immunity in that it is difficult to determine if individuals
not observed have escaped infection, are immune, or are asymptomatic but
still infectious [26]. Hence, the difficulty in estimating prior immunity and
the symptomatic proportion are linked.

An important factor of pandemic influenza which critically lacks evidence
is the proportion of transmission arising from non-symptomatic individuals
[60]; that is, the number of infections that occur by transmission from infec-
tious individuals either asymptomatically or prior to onset of symptoms. As
these individuals are not, or not yet, clinically observed but still contribute to
transmission, identifying their proportion of transmission is crucial to iden-
tifying the best choice of intervention [25]. Previous estimates have found
a plausible range for the proportion of transmission from non-symptomatic
individuals for pandemic influenza to be 30 - 50%, but review literature has
found little conclusive evidence [60]. Hence, the proportion of transmission
arising from symptomatic and non-symptomatic individuals has yet to be
accurately captured for influenza and the 1918 pandemic.

Within this thesis, we characterise the 1918 pandemic influenza strain by
conducting inference on ship outbreak data collated from Cumpston [20]. We
use a Bayesian approach to infer the joint distribution for the parameters of
an epidemic model specifically designed for this study. Due to the complexity
of the model required to capture the desired pandemic influenza character-
istics, a recently developed simulation-based algorithm is used. Inference is
conducted on collections of ship outbreaks corresponding to the second and
third pandemic waves. The parallel inference allows for epidemiological char-
acterisation of the 1918 influenza pandemic including estimates of quantities
above, but also comparison across pandemic waves for key dynamics such as
transmission rates and prior immunity.
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1.4 Thesis Outline

In Chapter 2, the technical background relevant to the work in this thesis
is presented. Chapter 3 details the development of an appropriate stochas-
tic epidemic model for pandemic influenza. The basic SIR model is built
upon using extensions derived from the literature to develop a novel epi-
demic model, denoted the SEIpIsIaR model. A rigorous investigation of
inference methods is conducted to validate the use of an simulation-based
inference algorithm and test the parameter identifiability of the model. This
includes an investigation into the benefits of parallel inference in identifying
key dynamics of interest. Also presented is an alternative inference method
not appropriate for the current study but that may have applications within
the field. In Chapter 4, the epidemiological characterisation of the 1918
pandemic is presented. The circumstances surrounding the ship outbreaks
are thoroughly illustrated, and the ship epidemic model is developed to ac-
count for any changes in population/transmission dynamics on board. The
ship epidemic model is used to conduct inference on the ship outbreak data
in wave-based groups, and key findings are discussed in detail. Chapter 5
presents a summary discussion of the key findings, limitations and conse-
quences of the work within this thesis. Included are possible further areas of
study into the 1918 pandemic from the data within Cumpston [20].
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Chapter 2

Technical Background

This chapter will give an overview of the technical background and literature
relevant to this thesis. The topics include Markov chains, epidemic models
and Bayesian inference.

2.1 Markov Chains

Markov chains are a class of random processes that obey a characteristic
property known as the Markov property. The Markov property states that
the random process retains no memory of its past and only the current state
of the process influences its future. This property is extremely important as
it allows the tractable calculation of many quantities of interest for random
processes. As such, Markov chains are commonly used in applied mathemat-
ics for a variety of applications including epidemic modelling (see Section 2.2)
and Bayesian inference (see Section 2.3). The following section is a discussion
of the relevant sections of Markov chain theory for these applications. The
theory of this section is explained in greater detail in Kroese et al. [44], Norris
[58] and Ross [68].

Markov chains are formulated in discrete-time or continuous-time with
similar definitions but distinct properties. Within this thesis, discrete-time
Markov chain theory is relevant for Markov chain Monte Carlo (Section
2.3.1) and our stochastic epidemic models are formulated as continuous-time
Markov chains (Section 2.2).

9
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2.1.1 Discrete-time Markov Chains

A discrete-time Markov chain (DTMC) is a discrete collection of random
variables {Xn}n∈N on a countable state space S which obeys the Markov
property as follows.

Definition 2.1.1. A discrete-time stochastic process {Xn}n∈N on a countable
state space S is a DTMC iff

P (Xn+1 = j|X1 = i1, X2 = i2, ..., Xn = in) = P (Xn+1 = j|Xn = in),

∀ n ∈ N, j, i1, ..., in ∈ S.

That is, if Xn denotes the current state of the process at time n, then the
next state of the process Xn+1 is only dependent on the current state and no
prior history.

For this thesis, the special case of time-homogeneous Markov chains are
considered. A DTMC {Xn}n∈N is time-homogeneous iff

pij := P (Xn+1 = j|Xn = i) = P (X1 = j|X0 = i), ∀ n ∈ N, i, j ∈ S.

The pij defined above are the one-step transition probabilities of {Xn}n∈N.
That is, pij is the probability of {Xn}n∈N leaving state i and entering state j
in a single time-step. These probabilities can be represented in matrix form
by the transition probability matrix, an |S| × |S| matrix defined by

P = (pij : i, j ∈ S).

The m-step transition probability matrix, the probabilities of moving from
state i to state j in m steps, is defined by the matrix power P (m) = Pm.

For use in Markov chain Monte Carlo (Section 2.3.1), the long term be-
haviours of DTMCs are of interest. Denote the stationary distribution as the
vector π = (πj : j ∈ S) which represents the equilibrium probability distribu-
tion of the Markov process, such that, π = πP . The stationary distribution
is given by the unique solution to the following system of equations [44]:

0 ≤ πj ≤ 1 ,∑
j∈S

πj = 1 ,

π = πP .

(2.1)
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Given {Xn}n∈N obeys a set of regularity conditions (see Norris [58], Theorem
1.8.3), it is possible to determine the stationary distribution by the process’s
limiting distribution. The limiting distribution is the long run proportion of
time that {Xn}n∈N spends in state j ∈ S, independent of initial state X0 = i.
This can be expressed as

P (Xn = j) =
1

n

n∑
m=1

P
(m)
ij , ∀j ∈ S,

where the limiting distribution will converge to the unique stationary distri-
bution as n→∞.

Given a sequence of outcomes from {Xn}n∈N denoted as a sample-path,
the limiting distribution can be estimated by the sample-path long-run pro-
portion of time that {Xn}n∈N spends in each state j ∈ S. Hence, it is possible
to estimate the stationary distribution of a DTMC through sample-path sim-
ulation [28, 44]. This technique is exploited in Markov chain Monte Carlo
(Section 2.3.1).

2.1.2 Continuous-time Markov Chains

A continuous-time Markov chain (CTMC) is analogous to a DTMC {Xn}n∈N,
except the process evolves in continuous time, {X(t)}t≥0 where t ∈ R.

Definition 2.1.2. A continuous-time stochastic process {X(t)}t≥0 on a count-
able state space S is a CTMC iff

P (X(t+ s) = j|X(u) = k,X(s) = i, u < s) = P (X(t+ s) = j|X(s) = i),

∀ s, t, u ≥ 0, i, j, k ∈ S.

That is, analogous to a DTMC, the Markov property is satisfied. Note,
although defined on a countable state space, this thesis will focus on finite
state space CTMCs.

We define a CTMC {X(t)}t≥0 to be time-homogeneous iff

pij(t) := P (X(t+s) = j|X(s) = i) = P (X(t) = j|X(0) = i), ∀ s, t ≥ 0, i, j ∈ S.

The pij(t) defined above are the transition function probabilities of {X(t)}t≥0,
the probability of moving from state i to state j in elapsed time t. These
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probabilities can be represented in matrix form by the transition function,
an |S| × |S| matrix defined by

P (t) = (pij(t) : i, j ∈ S).

The infinitesimal generator or “Q-matrix” of a CTMC, which denotes the
rate of the process moving from state to state, is defined by

Q = lim
h→0+

P (h)− I
h

.

Define Q = (qij : i, j ∈ S). For i 6= j, qij is the transition rate of moving
from state i to state j. For the diagonal elements, qii, define

qi := −qii =
∑
j∈S
j 6=i

qij

to be the rate of leaving state i.

The transition function can be evaluated as a solution to the Kolmogorov
forward equation [58]. The Kolmogorov forward equation states

d

dt
P (t) = P (t)Q. (2.2)

Define the probability mass function of {X(t)}t≥0,

p(t) = (P (X(t) = i) : i ∈ S).

By Equation (2.2) and assuming initial probability distribution p(0), the
probability mass function at time t can be evaluated as the solution to the
master equation [42],

d

dt
p(t) = p(t)Q. (2.3)

Hence, the probability mass function can be found from the numerical solu-
tion to a set of |S| linear ordinary differential equations. There are various
numerical solver techniques for ordinary differential equations [55]. Although,
depending on the complexity of the system and Q-matrix structure, these
methods can become prohibitively computationally expensive as the state
space, and therefore size of the ODE system, increases [39].

Alternatively, solving the Kolmogorov forward Equation (2.2) analytically
gives the transition function solution as

P (t) = eQt. (2.4)
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Hence, by Equation (2.4) and assuming initial probability distribution p(0),
the probability mass function is given by the matrix exponential solution,

p(t) = p(0)P (t)

= p(0)eQt. (2.5)

Rarely is the solution to the matrix exponential analytically available. Hence
to evaluate the probability mass function via Equation (2.5), a numerical
approximation is required. An efficient tool for evaluating the numerical ap-
proximation is the Matlab software package Expokit [71], which uses Krylov
subspace projection techniques. Expokit is a practical solution for evalu-
ating the probability mass function for Markov processes with small state
spaces, but again, as the state space increases the efficiency of the algorithm
greatly decreases [55]. Hence, other methods of calculating the probability
mass function are required for Markov processes with large state spaces. A
common approach is to use simulation-based estimates.

As {X(t)}t≥0 evolves continuously in time, the transition between being
within a current state i and moving to a future state j can be mapped to a
pair of random variables: the holding time, the time until the process leaves
state i once entered, and the jump chain which denotes the probability of
entering state j upon leaving state i. The value qi determines the holding
time of being in state i by a fundamental theorem of CTMCs [58, 68].

Theorem 2.1.3. (Ross [68]) The holding time of {X(t)}t≥0 being in state i,
Ti, is exponentially distributed with mean

E[Ti] =

{
1
qi
, if qi > 0,

∞, if qi = 0.

Upon the expiration of the holding time Ti, it is possible to determine
the probability distribution of the jump chain. That is, the probability of
entering state j 6= i upon leaving state i.

Theorem 2.1.4. (Ross [68]) Upon leaving state i, {X(t)}t≥0 will enter state
j 6= i with probability,

P (X(t) enters state j 6= i, when leaving i) =
qij
qi
.

The decomposition of a CTMC into a holding time and jump chain pro-
cess allows for quick sample-path simulation by a stochastic simulation algo-
rithm. For our purposes all simulations will be generated using the stochas-
tic simulation algorithm as defined in Algorithm 1 (sometimes denoted the
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Gillespie algorithm [29]). For these simulations the initial state of the process
X(0) and a predetermined exit condition must be specified.

Data: Q matrix, Q, initial state X(0), exit condition.
Set t = 0;
while exit condition false do

From current state X(t) = i, list possible events E1, ..., Ek and
their rate of occurrence qi1, ..., qik ;
Calculate mean holding time in state X(t),

qi =
∑
j∈S
j 6=i

qij;

Sample U1, U2 ∼ Uniform(0, 1);
Sample random holding time δt = 1

qi
log(U1) ;

Set P = qi × U2;
Event j occurs if

j−1∑
m=1

qim < P ≤
j∑

m=1

qim;

Set X(t+ δt) = j;
Update time t→ t+ δt;

end
Result: Realisation of CTMC {X(t)}t≥0.

Algorithm 1: Stochastic simulation algorithm.

2.2 Epidemic Models

Epidemic models describe the spread of an infectious disease through a pop-
ulation. This process is approximated by a compartmental model, where an
individual’s infection status is denoted by their progression through a series
of status-defined compartments [3, 24, 41].

Here, we focus on stochastic compartmental models. These models track
the discrete number of individuals within each compartment and reflect the
random dynamics of disease transmission [4]. These properties are important
in modelling epidemics as the spread of disease from individual to individ-
ual is not deterministic, there exists a probability of transferring the disease
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between individuals. Hence, the probability of epidemic die-out, where the
disease dies out from a population, can only be replicated by stochastic mod-
els. Here, we formulate all stochastic models as CTMCs (see Section 2.1.2)
for ease of analysis, as common within the literature [3, 4, 41].

Stochastic models should always be used when possible but are often
impractical to use for large population sizes. Alternatively, we can use deter-
ministic approximations to a suitably scaled version of the stochastic model
by a functional law of large numbers [45, 46]. The deterministic approxi-
mations allow for faster computational analysis and are preferable in some
situations, but are not used here. Here, we give an introduction to stochastic
compartmental models via the SIR model.

2.2.1 SIR Model

The SIR model is representative of a disease with immediate infectiousness
upon infection and complete immunity upon recovery. A homogeneous pop-
ulation of individuals is divided into compartments defined by the infection
status of each individual: Susceptible (S) - able to be infected, Infectious
(I) - infected and infectious, or Recovered (R) - recovered and now immune
to further infection. The model assumes homogeneous mixing between indi-
viduals and a closed population (no birth, death or migration) of fixed size
N . Under these conditions, there are two possible transitions an individual
can undergo: a susceptible individual becoming infected via contact with an
infectious individual (infection event), or an infectious individual recover-
ing from the disease (recovery event) [2, 13, 41]. A diagram of the possible
compartments an individual can be within the SIR system is given in Figure
2.1.

S I R
Infection Recovery

Figure 2.1: Compartment diagram of SIR system.

Other compartments and transitions can be added to the SIR model to
better replicate the dynamics of disease transmission. These more complex
models will be investigated in Chapter 3.

Let S(t) and I(t) denote the number of susceptible and infectious individ-
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uals at any time t, where R(t) = N − S(t)− I(t) ∀t. A two-variable CTMC
that models the SIR process is {(S(t), I(t))}t≥0 with state space

S = {(S, I)|S, I ∈ N, 0 ≤ S + I ≤ N}. (2.6)

The transition rates from a state (S, I) are displayed in Table 2.1.

Transition Type State Change Transition Rate

Infection (S, I)→ (S − 1, I + 1) βSI
N−1

Recovery (S, I)→ (S, I − 1) γI

Table 2.1: SIR compartmental transition rates.

Within Table 2.1, there are two key parameters that control infection
and recovery, β and γ respectively. The first of these, β, the transmission
parameter of the process, is defined as follows. The infection rate can be
expressed as

q(S,I),(S−1,I+1) = Scpv,

where c is the rate of contact between individuals, p = I
N−1

is the probability
a contact is with an infectious individual, and v is the probability that a
susceptible-infectious contact results in disease transmission. If we assume
a frequency-dependent contact structure within the population, that is the
rate of contact is only dependent on the number of individuals within the
population, then the rate of contact between individuals c is constant. Hence,
denote β = cv to be the frequency-dependent transmission term and achieve
the following result [8],

q(S,I),(S−1,I+1) =
βSI

N − 1
.

Frequency-dependent transmission is popular within epidemic modelling, al-
though the assumption of a constant contact rate c is of much debate [8].
A more “intuitive” and arguably preferential contact structure is known as
density-dependent transmission. Here, let c = κ(N−1)

A
so the contact rate be-

tween individuals is scaled in proportion to the density of individuals within
known area A. Hence, denote β∗ = κv(N − 1) to be the density-dependent
transmission term and achieve the following result [8],

q(S,I),(S−1,I+1) =
β∗SI

A
.
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For this thesis, frequency-dependent transmission is assumed but density-
dependent will be utilized where stated. Specifically, density-dependent
transmission will be used for inference with the 1918 pandemic ship data,
using the available ship dimensions (see Chapter 4).

The remaining parameter γ is the recovery rate of an infectious individ-
uals. By Theorem 2.1.3 of CTMCs, the infectious period of an individual is
exponentially distributed with mean 1/γ.

From β and γ defined previously, a critical epidemic indicator for the
SIR model (and by extension other epidemic models) is derived. The basic
reproductive number, R0, is defined as the expected number of secondary
infections caused by an infectious individual in an otherwise susceptible pop-
ulation. For the SIR model R0 is given by

R0 =
β

γ
. (2.7)

Its importance is related to the threshold phenomenon (see Keeling and Ro-
hani [41], Kermack and McKendrick [43]), where given a single infectious
individual in an otherwise susceptible population a disease will not “invade”
a population if R0 < 1. This result proved R0 to be arguably the most critical
indicator for the prediction, and control of epidemics in the event of disease
outbreaks.

2.2.2 Degree-of-Advancement Representation

Degree-of-Advancement (DoA) is a alternative representation of a compart-
mental model by counting the number of each transition event [39]. That
is, the SIR process defined above can be expressed in an equivalent DoA
representation using the counting processes of the number of infection and
recovery events.

Let Z1(t) and Z2(t) denote the number of infection and recovery events
by time t, where the population compartment numbers are given by

S(t) = N − Z1(t),

I(t) = Z1(t)− Z2(t), (2.8)

R(t) = Z2(t).
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The SIR process is expressed as a two-variable CTMC {(Z1(t), Z2(t))}t≥0

with state space

S = {(Z1, Z2)|Z1, Z2 ∈ N, 0 ≤ Z1 ≤ Z2 ≤ N}. (2.9)

The transition rates from a state (Z1, Z2) are displayed in Table 2.2.

Transition Type State Change Transition Rate

Infection (Z1, Z2)→ (Z1 + 1, Z2) β(N−Z1)(Z1−Z2)
N−1

Recovery (Z1, Z2)→ (Z1, Z2 + 1) γ(Z1 − Z2)

Table 2.2: SIR DoA transition rates.

Expressing a compartmental model in DoA allows the state space to be
ordered lexicographically

S = {(0, 0), (1, 0), (1, 1), (2, 0), (2, 1), (2, 2), ..., (N,N)}.

This produces a Q-matrix of the process that is upper triangular due to the
non-decreasing counting processes [9]. The upper triangular structure can
be exploited for efficiency in calculating the probability mass function by the
implicit Euler method.

Implicit Euler

As discussed in Section 2.1.2, calculating the probability mass function of a
Markov process using typical numerical methods such as Expokit is a compu-
tationally intensive task for even small state spaces and is often infeasible. An
alternative method for compartmental models in DoA representation which
exploits the upper triangular Q-matrix, as specifically used within this the-
sis, is the ordinary differential equation solver known as the implicit Euler
method.

The implicit Euler method calculates the probability mass function by
uses a numerical integration approach to solve the master equation (Equation
(2.3)), as described in Jenkinson and Goutsias [39]. Let {X(t)}t≥0 denote a
CTMC with Q-matrix, Q, and probability mass function, p(t). The implicit
Euler method is for discrete time steps {tj = τj : j = 0, 1, 2, ..., T}, the
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numerical solution of the probability mass function p̂(tj) can be found from
p̂(tj−1) by solving the set of linear equations

(I − τQ)p̂(tj) = p̂(tj−1). (2.10)

As above, a compartmental model in DoA representation produces in a Q-
matrix that is upper triangular. Hence, due toQ’s upper triangular structure,
the solving of Equation (2.10) can be computed efficiently by forward sub-
stitution. This implicit Euler method has been shown to be greatly more
efficient than other numerical solutions such as Expokit for many CTMC
epidemic models and is a feasible method of probability mass calculation for
larger state space systems [9].

2.3 Bayesian Inference

Within this thesis, we wish to infer the unknown parameters of an epidemic
model from the observed case data combined with prior knowledge about
disease epidemiology from past studies. Hence, we use Bayesian inference.
Bayesian inference is a statistical framework derived from Bayes’ Theorem
where a prior distribution and data likelihood are combined to evaluate the
posterior distribution. Define the unknown parameters of a model to be
θ ∈ Θ. Let L(θ) = p(D|θ) denote the likelihood of obtaining data D from
θ, p(θ) denote the prior distribution of θ and p(θ|D) denote the posterior
distribution of θ given the data D. Bayes’ theorem states

p(θ|D) =
p(D|θ)p(θ)
p(D)

,

=
L(θ)p(θ)∫
L(θ)p(θ)dθ

.

For models of any reasonable complexity, the normalising constant p(D) =∫
L(θ)p(θ)dθ is infeasible to calculate [28]. Hence, we rely on inference meth-

ods that use the proportionality of Bayes’ rule,

p(θ|D) ∝ L(θ)p(θ), (2.11)

to find an estimate of the posterior distribution that is used for analysis.
An estimate of the posterior distribution can be taken by sampling through
Markov Chain Monte Carlo (MCMC) methodology [28, 44]. MCMC is a
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class of algorithms that allow approximate sampling from any desired distri-
bution, by implementing a Markov chain with stationary distribution equal to
the desired distribution. The Metropolis-Hastings algorithm is a commonly-
used method within MCMC methodology to draw samples from a posterior
distribution.

2.3.1 Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm is able to draw samples from a given
target distribution, π, by creating a DTMC (referred to as the MH chain)
with a stationary distribution equal to π [33, 53]. Once the MH chain has
sufficiently converged to its stationary distribution all further states visited
by the chain are samples from π.

Let {Xn}n∈N denote the MH chain, π denote the target distribution and
q(.|.) denote the proposal distribution. The Metropolis-Hastings algorithm is
given in Algorithm 2.

Data: Initial state X0, number of iterations K, proposal distribution
q, burn-in m.

Set n = 0;
while n ≤ K do

Sample candidate point Y ∼ q(Y |Xn);
Calculate acceptance probability

α(Xn, Y ) = min

{
1,

π(Y )q(Xn|Y )

π(Xn)q(Y |Xn)

}
;

Sample U1 ∼ Uniform(0, 1);
if U1 < α(Xn, Y ) then

Xn+1 = Y ;
else

Xn+1 = Xn ;
end
Set n = n+ 1;

end
Discard burn-in time {X0, ..., Xm−1} ;
Result: Samples of π

Algorithm 2: Metropolis-Hastings algorithm.
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Given the state of the MH chain is Xn, then the next state Xn+1 is chosen
by assessing a candidate point Y sampled from the proposal distribution,
q(Y |Xn). (Here q is dependent on the current state Xn, this can be forgone
for an independent sampler.) The candidate point Y is then accepted as the
next state of the MH chain with probability,

α(Xn, Y ) = min

{
1,

π(Y )q(Xn|Y )

π(Xn)q(Y |Xn)

}
. (2.12)

Otherwise Xn+1 = Xn. Under the regularity conditions of a DTMC (see
Theorem 1.8.3 Norris [58]), the limiting distribution of the MH chain will
converge to the unique stationary distribution, regardless of initial state X0.
This is true given the following conditions on q [44]. There exists a positive
probability of: not accepting a proposed move,

P (α(Xn, Y ) < 1|Xn) > 0,

and of proposing a move to any state,

q(Y |Xn) > 0, Xn, Y ∈ S.

Given {Xn}n∈N has run for n steps, large enough to conclude it has converged
to the stationary distribution (known as the burn-in time), then it is possible
to evaluate the target distribution by the ergodic average. Take a burn-in
time to be m steps of a MH chain run for t steps, then the ergodic average
can be calculated as

E[f(X)] =
1

t−m

t∑
i=m+1

f(Xi).

For Bayesian inference, let {θn}n∈N denote the MH chain of the process
targeting the posterior distribution p(θ|D). Using the proportionality of
Bayes’ Theorem (2.11) allows the acceptance ratio of candidate point θ′ to
be expressed as such,

α(θn, θ
′) = min

{
1,
p(θ′|D)q(θn|θ′)
p(θn|D)q(θ′|θn)

}
,

= min

{
1,
L(θ′)p(θ′)q(θn|θ′)
L(θn)p(θn)q(θ′|θn)

}
. (2.13)

Hence, to alter the Metropolis-Hastings algorithm for Bayesian inference of
parameters, the acceptance probability used in Algorithm 2 is replaced with
Equation (2.13).
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For the optimal implementation of the Metropolis-Hastings algorithm
some design decisions must be made. Choices of proposal distribution, burn-
in time and initial state can effect the performance of the algorithm. Per-
formance is measured by the mixing, how well the MH chain explores the
support of the posterior distribution, and the convergence time, the number
of iterations required to ensure convergence to the stationary distribution
[28]. The ideal proposal distribution is the target distribution but since the
target distribution is unknown, one often aims for close normal approxima-
tions. A good proposal choice results in quick convergence from any initial
state and adequate exploration of the target distribution, leading to a shorter
burn-in time and a representative sample. A poor proposal or initial state
could lead to slow convergence times or the process becoming “stuck” on lo-
cal maxima. A method of judging the effectiveness of a proposal distribution
is to study the acceptance ratio, the number of candidate points that have
been accepted as a proportion of the total number of proposed moves; the op-
timal acceptance ratio is approximately 0.234 [7]. The MH chain trace plots
should also be inspected to assess mixing. Randomly chosen initial states
over a number of MH chains can be used to measure the convergence of a
MH chain and possibly detect multi-modal posterior distributions. Hence, a
typical strategy is to run a smaller number of chains with randomly chosen
initial values and run each chain until the estimator values are comparable,
indicating convergence of each chain to a reasonable degree [14, 28].

Consider the Metropolis-Hastings algorithm has produced posterior sam-
ples {θ1, ..., θN}. The choice of summary statistics/intervals and the number
of samples required deserve consideration. The following discussions within
can be found in more detail within Carlin and Louis [14]. Here, the posterior
sample mean, θ̄, is used as the point estimate of the posterior distribution.
Although, the posterior samples are not technically IID, as are correlated
by the MH chain. Hence, it is possible to underestimate the variance of
the sample mean, and therefore the number of samples required. This can
be taken into account by the effective sample size (ESS), the corresponding
sample size of IID samples needed to have the same variance as the posterior
samples [14, 66]. The ESS is defined as

ESS =
N

1 + 2
∑∞

k=1 ρk(θ)
,

where ρk(θ) is the autocorrelation at lag k of {θ1, ..., θN}. ESS can be used
to estimate the variance of the posterior sample mean,

V̂ar(θ̄) =
s2

ESS
,
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where s2 is the sample variance of {θ1, ..., θN}. This variance can be used to
calculate the 100(1− α)% confidence interval of the posterior sample mean,

θ̄ ± zα/2
√

V̂ar(θ̄).

Here, we determine the required number of samples has been reached when
reaching a benchmark minimum V̂ar(θ̄).

Alternatively, posterior distributions can be summarised by Bayesian
credible regions. Credible regions are used to convey the percentiles of the
posterior distribution [14, 44]. Define an 100(1 − α)% credible region as a
subset C ∈ Θ, such that ,

P (θ ∈ C|D) ≥ 1− α. (2.14)

That is, the “the probability that θ lies in C, given data D, is at least (1−α)”
[14]. A 100(1−α)% credible region can be calculated by the highest posterior
density (HPD) interval such that

C = {θ ∈ Θ | p(θ|D) ≥ k(α)}

where k(α) is chosen so Equation (2.14) is satisfied. The HPD interval can
summarise the posterior range and confidence in the plausible values of θ.

2.3.2 Likelihood

The Metropolis-Hastings algorithm requires the likelihood, L(θ), and prior
density, p(θ), to be evaluated for each candidate point θ. The prior distribu-
tion is defined by previous knowledge about parameters and usually expressed
as a parametric function. The likelihood can often prove more difficult to
evaluate, as discussed in this section.

