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Abstract

The development of multiscale computational methods is a key research area
in mathematics, physics, engineering and computer science. Engineers and
scientists often perform detailed microscale computational simulations of a
large scale complicated spatio-temporal system. For most problems of prac-
tical interest, there are two major complications in simulating the dynamical
behaviour on large macroscopic space-time scales. The first is the often
prohibitive computational cost when only a microscopic model is available.
The second complication is the memory constraints which often make the
simulation over the whole domain of interest infeasible. To overcome these
obstacles, the equation-free approach was proposed by Keverkidis and col-
leagues in 2000. This approach is a multiscale method for capturing the
behaviour on large scales of some complicated systems using only relatively
small bursts of the microscale models. The patch dynamics scheme was pro-
posed as an essential component of the equation-free framework. The patch
scheme promises a great saving in computation time by predicting the macro-
scopic dynamics using detailed microscopic computation only on relatively
small widely distributed patches of the spatial domain. This thesis provides
mathematical analysis and computational simulation of some basic atom dy-
namics on small patches. The most significant novel result of this research
is that patches with microscale periodic boundary conditions can be used to
efficiently predict macroscale properties of interest. This result is important
because microscale computations are often easiest with microscale periodic
boundary conditions. As a major test of the approach, we analyse, imple-
ment and evaluate such a scheme for a computationally intensive atomistic
simulation.

Chapter 1 of this dissertation introduces the challenge of multiscale prob-
lems and highlights some recent developments of multiscale methods for com-
plex systems. Chapter 2 explores atomistic simulations in three-dimensional
space. The microscale atomistic simulator is used to predict a macroscale
temperature field. This is achieved by performing atomistic simulation on
a small triply-periodic patch. The method uses locally averaged properties
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over small space-time scales to advance and predict relatively large space
scale dynamics. Our ultimate aim for this chapter is to explore the macro-
scopic properties of a system through atomistic simulation in small periodic
patches, but as a pilot study this thesis only considers one small patch cou-
pled over the macroscale to boundaries. The computation is implemented
only on the periodic patch, while over most of the domain we interpolate in
order to predict the macroscale temperature. The thesis develops appropri-
ate control terms to the microscale action regions of the patch. The control
is applied to the left and right action regions surrounding a core region.
A proportional controller dependent upon the relatively distant boundaries
enables reasonably accurate macroscale predictions. The analysis and com-
putational simulations indicate that this innovative patch scheme empowers
computation of large scale simulations of microscale systems.

Chapter 3 analyses the case of a one-dimensional microscale diffusion sys-
tem in a single microscale patch to predict the macroscale dynamics over a
comparatively large spatial region. The nature of the solutions of the patch
scheme is explored when operating with time-varying boundary conditions
that mimic coupling with neighbouring, dynamically varying patches. The
patch eigenfunctions and their adjoints form a biorthogonal basis to deter-
mine the spectral coefficients in formal series solutions. We also explore
this patch scheme with time delays in the communication of boundary val-
ues. This models a patch when information from the neighbouring patches
is subject to communication delays. The delayed patch scheme prediction is
compared with a scheme without delays to delineate when such delays are
significant.

Chapter 4 analyses diffusion dynamics on multiple coupled patches. Cen-
tre manifold theory supports the patch scheme. The patch coupling condi-
tions are standard Lagrange interpolation from the macroscale values at the
centre of surrounding patches to the boundaries of each patch. The results
of this chapter demonstrate the feasibility of the microscale patch scheme to
model diffusion over large spatial scales.

Chapter 5 extends the analysis to one-dimensional microscale advection-
diffusion dynamics in a single patch and for multiple patches. Eigenvalue
analysis suggests that a slow manifold exists on the macroscale. Computer al-
gebra constructs the slow manifold model for the advection-diffusion dynam-
ics. The long-time dynamics behaviour of numerical solutions on one patch is
compared with the prediction of the slow manifold. Comparisons among the
patch dynamics scheme, the microscale model over the complete domain, and
published experimental data determines regimes where the patch dynamics
accurately predicts the large scale advection-diffusion dynamics.



Chapter 1

Introduction

1.1 Multiscale methods

In recent years there has been a growing interest in the development of multi-
scale modelling and computation, with applications in many areas including
materials science, fluid mechanics, chemistry, and biology (E & Engquist
2003, Lucia 2010, Fish 2010, e.g.). Problems in these areas generally involve
multiple length scales in time and space. In addition, multiscale problems
are often multiphysics in nature which makes the transfer of information
between different scales challenging, particularly when the processes at dif-
ferent scales are governed by physical laws with different characters. An
example is molecular dynamics at the microscale, and continuum mechanics
at the macroscale (E & Engquist 2003, Bunder et al. 2013, e.g.). Molecular
dynamics simulations at the fine scale are constrained to limited space-time
domains due to the high computational cost. One aim of Chapter 2 is to
circumvent such limitations (by restricting microscale simulations to small
computational domains) and enable molecular dynamics simulations to make
accurate and efficient predictions of the macroscale dynamics at large space-
time scales.

Over the past few centuries, engineers and scientists have successfully
described many physical phenomena in a quantitative manner using macro-
scopic models that coarsely parameterise microscopic mechanisms (Nielsen
et al. 2003, e.g.). One of the popular examples of such models is partial
differential equations (pdes), which typically only use some specific aver-
age properties of particles such as density, momentum and energy. In spite
of this parameterisation, pde models still capture most macroscopic effects
exhibited in these systems (Luna-Ortiz & Theodoropoulos 2005, e.g.).

Examples of macroscopic models are the commonly used continuum mod-
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2 Chapter 1. Introduction

els (the Navier–Stokes equations) of fluid flow, heat transfer, and mass trans-
fer (Nielsen et al. 2003, Fish 2010, E 2011, e.g.). Such macroscopic models
describe the evolution of density (momentum and thermodynamic poten-
tials) in space and time, while the basic laws of motion of each particle have
disappeared.

Despite their tremendous successes, macroscopic models are limited in ac-
curacy for some important classes of problems (Galvanetto & Aliabadi 2010,
E et al. 2007, E 2011, Murashima et al. 2012, e.g.). This limited accuracy is
especially problematic for complex systems such as polymeric fluids, liquid
crystals and surfactant systems. When the modelling error is larger than the
solution error, the effectiveness of the macroscopic model becomes an issue.
Another limitation of macroscopic models is that discretisation at a coarse
level ignores the fine scale features and processes, such as those occurring at
the nanometer and femtosecond scales (E 2011, e.g.). That is, macroscopic
models do not always explain the underlying physical, chemical or biological
mechanisms in enough detail. For instance, in polymeric fluids, we are often
interested in the microstructural information such as the conformation of the
polymers, not only the macroscopic flow field (Murashima et al. 2012, e.g.).

These limitations have often guided researchers and physicists toward mi-
croscopic models that provide more physical descriptions and insight than a
simple descriptive macroscopic model. Examples of such microscopic models
include molecular dynamics (Schlick 2010, e.g.), kinetic Monte Carlo (Gille-
spie 1976), and lattice Boltzmann models (Succi 2001, e.g.). However, in
most problems across all fields ranging from ecology to materials science, and
from chemistry to engineering, these microscopic models operate on vastly
different scales in time and space compared to the time-scales at which the
overall system evolves (Dolbow et al. 2004, e.g.).

These systems that depend inherently on physical processes at multi-
ple spatial and temporal scales pose notorious difficulties. These multiscale
challenges constitute a major stumbling block to future progress in fields of
science and engineering as diverse as environmental and geosciences, climate,
materials, combustion, high energy density physics, fusion, bioscience, chem-
istry, and networks (Dolbow et al. 2004). Since a direct fully detailed numer-
ical simulation is typically prohibitively expensive, the traditional technique
is to analytically derive an effective model that is valid at the scale of interest,
and neglect other scales by assuming there is nothing relevant happening in
such scales in the problem.

Depending on the form of the microscopic model, many mathemati-
cal techniques have been developed to study multiscale problems, includ-
ing homogenisation (Pavliotis & Stuart 2008, e.g.), boundary layer analy-
sis (Kevorkian & Cole 2012, e.g.), averaging methods in classical mechan-
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ics (Arnol’d 2013, e.g.), inertial manifold theory (Constantin et al. 2012,
Gorban & Karlin 2005, e.g.), and semiclassical methods (Maslov & Fedoriuk
2001, e.g.).

Distributed microstructure models, also called double porosity or dual
porosity models, (Carr & Turner 2014, Lewandowska et al. 2004, Showalter
1997, Szymkiewicz & Lewandowska 2008, e.g.) are also among the multi-
scale models with concurrent coupling (Broughton et al. 1999, e.g.). This
approach is applicable to the specific case where the domain is composed
of two sub-domains occupied by homogeneous material where one is con-
nected and the other forms isolated inclusions. Based on the homogenisation
approach, Lewandowska et al. (2004) presents a macroscopic model (math-
ematical and numerical) of water flow in unsaturated double-porosity soils.
This method is able to derive the macroscopic model and its effective param-
eters from a description of physical phenomena at the local scale, without
any a priori hypothesis for the functional form of the model.

From a modern perspective, major concerns of the computational tech-
niques are the efficient representation or solution of the fine-scale problem.
For many practical problems, full representation of the fine-scale solution is
unlikely to be achieved in the foreseeable future due to unacceptably long
computation times and large memory requirements (Miyoshi et al. 2014,
Nguyen et al. 2014, Ortega et al. 2013, Kiuchi et al. 2014, e.g.). Without
aiming to be complete, the following Section 1.2 overviews recent multiscale
approaches that propose efficient solutions to some of these issues.

1.2 A new class of multiscale methods

This section discusses the key attributes of developing multiscale methods for
studying the long-time evolution of complex systems. Section 1.2.1 begins
with a brief history and description of the equation-free approach and its
main components. By explicitly taking advantage of the separation of scales,
the gap-tooth (Section 1.2.2) and patch (Section 1.2.3) schemes make the
equation-free approach more efficient in computational multiscale methods.

1.2.1 The equation-free approach

Recently, we have seen an explosive growth of activities in developing a sys-
tematic framework for multiscale methods, based on the idea that, for some
appropriate set of macroscopic variables, although closed form model de-
scriptions conceptually exist, we cannot obtain this description explicitly in
closed form (Cisternas et al. 2004, e.g.). Such problems occur in molecular



4 Chapter 1. Introduction

dynamics when the atomistic potential is not explicitly given, or in contin-
uum simulations of complex fluids such as polymeric liquids in which the
constitutive relations are unknown (Murashima et al. 2012, e.g.). In this
scenario, Kevrekidis et al. (2003) forego closed form model descriptions and
use microscopic models as if they were almost black boxes or experiments
that result from wrapping software around whatever simulator has been pro-
vided. The aim of the equation-free approach is to efficiently capture the
macroscale behaviour of a system by using only the underlying microscopic
models. The approach makes use of scale separation between macroscale
and microscale time to ensure a quick relaxation to functionals of the coarse
macrostates. Scale separation is done by restricting the size of the spatio-
temporal domain over which the microscale models are simulated—as in the
Knap–Ortiz version of the quasicontinuum method (Knap & Ortiz 2001,
e.g.) and the Prendergast–Xu version of the kinetic scheme (Xu & Prender-
gast 1994, e.g.). Such scale separation is an effective strategy for potentially
reducing the expensive numerical simulations of complicated systems over
large physical domains.

The equation-free approach requires techniques including projective inte-
grators (which are based on the idea of extrapolation) (Gear & Kevrekidis
2003, Kevrekidis et al. 2003, Hummer & Kevrekidis 2003, e.g.), the gap-tooth
scheme and the patch scheme, which is the combination of the projective in-
tegrators and the gap-tooth scheme. The key to equation-free, multi-scale
modelling is the two-way transformation between small-scale and large-scale
lengths. Lifting is the process used to transfer from the large to the small
scale length. Restricting, on the other hand, is the reverse transformation,
from the small to the large scale. In space, the equation-free approach im-
plements the gap tooth scheme where the microscopic simulation would be
realised in small boxes (teeth). By using interpolation, the gaps in between
these boxes are filled.

Inspired by the work of Kevrekidis et al. (2003), Frederix et al. (2007)
introduced equation-free methods in molecular dynamics. Also, in other
branches of science and engineering, Abdulle et al. (2012) recast the equation-
free approach into an algorithm called the heterogeneous multiscale method
as a general strategy for numerical problems with a multiphysics nature
and multiscales. The heterogeneous multiscale method is also similar to
the equation-free approach in terms of making use of scale separation.

Here I briefly review the basic setup of the heterogeneous multiscale
method. Suppose we are interested in studying the macroscale behaviour
of a system for which the macroscale model is either only partly known (lack
the detailed constitutive relation) or it is invalid in some parts of the com-
putational domain due to the presence of defects or localised singularities (E
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et al. 2007). However, we do have an accurate microscale model at our dis-
posal, but it is too expensive to abandon the macroscale model completely
and only perform microscopic simulations directly to attack problems with
large spatial and temporal scales. When this is the case, the heterogeneous
multiscale method starts by selecting a suitable numerical method for the
macroscale model, as if the macroscale model is roughly known and valid in
the whole physical domain, but some details of the model are missing. This
method then focuses on how to obtain the necessary information to imple-
ment the selected macroscale numerical method. In some parts of the compu-
tational domain where the macroscale model is invalid, or where constitutive
relations are missing, the microscopic model is solved locally to estimate the
missing macroscopic data needed for the implementation of the macroscopic
scheme (E et al. 2007). Scale separation can be shown by observing that in
the data estimation step, the microscale computational domain is uncoupled
from the macroscale physical domain. The heterogeneous multiscale method
could be applied to the simulation of complex fluid where the advection of
memory is neglected (Ren et al. 2005, e.g.). On the other hand, there are
some difficulties in applying the heterogeneous multiscale method. The main
shortcoming of this method is that it relies on some assumptions such as the
appearance of macroscale model. The use of these assumptions is not only
for selecting the macroscale solver, but also for formulating the constraints
on the microscopic solver.

1.2.2 The gap-tooth scheme

The gap-tooth scheme was introduced by Kevrekidis et al. (2003) to address
an important class of time dependent multiscale problems. Such problems
are known to exhibit macroscopically smooth behaviour in time and space,
while only a microscopic evolution law is known. This scheme is used instead
of performing (stochastic) time integration in the entire physical domain. It
is intended to provide smooth spatial descriptions on the large length scale
from information inferred from the underlying microscopic simulation at the
small scale.

The main idea of the gap-tooth scheme is to apply microscopic simula-
tions restricted to small regions of space (teeth), separated by large gaps, fol-
lowed by interpolation to estimate macroscopic fields in the gaps. Figure 1.1
shows an example by Roberts & Kevrekidis (2007) of gap-tooth simulation
applied to Burgers’ equation on the macroscale domain [0, 2π] through the
microscopic simulation within eight teeth; each of width π/20. The scheme
couples the teeth effectively by bridging the gaps to describe the dynamics
over the macroscale domain. Thus, the challenges are to explore the dy-
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Figure 1.1: Gap-tooth solution of Burgers’ equation on [0, 2π] via microsimu-
lation on eight teeth, each of small width π/20 (Roberts & Kevrekidis 2007).

namics inside a tooth and the coupling conditions that able to couple widely
separated teeth of the microscopic simulation.

The fundamental issue in multiscale modelling and simulation relates to
coupling between elements (Frauenheim et al. 2000, Deymier et al. 2016,
e.g.). The dynamics of each tooth must be connected as seamlessly as possi-
ble. For this scenario, Roberts & Kevrekidis (2007) construct boundary con-
ditions for coupling patches in the gap-tooth scheme to obtain higher order
accurate schemes. One aim of Chapter 4 is to show that analogous coupling
works straightforwardly for the diffusion pde with time-varying boundary
forcing. The boundary conditions for the microscopic patch are obtained by
interpolating the macroscale average quantities at the grid points, providing
communication across the unsimulated space between patches.

Chapter 3 analyses only one patch for the class of diffusion equations in
order to mimic a microscopic simulation performed over the entire physical
domain. We show how the dynamics of a small patch coupled to the dis-
tant macroscale boundaries is able to predict the slow emergent macroscale
dynamics. Section 3.4 shows that for the patch dynamics scheme, eigenfunc-
tions and their adjoints form a biorthogonal basis to determine the spectral
coefficients in formal series solutions. Section 3.6 proposes a modified patch
dynamics scheme with time delays in the communication of boundary values.
This models a patch when information transmissions from the neighbouring
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patches are subject to communication delays.
Chapter 5 extends the analysis in Chapters 3 and 4 for diffusion problems

to the case of the one-dimensional advection-diffusion problems. Algebraic
analysis and numerical determination of eigenvalues for non-overlapping, cou-
pled patches demonstrate the existence of a slow manifold. By computing
only on a small fraction of the computational domain, we show that the
scheme is reasonably able to describe the dynamics at the large scale.

1.2.3 Patch scheme

In many problems of practical interest, ranging from chemistry to materials
science, we are often interested in a system of interacting atoms and how
macroscopic behaviour emerges from these microscopic interactions. Many
mathematical models describing, for example, geophysical fluid dynamics are
typically written directly at the scale at which we are interested in particu-
larly modelling the behaviour of the system. However, the scale at which the
underlying turbulent flow and physics are understood is much finer than the
macroscopic scale in which we are interested (Dada & Mendes 2011, Givon
et al. 2004). Unfortunately, sufficiently explicit and accurate macroscopic
closures do not exist in many multiscale and multiphysics problems; instead
scientists and engineers use the microscopic model to simulate the macroscale
quantities of interest on a large spatial domain, resulting in a huge amount
of computation (Kiuchi et al. 2014, Nguyen et al. 2014). In this scenario,
we aim to develop efficient computational schemes to wrap around fine scale
microscopic level computer models of dynamical systems.

The methodology is to evaluate automatically ‘on demand’, directly
through short computational bursts of the microscopic description, for which
the macroscopic modelling closures are not explicitly available for the emer-
gent dynamics (Cisternas et al. 2004, e.g.). Here I develop a novel patch
scheme which makes no attempt to derive a macroscale closed form from
the original microscale computation model, in contrast to, for example, ho-
mogenisation (Pavliotis & Stuart 2008, e.g.).

Patch schemes, like those proposed by Kevrekidis et al. (2003), are in-
tended to simulate the macroscale quantities of interest through interpolation
in space and extrapolation in time. The procedures of a patch scheme are
described in two main steps. The first step is to define the gap-tooth scheme
which enables a “small space, short time” timestepper to perform “large
space, short time” computational framework. The second step is to combine
the gap-tooth scheme with projective integration. This combination provides
an equation-free framework bridging “small space, short time” simulations
and “large space, long time” evolution. In this dissertation, we do not con-
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sider projective integration, only the gap-tooth precursor to the full patch
scheme.

The main aim of this dissertation is to develop and provide support for
the patch scheme (Hyman 2005, Li et al. 2007, Frederix et al. 2007, Bunder
& Roberts 2012, e.g.).

1.3 Atomistic simulations

In the late 1950s, molecular dynamics was introduced by Alder & Wain-
wright (1957, 1959) to study the interaction of hard spheres. Rahman (1964)
then used a realistic potential to carry out the first simulation for liquid
argon. Such computational simulations have significant impacts on science
and engineering due to revolutionary advances in computer technology and
algorithmic improvements. Nowadays, molecular dynamics methods describe
the world from the nanoscopic perspective and model the physical properties
accurately at the atomic scale. However, these methods are not suitable for
engineering due to the extreme computational costs that limit their applica-
tion to systems of just a few million atoms (Kalweit & Drikakis 2011, Gates
et al. 2005, e.g.). Because of these limitations, there is an effort to develop
mesoscale and multiscale methods with the aim to provide efficient predic-
tions for large scale macroscale dynamics. The equation-free approach aims
to use such microscale molecular simulations to efficiently compute and pre-
dict large macroscale space-time dynamics. Chapter 2 focuses on establishing
the basis for a novel design of the equation-free approach in predicting emer-
gent macroscale properties over large space scales by computing atomistic
dynamics only on relatively small widely distributed periodic patches.

The equation-free approach has been used by Frederix et al. (2007)
and Roose et al. (2009) to empower molecular simulations. However,
these approaches concentrate on issues associated with long-time integra-
tion, whereas Chapter 2 focuses on designing effective algorithms for large
space domains. Future work will focus on the development of a full multiscale
equation-free scheme that combines both aspects.

Other multiscale methods have been proposed that are based upon analo-
gous simulations at the fine scale: for example, in the flow through a porous
medium, Hassard et al. (2016) used smoothed particle hydrodynamics on
the microscale to estimate macroscale volume averaged fluxes, with a view
to forming a two-scale model that appears like a finite volume scheme on
the macroscale. For general gradient driven transport processes, Carr et al.
(2016) correspondingly proposed an Extended Distributed Microstructure
Model where the macroscale flux is determined as the average of microscale
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Figure 1.2: Schematic diagram of a microscale periodic-patch divided into
four equal-sized regions.

fluxes within micro-cells. Such approaches suggest that microscale simula-
tions can be coupled usefully across macroscales.

Our innovation, detailed in Chapter 2, is to develop one way to construct
computationally efficient ‘wrappers’ around whatever microscopic level com-
puter models a scientist chooses for any given system. An example of this
fine scale, microscopic, detailed model is molecular dynamics, which mimics
the behaviour of a system at large scale and makes predictions more effi-
ciently and effectively at the macroscale ‘continuum’ level. The simulation is
only performed in one, relatively small, triply-periodic, atomistic patch cou-
pled to the distant macroscale boundaries. Such coupling is accomplished by
implementing a proportional controller near the edges of the patch, in the
so-called ‘action regions’. The regions shaded in green and red in Figure 1.2
represent the left and right action regions of the patch, respectively. Other
macroscale modelling techniques use a different approach by applying patch
dynamics coupling conditions only to the edges of the patch (Roberts et al.
2014, e.g.)

The global macroscale solution Uj(t) at Xj is extracted after solving mi-
croscale fields within the patch. The average kinetic energy in the centre of
the patch, termed ‘core region’, estimates the local temperature in a patch.
The core of the patch is centred around the grid point in the middle of the
patch. The blue shaded region in Figure 1.2 represents the core region of
the patch. Then, interpolating such core temperatures over the unsimulated
space estimates the macroscale temperature field. The applied control aims
to appropriately drive the average kinetic energy in each action region to
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the corresponding macroscale temperature and thence couple the patch to
its neighbours and the surrounding boundaries.

1.4 Centre manifold theory

Centre manifold theory is becoming more widely used since it empowers
us with great flexibility in modelling complex dynamical systems (Meron &
Procaccia 1986, Procaccia 1988, e.g.) such as stochastic systems (Schöner
& Haken 1986, Namachchivaya & Lin 1991), dispersion (Mercer & Roberts
1994, Rosencrans 1997, e.g.), thin fluid films (Roberts 1996, Roy et al. 2002,
e.g.) and turbulent floods (Roberts et al. 2003). In this dissertation, most
of the analysis of Chapters 4 and 5 is based upon centre manifold theory.
The application of centre manifold theory is based upon modifying linear
dynamics so that the theory guarantees that an appropriate and relevant
low-dimensional description of the nonlinear dynamics may be obtained. The
theory is applied after dividing the macroscale domain into small patches,
with each patch centred around one macroscale grid point. Centre manifold
theory (Roberts 1988, Pötzsche & Rasmussen 2006, e.g.) then supports the
existence of slow manifold models.

The key idea of the centre manifold approach is to find a domain where
there is a separation of time scales between long lasting modes of inter-
est (macroscale modes) and rapidly decaying modes (microscale modes)
which are not of interest to the macroscale dynamics. In particular, Fig-
ure 5.12 shows one example of clear separation between the dynamics of the
macroscale modes of interest, and the microscale modes within each patch.
The results of Chapter 5 demonstrate the feasibility of the microscale patch
scheme to model advection-diffusion on large spatial scales.

1.5 Overview and contributions

This dissertation contributes to the development of the multiscale equation-
free method which has been introduced recently to empower the macroscale
simulation. The most significant novel outcome of this research is that
patches with microscale periodic boundary conditions can be used to effi-
ciently predict macroscale fields of interest.

Most attention is given to the analysis of gap-tooth schemes. We con-
centrate on establishing the basis for a novel design of multiscale methods
in predicting the macroscale quantities of interest over large spatial domains
by utilising atomistic simulations only on a relatively small periodic patch.
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We show how to impose a particular boundary conditions onto a molecu-
lar dynamics simulation by applying a controller. A small periodic patch is
coupled over the macroscale to the boundaries so that the overall scheme
predicts the correct macroscale dynamics. Numerical simulations show that
applying a suitable proportional controller within action regions of a patch
of atomistic simulation effectively predicts the macroscale transport of heat.
Rigorous mathematical analyses and simulation results presented throughout
Chapter 2 demonstrate that the proposed patch scheme has good potential
for predicting the evolution of the macroscopic transport phenomena based
upon simulation at the microscale level.

The second objective of the dissertation is to study the application of
boundary conditions onto patches. We analyse whether a set of small
patches in the spatial domain is able to make predictions of the coupled
macroscale dynamics when the transport phenomena at the microscale level
are governed by different pdes, including diffusion, advection-diffusion, and
reaction-diffusion equations. We show that the scheme efficiently captures
the large scale features of the solutions, taking advantage of the separation
of scales which make such modern multiscale methods much more efficient
than solving the full fine-scale problem. Chapter 3 discusses solving a one-
dimensional microscale diffusion equation with forcing boundary conditions
in a single patch so that the large-scale phenomena can be predicted. Two
classes of eigenfunctions are considered: symmetric and asymmetric. The
spectral problem associated with a small patch is a non-self-adjoint. We
show that for the patch dynamics scheme, the eigenfunctions and their ad-
joints form biorthogonal sets, and the spectral coefficients in the eigenfunc-
tion expansion are obtained by means of the eigenfunction of the adjoint
problem. Time delays in the communication of boundary values are also
explored in the patch scheme and compared to the scheme without delays to
ascertain when such delays are significant.

Chapter 4 analyses diffusion dynamics on multiple coupled patches dis-
tributed over the domain. The eigenvalue analysis together with centre man-
ifold theory support the existence of a slow manifold. The patch coupling
conditions are obtained by interpolating the macroscale average quantities
at the grid points, and provide communication across the unsimulated space
between patches. Chapter 5 extends the analysis presented in Chapters 3
and 4 to more general advection-diffusion problems for both a single patch
and for multiple patches. Numerical approximation of the eigenvalues for
non-overlapping, coupled patches demonstrates the existence of a slow man-
ifold, and computer algebra is used to construct a model to confirm the
advection-diffusion dynamics.



Chapter 2

A periodic patch scheme in
atomistic simulations

Computational simulations have become a valuable tool to the point where
they now stand alongside theoretical and experimental methods in addressing
problems in materials science (Dove 2008, e.g.). The most direct of these sim-
ulation techniques is atomistic simulation, in which a suitable inter-atomic
potential is used to characterise the inter-atomic forces between atoms, and
then Newton’s second law is computationally integrated with appropriate
boundary conditions. Despite this simple basis, very complex phenomena
have been accurately simulated. Atomistic simulations are accomplished
without a priori assumptions about the form of the macroscale mode, which is
in contrast to, for example, many continuum mechanics approaches (Buehler
2008, e.g.), which often include such assumptions.

Limitation Atomistic simulations provide insightful details into many
problems of interest. However, obtaining a good atomistic description of
physical problems is a challenging task due to the time scale limitation of
molecular dynamics (md) methods (Kalweit & Drikakis 2011, Gates et al.
2005, e.g.). The excessive computational demand of simulating even just
thousands of atoms interacting over a sufficiently long time, places a strin-
gent limitation on length and time scales for the problem of interest. In
particular, the small time step, generally in the range of 10−15 s, limits long
simulation times (Kalweit & Drikakis 2011). Therefore, modelling the evo-
lution of systems, particularly those of atomistic nature, with length scales
in the range of tens of nanometres and for times of up to a few tens of
nanoseconds, is problematic.

Several multiscale methods have been previously proposed that combine
atomistic simulation with traditional continuum scientific computation and
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Figure 2.1: Different properties and processes of materials are described by
different methods at different length and time scales.

numerical analysis to deal with problems in which a macroscopic model alone
cannot accurately describe the system dynamics. Multiscale coupling is in-
creasingly popular due to the potential to link structural property relation-
ships from nano to macroscale levels (Smith & Todd 2001, Shilkrot et al.
2002).

Figure 2.1 overviews a hierarchy of physical models between macroscale
models and the quantum many-body problems. This figure indicates the
typical ranges of length and time scales for problems tackled by quantum
mechanics based methods, molecular dynamics, and continuum mechanics
methods. Quantum mechanics are applicable to very short time and length
scales, on the order of a few nanometres and picoseconds. Once interactions
are assumed in the md method, the length and time scales of interest ap-
proach micrometers and nanoseconds (Abraham et al. 2002). Continuum
mechanics integrated with other computational simulation tools can treat
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virtually any length scale; however, they lack a realistic description at fine
scales and are therefore not appropriate to describe materials failure pro-
cesses with full atomistic information (Dolbow et al. 2004, Solhjoo & Vakis
2015).

In the last two decades, the equation-free method (Kevrekidis et al. 2003,
e.g.), has been developed to overcome the high computational cost of atom-
istic simulations. The equation-free method aims to use such microscale
molecular simulations, and averaged properties over short space-time scales,
to advance and predict macroscale space-time dynamics. This method is in-
tended to be used when the macroscopic description is not available in closed
form (Cisternas et al. 2004). Bypassing the need to use macroscale models,
accurate microscale models capture the macroscale behaviour for the system
of interest.

The principle aim of this chapter is to develop and provide theoret-
ical support for and to further develop the equation-free patch dynamics
scheme (Hyman 2005, Li et al. 2007, Frederix et al. 2007, Bunder & Roberts
2012, e.g.) to multiscale modelling. In particular, this chapter empowers
novel atomistic patch simulations over large spatial dimensions from a given
microscopic atomistic simulator. The key to support the patch dynamics
scheme (Kevrekidis et al. 2003, Frederix et al. 2007, Bunder & Roberts 2012,
Cao & Roberts 2016) is to perform atomistic simulations only on relatively
small widely distributed patches. In the scenario where a user has coded a
microscale simulator with microscale periodicity, our innovation is to show
how to couple a small microscale periodic patch over unsimulated space so
that the overall scheme predicts the correct macroscale spatial dynamics.

For patch dynamics in space-time, a full implementation involves pro-
jective integration forward in time (Samaey et al. 2004, Givon et al. 2004,
Möller et al. 2005, Runborg et al. 2002). However, in this pilot study, we
focus attention on an isolated triply-periodic patch of the spatial domain, as
described in Section 2.1, and leave projective integration of periodic patches
to future research. In space, patch dynamics, also referred to as the gap-
tooth scheme (Roberts & Kevrekidis 2007), has been applied successfully to
the one-dimensional Burgers’ equation (Roberts 2001, e.g.) and a Ginzburg–
Landau model (Roberts et al. 2011, e.g.). More recently it has been extended
to solving a one-dimensional wave-like system (Cao & Roberts 2013).

Section 2.1 establishes a computational scheme for the atomistic sim-
ulation of a dense gas in 3D space (listed in Appendix A). The microscale
simulation is performed in a triply-periodic domain. Section 2.2 describes the
potential used to describe the interactions between atoms, together with the
simulation strategies used. Newton’s laws of motion determine the motion of
the atoms as they interact with others in a microscale patch of space-time.
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Such a scheme is also at the core of more complicated schemes for more
complicated molecular simulations (Koumoutsakos 2005, Horstemeyer 2009,
e.g.). Section 2.2.4 describes periodic boundary conditions for the atomistic
patch simulation where an atom crossing any face is re-injected into the cubic
patch across the opposing face. As in many scenarios, imposing microscale
periodic boundary conditions for a micro-simulator eliminates surface effects
from the computation, and makes the simulation computation significantly
easier. One major advantage of the equation-free approach is that it uses
whatever simulator has been provided, and adapts it to macroscale simu-
lations. Hence the important new challenge we address is to use a triply-
periodic atomistic simulation code as ‘a given’ for the computed patches in
an equation-free scheme.

