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Abstract

The development of multiscale computational methods is a key research area
in mathematics, physics, engineering and computer science. Engineers and
scientists often perform detailed microscale computational simulations of a
large scale complicated spatio-temporal system. For most problems of prac-
tical interest, there are two major complications in simulating the dynamical
behaviour on large macroscopic space-time scales. The first is the often
prohibitive computational cost when only a microscopic model is available.
The second complication is the memory constraints which often make the
simulation over the whole domain of interest infeasible. To overcome these
obstacles, the equation-free approach was proposed by Keverkidis and col-
leagues in 2000. This approach is a multiscale method for capturing the
behaviour on large scales of some complicated systems using only relatively
small bursts of the microscale models. The patch dynamics scheme was pro-
posed as an essential component of the equation-free framework. The patch
scheme promises a great saving in computation time by predicting the macro-
scopic dynamics using detailed microscopic computation only on relatively
small widely distributed patches of the spatial domain. This thesis provides
mathematical analysis and computational simulation of some basic atom dy-
namics on small patches. The most significant novel result of this research
is that patches with microscale periodic boundary conditions can be used to
efficiently predict macroscale properties of interest. This result is important
because microscale computations are often easiest with microscale periodic
boundary conditions. As a major test of the approach, we analyse, imple-
ment and evaluate such a scheme for a computationally intensive atomistic
simulation.

Chapter 1 of this dissertation introduces the challenge of multiscale prob-
lems and highlights some recent developments of multiscale methods for com-
plex systems. Chapter 2 explores atomistic simulations in three-dimensional
space. The microscale atomistic simulator is used to predict a macroscale
temperature field. This is achieved by performing atomistic simulation on
a small triply-periodic patch. The method uses locally averaged properties
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over small space-time scales to advance and predict relatively large space
scale dynamics. Our ultimate aim for this chapter is to explore the macro-
scopic properties of a system through atomistic simulation in small periodic
patches, but as a pilot study this thesis only considers one small patch cou-
pled over the macroscale to boundaries. The computation is implemented
only on the periodic patch, while over most of the domain we interpolate in
order to predict the macroscale temperature. The thesis develops appropri-
ate control terms to the microscale action regions of the patch. The control
is applied to the left and right action regions surrounding a core region.
A proportional controller dependent upon the relatively distant boundaries
enables reasonably accurate macroscale predictions. The analysis and com-
putational simulations indicate that this innovative patch scheme empowers
computation of large scale simulations of microscale systems.

Chapter 3 analyses the case of a one-dimensional microscale diffusion sys-
tem in a single microscale patch to predict the macroscale dynamics over a
comparatively large spatial region. The nature of the solutions of the patch
scheme is explored when operating with time-varying boundary conditions
that mimic coupling with neighbouring, dynamically varying patches. The
patch eigenfunctions and their adjoints form a biorthogonal basis to deter-
mine the spectral coefficients in formal series solutions. We also explore
this patch scheme with time delays in the communication of boundary val-
ues. This models a patch when information from the neighbouring patches
is subject to communication delays. The delayed patch scheme prediction is
compared with a scheme without delays to delineate when such delays are
significant.

Chapter 4 analyses diffusion dynamics on multiple coupled patches. Cen-
tre manifold theory supports the patch scheme. The patch coupling condi-
tions are standard Lagrange interpolation from the macroscale values at the
centre of surrounding patches to the boundaries of each patch. The results
of this chapter demonstrate the feasibility of the microscale patch scheme to
model diffusion over large spatial scales.

Chapter 5 extends the analysis to one-dimensional microscale advection-
diffusion dynamics in a single patch and for multiple patches. Eigenvalue
analysis suggests that a slow manifold exists on the macroscale. Computer al-
gebra constructs the slow manifold model for the advection-diffusion dynam-
ics. The long-time dynamics behaviour of numerical solutions on one patch is
compared with the prediction of the slow manifold. Comparisons among the
patch dynamics scheme, the microscale model over the complete domain, and
published experimental data determines regimes where the patch dynamics
accurately predicts the large scale advection-diffusion dynamics.
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