The likelihood of a set of observed data from an underlying Markov pro-
cess can be expressed by a Hidden Markov Model (HMM).

Definition 2.3.1. A HMM is a set of Markov random variables {(X(t), Y (t))}t≥0,
where X(t) denotes the hidden underlying Markov process and Y (t) denotes
the observation process dependent on X(t), such that

P (Y1:t = y1:t|X1:t = x1:t) =
t∏
i=1

P (Yi = yi|Xi = Xi),

where at discrete time points {1, ..., t}, X1:t = {X(1), ..., X(t)}, x1:t =
{x1, ..., xt}, Y1:t = {Y (1), ..., Y (t)}, y1:t = {y1, ..., yt}.
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Let {X(t)}t≥0 denote the underlying Markov process with parameters θ.
Let P (x0) denote the initial distribution of the Markov process at time t = 0
and y1:T = {y1, ..., yT} denote the series of observations that comprise the
observed dataset D. The likelihood L(θ) is given by

L(θ) = P (y1:T ) = P (y1)
T∏
t=2

P (yt|y1:t−1), (2.15)

by the law of total probability, where

P (y1) = P (y1|x0)P (x0),

and

P (yt|y1:t−1) =
∑
xt∈S

P (yt|xt)P (xt|y1:t−1).

Hence, we can calculate the likelihood by breaking it down into sequen-
tial calculations of: the probability of an observation given the state of the
Markov process, P (yt|xt), and the probability of being in that state of the
Markov process conditioned on all previous information, P (xt|y1:t−1). Take
time t = 0,

P (x1|y1, x0) =
P (y1|x1, x0)P (x1|x0)

P (y1|x0)

=
P (y1|x1)P (x1|x0)∑
x1∈S P (y1|x1)P (x1|x0)

, (2.16)

where P (y1|x1) can be calculated from the observation process and P (x1|x0)
is found by the probability mass function of {X(t)}t≥0 with initial distribu-
tion P (x0). For any time t ≥ 1;

P (xt|y1:t) =
P (yt|xt,y1:t−1)P (xt|y1:t−1)

P (yt|yt−1)

=
P (yt|xt)P (xt|y1:t−1)∑
xt∈S P (yt|xt)P (xt|y1:t−1)

, (2.17)

where P (yt|xt) can be calculated from the observation process and P (xt|y1:t−1)
is found by the probability mass function of {X(t)}t≥0 with initial distribu-
tion P (xt−1|y1:t−1).

For practical purposes, the observation process is usually a trivial or
easily-evaluated distribution, but often the probability mass function of {X(t)}t≥0
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is far more difficult to compute. As discussed in Section 2.2.2, this the-
sis is focused on stochastic epidemic models that can be expressed in DoA
representation. The DoA representation allows for efficient calculation of
the probability mass function of the CTMC via the implicit Euler method.
Hence, the implicit Euler method will be the standard for “exact” likelihood
calculations within this thesis. Although like Expokit, the efficiency of the
implicit Euler method decreases with the size of the state space. As the effi-
ciency of the Metropolis-Hastings algorithm is dictated by the computational
efficiency of the likelihood, the use of the implicit Euler solution is restrictive
for some practical purposes. In such cases alternative methods for Bayesian
inference are implemented that utilize simulation-based approximations.

Several likelihood-free, simulation-based alternatives for Bayesian infer-
ence are commonly used within the literature. They predominately originate
from approximate Bayesian computation [50, 75], particle MCMC and se-
quential Monte Carlo methodologies [22]. We will focus on the latter tech-
niques.

2.3.3 Particle Marginal Metropolis-Hastings

Particle MCMC refers to a class of MCMC algorithms where exact likeli-
hood calculations are replaced by simulation-based estimates. Here, we fo-
cus on the Particle Marginal Metropolis-Hastings (PMMH) algorithm, which
uses a sequential Monte Carlo (SMC) estimate of the likelihood within the
Metropolis-Hastings algorithm [6]. For an explanation of the SMC estimate,
see Section 2.3.4. The PMMH algorithm is shown in Algorithm 3.

PMMH avoids the main problem with the Metropolis-Hastings algorithm
of computationally expensive (or infeasible) likelihood calculation, and in-
stead uses a simulation-based estimate of the likelihood. This comes at the
trade-off of using a number of simulations within the SMC algorithm to cal-
culate a reliable likelihood estimate. As given in Section 2.3.4, the SMC
likelihood estimate (Theorem 2.3.3) is unbiased, but the use of an estimate
of the likelihood does have some limitations. This means introducing an
amount of error into our posterior distribution, and the variability of the
estimate can have a negative effect on the mixing of the MH chain [6, 30].
The estimator variance can be reduced by increasing the number of simula-
tions, but at greater computational cost. Although, as PMMH is an “exact
approximation” to the Metropolis-Hastings algorithm [6], PMMH is a “gold-
standard” method for simulation-based parameter inference. The following
section introduces the SMC likelihood estimate and discusses its effect on
the PMMH algorithm.
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Data: Data y1:T , initial state θ0, number of iterations K, proposal
distribution q, burn-in m.

Set n = 0;
Run SMC scheme targeting p(x0:T |y0:T ) with θ0 and extract marginal
likelihood estimate L̂(θ0) = P̂ (y1:T );
while n ≤ K do

Sample candidate point θ′ ∼ q(θ′|θn);
Run SMC scheme targeting p(x0:T |y0:T ) with θ′ and withdraw
extract likelihood estimate L̂(θ′) = P̂ (y1:T );
Calculate acceptance probability

α(θn, θ
′) = min

{
1,
L̂(θ′)p(θ′)q(θn|θ′)
L̂(θn)p(θn)q(θ′|θn)

}
;

Sample U1 ∼ Uniform(0, 1);
if U1 < α(θn, θ

′) then
θn+1 = θ′ ;

else
θn+1 = θn ;

end
Set n = n+ 1;

end
Discard burn-in time {θ0, ..., θm−1};
Result: Samples of p(θ|y1:T )

Algorithm 3: PMMH algorithm for Bayesian inference.
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2.3.4 Sequential Monte Carlo

Define a particle to be a possible state (or sequence of possible states) of
a Markov process at time t. Sequential Monte Carlo (SMC) (or particle
filters) refers to a class of algorithms built upon sequentially filtering a set of
particles through conditioning on observations of the dataset. There are two
schools of SMC algorithms: state space inference and state space/parameter
inference [22]. Here, we will focus solely on a particular state space inference
SMC algorithm due to its ability to produce unbiased likelihood estimates for
use in PMMH. The “bootstrap filter” developed by Gordon et al. [31], is an
intuitive SMC algorithm able to estimate the distribution of a Markov process
and calculate a likelihood estimate from this approximate distribution. The
bootstrap algorithm and likelihood estimate is given in Algorithm 4.

The bootstrap algorithm works as follows. Define a particle as a sequence
of possible states of the Markov process conditioned on the data up to some
time t. That is, a particle x0:t is random sample drawn from p(x0:t|y1:t).

Assume a population of Np independent particles, {x(i)
0:t| ∀ i = 1, ..., Np}, are

distributed according to p(x0:t|y1:t),

{x(1)
0:t , ...,x

(Np)
0:t } ∼ p(x0:t|y1:t).

By Prediction and Update steps, it is possible to generate a set of particles
distributed according to the state of the Markov process conditioned on each
observation up to time t+ 1, p(x0:t+1|y1:t+1),

{x(1)
0:t+1, ...,x

(Np)
0:t+1} ∼ p(x0:t+1|y1:t+1),

and calculate a likelihood estimate P̂ (yt+1|y1:t). The two steps work as fol-
lows.

1. Prediction:
A simulation from each particle “predicts” a possible state of the Markov
process conditioned on all previous observations. Each particle x

(i)
0:t is

used as a initial state in simulation over time [t, t+ 1] to obtain x
∗(i)
0:t+1,

which is a sample of p(x0:t+1|y1:t) by the Markov property. The result-
ing set of particles is distributed as

{x∗(1)
0:t+1, ...,x

∗(Np)
0:t+1 } ∼ p(x0:t+1|y1:t).
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Data: Data y1:T , initial distribution p(x0), number of particles Np.
Set t = 0;

Sample {x(1)
0 , ..., x

(NP )
0 } ∼ p(x0) ;

for i = 1, ..., Np do

Simulate x
∗(i)
0:1 ∼ p(x1|x(i)

0 ) ;

Assign weight W
(i)
1 = P (y1|x∗(i)1 ) ;

end
Calculate likelihood

P̂ (y1) =
1

Np

Np∑
i=1

W
(i)
1 ;

Re-sample {x(1)
0:1, ...,x

(NP )
0:1 } with weights

P (x0:1 = x
∗(j)
0:1 ) =

W j
1∑

kW
k
1

;

for t = 2, ..., T do
for i = 1, ..., Np do

Simulate x
∗(i)
0:t ∼ p(xt|x(i)

t−1) ;

Assign weight W
(i)
t = P (yt|x∗(i)t ) ;

end
Calculate likelihood

P̂ (yt|y1:t−1) =
1

Np

Np∑
i=1

W
(i)
t ;

Re-sample {x(1)
0:t , ...,x

(NP )
0:t } with weights

P (x0:t+1 = x
∗(j)
0:t+1) =

W j
t+1∑

kW
k
t+1

;

end
Marginal likelihood given by

P̂ (y1:T ) = P̂ (y1)
T∏
t=2

P̂ (yt|y1:t−1)

Result: Marginal likelihood estimate P̂ (y1:T ), Markov

process state space distribution {x(1)
0:T , ...,x

(Np)
0:T }.

Algorithm 4: Bootstrap algorithm.
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Assign particle weights W i
t = P (yt+1|x∗(i)0:t+1) and estimate the likelihood

as

P̂ (yt+1|y1:t) =
1

Np

Np∑
i=1

P (yt+1|x∗(i)t+1).

2. Update:
A re-sampling scheme based on the probability of observing the new
datum then updates the set of particles to conditioned on yt+1. Re-

sampling {x∗(1)
0:t+1, ...,x

∗(Np)
0:t+1 } with weighted probability

P (x0:t+1 = x
∗(j)
0:t+1) =

W j
t+1∑

kW
k
t+1

(2.18)

returns the resulting set of particles distributed as

{x(1)
0:t+1, ...,x

(Np)
0:t+1} ∼ p(x0:t+1|y1:t+1).

The re-sampling scheme is a result from Smith and Gelfrand [72] which
states the following:

Theorem 2.3.2. (Smith and Gelfand [72]) Given N independent sam-
ples of distribution G(x), {x∗(i)|∀i = 1, ..., N}, and known function
L(x), then re-sampling with probability weight

P (x = x∗(j)) =
L(x∗(j))∑
k L(x∗(k))

returns samples {x(i)|∀i = 1, ..., N} which converge in distribution to
L(x)G(x) as N →∞.

Re-sampling by Equation (2.18) will converge in distribution (by The-
orem 2.3.2) as

{x(1)
0:t+1, ...,x

(Np)
0:t+1} ∼ p(x0:t+1|y0:t)p(yt+1|xt+1)

= p(x0:t+1|y0:t)p(yt+1|x0:t+1,y0:t)

∝ p(x0:t+1|y0:t, yt+1)

= p(x0:t+1|y0:t+1).

The algorithm continues, updating t to t+ 1 and using the set of par-

ticles {x(1)
0:t+1, ...,x

(Np)
0:t+1} for the prediction step.
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As stated in Andrieu et al. [6], the above process can generate an unbiased
estimate of the marginal likelihood within the bootstrap algorithm by the
following theorem.

Theorem 2.3.3. (Andrieu et al. [6]: Proved by Del Moral [21], and Pitt
et al. [62]) Within the bootstrap algorithm using a population of Np particles,
an unbiased estimate of the likelihood is given by,

P̂ (y1:T ) = P̂ (y1)
T∏
t=2

P̂ (yt|y1:t−1) (2.19)

where

P̂ (yt|y1:t−1) =
1

Np

Np∑
i=1

W
(i)
t

=
1

Np

Np∑
i=1

P (yt|x∗(i)t ), (2.20)

and

P̂ (y1) =
1

Np

Np∑
i=1

P (y1|x∗(i)1 ). (2.21)

The effectiveness of PMMH is directly related to effectiveness of the SMC
algorithm in producing a likelihood estimate with efficiency and accuracy.
Unfortunately, for the bootstrap algorithm the variability of the likelihood
estimate is directly related to the number of particles, and hence the com-
putational cost of simulations used. Increasing the number of particles will
reduce the variability of the estimate at the trade-off of a slower likelihood
calculation. Often, a large number of particles are required as a highly vari-
able estimate will have a negative effect on the mixing of the PMMH chain.
The variability of the estimate is roughly constant as the number of obser-
vations increases if the number of particles increases linearly [30], but noisy
datasets where datums have low probability of observation will require a high
number of particles to obtain a reasonable estimate. These rare events can
cause particle degeneracy, where a low number of particles are consistent with
the data and so the bulk of the particles are “filtered” out at the re-sampling
stage. The replenished set of particles now originate from a small number
of dominate particles, and so does not adequately represent the subsequent
distribution of the Markov process.
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A common method to alleviate this issue, by increasing the number of
particles that are consistent with the data, is to use importance sampling.
Importance sampling is a technique where realisations are generated from
an importance process that guides particle simulations towards states with a
higher probability of matching the data [6, 22, 44]. Particles weights are then
discounted by the difference between the original model and the importance
process. That is, given a set of particles

{x(1)
0:t , ...,x

(Np)
0:t } ∼ p(x0:t|y1:t),

instead of simulating according to the model process (sampling from density
p(xt+1|xt)), realisations are generated from the importance process (sampling

from density q(xt+1|xt)). Resulting particles {x∗(1)
0:t+1, ...,x

∗(Np)
0:t+1 } are assigned

weights that are the product of observation probability and the importance
factor, the ratio of the model-to-importance probability mass of that parti-
cle’s realisation, such that

W i
t+1 = P (yt+1|x∗(i)t+1)

p(x
∗(i)
t+1|x

∗(i)
t ,y1:t)

q(x
∗(i)
t+1|x

∗(i)
t )

. (2.22)

Re-sampling with normalised weights as in Equation (2.18) results in a distri-
bution of particles sampled from p(x0:t+1|y1:t+1) as required [6]. The impor-
tance sampling algorithm is identical to Algorithm 4, but where simulations
occur according to the importance process q(xt+1|xt) and re-sampling weights
are calculated by Equation (2.22). The use of importance sampling can
greatly increase the number of particles that are consistent with the data,
but requires the computational cost of calculating the probability mass of
each particles’ sample path under both the model and importance processes.

The bootstrap algorithm is a special case of the importance sampling
SMC algorithm where the importance process is equal to the model process;
hence, the importance factor cancels out of Equation (2.22). The compu-
tational cost in calculating the importance factor exceeds the variance re-
duction benefits of importance sampling for the epidemic models considered
here. Therefore, the bootstrap algorithm will be the standard SMC algorithm
used within this thesis. In Chapter 3, we propose an alternative method to
alleviate particle degeneracy issues, but it is not applicable to this study.
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Chapter 3

Epidemic Model Inference

This chapter details the development of the SEIpIsIaR model for use in epi-
demiologically characterising the 1918 pandemic influenza strain (see Chapter
4). Inference methods are tested on simulated datasets to validate our ap-
proaches. A comparison of the Metropolis-Hastings and PMMH algorithms
finds the PMMH performance is effectively identical in far less computation
time. Inherent biases are discovered in the SEIpIsIaR model when conducting
parameter inference from a single dataset; these issues are minimised by the
use of parallel inference. We demonstrate that parallel inference allows for
identification of key dynamics such as prior immunity and symptomatic/non-
symptomatic transmission.

3.1 Epidemic Model Development

A stochastic epidemic model formulated as a CTMC will be fitted to the ship
data. As discussed in Chapter 2, the discrete and random properties of a
stochastic epidemic model replicate the highly variable nature of an influenza
outbreak. These properties are particularly important for outbreaks with
small populations sizes and low numbers of infected individuals as typical of
the ship data. Although, the use of a CTMC model requires several assump-
tions; for the simulation studies within this chapter we take the following to
be true, as motivated by the ship data. We have a homogeneously-mixing
population of fixed size, N , where the population is closed (no births, deaths
or migration). We assume all symptomatic cases of the disease are clinically
observed upon immediate development of symptoms, and recorded at a daily
resolution. See Chapter 4 for a discussion of the validity of these assump-
tions for the ship data. The task remains to develop the most appropriate
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model to reflect the influenza transmission dynamics within the ship-bound
outbreaks. As with Chapter 2, we begin with the simplest case of the SIR
model and build upon it.

Note, all models will be expressed in the Degree-of-Advancement (DoA)
representation for comparison between the implicit Euler and SMC likelihood
calculation methods. As such, let y1:T = {y1, ..., yT} denote the dataset of
cumulative counts of daily observed cases for any generic outbreak.

3.1.1 SIR Model

The SIR model is investigated for comparison to more complex and realistic
models. To recap the example given in Chapter 2, in the SIR model individ-
uals can be susceptible, infectious or recovered and can transition between
compartments by infection and recovery events. A diagram of the possible
compartments an individual can be in is given in Figure 3.1.

S I R

Infection
(Z1)

Recovery
(Z2)

Figure 3.1: Compartment diagram of SIR system with DoA events.

Let Z1(t) and Z2(t) denote the number of infection and recovery events
by time t, where the population compartment numbers can be retrieved by

S(t) = N − Z1(t),

I(t) = Z1(t)− Z2(t), (3.1)

R(t) = Z2(t).

The SIR process is expressed as a two-variable CTMC {(Z1(t), Z2(t))}t≥0

with state space,

S = {(Z1, Z2)|Z1, Z2 ∈ N, 0 ≤ Z2 ≤ Z1 ≤ N}. (3.2)

The transition rates from a state (Z1, Z2) are displayed in Table 3.1.

Transition Type State Change Transition Rate

Infection (Z1, Z2)→ (Z1 + 1, Z2) β(N−Z1)(Z1−Z2)
N−1

Recovery (Z1, Z2)→ (Z1, Z2 + 1) γ(Z1 − Z2)

Table 3.1: SIR events and transition rates.
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The use of this model requires several assumptions. A consequence of
the CTMC formulation is that the length of the infectious period is expo-
nentially distributed with mean 1/γ. While this is not a clinically-motivated
assumption, it is commonly allowed to facilitate easier mathematical analysis
[4]. Another consequence of the SIR model is all individuals are immediately
infectious upon contracting the disease, with all infectious individuals equally
likely to transmit the disease. For the observation process, we assume the
onset of symptoms coincides with an individual becoming infectious. As all
symptomatic individuals are clinically observed, we therefore assume perfect
observation of all infected individuals and define the observation process as

P (yt|(Z1, Z2)) =

{
1 if yt = Z1,

0 else.
(3.3)

Other compartments and transitions are commonly added to the SIR
model to better replicate the dynamics of disease transmission. For example,
influenza requires time for the viral load to develop within an individual
before they are infectious to others [11, 54, 77]. This time, known as the
latency period, can be replicated by an additional compartment within an
epidemic model known as the SEIR model.

3.1.2 SEIR Model

The SEIR model is an extension of the SIR model where a compartment is
included to represent the latency period. A latency period is the period of
time between an individual becoming infected with a disease and the indi-
vidual becoming infectious to others. The infection status of each individual
are now divided into compartments of: Susceptible (S) - able to be infected,
Exposed (E) - infected but not yet infectious, Infectious (I) - infected and
infectious, Recovered (R) - recovered and now immune to further infection.
There are three possible transitions an individual can undergo: a suscepti-
ble individual becoming infected via contact with an infectious individual
(infection event), the viral load developing within an exposed individual to
where they are infectious to others (become infectious event) or an infectious
individual recovering from the disease (recovery event) [41]. A diagram of
the possible compartments an individual can be in is given in Figure 3.2.
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S E I R

Infection
(Z1)

Become Infectious
(Z2)

Recovery
(Z3)

Figure 3.2: Compartment diagram of SEIR system with DoA events.

Let Z1(t), Z2(t) and Z3(t) denote the number of infection, become infec-
tious and recovery events by time t, where the population numbers are given
by

S(t) = N − Z1(t),

E(t) = Z1(t)− Z2(t), (3.4)

I(t) = Z2(t)− Z3(t),

R(t) = Z3(t).

The SEIR process is expressed as a three-variable CTMC {(Z1(t), Z2(t), Z3(t))}t≥0

with state space

S = {(Z1, Z2, Z3)|Z1, Z2, Z3 ∈ N, 0 ≤ Z3 ≤ Z2 ≤ Z1 ≤ N}. (3.5)

The transition rates from a state (Z1, Z2, Z3) are displayed in Table 3.2.

Transition Type State Change Transition Rate

Infection (Z1, Z2, Z3)→ (Z1 + 1, Z2, Z3) β(N−Z1)(Z2−Z3)
N−1

Become Infectious (Z1, Z2, Z3)→ (Z1, Z2 + 1, Z3) σ(Z1 − Z2)

Recovery (Z1, Z2, Z3)→ (Z1, Z2, Z3 + 1) γ(Z2 − Z3)

Table 3.2: SEIR events and transition rates.

The use of a CTMC model results in the duration of the latency period
being exponentially distributed with mean 1/σ. The end of the latency
period signifies the onset of an individuals infectiousness. As with the SIR
observation process, we assume the concurrent onset of observable symptoms
and infectiousness and so the observation process is defined as

P (yt|(Z1, Z2, Z3)) =

{
1 if yt = Z2,

0 else.
(3.6)
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The SIR and SEIR models assume all infectious individuals are identical
in transmissibility and ability to be observed by a clinician. During the
course of an influenza outbreak, not all infectious individuals are uniformly
infective and not all will be observed by a clinician [48, 77]. This may be due
to a number of reasons such as a reduced viral load resulting in mild or no
symptoms or restricted availability to report illness. As such, a non-trivial
proportion of infectious individuals are asymptomatic, displaying mild or no
symptoms and will not be clinically observable, but are infectious to others.
The symptomatic versus asymptomatic process can be included within an
epidemic model via the SEIsIaR model, introduced in the next section.

3.1.3 SEIsIaR Model

The SEIsIaR model accounts for the proportion of cases that are symp-
tomatic, ps ∈ [0, 1], by demarcating symptomatic and asymptomatic individ-
uals in separate compartments, IS and IA respectively. When an individual’s
latency period expires and they leave the exposed class, they become symp-
tomatic (with probability ps) or are otherwise asymptomatic (with probabil-
ity 1− ps).

The introduction of symptomatic and asymptomatic infectious individu-
als raises the question of how to model severity of cases. For simplicity, we
have assumed two levels of illness, those ill enough to be observed and those
who are not, but how do these two case types behave with respect to disease
transmission. That is, can we assume symptomatic and asymptomatic in-
dividuals have equal average length infectious periods and are equally likely
to infect susceptible individuals? This is an open question with a severe
lack of evidence available [60]. We could expect symptomatic individuals to
transmit influenza at a higher rate due to increased symptom-based trans-
mission from coughs and sneezes. Conversely, symptomatic individuals are
more likely to attempt some form of self-isolation or increased hygiene given
their awareness of their infection and consciously reduce their transmission
rate. Hence, the difference in transmission is a complicated issue. Within
the literature, this decision is open to debate, dependent on disease and sim-
plifying model assumptions. There are a variety of approaches taken, for
example: equal infectious periods [26], unique (or zero) asymptomatic in-
fectiousness [48], unique infectious period and asymptomatic infectiousness
[17] etc. Here, we allow the least restricting assumption of unique infectious
periods and infectiousness.
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A diagram of the possible compartments an individual can be in is given
in Figure 3.3.

S E

IS

IA

R

Infection
(Z1)

Become

Symptomatic

Infectious (Z2)

BecomeAsymptomaticInfectious (Z4)

SymptomaticRecovery (Z3)

Asymptomatic

Recovery (Z5)

Figure 3.3: Compartment diagram of SEIsIaR system with DoA events.

Let Z1(t) be the number of infection events, Z2(t) the number of become
symptomatic infectious events, Z3(t) the number of symptomatic recovery
events, Z4(t) the number of become asymptomatic infectious events and Z5(t)
the number of asymptomatic recovery events, by time t respectively. The
population numbers are given by

S(t) = N − Z1(t),

E(t) = Z1(t)− Z2(t)− Z4(t),

IS(t) = Z2(t)− Z3(t), (3.7)

IA(t) = Z4(t)− Z5(t),

R(t) = Z3(t) + Z5(t).

The SEIsIaR process is expressed as a five-variable CTMC {(Z1(t), Z2(t), Z3(t),
Z4(t), Z5(t))}t≥0 with state space

S ={(Z1, Z2, Z3, Z4, Z5)|Z1, Z2, Z3, Z4, Z5 ∈ N,
0 ≤ Z3 + Z5 ≤ Z2 + Z4 ≤ Z1 ≤ N,Z4 ≤ Z2, Z5 ≤ Z3}.

The transition rates from a state (Z1, Z2, Z3, Z4, Z5) are displayed in Table
3.3.



3.1. Epidemic Model Development 39

Transition Type State Change Transition Rate

Infection Z1 → Z1 + 1 βs(N−Z1)(Z2−Z3)
N−1

+ βa(N−Z1)(Z4−Z5)
N−1

Become Symptomatic Infectious Z2 → Z2 + 1 psσ(Z1 − Z2 − Z4)

Symptomatic Recovery Z3 → Z4 + 1 γs(Z2 − Z3)

Become Asymptomatic Infectious Z4 → Z4 + 1 (1− ps)σ(Z1 − Z2 − Z4)

Asymptomatic Recovery Z5 → Z5 + 1 γa(Z4 − Z5)

Table 3.3: SEIsIaR events and transition rates. Note, State Change lists
the variable of the process that undergoes change by a transition; all other
remain unchanged.

The symptomatic and asymptomatic infectious periods are exponentially
distributed, with means 1/γs and 1/γa respectively. Symptomatic and asymp-
tomatic individuals transmit according to unique transmission parameters,
βs and βa. As with the SEIR model, we assume the concurrent onset of
symptoms with infectiousness but only for symptomatic individuals. There-
fore, we assume perfect observation of only symptomatic individuals and the
observation process is defined as

P (yt|(Z1, Z2, Z3, Z4, Z5)) =

{
1 if yt = Z2,

0 else.
(3.8)

In the SEIsIaR model, we have accounted for two levels of case severity
and infectiousness of individuals but the observation process still relies on
the assumption that symptoms and infectiousness occur concurrently. As
influenza infectiousness is related to the viral load within an individual, there
exists a period of time where the viral load is high enough to allow disease
transmission but not to induce symptoms [67, 69]. This time is known as the
pre-symptomatic infectious period and can be replicated by an additional
compartment within the SEIpIsIaR model, introduced in the next section.