In order to research realistic problems in the future we expect to imple-
ment the methodology within one of the established powerful md simulators
such as lammps (Plimpton et al. 2016). However, here we focus attention
on establishing a proof-of-principle and the fundamental effectiveness of the
scheme: for that purpose, our straightforward code is sufficient. This code
is written to ensure that we have freedom to modify it easily to explore any
new idea.

Section 2.3 discusses the mathematical details of a patch dynamics scheme
which includes the patch construction, coupling conditions, proportional con-
trol, and the numerical simulation results. Section 2.3.1 demonstrates how we
implement a proportional controller (Bechhoefer 2005, e.g.) in the so-called
‘action regions’ that surround the ‘core’ of the periodic patch. We then
discuss the method for obtaining the macroscale temperature field solutions
and define the coupling conditions. The average kinetic energy in the core
region estimates the local temperature in a patch. Interpolating these tem-
peratures over the unsimulated space provides an estimate of the macroscale
temperature field. The applied control aims to appropriately drive the av-
erage kinetic energy in each action region to the corresponding interpolated
macroscale temperature.

Numerical simulations, Section 2.3.2, demonstrate that the proportional
controlled coupling of the periodic patch is effective for atomistic simulations.

Section 2.4 analyses the control and confirms the proposed controlled
coupling of a microscale periodic patch is effective. Section 2.4.1 discusses
an eigenproblem of the controlled patch scheme. Two classic families of
eigenfunctions are derived in Sections 2.4.2 and 2.4.3. All possible wavenum-
bers and eigenvalues on an arbitrary single patch then determine the single
macroscale mode across the domain.

Section 2.5 establishes the spectral gap of the patch system, and shows
the slow emergent macroscale dynamics. Section 2.5.2 then approximates the
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Figure 2.2: Atomic trajectories of interacting 64 atoms in a monatomic gas,
over a time 0 ≤ t ≤ 3, in a triply-periodic, cubic, spatial domain, showing
the beginnings of the complicated inter-atomic interactions.

eigenvalue that characterises such emergent macroscale dynamics. Based on
approximating the eigenvalue of macroscale interest, Section 2.5.3 determines
a good value for the control strength. Section 2.6 estimates the diffusivity to
determine the best control for the simulation by calculating the temperature
difference between heated/cooled action regions.

2.1 An isolated triply-periodic patch

This section describes an atomistic simulator for the isolated dynamics of
atoms in a cubic patch. We are interested in the macroscale behaviour of
large complex systems. We assume that only atomistic simulations describing
the microscopic behaviour of the system are available. The atomistic models
can either be classical md or kinetic Monte Carlo methods. In this chapter,
as a first test of our novel methodology, our atomistic, detailed, simulator
is the md of a monatomic gas in 3D space. The simulator computes the
motions of N atoms in a microscale patch of space-time as they react to
forces originating from interactions with the other atoms in the patch. For
our purposes typically there are up to a few thousand atoms in a patch.
Figure 2.2 shows the apparently chaotic path in space of N = 64 atoms in
a patch for one example short-time simulation. We implemented atomistic
simulations in a triply-periodic cubic domain, where an atom leaving the
cubic patch by crossing any of the six faces of the cube is re-injected into the
cube across the opposing face.
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Our challenge is to develop methods that use such triply-periodic atom-
istic simulations to predict macroscopic properties of experimental interest.

Consider a system of N atoms where each individual atom is denoted by
subscript i. Let ~ri(t) denote the position vector in space of the ith atom as
a function of time t, and ~qi denote their velocity, then the velocity of the ith
atom is

d~ri
dt

= ~qi, i = 1, . . . , N. (2.1)

For atoms of non-dimensional mass one, as illustrated in Figure 2.2, these
atoms evolve in time according to Newton’s second law

mi
d~qi
dt

= ~Fi, i = 1, . . . , N, (2.2)

where mi, ~Fi are respectively the atomic mass and the force vector acting
upon the ith atom at time t due to interactions with the other atoms in the
cubic patch. We assume that the force on atom i at time t is the negative
gradient of the potential energy function

~Fi = − ∂

∂~ri
V (~r1, ~r2, . . . , ~rN),

where V is the potential energy which is a function of the atomic coor-
dinates (3N) of all the atoms. The inter-atomic potential in any realistic
system represents a highly nonlinear function of the 3N coordinates so that
the equations of motion (2.1)–(2.2) present great difficulty when trying to
obtain an analytical solution. Indeed even the numerical integration of these
equations of motion is not trivial. Therfore, to deal with this complixity, we
consider the md technique to solve the equations of motion numerically.

2.2 Equations of motion

This section describes the mathematical basis of the simulator in a triply-
periodic cubic patch. Section 2.2.1 describes the potential model used to
calculate the inter-atomic forces. Section 2.2.2 non-dimensionalises all quan-
tities with respect to the atomic scale. Section 2.2.3 details the integration
of Newton’s equations of motion (2.5)–(2.6). Section 2.2.4 discusses the im-
plementation of periodic boundary conditions.

2.2.1 The inter-atomic potential energy

The most critical quantity in md simulation is the interaction potential. The
interaction potential determines the numerical and algorithmic simplicity or
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complexity of an atomic simulation and the degree of physical fidelity for
the simulation results. It is convenient to use the Lennard-Jones potential
for computational simulation because it models short-range pairwise interac-
tions, and can be implemented in ways that are computationally undemand-
ing (Kairn et al. 2004). The Lennard-Jones potential is a pair interaction
energy that is commonly used to describe the interactions between uncharged
atoms, and it is widely considered a reasonably accurate model of interactions
between closed-shell atoms (noble gases, Ne, Ar, Kr, and Xe) and covalently
bonded molecules. In our simulations, we use the classic 12−6 Lennard-Jones
potential (Jones 1924, e.g.)

VLJ(rij) = 4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]
, (2.3)

where the potential parameters ε and σ are chosen to fit the physical prop-
erties of the atomic species being considered. The parameter ε governs the
strength of the interaction, σ is an inter-atomic length scale, and rij is the
separation distance between atom i and atom j.

Atoms do not only exert attractive forces on each other. If two atoms
approach very close to each other, their electron clouds repel one another.
The term proportional to 1/r12

ij , dominating at very short distances, models
the repulsion between atoms when they get too close to one another due to
the overlap of the electron clouds belonging to the interesting atoms. The at-
tractive term proportional to 1/r6

ij dominates at longer distances and models
the van der Waals forces caused by transitive dipole-dipole interactions.

In md simulations, the inter-atomic force on each atom is calculated at
each time step. The simulator then integrates these forces to calculate the
new positions and velocities of every atom. The force calculation constitutes
the majority of computational effort.

Inter-atomic Forces

Given the potential, the force acting on an atom from another is determined
by the negative gradient of the potential energy function with respect to
spatial coordinates. The inter-particle force exerted by all atoms on atom i
arising from the Lennard-Jones potential (2.3) is

~Fi =
N∑
j 6=i

~fij, where ~fij = −24ε

[
2

(
σ

rij

)12

−
(
σ

rij

)6
]
~rij
r2
ij

, (2.4)

where ~rij = ~ri − ~rj is the relative position vector of atom i to atom j, and
the distance rij = |~rij|.
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2.2.2 Non-dimensionalisation of the variables

In our simulations, we prefer to deal with a non-dimensional system, in which
the governing equations and all macroscopic quantities such as temperature,
pressure, and density are non-dimensionalised by chosen representative val-
ues (Satoh 2010, p.72). Therefore, it is convenient to non-dimensionalise all
quantities with respect to atomic scales so that, for example, the inter-atomic
equilibrium distance is scaled to one, as shown in Figure 2.2.

In our simulations of a monatomic gas, all the parameters are non-
dimensionalised using the parameters of the Lennard-Jones potential (2.3).
Thus, we choose the reference length σ, reference energy ε, and reference
mass m. From these basic units, the reference time is σ

√
m/ε, and reference

temperature ε/k .
Here we describe some of the computer codes in Appendix A.1.3 developed

for our atomistic simulations. For non-dimensional quantities, the velocity
of each atom is in the set of ordinary differential equations (odes) for the
system of (§A.1.3, lines 13–16):

d~ri
dt

= ~qi, i = 1, . . . , N. (2.5)

The other set of odes for the system come from the inter-atomic interac-
tions. For atoms of non-dimensional mass one, the acceleration of each atom
is described by Newton’s second law as (§A.1.3, lines 33–35)

d~qi
dt

=
N∑
j 6=i

~fij, i = 1, . . . , N, (2.6)

in which the force on the ith atom resulting from the interaction with the jth
atom is non-dimensionalized from (2.4) as (§A.1.3, lines 27–31)

~fij =

(
1

r6
ij

− 1

r12
ij

)
~rij
r2
ij

.

We emphasise that the factors σ and ε no longer appear due to non-
dimensionalisation.

Due to the triple periodicity in the patch, the inter-atomic sum in (2.6)
should be over all periodic images of the atoms. However, in the sum atoms
and their images further away than a patch half-width are neglected (§A.1.3,
lines 19–24). Section 2.2.4 describes atoms and their periodic images in
the triple-periodic simulation domain. Due to the 1/r7 decay of long range
attraction, and with a typical patch of size 10 × 10 × 10 atoms, the error
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Figure 2.3: For the case of Figure 2.2, this plot of nondimensional Kinetic
Energy (ke), Potential Energy (pe), and their sum (Tot) illustrates the con-
servation of energy by the coded simulation.

in accounting for only these atoms/images is roughly 5−7 ≈ 10−5 which is
reasonably negligible. For the purpose of checking, we verify that the mean
momentum is conserved to machine precision which reflects the symmetry
in the simulator. Figure 2.3 shows one example of the kinetic and potential
energy, and their sum: we found the total energy is typically conserved to a
relative error of about 10−5.

2.2.3 Numerical integration of the equations of motion

The integration of Newton’s equations (2.5)–(2.6) is performed by matlab’s
generic integrator ode23. The outputs are the velocities and positions as
functions of time. The equations of motion (2.5)–(2.6) are deterministic;
meaning that once the positions and velocities of each atom are known at
time zero, the state of the system is uniquely determined at all later times.

Verlet algorithms are among the most popular families of algorithms for
the solution of the classical odes of motion in md simulations (Armstrong
et al. 1970). These algorithms use the positions and accelerations of each
atom at time t, and the positions from the previous step, r(t−∆t) to calcu-
late the new positions at the next time step, r(t + ∆t). At time t = 0 there
is no previous time step available. Hence, initial velocities could be gener-
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ated as a Boltzmann distribution of velocities for a given temperature (Arm-
strong et al. 1970, e.g.). As an improvement to the Verlet algorithm, the
leap-frog algorithm has been developed (Frenkel & Smit 1996). In this al-
gorithm, the positions and velocities are not obtained simultaneously. The
positions are evaluated at integer time steps and velocities at half-integer
time steps (Frenkel & Smit 1996, Armstrong et al. 1970, e.g.). For simplicity
in this proof-of-principle study, the time integration was performed over the
short time range by matlab’s ode23 routine (§A.1.1, line 31) rather than any
of the more accurate symplectic integrators that apply to these Hamiltonian
equations (Yoshida 1993, Hairer et al. 2003, e.g.). The generic integration
routine ode23 produces satisfactory results such as a conserved quantity like
energy (Figure 2.3).

Multipole expansion algorithms have been developed to speed up the cal-
culation of long-ranged forces in the N -body problems (Carrier et al. 1988,
Cheng et al. 1999, e.g.). However, preliminary exploration of such an algo-
rithm indicated that for a few thousand atoms per patch the fast techniques
are not effective here.

Most of the remaining code in the time derivative routine (§A.1.3) couples
the patch simulation to the macroscale surroundings described by Section 2.3.

2.2.4 Periodic boundary conditions

This section aims to describe the boundary conditions of our atomistic
simulations. We implement simulation in a cubic domain of equal dimen-
sions 2h × 2h × 2h in each direction. Then, due to the size limitation of
atomistic simulations, usually at the nanoscale level, a large number of atoms
is near the cube faces relative to the total number of atoms, which can lead
to the surface effects (Fan 2011, e.g.).

Periodic boundary conditions are the most convenient way to overcome
the problems of surface effects (Allen & Tildesley 1989). With periodic
boundary conditions, the cubic patch simulation is replicated throughout
space to form an infinite lattice with no surface. Figure 2.4 schemati-
cally illustrates the concept of the periodic boundary condition for a two-
dimensional system comprised of three atoms. The cubic patch is surrounded
by its images. When an atom leaves the central patch on one side, one of
its images enters the central patch on the other side, such that the number
of atoms in the simulation region is always conserved. In addition, peri-
odic boundary conditions conserve quantities such as mass and energy in the
patch simulation, since no atoms carrying mass or energy can escape.

The generic integration routine ode23 as discussed in Section 2.2.3, would
not handle the discontinuous reinjection of atoms that leave the cubic atom-
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Figure 2.4: Two-dimensional schematic of periodic boundary conditions. The
orignal patch is surrounded by its periodic images. Atoms can leave the box
by crossing any of the four edges. In a three-dimensional example, atoms are
free to leave the box by crossing any of the six faces.

istic simulation region: consequently, we allow the integrated atom positions
to exit the cube smoothly, but map such atoms inside the cubic patch (§A.1.2)
for computing inter-atomic forces.

2.3 Couple patches with a proportional con-

troller

The previous Sections 2.1 and 2.2 describe a microscale simulation code for
the isolated dynamics of atoms in a cubic domain. Our innovative challenge is
to use such code, as if it were almost a ‘black-box’ fine scale dynamics simula-
tor, to simulate over large spatial domains. In the equation-free methodology,
a large scale-time simulation is efficiently accomplished by executing bursts
of microscopic simulation on relatively small, spatially separated patches and
coupling them by bridging the gaps in the spatial domain in which no com-
putation is done (Samaey et al. 2005, Kevrekidis & Samaey 2009, e.g.).

In this pilot study of the case of periodic-patches, we only address the
scenario of one large spatial dimension. For simplicity in this first imple-
mentation, the other space dimensions are assumed small. Further, as a
proof-of-principle, this section addresses the very restricted case of one such
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Figure 2.5: The simplest case is one triply-periodic patch of atomistic sim-
ulation, −h < x < h , coupled to distant sidewalls, at x = ±H , of specified
temperature. The patch’s core region defines its local temperature, and a
proportional controller is applied in the left and right action regions to gen-
erate a good macroscale prediction.

periodic-patch coupled to ‘distant’ imposed boundary conditions. Figure 2.5
illustrates the scenario with one ‘small’ periodic-patch centred on x = 0,
−h < x < h, in a long thin macroscale domain −H < x < H .

This basic scenario focuses on the key methodological innovation: namely
how to effectively couple a microscale periodic-patch to the surrounding
macroscale environment. Here the macroscopic quantity of interest is the
temperature field T (x, t) of the monatomic gas as a function of position x
and time t. We restricted ourselves to a macroscopically one-dimensional
system. However, the atomistic simulations are done in three spatial dimen-
sions.

For the purpose of validating our novel patch scheme, in this pilot study
we suppose that we want to predict macroscale heat transport by the atom-
istic simulation. Thus, we compare the scheme’s predictions for the temper-
ature field T (x, t) with that of the continuum heat diffusion pde

∂T

∂t
= K

∂2T

∂x2
, (2.7)

with physical boundary conditions

T (−H, t) = TL(t) and T (+H, t) = TR(t). (2.8)

We centre at the origin a 2h×2h×2h-periodic-patch of the atom simula-
tion, as in Figure 2.5. This patch extends over −h < x < h in the macroscale
domain −H < x < H with specified temperatures, TL(t) and TR(t), on the
ends of the domain, x = −H and x = H respectively. The unsimulated
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spaces are the comparatively large gaps h < |x| < H . To distinguish be-
tween microscopic and macroscopic quantities we generally use lowercase
letters for microscale quantities, such as ~x, ~q, and h, and uppercase letters
for macroscale quantities, such as H and T . Here the problem is assumed
to be doubly-2h-periodic in the other two spatial dimensions; that is, the
macroscale physical domain is long and thin (Figure 2.5).

We divide the patch simulation into four equal-sized regions (§A.1.3,
lines 38–43), denoted as the core region, left action, right action, and buffer
region as illustrated schematically in Figures 2.5 and 2.6. The core region is
of width h/2, and extends over −h/4 ≤ x ≤ h/4 in the microscale domain.
This core region is surrounded by left and right action regions.

The atoms inside the core region, j ∈ core, estimate the macroscopic
temperature at the centre of the patch. This macroscopic temperature Tc
is used for interpolation between the patch and the environmental bound-
ary values over the macroscale (2.10). In multiple patches as discussed in
Chapter 4, for example, the interpolation is done through the neighbouring
macroscale grid values of neighbouring patches, thus providing a solution
which approximates that of the whole domain.

The left and right action regions are centred at the quarter points of the
patch x = ∓h

2
, and extend over |x±h/2| < h/4. These action regions couple

the patch to surrounding macroscale information such as the environmental
boundary values. Such coupling conditions are accomplished via a forcing
control acting on the action regions. The applied control is proportional
to the difference between the interpolated macroscale fields (2.12) and the
averages over the action regions (2.9). Section 2.3.1 details the macroscale
variables, averaging action regions and a proportional controller.

The idea of using averaging techniques over action regions and core in md
simulation of fluid was initiated by Li et al. (1998), where artificial actions
were applied in the so-called “extended boundary conditions” on an outer md
region. This is used to minimize disturbance to the atomistic dynamics in the
physical region of interest (core). Similar methods of current interest resulted
from extensive research in coupling continuum modelling with atomistic sim-
ulations, resulting in hybrid continuum-atomistic simulations (OConnell &
Thompson 1995, Hadjiconstantinou & Patera 1997, Hadjiconstantinou 1999).

The buffer region is located near both ‘edges’ of a patch simulation and
is separated from the core region. As shown in Figure 2.5 the buffer regions
extend from the patch edges to the action edges, |x| > 3h/4 . The buffer
caters for a smooth transition between the action regions. Figure 2.6 shows an
alternative schematic view of the patch: this view emphasises the microscale
2h-periodicity in x and the role of the ‘buffer’ region between the two action
regions, on the opposite ‘side’ to the important core region. Our approach
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Figure 2.6: A schematic view of a microscale patch that emphasises the 2h-
periodicity in x and indicating the need for the lower ‘buffer’ region allowing
for a smooth transition between the action regions.

does not implement buffer regions between the action regions and the core
region (Bunder & Roberts 2012, Bunder et al. 2013), as shown in Figures 2.5
and 2.6.

Some approaches of multiscale methods have proposed patch schemes
with buffer regions that are used for a different purpose than the buffers used
in our model. For example, Kevrekidis et al. (2003) and Samaey et al. (2006)
imposed appropriate boundary conditions for micro-simulator using buffer re-
gions. The buffers temporarily shield the internal region of the patches from
the artificial disturbance caused by the repeatedly updated boundary condi-
tions. The relation between buffer size, time step and accuracy are discussed
in detail by Kevrekidis et al. (2003), Samaey et al. (2006) and Bunder &
Roberts (2012). For homogenisation problems, Samaey et al. (2006) also
suggested that buffers are not required when the microscale structures are
smooth.

In the multiscale finite element method, the idea of a buffer region was
also introduced to reduce or eliminate the effect of the boundary layer (Holian
& Ravelo 1995).

2.3.1 Coupling atomistic simulations

This section details the new approach to couple the periodic patch simulation
to the surrounding macroscale environment. The coupling is achieved by
implementing a proportional controller (Bechhoefer 2005, e.g.) in the action
regions. The applied control is proportional to the differences between the
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interpolated macroscale field and the microscale patch simulator.
According to the kinetic energy theory of gases, the average kinetic energy

of a collection of gas atoms is directly proportional to the temperature (Loeb
2004). Therefore, in our simulations, the non-dimensional temperatures are
computed in the core and left and right action regions from the average
kinetic energy of the atoms in each region (§A.1.3, lines 45–48):

Tc = mean
j∈core

kej , Tl = mean
j∈left

kej , Tr = mean
j∈right

kej , (2.9)

in terms of the non-dimensional kinetic energy of each atom, kej = |~qj|2/2
(the initial conditions and conservation of momentum in the algorithm ensure
the mean velocity of the atoms is zero).

For a single periodic patch centred at x = 0 coupled to the distant bound-
aries at x = ±H , the scheme’s predicted macroscale field for the temperature
is the parabolic interpolation through the three values TL, T0 and TR,

Tint(x, t) =
TL
2

(
x2

H2
− x

H

)
+ T0

(
1− x2

H2

)
+
TR
2

(
x2

H2
+
x

H

)
, (2.10)

where the small finite width of the core results in the central temperature T0

being slightly different to the core mean Tc(t). Elementary algebra gives

T0 =

[
Tc(t)

(1− r2/48)
− r2(TR + TL)

96− 2r2

]
, (2.11)

where the patch ratio r = h/H is the geometric parameter that will appear
frequently in this thesis, which is used to characterise the relative size of the
patch and hence also that of the gap. In practice, the patch ratio r needs to
be as small as possible to minimise the computational cost, but it has to be
big enough to contain enough atoms for sensible averages.

This macroscale interpolation (2.10) empowers us to express values on
the left and right action averages, in terms of the macroscales Tc, Tl and Tr.
Averaging the predicted macroscale field (2.10) over each action region de-
termines that the action regions should have the average temperatures

Tint,± =

(
1− 13r2

48

)
T0 +

(
TR + TL

2

)
13r2

48
∓
(
TR − TL

2

)
r

2
, (2.12)

where ± is for the right/left action region respectively. Some molecular
simulations (Sotomayor 2007, p.157 e.g.) control the system temperature by

adding a small friction term, −µmj~qj, with Gaussian noise, ~R(t), so that

mj
d~qj
dt

= ~Fj − µjmj~qj + ~R(t). (2.13)
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In our atomistic simulations, inspired by this approach, we modify (2.13) by
changing the friction term to an appropriate control and assuming that the
noise term is small and therefore negligible. The applied control is propor-
tional to the differences between the macroscale predictions on the action
regions (2.12) and the temperatures (2.9) in the patch simulation (§A.1.3,
lines 50–56). The controller accelerates or decelerates the atoms in the ac-
tion region accordingly. That is, for each atom, Newton’s second law (2.6) is
modified by the control to (§A.1.3, lines 58–60)

d~qj
dt

= ~Fj +


Kµ
h2Tr

(Tint,+ − Tr)~qj , j ∈ right action,
Kµ
h2Tl

(Tint,− − Tl)~qj , j ∈ left action,

0 , otherwise,

(2.14)

where the ~Fj are the inter-atomic forces defined by (2.6), and µ is the non-
dimensional proportional control strength. Consequently, when the atoms in
an action region are too cool, below Tint,±, then the control accelerates the
atoms to heat them up, and vice versa. The proportional controller is of
strength µ , to be chosen optimally in our simulations.

2.3.2 Numerical simulations verify the validity of the
proportional control

Numerical simulations of the microscopic system (2.14) for the controlled
patch verify that the proposed proportional control is effective. Figure 2.7
shows the patch atomistic simulation of the microscale temperature T in
the core and action regions in the governing equation (2.14). The simula-
tions were carried out inside the cubic periodic patch |x| < 3.5, simulat-
ing N = 343 atoms of monatomic gas. The periodic patch is coupled to
boundaries at x = ±7 with specified temperatures TL = 0.5 and TR = 1.5
by implementing the proportional controller defined by equation (2.16). No
computations were performed on the gaps between the periodic patch and
boundaries. The non-dimensional control strength used in this simulation
is µ = 30 . In the example shown in Figures 2.7 there are two time scales
apparent.

• At the microscale level, time scale of ∆t < 1, the proportional control
establishes that the temperatures in the action regions differ according
to the local gradient of macroscale temperature. In this realisation the
temperature gradient is 1/(2H) = 1/14 , so that over the distance 2/7
between mid-action regions a temperature difference of 0.25 is main-
tained as shown by Figure 2.7(b). The atomistic fluctuations about
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Figure 2.7: Temperatures over macroscale times in the sub-patch regions (a),
and the temperature difference Tl − Tr (b). The simulation is of 343 atoms
in a patch of spatial periodicity 2h = 7 and with control strength µ = 30
to couple with macroscale boundary temperatures TR = 1.5 and TL = 0.5
at x = ±7 .
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this mean increase in time as the overall temperature increases (Fig-
ure 2.7(a)).

• At the macroscale level, time scale of ∆t ≈ 30, Figure 2.7(a) shows
that the core temperature heats towards the correct mean of 1.0 —
albeit exhibiting some fluctuations arising from the stochastic nature
of the atomistic dynamics. This macroscopic time-scale is the diffusion
time for heat across the macroscopic length scale 2H = 14.

For completeness, proportional controllers should be applied for the other
macroscale quantities of density, pressure and average velocity. However,
here there is little to control in these variables as, through conservation in
the code of atoms and overall momentum, in the patch the density is constant,
and the average velocity zero from the initial conditions. Thus, in this pilot
study, we just control the non-trivial dynamics of the temperature.

2.4 Analyse optimal control for a single patch

This section analyses the heat diffusion pde (2.15)–(2.16) that models the
controlled patch atomistic simulation (2.14) of the previous Section 2.3. We
compare this patch model with the heat diffusion pde (2.7) on the entire
macroscale domain.

The equilibrium solution to the diffusion pde (2.15) with constant bound-
ary temperatures is the linear field T = 1

2
(TR + TL) + x

2H
(TR − TL). The dy-

namics superimposed on this equilibrium are an arbitrary linear combination
of the modes

Tn = eλnt sin [kn (x+H)] ,

with associated eigenvalues λn = −Kk2
n for wavenumbers kn = nπ/(2H),

for n = 1, 2, 3, . . . . With only one patch in the whole physical domain as
shown in Figure 2.5, the patch atomistic simulation can only approximate
the gravest n = 1 mode

T1 = eλ1t cos(k1x),

with wavenumber k1 = π/(2H) and rate λ1 = −Kk2
1 = −Kπ2/(4H2). We

find a control so the predictions of the single patch scheme (§2.3) match this
gravest mode as well as the linear field.

The atomistic simulation within a patch will also be reasonably well mod-
elled by the continuum heat diffusion pde albeit with significant microscale
fluctuations. In our restricted microscale patch scheme, Figure 2.5, the
macroscale quantities are assumed to be homogeneous in the cross-sectional
variables y and z so we only explore the xt-structure of the temperature
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field, T (x, t). The corresponding continuum pde for the controlled patch is
then

∂T

∂t
= K

∂2T

∂x2
+
Kµ

h2
g(x, T ), 2h-periodic in x, (2.15)

where the control shape, piecewise constant, is

g(x, T ) =


Tint,+ − Tr , h

4
< x < 3h

4
,

Tint,− − Tl , −3h
4
< x < −h

4
,

0, otherwise.

(2.16)

The temperatures Tint,± , given by (2.12), come from the predicted field (2.19)
via the core average

Tc =
2

h

∫ +h/4

−h/4
T dx, (2.17)

and values TR and TL at the macroscale boundaries x = ±H . Let Tl and Tr ,
in equation (2.16), be the averages over the left and right action regions on
the microscale patch

Tl =
2

h

∫ −h/4
−3h/4

T dx, Tr =
2

h

∫ 3h/4

h/4

T dx. (2.18)

The core average Tc(t) is not quite the centre field value T0 = T (0, t). Substi-
tuting the centre patch value field T0 (2.11) into (2.10) gives the macroscale
interpolation

Tint(x, t) =

(
1− x2

H2

)[
Tc(t)

(1− r2/48)
− r2(TR + TL)

96− 2r2

]
+

(
TR + TL

2

)
x2

H2
+

(
TR − TL

2

)
x

H
. (2.19)

Thus, the interpolation determines that the action regions should have the
average temperatures

Tint,± = ±2

h

∫ ±3h/4

±h/4
Tint(x, t) dx

=

(
1− 13r2

48

)
T0 +

(
TR + TL

2

)
13r2

48
∓
(
TR − TL

2

)
r

2
, (2.20)

where T0 is given by (2.11).



2.4. Analyse optimal control for a single patch 31

In the case of constant boundary temperatures, the controlled patch prob-
lem (2.15)–(2.16) has equilibrium, with Tc = T0 = 1

2
(TR + TL), of

T =


T0 + µ∆T

4
x/h, |x| < h

4
,

T0 + µ∆T
16

[
3
2
− 2(2x/h− 1)2

]
signx, h

4
< |x| < 3h

4
,

T0 + µ∆T
4

(signx− x/h), |x| > 3h
4
,

(2.21)

where ∆T = (TR − TL)h/(4H)/[1 + µ/12]. A first important check is that
this equilibrium has the correct mean core temperature of T0 = (TR+TL)/2 .

To understand the dynamics of the patch scheme (2.15)–(2.16), Sec-
tion 2.4.1 characterises the general solution, relative to the equilibrium, in
terms of spatial eigenfunctions.

2.4.1 An eigenproblem of the controlled patch scheme

This section forms an eigenproblem for the patch model (2.15)–(2.16) via
separation of variables. The ultimate aim of this section is to derive the
good control (2.42) which is obtained in Section 2.5.3.

Relative to the equilibrium (2.21), consider the case in which the bound-
ary temperatures are zero T (±H, t) = 0. On the controlled patch assume
that the temperature field

T (x, t) = eλtT̂ (x), (2.22)

for eigenvalue λ = −Kk2 corresponding to some wavenumber k to be deter-
mined. Substituting the solution form (2.22) into pde (2.15) yields

0 = T̂xx + k2T̂ +
µ

h2
g(x, T̂ ), (2.23)

for eigenfunctions T̂ which are 2h-periodic. We solve algebraically this eigen-
problem (2.23) in four pieces: in the core region |x| < h/4, in the left and
right action regions h

4
< |x| < 3h

4
, and finally in the buffer region |x| > 3h

4
.

The four pieces are connected by continuity conditions. There are two classes
of eigenfunctions, symmetric and antisymmetric within the patch, found re-
spectively by the following Sections 2.4.2 and 2.4.3.

2.4.2 Symmetric eigenfunctions

This section finds the symmetric eigenfunctions of the patch scheme. We
find that all but one of the associated wavenumbers k scale with ∝ 1/h ,
and the corresponding decay rate scales with K/h2 that characterise mi-
croscale modes of the pde within the patch. The exception is the smallest
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wavenumber which is largely independent of h and corresponds to the emer-
gent macroscale mode.

We seek solutions of the eigenproblem (2.23) for the temperature field T̂
that are piecewise smooth and symmetric about the mid-patch x = 0 (and
then necessarily about the ‘edges’ of the periodic patch x = ±h). Symmetric
eigenfunctions corresponding to temporal decay e−Kk

2t, k > 0 , are of the
form

T̂ =


A cos kx, |x| < h/4 ,

C +D cos[k(x∓ h
2
)]± E sin[k(x∓ h

2
)], ±h/4 ≶ x ≶ ±3h/4 ,

B cos[k(x∓ h)], x ≷ ±3h/4 ,

(2.24)
for some constants A,B,C,D and E. The upper version of the middle case
in (2.24) is for the right action, whereas the lower version is for the left action
region. The corresponding derivative fields are

T̂x =


−kA sin kx, |x| < h/4 ,

−kD sin[k(x∓ h
2
)]± kE cos[k(x∓ h

2
)], ±h/4 ≶ x ≶ ±3h/4 ,

−kB sin[k(x∓ h)], x ≷ ±3h/4 .

(2.25)

The forcing control g of (2.16), encoded in the simulation, is a constant
in x for each region of the patch. The symmetric eigenfunctions (2.24) satisfy
the governing ode (2.23) in the core and buffer regions. To satisfy the
governing ode (2.23) in the action regions requires

−Dk2 cos

[
k

(
x∓ h

2

)]
+ k2

{
C +D cos

[
k

(
x∓ h

2

)]}
+
µ

h2
g± = 0,

that is,

k2C +
µ

h2
g± = 0. (2.26)

Substituting the symmetric eigenfunctions (2.24) into the macroscale inter-
polation (2.19) gives

T̂int =

(
1− x2

H2

)(
1

1− r2/48

)
2

h

∫ h/4

−h/4
T̂ (x, t) dx

=

(
1− x2

H2

)(
1

1− r2/48

)
2A

h

∫ h/4

−h/4
cos kx dx

=

(
1− x2

H2

)(
1

1− r2/48

)
4A

hk
sin

kh

4
.
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Averaging this interpolation over the right and left action regions is the same
by symmetry:

T̂int,± = ±2

h

∫ ±3h/4

±h/4
T̂int(x, t) dx

=
4A

kh

(
1− 13r2/48

1− r2/48

)
sin

kh

4
.