3.1.4 SEIpIsIaR Model

The SEIpIsIaR model accounts for the pre-symptomatic infectious period,
the time between an individual becoming infectious and demonstrating symp-
toms [69], within the compartment IP . Here, we only allow a pre-symptomatic
period for the symptomatic cases as asymptomatic cases will not develop ob-
servable symptoms.
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Similar to the introduction of asymptomatic infections in the SEIsIaR
model, introducing a pre-symptomatic period requires assumptions about the
duration of this period and the relative infectiousness of a pre-symptomatic
individual. The pre-symptomatic period is epidemiologically different in
definition to the symptomatic-asymptomatic dynamics and hence deserves
unique consideration. Clinical studies have shown the existence of pre-
symptomatic infectious transmission for influenza in ferrets [67], but there
is little evidence about its effect on epidemic/pandemic disease transmission
[60]. Hence, there exists significant motivation to account for the period
within the model to further understand its role in influenza epidemics.

A diagram of the possible compartments an individual can be in is given
in Figure 3.4.

S E

IP IS

IA

R

Infection
(Z1)

Become

Pre-symptomatic

Infectious (Z2)

Become
Symptomatic

Infectious (Z3)

BecomeAsymptomaticInfectious (Z5)

Symptomatic
Recovery (Z

4)

Asymptomatic

Recovery (Z6)

Figure 3.4: Compartment diagram of SEIpIsIaR system with DoA events.

Let Z1(t) be the number of infection events, Z2(t) the number of become
pre-symptomatic infectious events, Z3(t) the number of become symptomatic
infectious events, Z4(t) the number of symptomatic recovery events, Z5(t)
the number of become asymptomatic infectious events and Z6(t) the number
of asymptomatic recovery events, by time t respectively. The population
numbers are given by

S(t) = N − Z1(t),

E(t) = Z1(t)− Z2(t)− Z5(t),

IP (t) = Z2(t)− Z3(t), (3.9)

IS(t) = Z3(t)− Z4(t),

IA(t) = Z5(t)− Z6(t),

R(t) = Z4(t) + Z6(t).
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The SEIpIsIaR process is expressed as a six-variable CTMC
{(Z1(t), Z2(t), Z3(t)), Z4(t), Z5(t), Z6(t))}t≥0 with state space

S ={(Z1, Z2, Z3, Z4, Z5, Z6)|Z1, Z2, Z3, Z4, Z5, Z6 ∈ N,
0 ≤ Z4 + Z6 ≤ Z2 + Z5 ≤ Z1 ≤ N,Z4 ≤ Z3 ≤ Z2, Z6 ≤ Z5}.

The transition rates from a state (Z1, Z2, Z3, Z4, Z5, Z6) are displayed in Table
3.4.

Transition Type State Change Transition Rate

Infection Z1 → Z1 + 1

βp(N − Z1)(Z2 − Z3)

N − 1
+
βs(N − Z1)(Z3 − Z4)

N − 1
+

βa(N − Z1)(Z5 − Z6)

N − 1

Become Pre-Symptomatic Infectious Z2 → Z2 + 1 psσ(Z1 − Z2 − Z5)

Become Symptomatic Infectious Z3 → Z3 + 1 α(Z2 − Z3)

Symptomatic Recovery Z4 → Z4 + 1 γs(Z3 − Z4)

Become Asymptomatic Infectious Z5 → Z5 + 1 (1− ps)σ(Z1 − Z2 − Z5)

Asymptomatic Recovery Z6 → Z6 + 1 γa(Z5 − Z6)

Table 3.4: SEIpIsIaR events and transition rates. Note, State Change lists
the variable of the process that undergoes change by a transition; all other
remain unchanged.

The pre-symptomatic period is exponentially distributed with mean 1/α.
Pre-symptomatic individuals transmit the disease according to unique trans-
mission parameter, βp. The end of the pre-symptomatic period signifies the
onset of an individual displaying symptoms. Hence, we assume the onset of
symptoms upon entry to the symptomatic infectious compartment and so
the observation process is defined as

P (yt|(Z1, Z2, Z3, Z4, Z5, Z5, Z6)) =

{
1 if yt = Z3,

0 else.
(3.10)

The SEIpIsIaR model will be the foundation of our influenza investigation
but other factors within the model must be scrutinised. The initial distri-
bution of the population amongst the model compartments requires consid-
eration. This is related to two questions about the population prior to the
outbreak: the introduction of infection and prior immunity. The introduc-
tion of infection refers to the number and infection status of the individuals
who introduce a disease into the population. See Chapter 4 for the discussion
of how this is accounted for within the ship data. For the purpose of this
chapter, we assume one infected individual is introduced to the population
at a known time.
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Prior immunity refers to a proportion of the population that has devel-
oped an immunity to the disease before the onset of an outbreak [26, 49].
Hence, these individuals are mixing within the population but cannot con-
tract or transmit the disease. Specifically for pandemic influenza, prior im-
munity can be high due to the development of a lasting immune response
from previous attacks of influenza strains [77]. If a significant proportion of
the population is immune, it can greatly reduce the number of cases caused
by an epidemic and so should be included within the model. Here, we only
consider lasting immunity over the course of the outbreak as the duration
of the ship outbreaks are too short to consider waning immunity [49]. We
can account for prior immunity by changing the initial number of individuals
within the recovered compartment. If a single infected individual enters an
entirely susceptible population at time 0, then the model’s initial state is

(Z1(0), Z2(0), Z3(0), Z4(0), Z5(0), Z6(0)) = (1, 0, 0, 0, 0, 0),

which translates to compartment numbers

(S(0), E(0), IP (0), IS(0), IA(0), R(0)) = (N − 1, 1, 0, 0, 0, 0, 0).

To model for prior immunity within the remaining population we intro-
duce the parameter, psus, the probability a random individual within the
population is susceptible to infection. The number of immune individuals
within the remaining susceptible population, nim, is randomly sampled from
a binomial(N − 1, 1− psus) distribution. Hence, we assume all immune indi-
viduals are unobserved and the initial state is

(Z1(0), Z2(0), Z3(0), Z4(0), Z5(0), Z6(0)) = (1 + nim, 0, 0, 0, nim, nim),

which translates to compartment numbers

(S(0), E(0), IP (0), IS(0), IA(0), R(0)) = (N − 1− nim, 1, 0, 0, 0, 0, nim).

Note, within the SMC algorithm each particle is assigned an initial state with
a randomly sampled nim ∼ binomial(N − 1, 1− psus).

The form of contact-transmission structure, frequency-dependent versus
density-dependent also should be considered. Both contact structures are
discussed in Chapter 2. Density-dependent can be more informative by the
inclusion of the known area in which the outbreak takes place, but the choice
is inconsequential unless considering outbreaks across populations and/or
areas of distinct sizes. This requires consideration in Chapter 4 but is irrel-
evant here. Hence, for the following simulation studies frequency-dependent
transmission is used.
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3.2 Inference Method Validation

For the above models, we validate our inference methods by conducting ex-
perimental studies on simulated data. In this section, simulated datasets
from each model will be used to compare the efficiency and accuracy of the
Metropolis-Hastings and PMMH algorithms, as described in Chapter 2. To
recap, the Metropolis-Hastings algorithm and PMMH algorithm are identi-
cal except for the method of likelihood calculation. The Metropolis-Hastings
algorithm uses an “exact” likelihood; calculated by solving the master equa-
tion using the implicit Euler method with global precision τ . The PMMH
algorithm uses an SMC likelihood estimate with number of particles Np. De-
note the respective likelihood methods NumInt(τ) and SMC(Np). Hence,
the comparison of these algorithms is a comparison of the behaviours of the
likelihood calculation methods; compared by efficiency, accuracy and effect
on the mixing of the MH chain.

Note, to replicate the ship data all simulated data will be generated with
similar population sizes and parameter values consistent with previous stud-
ies of 1918 pandemic influenza [23, 54]. Only significant outbreaks greater
than 10 cases will be considered and the data will be collected at daily reso-
lution. As above, we assume a known initial state of the model.

3.2.1 SIR Model Parameter Inference

To be able to compare NumInt(τ) and SMC(Np) both must be feasible meth-
ods of likelihood calculation for use with the SIR model. SMC(Np) is straight-
forward to implement by using simulations of the SIR model CTMC given
in Section 3.1.1 and the observation process given in Equation (3.3). As
simulations are fast to generate by a stochastic simulation algorithm and the
observation process is trivial to compute, SMC(Np) is efficient for a large
number of particles.

Although, it is possible for SMC(Np) implemented in this manner to suf-
fer from likelihood failure, defined as prematurely returning a zero likelihood
estimate of a positive likelihood. Here, this occurs if every particle simu-
lation is inconsistent with the observed data. That is, for the SIR model
the SMC(Np) algorithm will return a zero likelihood estimate if at any time

t = 1, ..., T , every particle {(Z1, Z2)
(i)
t |i = 1, ..., Np} is such that the number

of infections within the simulation does not equal the observed case data,
Z1 6= yt. Hence, the likelihood estimate

P̂ (yt|y1:t−1) =
1

Np

Np∑
i=1

P (yt|(Z1, Z2)
(i)
t ) = 0.



44 Chapter 3. Epidemic Model Inference

This may reflect a real error with the model or data collection that results
in an observed data point with zero probability of occurring, but this is
extremely unlikely. In most cases, we are able to determine that there exists
a positive probability of an observed data point occurring, but the data is
too inconsistent with model such that it has an extremely low probability
of occurring. These rare event probabilities are difficult to estimate from
Monte Carlo methods. The frequency of likelihood failure can be reduced by
increasing the number of particles but this is not always practical. Typical
rare-event simulation methods such as importance sampling are discussed in
Chapter 2, but are not applicable here for computational reasons. Further
methods of minimising likelihood failure are explored further in Section 3.3.
If likelihood failure consistently occurs within the MH chain, it can have a
negative effective on the mixing of the chain.

NumInt(τ) is far more computationally expensive method as it involves
using forward substitution to repeatedly solve systems of linear equations.
The number of linear equations is determined by the size of the CTMC’s Q-
matrix, an |S| by |S| matrix. Hence, the size of the state space can determine
the efficiency or even viability of the algorithm. (Note, state space truncation
is possible for increased efficiency but is not used here, see Chapter 5.) The
state space size for the SIR model is given by

|S| =
N∑

Z1=0

Z1∑
Z2=0

1 =
(N + 1)(N + 2)

2
.

As the size of the state space is of order O(N2), the population size will
determine if NumInt(τ) is a viable method. Take for example, the runtime
in calculating the NumInt(τ) likelihood for 10 sets of SIR model simulated
data with increasing population sizes, N . The results are shown in Table 3.5.

Population Size N Runtime (s)

100 0.168

200 0.736

300 1.553

400 2.886

500 4.705

Population Size N Runtime (s)

600 6.988

700 9.901

800 13.317

900 19.629

1000 25.143

Table 3.5: Runtime of NumInt(τ = 10−2) for SIR model with varying popula-
tion size. Likelihoods calculated using true parameters. Datasets: observed
the first 25 days of outbreak at daily resolution, R0 = 2, 1

γ
= 3. Run in

Matlab on an iMac (2013) with 2.7 GHz Intel Core i5 processor.
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We observe an exponential growth in the runtime of NumInt(τ) as N
increases. While the NumInt(τ) is a feasible solution for the SIR model,
it is far more computational expensive for larger population sizes than the
SMC(Np) estimate. Obviously, the decision to use NumInt(τ) or SMC(Np)
is going to be dependent on the choices of τ and Np. The precision τ must
be high enough for acceptable error to the true likelihood, while the number
of particles Np must be large enough to reduce the variance of the likelihood
estimate and the possibility of likelihood failure. Decreasing τ or increasing
Np comes at a computational cost, so a minimum required accuracy should
be investigated. While this is problem specific, we have SIR model simulated
data indicative of the ship data to validate the comparison. Here, we compare
the NumInt(τ) and SMC(Np) methods by varying τ and Np. The algorithms
are used to calculate likelihood of a SIR model simulated dataset with a set
of “good-fit” (R0 = 2, 1/γ = 3) and “poor-fit” (R0 = 3, 1/γ = 3) parameters.
The box plots of 100 SMC(Np) estimates and the NumInt(τ) solution are
shown in Figure 3.5 and comparative algorithm runtimes are given in Table
3.6.
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Figure 3.5: SIR model log-likelihood comparison for NumInt(τ) and
SMC(Np) by τ and Np. NumInt(τ) solution by decreasing τ given in leg-
end. Box plot of 100 SMC(Np) calculations for each Np with number of
positive likelihood estimates out of 100 given in box. Dataset: N = 1000,
observed the first 25 days of outbreak at daily resolution, R0 = 2, 1

γ
= 3.
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Precision τ Runtime (s)

10−1 2.512

10−2 25.33

10−3 213.9

10−4 1858

Number of
Particles Np Runtime (s)

102 0.007

103 0.064

104 0.652

105 6.655

106 72.54

Table 3.6: NumInt(τ) runtime by τ versus SMC(Np) average runtime by Np.
Runtime taken from “good-fit” likelihood calculations given in Figure 3.5.
Run in Matlab on an iMac (2013) with 2.7 GHz Intel Core i5 processor.

From Figure 3.5, the NumInt(τ) solution is poor and underestimates the
likelihood for τ > 10−2 and Table 3.6 shows the runtime is inversely pro-
portional to τ . Hence, a standard precision of τ = 10−2 will be used for
best accuracy at acceptable runtime. While the SMC(Np) is known to be
unbiased for any Np, Figure 3.5 demonstrates an increased probability of
likelihood failure for Np < 104. Within this chapter, the number of particles
Np = 104 will be standard within SMC(Np) as it produces a desirable middle
ground between runtime and variance reduction.

We can demonstrate the difference in likelihoods by comparing the like-
lihood distribution shape. That is, we calculate the likelihood at grid points
over a subsection of the parameter space. Here, we cover a two-dimensional
grid across R0 ∈ [1.5, 2.5] and 1/γ ∈ [2.5, 3.5] with 121 points at 0.1 inter-
vals. The likelihood is calculated at each point with the NumInt(τ = 10−2)
and SMC(Np = 104) algorithms. The likelihood distributions are shown
as three-dimensional surfaces in Figure 3.6. Note, missing points in the
SMC(Np = 104) likelihood distribution are zero likelihood estimates. Here,
we see SMC(Np = 104) suffers likelihood failure for the lower likelihood val-
ues, and the variability of estimator is obvious in the unevenness of the sur-
face compared to NumInt(τ = 10−2), although the overall likelihood shape
is consistent between methods. Hence, both methods perform similarly in
calculating the likelihood across the support of the likelihood distribution,
except for SMC(Np) difficulties in calculating low probability likelihoods.
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Figure 3.6: SIR model log-likelihood comparison for NumInt(τ) and
SMC(Np) likelihood distribution shapes. Likelihood calculated in 121 even
spaced grid points over R0 ∈ [1.5, 2.5] and 1

γ
∈ [2.5, 3.5]. Missing points

denote zero likelihood. Dataset: N = 1000, observed the first 25 days of
outbreak at daily resolution, R0 = 2, 1

γ
= 3.

A study on simulated data is conducted to compare the effectiveness of
the Metropolis-Hastings and PMMH algorithms for the SIR model. For the
SIR model, we conduct inference on the model parameters transformations

θ =

{
R0 =

β

γ
,

1

γ

}
.

We target these parameter transformations due to their physical definitions,
which allows for natural interpretation and intuitive assignment of prior dis-
tributions. Both parameters are assigned uninformative uniform(0.1, 8) prior
distributions. The Metropolis-Hastings and PMMH algorithms are run on
100 SIR model simulated datasets for 10,000 iterations with 1,000 steps as
burn-in time. Note, the iteration count is chosen to meet a specified es-
timator variance of the R0 posterior sample mean, V̂ar(R̄0) < 0.01. R0

is chosen as the indicator parameter due to its physical interpretation. To
compare the accuracy of the respective algorithms in identifying the posterior
distribution, for each dataset the posterior sample mean bias, sample vari-
ance, posterior mean 95% CI and HPD interval widths are collated. These
summary statistics are presented as they are indicative of the shape of the
posterior distribution, as well as the accuracy of the point estimates. The
comparative posterior results are shown in Figure 3.7.
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Figure 3.7: Box plot diagram comparing Metropolis-Hastings and PMMH
posterior results for 100 SIR model simulated datasets. Posterior sample
mean bias, sample variance, mean 95% CI interval width and HPD interval
width from each run are displayed in box plots by parameter. Datasets:
N = 250, observed the length of outbreak at daily resolution, R0 = 2, 1

γ
= 3.

From Figure 3.7, it is clear to see that the Metropolis-Hastings and
PMMH posterior results are near identical. The mean estimates of R0 for
both methods are similarly centred around the true values while both meth-
ods tend to slightly overestimate 1/γ. Likewise, the sample variance, CI and
HPD interval widths across parameters are similar for both methods. Hence,
the Metropolis-Hastings and PMMH algorithms perform near identically in
identifying the posterior distribution for the SIR model. From Table 3.6,
the runtime of using the SMC(Np) estimate instead of the NumInt(τ) solu-
tion (with standard precision) is roughly 40 times faster. Hence, the PMMH
algorithm is preferential in parameter inference for the SIR model.

3.2.2 SEIR Model Parameter Inference

Likewise, to be able to compare NumInt(τ) and SMC(Np) for use with the
SEIR model, they must be feasible methods of likelihood calculation. The
performance of the SMC(Np) algorithm for the SEIR model is consistent with
the SIR model except for a slight increase in variability and computation cost
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due to the increased dimension of the process. NumInt(τ) faces a far greater
decrease in efficiency to the exponentially increased state space size. The
state space size for the SEIR model is given by

|S| =
N∑

Z1=0

Z1∑
Z2=0

Z2∑
Z3=0

1 =
(N + 1)(N + 2)(N + 3)

6
.

As the size of the state space is of order O(N3) the population size will
severely restrict the cases where NumInt(τ) is a viable method. As with the
SIR model, we take the runtime in calculating the likelihood for SEIR model
simulated datasets with increasing population sizes. The runtime results of
NumInt(τ) are shown in Table 3.7.

Population Size N Runtime (s)

100 1.264

200 9.983

300 38.29

400 94.09

500 209.2

600 > 600

Table 3.7: Runtime of NumInt(τ = 10−2) for SEIR model with varying
population size. Likelihoods calculated using true parameters. Datasets:
observed the first 25 days of outbreak at daily resolution, R0 = 2, 1

σ
=

1, 1
γ

= 3. Run in Matlab on an iMac (2013) with 2.7 GHz Intel Core i5
processor.

Due to long computation time of NumInt(τ), it is not a practical method
for the SEIR model with population sizes greater than 200. A comparison
of the Metropolis-Hastings and PMMH algorithms for the SEIR model is
recommended to validate the use of PMMH for more complex models. A
study is conducted on simulated data with a reduced population size of N =
100. For the SEIR model, we conduct inference on the model parameters
transformations

θ =

{
R0 =

β

γ
,

1

σ
,

1

γ

}
.

All parameters are assigned uniform(0.1, 8) prior distributions. The Metropolis-
Hastings and PMMH algorithms are run on 100 SEIR model simulated
datasets for 10,000 iterations with 1,000 steps as burn-in. Note, the iter-
ation count is chosen such that V̂ar(R̄0) ≈ 0.01. The comparative posterior
results are shown in Figure 3.8.
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Figure 3.8: Box plot diagram comparing Metropolis-Hastings and PMMH
posterior results for 100 SEIR model simulated datasets. Posterior sample
mean bias, sample variance, mean 95% CI interval width and HPD interval
width from each run are displayed in each box plot by parameter. Datasets:
N = 100, observed the length of outbreak at daily resolution, R0 = 2, 1
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= 1,
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The Metropolis-Hastings and PMMH posterior distributions are near
identical across R0, 1/σ and 1/γ. The sample mean distributions are simi-
larly centred around the true values (with slight positive bias) and the sam-
ple variance, CI and HPD interval widths estimates are essentially equal.
Hence, the Metropolis-Hastings and PMMH algorithms perform near identi-
cally in identifying the posterior for the SEIR model. Although as in Table
3.7, the runtime of the NumInt(τ) method is impractical for use within the
Metropolis-Hastings algorithm for population sizes greater than 200. This re-
striction makes it an unsuitable method for the ship data and so the PMMH
algorithm is preferential in identifying parameters for the SEIR model.

3.2.3 SEIsIaR Model Parameter Inference

The use of NumInt(τ) is infeasible for SEIsIaR likelihood calculations due to
the increased size of the state space. The state space size for the SEIsIaR
model is given by

|S| =
N∑

Z1=0

Z1∑
Z2=0

Z2∑
Z3=0

Z1−Z2∑
Z4=0

Z4∑
Z5=0

1,

∼ O(N5). (3.11)

As the size of the state space is of order O(N5), the cases where NumInt(τ)
is a viable solution is restricted to very small populations. Hence, NumInt(τ)
is not a feasible method for use with the SEIsIaR model and is eliminated
from further consideration. The performance of the SMC(Np) algorithm for
the SEIsIaR model is consistent with the SIR and SEIR model with a similar
increased penalty for the increased dimensions of the process.

A study is conducted on simulated data to test the ability of the PMMH
algorithm to identify the parameters of the SEIsIaR model. For the SEIsIaR
model, we conduct inference on the model parameters transformations

θ =

{
R0 =

psβs
γs

+
(1− ps)βa

γa
,

1

σ
,

1

γs
,

1

γa
, ps, κS =

(R0)S
R0

}
.

Denote (R0)S and (R0)A to be the R0 contributions of symptomatic and
asymptomatic individuals respectively, such that

(R0)S =
psβs
γs

,

(R0)A =
(1− ps)βa

γa
.
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Hence, κS and κA = (1 − κS) denote the proportion of transmission oc-
curring from symptomatic and asymptomatic individuals. All parameters
are assigned uniform(0.1, 8) prior distributions, except ps and κS which are
assigned a uniform(0.01, 0.99) prior distribution. The κS prior reflects our
uncertainty in the respective proportion of transmission from symptomatic
and asymptomatic individuals. The PMMH algorithm is run on 50 SEIsIaR
model simulated datasets for 80,000 iterations with 5,000 steps as burn-in.
Note, the iteration count is chosen such that V̂ar(R̄0) ≈ 0.05. Here we run
two studies to highlight some key behaviours that result from the introduc-
tion of the symptomatic-asymptomatic dynamic. The first study focuses on
data produced with low R0 = 1.2, and the second with data produced with
high R0 = 2. The bias of posterior results for the low and high R0 data are
displayed in Figure 3.9.
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Figure 3.9: Box plot diagram of PMMH algorithm posterior for 50 SEIsIaR
model simulated datasets generated with low R0 = 1.2 values and high R0 =
2 values. Posterior sample mean bias are displayed in each box plot by
parameter. Datasets: N = 1000, observed the length of outbreak at daily
resolution, 1

σ
= 1, 1

γs
= 2, 1

γa
= 1, ps = 0.75, κS = 0.91.

In both studies, PMMH displays an ability to identify 1/σ and 1/γs con-
sistent with the SEIR model. We note a clear inability to identify 1/γa due
to the lack of information able to be extracted from symptomatic case data.
We also observe a slight underestimation of κS and conversely overestimated
κA. The behaviour of R0 and ps identifiability deserves further scrutiny.
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For the low R0 data, PMMH does an acceptable job at identifying R0 and
displays a degree of uncertainty about ps with some negative bias. Note,
only considering data of outbreaks > 10 cases could explain some of the R0

positive bias [52]. Comparatively for the high R0 data, R0 is overestimated
to a large degree and ps shows significant negative bias. Hence, dependent
on the size of the outbreak as dictated by R0, the model inference is biased
towards overestimating transmission and underestimating the proportion of
symptomatic cases. The overestimated R0 results in almost all of the popu-
lation becoming infected and the underestimated ps is fitted to the clinical
attack rate (proportion of population observed to have been infected) rather
than the true symptomatic - asymptomatic probability.

We can demonstrate this by studying posterior simulations compared to
the dataset. Denote the end-state of a simulation to be the distribution
of population amongst compartments at the end of outbreak. In full, the
population proportion that is susceptible, symptomatic recovered or asymp-
tomatic recovered post outbreak. The true end-state is taken from the 50
SEIsIaR model simulated datasets used for inference in Figure 3.9. For each
corresponding posterior distribution, 100 parameter sets are sampled to gen-
erate posterior simulation outbreaks. The mean posterior simulation end-
state is calculated from each set of posterior simulations. We compare the
true end-state distribution and the mean posterior end-state distribution,
in Figure 3.10. Note, all simulated outbreaks with less than 10 cases are
removed from consideration, as with the true datasets.
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Figure 3.10: Box plot diagram of end-state distribution comparison of dataset
and posterior simulations. Datasets and posterior results taken from infer-
ence in Figure 3.9.
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In support of the above theory, the posterior simulations demonstrate a
much higher total attack rate (attack rate of observed and unobserved infec-
tions) than the data due to a large increase in the number of asymptomatic
infections. In the low R0 datasets, approximately 70% of the population
escape infection, where posterior simulations estimate only 30% escape in-
fection. In the high R0 datasets, 20% of the population escape infection,
where the posterior simulations estimate 2% escape infection. Hence, the
overestimated R0/underestimated ps bias causes the posterior distribution
to overestimate asymptomatic infections and transmission. This bias should
be considered when conducting inference with asymptomatic infections from
a single outbreak.

3.2.4 SEIpIsIaR Model Parameter Inference

The state space size for the SEIpIsIaR model is given by

|S| =
N∑

Z1=0

Z1∑
Z2=0

Z2∑
Z3=0

Z3∑
Z4=0

Z1−Z2∑
Z5=0

Z5∑
Z6=0

1,

∼ O(N6). (3.12)

Again, the cases where NumInt(τ) is a viable solution is restricted to very
small populations; therefore NumInt(τ) is eliminated from further consider-
ation.

A study is conducted on simulated data to test the ability of the PMMH
algorithm to identify the parameters of the SEIpIsIaR model. For the SEIp-
IsIaR model, we conduct inference on the model parameter transformations

θ =

{
R0 = ps

(
βp
α

+
βs
γs

)
+

(1− ps)βa
γa

,
1

σ
,

1

α
,

1

γs
,

1

γa
, ps,

κS =
(R0)S
R0

, κP =
(R0)P
R0

}
.

Denote (R0)P to be the R0 contribution of pre-symptomatic individuals, such
that

(R0)P =
psβp
α

,

(R0)S =
psβs
γs

,

(R0)A =
(1− ps)βa

γa
.
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Hence, κS, κP and κA = (1−κS−κP ) denote the proportion of transmission
occurring from symptomatic, pre-symptomatic and asymptomatic individu-
als. All parameters are assigned uniform(0.1, 8) prior distributions except ps,
κS and κP which are assigned a uniform(0.01, 0.99) prior distribution (such
that κS + κP < 1). Again, the κS and κP prior distributions reflects our
uncertainty in the respective proportion of transmission. The PMMH algo-
rithm is run on 50 SEIpIsIaR model simulated datasets for 80,000 iterations
with 5,000 steps as burn-in. Note, the iteration count is chosen such that
V̂ar(R̄0) ≈ 0.1. We run two studies on data produced with low R0 = 1.2 and
high R0 = 2. The bias of posterior results are displayed in Figure 3.11.
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Figure 3.11: Box plot diagram of PMMH posterior results for 50 SEIpIsIaR
model simulated datasets generated with low R0 = 1.2 values and high R0 =
2 values. Posterior sample mean bias are displayed in each box plot by
parameter. Datasets: N = 1000, observed the length of outbreak at daily
resolution, 1

σ
= 0.5, 1

α
= 0.5, 1

γs
= 2, 1

γa
= 1, ps = 0.75, κS = 0.31, κP = 0.63.