Substituting the symmetric eigenfunction (2.24), in the action regions, into
the definition of the right action region (2.18) yields

T̂r =
2

h

∫ 3h/4

h/4

T̂ (x, t) dx

=
2

h

∫ 3h/4

h/4

C +D cos

[
k

(
x− h

2

)]
+ E sin

[
k

(
x− h

2

)]
dx

= C +D
4

kh
sin

kh

4
.

The control depends on the difference in the action regions between the
macroscale field and the microscale patch simulator. Therefore, taking the
difference of these last two averages, the forcing control (2.16) in both action
regions is

g± =
4A

kh

(
1− 13r2/48

1− r2/48

)
sin

kh

4
− C −D 4

kh
sin

kh

4
.

Substituting this forcing control g± into equation (2.26) and multiplying
by h2 gives

k2h2C + µ

[
4A

kh

(
1− 13r2/48

1− r2/48

)
sin

kh

4
− C −D 4

kh
sin

kh

4

]
= 0. (2.27)

This equation, combined with the continuity equations, determines the
wavenumbers and the structures of internal modes in this microscale patch.

Continuity of the symmetric eigenfunctions

Solving the ode (2.23) on the patch domain requires continuity for the sym-
metric eigenfunctions T̂ and their derivatives T̂x at x = ±h/4 and x = ±3h/4.

• Continuity of the symmetric eigenfunctions T̂ , (2.24), requires

A cos
kh

4
= C +D cos

kh

4
− E sin

kh

4
, at x = ±h/4,

B cos
kh

4
= C +D cos

kh

4
+ E sin

kh

4
, at x = ±3h/4.

(2.28)
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• Continuity of the derivatives T̂x of the eigenfunctions (2.25), requires

khA sin
kh

4
= −khD sin

kh

4
− khE cos

kh

4
, at x = ±h/4,

khB sin
kh

4
= −khD sin

kh

4
+ khE cos

kh

4
, at x = ±3h/4.

(2.29)

Now we form equations (2.27) and (2.28)–(2.29) as the matrix-vector
system

cos kh
4

0 −1 − cos kh
4

sin kh
4

0 cos kh
4

−1 − cos kh
4

− sin kh
4

sin kh
4

0 0 sin kh
4

cos kh
4

0 sin kh
4

0 sin kh
4

− cos kh
4

4µ
kh

(
1−13r2/48
1−r2/48

)
sin kh

4
0 k2h2 − µ − 4µ

kh
sin kh

4
0



A
B
C
D
E

 = ~0.

The determinant of the matrix has to be zero for non-trivial solutions,
namely,

det =
2

kh

[(
1− 1− 7r2/48

1− r2/48

)
4µ sin2 kh

4

(
sin2 kh

4
− cos2 kh

4

)
+ 2kh(k2h2 − µ) sin

kh

4
cos

kh

4

(
sin2 kh

4
− cos2 kh

4

)]
= 0.

Using the double–angle identity

sin2 kh

4
− cos2 kh

4
= − cos

kh

2
,

the characteristic equation becomes

−4 cos
kh

2
sin

kh

4

[
µ

(
1− 7r2/48

1− r2/48

)
4

kh
sin

kh

4
+ (k2h2 − µ) cos

kh

4

]
= 0.

(2.30)
Algorithm 1 numerically computes these wavenumbers kh for equation (2.30)
as shown in Table 2.1. For two different patch ratios, r = 0.1 and r = π/2 ,
Table 2.1 displays one small eigenvalue which is the leading symmetric mi-
croscale eigenvalue, and all the remaining eigenvalues are large and nega-
tive, λ < −9.87. These eigenvalues with large negative real-parts are mi-
croscale sub-patch modes as they correspond to the dissipative modes within
a patch.

Now let us establish how the pattern shown by Table 2.1 occurs. Al-
gebraically, setting each factor on the left-hand side of the characteristic
equation (2.30) to zero, gives us three cases.
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Algorithm 1 Numerically solve equation (2.30) to determine the wavenum-
bers kh for symmetric modes.

1 % numerically solve det=0 for symmetric modes

2 % ratio of patch to domain size (r<=1)

3 r=0.1

4 hh=pi/2 % for simplicity the macroscale domain is length pi

5 h=r*hh; % patch half -size

6 mu =34.673

7 Fq=1-7*r^2/48

8 F0=1-r^2/48

9 %fn=@(kh) 4./kh.*tan(kh /4) -47/41;

10 fn=@(kh)-4*cos(kh/2).* sin(kh /4).*( mu*Fq/F0*sin(kh /4)*4./ kh...

11 +(kh.^2-mu).* cos(kh /4));

12 format bank

13 kh=fsolve(fn ,1:50);

14 kh=sort(kh);

15 kh=kh(diff([kh 1e99])>1e-5)

16 %khh=(kh/h)' wavenumber(k)

17 khh=kh '
18 lambda=-(kh).^2/h^2;

Table 2.1: Set of numerical wavenumbers kh and the corresponding decay
rate λh2/K of each mode of the characteristic equation (2.30) for symmetric
modes with parameters µ = 34.673, and H = π/2.

Patch ratio r = 0.1 Patch ratio r = 2/π

kh λh2/K kh λh2/K

0.16 −1.02 1.02 −1.04
3.14 −400.00 3.14 −9.87
8.20 −2724.20 8.16 −66.55
9.42 −3600.00 9.42 −88.83
12.57 −6400.00 12.57 −157.91
15.71 −10000.00 15.71 −246.74
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• First, cos kh
2

= 0 requires kh
2

= nπ
2

for odd n; that is, wavenum-
ber k = nπ/h for odd n corresponding to rapidly decaying microscale
structures of internal modes of the patch with eigenvalue λ = −Kk2 =
−Kn2π2/h2 as shown in the second and fourth lines of Table 2.1.

• Second, sin kh
4

= 0 requires kh
4

= nπ for an integer n; that is, wavenum-
ber k = 4nπ/h for an integer n, corresponding to another representa-
tion of rapidly decaying microscale structures of internal modes of the
patch with eigenvalues λ = −Kk2 = −16Kn2π2/h2 as shown in the
fifth line of Table 2.1.

• The last factor being zero is

µ

(
1− 7r2/48

1− r2/48

)
4

kh
sin

kh

4
+ (k2h2 − µ) cos

kh

4
= 0,

which rearranges to

4

kh
tan

kh

4
=

(
1− k2h2

µ

)(
1− r2/48

1− 7r2/48

)
. (2.31)

Figure 2.8 plots the two sides of equation (2.31) as a function of
wavenumbers kh. For the case r = 2/π, as shown in Figure 2.8
there is one small wavenumber, kh ≈ 1.02, and all the rest sat-
isfy kh > 2π > π, corresponding to rapid decaying microscale modes
with eigenvalues λ < −Kπ2/h2. The eigenvalue of macroscale inter-
est corresponds to this small wavenumber kh ≈ 1.02, as it is the long
lasting macroscale mode. Section 2.5 proves that this pattern of the
eigenvalues seen in Table 2.1 and Figure 2.8 holds in general.

2.4.3 Antisymmetric eigenfunctions

Section 2.4.2 explores symmetric eigenfunctions and determines the eigenval-
ues corresponding to each of these symmetric modes. This section determines
the antisymmetric eigenfunctions within our periodic patch simulation and
finds algebraically all the possible wavenumbers and eigenvalues.

We start by seeking solutions of the eigenproblem (2.23) for the tem-
perature field T̂ that are piecewise smooth and antisymmetric about the
mid-patch x = 0 (and then necessarily about the ‘edges’ of the periodic
patch x = ±h). Such solutions have the form

T̂ =


A sin kx, |x| < h/4 ,

±C +D sin[k(x∓ h
2
)]± E cos[k(x∓ h

2
)], ±h/4 ≶ x ≶ ±3h/4 ,

B sin[k(x∓ h)], x ≷ ±3h/4 ,

(2.32)
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Figure 2.8: The lhs of equation (2.31) (blue) has an infinite number of
vertical asymptotes at kh = 2nπ for odd n; the rhs of equation (2.31)
(green) intersects it infinitely often (red circles) (here the control µ = 34.673,
and the patch ratio r = 2/π). The vertical axis is nonlinearly scaled.

for some constants A,B,C,D and E. The corresponding derivative fields are

T̂x =


kA cos kx, |x| < h/4 ,

kD cos[k(x∓ h
2
)]∓ kE sin(x∓ h

2
)], ±h/4 ≶ x ≶ ±3h/4 ,

kB cos[k(x∓ h)], x ≷ ±3h/4 .

(2.33)

The forcing control g±, defined by (2.16), is piecewise constant in x, so
solving the ode (2.23) in the left and right action regions leads to requiring

k2

{
±C +D sin

[
k

(
x∓ h

2

)]
± E cos

[
k

(
x∓ h

2

)]}
−Dk2 sin

[
k

(
x∓ h

2

)]
∓Ek2 cos

[
k

(
x∓ h

2

)]
+
µ

h2
g± = 0,

that is,

±k2C +
µ

h2
g± = 0. (2.34)

We need to express the forcing control g± in terms of the macroscale inter-
polated field in both action region averages. Substituting the antisymmetric
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eigenfunctions T̂ (2.32) into the macroscale interpolation (2.19) gives

T̂int(x) =

(
1− x2

H2

)(
1

1− r2/48

)
2

h

∫ h/4

−h/4
T̂ (x, t) dx

=

(
1− x2

H2

)(
1

1− r2/48

)
2A

h

∫ h/4

−h/4
sin kx dx

= 0.

Interpolating this average to the left and right action regions yields Tint,± = 0.
Substituting the antisymmetric eigenfunctions (2.32), defined in the action
regions, into the definition of the right action region (2.18) yields

T̂r =
2

h

∫ 3h/4

h/4

T̂ (x, t) dx

=
2

h

∫ 3h/4

h/4

C +D sin

[
k

(
x− h

2

)]
+ E cos

[
k

(
x− h

2

)]
dx

= C + E
4

kh
sin

kh

4
.

For antisymmetric eigenfunctions, the average over the left action region is

T̂l = −C − E 4

kh
sin

kh

4
.

Therefore, the forcing control (2.16) in both action regions is

g± = ∓C ∓ E 4

kh
sin

kh

4
. (2.35)

Substituting this forcing control g± (2.35) into equation (2.34) and multiply-
ing by h2 gives

k2h2C + µ

[
−C − E 4

kh
sin

kh

4

]
= 0. (2.36)

This equation is combined with the continuity equations in order to determine
all possible wavenumbers and eigenvalues.

Continuity of antisymmetric eigenfunctions

Solving the ode (2.23) on the patch domain requires continuity for the an-
tisymmetric eigenfunctions T̂ and their first derivatives T̂x.
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• Continuity for the antisymmetric eigenfunctions T̂ (2.32) at x = ±h
4
,

requires

A sin
kh

4
= C −D sin

kh

4
+ E cos

kh

4
,

and at x = ±3h
4
, requires

C +D sin
kh

4
+ E cos

kh

4
= −B sin

kh

4
.

• Continuity for the derivative T̂x (2.33) of the antisymmetric eigenfunc-
tions at x = ±h

4
, requires

kA cos
kh

4
= kD cos

kh

4
+ kE sin

kh

4
,

and at x = ±3h
4
, requires

kD cos
kh

4
− kE sin

kh

4
= kB cos

kh

4
.

Adjoining equation (2.36) with the above four continuity equations for the
antisymmetric eigenfunctions forms the matrix-vector system

sin kh
4

0 −1 sin kh
4

− cos kh
4

0 − sin kh
4

−1 − sin kh
4

− cos kh
4

cos kh
4

0 0 − cos kh
4

− sin kh
4

0 cos kh
4

0 − cos kh
4

+ sin kh
4

0 0 k2h2 − µ 0 − 4µ
kh

sin kh
4



A
B
C
D
E

 = ~0.

The determinant of this matrix has to be zero for non-trivial solutions,
namely,

det =
−4

kh

[
4µ cos2 kh

4
sin2 kh

4
+ kh(k2h2 − µ) cos3 kh

4
sin

kh

4

− kh(k2h2 − µ) cos
kh

4
sin3 kh

4

]
= 0. (2.37)

Simplify the above characteristic equation (2.37) by using double angle for-
mula and factoring gives

−4 cos
kh

4
sin

kh

4

{
2µ

kh
sin

kh

2
+ (k2h2 − µ)

[
cos2 kh

4
− sin2 kh

4

]}
= 0.
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Algorithm 2 Numerically solve equation (2.38) for antisymmetric modes.

1 % numerically solve det=0 for Antisymmetric modes

2 r=0.1 % ratio of patch to domain size (r<=1)

3 hh=pi/2 % for simplicity the macroscale domain is length pi

4 h=r*hh; % patch half -size

5 mu =34.673

6 fn=@(kh)-2*sin(kh /2).*( mu*sin(kh /2)*2./ kh+(kh.^2-mu).*cos(kh/2));

7 format bank

8 kh=fsolve(fn ,1:50);

9 kh=sort(kh);

10 kh=kh(diff([kh 1e99])>1e-5);

11 lambda=-(kh).^2/h^2;

Table 2.2: Set of numerical wavenumbers kh, and eigenvalues λ for equa-
tion (2.38) for antisymmetric modes with parameters µ = 34.673, and H =
π/2.

Patch ratio r = 0.1 Patch ratio r = 2/π

kh λh2/K kh λh2/K

6.02 −1467.62 6.02 −36.21
6.28 −1600.00 6.28 −39.48
9.67 −3787.89 9.67 −93.46
12.57 −6400.00 12.57 −157.91
15.75 −10052.61 15.75 −248.04
18.85 −14400.00 18.85 −355.31

For further simplification, we use double angle identities in the first and
second factor to derive

−2 sin
kh

2

[
2µ

kh
sin

kh

2
+ (k2h2 − µ) cos

kh

2

]
= 0. (2.38)

Equation (2.38) determines all possible wavenumbers and eigenvalues which
describe antisymmetric modes within the patch. Algorithm 2 numerically
computes these wavenumbers kh for equation (2.38) as shown in Table 2.2.
For two different patch ratios, r = 0.1 and r = π/2 , Table 2.2 displays
all antisymmetric microscale eigenvalues with large negative real-parts λ <
−36.21. These eigenvalues represent microscale modes within the patch.

Analogous to the case of symmetric eigenfunctions in Section 2.4.2, we
establish how the pattern shown by Table 2.2 occurs. Algebraically, setting
each factor on the left-hand side of equation (2.38) to zero, gives two cases.

• The first factor being zero sin kh
2

= 0 requires kh
2

= nπ for integer n;
that is, wavenumber kh = 2nπ for integer n, corresponding to rapidly



2.5. A spectral gap generally exists 41

Algorithm 3 Matlab code plotting the two sides of equation (2.39) showing
there are an infinite number of wavenumbers k.

1 %This is plot for the antisymmetric second case where

2 %(2/kh)* tan(kh/2)=-(k^2h^2/mu -1)

3 hh=pi/2;% for simplicity the macroscale domain is length pi

4 r=2/pi;% ratio of patch to domain size (r<=1)

5 h=hh*r;

6 ll=25;

7 mu =34.673

8 kh = linspace (1e-4,ll ,999);

9 v1=(2./ kh).*tan(kh ./2);

10 v1(abs(v1)>20)=nan;

11 v2= -(kh .^2./mu -1);

12 v2(abs(v2)>20)=nan;

13 [xout ,yout] = intersections(kh,asinh(v1),kh ,asinh(v2),1);

14 plot(kh ,asinh(v1),kh,asinh(v2),xout ,yout ,'ro','markersize ' ,5)
15 tickx =[-20 -10 -5 -2 -1 0 1 2 5 10 20]

16 set(gca ,'Ytick ',asinh(tickx),'YtickLabel ',num2cell(tickx))
17 xlabel('kh')

decaying microscale structures of internal modes of the patch with
eigenvalue λ = −Kk2 = −Kn2π2/h2, as shown in the second and
fourth lines of Table 2.2.

• The second factor in (2.38) being zero rearranges to

2

kh
tan

kh

2
= 1− k2h2

µ
. (2.39)

Figure 2.9 plots the two sides of this equation. It shows the gen-
eral pattern of an infinite number of possible wavenumbers k > 0
of intercepts, all for kh

2
> π

2
, corresponding to rapidly decaying mi-

croscale modes (the algebraic formula (2.32) for eigenfunctions degen-
erates at k = 0 so that this apparent intersection is not a possible
wavenumber). The wavenumbers kh are roots of the transcendental
equation (2.39). Figure 2.9 illustrates that equation (2.39) has only
non-zero wavenumbers kh > π .

2.5 A spectral gap generally exists

For different parameters of control strength µ, and for small enough patch
ratio r, we prove the spectral gap of the patch system, namely all eigenval-
ues λ ≤ −Kπ2/h2, except one eigenvalue relatively near zero. Let us start
with antisymmetric modes first as discussed in Section 2.4.3.



42 Chapter 2. A periodic patch scheme in atomistic simulations

0 5 10 15 20 25
−20

−10

−5

−2
−1

0

1
2

5

10

20

kh

Figure 2.9: The lhs of equation (2.39) (blue) has an infinite number of
vertical asymptotes at kh = nπ for odd n; the rhs of equation (2.39) (green)
intersects it infinitely often (red circles). Algorithm 3 generates this figure
where the strength control µ = 34.673, and the patch ratio r = 2/π. The
vertical axis is nonlinearly scaled.
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• For the first factor sin kh
2

of the characteristic equation (2.38) to be
zero requires kh

2
= nπ for n = 1, 2, 3, . . . . Therefore, the corresponding

eigenvalues are large and negative

λ = −Kk2 ≤ −K 4π2

h2
< −Kπ2/h2,

as seen in the second, fourth and sixth lines of Table 2.2 for example.

• The second factor of the characteristic equation (2.38) rearranges to
equation (2.39).

Consider the first branch of the tan function such as seen in Figure 2.9,
that is for kh/2 < π/2. In equation (2.39)

lhs =
2

kh
tan

kh

2
> 1, whereas rhs = 1− k2h2

µ
< 1.

Thus, there is no intersection between the two curves for 0 < kh < π.
The smallest solution to equation (2.39) must lie in the second branch
of the tan function, which for kh/2 > π/2. Therefore, all solutions
satisfy kh > π. This holds for all control strength µ.

Consequently, all the corresponding eigenvalues for the antisymmetric modes
are large and negative λ = −Kk2 < −Kπ2/h2.

Now we discuss the symmetric modes which include the one relatively
small eigenvalue λ.

• For the first factor cos kh
2

of the characteristic equation (2.30) to be
zero requires kh/2 ≥ π/2, that is, eigenvalue λ ≤ −Kπ2/h2, as shown
in the second, fourth and sixth lines of Table 2.1.

• For the second factor sin kh
4

of the characteristic equation (2.30) to be
zero requires kh ≥ 4π, that is, eigenvalue λ ≤ −K16π2/h2 < −Kπ2/h2

as seen in the fifth line of Table 2.1.

• The third factor of the characteristic equation (2.30) rearranges to
equation (2.31). There are two subcases, as seen in Figure 2.8 for
example: the smallest wavenumber kh; and all the rest.

– Except for the smallest wavenumber kh, all wavenumbers kh > 2π,
with corresponding eigenvalues λ < −K4π2/h2 for all branches of
the tangent.

– The smallest wavenumber occurs on the first branch, kh < 2π, of
the tangent.
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1
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47
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1−r2/48
1−7r2/48

Figure 2.10: Schematic digram of the lhs (blue) and rhs (green) of equa-
tion (2.31); bounding the smallest wavenumber kh ≤ 2.4441 by considering
patch ratios r ≤ 1.

Now we establish the conditions of parameters r and µ, so that a useful
spectral gap exists in the patch system. To show there is a clear spectral
gap we explore the first branch of 4

kh
tan kh

4
on 0 < kh < 2π in the two

cases of patch ratios r ≤ 1 and the more practical case r ≤ 0.5.

– For patch ratios r ≤ 1, the left-hand side of equa-
tion (2.31), 4

kh
tan kh

4
, is an increasing function of kh, and the

right-hand side, (1 − k2h2/µ)
(

1−r2/48
1−7r2/48

)
is a decreasing function

of kh. For r ≤ 1 the maximum values in the right-hand side of
equation (2.31) are

0 <

(
1− r2/48

1− 7r2/48

)
≤ 47

41
and

(
1− k2h2

µ

)
≤ 1,

as shown in Figure 2.10. Therefore, for all parameters µ, kh,
and r ≤ 1 the the right-hand side of equation (2.31) is(

1− k2h2

µ

)(
1− r2/48

1− 7r2/48

)
≤ 47

41
.

Numerically solving 4
kh

tan kh
4

= 47
41

we obtain the bounding
wavenumber kh = 2.4441. This is an upper bound for the smallest
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Figure 2.11: Schematic digram of the lhs (blue) and rhs (green) of equa-
tion (2.31); bounding the smallest wavenumber kh ≤ 1.2241 by considering
patch ratios r ≤ 0.5.

solution kh of equation (2.31) as shown in Figure 2.10. Since the
smallest macroscale eigenvalue bound λ1 ≥ −5.9736K/h2 and all
the other eigenvalues λ ≤ −π2K/h2, there is a spectral gap, but
it is not guaranteed to be clear for all r ≤ 1.

– For patch ratios r ≤ 0.5, we bound on the smallest wavenum-
ber kh, in the same manner as the previous case. For r ≤ 0.5 the
maximum values in the right-hand side of equation (2.31) are

0 <

(
1− r2/48

1− 7r2/48

)
≤ 191

185
and

(
1− k2h2

µ

)
≤ 1,

as seen in Figure 2.11. Therefore, for all parameters µ, kh, and r ≤
0.5 the right-hand side of equation (2.31) is(

1− k2h2

µ

)(
1− r2/48

1− 7r2/48

)
≤ 191

185
.

Numerically solving 4
kh

tan kh
4

= 191
185

we find the bounding
wavenumber kh ≤ 1.2241. This is an upper bound for the
solution kh of equation (2.31), with corresponding eigenvalue
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Table 2.3: Numerical wavenumbers kh and eigenvalues λ using finite dif-
ferences method agree with the exact wavenumbers kh and eigenvalues λ
from equation (2.30) and (2.38). The parameters, µ = 34.693, r = 2/π
and H = π/2. The magenta numbers are for symmetric modes, whereas the
blue numbers are for antisymmetric modes.

kh λ kh, (2.30) &(2.38) λ, (2.30)& (2.38)
1.02 −1.03 1.02 −1.04
3.14 −9.87 3.14 −9.87
6.00 −36.01 6.02 −36.21
6.28 −39.48 6.28 −39.48
8.14 −66.32 8.16 −66.55
9.42 −88.82 9.42 −88.83
9.66 −93.40 9.67 −93.46

12.57 −157.89 12.57 −157.91
12.57 −157.89 12.57 −157.91
15.71 −246.69 15.71 −246.74

bound λ1 ≥ −1.4984K/h2. Thus, there is a clear spectral gap
between the smallest eigenvalue λ1 ≥ −1.4984K/h2 and all the
other eigenvalues λ ≤ −π2K/h2, guaranteed for all r ≤ 0.5 and
all µ.

This spectral gap indicates the existence of an emergent 1D slow mani-
fold in this dynamics of the patch scheme (2.15) (Roberts 1988, Pötzsche &
Rasmussen 2006). Because of the persistence of slow manifolds under per-
turbations, such a slow manifold here indicates that the controlled periodic
patch scheme will possess such an emergent slow manifold for a wide variety
of cognate systems.

2.5.1 Numerical eigenvalue analysis of a controlled
patch verifies derived exact eigenvalues

Numerical examples verify the analytical results. Algorithm 4 calculates the
wavenumbers and the eigenvalues of the continuum pde for the controlled
patch (2.15). For the purpose of comparison, Table 2.3 lists the macroscale
numerical wavenumbers kh and eigenvalues λ and the exact wavenumbers kh
and eigenvalues λ from equations (2.30) and (2.38) respectively, where the
patch ratio r = 2/π. The numerical eigenvalues are in reasonable agreement
with the exact eigenvalues.



2.5. A spectral gap generally exists 47

Algorithm 4 Numerical wavenumbers and eigenvalues of the controlled
patch scheme (2.15)–(2.16) (in matrix form) are determined in matlab.

1 % Explore coupling periodic one patch to the distance boundary

2 %Here just the diffusion PDE with a control at quarter

3 %centred action regions.

4 r=2/(pi) % ratio of patch to domain size (r<=1)

5 nc=5;% averaging regions over the 2nc+1 grid points centred

6 n=(2*nc+1)*4 % this choice means core and averaging regions abutt

7 hh=pi/2 % for simplicity the macroscale domain is length pi

8 dx=2*r*hh/n; % microscale lattice spacing

9 % key microscale lattice indices

10 i0=n/2+(-nc:nc);

11 il=n/4+(-nc:nc);

12 ir=3*n/4+(-nc:nc);

13 wts=ones (1,2*nc +1)/(2* nc+1);

14 xpp=dx*((0:n)-n/2); % patch coordinates

15 c=(nc +0.5)* dx; % halfwidth of averaging/action regions

16 % put physical location of the wrapped quarter points is

17 % halfway to the physical boundary

18 xq=r*hh/2; % xq=h/2 therfor xq=1/2

19 % field averages should be this factor

20 Fq=1-13*r^2/48;

21 F0= 1-r^2/48;

22 % periodic diffusion lattice op

23 format bank

24 ll=toeplitz ([-2 1 zeros(1,n-3) 1]/dx^2);

25 i=(1:n)'; % microscale index vector

26 % compute spectrum for various control strengths

27 d1=Inf;

28 mu =34.673

29 % apply control strength mu, distributed over averaging regions

30 a=ll;

31 a([il ir],[il i0 ir])=a([il ir],[il i0 ir]) ...

32 +mu/(r*hh)^2*[ ones (2*nc+1,1)*[-F0*wts Fq*wts 0*wts]

33 ones (2*nc+1 ,1)*[0* wts Fq*wts -F0*wts]];

34 [v,d]=eig(a);

35 complexity=norm(imag(diag(d)))

36 [d,j]=sort(real(diag(d))','descend ')
37 % \mu and first 16 eigenvalus

38 muevals =[mu d(1:16) d(end )];

39 mmuevalues=muevals '
40 kh=r*hh*sqrt(-d(1:16));

41 if abs(d(1)+1) < abs(d1(1)+1) , d1=d; v1=v(:,j); mu1=mu; end

42 % for the best of the above control strengths , plot some eigenvectors

43 v=v1; d=d1; mu=mu1

44 v=v.* meshgrid(sign ([1 1e-20 1e-40]*v(1:3 ,:)));

45 v=v./ meshgrid(max(abs(v)));

46 clf()

47 plot(xpp ,v([n 1:n] ,1:5)* diag (1./ max(1,sqrt(abs(d(1:5))))) , 'o-')
48 legend(num2str(d(1:5) ' ,4))
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Table 2.4: Numerical eigenvalues λ using finite differences method agree with
the exact eigenvalues λ from equation (2.30) and (2.38). The parameters, µ =
34.693, r = 0.1 and H = π/2. The magenta numbers are for symmetric
modes, whereas the blue numbers are for antisymmetric modes.

λ λ, (2.30) & (2.38)
−1.02 −1.02
−400.00 −400.00
−1467.40 −1467.62
−1599.95 −1600.00
−2723.94 −2724.20
−3599.74 −3600.00
−3787.60 −3787.89
−6399.19 −6400.00
−6399.19 −6400.00
−9998.02 −10000.00
−10050.63 −10052.61

With one exception, all of these possible wavenumbers k ∝ 1/h , and the
corresponding decay rate ∝ K/h2 characterises microscale modes within the
patch. All these microscale modes cause the spatial structure internal in the
patch to rapidly approach a quasi-equilibrium: in a time proportional to a
cross-patch diffusion time.

Let us consider the small patch ratio r = 0.1 as an example closer to a
practically useful configuration. The numerical computation represented in
Table 2.4 shows a large gap between the smallest eigenvalue λ = −1.02 and
all the other eigenvalues λ ≤ −400.

2.5.2 Approximation to the eigenvalue of macroscale
interest

In the controlled patch dynamics (2.15) the interesting macroscale, long-
term, emergent dynamics are characterised by the smallest magnitude eigen-
value. This section approximates this interesting eigenvalue. The eigenvalue
of macroscale interest is the one eigenvalue corresponding to the smallest kh.
The corresponding small eigenvalue to the smallest kh occurs in the third
case, equation (2.31), as illustrated in Figure 2.8. Two asymptotics are of
interest in solving equation (2.31).

• Approximate equation (2.31) for strong control µ ‘large’, and for
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small kh and small patch size ratio r :(
1− 7r2/48

1− r2/48

)
4

kh
sin

kh

4
≈ cos

kh

4(
1− 7r2/48

1− r2/48

)[
1− 1

6

(
kh

4

)2
]
≈ 1− 1

2

(
kh

4
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kh ≈ ±
√

6r = ±
√

6
h

H

That is, wavenumber k ≈ ±
√

6/H giving eigenvalue λ ≈ −6K/H2.

• Approximate equation (2.31) for arbitrary control µ and for the
macroscale mode of small wavenumber kh :

µ

(
1− 7r2/48

1− r2/48

)(
1− k2h2

96

)
+ (k2h2 − µ)(1− k2h2

32
) = O(k4h4).

Omit products of small quantities to derive

µ

(
1− 7r2/48

1− r2/48

)(
1− k2h2

96

)
+ k2h2 − µ+ µ

k2h2

32
= O(k4h4)

k2h2

[
1

µ
+

1

32
− 1

96

(
1− 7r2/48

1− r2/48

)]
−
[
1−

(
1− 7r2/48

1− r2/48

)]
= O(k4h4).

That is, straightforward algebra leads to

k2h2 =
r2/8

(1+2r2/48)
48

+ (1−r2/48)
µ

+O(k4h4).

From the numerator kh ∝ r so the r2 terms in the denominator are
negligable, giving

k2h2 =
6r2

1 + 48/µ
+O(r4). (2.40)
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Figure 2.12: Best forcing control µ (2.42) on the interval 0 < r < 1.

This gives eigenvalue

λ ≈ − 6K

H2(1 + 48/µ)
. (2.41)

For the purpose of checking this result, for a small patch ratio r and
large control strength µ, the approximate (2.41) reduces to the previous
case of eigenvalue λ ≈ −6K/H2. This small eigenvalue corresponds to
the slow decay of the macroscale mode. This dominates the long-term
dynamics of the controlled periodic patch of the diffusion equation pde.

2.5.3 Determining optimal forcing control for a single
patch

This section aims to determine a good forcing control µ within the periodic
patch scheme. For the controlled patch simulation to best predict the correct
macroscale dynamics of this mode, we need the wavenumber (2.40) to match
the gravest wavenumber of the heat pde (2.7)–(2.8) on the macroscale do-
main. Section 2.4 found the wavenumber to be k1H = π/2 , that is k1h = π

2
r.

Thus obtain a best control by substituting this desired wavenumber into the
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Figure 2.13: Cooling/heating atoms in the left/right action regions of a patch,
and molecules decreases/increases their motion, resulting in a decrease/an
increase in temperature.

characteristic equation (2.31) to yield

8

πr
tan

πr

8
=

(
1− π2r2

4µ

)(
1− r2/48

1− 7r2/48

)
.

Rearrange this equation gives(
1− π2r2

4µ

)
=

8

πr
tan

πr

8

(
1− 7r2/48

1− r2/48

)
π2r2

4µ
= 1− 8

πr
tan

πr

8

(
1− 7r2/48

1− r2/48

)
µ =

π2r2

4
[
1− 8

πr
tan πr

8

(
1−7r2/48
1−r2/48

)] . (2.42)

Figure 2.12 plots this good control (2.42) as a function of patch ratio r and
shows weak dependence: µ varies by just 10% over 0 < r < 1.

In an application, the optimal control (2.42) cannot immediately be used
because the result (2.42) requires an estimate of the diffusivity K for any mi-
croscale system that is diffusive-like on the microscale. Nonetheless, simula-
tions give a rough estimate for any microscale system that is largely diffusive
on the microscale. The following Section 2.6 describes one way to estimate
the diffusivity.

2.6 Estimate the diffusivity

Diffusivity, also called the diffusion coefficient, is the proportionality con-
stant between the heat flux due to heat diffusion and the gradient in the
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temperature. Diffusivity is not only encountered in heat transport, but also
in numerous other equations of physics and chemistry. This section estimates
the effective diffusivity K of the temperature field in the atomistic simula-
tions of this chapter. Figure 2.13 shows a single periodic patch with cooling
and heating of the left and right action regions of the patch, respectively.
Then the resultant temperature difference between the right and left action
regions characterises the effective heat diffusion through the core.

Here we match the atomistic simulation with the mesoscale heat diffu-
sion pde in a patch. On the mesoscale, the continuum diffusion pde modified
by cooling/heating in the left and right regions is

∂T

∂t
= K

∂2T

∂x2
+

ν

h2
G(x), (2.43)

where

G(x) =


1, for h/4 ≤ x ≤ 3h/4,

−1, for − 3h/4 ≤ x ≤ −h/4,
0, otherwise.

(2.44)

The parameter ν is the strength of the forcing cooling/heating, not the feed-
back control of Section 2.3.2.

In order to match the temperature field T (x, t) of this continuum heat
diffusion pde (2.43)–(2.44) we compare it with atomistic simulations. For
example, Figure 2.14 illustrates temperatures over macroscale times in the
sub-patch regions and the temperature difference Tr − Tl. The simulation is
of 512 atoms in a patch of spatial periodicity 2h = 8 and with cooling/heating
parameter ν = 0.9. The temperature difference Tr − Tl (Figure 2.14 (b))
suggests that the initial microscale transient increases on a time scale of
roughly two (and then evolves slowly on a macroscale time to maintain a
temperature difference of approximately about 0.15).

In the atomistic simulator we cool and heat atoms in the left and right
action regions of the patch as shown in Figure 2.13. That is, the atomic equa-
tion of motion (2.6) is modified by the heating/cooling to (§A.2.3, lines 53–56)

d~qj
dt

= ~Fj + ~qjgj, where gj =


ν

2h2Tr
, j ∈ right,

− ν
2h2Tl

, j ∈ left,

0, otherwise.

(2.45)

Recall that Section 2.3.1 computes the non-dimensional temperature in the
left region in (2.9) as Tl = 1/(2nl)

∑
j∈left |~qj|2. Hence, the rate of change of
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Figure 2.14: Temperatures over macroscale times in the sub-patch re-
gions (a), and the temperature difference Tr − Tl (b) . The simulation is
of 512 atoms in a patch of spatial periodicity 2h = 8 and with cooling/heat-
ing strength ν = 0.9.
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temperature, neglecting the movement of atoms in and out of the region, is

dTl
dt

=
d

dt

[
1

2nl

∑
j∈left

|~qj|2,
]

=
1

nl

∑
j∈left

~qj ·
d~qj
dt
.

Substituting the modified equation (2.45) into this equation gives

dTl
dt

=
1

nl

∑
j∈left

~qj ·
(
~Fj + ~qjgj

)
=

1

nl

∑
j∈left

~qj · ~Fj +
1

nl

∑
j∈left

gj · |~qj|2

=
1

nl

∑
j∈left

~qj · ~Fj −
ν

2h2Tl

(
1

nl

∑
j∈left

|~qj|2
)

=
1

nl

∑
j∈left

~qj · ~Fj −
ν

h2
. (2.46)

This equation represents the rate of temperature change in the left action
region. Analogously, the rate of temperature change in the right action region
of the patch is

dTr
dt

=
1

nr

∑
j∈right

~qj · ~Fj +
ν

h2
. (2.47)

In the continuum approximation, it is well established that the first term
on the rhs of equations (2.46) and (2.47) corresponds to the diffusion
term KTxx. Hence the cooling and heating terms in equations (2.46)
and (2.47) are modelled in the mesoscale diffusion pde by the term ν/h2G(x)
in the continuum heat diffusion pde (2.43)–(2.44).

We use Fourier series expansion to approximately solve pde (2.43)–(2.44).
By the antisymmety of G, Figure 2.15, we express the piecewise constant
source/sink G as a Fourier sine series

G(x) =
∞∑
n=1

bn sin
(nπx

h

)
,
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Figure 2.15: Constant cooling and heating the left and right action regions.

where coefficients

bn =
1

h

∫ h

−h
G(x) sin

nπx

h
dx

=
2

h

∫ h

0

G(x) sin
nπx

h
dx by symmetry

=
2

h

∫ 3h/4

h/4

sin
nπx

h
dx by (2.44)

=
2

nπ

[
− cos

3nπ

4
+ cos

nπ

4

]
=

2

nπ
[(2) cos

nπ

4
]

=
4

nπ
cos

nπ

4
.

Thus, on x ∈ (−h, h)

G(x) =
4

π

∞∑
n=1,odd

1

n
cos
[nπ

4

]
sin
[nπx
h

]
.

For simplicity in this estimation and because we only need a rough ap-
proximation to estimate ν, we neglect all terms except the first term in the
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Fourier series for G(x). Therefore, the forced diffusion pde (2.43) becomes

∂T

∂t
≈ K

∂2T

∂x2
+

2
√

2ν

πh2
sin

πx

h
. (2.48)

The equilibrium in the macroscale modelling is obtained by setting ∂T
∂t

= 0
in the forced diffusion pde (2.48)

K
∂2T

∂x2
≈ −2

√
2ν

πh2
sin

πx

h
.

Integrating this ode twice with respect to x gives

T (x) ≈ 2
√

2ν

Kπ3
sin

πx

h
+ c1x+ T∗.

The constant c1 has to be zero, since the patch is periodic, whereas the arbi-
trary constant T∗ represents the mean patch temperature. Now we compute
averages of the patch field on the left and right action regions. The average
temperature on the left action region is

Tl =
2

h

∫ −h/4
−3h/4

T (x) dx

= − 4
√

2ν

Kπ3h

(
h

π

)[
cos

π

4
− cos

3π

4

]
+

2

h

[
h

2
T∗

]
= − 8ν

Kπ4
+ T∗.

By symmetry, the average of the microscale patch field on the right action
region is

Tr =
2

h

∫ 3h/4

h/4

T (x) dx =
8ν

Kπ4
+ T∗.

Hence, the temperature difference between the left and right action regions
is

Tr − Tl ≈
(

16ν

π4

)
1

K
, that is K ≈ 16ν

π4(Tr − Tl)
. (2.49)

Now the task is to use atomistic simulations to see how Tr−Tl varies with ν
and hence determine the diffusivity K from (2.49). After fifteen simulations,
with different parameters ν and different initial conditions, Table 2.5 lists
the average temperature differences Tr − Tl and the core temperatures Tc,
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Figure 2.16: Plot the temperature differences Tr−Tl for three run simulations
shown by Table 2.5.

Algorithm 5 Plot the average of the temperature differences Tr − Tl for
different forcing cooling/heating parameters ν shown in Table 2.5.

1 %Plot the average of the temperature difference Tl-Tr for different

2 % with different paramter mu

3 % Atomistic simulations are perform with 512 atoms and with time =15

4 % Relax the intial transient ts <2 is negeleted

5 % a particle has an initial velocity of 6 m/s

6 % add random position and random velocity

7 %xq=xq +0.1* diag ([1,1,1,6,6,6])*( rand(6,nAtom ) -0.5);

8 nu = [0.1 0.2 0.5 0.7 0.9] ';
9 td= [0.009 0.021 0.077 0.088 0.123

10 0.010 0.024 0.068 0.098 0.130

11 0.017 0.023 0.063 0.098 0.117] ';
12 cs=polyfit(repmat(nu ,3,1),td(:) ,1)

13 cc=repmat(nu ,3,1)\td(:)

14 % Plot

15 figure (1)

16 nus =[0;1];

17 %plot(nu ,y,'ro ',mus ,[cs(2)+cs(1)* nus cc*nus])

18 plot(nu ,td,'ro',nus ,[cc*nus])
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Table 2.5: Compute the average temperature differences Tr − Tl , and core
temperatures Tc for t > 2, and their standard deviations σd and σc, respec-
tively, for different forcing cool/heat parameters ν. The simulation is of 512
atoms in a patch of spatial periodicity 2h = 8.

ν Tr − Tl σd Tc σc

01 0.009 0.012 0.126 0.010
0.1 0.010 0.012 0.123 0.008
0.1 0.017 0.013 0.123 0.008
0.2 0.021 0.014 0.135 0.012
0.2 0.024 0.013 0.125 0.007
0.2 0.023 0.013 0.131 0.008
0.5 0.077 0.025 0.129 0.009
0.5 0.068 0.009 0.131 0.009
0.5 0.062 0.014 0.136 0.013
0.7 0.088 0.013 0.135 0.015
0.7 0.098 0.023 0.132 0.007
0.7 0.098 0.021 0.141 0.012
0.9 0.123 0.024 0.132 0.014
0.9 0.130 0.020 0.132 0.007
0.9 0.140 0.027 0.138 0.009
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Figure 2.17: Plot the temperature differences Tr − Tl against the core tem-
peratures Tc for fixed ν = 0.2.

averaged over t > 2. These averages were determined from simulation data
such as that plotted by Figure 2.14.

Figure 2.16 plots the temperature differences Tr − Tl as a function of ν.
The data points are well fitted by a straight line through the origin which con-
firms (2.49). The slope of the line in Figure 2.16 determines the diffusivity K
(non-dimensionalised) when the average of the temperature differences Tc is
approximately 0.12. Since the slope is approximately 0.135, the nondimen-
tional diffusion constant in (2.49) is K ≈ 1.12. This approximation holds for
temperatures near 0.12− 0.14 in Table 2.5. However, Figure 2.17 illustrates
that Tr − Tl may depend on Tc.

Appendix A.3 lists some results of numerical simulations in space of N =
512 atoms in a patch of size 8 × 8 × 8. To avoid a significant amount of
simulation time when exploring different parameters, the code is executed
in parallel, presented in Appendix A.2.1. So far we have run simulations
where the temperature after initial transients evolves approaching a quasi-
equilibrium with different heating/cooling parameters ν range of 0.1 ≤ ν ≤
0.9, and a core temperature Tc, range of 0.1 ≤ Tc ≤ 0.2. Appendix A.3
lists results of the computational experiment repeated, about 60 times, with
different heating/cooling parameters ν range of 0.1 ≤ ν ≤ 0.9, and a wider
variety of random initial conditions. We want to fit a curve in the form, Tr−
Tl ≈ (a+ bTc)ν, where Tr−Tl, Tc, ν are the data presented in Appendix A.3.
matlab’s fitting routine fit gives values for the coefficients a ≈ 0.14 ranges
from 0.13 to 0.15, and b ≈ −0.02 ranges from −0.09 to 0.05. Since the
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coefficient −0.09 ≤ b ≤ 0.05, we take the approximate value as b = 0. The
goal of this section is to find an estimate of the diffusivity K, and determine
the best control for the simulation. From the computational experiment we
take a ≈ 0.14 and b ≈ 0, then the temperature difference becomes Tr − Tl ≈
0.14ν. Substituting this into (2.49) gives diffusivity K ≈ 16/(0.14π4) = 1.17
for a core temperature Tc in range of 0.1− 0.2.

Consequently, the good control strength (2.42) would be µ ≈ 32.86. This
estimate is roughly the control strength we found convenient for generating
Figure 2.7. The importance of this section is to illustrate that more simu-
lations can determine a reasonably good control of the microscale periodic
patch.

2.7 Conclusion

The atomistic simulation described by Section 2.1 presents one important
example of microscale simulators used widely in engineering and science. In
particular, we address the class of simulators that are given with periodic
conditions on the microscale. The challenge is to create a computational
wrapper around such microscale periodic simulators in order to to effectively
predict macroscale behaviour over large spatial domains.

Section 2.3 implemented a suitable proportional controller applied to ac-
tion regions in the patch of atomistic simulation to couple the periodic patch
to its neighbours over unsimulated space. Local averaged properties over
small spatial scales are used to predict the large-scale phenomena. Numerical
simulations presented in Section 2.3.2 indicate that the applied control works
effectively for atomistic simulations. The theoretical analysis establishes the
effectiveness and efficiency of such an approach, and also determines good
values for the strength of the proportional controller.

For small patch ratios r ≤ 0.5, Section 2.5 shows a clear spectral gap
in the patch dynamics which in turn indicates the existence of an emer-
gent 1D slow manifold in the dynamics of the patch scheme. The emergent
behaviour of this controlled, periodic patch, potentially predicts the appro-
priate macroscale, system level, dynamics for a wide range of microscale
simulators. Section 2.6 presents an interesting outcome of the research by
estimating the diffusivity, using a technique similar to homogenisation, to
determine the best control for the simulation.

We emphasise that the main contribution for the method presented here
lies in its potential to empower systematic analysis and understanding at a
macroscopic system level when only a given microscale simulator is available.
Further research based on this chapter could extend the analysis herein to
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establish the potential for high order accuracy, in multiple dimensions, anal-
ogous to what has been proven for patches with Dirichlet/Neumann/Robin
boundaries (Roberts & Kevrekidis 2007, Roberts et al. 2014).



Chapter 3

One patch scheme for diffusion
with time-varying boundary
forcing

Many multiscale modelling methods for dissipative systems have been un-
der investigation in the last two decades. Roberts & Kevrekidis (2005),
and Kevrekidis & Samaey (2009) developed new techniques for multiscale
modelling aiming to empower scientists and engineers to bridge space and
time scales to simulate over the macroscale of interest. In particular, the
patch method helps us predict macroscale behaviour over large spatial re-
gions. Hyman (2005) discusses briefly the patch dynamics algorithm for
time-dependent problems, while Kevrekidis et al. (2003) discuss the scheme
in more detail and provide several physical applications.

For either dissipative or non-dissipative systems, the physical domain is
divided into small, well-separated patches. A micro-simulator is only com-
puted inside these small patches. Each patch requires suitable coupling con-
ditions to bridge the gaps in the physical domain in which no solution is sim-
ulated. Initially, we limit our attention to the consideration of only one patch
on a one-dimensional domain and postpone considering multiple patches to
Chapter 4. We explore the general solution of microscale dynamics on a
single small patch with the aim of predicting the system level behaviour and
also to understand how the patch behaves.

This chapter considers a one-dimensional diffusion pde with varying
boundary forcing. Let x be the spatial variable and t be the time variable.
Consider a field u(x, t) satisfying the non-dimensionalised diffusion pde

∂u

∂t
=
∂2u

∂x2
, (3.1)

62
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with time-dependent macroscale boundary conditions

u(−H, t) = a(t) and u(+H, t) = b(t). (3.2)

The aim is to predict the evolution of the temperature field u(x, t), on the
macroscale domain, −H ≤ x ≤ H. The predictions are to be made by solving
the pde (3.1) only on a small patch. Solving the pde only on a patch is
the analytic analogue of computing an expensive simulation only on a small
patch.

For simplicity, let us define one small patch in the macroscale domain,
namely, −h ≤ x ≤ h. In implementation, we only run the simulation on
this small fraction of the physical domain, and for the rest of the domain,
we simply use interpolation. Since the simulation is only performed on this
small patch, −h ≤ x ≤ h, the edge values u(±h, t) have to be somehow
specified.

The patch boundary conditions are determined in Section 3.1 by using
the classic Lagrange interpolation. Section 3.2 then presents an algebraic
analysis for determining the microscale eigenvalues of the patch dynamics.
The eigenfunctions of the patch dynamics are partitioned into two categories:
orthogonal and non-orthogonal. For orthogonal eigenfunctions, Section 3.3.2
computes the spectral coefficients in a straightforward manner. For non-
orthogonal eigenfunctions, Section 3.3.3 finds the adjoint operator of the
linear constant diffusion pde (3.19) on the patch with nonlocal coupling
conditions in (3.10). Section 3.4 then finds the eigenfunctions of the adjoint
operator to form a biorthogonal complete basis which determines the spectral
coefficients in formal series solutions. Section 3.5 constructs the patch solu-
tions, and analyses the long time behaviour of the patch dynamics. Finally,
Section 3.6 explores a modified patch scheme with time-delayed communica-
tions. The aim is to quantify the effect of such a delay on the patch scheme.

3.1 Patch boundary conditions

The simulator, pde (3.1), for the microscale patch requires boundary condi-
tions. Define the macroscale grid point x = 0 at the midpoint of the patch,
and define the macroscale patch value

U(t) = u(0, t). (3.3)

By exploiting the gap-tooth scheme, we couple this small microscale patch
of simulation to the distant boundaries at x = ±H with classic Lagrange
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interpolation (Roberts & Kevrekidis 2007). The gap-tooth scheme interpo-
lates between the three points u(−H, t) = a, u(H, t) = b, and u(0, t) = U to
estimate the macroscale field as the parabola

u(x, t) = u(0, t)

(
1− x2

H2

)
+
x2

H2

(
a+ b

2

)
+
x

H

(
b− a

2

)
. (3.4)

Hence, the gap-tooth scheme estimates the field on the edges of the patch as

u(±h, t) = u(0, t)(1− r2) +
r2

2
(a+ b)± r

2
(b− a), (3.5)

where r = h/H. Thus, the one patch scheme is to solve the pde (3.1)
with bcs (3.5) in order to predict the macroscale grid-value U(t) and the
macroscale field (3.4).

In the first step, we reduce the non-homogeneous boundary condi-
tions (3.5) to the homogeneous case. Let us define the smooth function

w(x, t) = u(x, t)− C(t)

H
x−D(t), (3.6)

so that
u(0, t) = w(0, t) +D(t),

u(±h, t) = w(±h, t)± C(t)r +D(t).

Substituting these equations into (3.5) gives

w(±h, t)± C(t)r = w(0, t)(1− r2) +
r2

2
(a+ b)± r

2
(b− a)− r2D(t).

By choosing

D =
a+ b

2
and C =

b− a
2

,

we obtain the homogeneous boundary conditions for w(x, t) as

w(±h, t) = w(0, t)(1− r2). (3.7)

Substituting equation (3.6) into the diffusion pde (3.1) yields

wt = wxx −
Ċ(t)

H
x− Ḋ(t), (3.8)

where a dot over a variable denotes the first derivative with respect to time.
This forced diffusion pde (3.8) is subject to the patch homogeneous boundary
conditions (3.7).
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3.2 Solving the homogeneous equation

Consider the corresponding homogeneous problem of the linear diffu-
sion pde (3.8), namely,

∂w

∂t
=
∂2w

∂x2
, (3.9)

with the patch homogeneous boundary conditions (3.7). To apply the method
of separation of variables, we seek solutions in the form w(x, t) ∝ eλtv(x),
where v(x) is an eigenfunction corresponding to microscale eigenvalue of λ.
The corresponding boundary value problem is

d2v

dx2
− λv = 0, v(±h) = v(0)(1− r2). (3.10)

For microscale eigenvalue λ = −k2(< 0), we expect spatially trigonometric
solutions of the constant coefficient eigenproblem (3.10). Thus, a general
solution to eigenproblem (3.10) is

v(x) = c1 cos kx+ c2 sin kx,

where c1 and c2 are two constants, and k denotes a microscale wavenum-
ber. The patch homogeneous boundary conditions in (3.10) imply
that c1 cos(kh)± c2 sin(kh) = (1− r2)c1. That is,[

cos(kh)− (1− r2) sin(kh)
cos(kh)− (1− r2) − sin(kh)

] [
c1

c2

]
=

[
0
0

]
.

The determinant of this system’s matrix must be zero for non-trivial solutions
to exist and therefore we require

−2 sin(kh)[cos(kh)− (1− r2)] = 0. (3.11)

Figure 3.1 illustrates the solutions of the characteristic equation (3.11) by
asterisks and circles.

3.2.1 The spectrum

This subsection determines the microscale eigenvalues λn and the correspond-
ing microscale eigenfunctions vn(x) of the patch dynamics. The characteristic
equation (3.11) is zero in two cases.
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• First, the microscale eigenvalues λ satisfy sin(kh) = 0, where kh is a
zero of the sine function, that is, kh = nπ/2 for n even. The microscale
wavenumbers k = nπ/2h. Then the microscale eigenvalues

λ = −
(nπ

2h

)2

, n even,

are all negative, and the corresponding eigenfunctions

v(x) = sin
(nπx

2h

)
, n even. (3.12)

• Second, the microscale eigenvalues λ satisfy cos(kh) = (1− r2). In this
particular case, the microscale wavenumbers kn are non-trivial func-
tions of the patch ratio r. Set k1h = cos−1(1− r2) where 0 < k1 < π/2.
Then from the periodicity and symmetry of cos knx, as shown in Fig-
ure 3.1, the microscale wavenumbers take the form

kn±1 = kn ± k1, for n ∈ 4N,

which gives the microscale wavenumbers of k3 = k4 − k1, k5 = k4 +
k1, k7 = k8 − k1, k9 = k8 + k1, and so on. Hence, the microscale
eigenvalues take the form

λn±1 = −
(nπ

2h
± k1

)2

, for n ∈ 4N,

with the corresponding eigenfunctions

v(x) = cos(knx), n odd. (3.13)

By applying the principle of superposition, we obtain a general solution to
the homogeneous pde (3.9)–(3.10) as

w(x, t) =
∞∑

n even

ane
λnt sin(knx) +

∞∑
n odd

ane
λnt cos(knx). (3.14)

3.3 Non-homogeneous problem

The method of eigenfunction expansion is employed to solve the non-
homogeneous problem (3.7)–(3.8) with the patch homogeneous boundary
conditions (3.7). We assume eigenfunctions (3.12) and (3.13) of the eigen-
problem (3.9)–(3.10) form a complete set with respect to piecewise smooth
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Figure 3.1: Illustration of the solutions of the characteristic equation (3.11)
for the case r = 1/2. The intersection points are of two types: circles
represent the roots of cos(kh) = (1 − r2) the wavenumbers of eigenfunc-
tions cos(knx) where n is odd; asterisks represent the wavenumbers of eigen-
functions sin(knx) where n is even.

function over the microscale patch x ∈ [−h, h], and find the generalised
Fourier series expansion of the forcing terms in terms of the eigenfunctions.
The forcing terms in pde (3.8) are represented using the eigenfunction ex-
pansions

x =
∞∑

n even

cn sin(knx) and 1 =
∞∑

n odd

dn cos(knx). (3.15)

The factors cn and dn are the corresponding spectral expansion coefficients.
In order to determine these spectral coefficients cn and dn, the orthogonality
and biorthogonality conditions need to be considered.

Orthogonality (Haberman 2004, p.51). We say functions f(x) and g(x)

are orthogonal over the interval −h ≤ x ≤ h , if
∫ h
−h f(x)g(x) dx = 0.

3.3.1 The biorthogonal eigenfunction expansion

An eigenfunction expansion is a standard method for solving partial differ-
ential equations. Illustrations of the expansion for self-adjoint systems are
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typically found in numerous textbooks (Weinberger 2012, e.g.). The proper-
ties of self-adjoint operators lead to the orthogonality between two different
eigenfunctions and to a straightforward algorithm for eigenfunction expan-
sion. However, for non-self-adjoint differential operators, in fluid dynamics
for example, the eigenfunctions are not necessarily orthogonal (Li et al. 2009,
e.g.).

Here the eigenfunctions separate into two sets:

• The asymmetric sine functions are orthogonal and so are straightfor-
wardly dealt with first; and

• The symmetric cosine functions are not orthogonal and so need further
analysis.

3.3.2 Determining the spectral sine coefficients

Determining the spectral coefficients cn in (3.15) is easily achieved by ex-
ploiting the orthogonality of the sine function. Multiplying both sides of
equation (3.15) by sin(kmx) and integrating from −h to h.∫ h

−h
x sin(kmx) dx =

∞∑
n even

cn

∫ h

−h
sin(knx) sin(kmx) dx,

orthogonality yields∫ h

−h
x sin(kmx) dx = cm

∫ h

−h
sin2(kmx) dx

=
cm[2kmh− sin(2kmh)]

2km
.

Rearranging gives

cm =
2km

2kmh− sin(2kmh)

∫ h

−h
x sin(kmx) dx. (3.16)

Integrating equation (3.16) by parts we obtain

cm =
4[sin(kmh)− hkm cos(kmh)]

km[2hkm − sin(2kmh)]
, (3.17)

where km = mπ/2h, for even m, are the wavenumbers of eigenfunc-
tions sin(kmx) in the characteristic equation (3.11). Hence the eigenfunction
expansion of the antisymmetric forcing in pde (3.8) is

x =
∞∑

m even

4[sin(kmh)− hkm cos(kmh)]

km[2hkm − sin(2kmh)]
sin(kmx). (3.18)
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Figure 3.2: Spectral approximations (3.18) to the function x for the various
partial sums of 3, 5, 10, and 20 eigenmodes and in the case of patch ratio r =
0.3.

Figure 3.2 shows this spectral approximations (3.18) for the various partial
sums of 3, 5, 10, and 20 eigenmodes and in the case of patch ratio r = 0.3.

3.3.3 Determining the spectral cosine coefficients

Determining the spectrum coefficients dn in (3.15) is more involved due to the
non-orthogonality of the eigenfunctions cos(knx) for the particular wavenum-
bers kn for odd n. The eigenfunctions over the microscale domain [−h, h],
for the case in which n is odd, are not mutually orthogonal. This is due to
the non-self-adjointness of the system (Eckhaus 2012, p.16). However, we
exploit the property of biorthogonality by finding the adjoint eigenfunctions,
and then we compute the spectral coefficients in the eigenfunction expansion
using eigenfunctions of the adjoint problem.
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The first goal of this subsection is to find the corresponding adjoint op-
erator. On the patch |x| < h define the spatial diffusion operator

Lv :=
d2

dx2
v, (3.19)

such that v(x) and its first derivative vx are continuous at x = 0 and with
boundary conditions in (3.10).

Let v(x) and z(x) be functions of x. Define the inner product over the
patch to be

〈v, z〉 :=

∫ h

−h
vz dx. (3.20)

We aim to find the adjoint operator L† satisfying the fundamental property
of the adjoint operator

〈Lv, z〉 = 〈v,L†z〉, (3.21)

for all v in the domain of L and z in the domain of L†. To find the adjoint
operator observe that the microscale patch is effectively subdivided into two
subregions by the patch boundary conditions in (3.10). Additionally, there
exists implicit conditions that the subgrid field v and its first derivative vx
are continuous at x = 0. Apply the definition of the inner product (3.20), the
definition of the operator L (3.19) and integrating by parts twice to expand
the lhs of (3.21) as

〈Lv, z〉 = 〈v, zxx〉+ (vxz − vzx)|−h + (vxz − vzx)|+h
+ (vxz − vzx)|−0 + (vxz − vzx)|+0 ,

where subscripts denote differentiations with respect to x. Also, with su-
perscripts denoting evaluation, continuity requires v±0 = v0 and v±0

x = v0
x.

Further, using the patch boundary conditions in (3.10), the inner product

〈Lv, z〉 = 〈v, zxx〉+ v0
x

[
z−0 − z+0

]
+ v0

[
−z−0

x + z+0
x + (1− r2)(z−hx − zhx)

]
− v−hx z−h + vhxz

h.

Thus, for the fundamental property of the adjoint operator (3.21) to hold,
the adjoint operator must be defined as

L† :=
d2

dx2
, (3.22)

with the following conditions:
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• firstly, that the subgrid field z satisfies Dirichlet boundary conditions
at the edges of the patch

z−h = z+h = 0; (3.23)

• secondly, that z is continuous at the centre of the patch, x = 0,

z−0 = z+0; (3.24)

• thirdly, there is a jump in the first derivative at x = 0,

z+0
x − z−0

x = (1− r2)(z+h
x − z−hx ). (3.25)

These conditions make the boundary terms in the integration by parts vanish.

3.4 Eigenfunctions of the adjoint operator

Section 3.3.3 finds the adjoint operator (3.22) with its bcs (3.23)–(3.25). We
now determine the spectrum and the eigenfunctions of the adjoint. Consider
the eigenvalue problem for the adjoint operator

L†z = λz, equivalently
d2z

dx2
− λz = 0, (3.26)

with bcs (3.23)–(3.25). This pde (3.26) is a constant coefficient in x. For
eigenvalue λ = −k2 < 0, we expect spatially trigonometric solutions of
the constant coefficient eigenproblem (3.26). Since the eigenfunction z(x)
is continuous at the origin, then a general solution to the differential equa-
tion (3.26) is

z(x) =

{
α cos kx+ β1 sin kx, x < 0,

α cos kx+ β2 sin kx, x > 0,
(3.27)

where α, β1, and β2 are constants. The first derivative of z(x) (3.27) is to be
used to satisfy the jump condition (3.25):

zx(x) =

{
−αk sin kx+ β1k cos kx, x < 0,

−αk sin kx+ β2k cos kx, x > 0.
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Satisfying the adjoint boundary conditions Evaluating the bound-
ary conditions (3.23)–(3.25) we obtain the following homogeneous system of
algebraic equations

α cos(kh)− β1 sin(kh) = 0, (3.28)

α cos(kh) + β2 sin(kh) = 0, (3.29)

α[2κk sin(kh)] + β1[−k + κk cos(kh)] + β2[k − κk cos(kh)] = 0,

where κ = (1− r2). Divide the last equation by k leads to

α[2κ sin(kh)] + β1[−1 + κ cos(kh)] + β2[1− κ cos(kh)] = 0 (3.30)

Now rewrite this homogeneous system of algebraic equations (3.28)–(3.29)
and (3.30) as the matrix equation cos(kh) − sin(kh) 0

cos(kh) 0 sin(kh)
2κ sin kh −1 + κ cos kh 1− κ cos kh

αβ1

β2

 = ~0. (3.31)

For non-trivial solutions to this system’s matrix (3.31), the determinant of
the matrix must be zero, providing the same characteristic equation (3.11).

To proceed further, as before the characteristic equation (3.11) is zero in
two cases characterised by n even and n odd.

3.4.1 Case in which n is even

First, the characteristic equation (3.11) is zero when microscale wavenum-
bers knh = nπ/2, for even n. Then the matrix equation (3.31) becomes±1 0 0

±1 0 0
0 −1± κ 1∓ κ

αβ1

β2

 = ~0,

where the upper and the lower case of each entry in this matrix are obtained
from

cos(nπ/2) =

{
+1, for n ∈ 4N,
−1, for n ∈ 4N− 2.

Solving the above matrix equation we obtain α = 0 and β1 = β2. Hence,
when we substitute α = 0 and β1 = β2 into the general solution (3.27) we
obtain eigenfunctions of the adjoint operator for n even as

zn = sin knx, for n even, (3.32)

which are identical to the corresponding eigenfunctions of the original sys-
tem (because the operator L is self-adjoint when restricted to the space of
antisymmetric functions).
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3.4.2 Case in which n is odd

The second factor of the determinant (3.11) requires that cos knh = (1− r2).
Replacing each function κ in the matrix equation (3.31) with cos knh yields cos(knh) − sin(knh) 0

cos(knh) 0 sin(knh)
2 cos(knh) sin(knh) − sin2(knh) sin2(knh)

αβ1

β2

 = ~0.

Solving this matrix equation we obtain

β1 =
α cos(knh)

sin(knh)
= cot(knh), β2 = −α cos(knh)

sin(knh)
= − cot(knh),

when α = 1. By substituting α, β1 and β2 into the general solution (3.27)
we obtain eigenfunctions of the adjoint operator for n odd as

zn(x) =

{
cos(knx) + cot(knh) sin(knx), x < 0,

cos(knx)− cot(knh) sin(knx), x > 0.
(3.33)

The eigenfunctions zn (3.32)–(3.33) (for both n even and odd) of the adjoint
operator form a biorthogonal set of functions to the original sets vn (3.12)
and (3.13), that is

〈vn, zm〉 = 0, for n 6= m. (3.34)

3.4.3 The spectral coefficients dn

In this subsection, the biorthogonality condition (3.34) determines the spec-
tral coefficients dn in (3.15). By taking the inner product of the adjoint
eigenfunctions zm for m odd and the expansions (3.15) we obtain

〈1, zm〉 =

〈
∞∑

n odd

dn cos(knx), zm

〉
=

∞∑
n odd

dn〈cos(knx), zm〉.