The SEIpIsIaR model shows a similar ability to the SEIsIaR model to
identify R0, 1/σ, 1/γs, ps (with the same R0/ps bias) and an inability to
identify 1/γa. Conversely to the asymptomatic dynamics, we are able to
accurately identify 1/α, due to it’s relation to the incubation period. Al-
though, in particular we are interested in the ability to identify the propor-
tion of transmission contributed by symptomatic, κS, pre-symptomatic κP ,
and asymptomatic individuals, κA. We include in this analysis the combined
contributions of non-symptomatic (pre-symptomatic or asymptomatic) indi-
viduals, κNS = (1− κS). The posterior sample mean bias of κS, κP , κA and
κNS are shown in Figure 3.12. Here, we observe significant overestimation
of κA and underestimation of κP in both cases. However, we observe an
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ability to accurately identify κS and κNS. Hence, while we cannot identify
the correct transmission contribution from “hidden” pre-symptomatic and
asymptomatic individuals, we have shown the ability to identify the respec-
tive transmission from symptomatic and non-symptomatic individuals.
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Figure 3.12: Box plot diagram of proportion of transmission posterior sample
mean bias. Posterior results extracted from Figure 3.11.

The introduction of prior immunity into the SEIpIsIaR model complicates
parameter inference as there are now two processes that allow individuals to
not be observable infections. That is, it is difficult to determine if the pro-
portion of the population that are not symptomatic infections are: immune,
asymptomatic individuals or if the disease died out before infecting them.
We conduct a study on simulated data to test the ability to identify prior
immunity within the SEIpIsIaR model. For the SEIpIsIaR model with prior
immunity, we conduct inference on the model parameter transformations

θ =

{
R0 = psus

(
ps

(
βp
α

+
βs
γs

)
+

(1− ps)βa
γa

)
,

1

σ
,

1

α
,

1

γs
,

1

γa
, ps, κS =

(R0)S
R0

, κP =
(R0)P
R0

, psus

}
,

(3.13)

where

(R0)P = psus

(
psβp
α

)
,

(R0)S = psus

(
psβs
γs

)
,

(R0)A = psus

(
(1− ps)βa

γa

)
.
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All parameters are assigned the same prior distributions as for the SEIp-
IsIaR model, with psus being assigned a uniform(0.01, 1) prior distribution.
The PMMH algorithm is run on 50 SEIpIsIaR model with prior immunity
simulated datasets for 150,000 iterations with 5,000 steps as burn-in. Note,
the iteration count is chosen such that V̂ar(R̄0) ≈ 0.1. Again, we run two
studies on data produced with low R0 = 1.2 and high R0 = 2. The bias of
posterior results are displayed in Figure 3.14.

The posterior results in Figure 3.14 demonstrate the difficulty in identi-
fying prior immunity from a single dataset. Again, the model demonstrates
the same R0/ps bias as seen in the SEIsIaR model, and we see a degree of
uncertainty about psus. The difficulty of identifying these dynamics from
a single dataset can be demonstrated by a simulation end-state comparison.
We compare the true end-state distribution and the posterior mean end-state
distribution in Figure 3.13. Here, we see the same greatly overestimated to-
tal attack rate caused by a larger number of asymptomatic infections as a
result of the R0/ps interaction. More importantly, we note great variability
in the number of immune individuals; again, an interaction with the un-
known asymptomatic infections. This result demonstrates the inability to
adequately identify psus from a single outbreak.
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Figure 3.13: Box plot diagram of end-state distribution comparison of dataset
and posterior simulations. Datasets and posterior results taken from infer-
ence in Figure 3.14.
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Figure 3.14: Box plot diagram of PMMH posterior results for 50 SEIpIsIaR
model with prior immunity simulated datasets generated with low R0 = 1.2
values and high R0 = 2 values. Posterior sample mean bias are displayed in
each box plot by parameter. Datasets: N = 1000, observed the length of
outbreak at daily resolution, 1

σ
= 0.5, 1

α
= 0.5, 1

γs
= 2, 1

γa
= 1, ps = 0.75,

κS = 0.31, κP = 0.63, psus = 0.25.



3.2. Inference Method Validation 59

This section highlights the issue of identifiability within the SEIpIsIaR
model with prior immunity. The model contains too many parameters to
accurately identify from a single outbreak with symptomatic cases observa-
tions; a symptom of the curse of dimensionality. The only solution is to use
more data for inference. If multiple outbreaks share disease dynamics, we
can be better informed about said dynamics by combining the information
from each outbreak. This is a common practice to characterise epidemic
and pandemic level disease outbreaks [49, 54]. Hence, we next investigate if
we are able to identify these dynamics by conducting inference on multiple
outbreak datasets through parallel inference.

3.2.5 SEIpIsIaR Model Parallel Inference

We conduct a study of parallel inference on multiple datasets to further assert
if the parameters of the SEIpIsIaR model with prior immunity are identifi-
able. Here, parallel inference refers to the process of using a PMMH algo-
rithm to target the joint posterior of K independent datasets {D(1), ..., D(K)},
under the assumption that they are realisations of a shared model. That is,
we assume each dataset {D(1), ..., D(K)} is a realisation of a model under the
same (or a subset of common) parameters. The posterior distribution,

P (θ|{D(1), ..., D(K)}) ∝ P ({D(1), ..., D(K)}|θ)P (θ),

can be evaluated by expressing the joint likelihood as

L(θ) := P ({D(1), ..., D(K)}|θ) =
K∏
k=1

P (D(k)|θ).

As each P (D(k)|θ) can be estimated by a SMC(Np) likelihood, P̂ (D(k)|θ), we
can estimate the joint likelihood as

L̂(θ) =
K∏
k=1

P̂ (D(k)|θ).

Using multiple datasets within the inference scheme can result in a more
informative likelihood function, which can improve our ability to identify
parameters compared to using a single dataset. This practice of parallel
inference is relevant as we will use multiple datasets for inference in epidemi-
ologically characterising the 1918 pandemic ship data (see Chapter 4).
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Fitting the model to multiple datasets imbues the posterior distribution
with more information about the true parameter values. The more datasets
we include, the more confidence we can have in the accuracy of the posterior
distribution. Ideally the more datasets inferred upon the better, but the up-
scale of data is not without difficulty. With each dataset, we greatly increase
the runtime of the PMMH algorithm through multiple SMC likelihood cal-
culations per iteration. Also, we increase the probability of SMC likelihood
failure as it requires only one estimate of P̂ (D(k)|θ) to suffer to return an
overall zero-likelihood, L̂(θ). As such, for parallel inference we increase the
standard number of particles Np = 25, 000 to reduce this occurrence.

Here, we give an example of the potential benefits of parallel inference for
comparison with the single dataset inference conducted in Section 3.2.4. We
take 125 SEIpIsIaR model with prior immunity simulated datasets, randomly
sorted into 25 collections of 5 datasets for inference. We assume the same
parameter set produced each collection of 5 datasets. Hence, inference is
conducted on the same parameter transforms as presented in Equation (3.13)
with the same prior distributions. Like before, we run two studies on data
produced with low R0 = 1.2 and high R0 = 2. The PMMH algorithm is run
on each set of 5 datasets for 60,000 iterations with 5,000 steps as burn-in.
Note, the iteration count is chosen such that V̂ar(R̄0) ≈ 0.1. The bias of
posterior results are displayed in Figure 3.15.

The use of parallel inference with only 5 datasets in each collection greatly
improves the accuracy of the posterior distribution and reduces the bias of
the posterior estimates. These results are only from 25 runs so some variation
can be explained by a smaller sample size, but they do indicate the param-
eter identifiability benefits from parallel inference. We can also verify the
increased accuracy of the posterior distribution by the end-state comparison.
We compare the true end-state distribution and the posterior mean end-state
distribution in Figure 3.16. Here, we see the posterior mean end-state distri-
butions are far more consistent with the data distributions than previously
seen in single dataset inference. Although there still exists some slight bias
in overestimating the total attack rate, this is an encouraging result for the
benefits of parallel inference. Hence, there is great motivation to conduct in-
ference on multiple datasets, given we can assume they are modelled by the
same process and common parameters. Although, this assumption should be
scrutinized for any practical situations.
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Figure 3.15: Box plot diagram of PMMH parallel inference posterior results
for 25 sets of 5 SEIpIsIaR model with prior immunity simulated datasets
generated with low R0 = 1.2 values and high R0 = 2 values. Posterior
sample mean bias are displayed in each box plot by parameter. Datasets:
N = 1000, observed the length of outbreak at daily resolution, 1

σ
= 0.5,

1
α

= 0.5, 1
γs

= 2, 1
γa

= 1, ps = 0.75, κS = 0.31, κP = 0.63, psus = 0.25.
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Figure 3.16: Box plot diagram of end-state distribution comparison of dataset
and parallel inference posterior simulations. Datasets and posterior results
taken from inference in Figure 3.15.

In this thesis, parallel inference is used to epidemiologically characterise
the 1918 pandemic influenza strain from the ship data (as detailed in Chap-
ter 4). However, we cannot safely assume common R0 values between ships
(see Chapter 4 for an in-depth discussion). As such, we are interested in the
effect of allowing unique R0 values between ships upon inference. We repeat
the previous experiment, except a unique R0 value randomly sampled from
a uniform(1, 3) distribution is used to generate each dataset. We take 125
SEIpIsIaR model with prior immunity simulated datasets, randomly sorted
into 25 collections of 5 datasets. We assume unique R0 values (and an oth-
erwise common parameter set) produced each dataset and conduct inference
on the following parameter transformations,

θ =

{
R

(1)
0 , ..., R

(5)
0 ,

1

σ
,

1

α
,

1

γs
,

1

γa
, ps, κS, κP , psus

}
.

We use the same prior distributions as with the common R0 inference above.
The PMMH algorithm is run on each set of 5 datasets for 60,000 iterations
with 5,000 steps as burn-in. Note, the iteration count is chosen such that
V̂ar(R̄0) ≈ 0.1. The bias of unique R0 posterior results (alongside the previ-
ous common R0 results) are displayed in Figure 3.17.
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Figure 3.17: Box plot diagram of PMMH parallel inference posterior results
for 25 sets of 5 SEIpIsIaR model with prior immunity simulated datasets
generated with low R0 = 1.2, high R0 = 2 and unique R0 values ∼ uni-
form(1,3). Posterior sample mean bias are displayed in each box plot by
parameter. Datasets: N = 1000, observed the length of outbreak at daily
resolution, 1

σ
= 0.5, 1

α
= 0.5, 1

γs
= 2, 1

γa
= 1, ps = 0.75, κS = 0.31, κP = 0.63,

psus = 0.25.
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The use of unique R0 values between datasets has slightly degraded our
ability to identify parameters, particularly R0, when compared to the com-
mon R0 inference. Although, we still observe marked improvements in bias
reduction compared to single dataset inference. Hence, parallel inference
for the SEIpIsIaR model with prior immunity can greatly improve param-
eter identifiability. We have also shown that allowing for unique R0 values
between outbreaks doesn’t have a severe detrimental effect on identifying
common parameters.

The key features of this model is that it accounts for prior immunity
and pre-symptomatic and asymptomatic transmission. These are features
we wish to identify for the 1918 pandemic, and therefore we are interested in
the accuracy of our inference methods in targeting them. Given we find these
features are identifiable in simulations studies, we can have confidence in our
estimates for the 1918 pandemic. Hence, we are particularly interested in the
our ability to identify the psus parameter, which defines the prior immunity
within the population. Previously, we found that inferring psus from a single
dataset can be difficult, but parallel inference on multiple data sets greatly
increases the accuracy of the posterior estimates. As seen in Figure 3.17, we
can typically identify the true psus value within 5-10% of the true value, but
tend to underestimate slightly. We support this by the end-state comparison.
We compare the true end-state distribution and the posterior mean end-state
distribution in Figure 3.18. Here, we see good agreement in the proportion
of immune individuals between the dataset and the posterior simulations.
Therefore, we maintain confidence in our ability to identify prior immunity
within the SEIpIsIaR model while using parallel inference.

The ability to identify pre-symptomatic and asymptomatic transmission
is a more complicated issue. Previously, the proportion of transmission aris-
ing from pre-symptomatic (κP ) and asymptomatic (κA) individuals were un-
able to be identified when conducting inference on a single dataset, but the
symptomatic (κS) and non-symptomatic (κNS) contributions were. Using
the inference in Figure 3.17, we test our ability to identify these ratios. The
posterior sample mean bias of κS, κP , κA and κNS are shown in Figure 3.19.
Again, we see an inability to adequately identify κP and κA, with correspond-
ing underestimation of the pre-symptomatic contribution and overestimation
of the asymptomatic contribution. Although, we still observe an ability to
accurately identify the κS and κNS contributions to within 5-10% of the true
value. Hence, while we may not be able to determine the differences be-
tween the pre-symptomatic and asymptomatic transmission, we are able to
identify the proportion of transmission arising from symptomatic and non-
symptomatic individuals.
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Figure 3.18: Box plot diagram of end-state distribution comparison of dataset
and parallel inference posterior simulations. Datasets and posterior results
taken from inference in Figure 3.17.
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Figure 3.19: Box plot diagram of proportion of transmission posterior sample
mean bias. Posterior results extracted from Figure 3.17.
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The overestimation of the asymptomatic transmission contribution ap-
pears related to the expected number of infections that arise from an asymp-
tomatic infectious individual. Define the expected number of infections to
arise from a single symptomatic, pre-symptomatic or asymptomatic individ-
uals as

E[IS infections] = psus

(
βs
γs

)
,

E[IP infections] = psus

(
βp
α

)
,

E[IA infections] = psus

(
βa
γa

)
.

The posterior sample mean bias of the expected number of infections are
shown in Figure 3.20. Here, we see an ability to accurately identify the respec-
tive expected number of infections from symptomatic and pre-symptomatic
individuals, but a severe inability to identify the expected number of infec-
tions for asymptomatic individuals. As such, the E[IA infections] estimates
tend towards the prior distribution mean, which overestimates the propor-
tion of transmission from asymptomatic individuals, κA. This could cause
the underestimation of κP as the pre-symptomatic proportion of transmission
is lowered to fit κNS = κP + κA, and the overestimation of ps as the number
of asymptomatic infections is reduced to account for their increased expected
infections. Although, note we correctly estimate the ordering of κP > κA;
this indicates identifying κP and κA may be possible with a larger number
of datasets. This dynamic should be noted in future model inference, and is
discussed further in Chapter 5.
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Figure 3.20: Box plot diagram of expected number of infections posterior
sample mean bias. Posterior results extracted from Figure 3.17.
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In summary, we have developed the SEIpIsIaR model to reflect the disease
dynamics of influenza; this includes modelling previously little understood
phenomena such as the pre-symptomatic period, asymptomatic infections
and their respective contributions to transmission. We have also included a
mechanism to account for the presence of prior immunity within the popu-
lation, an important consideration for pandemic influenza. We have demon-
strated a novel method of inference in the PMMH algorithm that makes it
possible to conduct inference on the SEIpIsIaR model with prior immunity
and identify the key parameters that dictate the model dynamics. In doing
so, we have identified possible biases inherently within the likelihood func-
tion that must be considered, and ways to reduce their effects by conducting
inference on multiple datasets. We have shown that by utilizing parallel in-
ference we are able to better identify the parameters within the model and
characterise the epidemiological dynamics dictating the simulated outbreaks.
In particular, we have shown an ability to accurately identify key features
of pandemic influenza including prior immunity and non-symptomatic trans-
mission; these results validate the use of the model and inference method for
further study of real data. These processes will be required to characterise
the epidemiology of the 1918 pandemic influenza strain from multiple ship
outbreaks within Chapter 4.

As an aside, the following section proposes an alternative method of like-
lihood calculation, built upon the SMC algorithm, for further consideration.
SMC particle degeneracy, likelihood failure and the negative effect they can
have on the mixing of PMMH algorithm has been well documented within
this thesis. We propose a Hybrid algorithm that combines SMC and exact
likelihood methodologies to combat these issues. This algorithm was not ap-
plicable to our analysis here for computational reasons, but may have benefits
for other models/studies.

3.3 Hybrid Algorithm

As discussed in Chapter 2 and Section 3.2, SMC particle degeneracy and
likelihood failure can have a significant negative effect on the mixing of the
MH chain. To recap, likelihood failure occurs if all particles simulations end
in states that return a non-positive estimate of a positive likelihood; i.e.,

P̂ (yt+1|y1:t) =
1

Np

Np∑
i=1

P (yt+1|x∗(i)t+1) = 0.
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Particle degeneracy occurs if the number of particles that contribute a posi-
tive probability of observing yt+1 is too low, hence introducing too much error
into the Monte Carlo estimate of the likelihood and the re-sampled particle
distribution,

{x(1)
t+1, ..., x

(Np)
t+1 } ∼ p(xt+1|y1:t+1). (3.14)

These issues are caused by rare event observations that are inconsistent with
the model, and so have a very low probability of occurring. These low proba-
bility observation issues could theoretically be solved by increasing the num-
ber of particles. Although, this is often undesirable due to the increased
runtime of the simulations and the unknown number of particles required.

We propose a likelihood calculation algorithm to counteract these is-
sues, denoted the Hybrid algorithm, which is essentially a combination of
the SMC and “exact” (using the implicit Euler method to solve the mas-
ter equation) likelihood calculation methods presented in Chapter 2. In
short, the Hybrid algorithm decides between using an SMC or exact ap-
proach on an observation-by-observation basis. The algorithm progresses
using SMC, but if an observation’s likelihood estimate suffers from particle
degeneracy/likelihood failure then the likelihood is recalculated by the exact
method. The Hybrid(Np, τ) algorithm is given in Algorithm 5.

The Hybrid(Np, τ) algorithm works as follows. As in SMC, consider the
set of particles at time t,

{x(1)
t , ..., x

(Np)
t } ∼ p(xt|y1:t). (3.15)

These particles are forward simulated to generate

{x∗(1)
t+1 , ..., x

∗(Np)
t+1 } ∼ p(xt+1|y1:t)

and used calculate a likelihood estimate, P̂ (yt+1|y1:t). The Hybrid algorithm
will recalculate the likelihood estimate using exact methods, if there is evi-
dence of particle degeneracy or likelihood failure. Hence, we introduce the
probability threshold, δ, such that if a likelihood estimate P̂ (yt+1|y1:t) < δ,
the Hybrid(Np, τ) algorithm will recalculate the likelihood of yt+1 using exact
likelihood methodology.
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Data: Data y1:T , initial distribution p(x0), number of particles Np,
precision τ , probability threshold δ.

Set t = 0;

Sample {x(1)
0 , ..., x

(NP )
0 } ∼ p(x0) ;

for i = 1, ..., Np do

Simulate x
∗(i)
1 ∼ p(x1|x(i)

0 ) ;

Assign weight W
(i)
1 = P (y1|x∗(i)1 ) ;

end

Calculate likelihood P̂ (y1) = 1
Np

∑Np

i=1 W
(i)
1 ;

if P̂ (y1) ≥ δ then

Re-sample {x(1)
1 , ..., x

(NP )
1 } with weights P (x1 = x

∗(j)
1 ) =

W j
1∑

kW
k
1

;

else
Calculate p(x1|x0) from p(x0) using implicit Eulers method;

Calculate likelihood P̂ (y1) =
∑

x0∈S P (y1|x0)P (x0);

Sample {x(1)
1 , ..., x

(NP )
1 } ∼ p(x1|y1);

end
for t = 2, ..., T do

for i = 1, ..., Np do

Simulate x
∗(i)
t ∼ p(xt|x(i)

t−1) ;

Assign weight W
(i)
t = P (yt|x∗(i)t ) ;

end

Calculate likelihood P̂ (yt|y1:t−1) = 1
Np

∑Np

i=1 W
(i)
t ;

if P̂ (yt|y1:t−1) ≥ δ then

Re-sample {x(1)
t , ..., x

(NP )
t } with weights

P (xt+1 = x
∗(j)
t+1) =

W j
t+1∑

kW
k
t+1

;

else

Normalise p̃(xt−1|y1:t−1) from {x(1)
t−1, ..., x

(NP )
t−1 };

Calculate p(xt|y1:t−1) from p̃(xt−1|y1:t−1) using implicit Eulers
method;

Calculate likelihood P̂ (yt|y1:t−1) =
∑

xt∈S P (yt|xt)P (xt|y1:t−1);

Sample {x(1)
t , ..., x

(NP )
t } ∼ p(xt|y1:t);

end

end

Marginal likelihood given by P̂ (y1:T ) = P̂ (y1)
∏T

t=2 P̂ (yt|y1:t−1);

Result: Marginal likelihood estimate P̂ (y1:T ).

Algorithm 5: Hybrid algorithm.
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This is done by approximating the Markov process distribution by the
particles at time t. That is, by normalising across the Markov process states

of particles {x(1)
t , ..., x

(Np)
t }, it is possible to approximate the probability mass

function, p̃(xt|y1:t). This is a valid approximation as the particle distribu-
tion has been to shown to converge in distribution to said probability mass
function as Np → ∞ (see Chapter 2). The particle-estimated p̃(xt|y1:t) is
used as the initial distribution to calculate p̃(xt+1|y1:t) using the implicit Eu-
ler method. The distribution is conditioned on yt+1, p̃(xt+1|y1:t+1), which
is then used to calculate the likelihood P̃ (yt+1|y1:t). Hence, we obtain a
pseudo-exact likelihood of the observation, P̃ (yt+1|y1:t), and the probabil-
ity mass function, p̃(xt+1|y1:t+1). The term pseudo-exact is used as accu-
racy of the exact methods is dependent on the estimated initial distribution
p̃(xt|y1:t). The algorithm samples from p̃(xt+1|y1:t+1) to generate a set of

particles {x(1)
t+1, ..., x

(Np)
t+1 } and continues the SMC approach. Hence, given

that Np is chosen sufficiently high to accurately estimate the probability
mass function and the implicit Euler precision τ is chosen sufficiently small,
the Hybrid(Np, τ) algorithm will produce an unbiased estimate of the likeli-
hood. The Hybrid(Np, τ) algorithm reduces the frequency of particle degen-
eracy/likelihood failure and the estimator variance, when compared to the
SMC(Np) algorithm. Note, it is still possible for the Hybrid algorithm to
suffer likelihood failure, but this is far less frequent than in SMC(Np). This
occurs when every particle reaches an absorbing state such that it cannot
enter a state that contributes a positive probability of observation.

Here, we compare the SMC(Np) and Hybrid(Np, τ) likelihood methods
on a SIR model simulated dataset, to highlight the benefits of the Hybrid
algorithm. The algorithms are compared in calculating the likelihood of a
dataset with the true “good-fit” (R0 = 2, 1/γ = 3) parameters and a chosen
“poor-fit” (R0 = 3, 1/γ = 3) parameter set. The box plots of 100 SMC(Np)
and Hybrid(Np, τ) estimates by varying Np, alongside the NumInt(τ) solution
are shown in Figure 3.21 and comparative algorithm runtimes are given in
Table 3.10. Note, probability threshold δ = 10−2 will be used as standard for
the Hybrid algorithm and τ = 10−3 will be standard for Hybrid and NumInt
algorithms.
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Figure 3.21: SIR model log-likelihood comparison for SMC(Np) and
Hybrid(Np, τ) by Np. Box plot of 100 SMC(Np) and Hybrid(Np, τ) calcu-
lations for each Np with number of positive likelihood estimates out of 100
given in box. NumInt(τ) solution show for comparison. Dataset: N = 1000,
observed the first 25 days of outbreak at daily resolution, R0 = 2, 1

γ
= 3.

Algorithm
Runtime
(s)

NumInt(τ) 212

SMC(Np = 102) < 0.01

SMC(Np = 103) 0.06

SMC(Np = 104) 0.62

Hybrid(Np = 102, τ) 39.7

Hybrid(Np = 103, τ) 14.7

Hybrid(Np = 104, τ) 15.8

Table 3.8: Good-fit parameters.

Algorithm
Runtime
(s)

NumInt(τ) 220

SMC(Np = 102) N/A

SMC(Np = 103) N/A

SMC(Np = 104) 0.77

Hybrid(Np = 102, τ) 157

Hybrid(Np = 103, τ) 92.8

Hybrid(Np = 104, τ) 96.6

Table 3.9: Poor-fit parameters.

Table 3.10: NumInt(τ) runtime, SMC(Np) and Hybrid(Np, τ) average run-
time by number of particles Np. Runtime taken from likelihood calculations
given in Figure 3.21. Run in Matlab on an iMac (2013) with 2.7 GHz Intel
Core i5 processor.
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For the good-fit parameters, we see the SMC algorithm suffers significant
likelihood failure for Np = 102 and Np = 103, where as the Hybrid algorithm
always returns a positive likelihood estimate. The variance of the Hybrid
estimate is roughly half that of the SMC estimate. Hence, the use of the
Hybrid algorithm always returns a positive likelihood estimate, and the vari-
ance of the estimator is greatly reduced. Obviously, this comes at significant
computational cost, but the runtime of the Hybrid algorithm is still roughly
12 times faster than the NumInt(τ) runtime. For the poor-fit parameters,
we see a similar behaviour, as the SMC estimate fails to return a likelihood
estimate for any runs with less than Np = 104 and less than half of the runs
are completed when Np = 104. In comparison, the Hybrid algorithm nearly
always returns a positive likelihood estimate. The variance of the Hybrid al-
gorithm estimate is approximately 44 times smaller than the SMC estimate.
In this case, the average Hybrid algorithm runtime is approximately half that
of the NumInt(τ) solution. Again, this highlights the benefits of the Hybrid
algorithm in that it almost always ensures a positive likelihood estimate of
a positive likelihood, and greatly reduces the variance of the estimator when
compared to the SMC algorithm with the same number of particles.

The limitation of the Hybrid algorithm is that it requires the exact likeli-
hood methods, hence the implicit Euler method, to be comparatively efficient
to SMC. That is, if the implicit Euler method is infeasible or an order of mag-
nitude larger in runtime than SMC, the benefits of the Hybrid algorithm are
mostly lost by the huge increase in runtime; even if exact methods are only
used for a small number of time points. As discussed in Chapter 2, the effi-
ciency of the implicit Euler method is proportional to the size of the CTMC
Q matrix, an |S × S| matrix. The SEIpIsIaR model has a state space, and
hence Q matrix, that are too large for the implicit Euler method to be used
effectively, which prohibits the use of the Hybrid algorithm for our purposes.
However, the Hybrid algorithm could be used effectively for simpler models
such as the SIR/SEIR models, or other models outside the field. The further
applications of the Hybrid algorithm are discussed in Chapter 5.



Chapter 4

1918 Influenza Pandemic
Inference

This chapter details the investigation conducted on the 1918 influenza pan-
demic ship data, collated from Cumpston [20]. Here, we outline the ship
outbreaks and develop the ship epidemic model, built upon the SEIpIsIaR
model with prior immunity (see Chapter 3). The ship epidemic model is em-
ployed to characterise the epidemiological dynamics of the 1918 pandemic.
Parallel inference is used to investigate possible epidemiological differences
between the second and third waves of the pandemic.