By using biorthogonality condition (3.34) we obtain 〈cos knx, zm〉 = 0 when-
ever n 6= m. In summing over n, only the n = m term remains and we
obtain

〈1, zm〉 = dm〈cos(kmx), zm〉.
Rearranging gives the spectral expansion coefficients

dm =
〈1, zm〉

〈cos(kmx), zm〉
. (3.35)
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By applying the definition of the inner product (3.20), the numerator on the
right-hand side of equation (3.35) becomes

〈1, zm〉 =

∫ h

−h
cos(kmx) dx+ cot(kmh)

[∫ 0

−h
sin(kmx) dx−

∫ h

0

sin(kmx) dx

]
=
−2[cos(kmh)− 1]

km sin(kmh)
.

Similarly, evaluating the denominator on the right-hand side of equa-
tion (3.35) yields

〈cos(kmx), zm〉 =

∫ h

−h
cos2(kmx) dx+ cot(kmh)

∫ 0

−h
cos(kmx) sin(kmx) dx

− cot(kmh)

∫ h

0

cos(kmx) sin(kmx) dx

= h+
sin(2kmh)

2km
− cot(kmh) sin2(kmh)

km
= h.

Thus, the spectral coefficients

dm =
2[1− cos(kmh)]

kmh sin(kmh)

=
2
{

1− [1− 2 sin2(kmh/2)]
}

2kmh sin(kmh/2) cos(kmh/2)

=
2 sin(kmh/2)

kmh cos(kmh/2)

=
2

kmh
tan(kmh/2). (3.36)

Hence the eigenfunction expansion of the forcing 1 in pde (3.8) is

1 =
∞∑

m odd

2

kmh
tan

(
kmh

2

)
cos(kmx). (3.37)

Figure 3.3 shows this spectral approximations (3.37) to the function 1 for the
various partial sums, and in the case of patch ratio r = 0.3. Evidently, the
partial sums converge to the function 1 except at the endpoints where the
Gibbs phenomenon appears.
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Figure 3.3: Spectral approximations (3.37) to the function 1 : plot the Nth
partial sums for N = 3, 5, 11, and 21 eigenmodes and in the case of patch
ratio r = 0.3.
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Figure 3.4: Illustration of the solutions of the characteristic equation (3.11),
where kn for n odd are functions of r which tends to one.

3.4.4 Finding the coefficients for r = 1

Here we explore one limit of theoretical interest. Consider the case when the
microscale patch covers the whole physical domain; that is when patch ra-
tio r = h/H → 1. When patch ratio r = 1, the patch homogeneous boundary
conditions (3.7) reduce to the exact macroscale boundary conditions (3.2).
Setting the patch ratio r = 1 reduces the spectrum coefficients to the tra-
ditional Fourier series coefficients. For r = 1, Figure 3.4 shows that the
wavenumbers k1 = π/2h, k2 = π/h, k3 = 3π/2h and k4 = 2π/h.

• The Fourier coefficients cm, m even, as r goes to one

lim
r→1

cm = lim
r→1

2

hk2
m(r)

sin(km(r)h)− lim
r→1

2

km(r)
cos(km(r)h),

=
2

hk2
m

sin(kmh)− 2

km
cos(kmh),

= − 4h

mπ
(−1)(m+2)/2.
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Figure 3.5: Spectral approximations (3.38) to the function x for the various
partial sums for N = 3, 5, 10, and 20 eigenmodes and in the case of patch
ratio r = 1.

Hence the eigenfunction expansion of the forcing x in pde (3.8) becomes

x = −
∞∑

m even

4h

mπ
(−1)(m+2)/2 sin(kmx). (3.38)

Figure 3.5 shows this approximation (3.38) to the function x for the
various partial sums, and in the case h = 1, H = 1 and r = 1. In
this case, these coefficients are well known as the Fourier expansion of
a sawtooth wave.

• For coefficients dm, where m is odd,

lim
r→1

dm = lim
r→1

2

kmh
tan(kmh/2) =

4

mπ
(−1)(m−1)/2.
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Figure 3.6: Spectral approximations (3.39) to function 1 for the various par-
tial sums for N = 3, 5, 11, and 21 eigenmodes, and in the case of patch
ratio r = 1.

Hence the eigenfunction expansion of the forcing 1 in pde (3.8) is

1 =
∞∑

m odd

4

mπ
(−1)(m−1)/2 cos(kmx). (3.39)

Figure 3.6 shows this approximations (3.39) to the function 1 for the
various partial sums in the case h = 1, H = 1 and r = 1. In this
case, these coefficients are well known as the Fourier approximation to
a square wave.
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3.5 Constructing the formal solution

All that remains to solve the non-homogeneous pde (3.8) is to find the gener-
alised Fourier coefficients in the particular forced solution. We seek a spectral
expansion

w(x, t) =
∞∑

n even

wn(x, t) sin(knx) +
∞∑

n odd

wn(x, t) cos(knx).

Term-by-term differentiation of w(x, t), first with respect to t, and separately
twice with respect to x yields

wt(x, t) =
∞∑

n even

dwn(t)

dt
sin knx+

∞∑
n odd

dwn(t)

dt
cos knx,

wxx(x, t) =
∞∑

n even

λnwn(t) sin knx+
∞∑

n odd

λnwn(t) cos knx.

Substituting these results into the forced diffusion pde (3.8) yields

∞∑
n even

[
dwn(t)

dt
− λnwn(t)

]
sin knx+

∞∑
n odd

[
dwn(t)

dt
− λnwn(t)

]
cos knx = −Ċ(t)

H
x−Ḋ(t).

Replace the rhs (the forcing terms x and 1) by their decompositions (3.15)

∞∑
n even

[
dwn(t)

dt
− λnwn(t)

]
sin knx+

∞∑
n odd

[
dwn(t)

dt
− λnwn(t)

]
cos knx

=
∞∑

n even

Ċ(t)cn sin knx+
∞∑

n odd

Ḋ(t)dn cos knx, (3.40)

where cn and dn are the spectral coefficients obtained in (3.17) and (3.36),
respectively. The eigenfunctions sin knx and cos knx are linearly indepen-
dent on the microscale interval [−h, h], so equate the Fourier coefficients in
equation (3.40) to give (Kreyszig 2011)

dwn(t)

dt
− λnwn(t) = Ċ(t)cn + Ḋ(t)dn, (3.41)

where cn = 0 when n odd and dn = 0 when n even. For simplicity, we
denote Ḟn(t) = Ċ(t)cn + Ḋ(t)dn. Therefore, the ode (3.41) becomes

dwn(t)

dt
− λnwn(t) = Ḟn(t),
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and this equation is a non-homogeneous, linear, first order, differential equa-
tion which has a general solution (Zill & Wright 2012, p.157)

wn(t) = wn(0)eλnt +

∫ t

0

eλn(t−s)Ḟn(s) ds,

for some constants wn(0) depending upon the initial conditions. Therefore,
a general solution for the non-homogeneous pde (3.8) with the patch homo-
geneous boundary conditions (3.7) is

w(x, t) =
∞∑

n even

sin(knx)

[
wn(0)eλnt +

∫ t

0

eλn(t−s)Ḟn(s) ds

]
+

∞∑
n odd

cos(knx)

[
wn(0)eλnt +

∫ t

0

eλn(t−s)Ḟn(s) ds

]
. (3.42)

One can straightforwardly check that (3.42) satisfies the governing patch
equations for all wn(0), C(t) and D(t).

3.5.1 The eigenvalue of macroscale interest

Section 3.5 determines the general patch dynamics solutions (3.42) based on
solving the microscopic dynamics on a small patch in one spatial dimension.
Here the aim is to use the general solutions (3.42) to develop a better under-
standing of the way the patch scheme behaves and, in particular, the way it
predicts for the macroscale dynamics.

Section 3.2.1 computes the spectrum of the patch scheme to be

λn = −k2
n = −

(nπ
2h

)2

, for n even,

λn±1 = − (kn ± k1)2 , for n ∈ 4N,

where k1 is the smallest solution of (3.11), namely k1h = cos−1(1− r2). This
Section 3.5.1 discusses the microscale eigenvalues and determines the slowest
mode and its dynamics. This slowest mode approximates the macroscale
dynamics.

Consider wavenumbers kn and eigenvalues λn on a ‘small’ patch; that is
small h. Being divided by h, where h = rH all these microscale wavenum-
bers kn (Figure 3.1), except for the smallest wavenumber k1, are large and the
corresponding eigenvalues represent the rapidly decaying microscale structure
of internal modes of the patch with rate −λn = k2

n . These rapidly decaying
microscale modes are not of interest to the macroscale dynamics.
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Figure 3.7: Illustration of the solutions of the characteristic equation (3.11),
where wavenumbers kn for n even are a function of r which tends to zero.

The eigenvalue of macroscale interest is the one eigenvalue corresponding
to the small wavenumber k1 : the closest eigenvalue to the zero. This small
eigenvalue λ1 has the smallest decay and the longest lasting structure which
captures all significant information of the macroscale behaviour. Figure 3.7
illustrates that as the patch ratio r tends to zero, smaller patches, this small
wavenumber k1 approaches zero.

To approximate this small eigenvalue λ1, we use a Taylor series for the co-
sine in the characteristic equation (3.11). That is, cos k1h = 1−r2 is approxi-
mately 1− 1

2
(k1h)2 ≈ 1−r2. Therefore, k1 ≈

√
2r/h =

√
2/H since r = h/H.

This gives spatial structure in the patch of the smooth cos(
√

2x/H). The
corresponding macroscale eigenvalue is

λ1 = −k2
1 ≈ −2/H2.

So, physically the long lasting eigenvalue corresponds to a reasonable
macroscale mode independent of the patch half-width h. Contrastingly, the
rest of the eigenvalues λn strongly depend upon the patch half-width h.
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3.5.2 Analyse the long-time behaviour of the patch dy-
namics solutions

This section aims to predict the long-time behaviour of the patch scheme
solution (3.42) to the diffusion pde (3.1), now with time-varying boundary
values (3.2). First, let T = 1/H2 be the macroscale diffusion time. The time
scale of the nth patch mode is 1

|λn| . For t & T all the ‘bare’ exponential

terms in the sum (3.42) tend to zero except eλ1t. However, the forcing func-
tions Ḟn inside the integral in the sum (3.42) are functions of t and these
may force modes significantly in the long-term. Therefore, the patch scheme
solution (3.42) becomes

w(x, t) ≈ w1(0) cos(k1x)eλ1t +
∞∑

n odd

cos(knx)

∫ t

0

eλn(t−s)Ḟn(s) ds

+
∞∑

n even

sin(knx)

∫ t

0

eλn(t−s)Ḟn(s) ds.

Here we derive an asymptotic expansion to approximate the integral terms.
The first term of the expansion is determined by integrating by parts: define

I[f ] :=

∫ t

0

eλn(t−s)Ḟn(s) ds,

then

I[f ] = − 1

λn

∫ t

0

Ḟn(s)
d

ds
eλn(t−s) ds

= −
[
Ḟn(t)

λn
− Ḟn(0)

λn
eλnt

]
+

1

λn

∫ t

0

d

ds
[Ḟn(s)]eλn(t−s) ds.

The term −
[
Ḟn(t)
λn
− Ḟn(0)

λn
eλnt

]
approximates the integral I[f ] with error

1

λn
I
[
d

ds
Ḟn(s)

]
= O(λ−2

n ),

where the integral decays like O(λ−1
n ) (Stein & Murphy 1993). Integrating

by parts again yields

I[f ] = −
[
Ḟn(t)

λn
− Ḟn(0)

λn
eλnt

]
−
[

1

λ2
n

d2

ds2
Ḟn(t)− 1

λ2
n

d2

ds2
(Ḟn(0))eλnt

]
+

1

λ2
n

∫ t

0

d2

ds2
[Ḟn(s)]eλn(t−s) ds,
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where the term

−
[
Ḟn(t)

λn
− Ḟn(0)

λn
eλnt

]
−
[

1

λ2
n

d2

d2s
Ḟn(t)− 1

λ2
n

d2

d2s
(Ḟn(0))eλnt

]
,

approximates the value of the integral I[f ] with an error

1

λ2
n

I
[
d2

ds2
Ḟn(s)

]
= O(λ−3

n ).

Iterating this procedure results in an asymptotic expansion

I[f ] ≈
p∑

m=1

−1

λmn

[
Ḟ (m)
n (t)− Ḟ (m)

n (0)eλnt
]

+
1

λpn
I
[
dp

dsp
Ḟn(s)

]
, (3.43)

where

Ḟ (1)
n = Ḟn, Ḟ (m)

n =
dm−1

dsm−1
Ḟn, k ≥ 1.

For definiteness, assume that the forcing function Ḟ is sufficiently smoothly
varying, say bounded by ∣∣∣∣ dpdsp Ḟn

∣∣∣∣ ≤ C ωp,

for some positive constants C and ω for all p. Then the error integral∣∣∣∣ 1

λpn

∫ t

0

eλn(t−s) d
p

dsp
Ḟn(s) ds

∣∣∣∣ ≤ 1

|λpn|

∫ t

0

eλn(t−s)
∣∣∣∣ dpdsp Ḟn(s)

∣∣∣∣ ds
≤ Cωp

|λpn|

∣∣∣∣∫ t

0

eλn(t−s) ds

∣∣∣∣
≤ Cωp

|λpn|

∣∣∣∣ 1

λn

(
1− eλnt

)∣∣∣∣
≤ C

|λn|

(
ω

|λn|

)p
,

since λn is negative. Then, as n → ∞, C
|λn|(ω/|λn|)

p → 0, provided |ω| <
|λn|. Assume |ω| < |λ2| and approximate only the modes n ≥ 2 in the
following. The integral term on the right-hand side of the integral (3.43) is
negligible, for all n and p. Hence, the remaining terms of the integral (3.43)
are

I[f ] ≈
p∑

m=1

−1

λmn

[
Ḟ (m)
n (t)− Ḟ (m)

n (0)eλnt
]
. (3.44)
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Table 3.1: The values of the microscale wavenumbers kn and the microscale
eigenvalues λn of general solution (3.42) for n = 1, 2, 3, . . . , 10, where param-
eters H = π and r = 0.1.

n kn λn
1 0.4505 −0.2030
2 10.0 −100
3 19.5 −382
4 20.0 −400
5 20.4 −418
6 30.0 −900
7 39.5 −1564
8 40.0 −1600
9 40.4 −1636

10 50.0 −2500

For even n, λn = (π2n2/4H2 r2); whereas for odd n, λ3, λ5, λ7, . . . have the
form λn±1 = −k2

n±1 = −(kn ± k1)2 where n ∈ 4N and k1 is the smallest root
of (3.11).

The next step is to neglect rapidly decaying transients. As n → ∞,
each term involves the exponential function eλnt F p

n(0) and is divided by λpn
on the right-hand side of the approximate integral term (3.44) is neglected
where k ≥ 1. Therefore, the approximate integral term (3.44) becomes

I[f ] ≈
p∑

m=1

−1

λmn

[
Ḟ k
n (t)

]
. (3.45)

Now we decide which terms should be neglected and which terms should
be kept in the approximation (3.45) for n ≥ 2. We address the issue of
neglecting and keeping these terms by considering three different cases for
different values of r with, for example, an estimation error of 1 %.

• First case (r = 0.1), neglecting integral terms in (3.45) is determined
based on how large the eigenvalue λ is. For n ≥ 2 all the inte-
gral terms (3.45) are small compared to the estimate error of 1 % as
all |λn| ≥ 100, as shown in Table 3.1. Therefore, these integral terms
are neglected. Thus, the patch dynamics predicts the solution to the
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Table 3.2: The values of the microscale wavenumbers kn and the microscale
eigenvalues λn of diffusion equation for n = 1, 2, 3, . . . , 10, where parame-
ters H = π and r = 0.3.

n kn λn
1 0.45 −0.20
2 3.33 −11.11
3 6.21 −38.60
4 6.66 −44.44
5 7.12 −50.69
6 10.00 −100.00
7 12.87 −165.88
8 13.33 −177.77
9 13.78 −190.07

10 16.66 −277.77

diffusion pde (3.1) to an error roughly 0.01 |F2(s)|, as

u(x, t) ≈ w1(0) cos(k1x)eλ1t+d1 cos(k1x)

∫ t

0

eλ1(t−s)Ḋ(s) ds+
C(t)

H
x+D(t).

(3.46)
Recall that the spectral coefficients dn = 2 tan(knh/2)/knh from (3.36),
so that d1 = 1.0017. Hence, the approximate solution of the single
patch scheme to the diffusion pde (3.1) is

u(x, t) ≈ w1(0) cos(0.4505x)e−0.2030t

+ 1.0017 cos(0.4505x)

∫ t

0

e−0.2030(t−s)Ḋ(s) ds+
C(t)

π
x+D(t).

(3.47)

• Second case (r = 0.3). Table 3.2 shows that the values of the mi-
croscale wavenumbers kn and the microscale eigenvalues λn for n =
1, 2, 3, . . . , 10, when parameters H = π and r = 0.3. For n = 1, 2, 3, 4, 5,
the integral terms (3.45) are too large to be neglected compared to the
estimate error of 1 %. Contrastingly, for n ≥ 6 the integral terms (3.45)
are small compared to the estimate error. Hence, the integral terms
for n ≥ 6 are neglected. Therefore, the patch scheme predicts the



86Chapter 3. One patch scheme for diffusion with time-varying boundary forcing

Table 3.3: The values of the approximate wavenumbers kn and the microscale
eigenvalues λn of diffusion equation for n = 1, 2, 3, . . . , 20, where parame-
ters H = π and r = 1.

n kn λn
1 1/2 −1/4
2 1 −1
3 3/2 −9/4
4 2 −4
5 5/2 −25/4
6 3 −9
7 7/2 −49/4
8 4 −16
9 9/2 −81/4
...

...
...

20 10 −100

solution of the diffusion pde (3.1) to an error roughly 0.01 |F6(s)| as

u(x, t) ≈ w1(0) cos(k1x)e−λ1t +
∑

n∈{1,3,5}

cos(knx)

∫ t

0

eλn(t−s)Ċ(s) cn ds

+
∑

n∈{2,4}

sin(knx)

∫ t

0

eλn(t−s)Ḋ(s) dn ds+
C(t)

H
x+D(t).

• Third case (r = 1), gives a full domain solution to the original diffu-
sion equation. Table 3.3 shows the values of the approximate exact
wavenumbers kn and eigenvalues λn for n = 1, 2, 3, . . . , 20, when pa-
rameters H = π and r = 1. For n = 1, 2, 3, 4, . . . , 19, the integral
terms (3.45) are too large to be neglected compared to the estimate er-
ror of 1 %. Contrastingly, for n ≥ 20 the integral terms (3.45) are small
compared to the estimate error. Hence, the integral terms for n ≥ 20
are neglected. The approximate exact solution to the diffusion pde
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(3.1) to an error roughly 0.01 |F20(s)| is

u(x, t) ≈ w1(0) cos(k1x)e−λ1t +
19∑

n=1, odd

cos(knx)

∫ t

0

eλn(t−s)Ċ(s) cn ds

+
18∑

n=2, even

sin(knx)

∫ t

0

eλn(t−s)Ḋ(s) dn ds+
C(t)

H
x+D(t).(3.48)

From these three cases, we deduce that the patch scheme solution de-
pends on the patch ratio r. We aim for the patch ratio r to be as small as
possible so that the patch is a small fraction of the physical domain and the
computational cost is minimised.

To investigate the effectiveness of predicting solutions of the diffusion pde
using microscale patches, we need to compare and contrast the patch dy-
namics solution for small r, such as r = 0.1, to the full domain solution
which is obtained for r = 1. Bear in mind that for definiteness we con-
sider the estimate error of 1 %. Observe that the microscale patch dy-
namics solution (r = 0.1) has approximately one mode, whereas the full
domain solution (3.48) has more, approximately 19 modes for 1% error.
For the first mode, the microscale wavenumber (k1 = 0.4505) and eigen-
value (λ1 = −0.2030) are reasonably close to the full domain wavenum-
ber (k1 = 0.5) and eigenvalue (λ1 = −0.25). Whereas, the other patch
modes do not closely correspond to the macroscale modes. Therefore, the
dominant mode of the microscale patch dynamics solution (3.47) reasonably
predicts the first mode of the full domain solution (3.48).

3.6 Patch dynamics with time-delayed com-

munications

This section explores the effect of time-delay communications between mi-
croscale patches on the quality of the patch scheme (Figure 3.8 illustrates
a typical scenario). Suppose we are interested in simulating the dynamics
of the field u(x, t) on small spatial patches where each patch is assumed to
be computed on a single cpu (one patch per processor). Networked cpus
allow computers to exchange information during simulations. Here the core
values of the patches communicate with each other which then determines
local boundary values. The patches communicate with each other through
the patch boundary conditions at each microscale time step (Kevrekidis et al.
2003, Roberts & Kevrekidis 2007, Roberts 2001), which in turn requires the
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delay
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Figure 3.8: Patch dynamics simulation on a system of small patches. We
investigate that one cpu for each patch. The patches communicate through
patch computed core values determining neighbouring boundary values. Here
we assume communication involves some time-delay.

transfer of data between cpus. The boundary values of each patch have to
be updated continuously in time to ensure the high quality of the patch dy-
namic scheme (Kevrekidis et al. 2003, Roberts & Kevrekidis 2007). Here we
assume that a time-delay exists between transmitting the core information
computed in one patch and its reception by the neighbouring patches, as
shown in Figure 3.8.

We take a first step in analysing such delayed communications by consid-
ering only one patch with delayed information (signals) from two neighbour-
ing ‘patches’ acting as a non-autonomous forcing of the central patch.

For the purposes of this discussion we consider that the microscopic
model is the non-dimensional diffusion pde (3.1) on the macroscopic di-
mension −H ≤ x ≤ H, and that there is only one field of macroscopic
interest u(x, t). We define one microscale patch of size 2h in the centre of the
domain, say −h ≤ x ≤ h where we aim h � H. At each time step during
execution, the micro-simulator requires boundary values at the edges of the
patch (Roberts & Kevrekidis 2007).

Figure 3.8 shows that the a(t) and b(t) are two macroscopic signals which
are notionally generated from neighbouring patches. The signals a(t) and b(t)
computed by cpu1 and cpu3 are communicated but with delay. That is, the
signals required by cpu2 are updated at mesoscale time steps which are
larger than the microscale time step of microprocessor cpu2. Such time-
delays between inputs and outputs signals are very common in engineering
and biological systems (Morari & Zafiriou 1989, e.g.). Our aim in this section
is to quantify the effects of such delays.

Delay differential equations (ddes) are an extensive and important class
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of dynamical systems. Such systems arise in which a significant time-delay ex-
ists between the applications of input to the system and their output effects in
either natural or technological control problems. ddes have several features
which make their analysis more complicated. Numerical methods, asymp-
totic solutions, and graphical tools have been employed to address ddes. An
analytical approach to linear ddes was addressed by Falbo (1995). Analyt-
ical solutions were obtained by solving the characteristic equation of ddes
under different conditions. For nonlinear ddes, Wright (1946) explored the
Fourier-like analysis of the existence of the solution and its properties. How-
ever, here we only address the effect of delays in the boundary forcing so the
microscale system in a patch is not a dde.

To simplify matters we assume that the delays are distributed according
to a first order delay differential equation with a single delay

τ
da1

dt
+ a1 = a(t), τ

db1

dt
+ b1 = b(t), (3.49)

where a(t), b(t) are the input signals to the communication system, a1, b1

are the output to the patch, and τ denotes the average delay time. The
output signal of the delay model (3.49) is usefully expressed as the following
convolution over the past history of the signal:

a1(t) = a1(0) e−t/τ +
1

τ

∫ t

0

e(s−t)/τa(s) ds,

b1(t) = b1(0) e−t/τ +
1

τ

∫ t

0

e(s−t)/τb(s) ds.

3.6.1 Parabolic interpolation provides patch boundary
values

The macroscale domain has a specified field at the physical boundaries,
namely u(−H, t) = a(t) and u(H, t) = b(t). In addition, the predicted
macroscale field has to pass through the field u in the microscale patch,
namely at x = 0, it is to be the core centre patch value U(t) = u(0, t).

The micro-simulator requires boundary values at the edges of the single
patch. To obtain such microscale boundary values, we interpolate the three
points (−H, a1), (H, b1), and (0, U) with the parabola

u(x, t) = U(t)

(
1− x2

H2

)
+
x2

H2

(
a1 + b1

2

)
+
x

H

(
b1 − a1

2

)
.

Crucially, this interpolation, assumed by the patch, uses the delayed values a1

and b1. Hence the gap-tooth scheme estimates the field on the edges of the
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patch as

u(±h, t) = U(t)(1− r2) +
r2

2
(a1 + b1)± r

2
(b1 − a1), (3.50)

where the patch ratio is r = h/H. To analyse the effect of communication
delays we use these boundary conditions (3.50).

3.6.2 Homogeneous boundary conditions

Observe that the patch boundary conditions (3.50) are not homogeneous. In
order to obtain a pde with homogeneous bcs, define the field

w(x, t) = u(x, t)− C1(t)

H
x−D1(t), (3.51)

so then
u(0, t) = w(0, t) +D1(t),

u(±h, t) = w(±h, t)± C1(t)r +D1(t).

Substituting these identities into the patch boundary conditions (3.50) gives

w(±h, t)±C1(t)r = w(0, t)(1−r2)+
r2

2
(a1+b1)± r

2
(b1−a1)−r2D1(t). (3.52)

Define

D1(t) :=
a1(t) + b1(t)

2
= D1(0) e−t/τ +

1

τ

∫ t

0

e(s−t)/τD(s) ds, (3.53)

C1(t) :=
b1(t)− a1(t)

2
= C1(0) e−t/τ +

1

τ

∫ t

0

e(s−t)/τC(s) ds, (3.54)

where D(s) = [a(s)+b(s)]/2, and C(s) = [b(s)−a(s)]/2, and substituting the
above definitions of D1(t) and C1(t) into the expression (3.52) gives the patch
homogeneous boundary conditions (3.7) for the field w(x, t). Substituting the
field (3.51) into the microscale diffusion pde (3.1) requires that the field w
satisfies the non-homogeneous pde

wt = wxx −
Ċ1(t)

H
x− Ḋ1(t), (3.55)

where, as before, a dot over a variable denotes the first derivative with respect
to time. This forced diffusion pde is subject to the patch homogeneous
boundary conditions (3.7).
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3.6.3 Analyse the forced patch dynamics

This section analyses the forced microscale diffusion pde (3.55), which in-
volves some delayed signals with the patch homogeneous boundary condi-
tions (3.7). The microscale diffusion pde (3.55) with the patch homogeneous
boundary conditions (3.7) is symbolically the same forced diffusion pde (3.8)
as in Section 3.1. Therefore, all the analysis of the microscale patch in Sec-
tion 3.5.2 holds identically when the a(t), b(t), D(t), and C(t) are replaced
by the delayed macroscale variables a1(t), b1(t), D1(t), and C1(t).

Recall that in Section 3.5.2 the patch scheme predicts the solution (3.46)
to the microscale diffusion pde (3.1) on a small patch r = 0.1 as

u(x, t) ≈ w1(0) cos(k1x)eλ1t+d1 cos(k1x)

∫ t

0

eλ1(t−s)Ḋ(s) ds+
C(t)

H
x+D(t).

Hence, replacing all macroscale variables with delayed macroscale variables,
the patch scheme predictions (3.46) become

u(x, t) ≈ w1(0) cos(k1x)eλ1t+d1 cos(k1x)

∫ t

0

eλ1(t−s)Ḋ1(s) ds+
C1(t)

H
x+D1(t).

(3.56)
To determine the time derivative of the average of the delayed signals Ḋ1(s)
notice that the definition (3.53) represents the solution of

τḊ1(t) = −D1(t) +D(t). (3.57)

Differentiating both sides of this equation with respect to t yields

τD̈1(t) = −Ḋ1(t) + Ḋ(t). (3.58)

This equation symbolically has the same solution as equation (3.57)
where D1(t) and D(t) are replaced by Ḋ1(t) and Ḋ(t). Therefore, the so-
lution of equation (3.58) is

Ḋ1(t) = Ḋ1(0) e−t/τ +
1

τ

∫ t

0

e(s−t)/τḊ(s) ds.

Then the forcing term in (3.56) is

Ḋ1(s) = Ḋ1(0) e−s/τ +
d1

τ

∫ s

0

e(s1−s)/τḊ(s1) ds1. (3.59)
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Hence, substitute D1(t), C1(t) from (3.53) and (3.54), and Ḋ(s) from (3.59),
into the approximate solution (3.56) in the field u becomes

u(x, t) ≈ w1(0) cos(k1x)eλ1t + Ḋ1(0) d1 cos(k1 x)

∫ t

0

e−s(λ1+1/τ) eλ1 t ds

+
d1

τ
cos(k1 x)

∫ t

0

eλ1(t−s)
[∫ s

0

e(s1−s)/τḊ(s1) ds1

]
ds

+
C1(0)

H
xe−t/τ +

x

τ H

∫ t

0

e(s−t)/τC(s) ds

+D1(0) e−t/τ +
1

τ

∫ t

0

e(s−t)/τD(s) ds. (3.60)

The double integral on the second line of the right-hand side of this approx-
imate solution (3.60) is simplified as

∫ t

0

eλ1(t−s)
[∫ s

0

e(s1−s)/τ D(s1) ds1

]
ds

=

∫ t

0

∫ t

s1

eλ1t+(s1/τ) e−s(λ1+1/τ) dsD(s1) ds1

=
τ

λ1 τ + 1

∫ t

0

[
eλ1 (t−s1) − e(s1−t)/τ

]
D(s1) ds1

=
τ

λ1 τ + 1

∫ t

0

[
eλ1 (t−s) − e(s−t)/τ]D(s) ds. (3.61)

Substituting this integral term (3.61), into the approximate solution (3.60)
we obtain

u(x, t) ≈ w1(0) cos(k1x)eλ1t +
d1 τ Ḋ1(0)

λ1 τ + 1
cos(k1 x)

(
e−t/τ − eλ1 t

)
+
d1 cos(k1x)

(λ1 τ + 1)

∫ t

0

[
eλ1 (t−s) − e(s−t)/τ] Ḋ(s) ds

+
C1(0)

H
xe−t/τ +

x

τ H

∫ t

0

e(s−t)/τ C(s) ds

+D1(0) e−t/τ +
1

τ

∫ t

0

e(s−t)/τ D(s) ds. (3.62)

Now we evaluate the integrals in the third and fourth lines of equation (3.62)
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by using integration by parts to obtain

u(x, t) ≈ w1(0) cos(k1x)eλ1t +
d1 τ Ḋ1(0)

λ1 τ + 1
cos(k1 x)

(
e−t/τ − eλ1 t

)
+
d1 cos(k1x)

(λ1 τ + 1)

∫ t

0

[
eλ1 (t−s) − e(s−t)/τ] Ḋ(s) ds

+
C1(0)

H
xe−t/τ +

C(t)

H
x+

C(0)

H
xe−t/τ − x

H

∫ t

0

e(s−t)/τ Ċ(s) ds

+D1(0) e−t/τ +D(t) +D(0) e−t/τ −
∫ t

0

e(s−t)/τ Ḋ(s) ds. (3.63)

This is delayed patch dynamics approximation to the diffusion pde (3.1)
where the microscale boundary values involve some communication delays.

The delayed patch dynamics approximations (3.63), in comparison to the
scheme without delays (3.46), include all the effective terms in established
patch scheme predictions without delays (3.46). The delayed patch dynamics
approximations (3.63) also exhibit some time-delays in all other terms which
can be significant in the case of multiple processors which require substantial
and effectively prohibitive data transfer between such patches. For example,
in the case of only one patch the exponential term e(s−t)/τ in the second line
of the delayed patch scheme approximations (3.63) is small provided that
the delay time τ is smaller than the macroscale diffusion time 1/λ1. In such
circumstances the delay then has little effect.

At this stage we cannot give some typical delay times. The delay time
simulation depends on physical delay time of hardware in ways which depend
upon hardware and the size of simulations. Here we assume that a time-
delay exists between transmitting the core information computed in one patch
and its reception by the neighbouring patches. In an alternative approach,
Bunder et al. (2015) discussed the accuracy of patch dynamics with mesoscale
temporal coupling for efficient exascale simulation. If one processor was to
evaluate the dynamics of a small number of adjacent patches, then coupling
data should be updated at microscale times for the patches evaluated on that
one processor. However, coupling data transfered at mesoscale times should
be maintained for patches evaluated on different processors.

3.7 Conclusion

This chapter describes a one patch dynamics scheme for the computational
simulation of multiscale problems. A single patch scheme is invoked in one
spatial dimension for diffusion problems with forcing boundary conditions.
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In Chapter 4 we analyse the scenario where, in applications, the patch scheme
would involve many small patches distributed throughout the macroscopic
domain.

The scheme predicts the macroscopic dynamics over large spatial regions
when only a microscopic model is explicitly available. The microscopic model
is solved within a small fraction of the space domain, and the coupling con-
ditions effectively bridge large intervening spatial gaps in which no solution
is computed. Symmetric and asymmetric eigenfunctions within the patch
are considered. We found that the patch coupling conditions in the micro-
system (3.10) do not form a self-adjoint Sturm–Liouville system. This indi-
cates how critical the choice is for the boundary conditions of these micro-
problems. Further exciting research would explore other patch coupling con-
ditions that preserve self-adjointness and also predict the correct macroscale
behaviour.

To perform the spectral expansions, it is required to determine eigen-
functions of the adjoint operator. These two sets of eigenfunctions are then
biorthogonal to each other, and the spectral coefficients in the eigenfunction
expansion are found using the eigenfunctions of the adjoint problem. After
obtaining these expansion, Section 3.5.2 analyses the long-term dynamics
behaviour of this scheme for a one-dimensional diffusion equation with time-
varying boundary forcing. Then we predict the microscale field for a small
patch ratio and compare such predictions with the field on the complete do-
main. In a dissipative system such as (3.1) the long-term, emergent dynamics
are characterised by the smallest decay and the longest lasting eigenvalue λ1.
This interesting eigenvalue is determined in Section 3.5.1. We expect the
same approach will also accurately couple the patch scheme in higher spatial
dimensions.

Section 3.6 presents a delayed patch scheme where we assume that one
processor only calculates the dynamics of one patch. We analyse this delayed
scheme and compare the results with a scheme without delays to delineate
when such delays are significant. Interesting future research would adapt
the delayed patch scheme for massive parallelisation where each processor
simulates the macroscale properties on a few patches.



Chapter 4

Multiple patches for diffusion
with time-varying boundary
forcing

Chapter 3 explores the behaviour of a single patch scheme when it is ap-
plied to the diffusion pde with time-varying boundary forcing. This chapter
extends the technique by solving the microscale dynamics within multiple
patches when the boundary of the macroscale domain has time-varying forc-
ing. For dissipative systems, Kevrekidis et al. (2003) and Samaey et al.
(2010) introduced and reviewed gap-tooth schemes. Such schemes perform
microscale simulations only on small separated patches, coupling the patch
simulations across space, to simulate the macroscopic behaviour of inter-
est over the macroscopic domain. Roberts & Kevrekidis (2007) developed
cross–space coupling conditions to achieve higher order accuracy over the
macroscale in the gap-tooth scheme for a class of dissipative systems. One
aim of this chapter is to show that analogous coupling works straightfor-

u

2h

H x

b(t)a(t)

X0 = 0 X1 X2 X3 X4 X5 X6 = L

Figure 4.1: Create small patches of space, of size 2h, on the macroscale
domain [0, L]. This digram shows the case for N = 5 patches, with the jth
patch centred on macroscale grid points Xj = jH.
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wardly for the diffusion pde with time-varying boundary forcing. The new
research here explores the effects of such time-varying boundary forcing and
confirms the gap-tooth scheme behaves reasonably.

As a prototypical problem, this chapter considers the non-dimensional
diffusion pde

∂u

∂t
=
∂2u

∂x2
, (4.1)

for some field u(x, t) on the physical domain of length L with initial condi-
tion u(x, 0) = u0(x) for each x ∈ [0, L]. The diffusion pde (4.1) is subject to
Dirichlet boundary conditions

u(0, t) = a(t), u(L, t) = b(t), (4.2)

where a and b are functions of time. The aim is to predict the evolution of
the field u(x, t) on the macroscopic domain of length L.

Following analogues in one dimension (Roberts 2003b, MacKenzie &
Roberts 2006), Section 4.1 couples adjacent patches with a strength char-
acterised by an artificial homotopy parameter γ. Such multiple patches of
microscale simulator are coupled by interpolation across the unevaluated
space between patches in order to mimic a microscopic simulation performed
over the entire physical domain. Section 4.1.2 explores the eigenvalues of the
linear dynamics and shows how centre manifold theory (Carr & Muncaster
1983, Vanderbauwhede 1989, Chicone & Latushkin 1997, e.g.) assures us of
the existence of a slow manifold. The computer algebra in Appendix B then
constructs the slow manifold of the system to any specified order of error.

Section 4.1.4 constructs the slow manifold discretisation of pdes with
physical boundary conditions. Section 4.2 then compares the slow manifold
approximations for the field u in one patch with analytical solutions of the
diffusion pde (4.1)–(4.2) on the complete domain.

4.1 Divide the macroscale domain into small

patches

As shown schematically in Figure 4.1, we place over the macroscale domain
a grid, 0 = X0 < X1 < · · · < XN+1 = L, where we define N interior grid
points Xj = jH, for j = 1, 2, . . . , N. The main macroscale quantities of
interest comprise the field evaluated at the internal grid points u(Xj, t). We
divide the macroscale domain into small patches of space, of size 2h, centred
around each interior grid point so that the edge of each small patch is a
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distance h from its central macroscale grid point. Microscale simulations
would be performed only in these small patches.

Our aim here is to obtain effective macroscale simulations over the entire
macroscopic domain by coupling such small, spatially separated patches of
simulation. The microscopic simulator requires boundary values on the edges
of each microscopic patch which must be obtained from the near neighbouring
grid values. Appropriate coupling conditions (4.23) bridge the gaps in the
spatial domain in which no simulations are performed.

4.1.1 Couple multiple patches across the whole domain

This section couples the dynamics of each patch across gaps. The cou-
pling conditions interpolate information from neighbouring grid values of
each patch into boundary values of the microscale patch as shown schemati-
cally in Figure 4.2. We define uj(x, t) to be the field u in the jth patch. We
also define the patch ratio r = h/H to characterise the size of each patch
relative to the distance between neighbouring patches. Overlapping patches
occur when the patch ratio r = 1, which is the case of holistic discretisation
as discussed by Roberts (2003b). Here we aim for the patch ratio r to be
small so that the patches form a relatively small part of the entire physical
domain which in turn would minimise the computational cost for a multiscale
simulation.

We define the macroscale grid values (amplitudes)

Uj(t) = uj(Xj, t), for j = 1, 2, . . . , N. (4.3)

Roberts & Kevrekidis (2007) prove classic interpolation ensure high order ac-
curacy in the gap-tooth scheme for the macroscale dynamics. With analogous
coupling conditions, we couple multiple patches for the diffusion pde (4.1)
with time-varying boundary forcing. We define a shift operator across the
macroscale field so that

Ef(x) = f(x+H) and Ejfj = fj+1. (4.4)

Then we use the following definitions and identities for discrete opera-
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patch

U1(t)
U2(t)

U3(t)
U4(t)

U5(t)

xX1 X2 X3 X4 X5

u(x, t)

Figure 4.2: Scheme of interpolating macroscale grid patch values Uj to pro-
vide boundary values at the edges of each patch. The green and blue arrows
provide edge values on the right and left of each patch.

tors (Chitode 2008, p.293).

centred mean µ =
1

2
(E1/2 + E−1/2), (4.5)

centred difference δ = E1/2 − E−1/2, (4.6)

translate/shift E = 1 + µδ +
1

2
δ2, (4.7)

derivative in x H∂x = 2 sinh−1 1

2
δ, (4.8)

operator identity µ2 = 1 +
1

4
δ2. (4.9)

We also use discrete operators on the microscale field size h instead of the
macroscale field size H : the shift operator Ehf(x) = f(x+ h), and similarly
for µh and δh.

To derive the coupling patch conditions, we use a consistent discretisation
for the first and second derivatives of the microscale diffusion pde (4.1).
For convenience, we start by using a consistent discretisation for the second
derivative on the microscopic and macroscopic fields, and then proceed with
the first derivative. For notational simplicity, we omit t for time.

Second derivative We expand the microscale operator

δ2
huj(Xj) = [Eh + E−1

h − 2]u(Xj)

= uj(Xj + h)− 2uj(Xj) + uj(Xj − h) by (4.4).

The classic relationship (4.8) between the spatial derivative ∂x and the mi-
croscale central difference operator δh is written as h∂x = 2 sinh−1 1

2
δh (Chi-

tode 2008, p.293). On the microscale, the second derivative at the mid-patch
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transforms to the equivalent discrete operator as

uxx(Xj) =
1

h2
(h∂x)

2uj(Xj) =
1

h2

[
2 sinh−1

(
δh
2

)]2

uj(Xj). (4.10)

Similarly by (4.8), on the macroscale, the second derivative at the mid-patch
transforms to the equivalent discrete operator as

uxx(Xj) =
1

H2
(H∂x)

2uj(Xj) =
1

H2

[
2 sinh−1

(
δ

2

)]2

uj(Xj), (4.11)

equating the right-hand sides of equations (4.10) and (4.11) gives

1

h2

[
2 sinh−1

(
δh
2

)]2

uj(Xj) =
1

H2

[
2 sinh−1

(
δ

2

)]2

uj(Xj).

Multiplying both sides by h2/4 and taking the square root of the operators
on both sides of the equation leads to

sinh−1

(
δh
2

)
uj(Xj) = r sinh−1

(
δ

2

)
uj(Xj),

where the ratio r = h/H. Taking the sinh of the operators on both sides
gives

δh
2
u(Xj) = sinh

[
r sinh−1

(
δ

2

)]
uj(Xj).

Multiplying both sides by two and squaring both operators gives

δ2
huj(Xj) = 4

{
sinh

[
r sinh−1

(
δ

2

)]}2

uj(Xj).

Using the amplitude definition (4.3) on the right-hand side of this equation

δ2
huj(Xj) = 4

{
sinh

[
r sinh−1

(
δ

2

)]}2

Uj. (4.12)

We insert an artificial homotopy parameter γ, 0 ≤ γ ≤ 1, to artificially
control the coupling so that equation (4.12) becomes

δ2
huj(Xj) = 4

{
sinh

[
r sinh−1

(√
γδ

2

)]}2

Uj. (4.13)

Such coupling strength γ was discussed in detail for establishing theoretical
support for patch dynamics by Roberts (2003b). Expanding the right-hand
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side of (4.13) in the Taylor series in small difference δ, the fields at both
edges of each patch satisfy

uj(Xj + h)− 2uj(Xj) + uj(Xj − h)

=

[
γδ2r2 +

γ2r2(r2 − 1)

12
δ4 +

γ3r2(r4 − 5r2 + 4)

360
δ6

+
γ4r2(r6 − 14r4 + 49r2 − 36)

20160
δ8 +O(δ9)

]
Uj. (4.14)

This empowers us to express the boundary values on the edges of each patch
in terms of interpolation of the mid-patch values from neighbouring patches.

First derivative We use a similar approach to transform the first deriva-
tive, but the first derivative requires more care. Recall that the first order
central difference,

uj(Xj + h)− uj(Xj − h)

2
= µhδhuj(Xj), (4.15)

from interrelations (4.5) and (4.6) between operators (Chitode 2008, p.293).
From (4.8) and (4.9), the microscale mean and difference operators are µh =
cosh

(
h∂x

2

)
and δh = 2 sinh

(
h∂x

2

)
respectively. Hence, microscale mean and

difference operators on the right-hand side of equation (4.15)

µhδhuj(Xj) = 2 cosh

(
h∂x
2

)
sinh

(
h∂x
2

)
uj(Xj)

= sinh(h∂x)uj(Xj).

Comparing the operator of uj(Xj) on both sides yields µhδh = sinh(h∂x).
Take inverse sinh, of both sides gives

h∂x = sinh−1(µhδh). (4.16)

On the microscale grid, the first derivative of the microscale field at the
mid-patch transforms to the equivalent discrete operator

ux(Xj) =
1

h
(h∂x)uj(Xj) =

1

h

[
sinh−1(µhδh)

]
uj(Xj) by (4.16). (4.17)

Whereas on the macroscale grid, the first derivative at the mid-patch trans-
forms to the equivalent discrete operator

ux(Xj) =
1

H
(H∂x)uj(Xj) =

1

H

[
2 sinh−1

(
δ

2

)]
uj(Xj). (4.18)
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Equating the right-hand sides of equations (4.17) and (4.18) gives

1

h

[
sinh−1(µhδh)

]
uj(Xj) =

1

H

[
2 sinh−1

(
δ

2

)]
uj(Xj).

For both sides, we multiply by h and take sinh of the operators which leads
to

µhδhuj(Xj) = sinh

[
2r sinh−1

(
δ

2

)]
uj(Xj).

From (4.9), multiply the right-hand side by the identity µ/
√

1 + δ2/4 gives

µhδhuj(Xj) =
µ√

1 + δ2/4
sinh

[
2r sinh−1

(
δ

2

)]
uj(Xj).

Introducing the amplitude definition (4.3) on the right-hand side of this equa-
tion gives

µhδhuj(Xj) =
µ√

1 + δ2/4
sinh

[
2r sinh−1

(
δ

2

)]
Uj. (4.19)

In a similar way to the second derivatives, to control the coupling we now
insert an artificial homotopy parameter γ, 0 ≤ γ ≤ 1, so that equation (4.19)
becomes

µhδhuj(Xj) =
µ√

1 + γδ2/4
sinh

[
2r sinh−1

(√
γδ

2

)]
Uj. (4.20)

Replacing the microscale mean and difference operators on the left-hand side
of (4.20) by (4.15) gives

uj(Xj + h)− uj(Xj − h)

2
=

µ√
1 + γδ2/4

sinh

[
2r sinh−1

(√
γδ

2

)]
Uj.

(4.21)
Expanding the right-hand side of (4.21) as a Taylor series in small differ-
ence δ, the fields at the edges of each patch satisfy

uj(Xj + h)− uj(Xj − h)

2

=

[
γrµδ +

γ2r(r2 − 1)

6
µδ3 +

γ3r(r4 − 5r2 + 4)

120
µδ5

+
γ4r(r6 − 14r4 + 49r2 − 36)

5040
µδ7 +O(δ9)

]
Uj. (4.22)

The expansions (4.14) and (4.22) empower us to express the boundary val-
ues on the edges of each patch, at Xj ± h, in terms of the macroscale grid
values Uj.
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Determining boundary values on the edges of each patch Adding
and subtracting expansion (4.22) to half of the expansion (4.14) provides the
values on the right and left edges of each patch, at Xj ± h,

uj(Xj ± h) =

[
1± γrµδ +

1

2
γδ2r2 ± γ2r(r2 − 1)

6
µδ3

+
γ2r2(r2 − 1)

24
δ4 ± γ3r(r4 − 5r2 + 4)

120
µδ5

+
γ3r2(r4 − 5r2 + 4)

720
δ6

± γ4r(r6 − 14r4 + 49r2 − 36)

5040
µδ7

+
γ4r2(r6 − 14r4 + 49r2 − 36)

40320
δ8

+O(δ9) ]Uj. (4.23)

This interpolation (4.23) effectively bridges the gap between the patches in
the spatial domain.

The artificial coupling parameter γ in the interpolation (4.23) plays a
crucial role in controlling the strength of coupling between adjacent patches.
For example, when the coupling parameter γ = 0, the microscale values on
the edges of each patch

uj(Xj ± h, t) = Uj(t) = uj(Xj, t),

are just identical to the microscale patch grid value. Therefore, each patch is
effectively isolated from its neighbours, dividing the physical domain into de-
coupled patches. However, when the coupling parameter γ = 1, the coupling
conditions (4.23) ensure each microscale patch matches its neighbourhood.

We obtain different accuracies by truncating the coupling condition (4.23)
to different orders in the artificial coupling parameter γ. For example,
parabolic interpolation, uj = (1 ± rµδ + δ2r2/2)Uj, from the nearest neigh-
bour patches, as illustrated in Figure 4.2, is obtained by truncating to er-
rors O(γ2) and then setting γ = 1. Whereas quartic interpolation from
nearest and next nearest neighbouring patches is obtained by truncating to
errors O(γ3). The details recorded in coupling condition (4.23), truncating
to errors O(γ5), are equivalent to eighth order interpolation from the eight
neighbouring macroscale grid values Uj±1, Uj±2, Uj±3, and Uj±4. High order
interpolations are expected to achieve a higher order of accuracy, as it does
for the holistic case r = 1 developed by Roberts & Kevrekidis (2005).



4.1. Divide the macroscale domain into small patches 103

4.1.2 Existence of slow manifold and initial approxi-
mation

This section explores the slow manifold field with coupling parameter γ. On
the jth patch, consider the diffusion equation

∂uj
∂t

=
∂2uj
∂x2

, (4.24)

with coupling conditions (4.23). Using centre manifold analysis empowers
us to demonstrate that coupled patches over large spatial gaps are able to
predict the macroscale dynamics over a large spatial region.

Space rescaling Let ξ be a new microscale space variable restricted to
the jth patch: ξ = (x−Xj)/H. Using the chain rule for the derivative of a
function with respect to x

∂

∂x
=
∂ξ

∂x

∂

∂ξ
=

1

H

∂

∂ξ
. (4.25)

Substituting (4.25) into (4.24) gives diffusion on a coupled patch system

∂uj
∂t

=
1

H2

∂2uj
∂ξ2

, (4.26)

with the nonlocal patch boundary conditions, truncated to errors O(γ2),

uj(±r) = Uj + γ

[
r2 ± r

2
Uj+1 − r2Uj +

r2 ∓ r
2

Uj−1

]
, for j = 1, 2, . . . , N.

(4.27)
To prove the existence and emergence of a slow manifold for diffusion on

coupled patches system (4.26)–(4.27) we apply centre manifold theory.

Equilibria Centre manifold theory is based on equilibria. The sys-
tem pde (4.26)–(4.27) has equilibria of uj = constant when coupling param-
eter γ = 0. Further, this constant is independent in each of the N patches
as each patch is isolated from each other when γ = 0.

Linearisation The spectrum of the linearised dynamics about each equi-
libria implies the existence of a slow manifold (Roberts 2003b). Each patch
is isolated from all other patches, as the coupling parameter γ = 0 . Hence,
linearly, the dynamics in each patch determines that of the whole set of
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patches. On the jth patch, we assume that the field uj has solutions of the
form uj = eλt[c1 cos(kξ) + c2 sin(kξ)]. The coupling (4.27) then requires[

cos(kr)− 1 sin(kr)
cos(kr)− 1 − sin(kr)

] [
c1

c2

]
=

[
0
0

]
.

for eigenvalues λ = −k2/H2 < 0 from the pde (4.26). This system has
non-trivial solutions only when the determinant vanishes

det = −2 sin(kr) [cos(kr)− 1] = 0. (4.28)

From the characteristic equation (4.28), two cases arise to determine the
wavenumbers and the corresponding eigenvalues.

• Either sin(kr) = 0 when microscale wavenumbers k = π/r, 2π/r, 3π/r,
. . ., therefore, the wavenumbers kn = nπ/r for n = 1, 2, 3, . . . . That is,
microscale eigenvalues are λn = −n2π2/h2.

• Or cos(kr) − 1 = 0 when microscale wavenumbers k = 0, 2π/r, 4π/r,
6π/r, . . ., therefore, the wavenumbers kn = nπ/r for n = 0, 2, 4, . . . .
That is, microscale eigenvalues are λn = −n2π2/h2.

Based upon the structure of this spectrum we identify the existence
of a model. The spectrum of eigenvalues for the linearised system is the
set {0,−π2/h2,−4π2/h2, . . .}. The pattern of the eigenvalues is of one zero
eigenvalue and the remainder are negative and large λ ≤ −π2/h2. The nega-
tive and large eigenvalues characterise microscale modes within the patch. All
these rapid microscale modes are generally not of interest to the macroscale
dynamics.

Theory (Carr & Muncaster 1983, Vanderbauwhede 1989, Chicone & La-
tushkin 1997, Roberts et al. 2011, e.g.) guarantees the existence of a slow
manifold in the presence of perturbation to finite coupling strength γ. The
first initial approximation of this slow manifold is derived in (4.33)–(4.34).
For a more accurate macroscale model, further iterations are required which
we undertake by computer algebra in Section 4.1.3.

The first approximation of the slow manifold

The slow manifold of (4.24) is parametrised both by the small parameters r, γ
and by grid values Uj(t) = uj(Xj, t) that are used to measure the field in the

jth patch. Define ~U to be the vector of such grid values, and seek microscale
fields in the form

uj(ξ, t) = Uj + ûj(ξ, ~U, γ) such that dUj/dt = ĝj(~U, γ),
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for small ûj and ĝj. Substituting the above into the diffusion pde (4.26), and
neglecting products of small quantities, leads to

ĝj =
1

H2

∂2ûj
∂ξ2

, (4.29)

with coupling conditions

ûj(±r)− ûj(0) = γ

[
r2 ± r

2
Uj+1 − r2Uj +

r2 ∓ r
2

Uj−1

]
, (4.30)

The amplitude definition (4.3), Uj = uj|ξ=0, requires

ûj = 0, at ξ = 0, (4.31)

as the subgrid coordinate ξ = 0 corresponds to the patch mid-point x = Xj.
Integrating equation (4.29) twice with respect to ξ gives the general solution

ûj =
ξ2H2

2
ĝj + c1ξ + c2. (4.32)

The constant of integration c2 = 0 by the amplitude condition (4.31). Sub-
tracting the two coupling conditions (4.30) we determine the constant of in-
tegration c1 = (Uj+1−Uj−1)rγ/2. To determine the slow manifold evolution
correction, we sum the two coupling conditions (4.30)

ûj(r) + ûj(−r) = γr2(Uj−1 − 2Uj + Uj+1),

whereas from the microscale field (4.32), ûj(r) + ûj(−r) = r2ĝjH
2. Thus,

the slow manifold evolution correction ĝj = γ
H2 (Uj−1 − 2Uj + Uj+1). Substi-

tuting the constants c1, c2 and the evolution correction ĝ into the microscale
field (4.32), leads to

ûj =
γξ

2
(Uj+1 − Uj−1) +

γξ2

2
(Uj−1 − 2Uj + Uj+1).

Therefore, the first non-trivial approximation to the slow manifold for the
coupled patch system (4.26)–(4.27) is

uj(ξ, t) ≈ Uj +
γξ

2
(Uj+1 − Uj−1) +

γξ2

2
(Uj−1 − 2Uj + Uj+1), (4.33)

on which the evolution is

dUj
dt
≈ γ

H2
(Uj−1 − 2Uj + Uj+1). (4.34)
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4.1.3 Computer algebra constructs the slow manifold

Recall that except for the zero eigenvalue all eigenvalues of the microscale sys-
tem on the patch fields have negative real-parts (≤ −π2/h2). This ensures
that for non-zero coupling parameter γ, the slow manifold persists. On a
cross-patch diffusion time, the patch dynamics is attracted to this slow man-
ifold. Then the system evolves slowly to provide the macroscale dynamics of
interest.

Reduce computer algebra1 is a free general purpose interactive system
for general algebraic computations of interest to mathematicians, scientists
and engineers. According to Fateman (2003) Reduce is around twenty times
faster than using the matlab (which invokes Mupad), so it is perhaps the
fastest general purpose computer algebra system. Thus, we use Reduce for
many computer algebra computations and matlab for numerical schemes
and simple computer algebra.

Computer algebra can replace much tedious manual calculation. In this
section we employ computer algebra to repetitively compute the residuals of
the governing equations (4.26) and coupling conditions (4.27). The algebra is
iterated until the governing equations are satisfied; that is, all their residuals
are zero to within a pre-specified error (Roberts 1997, e.g.). Using centre
manifold theory, such as by Roberts (1988), Pötzsche & Rasmussen (2006),
the correctness of the residual computation assures us of the order of accuracy
of the resulting approximation.

Truncating to errors O(γ3), the computer algebra of Algorithm 10 in
Appendix B, solves the coupled patch system (4.26) and (4.23) to construct
the slow manifold as

uj(ξ, t) ≈ Uj +
γξ

2
(−Uj−1 + Uj+1) +

γξ2

2
(Uj−1 − 2Uj + Uj+1)

+
γ2(ξ − ξ3)

12
(Uj−2 − 2Uj−1 + 2Uj+1 − Uj+2)

− γ2(ξ2 − ξ4)

24
(Uj−2 − 4Uj−1 + 6Uj − 4Uj+1 + Uj+2), (4.35)

on which the evolution is

dUj
dt

≈ γ

H2
(Uj−1 − 2Uj + Uj+1)

+
γ2

12H2
(−Uj−2 + 4Uj−1 − 6Uj + 4Uj+1 − Uj+2). (4.36)

The right-hand side of this slow manifold (4.35) starts with a constant term
independent of γ, then the two terms in γ correct the field by interactions with

1http://reduce-algebra.com/
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its nearest neighbours, then the two terms in γ2 correct by the interactions
with next nearest neighbours, and so on. By evaluating at full coupling γ = 1,
in the slow manifold interpolation (4.35) we obtain the approximate quartic
interpolation to the field.

The slow manifold evolution (4.36) forms a classic finite difference ap-
proximation to the diffusion pde (4.1) (Roberts et al. 2011). For examples,
by truncating the slow manifold evolution (4.36) to errors of order O(γ2)
and O(γ3) and evaluated at full coupling γ = 1, we obtain respectively

dUj
dt
≈ 1

H2
δ2Uj, (4.37)

dUj
dt
≈ 1

H2
δ2Uj −

1

12H2
δ4Uj. (4.38)

The right-hand sides of equations (4.37) and (4.38) respectively represent the
classic second and fourth order accurate finite difference approximations to
the second derivative in the diffusion pde (4.1). Algorithm 10 could achieve a
higher order in coupling of the truncation, to obtain a more accurate model.

4.1.4 Model physical boundary conditions at a grid
point

Roberts (2003a, 2014) showed how boundaries to the physical domain are
incorporated successfully into the numerical modelling of Burgers’ equation.
Constant boundary values were easily incorporated by replacing an internal
boundary condition of an end element by a variant of the actual bound-
ary condition. This subsection analogously constructs the slow manifold
discretisation of pdes with time-varying boundary values. For simplicity,
we restrict attention to one spatial dimension. Divide the spatial domain
into small patches and empower centre manifold theory by using a spatial
coupling condition to support the resulting discretisation of the dynamics.
The aim is to use this technique to create a good spatial discretisation of
the pdes for a subsequent numerical solution. The new feature is to account
for time-varying boundary values, albeit here to errors O(γ2).

Introduce basis variables for physical boundary conditions The
challenge now is to introduce some basis vector variables to label bound-
ary conditions. Consider the left boundary condition at x = 0. From the
coupling conditions (4.27) the Dirichlet boundary condition at x = 0 pro-
vides the leftmost patch couple condition on its left edge of, to errors O(γ2)



108Chapter 4. Multiple patches for diffusion with time-varying boundary forcing

and the neglect of cubic time derivatives of a and b,

u1(X1 − h) = (1− γr2)U1 +
γr

2
(−1 + r)U2 +

γr

2
(1 + r) a(t). (4.39)

Let us introduce a new parameter

δj =

{
1, if j = 1,

0, otherwise ,

as a basis vector for the boundary conditions. Instead of (4.27) we invoke
the left coupling condition

uj(Xj−h) = (1−γr2)Uj+
γr

2
(−1 + r)Uj+1+

γr

2
(1+r) [δja(t) + (1− δj)Uj−1] .

For j = 1 we obtain the first boundary condition (4.39); and for j 6= 1 we
obtain the coupling condition (4.27) to errors O(γ2).

Similarly for the right boundary, we invoke the general coupling boundary
condition

uj(Xj+h) = (1−γr2)Uj+
γr

2
(−1 + r)Uj−1+

γr

2
(1+r)

[
δ′jb(t) + (1− δ′j)Uj+1

]
,

for boundary condition parameter δ′N = 1 and all the rest δ′j = 0. The
computer algebra of Algorithm 11 in Appendix B, successfully terminates in
two iterations. It constructs the slow manifold for the diffusion pde (4.26)
with physical boundary conditions to errors O(γ2) as

uj(ξ, t) = Uj +
γξ

2

(
−Uj−1 + Uj+1 + δ′jb− δ′jUj+1 − δja+ δjUj−1

)
+
γξ2

2

(
Uj−1 − 2Uj + Uj+1 + δ′jb− δ′jUj+1 + δja− δjUj−1

)
+O(γ2), (4.40)

on which the evolution is

dUj
dt

=
γ

H2

(
Uj−1 − 2Uj + Uj+1 + δ′jb− δ′jUj+1 + δja− δjUj−1

)
+O(γ2). (4.41)

In Algorithm 11 variables lbc(j) and rbc(j) denote the parameters δj
and δ′j which parametrise the left and right boundary conditions, respectively.
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Preserving symmetry in discretised diffusion Let us now focus on the
left boundary, so we neglect all terms in δ′j. Starting with the model slow
manifold equation,

uj(ξ, t) = Uj +
γξ

2
(−Uj−1 + Uj+1 − δja+ δjUj−1)

+
γξ2

2
(Uj−1 − 2Uj + Uj+1 + δja− δjUj−1) +O(γ2), (4.42)

on which the evolution equation is

dUj
dt

=
γ

H2
(Uj−1 − 2Uj + Uj+1 + δja− δjUj−1) +O(γ2). (4.43)

For interior patches, far away from the boundary, all the parameters δj = 0
and the discretisations (4.42)–(4.43) reduce to the well established parabolic
interpolation

uj(ξ, t) = Uj +
γξ

2
(−Uj−1 + Uj+1) +

γξ2

2
(Uj−1 − 2Uj + Uj+1) +O(γ2), (4.44)

on which the evolution is classic finite difference approximation

dUj
dt

=
γ

H2
(Uj−1 − 2Uj + Uj+1) +O(γ2). (4.45)

We are only interested in the physical model obtained at full coupling γ = 1.
Therefore, the model (4.44) becomes

uj(ξ, t) ≈ Uj +
ξ

2
(−Uj−1 + Uj+1) +

ξ2

2
(Uj−1 − 2Uj + Uj+1),

on which the evolution is

dUj
dt
≈ 1

H2
(Uj−1 − 2Uj + Uj+1) .

Near boundary The non-zero parameter δ1 = 1 affects patches near the
left boundary, while all the others δj = 0. Set patches j = 1, 2 in equa-
tion (4.40), and use that only δ1 = 1, the evolution reduce to

dU1

dt
=

γ

H2
(−2U1 + U2 + a) +O(γ2), (4.46)

dU2

dt
=

γ

H2
(U1 − 2U2 + U3) +O(γ2), (4.47)

Equations (4.46)–(4.47) only contain the amplitudes defined inside the phys-
ical domain, and show how to obtain the evolution equations for all patches
from the general expression in equation (4.40) generated with the boundary
factors δj.
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4.1.5 Time-varying boundary values

Suppose we want to model a flow where the forcing at the boundary varies
in time. Take the case of the diffusion of drugs from a patch into the skin.
In the patch, the drug concentration diminishes with time, and therefore a
time-varying flux condition on the skin boundary is needed where the drug is
diffusing into the body. The same may apply in the cases of the energy or the
momentum equations. Here we investigate the effects of boundary conditions
that are changing with time. From a physical point of view, Roberts (2014)
commented that, on finite sized elements changes in boundary values diffuse
into the element, and so they take the same time to affect the subgrid field,
and hence take time to affect the evolution on the slow manifold. Thus the
modelling depends upon the rates of change of the forced boundary values.