4.1 Ship Data Description

The 1918 pandemic ship data details 15 influenza outbreaks aboard ships
travelling to Australia between October 1918 and April 1919. The documen-
tation of the data contains (where applicable): daily resolution case counts,
port arrival/departure dates, use of inoculations/quarantine measures and
corresponding dates, and all landings of healthy and infected passengers.
The following is a general description of the ship outbreaks. For a detailed
summary of each ship, see the Appendix. For a description of how the data
is used, see Section 4.2.

The ships can be divided into categories of naval troopships and passen-
ger/trading vessels. The naval troopships were generally the largest vessels,

73
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tasked with returning ANZAC troops to Australia from locations such as
England, South Africa and Egypt after the end of World War I. The passen-
ger and trading vessels were usually smaller in size, and ferried passengers and
cargo to Australia from countries such as New Zealand, Canada and Singa-
pore. The ships’ arrival in these source-of-infection countries coincided with
active influenza epidemics. Consequently, these vessels embarked a troop or
passenger carrying the influenza virus unknown to the ship command. The
ships could then travel for days at sea before observing the first influenza
case. Within the contained environment of the ship, the infection quickly
spreads to other individuals and becomes an on-board epidemic.

The populations aboard these ships were especially at risk to an epidemic
as they demonstrated consistent mixing of healthy and infected individuals,
due to the contained environment and lack of effective control measures.
Cumpston [20] consistently highlights the difficulty in isolating infected in-
dividuals from the healthy population, stating in regards to various ships:

‘The construction of the vessel was such that it cannot be said
that there was any isolation between various sections of the ships
company’,

‘Senior Medical Officer stated that initial isolation was attempted
but the hospital accommodation being inadequate, a portion of the
troop deck had to be used for cases, and through this men had to
pass to get to their quarters’,

‘Effective isolation was not possible’.

Any other attempted control measures such as zinc-sulphate inhalation (na-
sopharynx disinfectant) were found to have little impact in stopping the
spread of infection [20]. Hence, influenza was effectively allowed to transmit
throughout the population unimpeded.

The only reprieve in slowing the spread of infection was removing infected
individuals from the vessel. While travelling to Australia, the ships would
call into ports to land influenza cases and resupply. Detailed records of all
landed individuals, including their observed infection status, were kept, and
strict containment procedures were undertaken to prevent the boarding of
further infection.
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In October 1918, prompted by severe influenza epidemics in New Zealand
and South Africa, mandatory quarantine procedures were implemented upon
entry into Australian ports via quarantine stations [20]. On arrival, ships
were required to report all possible influenza cases, which had been doc-
umented by the on-board ship surgeons. (Note, influenza was difficult to
identify so cases were diagnosed by influenza-like-illnesses.) The manda-
tory reporting of all influenza cases provided the daily influenza case counts
aboard these vessels as recorded in Cumpston [20]. All vessels that had ob-
served influenza cases during the voyage were ordered into quarantine. The
duration of stay was determined by the time since last active influenza case.
In quarantine, infected passengers would be landed to shore for observation.
For the remaining passengers, new cases were removed at onset of symptoms
assessed by daily thermometer parades. Quarantine officials attempted to
slow the spread of further infections via zinc-sulphate inhalation and inoc-
ulations where available. The ships were detained in quarantine until new
cases ceased for 7 days and it was determined safe for passengers to enter Aus-
tralia. Hence, Cumpston [20] provides the daily influenza case counts for the
full epidemic time line, and records of all quarantine measures implemented;
a level of detail atypical of 1918 influenza case data.

The on-board epidemics are natural pseudo experiments of influenza trans-
mission, demonstrating uncontrolled transmission within a contained envi-
ronment. As Cumpston [20] states:

‘An outbreak of infectious disease on a ship at sea offers the most
favourable naturally occurring conditions for the study of the nat-
ural history of that disease. There can be, if the epidemic is at
all extensive, no effective isolation; there can be no new factor
introduced from outside and therefore the epidemic can pursue
its unadulterated course, and there is reasonable accuracy in the
records’.

Hence, the collection of ship data gives an unparalleled picture of the evolu-
tion of a contained outbreak of the 1918 pandemic influenza strain. There
have been numerous mathematical studies of the 1918 pandemic, but the
clarity of the ship epidemic data allows an unprecedented investigation.
Previous studies typically use data from citywide case/mortality records
[11, 17, 23, 54], household studies [26], or institutional records such as schools
or military bases [19, 48, 49, 70], to varying degrees of success. Epidemic
modelling, such as in these studies, is complicated by the unknown mixing
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of the population and uncontrollable factors, such as externally-introduced
transmission and unreliable case observation. Where these investigations fal-
ter is that they require far more complex models, deterministic approxima-
tions and unjustified assumptions to account for these unknown population
dynamics. For example, for a citywide influenza epidemic there are ample
external factors that need to be taken into account such as: immigration, dis-
ease introduction, case recognition, natural birth/death and complex spatial
mixing dynamics that are difficult to identify and replicate. The contained
nature of the ship outbreaks nullifies the need for many of these complex
models/assumptions; thus greatly improving our ability to characterise the
epidemiology of 1918 pandemic influenza.

Here, we aim to epidemiologically characterise the 1918 pandemic in-
fluenza strain from the ship data. In doing so, the waves of the 1918 pan-
demic require consideration due to possible changes in epidemiology between
waves. Hence, the ship data is classified by wave of the pandemic, to allow
parallel inference across all ships belonging to the same wave. This allows
the epidemiological characterisation of the 1918 pandemic, and comparison
across pandemic waves.

As discussed in Chapter 1, the 1918 influenza pandemic progressed in
three distinctive waves over a 12 month period from 1918 to 1919. The
exact dates of the waves are unknown and location dependent; the commonly
accepted global wave time line follows the northern hemisphere seasons of
approximate summer, autumn and winter waves [74]. Hence, we allocate the
ships to waves based on the date of first observed infection. All ships with
first cases observed between September 1918 - December 1918 are Wave 2
and between January 1919 - April 1919 are Wave 3. That is, the (1) Niagara,
(2) Mataram, (3) Devon, (4) Marathon, (5) Atua, (6) Manuka, (7) Medic,
(8) Boonah, and (9) Nestor outbreaks correspond to Wave 2 of the 1918
pandemic. The (10) Ceramic, (11) Lancashire, (12) Kenilworth Castle, (13)
Orca, (14) Kashmir and (15) Euripides outbreaks correspond to Wave 3 of
the 1918 pandemic.

See Table 4.1 for a summary of all 15 of the 1918 pandemic ship datasets
and see the Appendix for a detailed description of each ship. Note, the ship
area (m2) is approximated as the ship beam (width at waterline) multiplied
by the length at waterline.
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Ship
Name Wave

Source of
Infection

First
Case

Last
Case

Case
Total

Pop.
Size

Ship Area
(m2)

(1) Niagara 2
Vancouver
(Canada) 27/9/18 17/10/18 156 567 3200

(2) Mataram 2
Singapore
(Singapore) 10/10/18 Unknown 61 199 1326

(3) Devon 2
Suez
(Egypt) 13/10/18 7/11/18 95 1096 2592

(4) Marathon 2
Devonport
(England) 20/10/18 2/11/18 89 1041 2618

(5) Atua 2
Auckland
(New Zealand) 3/11/18 22/11/18 91 163 1261

(6) Manuka 2
Wellington
(New Zealand) Unknown 19/11/18 39 203 1568

(7) Medic 2
Wellington
(New Zealand) 10/11/18 20/12/18 313 989 3306

(8) Boonah 2
Durban
(South Africa) 28/11/18 7/1/19 470 1095 2484

(9) Nestor 2
London
(England) 11/12/18 25/1/19 69 1903 3300

(10) Ceramic 3
Devonport
(England) 25/1/19 10/3/19 194 2361 4200

(11) Lancashire 3
Devonport
(England) 7/2/19 14/3/19 53 1643 2600

(12)
Kenilworth
Castle 3

Liverpool
(England) 15/2/19 10/3/19 24 505 3306

(13) Orca 3
Liverpool
(England) 20/2/19 28/3/19 48 1698 3480

(14) Kashmir 3
Southhampton
(England) 12/3/19 23/4/19 97 1500 2628

(15) Euripides 3
London
(England) 17/3/19 15/4/19 53 1323 3340

Table 4.1: Ship data summary.
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4.2 Ship Epidemic Model

An equivalent representation of the SEIpIsIaR model with prior immunity
(see Chapter 3) will be fitted to the ship data, with extensions to account for
the possible reduction in transmission arising from quarantine measures and
the landing of healthy and infected individuals. We refer to this model as the
ship epidemic model for simplicity. A diagram of the possible compartments
an individual can be in is given in Figure 4.1.
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Figure 4.1: Compartment diagram of ship epidemic system with DoA events.

Let Z1(t) be the number of infection events, Z2(t) the number of become
pre-symptomatic infectious events, Z3(t) the number of become symptomatic
infectious events, Z4(t) the number of symptomatic recovery events, Z5(t)
the number of become asymptomatic infectious events and Z6(t) the number
of asymptomatic recovery events, by time t respectively. The population
numbers are given by

S(t) = N − Z1(t),

E(t) = Z1(t)− Z2(t)− Z5(t),

IP (t) = Z2(t)− Z3(t),

IS(t) = Z3(t)− Z4(t), (4.1)

IA(t) = Z5(t)− Z6(t),

RS(t) = Z4(t),

RA(t) = Z6(t).
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The ship epidemic process is expressed as a six-variable CTMC
{(Z1(t), Z2(t), Z3(t), Z4(t), Z5(t), Z6(t))}t≥0 with state space

S ={(Z1, Z2, Z3, Z4, Z5, Z6)|Z1, Z2, Z3, Z4, Z5, Z6 ∈ N,
0 ≤ Z4 + Z6 ≤ Z2 + Z5 ≤ Z1 ≤ N,Z4 ≤ Z3 ≤ Z2, Z6 ≤ Z5}.

The transition rates from a state (Z1, Z2, Z3, Z4, Z5, Z6) are displayed in Table
4.2. Note, the transition rates are scaled for density-dependent transmission
using the approximate ship area, denoted A.

Transition Type State Change Transition Rate

Infection Z1 → Z1 + 1

βp(N − Z1)(Z2 − Z3)

A
+
βs(N − Z1)(Z3 − Z4)

A
+

βa(N − Z1)(Z5 − Z6)

A

Become Pre-symptomatic Infectious Z2 → Z2 + 1 psσ(Z1 − Z2 − Z5)

Become Symptomatic Infectious Z3 → Z3 + 1 α(Z2 − Z3)

Symptomatic Recovery Z4 → Z4 + 1 γs(Z3 − Z4)

Become Asymptomatic Infectious Z5 → Z5 + 1 (1− ps)σ(Z1 − Z2 − Z5)

Asymptomatic Recovery Z6 → Z6 + 1 γa(Z5 − Z6)

Table 4.2: Ship epidemic model events and transition rates. Note, State
Change lists the variable of the process that undergoes change by a transition;
all other remain unchanged.

As discussed in Chapter 3, prior immunity refers to the proportion of
the population immune to a disease before the onset of an outbreak. The
presence of prior immunity has been shown to have played an essential role in
the 1918 pandemic, and that levels of immunity increased between pandemic
waves [49]. Therefore, the ships’ population likely exhibit prior immunity
and it should be accounted for within the ship epidemic model. As in Chap-
ter 3, prior immunity can be modelled (under the assumption that immunity
lasts the duration of the outbreak) by introducing the parameter, psus, the
probability a random individual within the population is susceptible to infec-
tion. Assume an initial susceptible population of size N with a single exposed
individual. The number of immune individuals within the population, nim,
is randomly sampled from a binomial(N − 1, 1 − psus) distribution. Hence,
the initial state with a single exposed individual is

(Z1(0), Z2(0), Z3(0), Z4(0), Z5(0), Z6(0)) = (1 + nim, 0, 0, 0, nim, nim),

which translates to compartment numbers

(S(0), E(0), IP (0), IS(0), IA(0), R(0)) = (N − 1− nim, 1, 0, 0, 0, 0, nim).
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We extend the model to account for the possible changes to transmission
in quarantine and the landing of healthy and infected individuals. Once a
ship enters quarantine, we account for the possible reduction in transmission
arising from quarantine measures by introducing a transmission reduction
parameter, λ ∈ [0, 1]. When a ship enters quarantine in Australia, all trans-
mission parameters are scaled by λ. That is, under quarantine symptomatic
individuals transmit at rate λβs, pre-symptomatic individuals at rate λβp,
and asymptomatic individuals at rate λβa. The change in transmission could
be caused by a number of quarantine measures such as reduction in con-
tacts by restricted passenger movement or reduction in infectiousness from
inoculations and nasopharynx disinfectant. Therefore, when a ship reaches
Australia and enters quarantine, the model switches to the quarantine trans-
mission transition rates where the infection event occurs according to Table
4.3. Note, the Marathon and Nestor have uniquely defined λ given specific
population conditions. The Marathon used formaldehyde inhalation as a
control measure, as opposed to the quarantine zinc-sulphate inhalation, and
the Nestor has records of pre-embarking troop inoculation, which alters the
effect of quarantine inoculations. See Appendix for further details.

Transition Type State Change Transition Rate

Infection Z1 → Z1 + 1

λβp(N − Z1)(Z2 − Z3)

A
+
λβs(N − Z1)(Z3 − Z4)

A
+

λβa(N − Z1)(Z5 − Z6)

A

Table 4.3: Quarantine transmission infection transition rate. Note, State
Change lists the variable of the process that undergoes change by a transition;
all other remain unchanged.

While in an international port or Australian quarantine, the ships may
land passengers from the ship to shore. Importantly, records of the dates
and number of landed passengers alongside their infection status are doc-
umented in Cumpston [20]. All individuals landed are denoted as either
healthy, not observed to have contracted influenza, or infected, observed to
have contracted influenza. Using this information, we model the changes in
population by removing individuals from the corresponding compartments.
That is, if a healthy individual is removed from the ship we randomly sample
an individual to remove from compartments corresponding to passengers who
are not infected or have unobserved infections, that is any of the S, E, IP ,
IA or RA compartments. For an infected individual, we randomly sample an
individual who has had an observed symptomatic infection, from either the
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IS or RS compartments. The compartment diagram of the ship epidemic sys-
tem with possible removals is given in Figure 4.2. Note, for simplicity we use
the terms healthy and infected as denoted in Cumpston [20], but these terms
are observation-dependent and can be properly interpreted as “apparently
healthy”, and “symptomatic infection (past or present)”.

S E

IP IS

IA

RS

RA

Healthy
Removal

Infected
Removal

Figure 4.2: Compartment diagram of ship epidemic system with possible
removals. Blue signifies possible infected individuals removals. Red signifies
possible healthy individuals removals.

The following assumptions are made within the model. Firstly, we assume
a closed population with no births, natural deaths, unregistered migrations
or external transmission. This is valid due to the contained environment
of the ship and the ship surgeon records presented in Cumpston [20]. The
population is restricted to the ship for the duration of the outbreak, removing
external transmission. Records show no births or natural deaths occur on
the vessel, and all passenger landings are modelled appropriately, as already
defined.

Secondly, we assume a homogeneously-mixing population. Clearly, as in
most epidemic modelling pursuits, the assumption of a homogeneous popu-
lation is an approximation to the heterogeneous reality. Here we argue this
approximation is much closer to the true dynamics than commonly accepted
in mathematical studies. This homogeneous assumption is complex as it
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is dependent on the structure of the ship, how the crew interact and how
the ship officials attempt to isolate cases. Hence, we propose an argument
to validate the approximation: that all healthy crew/passengers mix roughly
uniformly and infected individuals continue interaction with the healthy pop-
ulation.

As discussed in Section 4.1, effective isolation of any infected individuals
was near impossible aboard these ships due to the structure of the vessels and
the number of cases on board. Hence, we can assume infected individuals
continue to have consistent interaction with the remaining population. Fur-
thermore, we note that the crew/passengers aboard the ships were attacked
in roughly equal proportion, as Cumpston [20] states,

‘Where there is such a large number of troops that differentiation
between troops and crew is hardly practicable, the troops and crew
became attacked in more equal proportions.’

The proportional attack rates suggest that there is uniform-mixing between
the healthy passengers and crew due to the close contact required for in-
fluenza transmission [77]. Therefore, we allow the assumption of homoge-
neous mixing.

Thirdly, we assume perfect observation of all symptomatic individuals
upon immediate development of symptoms. We take this to be valid due to
the ship surgeon mandate to provide detailed records of all potential influenza
cases upon entry to Australia, as provided in Cumpston [20]. Hence, we
observe an individual upon entry to the symptomatic infectious compartment
and define the observation process as

P (yt|(Z1, Z2, Z3, Z4, Z5, Z5, Z6)) =

{
1 if yt = Z3,

0 else.
(4.2)

Lastly, we assume a single exposed individual is the only infected indi-
vidual to board the ship prior to the outbreak (the remaining population is
either susceptible or immune; see above) and they embark during stay at the
source-of-infection city. While it is possible for more than one infected indi-
vidual to have come aboard, we make this assumption for simplicity. Here,
we allow the exposed individual to embark and begin transmitting at any
time during the stay in port to account for the possibility of multiple infec-
tions prior to the on-board outbreak. Therefore, approximating the effect
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of multiple infected individuals embarking before departure. This process is
described below.

We outline the development of a typical outbreak and how extensions of
the model are used. While in port at the source-of-infection city, a single
exposed individual enters the otherwise susceptible population with nim im-
mune individuals. An unknown (but bounded) time later the first case is
observed at the end of Day 1 of the outbreak. To determine the population
compartment numbers at the start of the outbreak, we condition on the time
of first observed case given the process started with a single exposed indi-
vidual. That is, let Tarrival, Tdeparture and Tfirst be the date of arrival to the
source-of-infection city, the date of departure and the date of first observed
case. The model initiates in state

(Z1(0), Z2(0), Z3(0), Z4(0), Z5(0), Z6(0)) = (1 + nim, 0, 0, 0, nim, nim),

and the process conditions on observing the first case, y1, only within the
bounded time interval t ∈ [Tfirst − Tarrival, Tfirst − Tdeparture] such that,

{(Z1(t), Z2(t), Z3(t), Z4(t), Z5(t), Z6(t))|Z3(t) = y1}.

For example, the Boonah ship brought aboard the influenza virus during its
stay in Durban between November 16th and 24th, and the first case was
observed 5 days after leaving port on November 29th. Hence, the model
initiates with a single exposed individual and conditions on observing the
first observed case at least 5 days later but no longer than 13 days. Therefore,
effectively inferring the population compartment numbers at the time of the
first observed case.

The ship continues on its journey and the epidemic progresses according
to the standard transition rates, with new cases recorded at daily resolution.
Once the ship has arrived into Australia, the process switches to the quar-
antine transmission transition rates as given in Table 4.3. Upon arrival, a
number of recorded healthy or infected individuals are landed into the quar-
antine station. These individuals are uniformly sampled for removal by their
infection status, sampled from the corresponding compartments as depicted
in Figure 4.2. After all observed cases are landed, the ship enters the period of
cases removed at onset. In this stage all cases are removed immediately upon
development of symptoms. That is, all individuals are removed immediately
upon entry to the symptomatic infectious compartment. Over the next few
days, the number of daily new cases reduces as the epidemic dies out, until
the population aboard the ship are cleared of quarantine and allowed free
passage.
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Below, we detail how the ship epidemic model is used within the SMC
algorithm. Let D(k) denote the complete dataset corresponding to ship out-
break k. Each dataset D(k) will contain the following information, where
applicable to the ship outbreak. Let y1:T = {y1, ..., yT} denote the data set
of the cumulative number of cases observed by the end of day t = 1, ..., T for
the duration of the outbreak. Let h1:T = {h1, ..., hT} and c1:T = {c1, ..., cT}
be the number of healthy and infected individuals respectively landed on day
t = 1, ..., T . Let Tarrival, Tdeparture, Tfirst, Tquarantine and Tonset be the day of ar-
rival and departure from the source-of-infection city, the day of first case, the
day of arrival to quarantine in Australia and the day of cases being landed
at onset of symptoms, respectively. The SMC(Np) algorithm for the ship
epidemic model is shown in Algorithm 6. Note, particle history in the SMC
algorithm is omitted as it is not required here.
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Data: Ship dataset D(k), number of particles Np.
for i = 1, ..., Np do

Sample nim ∼ binomial(N − 1, 1− psus);
Initialize particle with single exposed individual,
x

(i)
0 = (Z1, Z2, Z3, Z4, Z5, Z6)

(i)
0 = (1 + nim, 0, 0, 0, nim, nim);

Simulate using standard transmission model x
∗(i)
1 ∼ p(x1|x(i)

0 ) over
time [0, Tfirst − Tdeparture];

Sample Tsample ∼ {s ∈ [0, Tfirst − Tdeparture]|yt = (Z3)
(i)
s };

Assign weight W
(i)
1 = P (y1|x∗(i)1 ) where

P (y1|x∗(i)1 ) =

{
1 if yt = (Z3)

(i)
1 & Tsample ∈ [Tfirst − Tarrival, Tfirst − Tdeparture],

0 else;

Sample and remove h1 individuals from the S, E, IP , IA and RA

compartments;
Sample and remove c1 individuals from the IS and RS

compartments;

end

Calculate likelihood P̂ (y1) = 1
Np

∑Np

i=1 W
(i)
1 ;

Re-sample {x(1)
1 , ..., x

(NP )
1 } with weights P (x1 = x

∗(j)
1 ) =

W j
1∑

kW
k
1

;

for t = 2, ..., T do
Select appropriate transmission model based on Tquarantine, Tonset;
for i = 1, ..., Np do

Simulate x
∗(i)
t ∼ p(xt|x(i)

t−1);

Assign weight W
(i)
t = P (yt|x∗(i)t ) where

P (yt|x∗(i)t ) =

{
1 if yt = (Z3)

(i)
t ,

0 else;

Sample and remove ht individuals from the S, E, IP , IA and
RA compartments;
Sample and remove ct individuals from the IS and RS

compartments;

end

Calculate likelihood P̂ (yt|y1:t−1) = 1
Np

∑Np

i=1 W
(i)
t ;

Re-sample {x(1)
t , ..., x

(NP )
t } with weights P (xt+1 = x

∗(j)
t+1) =

W j
t+1∑

kW
k
t+1

;

end

Calculate marginal likelihood P̂ (y1:T ) = P̂ (y1)
∏T

t=2 P̂ (yt|y1:t−1) ;

Result: Marginal likelihood estimate P̂ (y1:T ).

Algorithm 6: Ship epidemic model SMC(Np) algorithm.
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4.3 Parallel Inference

In this section, we epidemiologically characterise the 1918 influenza pandemic
ship data by conducting parameter inference on the ship epidemic model.
Here, we use parallel inference to identify the parameters of the ship epidemic
model from multiple ship outbreaks, classified by pandemic wave. As detailed
in Chapter 3, parallel inference refers to conducting inference on multiple
datasets under the assumption they are realisations of the same model with
a common set (or subset) of parameters.

We assume each outbreak is a realisation of the ship epidemic model
and there is a subset of parameters that are common across outbreaks. We
assume the following disease-dependent parameters to be common across out-
breaks. These include: the lengths of latent (1/σ), pre-symptomatic (1/α),
symptomatic infectious (1/γs) and asymptomatic infectious (1/γa) periods,
the probability of symptomatic infection (ps), and the proportion of trans-
mission from symptomatic, pre-symptomatic and asymptomatic individuals
(κS, κP , κA). There are also parameters which are situation dependent and
require unique consideration. We assume a unique R0 for each ship, as the β
term that determines R0 is directly related to the mixing and contact rates
aboard each ship, which we cannot assume to be common. We assume the
transmission reduction parameter λ is common across outbreaks, except in
the case of unique quarantine measures. As each ship is subject to the same
quarantine measures upon entry to Australia, we assume the relative reduc-
tion factor is constant. Hence, we assume λ is shared across all ships upon
entry to Australia. There are two special cases in the Marathon and Nestor
which require unique λ values due to noted different quarantine measures
implemented than those in Australian quarantine.

We assign the model parameters the following uninformative prior distri-
butions. They are chosen to allow the data to be dominant in determining
the posterior distribution, and therefore best capture the on-board dynamics.
All relatively unknown parameters are assigned deliberatively uninformative
prior distributions. R0 is assigned a uniform(0.1, 20) prior distribution, λ and
psus are assigned uniform(0.01, 1) prior distributions, κS and κP are assigned
uniform(0.01, 0.99) prior distribution (where κS +κP < 1). The epidemiolog-
ical period lengths such as 1/σ and 1/γ have been studied previously and we
use these past studies to inform our prior distributions [37, 49, 54, 77]. We
express the prior knowledge as truncated normal and gamma distributions
centred around past mean values and truncated to realistic values. We use
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relatively uninformative prior variances to allow the likelihood to best inform
the posterior distribution. We assign 1/σ and 1/α gamma(2,1) prior distri-
butions and 1/γs and 1/γa gamma(2,2) prior distributions, all truncated over
(0, 8). We assigned ps a normal(0.66,0.332) prior distribution truncated over
(0.01, 0.99). The prior distribution probability density functions are shown
in Figure 4.3.

The posterior distribution samples are generated as follows. The PMMH
algorithm is run using a SMC(Np = 25, 000) estimate of the likelihood, as
detailed in Algorithm 6. The number of particles Np has increased from
10, 000 as in Chapter 3 for increased accuracy within parallel inference. We
use an MCMC scheme as inspired by the adaptive Metropolis algorithm, to
improve mixing of the high dimensional MH chain [5, 32]. Exploratory burn-
in chains are run from randomly sampled initial values to assess convergence
and inform a multivariate normal (MVN) proposal distribution. Here, burn-
in chains are started from 10 initial values, randomly sampled from the prior
distribution; these chains are run until roughly converged and stopped after
20,000 iterations. From the post-convergence samples, 20 randomly sampled
initial values are taken to start 20 new chains. The new chains use a MVN
proposal distribution, where the covariance matrix is chosen as the scaled
sample covariance of the post-convergence samples. As MVN truncation is
computationally difficult at high dimensions [27], we augment the likelihood
function such that for any parameter sets outside the support of the prior
distribution, the likelihood is zero. The 20 chains are given an additional
50,000 iterations of burn-in, and then any further iterations are taken as
samples from the posterior distribution. Each chain is run until the posterior
sample mean satisfies V̂ar(θ̄) < 0.01.

Here, we study the ship outbreaks in subsets defined by pandemic wave.
As discussed in Section 4.1, we have segregated each ship outbreak corre-
sponding to the second and third waves of the 1918 pandemic. We use these
data subsets for parallel inference using the above scheme to classify the epi-
demiological characteristics of the 1918 pandemic influenza strain, and any
epidemiological differences between the second and third wave.
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Figure 4.3: Ship epidemic model prior marginal probability density functions.
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4.3.1 Wave 2

In this section we conduct parallel inference on all Wave 2 ships: (1) Niagara,
(2) Mataram, (3) Devon, (4) Marathon, (5) Atua, (6) Manuka, (7) Medic,
(8) Boonah, and (9) Nestor. Hence, we target the posterior distribution,

p(θ|{D(1), ..., D(9)}) ∝ p({D(1), ..., D(9)}|θ)p(θ).