Adapted from (Roberts 2014, p.609), computer algebra of Algorithm 12
in Appendix B shows the Reduce instructions to incorporate the Dirichlet
boundary conditions into Algorithm 11, where the forcing at the boundary
varies in time. Executing the computer algebra program of Algorithm 12 in
Appendix B, the slow manifold expressions of the solution field u(x, t) is, in
terms of ξ = (x−Xj)/H, and t and with errors O(γ2),

uj(ξ, t) ≈ Uj +
γξ

2

(
−Uj−1 + Uj+1 − δja+ δjUj−1 + δ′jb− δ′jUj+1

)
+
γξ2

2

(
Uj−1 − 2Uj + Uj+1 + δja− δjUj−1 + δ′jb− δ′jUj+1

)
+
ȧδjγH

2ξ

24

(
−2ξ2 + ξ + 2r2 − r2ξ

)
+
ḃδ′jγH

2ξ

24

(
2ξ2 + ξ − 2r2 − r2ξ

)
+ (äδjγH

2ξ)

(−ξ4

240
+

ξ5

720
+
r2ξ2

72
− r2ξ3

288
− 7r4

720
+
r4ξ

480

)
+ (b̈δjγH

2ξ)

(
ξ4

240
+

ξ5

720
− r2ξ2

72
− r2ξ3

288
+

7r4

720
+
r4ξ

480

)
, (4.48)

where we use overdots for variables a and b to denote time derivatives. The
slow manifold evolution is, to errors O(γ2),

dUj
dt

≈ γ

H2

(
Uj−1 − 2Uj + Uj+1 + δja− δjUj−1 + δ′jb− δ′jUj+1

)
− γr2

12

(
ḃδ′j + ȧδj

)
+
H2r4

240

(
b̈δ′j + äδj

)
. (4.49)

The time derivatives in the approximate slow manifold (4.48) inform us how
the field changes with time-varying boundary values. The first three terms
are the parabolic interpolation, modified by the first and second time deriva-
tive in the remaining terms that capture some sub-patch interactions between
boundary values and the diffusion.
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4.2 Comparison between slow manifold pre-

dictions and analytical solutions to diffu-

sion dynamics

The evolutions (4.45) and (4.49) in this slow manifold modelling can capture
the long-term dynamics of the original linear system. Here, we compare the
solution to these slow manifold models, limited to the case of one patch,
with the analytical solutions to the diffusion equation. For both constant
and varying boundary forcing, there is reasonable agreement between slow
manifold approximations and analytical solutions (Figures 4.3 and 4.5).

4.2.1 Evolution equations with constant and varying
boundary forcing

This section finds the solution to slow manifold models (4.45) and (4.49)
with incorporated constant and varying boundary conditions, respectively.
We restrict attention to just N = 1 patch in the domain.

Solving evolution (4.45) with constant boundary conditions

For j = 1, the evolution (4.45), on which the physical boundary conditions
are constants, becomes

dU1

dt
=

γ

H2
(−2U1 + b+ a) , (4.50)

with initial condition U1(0) = U0. Integrating this equation (4.50) with
respect to time we obtain

U1(t) =
(a+ b)

2
− 1

2
e−2γt/H2

(−2U0 + b+ a). (4.51)

Substituting (4.51) into the slow manifold approximation (4.44) gives

u1(ξ, t) ≈ (a+ b)

2
− 1

2
e−2γt/H2

(−2U0 + b+ a) +
γξ

2
(b− a)

+
γξ2

2

[
e−2γt/H2

(−2U0 + b+ a)
]
. (4.52)

Observe that on a long-time scale, t� H2/γ, the slow manifold reduces to

u1(ξ, t) =
(a+ b)

2
+
γξ

2
(b− a) ,

which describes a steady state of linear variation in u that is correct in the
fully coupled case of γ = 1.
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Solving evolution (4.49) with periodic forcing in the boundary con-
ditions

Consider the case where the specified boundary values vary in time as a(t) =
0 and b(t) = cos(ωt) for some frequency ω. The evolution equation (4.49)
becomes

dU1

dt
≈ γ

H2
[−2U1 + cos(ωt)]− γr2

12
[−ω sin(ωt)] +

H2r4

240
[− cos(ωt)] .

When the relative patch size r is negligibly small, for the long-term response
we obtain the non-autonomous system

dU1

dt
≈ γ

H2
[−2U1 + cos(ωt)] , (4.53)

with initial condition U1(0) = U0. Solving this ode (4.53) we get

U1 ≈ e−2γt/H2

(
U0 −

2γ2

4γ2 + ω2H4

)
+

γ

4γ2 + ω2H4

[
2γ cos(ωt) + ωH2 sin(ωt)

]
.

(4.54)
On a very long-time scale, t� H2/γ, all solutions approach

U1 ≈
γ

4γ2 + ω2H4

[
2γ cos(ωt) + ωH2 sin(ωt)

]
.

Substituting this into (4.48), this predicts the phase-lagged oscillating field.
Therefore, the approximation of slow manifold (4.48) for one patch is

u1(ξ, t) ≈ U1 +
γξ

2
cos(ωt) +

γξ2

2
[−2U1 + cos(ωt)]

− ω sin(ωt)γH2ξ

24

(
2ξ2 + ξ − 2r2 − r2ξ

)
− (ω2 cos(ωt)γH2ξ)

(
ξ4

240
+

ξ5

720
− r2ξ2

72
− r2ξ3

288
+

7r4

720
+
r4ξ

480

)
,

(4.55)

where U1 is given in (4.54).

4.2.2 Analytical solution for diffusion equation

This section first finds the analytical solutions for the diffusion equation
with constant boundary conditions, and follows this with specified boundary
values varying in time.
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Figure 4.3: The slow manifold approximation (4.52) for the field u(x, t) of
the diffusion pde with constant bcs (4.2) (left) compares with the analytical
solution (4.56) of the diffusion pde with same bcs (right). The slow manifold
shows a good approximation for the field u(x, t) compared with the analytical
solution.

Time-independent BCs

Here we find analytical solutions for the diffusion equation with constant bcs
to compare it with slow manifold expression (4.52) for the field u(x, t) of the
diffusion equation.

Let u(x, t) be the time-varying temperature in a spatial one-dimensional
domain. Consider the case of diffusion equation (4.1), with an initial tem-
perature distribution u(x, 0) = 0; and fixed non-homogeneous boundary val-
ues (4.2) as a = 0, and b = 10. The system (4.1)–(4.2) has a solution in the
form

u(x, t) =
10

L
x+

∞∑
n=1

20(−1)n

nπ
sin
(nπx
L

)
e−(nπ/L)2t. (4.56)

On the long-time scale, t � L2/π2, the temperature u(x, t) approaches the
equilibrium temperature v(x) = 10x/L as shown in Figure 4.3.

Periodic forcing in the boundary conditions

Consider the heat problem (4.1) with oscillatory boundary values a = 0
and b = cos(ωt). Physically, the temperature u(L, t) = cos(ωt) keeps chang-
ing, in a periodic fashion, at the end of x = L. Since the temperature is
changing periodically on one side, the solution depends upon time. However,
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after an initial transient time, we expect the solution to be periodic with
angular frequency ω, such as

u(x, t) = v(x, t) + A(x) cos[ωt+ φ(x)], (4.57)

where the transient v(x, t) becomes zero after a long time.

Find the oscillatory response solution following the approach intro-
duced by Guenther & Lee (1996) for solving the heat problem with periodic
boundary conditions, we apply the fundamental relationship of Euler’s for-
mula to trigonometry, the quasi-steady state solution becomes

u∗(x, t) = <{Q(x)eiωt} =
1

2
{Q(x)eiωt +Q∗(x)e−iωt}, (4.58)

where Q∗ denotes the complex conjugate of Q. We substitute the quasi-
steady state (4.58) for u(x, t) into pde (4.1) to obtain

1

2

[
iωQ(x)eiωt − iωQ∗(x)e−iωt

]
=

1

2

[
Qxx(x)eiωt +Q∗xx(x)e−iωt

]
.

Multiplying both sides by two and rearranging terms yields

[iωQ(x)−Qxx(x)] eiωt + [−iωQ∗(x)−Q∗xx(x)] e−iωt = 0.

This equation is a sum of complex exponentials, and it equals zero if and
only if

iωQ(x)−Qxx(x) = 0 = −iωQ∗(x)−Q∗xx(x).

The left and right terms are the complex conjugates of each other. The left
boundary condition u(0, t) = 0 implies that

1

2

{
Q(0)eiωt +Q∗(0)e−iωt

}
= 0⇒ Q(0) = Q∗(0) = 0.

By applying the other boundary condition, u(L, t) = cos(ωt), to the oscilla-
tory response (4.58) yields

1

2
{Q(L)eiωt +Q∗(L)e−iωt} =

1

2

(
eiωt + e−iωt

)
.

Multiplying both sides by two and rearranging terms yields

[Q(L)− 1]eiωt + [Q∗(L)− 1]e−iωt = 0,

this equation equals zero if and only if

Q(L)− 1 = 0 = Q∗(L)− 1⇒ Q(L) = Q∗(L) = 1.
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Solving the complex amplitude Q(x) of the oscillatory response u∗
As derived in the previous paragraph, the problem of the complex ampli-
tude Q(x) is

Qxx(x)− iωQ(x) = 0; Q(0) = 0, Q(L) = 1.

Thus, we obtain the desired solution of the oscillatory response to
the pde (4.1) as

u∗(x, t) = <
{
e
√

ω
2

(1+i)x − e−
√

ω
2

(1+i)x

e
√

ω
2

(1+i)L − e−
√

ω
2

(1+i)L
eiωt

}
.

The real part on the right-hand side expands to

u∗ =
cosωt(− cos β1 cosh β2 + cos β2 cosh β1) + sinωt (sin β1 sinh β2 − sin β2 sinh β1)

cosh
(√

2ωL
)
− cos

(√
2ωL

) ,

(4.59)

where β1 =
√

ω
2
(x+ L) and β2 =

√
ω
2
(x− L).

The oscillatory response solution satisfies the pde and the periodic forcing
in the boundary values of heat problem (4.1).

Determining the transient v(x, t) To determine the transient v(x, t) of
equation (4.57) we substitute

u(x, t) = v(x, t) + u∗(x, t),

into the pde and the periodic boundary conditions of the heat problem (4.1)
to get a new problem for v(x, t) with homogeneous boundary conditions

vt = vxx, 0 < x < L,

v(0, t) = 0, v(L, t) = 0, t > 0,

v(x, 0) = −u∗(x, 0), 0 < x < L,

(4.60)

upon assuming the initial condition u(x, 0) = 0. Where the initial condition
for v(x, t) is

v(x, 0) = −<
{
e
√

ω
2

(1+i)x − e−
√

ω
2

(1+i)x

e
√

ω
2

(1+i)L − e−
√

ω
2

(1+i)L

}
.

System (4.60) is the basic homogeneous heat problem (4.1) which has a
solution in the form

v(x, t) =
∞∑
n=1

cn sin
(nπx
L

)
e−(nπ/L)2t, cn =

2

L

∫ L

0

v(x, 0) sin
(nπx
L

)
dx,
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Figure 4.4: The first 5, 21, and 100 terms of the sine series approximation of
function (4.61). The mean absolute errors are 0.10, 0.03, and 0.01, respec-
tively.

where

v(x, 0) =
cos
[√

ω
2
(x+ L)

]
cosh

[√
ω
2
(x− L)

]
− cos

[√
ω
2
(x− L)

]
cosh

[√
ω
2
(x+ L)

]
cosh

(√
2ωL

)
− cos

(√
2ωL

) .

(4.61)
I compute coefficients cn for this v(x, 0), and plot partial sums in Figure 4.4.
The partial sums appear to reasonably converge to v(x, 0) (displaying Gibbs
phenomenon near x = 2). Therefore, the solution to the heat problem with
an oscillatory boundary values (4.1) is

u(x, t) =
∞∑
n=1

cn sin
(nπx
L

)
e−(nπ/L)2t + <

{
e
√

ω
2

(1+i)x − e−
√

ω
2

(1+i)x

e
√

ω
2

(1+i)L − e−
√

ω
2

(1+i)L
eiωt

}
.

(4.62)
where the real part is given in (4.59). On the long-time scale, t � L2/π2,
the solution approaches the oscillatory response as the transient part v(x, t)
decays exponentially.

As shown in Figures 4.3 and 4.5, for both constant and varying boundary
forcing, there is little difference between the prediction of the slow manifold
approximation for the field u(x, t) and the analytical solution. This demon-
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Figure 4.5: A space time simulation for a field u(x, t) of the diffusion pde
with boundary values varying in time u(0, t) = 0 and u(L, t) = cos(2t) and
initial condition U0 = 0 on one patch where r = 0.1 and H = 1. (Left)
the slow manifold prediction (4.55) for long-term behaviour of the dynamics
system; (right) the analytical solution (4.62) of the diffusion pde (4.1). The
slow manifold shows a good approximation for the field u(x, t) for the dif-
fusion equation with varying boundary values compared with the analytical
solution.
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strates that the slow manifold evolution can capture the significant informa-
tion of the long-term dynamics of the original linear system. Table 4.1 shows
the mean absolute error (mae), comparing the approximation of the slow
manifold for the field u(x, t) and the analytical solution in Figure 4.5.

4.3 Conclusion

This chapter extends the analysis of the one patch scheme applied to a one-
dimensional diffusion problem in Chapter 3 to multiple patches with time-
varying boundary values. The patch dynamics scheme is useful when the
available mathematical model is computationally too expensive to be sim-
ulated over the entire physical domain. The patch scheme allows overall
computation time to be reduced by restricting the simulations to only rela-
tively small, strategically distributed patches located in the spatial domain.

Classic polynomial interpolation underlies the coupling of small, widely
distributed patches proposed in Section 4.1. We use macroscale interpo-
lation (4.23) to determine the boundary conditions at the edge of each
patch. These boundary conditions couple adjacent patches, with a strength
parametrised by γ, by interpolation across the unevaluated space between
such patches in order to mimic a microscopic simulation performed over the
entire physical domain. When the artificial parameter γ = 0, the patches
are effectively isolated from each other, dividing the domain into decoupled
patches with consequently independent dynamics; whereas when the artificial
parameter γ = 1, these coupling conditions (4.23) ensure sufficient commu-
nication between patches to recover the original physical problem over all
space. Centre manifold theory is applied after dividing the macroscale do-
main into small patches. The eigenvalue analysis in Section 4.1.2 indicates
the existence of a slow manifold. Computer algebra in Section 4.1.3 then
constructs the slow manifold of the system. Comparisons are made between
the solution to the slow manifold models, limited to the case of one patch,
with the analytical solutions to the diffusion equation. Section 4.2 shows
that reasonable agreement exists between the slow manifold prediction and
the analytical solution. We expect the general analysis will apply to coupled
patches in higher spatial dimensions.



4.3. Conclusion 119

Table 4.1: The mean absolute error (mae) comparing the quality of the
approximation of the slow manifold for the field u(x, t) and the analytical
solution in Figure 4.5.

Time (t) mae

0.00 0.23
0.10 0.07
0.20 0.02
0.31 0.01
0.41 0.02
0.51 0.03
0.62 0.04
0.72 0.04
0.82 0.04
0.93 0.04
1.03 0.04
1.13 0.04
1.24 0.03
1.34 0.03
1.44 0.02
1.55 0.01
1.65 0.01
1.75 0.02
1.86 0.02
1.96 0.03
2.06 0.03
2.17 0.04
2.27 0.04
2.37 0.04
2.48 0.04
2.58 0.04
2.68 0.04
2.79 0.03
2.89 0.03
3.00 0.02



Chapter 5

Multiscale modeling couples
patches of advection-diffusion
equations

Chapters 3 and 4 analyse the patch dynamics scheme for the microscale
diffusion pde. This chapter extends the novel analysis to one-dimensional
microscale advection-diffusion dynamics in a single patch first (Sections 5.1–
5.5), then on multiple small, spatially separated patches (Sections 5.6–5.7).

Advection and diffusion govern the transport of heat and ground wa-
ter pollutants, oil reservoir flow, in the modelling of semiconductors, and so
forth (Isenberg & Gutfinger 1973, Parlange 1980, e.g.). The sources of such
ground water pollutants originate from human activities. Due to the growing
concern on environmental and health issues, the advection-diffusion model
continues to receive attention from environmentalists, engineers and mathe-
matical modellers. For example, obtaining analytical and numerical solutions
of the advection-diffusion pde can estimate and examine the rehabilitation
process and management of a polluted water body after elimination of the
pollution (Jaiswal et al. 2011). In this chapter, we aim for the patch scheme
to predict the emergent large-scale behaviour of the microscale advection-
diffusion pde.

Here, in one space dimension on x and in time t we model the advection
and diffusion of a field u(x, t). We suppose the field satisfies the advective-
diffusive pde without any sources or sinks

∂u

∂t
+ V0

∂u

∂x
=
∂2u

∂x2
, (5.1)

with boundary conditions to be specified later. V0 denotes the advection
velocity.
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The microscale analytic solutions of microscale advection within a small
patch are obtained by applying the separation of variables (Courant & Hilbert
1965, e.g.).

For non-self-adjoint problems, as occurs in Section 5.2, there is no guar-
antee that eigenfunctions for dissipative systems form a complete set, or that
different eigenfunctions are orthogonal. For the separation of variables to be
applicable to such non-self-adjoint systems, we construct some generalised
eigenfunctions, Section 5.4.1, for the purpose of completion. The expansion
theorems in terms of generalised eigenfunction have long been developed
through extensive research. The first part of this chapter adapts the analy-
sis, construction and interpretation of chapter 3 to the problem of advection-
diffusion pde in one spatial dimension. Section 5.3 determines all eigenvalues
and eigenvectors on a small microscale patch with patch half-width h. Sec-
tion 5.3.1 discusses the special case where microscale wavenumbers of the
characteristic equation (5.13) occur in the complex plane for odd eigenvalue.
All eigenvalues on the patch have large and negative real-parts, except for
one eigenvalue which corresponds to a small macroscale wavenumber.

The spectral problem associated with a small patch appears to be a non-
self-adjoint problem. To perform the spectral expansions, Section 5.4.1 finds
the adjoint operator of the linear constant advection-diffusion pde (5.19) on
the patch with the nonlocal coupling conditions. Section 5.4.2 then finds the
eigenfunctions of the adjoint operator. These two sets of eigenfunctions are
referred to as a biorthogonal set, and the spectral coefficients in the eigenfunc-
tion expansion are obtained in Sections 5.4.5 and 5.4.6 using eigenfunctions
of the corresponding adjoint problem.

In the second part of this chapter, Section 5.6 extends the model
of Roberts (2003b) on overlapping elements to the case of patches separated
by gaps. Section 5.6.3 finds the spectrum of the linear dynamics which is used
to show that there exists a centre manifold of the macroscale emergent dy-
namics. Apart from decaying transients through microscale dissipation, the
centre manifold is guaranteed to capture the most important information
of the original problem. Computer algebra of Algorithm 13 in Appendix B,
specified in Section 5.6.4, then constructs the slow manifold for the advection-
diffusion pde. Numerical eigenvalues of the patch dynamics, obtained in
Section 5.7, confirm that our analytical representations of eigenvalues (5.60)
and (5.63) are the only eigenvalues of the patch domain.



122Chapter 5. Multiscale modeling couples patches of advection-diffusion equations

5.1 One patch boundary conditions

This section addresses the specific case of one patch coupled to distant speci-
fied boundary conditions, while Section 5.6 analyses the case of multiple cou-
pled patches in one large dimension. Here for simplicity, we start to find the
microscale solution within one small patch centred at the origin, and which
extends over −h ≤ x ≤ h, for small h, in the physical domain −H < x < H,
with time varying boundary conditions of the form

u(−H, t) = a(t), u(H, t) = b(t). (5.2)

In applications, a computational scheme is implemented only on the small
fraction h of the domain, while over most of the domain we just interpolate.
The aim here is to show that by coupling the patch to the surrounding
macroscale variations, we are able to predict the large-scale behaviour of the
system defined by equation (5.1), while substantially reducing the computa-
tional cost of simulating the system over the whole physical domain.

The simulator to solve (5.1) for field u in the microscale patch requires us
to provide boundary conditions on the edge of the simulation domain. These
boundary conditions are derived by an interpolation from x = ±H. At the
midpoint of the patch, x = 0, define the macroscale patch value to be

U(t) = u(0, t). (5.3)

Then via classic Lagrange interpolation, we interpolate boundary values a, b
and the patch macroscale field U(t) to predict the macroscale field as

u(x, t) = U(t)

(
1− x2

H2

)
+
a

2

(
x2

H2
∓ x

H

)
+
b

2

(
x2

H2
± x

H

)
,

and we note that such interpolation has been proven to be effective
for pdes (Roberts & Kevrekidis 2007, e.g.). The parabolic interpolation
provides non-local boundary values for the simulator within the patch as

u(±h, t) = u(0, t)
(
1− r2

)
+
a

2

(
r2 ∓ r

)
+
b

2

(
r2 ± r

)
, (5.4)

where r = h/H.
The boundary conditions (5.4) for the patch are non-homogeneous.

Therefore, seek a solution in the form

u(x, t) = w(x, t) +
C(t)

H
x+D(t). (5.5)
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Substituting equation (5.5) into (5.4) gives

w(±h, t)± C(t)r = w(0, t)(1− r2) +
r2

2
(a+ b)± r

2
(b− a)− r2D(t).

By choosing

D =
a+ b

2
and C =

b− a
2

,

we obtain the homogeneous boundary conditions for w(x, t) of the form

w(±h, t) = w(0, t)(1− r2). (5.6)

Now substitute (5.5) into the advection-diffusion pde (5.1) to obtain a new
pde whose field w(x, t) evolves according to the advection-diffusion pde

∂2w

∂x2
− V0

∂w

∂x
− ∂w

∂t
= V0

C(t)

H
+
Ċ(t)

H
x+ Ḋ(t), (5.7)

with patch homogeneous boundary conditions (5.6) where the right-hand side
of pde (5.7) is the new source term, and a dot over a variable denotes the
first derivative with respect to time.

5.2 Real homogeneous eigenfunctions

Consider the corresponding homogeneous problem of the linear advection-
diffusion pde (5.7), namely,

∂2w

∂x2
− V0

∂w

∂x
− ∂w

∂t
= 0, (5.8)

with patch homogeneous boundary conditions (5.6). Applying separation of
variables, we assume a solution of the separated form w(x, t) ∝ eλtv(x). After
substitution into the homogeneous advection-diffusion pde (5.8), we obtain
the corresponding boundary value problem within the microscale patch

d2v

dx2
− V0

dv

dx
− λv = 0, v(±h) = v(0)(1− r2). (5.9)

As all coefficients are constants, we seek solutions v ∝ ez x to find the char-
acteristic equation z2 − V0 z − λ = 0. Hence, the two possible values of z are

z1 =
1

2

(
V0 +

√
V 2

0 + 4λ

)
, z2 =

1

2

(
V0 −

√
V 2

0 + 4λ

)
, (5.10)
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and the two solutions of the homogeneous pde (5.9) are v1(x) = ez1x

and v2(x) = ez2x. But for V 2
0 + 4λ > 0, these cannot satisfy the bcs (5.9).

For V 2
0 +4λ < 0 and real λ, the roots of the characteristic polynomial are

a complex conjugate pair

z1 = α + ik, z2 = α− ik, where α =
1

2
V0 and k =

1

2

√
−V 2

0 − 4λ.

The general solution to pde (5.9) is then

v(x) = eαx [c1 cos(kx) + c2 sin(kx)] , (5.11)

where c1 and c2 are two constants, and k denotes a microscale wavenumber.
Now, applying the patch homogeneous boundary conditions in (5.9) on the
edges of the patch, at x = ±h , gives

e±αh [c1 cos(kh)± c2 sin(kh)] = (1− r2) c1.

Forming as a pair of linear equations,[
eαh cos(kh)− (1− r2) eαh sin(kh)
e−αh cos(kh)− (1− r2) −e−αh sin(kh)

] [
c1

c2

]
=

[
0
0

]
, (5.12)

this system has a non-trivial solution if its determinant is equal to zero,

sin(kh) [cos(kh)− (1− r2) cosh(αh)] = 0. (5.13)

Figure 5.1 illustrates the solutions of the characteristic equation (5.13). The
intersection points (asterisks) represent the roots of the functions sin(kh) = 0
where the microscale wavenumbers knh = nπ, for n even.

5.3 Complicated eigenspectrum

This section analyses the eigenvalues and their corresponding eigenfunctions
which are associated with this small microscale patch.

From the characteristic equation (5.13), two cases arise to determine the
eigenvalues and corresponding eigenfunctions.

• First, the microscale eigenvalue λ must satisfy sin(kh) = 0, that is,
kh = nπ/2 for n even. Hence, the family of microscale wavenumbers
is k = nπ/2h. Then the microscale eigenvalues

λn = −
(nπ

2h

)2

, n even, (5.14)

are all negative, and the corresponding eigenfunctions

vn(x) = eαx sin(knx), n even. (5.15)
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k2 k4 k6 k8
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kh

r =0.1

 

 

 

sin(kh)
cos(kh)
zero
(1−r2)cosh(V0h/2)

Figure 5.1: The solutions of the characteristic equation (5.13) where the
patch parameters are given by h = 1, H = 10, r = 1/10 and the ad-
vection speed V0 = 1. The intersection points (asterisks) represent the
wavenumbers of eigenfunctions sin(knh) where n is even. The intersections
between cos(knh) and (1 − r2) cosh(V0h/2) occur only in the complex plane
and require complex λ.
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• Second, the microscale eigenvalue λ must satisfy cos(kh) − (1 −
r2) cosh(αh) = 0. In this case when cosh(V0h/2) < 1/(1− r2), approx-
imate |V0| <

√
2/H for small patches, all solutions are real, and the

microscale wavenumbers kn are non-trivial functions of the patch ra-
tio r, similar to those shown in Section 3.2. Setting a small microscale
wavenumber k1 = cos−1[(1 − r2) cosh(αh)]/h, where 0 < k1 < π/2.
Then from the periodicity and symmetry of cos knx, as shown in Fig-
ure 5.1, the family of microscale wavenumbers takes the form

kn±1 = kn ± k1 for n = 4, 8, 12, . . . ,

which gives the microscale wavenumbers of k3 = k4 − k1, k5 = k4 +
k1, k7 = k8 − k1, k9 = k8 + k1, and so on. This gives the microscale
eigenvalues

λn±1 = −
(nπ

2h
± k1

)2

, for n = 4, 8, 12, . . . .

The odd eigenfuntions are considerably more complex than the even
eigenfunctions. To find the corresponding eigenfunctions for the sec-
ond case we substitute cos(kh) = (1 − r2) cosh(αh) into the matrix
equation (5.12) to obtain[

(1− r2)[eαh cosh(αh)− 1] eαh sin(kh)
(1− r2)[e−αh cosh(αh)− 1] −e−αh sin(kh)

] [
c1

c2

]
=

[
0
0

]
,

but

eαh cosh(αh)−1 = eαh sinh(αh), e−αh cosh(αh)−1 = −e−αh sinh(αh),

it follows that

c1e
αh sinh(αh)(1− r2) + c2e

αh sinh(kh) = 0,

−c1e
−αh sinh(αh)(1− r2)− c2e

−αh sinh(kh) = 0.

Therefore, (c1, c2) ∝ [sin(kh),− sinh(αh)(1− r2)]. By substituting the
coefficients c1 and c2 into the general solution (5.11) we obtain the
eigenfunctions as

vn(x) = eαx[sin(knh) cos(knx)−(1−r2) sinh(αh) sin(knx)], for n odd.
(5.16)

The principle of superposition constructs general solutions for the homo-
geneous advection-diffusion pde (5.8) as

w(x, t) =
∞∑
n=1

cne
λnt vn(x), (5.17)
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Figure 5.2: Illustration of the even microscale eigenfunctions vn(x) (5.15)
for n even, with the three lowest magnitude microscale wavenumbers kn =
nπ/2h, for patch parameters given by h = 1, H = 10, r = 1/10. Here the
advection velocity V0 = 1.
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Figure 5.3: Illustration of the odd microscale eigenfunctions vn(x) (5.16)
for n odd, where the parameters h = 1, H = 10, r = 1/10 and V0 = 1. The
solid line and curve represent the real part of the eigenfunctions vn(x) (5.16)
for n odd, while the dashed line and curves represent the complex part of
the eigenfunctions vn(x) (5.16) for n odd.



5.3. Complicated eigenspectrum 129

for microscale eigenfunctions given by (5.15) and (5.16). Figures 5.2 and 5.3
plot even and odd eigenfunctions associated with the three lowest magnitude
eigenvalues, for patch ratio r = 0.1. For even n, the corresponding eigen-
functions are identical sine functions/sinusoidal multiplied by a growth ex-
ponential function. Section 5.4 uses these eigenfunctions, and adjoint eigen-
functions, in spectral expansions of the dynamics within the patch.

5.3.1 Complex eigenvalues of faster advection

This section discusses the case when V0 = 2α is not small so that (1 −
r2) cosh(αh) > 1 ; that is, the intersections between cos(kh) and (1 −
r2) cosh(αh) occur only in the complex plane. Hence, this section determines
eigenvalues with imaginary parts as listed in Table 5.1: these characterise
oscillating microscale modes within the patch.

From the characteristic equation (5.13), the microscale wavenumbers are
given by

k =
1

h
cos−1[(1− r2) cosh(αh)].

The smallest wavenumber is pure imaginary k1 = ±il1 where l1 ∈ R. As an
example, consider the case when the length of the domain H = 10 and the
length scale ratio r = h/H = 0.1, then the small microscale wavenumber in
the characteristic equation becomes (5.13)

k1 =
1

h
cos−1[(1− r2) cosh(αh)] = ±i0.4778,

so that l1 = 0.4778. Then from the periodicity and symmetry of cos knh, as
shown in Figure 5.1, the microscale wavenumbers take the form

kn±1 = kn ± il1, for n ∈ 4N,

which gives the microscale wavenumbers of k3 = k4− il1, k5 = k4 + il1, k7 =
k8 − il1, k9 = k8 + il1, and so on. Hence, two cases arise for the microscale
eigenvalues.

• For n odd, all eigenvalues for non-zero wavenumbers occur in complex
conjugate pairs. For example, as shown in Table 5.1, the eigenvalues λ5

and λ9 are the complex conjugate of the eigenvalues λ3 and λ7, respec-
tively. The one exceptional eigenvalue is λ1 = −0.0217 corresponding
to complex conjugate pair of wavenumber with zero real part k1 = ±il1.

• For n even, all eigenvalues have negative and large real-parts as shown
in Table 5.2.
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Table 5.1: The values of the microscale wavenumbers kn and the microscale
eigenvalues λn for n = 1, 3, 5, 7, 9. The advection velocity V0 = 1, and the
patch parameters are h = 1, H = 10 and r = 1/10. With one exception, all
of these eigenvalues come in complex conjugate pairs.

n kn λn
1 ±il1 −0.0217

3, 5 (2π ± il1) −39.5001∓ 6.0042i
7, 9 (4π ± il1) −157.9400∓ 12.0080i

Complex eigenvectors For the eigenvalues which come in complex con-
jugate pairs, the corresponding eigenvectors also occur in conjugate pairs.
For the smallest eigenvalue λ1, the associated eigenvectors are

v1±(x) = ±iex/2[sinh(l1) cosh(l1x)− (1− r2) sinh(1/2) sinh(l1x)].

Both v1+(x) and v1−(x) are pure imaginary eigenvectors, and they are pro-
portional to each other so represent the same information.

For eigenvalues λ3 and λ5, the associated eigenvectors are respectively

v3(x) = ex/2 sin(2πx)[sinh(l1) sinh(l1x)− (1− r2) sinh(1/2) cosh(l1x)]

− iex/2 cos(2πx)[sinh(l1) cosh(l1x)− (1− r2) sinh(1/2) sinh(l1x)],

and

v5(x) = ex/2 sin(2πx)[sinh(l1) sinh(l1x)− (1− r2) sinh(1/2) cosh(l1x)]

+ iex/2 cos(2πx)[sinh(l1) cosh(l1x)− (1− r2) sinh(1/2) sinh(l1x)].