We conduct inference on the following parameter transformations

θ =

{
R

(1)
0 , ..., R

(9)
0 , λ, λ(4), λ(9),

1

σ
,

1

α
,

1

γs
,

1

γa
, ps, κS, κP , psus

}
.

Here, R
(1)
0 , ..., R

(9)
0 denote the unique R0 values for each ship, λ denotes the

standard transmission reduction parameter where λ(4) and λ(9) denote the
unique parameters for the Marathon and Nestor ships. We use the prior
distributions and MCMC scheme denoted above to generate 3,500,000 poste-
rior samples for analysis. The mean and 95% HPD intervals of the posterior
samples are given in Table 4.4. The marginal kernel density estimates of the
posterior samples are shown in Figure 4.4. The trace plots of the MH chain
are shown in Figure 4.5. (Note, the kernel density estimates presented within
chapter are calculated using the algorithm presented in Botev et al. [12].)

Parameter Mean (95% HPD)

R
(1)
0 2.01 (0.61, 4.73)

R
(2)
0 7.43 (1.57, 14.3)

R
(3)
0 1.33 (0.59, 2.21)

R
(4)
0 4.75 (0.66, 8.57)

R
(5)
0 9.54 (1.80, 18.3)

R
(6)
0 6.25 (1.30, 11.3)

R
(7)
0 4.23 (1.45, 7.44)

R
(8)
0 3.79 (1.70, 6.64)

R
(9)
0 2.78 (0.96, 4.50)

λ 0.42 (0.01, 0.86)

Parameter Mean (95% HPD)

λ(4) 0.12 (0.01, 0.40)

λ(9) 0.72 (0.31, 1.00)

1
σ

0.96 (0.10, 2.16)

1
α

0.83 (0.10, 2.22)

1
γs

4.86 (2.13, 7.89)

1
γa

3.53 (0.18, 7.01)

ps 0.97 (0.95, 0.99)

κS 0.14 (0.01, 0.27)

κP 0.25 (0.08, 0.45)

psus 0.55 (0.44, 0.66)

Table 4.4: Wave 2 ships posterior point estimates. Mean and 95% HPD
intervals of posterior samples.
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The posterior point estimates highlight some interesting results. We es-
timate all ships had an R0 > 1, as expected by the threshold theorem, and 6
out of the 9 ships had an R0 > 3. We note some marginal R0 distributions
are heavily right-tailed with 97.5% percentiles as high as 18. This indicates
that once above a certain threshold for each ship, R0 is less influential in
fitting to the data; possibly due to interaction with other parameters such
as prior immunity. These R0 values are high for typical pandemic influenza,
but are consistent with previous studies of the 1918 pandemic; particularly,
outbreaks within contained populations, as expected due to higher levels of
mixing compared to an open population [25, 49, 54]. The high R0 values
help explain the high clinical attack rate observed aboard the Wave 2 ships.

The λ estimate indicates an effective reduction in transmission rate of
58% after the ships had entered Australian quarantine. The Nestor, which
had pre-inoculated troops on board, had a lesser reduction of approximately
28%. Although, there is a large degree of uncertainty in these estimates. The
ship’s entry into quarantine often coincided with the natural decline of the
epidemic, and so the exact responsibilities for the reduction in transmission
are unclear. In comparison, the effective reduction in transmission aboard
the Marathon, which used formaldehyde inhalation mid-outbreak at sea, was
approximately 88%. Hence, formaldehyde inhalation appears to have had a
far greater effect on reducing transmission aboard the Marathon than the
Australian quarantine measures.

The epidemiological periods are estimated to be an average 23 hour la-
tent period and 20 hour pre-symptomatic period; resulting in an average
incubation period of 43 hours. The average infectious periods are estimated
to be: symptomatic infectious period of 5 days, and asymptomatic infectious
period of 3.5 days. These values are in line with previous studies [48, 54, 77].
The estimated latent and pre-symptomatic periods suggest that symptomatic
individuals were infectious for approximately half of the incubation period.
This is a novel estimate of the duration of the pre-symptomatic period, which
is often ignored in epidemic modelling.

The generation time can be estimated through simulation, in which a
primary exposed individual is introduced into the population and the time
until their first transmission is recorded. Denote the generation time aboard
ship i, T

(i)
g . Here, we estimate T

(i)
g from 10,000 posterior simulations, where

each simulation uses a randomly sampled parameter set from the posterior
samples; the estimated mean and 95% HPD intervals are shown in Table
4.5. The combined Tg kernel density estimate is shown in Figure 4.6. Here,
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we see on average a generation time of 53 hours, which is slightly shorter
than previous estimates [48]. The short generation time can explain the fast
epidemic growth in number of observed cases aboard the ships; a result of
the high R0 values and short latency period.

Ship Mean (95% HPD)

T
(1)
g 2.51 (0.00, 8.36)

T
(2)
g 1.86 (0.00, 5.98)

T
(3)
g 2.79 (0.01, 9.46)

T
(4)
g 2.06 (0.00, 6.67)

T
(5)
g 1.73 (0.00, 5.60)

Ship Mean (95% HPD)

T
(6)
g 1.93 (0.01, 6.27)

T
(7)
g 2.19 (0.01, 7.31)

T
(8)
g 2.24 (0.00, 7.42)

T
(9)
g 2.46 (0.01, 8.02)

Table 4.5: Wave 2 ships posterior Tg estimates by ship. Mean and 95% HPD
intervals estimated from 10,000 simulations.
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Figure 4.6: Wave 2 ships posterior Tg kernel density estimate.

We also find approximately 97% of all infections are symptomatic. This
ps value is somewhat high compared to previous studies, where estimates
vary between 30 - 90% [48]. The high symptomatic proportion could be
explained by the well known high virulence of the 1918 pandemic and high
case recognition rates by the on-board surgeon. We estimate 45% of the
population was immune prior to the Wave 2 outbreaks. Given previous esti-
mates of the immune proportion prior to the first wave of the 1918 pandemic
of 30-50%, this estimate is reasonable [49]. Hence, this result supports the
conjecture that a significant proportion of the population was immune prior
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to the onset of the second wave of the 1918 pandemic; whether gained from
the first wave or cross immunity of a past influenza strain, it is unclear. In-
terestingly, the combination of almost-one ps estimate and a lower psus that
appears to fit to the data’s largest clinical attack rate (Atua; 56% clinical
attack rate), suggests that almost all susceptible individuals become infected
and we observed almost all of them as clinical illnesses.

We can demonstrate this elevated total attack rate by using simulation.
Here, we have run 10,000 posterior simulations of the ship epidemic model,
where each simulation uses a randomly sampled parameter set from the pos-
terior samples. The simulated cumulative case counts are shown against the
observed ship data in Figure 4.7. The comparison of data clinical attack rate
to posterior simulation clinical and total attack rates is shown in Table 4.6.
Encouragingly, we see consistent agreement with the ship data, which indi-
cates good model fit. We note the Devon simulations deviate significantly
from the observed data, but attribute this to potential error in the data; see
the Appendix for further details. We see almost zero difference between the
simulation clinical and total attack rates, signifying almost all infections are
observed. We also note the larger outbreaks such as the Atua, Medic and
Boonah tend toward complete infection of the susceptible population. The
smaller populations are far more variable and have a higher probability of
epidemic die-out.

Ship
Name

Data
Attack Rate

Clinical
Attack Rate
Mean (95% HPD)

Total
Attack Rate
Mean (95% HPD)

(1) Niagara 0.28 0.37 (0.05, 0.56) 0.39 (0.05, 0.65)

(2) Mataram 0.31 0.36 (0.02, 0.59) 0.37 (0.02, 0.61)

(3) Devon 0.09 0.02 (0.00, 0.18) 0.03 (0.00, 0.18)

(4) Marathon 0.10 0.09 (0.00, 0.49) 0.09 (0.00, 0.50)

(5) Atua 0.56 0.55 (0.43, 0.66) 0.57 (0.43, 0.68)

(6) Manuka 0.19 0.34 (0.15, 0.53) 0.35 (0.16, 0.56)

(7) Medic 0.30 0.46 (0.31, 0.58) 0.48 (0.32, 0.60)

(8) Boonah 0.42 0.47 (0.37, 0.56) 0.49 (0.38, 0.59)

(9) Nestor 0.04 0.07 (0.00, 0.50) 0.07 (0.00, 0.51)

Table 4.6: Wave 2 ship data versus posterior simulation attack rates. Mean
and 95% HPD intervals estimated from 10,000 simulations. Posterior simu-
lations show in Figure 4.7.
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The other key features of the 1918 pandemic we wished to identify were
the proportion of transmission arising from symptomatic (κS), pre-symptomatic
(κP ), asymptomatic (κA) and non-symptomatic (κNS) individuals. The κ
posterior mean and 95% HPD intervals are shown in Table 4.7. We plot
the κ kernel density estimates in Figure 4.8. We estimate the symptomatic,
pre-symptomatic and asymptomatic mean transmission proportions as 0.14,
0.25 and 0.61 respectively. Hence, we estimate the non-symptomatic mean
transmission proportion as 0.86. Symptomatic individuals have the lowest
contribution to the spread of the disease and non-symptomatic individuals
account for roughly 85% of transmission. This result illustrates an important
factor in the 1918 pandemic, in that the majority of transmission arose from
asymptomatic infections or prior to the onset of symptoms.

Parameter Mean (95% HPD)

κS 0.14 (0.01, 0.27)

κP 0.25 (0.08, 0.45)

κA 0.61 (0.39, 0.80)

κNS 0.86 (0.73, 0.99)

Table 4.7: Wave 2 ships posterior κ estimates. Mean and 95% HPD intervals
of posterior samples.
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Figure 4.8: Wave 2 ship posterior κ kernel density estimates.

We must note the expected number of infections that arise from a symp-
tomatic, pre-symptomatic or asymptomatic individual. The E[infections]
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posterior mean and 95% HPD intervals are shown by ship in Table 4.8.
The combined E[infections] kernel density estimates are shown in Figure
4.9. Here, we see a average expected infections from symptomatic, pre-
symptomatic and asymptomatic individuals of 0.64, 1.09, and 144, respec-
tively. We observe difficulty in identifying E[IA infections], which allows the
possibility of asymptomatic individuals to be super-spreader individuals that
can cause a huge number of infections. Although, due to the almost-one ps
values, there is on average only five asymptomatic individuals in the duration
of the epidemics.

Ship
Name

E[IS infections]
Mean (95% HPD)

E[IP infections]
Mean (95% HPD)

E[IA infections]
Mean (95% HPD)

(1) Niagara 0.26 (0.02, 0.60) 0.50 (0.07, 1.24) 68.1 (0.14, 214)

(2) Mataram 1.02 (0.04, 2.32) 1.73 (0.36, 3.36) 240 (0.09, 559)

(3) Devon 0.18 (0.02, 0.35) 0.33 (0.08, 0.63) 42.7 (0.22, 87.2)

(4) Marathon 0.68 (0.01, 1.47) 1.10 (0.09, 1.78) 159 (0.24, 343)

(5) Atua 1.30 (0.14, 3.12) 2.26 (0.36, 4.63) 299 (0.81, 697)

(6) Manuka 0.85 (0.07, 1.84) 1.42 (0.49, 2.38) 202 (0.12, 429)

(7) Medic 0.58 (0.05, 1.13) 1.00 (0.31, 1.91) 138 (0.46, 289)

(8) Boonah 0.54 (0.03, 1.19) 0.91 (0.25, 1.68) 126 (0.19, 300)

(9) Nestor 0.38 (0.04, 0.70) 0.65 (0.25, 1.06) 92.2 (0.1, 198)

Table 4.8: Wave 2 ships posterior E[infections] estimates by ship. Mean and
95% HPD intervals of posterior samples.
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Figure 4.9: Wave 2 ships posterior E[infections] kernel density estimates.
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In summary, we have characterised the epidemiological dynamics occur-
ring aboard 9 ships during the second wave of the 1918 pandemic. We found
the following statistics of note. R0 values aboard these ships are in the range
of 1.3 - 9.5. The quarantine measures implemented upon entry to Australian
quarantine stations resulted in a 58% reduction in transmission, where as
the formaldehyde inhalation conducted on the Marathon resulted in a 88%
reduction. Approximately 97% of all infections were symptomatic and these
individuals were infectious on average 20 hours before development of symp-
toms; that is, for approximately half the incubation period. Only 55% of the
population was susceptible prior to onset of outbreak in the second wave.
Non-symptomatic individuals (asymptomatic or prior to onset of symptoms)
were responsible for approximately 85% of transmission. In particular, there
were only a handful of asymptomatic individuals per outbreak, but they had
the potential to be extremely infectious to others.

4.3.2 Wave 3

In this section we conduct parallel inference on all Wave 3 ships: (10) Ce-
ramic, (11) Lancashire, (12) Kenilworth Castle, (13) Orca, (14) Kashmir
and (15) Euripides. Hence, we target the posterior distribution,

p(θ|{D(10), ..., D(15)}) ∝ p({D(10), ..., D(15)}|θ)p(θ).

We conduct inference on the following parameter transformations

θ =

{
R

(10)
0 , ..., R

(15)
0 , λ,

1

σ
,

1

α
,

1

γs
,

1

γa
, ps, κS, κP , psus

}
.

Here, R
(10)
0 , ..., R

(15)
0 denote the unique R0 values for each ship. We use the

prior distributions and MCMC scheme denoted above to generate 3,250,000
posterior samples for analysis. The mean and 95% HPD intervals of the pos-
terior samples are given in Table 4.9. The marginal kernel density estimates
of the posterior samples are shown in Figure 4.10. The trace plot of the MH
chain are shown in Figure 4.11.
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Parameter Mean (95% CI)

R
(10)
0 2.90 (0.65, 6.85)

R
(11)
0 3.47 (0.22, 9.41)

R
(12)
0 5.28 (0.74, 15.6)

R
(13)
0 3.51 (0.67, 8.60)

R
(14)
0 4.29 (1.13, 13.2)

R
(15)
0 4.35 (0.84, 12.0)

λ 0.67 (0.24, 1.00)

Parameter Mean (95% CI)

1
σ

0.99 (0.10, 3.64)

1
α

0.74 (0.10, 2.02)

1
γs

5.46 (2.19, 8.00)

1
γa

5.09 (1.37, 8.00)

ps 0.94 (0.74, 0.99)

κS 0.23 (0.01, 0.50)

κP 0.24 (0.04, 0.49)

psus 0.10 (0.06, 0.17)

Table 4.9: Wave 3 ships posterior point estimates. Mean and 95% HPD
intervals of posterior samples.

For the Wave 3 ships, we estimate all ships had an R0 > 1, and 5 out
of 6 ships have an R0 > 3. Again, we note some marginal R0 distributions
are heavily right-tailed with 97.5% percentiles as high as 15. The Wave 3 R0

values are on average smaller than the second wave estimates. The reduced
R0 could explain the lower attack rate seen in the third wave of the 1918
pandemic. Also, the λ values indicate an effective reduction in transmission of
about 45% once entered Australian quarantine, which is slightly less effective
reduction than for the second wave, but again we note the uncertainty in λ.

The epidemiological periods are estimated to be an average 24 hour latent
period and 18 hour pre-symptomatic period; resulting in an average incuba-
tion period of 42 hours. Hence, infected individuals develop symptoms on
average 2 hours faster than in Wave 2, but the overall incubation period is
consistent with the second wave. Individuals are still infectious for roughly
half of the time between infection and the development of symptoms. The
average infectious periods are estimated as: symptomatic infectious period
of 5.5 days and asymptomatic infectious period of 5 days, which is consistent
with the second wave.

The generation time aboard the Wave 3 ships can be estimated through
simulation. Here, we estimate T

(i)
g from 10,000 posterior simulations; the

estimated mean and 95% HPD intervals are shown in Table 4.10. The com-
bined Tg kernel density estimate is shown in Figure 4.12. We see on average
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a generation time of 58 hours, which is approximately 5 hours longer than
the Wave 2 estimate. The longer generation time could be a result of the
reduced R0 compared to Wave 2, and hence slowed the epidemic growth in
number of observed cases aboard the ships.

Ship Mean (95% HPD)

T
(10)
g 2.44 (0.00, 8.64)

T
(11)
g 2.62 (0.01, 8.97)

T
(12)
g 2.33 (0.00, 8.05)

Ship Mean (95% HPD)

T
(13)
g 2.63 (0.01, 9.00)

T
(14)
g 2.46 (0.01, 8.48)

T
(15)
g 2.44 (0.00, 8.26)

Table 4.10: Wave 3 ships posterior Tg estimates by ship. Mean and 95%
HPD intervals estimated from 10,000 simulations.
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Figure 4.12: Wave 3 posterior Tg kernel density estimate.

We estimate approximately 95% of all infections are symptomatic, similar
to Wave 2 estimates. Again, this could be explained by the better case
recognition by on-board surgeons. In terms of prior immunity, we observed
a significant increase compared to Wave 2. For the third wave ships, we
estimate 90% of the population was immune to infection prior to the Wave
3 outbreaks; an increase from the estimated immune Wave 2 populations by
roughly 50%. Again, this estimate is consistent with previous prior immunity
wave analysis of the 1918 pandemic conducted in Mathews et al. [49]. Hence,
we can support the conjecture that the increase in prior immunity from Wave
2 to Wave 3 of the 1918 pandemic was significant and aided in a far reduced
attack rate observed in the third wave.
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The combination of the high ps estimates and low psus value that appears
to fit to the data’s largest clinical attack rate (Ceramic; 7% clinical attack
rate), supports the conjecture that all susceptible individuals contract the
disease, and we observed nearly all of them. Although, this elevated total
attack rate appears less significant than in the second wave. Here, we have
run 10,000 posterior simulations of the ship epidemic model. The simulated
cumulative case counts are shown against the observed ship data in Figure
4.13. The comparison of data clinical attack rate to posterior simulation clin-
ical and total attack rates is shown in Table 4.11. Again, we see consistent
agreement with the ship data and almost zero difference between the simula-
tion and clinical attack rates. The larger outbreaks (Ceramic and Kenilworth
Castle) tend toward complete infection of the susceptible population, and the
smaller outbreaks show significant probability of epidemic die-out.

Ship
Name

Data
Attack Rate

Clinical
Attack Rate
Mean (95% HPD)

Total
Attack Rate
Mean (95% HPD)

(10) Ceramic 0.07 0.08 (0.04, 0.12) 0.09 (0.04, 0.13)

(11) Lancashire 0.03 0.05 (0.00, 0.10) 0.05 (0.00, 0.11)

(12)
Kenilworth
Castle 0.05 0.08 (0.05, 0.12) 0.09 (0.05, 0.13)

(13) Orca 0.03 0.05 (0.00, 0.10) 0.05 (0.00, 0.10)

(14) Euripides 0.06 0.07 (0.01, 0.11) 0.08 (0.01, 0.13)

(15) Kashmir 0.04 0.03 (0.00, 0.09) 0.03 (0.00, 0.10)

Table 4.11: Wave 3 ship data versus posterior simulation attack rates. Mean
and 95% HPD intervals estimated from 10,000 simulations. Posterior simu-
lations show in Figure 4.13.
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We wish to identify the proportion of transmission from symptomatic,
pre-symptomatic, asymptomatic and non-symptomatic individuals aboard
the third wave ships. The κ posterior mean and 95% HPD intervals are
shown by ship in Table 4.12. We plot the κ kernel density estimates in Figure
4.14. We estimate the symptomatic, pre-symptomatic and asymptomatic
mean transmission proportions as 0.23, 0.24 and 0.52 respectively. Hence,
we estimate the non-symptomatic mean transmission proportion as 0.77. We
see general agreement with the estimated proportion of transmission in the
second wave, except for a ≈10% increase in symptomatic contribution. This
appears to arise from a larger uncertainty in the symptomatic proportion of
transmission than the second wave; this is not unexpected due the smaller
number of datasets inferred upon. Hence, this does support our Wave 2
conclusion that non-symptomatic individuals were responsible for over half
of all transmission in both waves; approximately 85% in Wave 2 and 75% in
Wave 3.

Parameter Mean (95% HPD)

κS 0.23 (0.01, 0.50)

κP 0.24 (0.04, 0.49)

κA 0.52 (0.12, 0.91)

κNS 0.77 (0.50, 0.99)

Table 4.12: Wave 3 ships κ estimates. Mean and 95% HPD intervals of
posterior samples.

0 0.2 0.4 0.6 0.8 1

κ

0

1

2

3

4
κS

κP

κA

κNS

Figure 4.14: Wave 3 ship posterior R0 contributions kernel density estimates.
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Again, we must note the expected number of infections that arise from a
symptomatic, pre-symptomatic or asymptomatic individual aboard the third
wave ships. The E[infections] posterior mean and 95% HPD intervals are
shown by ship in Table 4.13. We plot the overall E[infections] kernel density
estimates in Figure 4.15. Here, we see a average expected infections from
symptomatic, pre-symptomatic and asymptomatic individuals of 0.69, 0.80
and 109, respectively. Again, asymptomatic individuals have the potential
to be super-spreader individuals that can cause a huge number of infections,
but due to the small ps values, there is on average only seven asymptomatic
individuals in the duration of the epidemic.

Ship
Name

E[IS infections]
Mean (95% HPD)

E[IP infections]
Mean (95% HPD)

E[IA infections]
Mean (95% HPD)

(10) Ceramic 0.63 (0.02, 1.35) 0.70 (0.06, 1.32) 79.5 (0.00, 278)

(11) Lancashire 0.57 (0.04, 1.16) 0.70 (0.02, 1.36) 112 (0.00, 444)

(12)
Kenilworth
Castle 0.89 (0.04, 2.00) 1.04 (0.19, 2.29) 162 (0.00, 610)

(13) Orca 0.60 (0.04, 1.15) 0.69 (0.20, 1.26) 109 (0.01, 391)

(14) Euripides 0.72 (0.07, 1.31) 0.85 (0.27, 1.66) 134 (0.00, 526)

(15) Kashmir 0.73 (0.08, 1.44) 0.85 (0.24, 1.62) 135 (0.00, 502)

Table 4.13: Wave 3 ships posterior E[infections] estimates by ship. Mean
and 95% HPD intervals of posterior samples.
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Figure 4.15: Wave 3 ships posterior E[infections] kernel density estimates.
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In summary, we have characterised the epidemiological dynamics occur-
ring aboard 6 ships during the third wave of the 1918 pandemic. We found
the following statistics of note. R0 values aboard these ships are in the range
of 2.9 - 5.3, and were on average smaller than the second wave’s R0 estimates.
The quarantine measures implemented upon entry to Australian quarantine
stations still resulted in a 45% reduction in transmission; these estimates are
consistent with Wave 2. Roughly 95% of all infections were symptomatic
and these individuals were infectious on average 18 hours before develop-
ment of symptoms; that is, for approximately half the incubation period.
Only 10% of the population was susceptible prior to onset of outbreak in the
third wave. Non-symptomatic individuals (asymptomatic or prior to onset of
symptoms) were responsible for approximately 75% of transmission; where
asymptomatic individuals were rare but potentially extremely transmissive.

4.4 Summary

In this chapter, we have conducted the principal investigation of this thesis
in characterising the 1918 pandemic influenza strain. Firstly, we introduced
the previously unstudied data source from Cumpston [20]. The data details
a series of influenza outbreaks aboard ships, corresponding to two waves of
the 1918 pandemic: 9 ships in the second wave and 6 ships in the third
wave. The ship epidemic model was developed specifically to characterise
the pandemic influenza epidemiology from the ship outbreaks. This includes
mechanisms for asymptomatic infections, pre-symptomatic infectious peri-
ods, prior immunity, removal of infected and healthy individuals, and re-
duction in transmission caused by quarantine measures. The ship data was
used to characterise the 1918 pandemic by inferring the parameters of the
ship epidemic model. Parallel inference was conducted in outbreak subsets
corresponding to pandemic wave; this allowed characterisation of the 1918
pandemic influenza strain and identification of differences between the second
and third wave of the pandemic.

We estimate R0 values in the range of 1.3 - 9.5 for the second wave and
2.9 - 5.3 for the third wave. For context, previous studies of the 1918 pan-
demic have estimated R0 in the range of 1.4 - 2.8 [23, 54], and estimates
from contained environments such as schools and military bases in the range
of 2.8 - 5.7 [48, 49]. The exact comparison to past studies is unwise as the
R0 value would be expected to be higher aboard ships than in open pop-
ulations. Although, these values are consistent with previous studies and
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support the conclusion that one of the contributing factors to the severity
of the 1918 pandemic was a highly transmissible virus; far more infectious
than reported estimates of endemic influenza and other modern pandemics
[18, 23, 79]. We also note the mean Wave 2 R0 estimate is 0.75 larger than
the Wave 3 estimate. Partial responsibility for the decline in R0 between
waves falls to the significant increase in the immune population prior to the
third wave. We found approximately 45% of the population aboard the Wave
2 ships were immune to infection prior to onset of outbreak and 90% in the
Wave 3 ships. From R0, the generation time was estimated as ≈ 2 days
between a primary and secondary infection. The incubation period of symp-
tomatic infections was on average 42 hours, with individuals were infectious
to others for approximately half that time. Across both waves, approximately
95% of all infections developed observable symptoms. Approximately 80% of
transmission occurred asymptomatically or prior to the onset of symptoms;
where asymptomatic infections were rare but accounted for a large number
of transmissions. We also found that the Australian quarantine measures
had an approximately 35 - 50% reduction in transmission. These results are
discussed further with context in Chapter 5.



Chapter 5

Discussion

The objective of the work within this thesis is to epidemiologically charac-
terise the 1918 pandemic influenza strain. This study was not only important
to the understanding of the worst influenza pandemic in history, but is infor-
mative of present day influenza transmission. Previous studies, while plenti-
ful, were often restricted to data and epidemic models, or their deterministic
approximations, that failed to account for important dynamics deserving
characterisation or ignored external factors which could potentially bias re-
sults. Here, we investigated a number of ship-bound influenza outbreaks from
the 1918 pandemic, as recorded within Cumpston [20]. These outbreaks
presented a naturally occurring, detailed picture of influenza transmission
within a contained environment. The data is unlike that typically seen in
previous mathematical studies, especially for the 1918 pandemic where reli-
ably recorded data is sparse, populations are often subject to external factors
and mixing dynamics are difficult to identify and replicate. Hence, the data
provides a rare chance to best capture the epidemiological characteristics of
the 1918 pandemic.

Chapter 2 introduced the PMMH algorithm, which was required to con-
duct inference using stochastic epidemic models of the desired complexity.
The algorithm uses an SMC estimate of the likelihood which had potential
to cause issues with the mixing of the MH chain. SMC was shown to have
difficulty estimating rare event probabilities, and typically methods to alle-
viate these issues were found to be not practical. We attempted to devise
our own alternative method in the Hybrid algorithm, that had its own set
of complications (see below). Other recent inference methods for stochas-
tic epidemic models such as data augmentation deserve consideration and
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may have been better suited to the task for computational reasons [10, 51].
Chapter 3 details the investigation into the rigorous testing of the PMMH
algorithm in comparison to the Metropolis-Hastings algorithm. The PMMH
algorithm was found preferential such that it replicated the posterior results
of the Metropolis-Hastings algorithm in a significantly shorter runtime; this
validated the used of the algorithm. In this study we compared algorithms
using a standard SMC number of particles, Np, and implicit Euler precision,
τ . These values were chosen by studying the variance of the likelihood es-
timate calculated for a single parameter set. Ideally, we would compare the
PMMH and Metropolis-Hastings algorithms across a variety of standard Np

and τ values to better identify the effects of the number of particles required.

In Chapter 3, the PMMH algorithm was used to assess the parameter
identifiability of a series of increasingly complex epidemic models. These
models were built upon to develop the SEIpIsIaR model, which formed the
foundation of the ship epidemic model. The inference tests on the SEIp-
IsIaR model found definitive biases and parameter identifiability concerns
when conducting inference from a single dataset of symptomatic case obser-
vation. Biases such as overestimating R0/underestimating ps and inability
to identify asymptomatic infection dynamics were noted. Parallel inference
highlighted the identifiability benefits from conducting inference on multiple
datasets, which reduced these biases. Although, some identifiability concerns
remained; especially when allowing unique R0 values between outbreaks.
Primarily, a tendency to slightly overestimate R0 and ps, and an inability
to adequately identify κP , κA and E[IA infections]. The conclusions of the
identifiability study are limited by the fixed parameter choices and number
of datasets used. Here, simulated datasets were generated using population
sizes and parameter values informed by past studies to replicate the ship data.
Ideally, a more comprehensive study of a series of parameters sets would be
undertaken to better identify possible biases. Included in these considera-
tions is a quantitative study of the number of datasets inferred upon. That
is, how many datasets must be used within parallel inference to achieve a
desired result. Here, we only used 5 datasets as similar to Wave 3 of the ship
data. There are indications of possible reduction of biases/identifiability con-
cerns given the inclusion of more datasets, but the number required deserves
study. Identifiability studies of this detail are rarely published and there is
little in the literature for comparison. Hence, a study of this detail could be
useful to validate the conclusions of other studies.

Chapter 4 presents the principal study of parameter inference conducted
in an effort to characterise the 1918 pandemic influenza strain. In short, we
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found evidence that supported the following epidemic narrative. The ships
were under attack from a highly transmissible strain of influenza, consistent
with previous studies of the 1918 pandemic. The reduced clinical attack rate
between Wave 2 and Wave 3 was primarily a result of large increase in the im-
mune population, from approximately 45% to 90% immunity. The epidemic
spread quickly due to the high infectiousness and roughly one day latent pe-
riod; a primary infection would transmit the disease after 2 days on average.
Approximately 95% of all infections developed symptoms and roughly 80% of
transmission arose from non-symptomatic individuals, that is, asymptomat-
ically or in the 20 hours prior to development of symptoms. These results
highlight key factors about the 1918 pandemic, and potentially modern in-
fluenza. Here, we provided further support to the hypothesis that the 1918
pandemic was caused by a highly transmissible virus, and the reduced impact
between second and third waves was a result of significantly increased pop-
ulation immunity [49, 74]. We suggest that the pre-symptomatic infectious
period is responsible for approximately half the incubation period; indicating
individuals are infectious for a significant period of time before the develop-
ment of symptoms. We provide evidence that non-symptomatic transmission
was the dominant method of transmission aboard these ships. The propor-
tion of transmission from symptomatic individuals could suggest far reduced
levels of mixing/contacts from symptomatic cases, possibly due to the debili-
tating symptoms as described in Cumpston [20]. This result is important for
two reasons: the severe lack of evidence attributed to asymptomatic and pre-
symptomatic transmission, and its significance to the informing the choice
of epidemic control measures [25, 60]. This result has the potential make
influenza control measures that targeted only symptomatic individuals, such
as case isolation, obsolete. Hence, we have outlined a plausible epidemio-
logical characterisation of 1918 pandemic influenza aboard ships and drawn
conclusions with consequences to the field.

Although, we note and acknowledge the well documented limitations of
stochastic compartmental models in reflecting true transmission dynamics
[3, 4]. There are also some concerns within this analysis relating to afore-
mentioned identifiability/bias. The 1918 pandemic inference estimated the
proportion of symptomatic cases as approximately 95 - 97%; an especially
high estimate when compared to previous studies of the 1918 and other pan-
demics. While this is argued as a result from the mandatory reporting of all
cases to the ship surgeon, it is possible that the high values are a result of the
overestimating R0/ps bias. This is compounded by the inability to identify
E[IA infections], which allows the possibility of asymptomatic individuals to
be highly infectious. It is difficult to determine if these estimates are a bias of
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the model or illustrative of the true dynamics. Hence, we suggest the further
model testing detailed above, and propose model adjustments for compari-
son. In particular, we wish to reduce the impact of transmission from asymp-
tomatic infections as common of past studies. This include: using an Erlang
distributed infectious compartment to reduce duration variance [48], using
more informative/restrictive prior distributions educated from past studies,
and truncating the support of the E[IA infections] prior distribution to re-
alistic values. These changes could eliminate/reduce the bias potential and
are worthy of investigation.

5.1 Further Areas of Study

In the next section, we detail further areas of study regarding the original
work proposed here, but that falls outside the scope of this thesis. There
are still questions about the epidemiology of the 1918 pandemic and more
unanalysed data to be found within Cumpston [20]. Here, we detail other
possible future investigations into the data. We also detail possible improve-
ments for the Hybrid algorithm.

Cumpston [20] contains a register of all ships entering Australian dur-
ing the maritime quarantine period of the 1918 pandemic. For our analysis,
we extracted 15 of the most detailed accounts that support a set of mod-
elling assumptions. These outbreaks were chosen as they met the minimum
requirements as follows: daily recordings of influenza case counts with first
and last case date (some missing data permitted), a closed population within
a contained environment, introduction of an infected individual into a suscep-
tible (or partially immune) population at known location, no effective means
of isolation, all passenger landings are recorded with infection status, and
all quarantine measures implemented are recorded. The data requirements
meant each outbreak painted an accurate picture of a contained influenza
epidemic with minimal external factors; permitting the explicit modelling
and conclusions drawn in Chapter 4. Although, if these data requirements
are relaxed, the number of ships outbreaks that meet the criteria, and there-
fore the data available for analysis, increases. However, the missing detail in
the records reduces the strength of conclusions that are able to be drawn.
That is, further analysis can be conducted on a larger set of ship outbreaks
than the original 15, but the conclusions may be weakened due to possible
influences of externals factors or unaccounted dynamics.
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There are 75 registered ships that were observed to have influenza cases
on board during the voyage to Australia. Omitting the 15 already included
in analysis, there are 13 additional ships that meet the minimum data re-
quirements except the daily resolution influenza case counts. The number of
additional ships jumps to 21 if assumptions are made about inconsistencies
in the recorded data, and 27 if the source-of-infection requirement is ignored.
Hence, there are 42 ship outbreaks of reasonable fidelity in the records avail-
able for analysis. Alternatively, each of the 75 registered ships records a
final size of the outbreak; a naive approach could be to analyse the final size
distribution of all ships regardless of surrounding circumstance. Note, this
summary doesn’t include the 92 Australian vessels that developed influenza
cases on interstate voyages, which may be more susceptible to external fac-
tors than the international voyages, but are still worthy of consideration.
This brings the prospective total number of ships outbreaks for analysis to
167. Hence, there is potential for much further study of the 1918 pandemic
from the other data available in Cumpston [20], given relaxed modelling as-
sumptions.

In Chapter 4, we conduct two studies of the original 15 ship outbreaks,
split into groups by wave of the 1918 pandemic. While this was informative
of the differences in epidemiology between pandemic waves, further compar-
isons could also have been made. In particular, one potential difference wor-
thy of further study is geographical-based inference. That is, a comparison
of ship outbreaks between source-of-infection cities. During the 1918 pan-
demic, some countries/cities experienced noticeably more virulent influenza
epidemics than others and demonstrated the pandemic waves at different
times [74]. Hence, a study of the possible differences by geographical-based
inference is recommended. This could be done a number of ways, such as by
hemisphere, country or city comparisons. Given many of the ship outbreaks
originated from England, Egypt, South Africa and New Zealand, there is am-
ple data for this comparison. The study would not be difficult to implement
as it only requires different groupings of ships to be used in parallel infer-
ence. A study conducted in this manner has the potential to be informative
about dynamics that could vary significantly based on origin of population,
such as prior immunity [49]. Hence, a parallel inference study of the ship
data, broken into groups by location and/or local pandemic wave could be
enlightening about the differences in epidemiology of the 1918 pandemic by
country.

Another study worth consideration is adjustments to the ship epidemic
model to account for a heterogeneous population. In Chapter 4, we ar-
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gue the assumption of a homogeneously-mixing population for mathematical
simplicity, as common of mathematical epidemic studies [4, 41]. We note
that this assumption is an approximation to the realistic heterogeneity in
the population, as evident by the differing attack rates of passengers/troops
and crew aboard some ships (see Appendix). Hence, a consideration of lev-
els of mixing is warranted, similar to epidemic patch or household models
[3, 36, 47]. These models account for levels of mixing within a population,
allowing contact between individuals to occur within and between subgroups
of the population at different rates. This concept could be extended to the
ship epidemic model to account for the different levels of mixing between per-
sonnel, such as crew and passengers. The subgroups could even have unique
observations processes as records show the distribution of cases between crew
and passengers for some ships. The modelling of multiple levels of mixing
could be expanded beyond just crew and passenger subgroups. Some ships
describe the progression of disease transmission along the length of the ship,
spreading between the sleeping quarters. Unfortunately the exact structure
of the ship is difficult to determine, and so a number of assumptions would be
required about the proposed subgroups. Modelling multiple levels of mixing
aboard the ship could greatly alter the characterisation of ship outbreaks.
With this approach, we may be able to better understand the reason for
unusual epidemic characteristics in the ship data, such as the observed cases
slow initial development, sharp spike, followed by a long tail of cases that
could last weeks. The inclusion of a heterogeneously-mixing population could
greatly improve the fit of the model. Although, this study would require a
significantly more complex model which may hinder inference.

Here, we have discussed multiple areas of further study into the 1918 pan-
demic from data collated within Cumpston [20]. We detail the vast amount of
ship outbreaks that have not been included within our analysis, due to lacking
the minimum data requirements such as daily observation of influenza case
counts and agreement with modelling assumptions. These datasets could be
used for analysis by relaxing the required data assumptions. The inclusion of
the remaining data may complicate epidemic modelling, but the sheer num-
ber of outbreaks is unlike past studies of 1918 pandemic influenza and wor-
thy of further investigation. We also detail two possible studies into the ship
data worthy of undertaking. The first is an alternate inference scheme that
compares the 1918 pandemic influenza epidemiology on a source-of-infection
location basis. The study could identify possible key geographical differences
that explain why the progression of the 1918 pandemic was unique city-to-
city and country-to-country. The second is an alternate model that allows
for multiple levels of mixing within the on-board population. This inclusion
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within the model could explain the characteristics of the epidemic progression
on some vessels, and potentially illustrate different epidemiological dynamics
than in Chapter 4. There are many possible avenues of future work that can
be investigated from the ship data. Admittedly, the future areas of study
documented here is not an exhaustive list of possible ways the data can be
exploited. As such, Cumpston [20] is a rich resource for mathematical mod-
elling and should be utilized to the fullest extent in characterising the 1918
pandemic.

Hybrid Algorithm

In Chapter 3, we present a Hybrid algorithm that combines SMC and “ex-
act” (using the implicit Euler method to solve the master equation) methods
in likelihood calculation. We present a formulation of the algorithm which
uses a probability threshold, δ, which determines the time steps where exact
methods are used. We highlight the variance reduction benefits of the Hybrid
algorithm, and noted the computational cost of the exact methods made it an
infeasible choice for our study. Although, the Hybrid algorithm can be effec-
tive for simpler models and there exist other implementations/improvements
to the method that may prove beneficial in the field.

There are multiple ways the Hybrid algorithm can be implemented by
using different conditions to determine the time steps where the exact meth-
ods are used. In Chapter 3, we use the exact method for time steps where
the estimated SMC likelihood is below a threshold δ. The choice of δ can be
chosen to elicit certain behaviours of the algorithm. That is, δ can be chosen
so exact methods are only used for time points suffering likelihood failure,
minimising the number of observations where exact methods are used. A
larger δ could mean exact methods are used when the estimated likelihood
is too small to be reliable and an increased precision is required. This im-
plementation is specifically designed to remove the possibility of likelihood
failure/particle degeneracy and reduce the estimator variance. This comes
at the cost of using the exact methods for an unknown number of time steps,
which can be computationally costly if δ is poorly chosen. Alternatively,
the algorithm can be implemented where exact methods are used for prede-
termined time steps or time steps chosen by any arbitrary condition. For
an epidemiology example, the exact methods could be used for the first few
days of the outbreak. This period is often highly variable and has the highest
probability of epidemic die-out; hence the Hybrid algorithm can increase the
precision of the estimator for the most variable time steps. Implementing
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the Hybrid algorithm in a problem-specific manner is favourable if it can
reduce the number of time steps where exact methods are required and while
maintaining the benefits over SMC.

As discussed in Chapter 3, the efficiency of the Hybrid algorithm is de-
pendent on the efficiency of the exact methods, hence the implicit Euler
method, even if only used for a small number of time points. If the implicit
Euler method is infeasible or an order of magnitude larger in runtime than
SMC, the benefits of the Hybrid algorithm are mostly lost by the huge in-
crease in runtime. This will limit the use of the algorithm to simpler models,
but there are techniques to speed up the implicit Euler method. The most
common is truncation of the CTMC’s Q matrix to only consider states of
interest; a method known as finite state projection. We neglect the docu-
mented mathematical background here for brevity but it can be found in
Munsky and Khammash [57] and Jahnke and Sunkara [38]. Truncation can
be quite effective in reducing the runtime of the implicit Euler method as
it can greatly reduces the size of the state space considered. The gains in
efficiency are directly proportional to the decrease in considered state space.
Hence, for the SIR and SEIR models truncation is recommend, as it is easy
to greatly reduce the state space considered. For some models such as the
SEIpIsIaR, the number of states able to be removed from consideration is
limited and so truncation doesn’t have as large an effect. Although, the
combination of the SMC and exact methodologies with Q matrix truncation
could result in a Hybrid algorithm that is feasible efficiency for analysis and
greatly reduces the estimator variance compared to SMC.
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Appendix

We provide detailed summaries of the ships, passengers and outbreaks that
constitute the 1918 pandemic ship data, collated from Cumpston [20]. There
are 15 ships in total:

(1) Niagara (9) Nestor

(2) Mataram (10) Ceramic

(3) Devon (11) Lancashire

(4) Marathon (12) Kenilworth Castle

(5) Atua (13) Orca

(6) Manuka (14) Kashmir

(7) Medic (15) Euripides

(8) Boonah

A summary table of the ships is given in Chapter 4. Here, within each
summary is a brief description of (where available): ship dimensions, travel
route and reason for travel, population breakdown, case breakdown, sum-
mary of quarantine measures implemented, full timeline of epidemic includ-
ing arrival/departure/quarantine dates, and any other relevant miscellaneous
information. Note, all blue writing denotes modelling assumptions made or
adjudicated inconsistencies in the records. All dates refer to September -
December 1918, and January - April 1919.
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Niagara

Ship Information

The Niagara was an Australian trading vessel measuring 160m by 20m [76].
It travelled from Vancouver (Canada) to Honolulu (USA), Suva (Fiji), Auck-
land (New Zealand) before arriving into quarantine in Sydney (Australia).
It brought on the influenza virus in Vancouver.

Passenger Breakdown

The passengers aboard the vessel totalled 566, broken down in Table A.1.

Crew Number

Officers 9

Engineers 15

Deck Workers 46

Engine Workers 26

Providers 158

Total 254

Passengers Number

First Class 153

Troops 106

Total 312

Table A.1: Niagara passenger record.

Case Breakdown

There was a total of 156 cases out of the 566 personal, broken down by group
in Table A.2.

Crew Number

Stewards 94

Deck Workers 26

Engine Workers 25

Total 145

Passengers Number

Saloon 7

Second class 4

Third class 0

Total 11

Table A.2: Niagara case record.

There was also a large number of crew with mild cases who continued
to work but with no record of infection. Assume these are asymptomatic
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infections. The infection began in the “after peak” (back end) section of
the ship with 14 out of 16 becoming infected within 7 days. Afterwards the
infection spread up through the ship, infecting crew/passengers in different
sections. During the stay in Auckland, the ship captain brought on board
a doctor, 4 nurses and a dispenser and attempted to isolate all cases to
section of ship. Assume standard transmission rate. After implementing
these measures the epidemic “practically ceased” after 9 days (when the ship
departed Auckland). No record of epidemic decline or last case. Discussion
states 45 cases took place in Auckland. The Niagara entered quarantine in
Sydney on November 13. Upon entry to Sydney, there were 4 ongoing cases
on board that had occurred since leaving Auckland. There were 5 deaths as
a result of influenza. Three crew members died on Oct 13, Oct 21 and Nov
11. One nurse and one passenger died in Auckland.

Ship Source
Arrival
Date

Days
at sea

Cases
before
arrival

Cases
after

arrival Deaths Crew Troop Total

Niagara Canada Oct 25 30 155 1 5 254 312 566

Table A.3: Niagara summary table.

Timeline Information

Sep 24 Niagara departs Vancouver. Between Sep 19 - 24, an individual
brings infection on board as Exposed class.

Sep 27 Crew member taken ill with “severe cold” and goes off duty. Later
confirmed to be influenza. First observed case.

Sep 30 Arrives in Honolulu. Assume no infection brought on board.

Oct 1 Departs Honolulu.

Oct 2 Two cases observed. Ship surgeon diagnosis “Feverish cold”. Note,
these men shared same quarters as first case.

Oct 3 Men from the same ship section as previous cases became infected.
7 men came down with disease in morning and by afternoon, 14 out
of 16 men from section came down with disease. As 3 cases prior, 11
cases observed on this day.

Oct 4 - 8 Infection spreads to midship peak and forward to stewards and
sailors. From there to the firemen further forward on the lower deck.
No information on timing of these cases. At some point Captain agreed
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with surgeon and doctors to isolate worst cases to hospital and in quar-
ters on bridge deck, but was quickly made redundant by large number
of cases. Assume standard rate of infection.

Oct 9 Arrives and Departs Suva. 70 crew members were down with disease.
Assumes 70 cases observed so far. Too many cases on ship so isolation
was infeasible.

Oct 11 103 cases so far. Day of first passenger cases as disease moves up
ship. No numbers or details.

Oct 12 Arrives in Auckland. 110 cases so far. Discussion states 110 cases
occurred between Oct 2 - 12 This ignores the first case. Assume 110
includes first case. 29 cases landed into Auckland hospital. Land 29
infected individuals. Captain attempted isolation of patients not sent to
hospital by boarding off section of ship. Also brought on board a doctor
and 5 nurses. A nurse became sick after a few days and was replaced.
Assume standard rate of infection during this time. Discussion says
isolation was not complete and termination of epidemic wasn’t due to
an external force.

Oct 21 After 9 days epidemic has “practically ceased”. No information if
last case occurred in Auckland or on route to Sydney in appendix.
Discussion states 45 cases occurred between Oct 12 - 21. Assume 155
cases so far. Departs Auckland. On board: 280 crew and 312 pas-
sengers (592 total) after taking on board 103 passengers in Auckland.
Note, 10 individuals were too ill to rejoin the ship after hospital and
one died. Hence, permanently landed 29 - 11 = 18 at Auckland. Ignore
population size comment and rejoined convalescent as numbers are not
consistent. E.g. Prior to arrival 254+312=566, landed 18 = 548, take
103 on board = 651.

Oct 25 Arrives in Sydney. States 155 cases in total. One other case recorded
after quarantine. Assume the 45 cases difference take place in Auckland
consistent with Chapter 2 discussion. Arrives in quarantine with 4
cases on board. Begin quarantine transmission rate and remove cases
at onset.

Oct 27 Last case observed. End of cases.

Oct 28 Healthy individuals released from quarantine station. No new ob-
served cases on the 28th. End of data.
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Mataram

Ship Information

The Mataram was an Australian trading vessel measuring 102m by 13m [35].
The ship travelled from Singapore (Singapore), where it brought on board the
the influenza virus, to Samarang (Indonesia) and then to Darwin (Australia).

Passengers Information

The passengers aboard the vessel totalled 189, broken down in Table A.4.

Crew Number

Officers 15

Engine Workers 29

Deck Workers 21

Providers 23

Total 88

Passengers Number

First Class 42

Second Class 43

Third class 16

Total 101

Table A.4: Mataram passenger record.
Case Information

There was a total of 61 cases out of the 189 personal, broken down by group
in Table A.5.

Crew Number Cases Percentage

Malay sailors 21 11 52%

Indian firemen 29 20 69%

Chinese stewards 22 10 45%

European stewardess 1 1 100%

European officers 15 9 60%

Total 88 51 58%

Passengers Number Cases Percentage

Saloon 42 7 17%

Second class 43 0 0%

Deck 16 1 6%

Total 101 8 8%

Table A.5: Mataram case record.
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The Mataram entered quarantine in Darwin on Oct 18. Some individuals
suspected to have had suffered influenza prior to embarking, due to heavy
prevalence in Singapore. The prior immunity is thought to have contributed
to the small number of cases, but this is not fully supported by the dis-
tribution of cases by crew origins. Although, no newly-shipped Singapore
men or Greek steerage passengers were infected; they had all had the disease
previously. After leaving Darwin, daily inspection and zinc-sulphate inhala-
tion was undertaken and only 2 further cases appeared. Discussion says 6
cases on arrival to Sydney. Assume includes 4 previously observed cases from
prior to Darwin. The quarantine measures were thought to have been just a
contributing factor as most cases were already convalescent upon arrival to
Darwin. Due to wide spread of disease, any susceptible was more than likely
already exposed.

Ship Source
Arrival
Date

Days
at sea

Cases
before
arrival

Cases
after

arrival Deaths Crew Troop Total

Mataram Singapore Oct 18 9 59 2 0 88 101 189

Table A.6: Mataram summary table.

Timeline Information

Oct 9 Mataram departs Singapore. Between Oct 4 - 9, an individual brings
infection on board as Exposed class.

Oct 10 First 3 cases observed amongst Malay crew (living in front section
of ship).

Oct 11 2 cases observed.

Oct 12 One more case before arrival to Samarang. Assume occurs on 12th.

Oct 13 Arrives in Samarang. Unknown departure time. Assume no infec-
tion brought on board.

Oct 14 Infection breaks out amongst engine-room staff (living in back sec-
tion of ship). No information detailing outbreak.

Oct 18 Arrives in Darwin. 59 cases have occurred prior to arrival. Enters
quarantine. Begin quarantine transmission rate. End of Data. (Trun-
cated due to no landing information and inconsistent cases.)

Nov 1 Arrives in Sydney with 56 crew and 55 passengers. No details of
personal landing to account for change in passenger numbers. Arrives
with 6 cases. Discussion states only 2 more cases after reaching Darwin.
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Devon

Ship Information

The Devon was an New Zealand transport vessel measuring 144m by 18m
[35]. On voyage back from London (England), the Devon stopped at Port
Said (Egypt), Suez (Egypt) and Colombo (Sri Lanka) before arriving in Fre-
mantle (Australia). It brought on board the influenza virus in Suez.

Passengers Information

The passengers aboard the vessel totalled 1,096, broken down in Table A.7.

Crew Number

Total 110

Passengers Number

First Class 62

Second Class (Troops) 829

Third Class (Troops) 829

Total 986

Table A.7: Devon passenger record.

Case Information

There was a total of 95 cases out of the 1,096 personal, broken down in Table
A.8.

Personnel Number Cases Percentage

Crew 110 14 12%

First Class Passengers 0 0 0%

Troops 920 81 8.8%

Total 1096 95 8.7%

Table A.8: Devon case record.

Ship Source
Arrival
Date

Days
at sea

Cases
before
arrival

Cases
after

arrival Deaths Crew Troop Total

Devon Egypt Nov 15 36 95 0 0 986 110 1,096

Table A.9: Devon summary table.
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Timeline Information

Oct 10 Devon departs Port Said after embarking troops.

Oct 10 Arrives in Suez.

Oct 13 Departs Suez. Between Oct 10 - 13, an individual brings infection
on board as Exposed class.

Oct 14 First 2 (troop) cases observed.

Oct 16 Large spike as 22 observed. Unrealistic spike in cases likely caused
by observation error. Smooth 22 cases over day prior. Condition on
24 cases in 2 days. No information about data collection. Assume first
day of close monitoring caused previous cases to be recorded.

Oct 19 First (crew) case observed.

Oct 29 Arrives in Colombo. Assume no introduced infection.

Nov 1 Departs Colombo.

Nov 2 Last (crew) case.

Nov 7 Last (troop) case. End of cases.

Nov 15 Arrives in Fremantle. No new observed cases up to this date. End
of data.

Marathon

Ship Information

The Marathon was an Australian transport vessel measuring 154m by 17m
[76]. The Marathon landed at Devonport (England), where the influenza
virus was bought on board, before travelling to Cape Town (South Africa)
and onto Albany (Australia) and Melbourne (Australia).

Passengers Information

The passengers aboard the vessel totalled 1,041, with 920 troops and 121
crew.
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Case Information

There was a total of 89 cases out of the 1,041 personal. The Marathon
arrived at Devonport and embarked troops on Oct 20. Prior to arrival,
there had been an influenza outbreak amongst the crew. These cases are
not recorded and outbreak ceased prior to arrival. Previous cases ignored.
This caused caused the departure date to be pushed to Nov 7. During this
time, the infection broke out amongst the military personal. As the virus was
already on board, infection was likely introduced to the embarking troops.
The cases were observed from Oct 21 to Nov 1, so the last case occurred
before leaving Devonport. The captain had attempted isolation of cases, but
due to inadequate facilities, the isolation area was still commonly used by
healthy individuals. Assume standard transmission rate. On Oct 28, twice
daily spraying of formaldehyde was conducted amongst troops until arrival
to Capetown. Assume quarantine transmission rate. This is thought to have
stopped the spread of infection. The Marathon entered quarantine in Albany
on November 13.

Ship Source
Arrival
Date

Days
at sea

Cases
before
arrival

Cases
after

arrival Deaths Crew Troop Total

Marathon England Dec 23 65 89 0 4 920 121 1,041

Table A.10: Marathon summary table.

Timeline Information

Oct 20 Marathon enters Devonport. Troops are embarked. As only troop
cases reported, use troop population. One case on Oct 20 to support
total case number.

Oct 21 First recorded case. Between the Oct 15 - 20, an individual brings
infection on board as Exposed class. Extend due to possible influenza
virus on board prior to embarking troops.

Oct 28 Begin formaldehyde spray. Begin quarantine transmission rate (unique
to other ships due to formaldehyde treatment).

Nov 1 Last case. End of cases.

Nov 17 Departs Devonport. No new observed cases up to this date. End
of data.
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Atua

Ship Information

The Atua was an New Zealand transport vessel 97m by 13m [76]. The Atua
left Suva (Fiji) before calling into Auckland (New Zealand) on way to Sydney
(Australia). It brought on the influenza virus in Auckland.

Passengers Information

The passengers aboard the vessel totalled 163, broken down in Table A.11.

Crew Number

Officers 7

Engineers 6

Deck Workers 13

Engine Workers 20

Providers 31

Total 77

Passengers Number

First Class 67

Troops 19

Total 86

Table A.11: Atua passenger record.

Case Information

There was a total of 88 cases out of the 163 personal, broken down in Table
A.12. Data shows 91 cases.

Personnel Number Cases Percentage

Crew 77 56 72%

Passengers 86 32 37%

Total 163 88 54%

Table A.12: Atua case record.

The first case occurred the day after leaving Auckland. Upon arrival
arrives to Sydney with 54/77 crew and 8/86 passengers “suffering from most
virulent type of influenza”. Assume 54+8 = 62 cases so far. The Atua
entered quarantine in Sydney on Nov 8. The cases could be broken down by
severity upon entering quarantine in Table A.13.
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Crew Number

Dangerously ill 10

Seriously ill 13

Ill (but trying to work) 13

Convalescent 18

Well 23

Total 77

Passengers Number

Dangerously ill 4

Seriously ill 4

Convalescent 15

Doubtful 1 (later confirmed.)

Well 55

Total 79 (86.)

Table A.13: Atua case severity breakdown.

After entering Sydney, all sick were removed to hospital and everyone
else removed to isolation on the shore. Land all 62 cases that have taken
place so far. Further cases continued to occur in isolation. The last case
on Nov 22 can be ignored due to extended period since last infection and
likely transmission from quarantine station staff. 29 cases take place after
quarantine, 91 cases in all. This was the first cases where the Commonwealth
coryza vaccine was first tried with successful results.

Ship Source
Arrival
Date

Days
at sea

Cases
before
arrival

Cases
after

arrival Deaths Crew Troop Total

Atua New Zealand Nov 8 6 62 26 16 77 86 163

Table A.14: Atua summary table.

Timeline Information

Oct 26 Atua departs Suez.

Oct 31 Arrives in Auckland.

Nov 2 Departs Auckland. Between the Oct 31 - Nov 2, an individual brings
infection on board as Exposed class.

Nov 3 First case observed.

Nov 8 Arrives in Sydney. 62 total cases have occurred by this time. Sick
landed to hospital. Healthy landed to isolation on shore. Land 62
infected individuals. Begin quarantine transmission rate. Remove cases
at onset.

Nov 22 1 cases observed. End of Cases. End of data.
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Manuka

Ship Information

The Manuka was an New Zealand transport vessel measuring 112m by 14m
[35]. It travelled from Wellington (New Zealand), where it brought the in-
fluenza virus on board, to Sydney (Australia).

Passengers Information

The passengers aboard the vessel totalled 203, broken down in Table A.15.

Crew Number

Officers 7

Engineers 7

Deck Workers 13

Engine Workers 27

Providers 41

Total 95

Passengers Number

First Class 63

Second Class 45

Total 108

Table A.15: Manuka passenger record.

Case Information

There was a total of 42 cases out of the 203 personal, with 32 crew and 9
passengers cases. The date of the first case is unknown but occurred between
the Nov 7 - 10. The Manuka entered quarantine in Sydney on November 13.
Upon entry into quarantine all sick were isolated to cabins with stewards due
to the quarantine station being occupied. Assume quarantine transmission
rate. All patients were landed by Nov 15. Land all cases to date on this day.
These patients and 10 healthy passengers were inoculated with the Common-
wealth coryza vaccine before supply ran out.

Ship Source
Arrival
Date

Days
at sea

Cases
before
arrival

Cases
after

arrival Deaths Crew Troop Total

Manuka New Zealand Nov 13 6 23 19 1 95 108 203

Table A.16: Manuka summary table.
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Timeline Information

Nov 7 Medic departs Wellington. Between the Nov 2 - 7, an individual
brings infection on board as Exposed class.

Nov 13 Arrives in Sydney. 23 cases on board. No date of first infection.
First observation.

Nov 15 4 observed cases. All cases landed. Land all infected individuals.
Remove cases at onset.

Nov 21 3 new cases amongst contacts on quarantine station. Ignored. 0
observed cases. End of cases.

Nov 26 Ship released with healthy contacts. No new observed cases up to
this date. End of data.

Medic

Ship Information

The Medic was an Australian transport vessel measuring 174m by 19m [35].
It travelled from Sydney (Australia) to Wellington (New Zealand), where it
brought on board the influenza virus, before returning to Sydney.

Passengers Information

The passengers aboard the vessel totalled 989, broken down in Table A.17.

Crew Number

Officers 10

Engineers 8

Deck Workers 36

Engine Workers 41

Providers 61

Total 156

Passengers Number

First Class 4

Troops 829

Total 833

Table A.17: Medic passenger record.

Case Information

There was a total of 313 cases out of the 989 personal, broken down in Table
A.18.
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Personnel Number Cases Percentage

Crew 156 52 33%

Passengers 4 4 100%

Australian Troops 670 166 24%

Italian Troops 159 91 57%

Total 989 313 32%

Table A.18: Medic case record.

The Medic entered quarantine in Sydney on Nov 13. The Medic began
using inhalation of zinc-sulphate on Dec 3, after the epidemic was in decline
and until extinction. Inoculation of troops was carried out on Nov 21. Isola-
tion of cases to shore began on Nov 21 and was completed on Nov 27. After
this date all new cases are removed at onset.

Ship Source
Arrival
Date

Days
at sea

Cases
before
arrival

Cases
after

arrival Deaths Crew Troop Total

Medic New Zealand Nov 21 10 203 103 22 833 156 989

Table A.19: Medic summary table.

Timeline Information

Nov 2 Medic departs Sydney.

Nov 7 Arrives in Wellington. Between the Nov 7 - 11, an individual brings
infection on board as Exposed class.

Nov 11 Departs Wellington. First 2 cases observed.

Nov 15 Arrives back at Wellington. No communication between shore and
ship. Assume no infection brought onboard.

Nov 16 Departs Wellington.

Nov 21 Enters Sydney Head (Quarantine zone). Every person aboard ship
inoculated. Begin quarantine transmission rate. 32 cot cases and 50
mild cases from troops landed into Quarantine hospital. Land 82 in-
fected individuals.

Nov 22 24 cases observed + 11 (Italian) cases found later to occur on this
day. Data records 35 cases. 14 cot cases and 43 mild cases landed to
quarantine hospital. Land 57 infected individuals.
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Nov 23 36 cases observed. 26 troops + 8 Italians = 34 landed. Land 34
healthy individuals.

Nov 24 8 observed cases. 151 Italians landed (8 remaining Italians previ-
ously landed). Land 151 healthy individuals.

Nov 25 11 observed cases. 38 cot cases landed. Land 38 infected individuals

Nov 27 108 cases landed. Land 108 infected individuals. End of landing
period. 293 cases observed so far, but 285 cases landed. Some infected
individuals still on board. Begin post-landing period of immediate
landing of cases at onset. Remove cases at onset.

Nov 30 2nd round of inoculations. 128 troops left on ship. 128 remaining
troops inconsistent with data. Assuming referring to only Australian
troops then original 670 - 285 total cases landed - 185 troops landed
(including Italians) - 6 cases landed at onset = 194 remaining. Ignore
this comment and allow other data to determine remaining individuals.
End of data. (Truncated to avoid unknown numbers of troops on board
and inoculations altering the transmission rate.)

Dec 3 Begin zinc-sulphate inhalation.

Dec 4-11 Healthy crew and troops released as 7 days with no new cases.

Dec 12 - 20 A series of observed cases amongst troops onshore. Unclear if
within troops at quarantine hospital or released troops developing after
7 day period.

Boonah

Ship Information

The Boonah was an Australian transport vessel measuring 138m by 18m [35].
Originally from Adelaide (Australia), it travelled from Fremantle (Australia)
to Durban (South Africa), where it brought on board the influenza virus. It
returned to Fremantle and underwent maritime quarantine measures, before
journeying to Albany (Australia) and then back to Adelaide. Note, struc-
ture of the vessel did not allow for isolation between different sections or
companies.
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Passengers Information

The passengers aboard the vessel totalled 164 crew and 931 troops, total 1095.
The state-of-origin distribution of the troops was recorded and compared to
the distribution amongst cases in Table A.20. The uniform distribution of
cases supports no latent immunity by region. Upon landing in Durban, no
passengers was allowed on shore due to the influenza outbreak on land. 15
men escaped but were not allowed back on board. Some local naval officers
were allowed on board, along with a large number of natives who restocked
the coal and mixed with the troops. First case outbreak amongst troops.

VIC SA NSW WA

Onboard distribution 40% 22% 19% 19%

Cases distribution 43% 23% 18% 16%

Table A.20: Boonah passenger origin record.

Case Information

There was a total of 470 cases out of the 1095 personal, broken down by
group in Table A.21. Only have data of 433 troop infections. Use troop
population and troop cases. Ignore crew infections.

Personnel Number Cases Percentage

Crew 164 37 22%

Troops 931 433 47%

Total 1095 470 43%

Table A.21: Boonah Case Record

Preventative measures were attempted early into outbreak, an unspecified
number of days after leaving Durban. These include; use of zinc-sulphate
inhalation chambers, thermometer parades individuals suffering headaches
or sore throats. Also, some areas were attempted to be implemented as
isolations areas, with little success in effective isolation. Assume standard
transmission rate. The Boonah entered quarantine in Fremantle on Dec11.
Assume quarantine transmission rate. Inoculation of troops was carried out
on Dec 11, well after the peak of the outbreak. Landing of cases to shore
began on Dec 11 and was completed on Dec 13. As ship later leaves for
Albany then Adelaide, there are multiple landing periods. New cases are
removed at onset where specified.
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Ship Source
Arrival
Date

Days
at sea

Cases
before
arrival

Cases
after

arrival Deaths Crew Troop Total

Boonah South Africa Dec 11 17 298 172 18 931 164 1095

Table A.22: Boonah summary table.

Timeline Information

Oct 29 Departs Fremantle.

Nov 16 Arrives in Durban.

Nov 24 Departs Durban. Between Nov 16 - 24, an individual brings infec-
tion on board as Exposed class.

Nov 29 Three cases observed. First observed cases.

Nov 30 - Dec 10 Epidemic builds to peak.

Dec 11 Arrives in Fremantle. Enters Quarantine with 298 cases on board.
Troops aboard ship inoculated. Begin quarantine transmission rate.
150 patients landed to Fremantle quarantine station. Land 150 infected
individuals. 29 new cases.

Dec 12 86 patients landed to Fremantle quarantine station. Land 86 in-
fected individuals. 25 new cases.

Dec 13 Total cases at Fremantle 303. Removal of cases completed. Land
remaining infected individuals. 150 + 86 = 236 cases landed previously,
so 303 - 236 = 67 infected individuals landed on this day. Remove cases
at onset until departure Fremantle. 13 new cases.

Dec 14 9 new cases.

Dec 15 8 new cases on ship.

Dec 16 7 new cases on ship and ashore. Ship and shore location of troops
treated identically. Record in data as 9, 8 and 7 troop cases respectively.

Dec 17 4 new cases.

Dec 18 2 new cases.



136 Appendix A. Appendix

Dec 19 No new cases. End of data. (Truncated to avoid ship leaving in
quarantine with unknown population and future inconsistencies.)

Dec 20 No new cases. Departed for Albany. Convalescent healthy crew
returned to ship. Contradiction with data; 2 new cases recorded and
inconsistent population size after landing. See Dec 22 “Arrives in Al-
bany with 434 troops and 86 crew”. Troop population - total cases up
to leaving Fremantle = 931 - 397 = 534.

Dec 22 Arrives in Albany with 434 troops and 86 crew. 4 cases landed.

Dec 24 2 new cases in Fremantle. Ignore Fremantle cases. 7 cases are
recorded in data.

Dec 25 1 new case. Not recorded in data. Departs Albany for Adelaide
with 427 troops and 86 crew. Difference between arrival and departure
populations shows 7 troops have been landed and left in Albany. Two
new cases on Boonah.

Dec 28 1 new case on Boonah. Arrives in Adelaide with 14 new cases since
Albany (13 troops, 1 crew). These cases landed upon arrival. 13 cases
recorded on journey from Albany to Adelaide..

Dec 29 2 new cases discovered and removed at onset. All remaining troops
landed into camp on Torrens Island, and new cases sent to hospital.

Dec 30 - Jan 7 Some new cases amongst troops at camp. Not recorded in
data. End of Outbreak.

Nestor

Ship Information

The Nestor was an Australian vessel, approximately 175m by 20m, trading
between the England and Australia [35]. The ship left London (England)
before stopping at Post Said (Egypt), Suez (Egypt), Colombo (Sri Lanka)
before arriving in Albany (Australia). The ship was quarantined in Albany
for 3 days before travelling to Melbourne (Australia). It brought on board
the influenza virus in London.

Passengers Information

The Nestor left London with 176 crew and 1,727 passengers for a total of
1,903 personal. The personal aboard were broken down in Table A.23.
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Crew Number

Officers 8

Engineers 10

Deck Workers 36

Engine Workers 64

Providers 58

Total 176

Passengers Number

First Class 103

Second Class 78

Third Class 1,546

Total 1,727

Table A.23: Nestor passenger record.

All troops had received one dose of influenza vaccine prior to leaving
England. Some received two and those who hadn’t were administered a
second one on commencement of the voyage.

Case Information

There was a total of 69 cases out of the 1,903 personal. No information
regarding if crew or troop infections. The Nestor entered quarantine on Jan
18. Assume quarantine transmission rate. Use unique λ to account for prior
inoculation. For a period of 3 days, zinc-sulphate inhalation and thermometer
parades were conducted on the passengers. During this time 192 troops were
landed. The vessel was granted leave after these 3 days on Jan 20, when it
left for Melbourne. Upon landing in Melbourne, the vessel was quarantined
for a further 7 days with zinc-sulphate inhalation and thermometer parades.

Ship Source
Arrival
Date

Days
at sea

Cases
before
arrival

Cases
after

arrival Deaths Troop Crew Total

Nestor England Jan 18 37 69 0 0 833 1,727 1,903

Table A.24: Nestor summary table.

Timeline Information

Dec 12 Medic departs London. First case observed. Between Dec 7 - 12,
an individual brings infection on board as Exposed class.

Dec 23 Arrives and departs from Port Said. Assume no infection intro-
duced.

Dec 24 Arrives in Suez. Assume no infection introduced.

Dec 25 Departs Suez.
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Jan 5 Arrives in Colombo. Assume no infection introduced. Two passengers
taken on board. Assume to be susceptible.

Jan 7 Departs Colombo.

Jan 18 - 20 Arrives in Albany. Enters Quarantine. Begin quarantine trans-
mission rate. Begin landing of 192 troops. No information of healthy
or infected, assume healthy. Unspecified landing dates. Landed 192
healthy individuals on Jan 20.

Jan 20 - 24 Journeys to Melbourne. Continue quarantine transmission rate.

Jan 24 Arrives in Melbourne. Enters quarantines. Last Cases. Continue
quarantine transmission rate. Remove cases at onset.

Jan 30 Detained in quarantine for 7 days. No new cases. No new observed
cases over next 7 days. End of data.

Ceramic

Ship Information

The Ceramic was an Australian transport vessel measuring 200m by 21m
[73]. It left London (England), stopped at Devonport (England), Port Said
(Egypt), Suez (Egypt), Colombo (Sri Lanka), then arrived into quarantine
in Albany (Australia). After quarantine, the ship sailed to Melbourne via
Adelaide and Hobart. It brought on board the influenza virus in London or
Devonport.

Passengers Information

The Ceramic left London with 246 crew and 2,115 troops, for total of 2361
passengers.

Case Information

There was a total of 194 cases out of the 2361 personal. No information
regarding if crew or troop infections. The first case was recorded the day
leaving Devonport and by arrival to Port Said (10 days later) there was 99
cases on board. 33 cases were disembarked at Port Said and 20 at Suez.
Of these cases, 41 occurred post-entry to quarantine. Preventative measures
were attempted early into outbreak, an unspecified number of days after
leaving Durban. These include; use of zinc-sulphate inhalation chambers,
thermometer parades of headache or sore throat symptomatic individuals.
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Also, some areas were attempted to be implemented as isolations areas to
little success. Assume standard transmission rate. Two secondary cases
developed at Albany (one nurse and one soldier).

Ship Source
Arrival
Date

Days
at sea

Cases
before
arrival

Cases
after

arrival Deaths Troop Crew Total

Ceramic England Mar 3 39 90 41 2 2,115 246 2,361

Table A.25: Ceramic summary table.

Timeline Information

Jan 22 Departs London.

Jan 23 Arrives in Devonport.

Jan 26 Departs Devonport. First observed case. Between Jan 21 - 26, an
individual brings infection on board as Exposed class.

Feb 3 Arrives in Port Said. 33 cases landed during stay. Land 33 infected
individuals. Assume landed on last day (5th). Assume no infection
introduced.

Feb 5 Departs Port Said. Arrives in Suez. 20 cases landed during stay. Land
20 infected individuals. Assume landed on last day (9th). Assume no
infection introduced.

Feb 9 Departs Suez.

Feb 18 Arrives in Colombo. Assume no infection introduced.

Feb 20 Departs Colombo.

Mar 3 Arrives in Albany. All Western Australians troops and 13 cases
landed. Land 96 healthy and 13 infected individuals.

Mar 6 Arrives in Adelaide. 6 cases landed. 183 healthy south Australian
troops landed. Land 183 healthy and 6 infected individuals.

Mar 8 Departs Adelaide.

Mar 9 Last case. End of cases..
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Mar 11 Arrives in and Departs Hobart. Arrives with 246 crew and 1763
troops. Use to match number of troops landed; → 183 Western Aus-
tralian troops landed. 9 cases landed at Hobart with onset dates. Land
9 infected individuals. No new observed cases between Mar 9 - 11. End
of data. (Truncation due to unclear population aboard ship).

Mar 12 Arrives in Melbourne. 4 cases, 13 convalescents and 719 troops
landed. First cases occur on Mar 16 (1) and Mar 17 (3), Not recorded.
Population distribution and origin of cases unclear.

Lancashire

Ship Information

The Lancashire was an Australian transport vessel, approximately the same
size as the Marathon (154m by 17m) [20, 76]. It travelled from Devonport
(England) to Post Said (Egypt), Suez (Egypt), Colombo (Sri Lanka) before
arriving in Fremantle (Australia). After Fremantle, it travelled to Adelaide,
Hobart, Melbourne, Sydney and then Brisbane. It is thought to have brought
on board the influenza virus in Devonport.

Passengers Information

The passengers aboard the vessel totalled 1,643, with 1,465 troops and 178
crew.

Case Information

There was a total of 53 cases out of the 1,643 personal. The Lancashire
entered quarantine in Fremantle on Mar 14.

Ship Source
Arrival
Date

Days
at sea

Cases
before
arrival

Cases
after

arrival Deaths Crew Troop Total

Lancashire England Mar 14 34 53 0 0 1465 178 1643

Table A.26: Lancashire summary table.

Timeline Information

Feb 7 First 5 cases. Sent ashore before sailing from Devonport. Between
Feb 2 - 7, an individual brings infection on board as Exposed class.
Observe 5 cases on this day. Land 5 infected individuals at end of day.
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Feb 8 Lancashire departs Devonport.

Feb 17 Arrives in Port Said. Assume no infection brought on board.

Feb 18 Departs Port Said.

Feb 19 Arrives and Departs from Suez. Assume no infection brought on
board.

Mar 1 Arrives in Colombo. Assume no infection brought on board.

Mar 3 Depart Colombo.

Mar 14 Arrives in Fremantle. Landed 132 healthy troops. Last observed
case. Left same day. Begin quarantine transmission rate. Land 132
healthy individuals. End of cases.

Mar 19 Arrives in Adelaide. Land one case. Land one infected individual.
No new observed cases between Mar 14 - 19. End of data.

Mar 22 Arrives in Hobart. Landed 46 unknown. Also landed one case.

Mar 24 Arrives in Melbourne with 176 crew, 1159 passengers.

Mar 15-29 Further travel around Australia with no new cases (2 suspected
found to not be influenza).

Kenilworth Castle

Ship Information

The Kenilworth Castle was an Australian transport vessel measuring 174m
by 19m [65]. It travelled from Liverpool (England), where it brought on
board the influenza virus, to Albany passing through Madeira (Portugal),
Cape Town (South Africa) and Durban (South Africa).

Passengers Information

The passengers aboard the vessel totalled 831 with 326 crew and 505 passen-
gers.



142 Appendix A. Appendix

Case Information

There was a total of 29 cases out of the 831 personal. Cases were amongst
the passengers and the crew was not affected. Use passenger population size.
The Kenilworth Castle entered quarantine in Sydney on April 1.

Ship Source
Arrival
Date

Days
at sea

Cases
before
arrival

Cases
after

arrival Deaths Crew Total

Kenilworth Castle England Apr 1 46 29 0 0 326 505 831

Table A.27: Kenilworth Castle summary table.

Timeline Information

Feb 14 Kenilworth Castle departs Liverpool. Between Feb 14 - 9, an indi-
vidual brings infection on board as Exposed class.

Feb 15 First 4 cases observed.

Feb 19 Arrives and departs Madeira. 2 cases observed. Assume no infection
brought on board.

Mar 5 Arrives at Cape Town with 29 cases having occurred. 27 cases
landed. Data shows 24 cases taken place so far. The 26th and fi-
nal cases is observed on Mar 10. Assume landed 26 cases on Mar 10.
The ship enters quarantine for 5 days. Assume no infection brought on
board. Unknown quarantine measures in Cape Town. Assume stan-
dard transmission rate.

Mar 10 Last case observed. Land 26 infected individuals. End of cases.

Mar 12 Departs Cape Town.

Mar 15 - 18 Arrives in Durban.

Apr 1 Arrives in Albany. No new observed cases up to this date. End of
data.

Orca

Ship Information

The Orca was an Australian transport vessel measuring 174m by 20m [73].
It brought on board the influenza virus in Liverpool (England) before travel-
ling to Cape Town (South Africa), then Adelaide (Australia) and Melbourne
(Australia).
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Passengers Information

The passengers aboard the vessel totalled 1698, with 209 crew and 1489
troops.

Case Information

There was a total of 48 cases out of the 1698 personal. The Orca entered
quarantine in Adelaide on Mar 29. The last case was observed the day before
arrival into Adelaide.

Ship Source
Arrival
Date

Days
at sea

Cases
before
arrival

Cases
after

arrival Deaths Troop Crew Total

Orca England Mar 29 19 48 0 0 1489 209 1698

Table A.28: Orca summary table.

Timeline Information

Feb 19 Orca departs Liverpool.

Feb 20 First cases. Between the Feb 15 - 19, an individual brings infection
on board as Exposed class.

Mar 10 Arrives in Cape Town. Assume no infection brought on board.

Mar 12 Departs Cape Town.

Mar 28 Last case. End of cases.

Mar 29 Arrives in Adelaide. Land 155 troops, include 4 cases and one crew
case. Land 151 healthy and 4 infected individuals.

Mar 30 Departs Adelaide.

Mar 31 Arrives in Melbourne. Land 484 non-specified troops at quarantine
station. Assume healthy troops. Land 484 healthy individuals. No
new observed cases up to arrival in Melbourne. End of Data. Some
time later ship arrives into Sydney with remaining passengers. No cases
upon arrival to Sydney and no further cases.
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Kashmir

Ship Information

The Kashmir was an Australian transport vessel measuring 146m by 18m
[76]. After bringing on board the influenza virus in Southhampton (England),
it travelled via Cape Town (South Africa) to Adelaide (Australia) before
reaching Hobart (Australia).

Passengers Information

The passengers aboard the vessel totalled 1500, 1281 troops and 219 crew.

Case Information

There was a total of 97 cases out of the 1500 personal. The Kashmir entered
quarantine in Adelaide on April 17.

Ship Source
Arrival
Date

Days
at sea

Cases
before
arrival

Cases
after

arrival Deaths Troop Crew Total

Kashmir England April 17 39 97 23 0 1281 219 1500

Table A.29: Kashmir summary table.

Timeline Information

Mar 9 Kashmir departs Southhampton.

Mar 12 First 5 cases. During Mar 7-9, an individual brings infection on
board as Exposed class.

Mar 28 Arrives in Cape Town. Assume no infection brought on board.

Mar 31 Departs Cape Town.

Apr 17 Arrives in Adelaide. Begin quarantine transmission rate. 22 cases
landed. Land 22 infected individuals. Assume landed on last day
(19th).

Apr 19 Departs Adelaide.

Apr 21 Arrives and Departs Hobart.

Apr 23 Last case. End of cases. End of data. Unknown time later arrives
in Melbourne.
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Euripides

Ship Information

The Euripides was an Australian transport vessel measuring 167m by 20m
[35]. After leaving London (the reported source-of-infection city) it vis-
ited Portland (Amsterdam), Port Said (Egypt), El Kantara (known as El-
Qantara, Egypt), Suez (Egypt), Colombo (Sri Lanka) before arriving in Fre-
mantle (Australia). After Fremantle it travelled to Adelaide, Hobart and
then Melbourne.

Passengers Information

The passengers aboard the vessel totalled 1323, 1132 troop and 191 crew.

Case Information

There was a total of 53 cases out of the 1323 personal. There was an un-
recorded first case the day after leaving London (Feb 28), which is why it
is the recorded source of infection, but no further cases appeared until after
leaving Egypt (left Suez on Mar 16) with next recorded case on Mar 17.
Hence, source of infection far more likely to be Egypt, due to to the 3 weeks
between observed cases. Assume Egypt is source of infection. The Euripides
entered quarantine in Fremantle on Apr 10.

Ship Source
Arrival
Date

Days
at sea

Cases
before
arrival

Cases
after

arrival Deaths Troop Crew Total

Euripides England Apr 10 42 53 0 0 1132 191 1323

Table A.30: Euripides summary table.

Timeline Information

Feb 27 Euripides departs London.

Feb 28 Arrives in Portland. Assume no infection brought on board. First
unrecorded case. Assume single case was not cause of outbreak. Case
ignored.

Mar 3 Departs Portland.

Mar 14 Arrives and departs Port Said. Possible infection brought on board.

Mar 15 Arrives El Kantara. Possible infection brought on board.
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Mar 16 Departs El Kantara. Arrives and departs Suez. Possible infection
brought on board.

Mar 17 First case recorded. Unknown if infection brought on board in Port
Said, El Kantara or Suez. During Mar 14 - 16, an individual brings
infection on board as Exposed class.

Mar 28 Arrives in Colombo. Assume no infection brought on board.

Mar 30 Departs Colombo. Assume no infection brought on board.

Apr 10 Arrives in Fremantle. Begin quarantine transmission rate.

Apr 14 Last case. End of cases.

Apr 15 Arrives in Adelaide.

Apr 18 Arrives in Hobart.

Apr 20 Arrives in Melbourne. Lands 357 into quarantine station. Land 357
healthy individuals. In quarantine until the Apr 25 with no new cases.
No new observed cases up to this date. End of data.
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