The eigenvector v3 is complex conjugate of the eigenvector v5.
Let us interpret what such complex eigenfunctions mean for the patch

dynamics. Consider the eigenfunctions v3,5 corresponding to the eigen-
values λ3,5(−39.5001 ± 6.0042i in Table 5.1). For brevity and generalisa-
tion to other values for n we denote λn = −µ ± iω. Set the eigenfunc-
tions v3,5 = vR ± ivI where vR and vI represent the real and the imaginary
part of the eigenfunctions v3,5 respectively. Consider the general linear com-
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Table 5.2: The values of the microscale wavenumbers kn and the microscale
eigenvalues λn = −1/4 − k2

n for n = 2, 4, 6, 8, 10, when parameters h = 1,
H = 10 and r = 1/10.

n kn λn
2 π −10.1196
4 2π −39.7284
6 3π −89.0764
8 4π −158.1637

10 5π −246.9901

bination of

w3,5(t) = c3e
λ3tv3(x) + c5e

λ5tv5(x)

= c3e
(−µ+iω)t(vR + ivI) + c5e

(−µ−iω)t(vR − ivI)
= c3e

−µt cos(ωt) + i sin(ωt)](vR + ivI)

+ c5e
−µt[cos(ωt)− i sin(ωt)](vR − ivI)

= e−µt(c3 + c5)[vR cos(ωt)− vI sin(ωt)]

+ ie−µt(c3 − c5)[vI cos(ωt) + vR sin(ωt)].

Since we are interested in real solutions we set c3,5 = cR ∓ icI therefore,

w3,5(t) = e−µt{2cR[vR cos(ωt)− vI sin(ωt)] + 2cI [vI cos(ωt) + vR sin(ωt)]},

where cR and cI are arbitrary constants. Hence, w3,5(t) is a linear com-
bination of two real solutions. In the long-term, for a small patch, the
component w3,5(t) decays exponentially quickly, such as e−39.5001t. Similarly,
the other components w7,9(t), w11,13(t), . . . decay exponentially faster as they
have eigenvalues with larger negative real-parts (Table 5.1). As wn(t) de-
cays to zero, oscillations occur between the spatial structures of the real
part vR(x) and the imaginary part vI(x). These oscillations are relatively
fast, and determined by the imaginary part of the eigenvalues. These rapid
microscale modes are not of interest to the macroscale dynamics. Hence, over
macroscale times the dynamics of this system are dominated by the smallest
eigenvalue λ1 : w(t, x) = eλ1tv1(x) + ignored transients.

Approximation of the macroscale eigenvalue The closest macroscale
eigenvalue to zero is the most interesting one as it has the smallest decay and
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the longest lasting structure. In order to approximate the small eigenvalue we
use a Taylor series for the cosine and the hyperbolic cosine in cos k1h = (1−
r2) cosh(hV0/2) since V0h = V0Hr is a small quantity: then since r = h/H,

1− 1

2
(k1h)2 = (1− h2

H2
)(1 +

V 2
0 h

2

8
) +O(h4)

⇒ k1 =

√
2

H2
+

(h2 −H2)V 2
0

8H2
+O(h2)

⇒ k1 =

√
2

H

√
1− H2V 2

0

16
+O(h2).

Therefore, k1 ≈
√

2
H

√
1− H2V 2

0

16
. The corresponding spatial structure v1 in the

patch is the smooth

v1 ≈ eV0x/2 sin

(
√

2 r

√
1− H2V 2

0

16

)
cos

(√
2

H

√
1− H2V 2

0

16
x

)

− eV0x/2(1− r2) sinh(V0h/2) sin

(√
2

H

√
1− H2V 2

0

16
x

)
.

The approximate small k1 ≈
√

2
H

√
1− H2V 2

0

16
and its corresponding eigen-

value λ1 ≈ −1/4− 2[1− H2V 2
0

16
]/H2 are only weakly dependent on the patch

half-width h.

5.4 A spectral representation of the solution

within a patch

Given the homogeneous microscale solutions of the previous subsection, we
now explore a spectral representation of the solution within a patch. Analo-
gous to deriving the solution to the non-homogeneous problem in Section 3.3,
an eigenfunction expansion solves the non-homogeneous problem (5.7) with
patch homogeneous boundary conditions (5.17). We assume the eigenfunc-
tions (5.15) and (5.16) of the eigenproblem (5.9) form a complete set with
respect to a piecewise smooth function over the microscale patch [−h, h], and
find the generalised Fourier series expansion of the forcing terms in terms of
the eigenfunctions:

x =
∞∑
n=1

anvn(x) and 1 =
∞∑
n=1

bnvn(x), (5.18)
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where an and bn are the spectral expansion coefficients. In order to determine
these spectral coefficients an and bn, the biorthogonality conditions need to
be considered.

5.4.1 Determining the spectral coefficients

Determining the spectral coefficients an and bn in the eigenfunction expan-
sion (5.18) is challenging due to the non-orthogonality of the expansion basis
functions vn(x) (5.15) and (5.16). The eigenfunctions over the microscale
patch [−h, h], for the cases in which n is odd or even, are not mutually or-
thogonal. This happens because of the non-self-adjointness of the system.
Analogous to Section 3.4, we compute the spectral coefficients in the eigen-
function expansion using eigenfunctions of the adjoint problem.

The first goal of this subsection is to find the corresponding adjoint oper-
ator of the linear constant advection-diffusion pde (5.9) with its associated
boundary conditions. On the patch |x| < h, define the spatial advection-
diffusion operator

Lv :=
∂2v

∂x2
− V0

∂v

∂x
, (5.19)

such that v(x) and its first derivative vx are continuous at x = 0 and with
boundary conditions (5.9). Using the inner product (3.20) over the patch,
the adjoint operator L† must satisfy the fundamental property (3.21). As in
Chapter 3 the microscale patch is effectively subdivided into two subregions
by the patch boundary conditions in (5.9). Apply the definition of the inner
product (3.20), the definition (5.19) of the operator L and integrating by
parts twice to expand the lhs of (3.21) as

〈Lv, z〉 =

〈
∂2v

∂x2
− V0

∂v

∂x
, z

〉
=

∫ h

−h

[
∂2v

∂x2
− V0

∂v

∂x

]
z dx

=

[
∂v

∂x
z − v ∂z

∂x
− V0zv

]h
−h

+

∫ h

−h
v
∂2z

∂x2
dx+ V0

∫ h

−h
v
∂z

∂x
dx

=

[
∂v

∂x
z − v ∂z

∂x
− V0zv

]h
−h

+

∫ h

−h
v

(
∂2z

∂x2
+ V0

∂z

∂x

)
dx

=

[
∂v

∂x
z − v ∂z

∂x
− V0zv

]−0

−h
+

[
∂v

∂x
z − v ∂z

∂x
− V0zv

]h
0

+

∫ h

−h
v

(
∂2z

∂x2
+ V0

∂z

∂x

)
dx.
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Denote the partial derivatives with respect to x by subscripts, and use su-
perscripts to denote evaluation. Using the boundary conditions in (5.9), the
inner product

〈Lv, z〉 = v−0
x z−0 − v−0z−0

x − V0v
−0z−0 − v−hx z−h + v−hz−hx + V0v

−hz−h

− v0
xz

0 + v0z0
x + V0v

0z0 + vhxz
h − vhzhx − V0v

hzh + 〈v, zxx + V0zx〉.

Since v is continuous at x = 0 together with its first derivative vx, then

〈Lv, z〉 = v0
x

[
z−0 − z0

]
+ v0

[
z0
x − z−0

x + V0(z0 − z−0)

+ (1− r2)(z−hx − zhx − V0(zh − z−h)) ]− v−hx z−h + vhxz
h

+ 〈v, zxx + V0zx〉.

Thus, for the fundamental property (3.21) of the adjoint operator to hold,
the adjoint operator must be defined as

L† :=
∂2

∂x2
+ V0

∂

∂x
, (5.20)

with the following conditions:

• firstly, that the subgrid field z satisfies Dirichlet boundary conditions
at the edges of the patch

z−h = zh = 0; (5.21)

• secondly, that z is continuous at the centre of the patch, x = 0,

z−0 = z0; (5.22)

• thirdly, there is a jump in the first derivative at x = 0,

z0
x − z−0

x = (1− r2)(zhx − z−hx ). (5.23)

These conditions make the boundary terms in the integration by parts vanish.

5.4.2 Eigenfunctions of the adjoint operator

Section 5.4.1 determines the adjoint operator (5.20)–(5.23). This section
determines the spectrum and the eigenfunctions of the adjoint by solving

L†z = λz, equivalently
∂2z

∂x2
+ V0

∂z

∂x
− λz = 0, (5.24)
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with bcs (5.21)–(5.23). This pde (5.24) is a constant coefficient in x,
hence (for α = V0/2) we seek solutions in the form

z(x) =

{
e−αx [ ζ0 cos(kx) + ζ1 sin(kx)], x < 0,
e−αx[ ζ0 cos(kx) + ζ2 sin(kx)], x > 0,

(5.25)

where ζ0, ζ1, and ζ2 are arbitrary constants, and k may be complex (k =
1/2
√
−V 2

0 + 4λ). The first derivative of z(x) (5.25) is to be used to satisfy
the jump condition (5.23):

zx(x) =

{
e−αx [ cos(kx)(−αζ0 + kζ1) + sin(kx) (−αζ1 − kζ0)], x < 0,
e−αx [ cos(kx)(−αζ0 + kζ2) + sin(kx) (−αζ2 − kζ0)], x > 0.

Satisfying the adjoint boundary conditions Evaluating the bound-
ary conditions (5.21)–(5.23) we obtain the following homogeneous system of
algebraic equations

eαh[ζ0 cos(kh)− ζ1 sin(kh)] = 0, (5.26)

e−αh[ζ0 cos(kh) + ζ2 sin(kh)] = 0, (5.27)

ζ0 [2kκ sin(kh) cosh(αh)− 2ακ cos(kh) sinh(αh)]

+ ζ1[−k + ακeαh sin(kh) + kκeαh cos(kh)]

+ ζ2[k + ακe−αh sin(kh)− kκe−αh cos(kh)] = 0, (5.28)

where κ = (1 − r2). Thus, the homogeneous system of algebraic equa-
tions (5.26)–(5.28), rewritten in matrix form, is eαh cos(kh) −eαh sin(kh) 0

e−αh cos(kh) 0 e−αh sin(kh)
M0 M1 M2

ζ0

ζ1

ζ2

 = ~0, (5.29)

where

M0 = 2kκ sin(kh) cosh(αh)− 2ακ cos(kh) sinh(αh),

M1 = −k + ακeαh sin(kh) + kκeαh cos(kh),

M2 = k + ακe−αh sin(kh)− kκe−αh cos(kh).

For non-trivial solutions to this system’s matrix (5.29), the determinant of
the matrix must be zero:

det = k sin(kh) cos(kh)− ακeαh sin2(kh) cos(kh)− kκeαh sin(kh) cos2(kh)

+ k sin(kh) cos(kh) + ακe−αh sin2(kh) cos(kh)− kκe−αh sin(kh) cos2(kh)

− 2kκ sin3(kh) cosh(kh) + 2ακ sin2(kh) cos(kh) sinh(αh).
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Simplifying the above expression by collecting the common factors yields

det = 2k sin(kh) cos(kh)− ακ sin2(kh) cos(kh)(eαh − e−αh)
− kκ sin(kh) cos2(kh)(eαh + e−αh)− 2kκ sin3(kh) cosh(kh)

+ 2ακ sin2(kh) cos(kh) sinh(αh).

We simplify further, first by using the definition of the hyperbolic sine and co-
sine eαh−e−αh = 2 sinh(αh), eαh+e−αh = 2 cosh(αh), and the trigonometric
identity sin3(kh) = sin(kh) − sin(kh) cos2(kh). Substituting these identities
into the determinant we obtain the same characteristic equation (5.13) as
required. As before, the characteristic equation (5.13) is zero in two cases
characterised by n even and n odd.

5.4.3 Case n is even

First, this characteristic equation (5.13) is zero when microscale wavenum-
bers knh = nπ/2, for n even. Then the system’s matrix (5.29) becomes ±eαh 0 0

±e−αh 0 0
∓2ακ sinh(αh) −k ± kκeαh k ∓ kκe−αh

ζ0

ζ1

ζ2

 = ~0,

where the upper and the lower case of each entry in this matrix are obtained
from

cos(nπ/2) =

{
+1, for n ∈ 4N,
−1, for n ∈ 4N− 2.

Solving the above homogeneous system we obtain (ζ0, ζ1, ζ2) ∝ (0, 1 ∓
κe−αh, 1 ∓ κeαh). By substituting ζ0, ζ1 and ζ2 into (5.25) we obtain two
different adjoint eigenfunctions based upon two different cases of even n.

• For n ∈ 4N, the adjoint eigenfunctions

zn(x) =

{
e−αx sin(knx) (1− κe−αh), x < 0,

e−αx sin(knx) (1− κeαh), x > 0.
(5.30)

• For n ∈ 4N− 2, the adjoint eigenfunctions

zn(x) =

{
e−αx sin(knx) (1 + κe−αh), x < 0,

e−αx sin(knx) (1 + κeαh), x > 0.
(5.31)
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Figure 5.4: Illustration of the microscale adjoint eigenfunctions zn(x) (5.32)
for n odd, where the patch parameters are h = 1, H = 10, r = 1/10 and
α = 1/2. The solid curves represent the real part of adjoint eigenfunctions,
while the dashed curves represent the imaginary part.
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5.4.4 Case n is odd

The second factor of the characteristic equation (5.13) requires that cos knh =
(1 − r2) cosh(αh). The possible solutions kn are detailed in Section 5.3. To
solve the homogeneous system (5.29) we chose ζ0 = sin(knh) to obtain

ζ1 =
ζ0 cos(knh)

sin(knh)
= cos(knh), ζ2 = −ζ0 cos(knh)

sin(knh)
= − cos(knh).

Substituting ζ0, ζ1 and ζ2 into (5.25) gives the adjoint eigenfunctions for n
odd as

zn(x) =

{
e−αx [sin(knh) cos(knx) + cos(knh) sin(knx)], x < 0,

e−αx [sin(knh) cos(knx)− cos(knh) sin(knx)], x > 0.
(5.32)

These eigenfunctions (5.30)–(5.32) (for both n even and odd) form a biorthog-
onal set of function to the original set vn, that is

〈vn, zm〉 = 0 for n 6= m. (5.33)

5.4.5 The spectral coefficients an

To compute the coefficients an of the spectral expansion of the function x
in (5.18), we take the inner product (3.20) of x with each adjoint eigenfunc-
tion zm (5.32) and use the properties of the inner product and biorthogo-
nality (5.33) to find 〈x, zm〉 = am〈vm, zm〉. Rearranging gives the spectral
coefficients

am =
〈x, zm〉
〈vm, zm〉

, for all m. (5.34)

The generalised spectral coefficients am have three different formulas from
the three different cases.

• The case of m odd. The numerator on the right-hand side of expansion
coefficients (5.34) is, for zm from (5.32),

〈x, zm〉 =

∫ 0

−h
xe−αx[sin(kmh) cos(kmx) + cos(kmh) sin(kmx)] dx

+

∫ h

0

xe−αx[sin(kmh) cos(kmx)− cos(kmh) sin(kmx)] dx.

An integration by parts gives

〈x, zm〉 =
k3
m(h− he2αh) + km[α2(h− he2αh) + α(2e2αh − 4eαh cos(kmh) + 2)]

eαh(α2 + k2
m)2

.
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The denominator on the right-hand side of expansion coefficients (5.34)
is, for vm from (5.16),

〈vm, zm〉 = sin2(kmh)

∫ h

−h
cos2(kmx) dx

− κ sinh(αh) sin(kmh)

∫ h

−h
cos(kmx) sin(kmx) dx

+ cos(kmx) sin(kmx)

∫ 0

−h
sin(kmx) cos(kmx) dx

− cos(kmx) sin(kmx)

∫ h

0

sin(kmx) cos(kmx) dx

− κ sinh(αh) cos(kmh)

∫ 0

−h
sin2(kmx) dx

+ κ sinh(αh) cos(kmh)

∫ h

0

sin2(kmx) dx.

Hence

〈vm, zm〉 = sin2(kmh)

[
h+

sin(2kmh)

2k

]
− 1

k
sin(kmh) cos(kmh) sin2(kmh)

= sin2(kmh)

[
h+

sin(2kmh)

2k

]
− 1

2k
sin(2kmh) sin2(kmh)

= h sin2(kmh). (5.35)

Therefore, the expansion coefficients (5.34) of the spectral expansion
of the function x for m odd are

am =
k3
m(h− he2αh) + km[α2(h− he2αh) + α(2e2αh − 4eαh cos(kmh) + 2)]

heαh(α2 + k2
m)2 sin2(kmh)

.

(5.36)

• The case ofm ∈ 4N. The numerator on the right-hand side of expansion
coefficients (5.34) is, for zm from (5.30),

〈x, zm〉 = (1− κe−αh)
∫ 0

−h
xe−αx sin(kmx)dx

+ (1− κeαh)
∫ h

0

xe−αx sin(kmx)dx.
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An integration by parts gives

〈x, zm〉 = (κe−αh − 1)

(
2αkm + eαh cos(kmh)[hk3

m − 2αkm + α2kmh]

(α2 + k2
m)2

)
+ (κeαh − 1)

(−2αkm + e−αh cos(kmh)[hk3
m + 2αkm + α2kmh]

(α2 + k2
m)2

)
.

The denominator on the right-hand side of expansion coefficients (5.34)
is, for m ∈ 4N,

〈vm, zm〉 =

∫ +h

−h
vmzm dx

= (1− κe−αh)
∫ 0

−h
sin2(kmx) dx+ (1− κeαh)

∫ h

0

sin2(kmx) dx

= (1− κe−αh)
(
h

2
− sin(2kmh)

4k

)
+ (1− κeαh)

(
h

2
− sin(2kmh)

4k

)
=
[
2− κe−αh − κeαh

](h
2
− sin(2kh)

4k

)
=
[
2− κe−αh − κeαh

](h
2

)
(for k =

mπ

2h
, sin(2kmh) = 0)

= h[1− κ cosh(αh)]. (5.37)

Therefore, the expansion coefficients (5.34) for m ∈ 4N are

am = (κe−αh − 1)

(
2αkm + eαh cos(kmh)[hk3

m − 2αkm + α2kmh]

h[1− κ cosh(αh)](α2 + k2
m)2

)
+ (κeαh − 1)

(−2αkm + e−αh cos(kmh)[hk3
m + 2αkm + α2kmh]

h[1− κ cosh(αh)](α2 + k2
m)2

)
.

(5.38)

• The case of m ∈ 4N − 2. The numerator on the right-hand side of
expansion coefficients (5.34) is, for zm from (5.31),

〈x, zm〉 = (1 + κe−αh)

∫ 0

−h
xe−αx sin(kmx)dx

+ (1 + κeαh)

∫ h

0

xe−αx sin(kmx)dx.
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Figure 5.5: Spectral approximations (5.18) to the function x : plot the Nth
partial sums for N = 3, 5, 11, and 21 eigenmodes, where the parameters
r = 0.5, V0 = 0.1 and H = π. The mean absolute errors are 0.23, 0.17, 0.12
and 0.09, respectively.
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An integration by parts gives

〈x, zm〉 = (κe−αh + 1)

(−2αkm − eαh cos(kmh)[hk3
m − 2αkm + α2kmh]

(α2 + k2
m)2

)
+ (κeαh + 1)

(
2αkm − e−αh cos(kmh)[hk3

m + 2αkm + α2kmh]

(α2 + k2
m)2

)
.

The denominator on the right-hand side of expansion coefficients (5.34)
is

〈vm, zm〉 =

∫ +h

−h
vmzm dx

= (1 + κe−αh)

∫ 0

−h
sin2(kmh) dx+ (1 + κeαh)

∫ h

0

sin2(kmh) dx

= (1 + κe−αh)

(
h

2

)
+ (1 + κeαh)

(
h

2

)
=

(
h

2

)[
κ
(
eαh + e−αh

)
+ 2
]

= h [κ cosh(αh) + 1] . (5.39)

Hence, the coefficients

am = (κe−αh + 1)

(−2αkm − eαh cos(kmh)[hk3
m − 2αkm + α2kmh]

h[κ cosh(αh) + 1](α2 + k2
m)2

)
+ (κeαh + 1)

(
2αkm − e−αh cos(kmh)[hk3

m + 2αkm + α2kmh]

h[κ cosh(αh) + 1](α2 + k2
m)2

)
.

(5.40)

Figure 5.5 shows spectral approximations to the function x given by (5.18)
for the various partial sums, and in the case of patch ratio r = 0.5. Evidently,
the partial sums converge to the function x .

5.4.6 The spectral coefficients bn

The spectral coefficients bn in the expansions (5.18) are computed in exactly
the same manner as that used to determine the spectral coefficients an. We
take the inner product (3.20) of both sides of the expansion (5.18) with an
element zm (5.30) for some 1 ≤ m ≤ n, and use the properties of the inner
product and biorthogonality (5.33) to find 〈1, zm〉 = bm〈vm, zm〉. Rearranging
gives the expansion coefficients

bm =
〈1, zm〉
〈vm, zm〉

, for all m. (5.41)
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The generalised spectral coefficients bm have three different formulas from
the three different cases.

• The case of m odd. The numerator on the right-hand side of expansion
coefficients (5.41) is, for zm from (5.32),

〈1, zm〉 =

∫ 0

−h
e−αx[sin(kmh) cos(kmx) + cos(kmh) sin(kmx)] dx

+

∫ h

0

e−αx[sin(kmh) cos(kmx)− cos(kmh) sin(kmx)] dx.

An integration by parts gives

〈1, zm〉 =
2km[cosh(αh)− cos(kmh)]

α2 + k2
m

.

The denominator on the right-hand side of expansion coefficients (5.41)
is derived in equation (5.35) for m odd. Therefore, the coefficients

bm =
2km[cosh(αh)− cos(kmh)]

(α2 + k2
m)h sin2(kmh)

. (5.42)

• The case ofm ∈ 4N. The numerator on the right-hand side of expansion
coefficients (5.41) is, for zm from (5.30),

〈1, zm〉 = (1− κe−αh)
∫ 0

−h
e−αx sin(kmx)dx+ (1− κeαh)

∫ h

0

e−αx sin(kmx)dx

=
−km(κe−αh − 1)[eαh cos(kmh)− 1] + km(κeαh − 1)[e−αh cos(kmh)− 1]

(α2 + k2
m)

= 2km sinh(αh)

[
cos(kmh)− κ
α2 + k2

m

]
.

The denominator on the right-hand side of expansion coefficients (5.41)
is derived in (5.37) for m ∈ 4N. Therefore, the spectral coefficient

bm =
2km sinh(αh) [cos(kmh)− κ]

h[1− κ cosh(αh)](α2 + k2
m)

. (5.43)

• The case of m ∈ 4N − 2. The numerator on the right-hand side of
equation (5.41) is, for zm from (5.31),

〈1, zm〉 = (1 + κe−αh)

∫ 0

−h
e−αx sin(kmx)dx+ (1 + κeαh)

∫ h

0

e−αx sin(kmx)dx

=
km(κe−αh + 1)[eαh cos(kmh)− 1]− km(κeαh + 1)[e−αh cos(kmh)− 1]

α2 + k2
m

= 2km sinh(αh)

[
cos(kmh) + κ

α2 + k2
m

]
.
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Figure 5.6: Spectral approximations (5.18) to the function 1 : plot the Nth
partial sums forN = 3, 5, 11 and 21 eigenmodes where the parametersH = π,
r = 0.5 and V0 = 0.1. The mean absolute errors are 0.03, 0.02, 0.01 and 0.01,
respectively.

The denominator on the right-hand side of equation (5.41) is derived
in (5.39) for m ∈ 4N− 2. Therefore, the spectral coefficients

bm =
2km sinh(αh) [cos(kmh) + κ]

h[1− κ cosh(αh)](α2 + k2
m)

. (5.44)

Figure 5.6 shows spectral approximations to the function 1 given by (5.18).
Evidently, the partial sums converge to the function 1 except at the endpoints
where the Gibbs phenomenon appears.
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5.5 Constructing the formal solution

This section aims to find the general solution for the advection-diffusion pde

wt = Lw + F (x, t), (5.45)

where F (x, t) denotes the new forcing terms in the pde (5.7). Expanding the
force F (x, t) in terms of the eigenfunctions of the problem with homogeneous
boundary conditions

F (x, t) = V0
C(t)

H
+
Ċ(t)

H
x+ Ḋ(t) =

∞∑
n=1

fn(t) vn(x), (5.46)

where

fn(t) =
2

h

∫ h

0

F (x, t) vn(x) dx.

We seek a particular solution of the form

w(t, x) =
∞∑
n=1

wn(t)vn(x). (5.47)

By substituting equations (5.46) and (5.47) into the advection-
diffusion pde (5.45) we obtain

∞∑
n=1

ẇn(t)vn(x) =
∞∑
n=1

wn(t)Lv +
∞∑
n=1

fn(t)vn(x)

=
∞∑
n=1

wn(t)λnvn(x) +
∞∑
n=1

fn(t)vn(x). (5.48)

The last relation in (5.48) is obtained by using the eigenfunction prop-
erty Lvn = λnvn(x). Since eigenfunctions vn(x) are linearly independent
on the microscale patch [−h, h], so equate the Fourier coefficients in equa-
tion (5.48) to give (Kreyszig 2011)

ẇn(t)− λnwn(t) = fn(t).

This is a first order linear ode with an integrating factor e−λnt. Thus

d

dt

[
e−λntwn(t)

]
= e−λntfn(t).

Integrating from 0 to t yields

wn(t) = Qne
λnt +

∫ t

0

eλn(t−s)fn(s) ds, (5.49)



146Chapter 5. Multiscale modeling couples patches of advection-diffusion equations

for some constants Qn depending upon initial conditions. Substituting equa-
tion (5.49) into equation (5.47) we obtain the general solutions for the
advection-diffusion equation on the field w(x, t)

w(x, t) =
∞∑
n=1

vn(x)

[
Qne

λnt +

∫ t

0

eλn(t−s)fn(s) ds

]
,

with the patch homogeneous boundary conditions (5.6). Recall
that w(x, t) (5.5) is a transformation of u(x, t) as

u(x, t) := w(x, t) +
C(t)

H
x+D(t).

Therefore, the solution to the advection-diffusion equation (5.1) on a single
microscale patch is

u(x, t) =
∞∑
n=1

[
vn(x)

∫ t

0

eλn(t−s)fn(s) ds

]
+
C(t)

H
x+D(t). (5.50)

A long-term model must determine the slowest modes in this solution dom-
inated by the modes that have the largest magnitude. Analogous to the
leading behaviour analysis in Section 3.5.2, the long-term dynamics of the
slow varying mode, n = 1 , correspond to the approximation

u(x, t) = v1(x)

∫ t

0

eλ1(t−s)f1(s) ds+
C(t)

H
x+D(t),

where v1 is given by (5.16). This is the patch dynamics prediction to the
solution of the advection-diffusion pde (5.1)–(5.2).

Transform back to original domain

Now our interest is in showing that in the limit h → H, the patch domain
(covers the entire physical domain) becomes identical to a macroscale do-
main −H < x < H. Also, the microscale patch boundary conditions (5.4)
are reduced to the exact physical boundary conditions that u(−h) = a(t),
and u(+h) = b(t). Hence, for the patch ratio r = 1, the microscale wavenum-
bers in Section 5.3 become km = mπ/2H, for m = 1, 2, 3, 4, 5, . . . . Thus the
eigenvalues of the diffusion dynamics over the whole domain are

λm = −
(mπ

2H

)2

, for m = 1, 2, 3, . . . .

Thus the predicted microscale field (5.50) in the patch should reproduce the
exact dynamics upon setting the patch size to one.
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Figure 5.7: Illustration of the solutions of the characteristic equation (5.13),
where the patch ratio r equals one.

Finding the spectral coefficients for r = 1

Setting the patch size to one, Figures 5.8 and 5.9 confirm that the spectral
coefficients an and bn in Sections 5.4.5 and 5.4.6 reproduce the generalised
Fourier coefficients.

• For m odd, the spectral coefficients am (5.36) where r tends to one
become

lim
r→1

am = lim
r→1

k3
m(r)(h− he2αh) + km(r)[α2(h− he2αh)

heαh(α2 + k2
m(r))2 sin2(hkm(r))

+ lim
r→1

αkm(r)(2e2αh − 4eαh cos(hkm(r)) + 2)]

heαh(α2 + k2
m(r))2 sin2(hkm(r))

.

Thus, for odd m

am =
(mπ/2h)3(h− he2αh) + (mπ/2h)[α2h(1− e2αh) + α(2e2αh + 2)]

heαh[α2 + (mπ/2h)2]2
.

• For m ∈ 4N, the spectral coefficients am (5.38) of the spectral expansion
of the function x become

lim
r→1

am = lim
r→1

(κe−αh − 1)

(
2αkm + eαh cos(kmh)[hk3

m − 2αkm + α2kmh]

−h[κ cosh(αh)− 1](α2 + k2
m)2

)
+ lim

r→1
(κeαh − 1)

(−2αkm + e−αh cos(kmh)[hk3
m + 2αkm + α2kmh]

−h[κ cosh(αh)− 1](α2 + k2
m)2

)
.
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Figure 5.8: Spectral approximations (5.18) to the function x : plot the Nth
partial sums for N = 3, 5, 11, and 21 eigenmodes, where the patch parameters
are given by, r = 1, V0 = 0.1 and H = π. The mean absolute errors are
0.46, 0.32, 0.14 and 0.11, respectively.

Therefore, the generalised Fourier coefficients

am =
−eαh[h(mπ/2h)3 − α(mπ/h) + α2mπ/2]

h(α2 + (mπ/2h)2)2

+
e−αh[h(mπ/2h)3 + α(mπ/h) + α2(mπ/2)]

h[α2 + (mπ/2h)2]2
.

• For m ∈ 4N− 2, the coefficients am (5.40) of the spectral expansion of
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the function x become

lim
r→1

am = lim
r→1

(κe−αh + 1)

(−2αkm − eαh cos(kmh)[hk3
m − 2αkm + α2kmh]

h[κ cosh(αh) + 1](α2 + k2
m)2

)
+ lim

r→1
(κeαh + 1)

(
2αkm − e−αh cos(kmh)[hk3

m + 2αkm + α2kmh]

h[κ cosh(αh) + 1](α2 + k2
m)2

)
.

Thus, the generalised Fourier coefficients

am =
eαh[h(mπ/2h)3 − α(mπ/h) + α2(mπ/2)]

h(α2 + (mπ/2h)2)2

+
e−αh[h(mπ/2h)3 + α(mπ/h) + α2(mπ/2)]

h[α2 + (mπ/2h)2]2
.

Figure 5.8 shows the generalised Fourier series (5.18) of the function x for the
various partial sums, and in the case of patch ratio r = 1. With five terms,
the partial sum already looks very similar to a sawtooth wave function.

• For m odd, the spectral coefficients bm (5.42) where r tends to one
become

lim
r→1

bm = lim
r→1

2km[cosh(αh)− cos(kmh)]

(α2 + k2
m)h sin2(kmh)

=
mπ cosh(αh)

[α2 + (mπ/2h)2]h
.

• For m ∈ 4N, the coefficients bm (5.43) of the spectral expansion of the
function 1 become

lim
r→1

bm = lim
r→1

−km(κe−αh − 1)[eαh cos(kmh)− 1]

h[1− κ cosh(αh)](α2 + k2
m)

+ lim
r→1

km(κeαh − 1)[e−αh cos(kmh)− 1]

h[1− κ cosh(αh)](α2 + k2
m)

.

Therefore, the generalised Fourier coefficients

bm =
(mπ/2h)[eαh − 1]− (mπ/2h)[e−αh − 1]

h(α2 + (mπ/2h)2)
.

• For m ∈ 4N− 2, the coefficients bm (5.44) of the spectral expansion of
the function 1 become

lim
r→1

bm = lim
r→1

km(κe−αh + 1)[eαh cos(kmh)− 1]

h[κ cosh(αh) + 1)(α2 + k2
m)

− lim
r→1

km(κeαh + 1)[e−αh cos(kmh)− 1]

h[κ cosh(αh) + 1)(α2 + k2
m)

.
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Figure 5.9: Generalised Fourier series approximations (5.18) of the func-
tion 1 : plot the Nth partial sums for N = 3, 5, 11, and 21 eigenmodes,
where the patch parameters are H = π, r = 1 and V0 = 0.1. The mean
absolute errors are 0.17, 0.12, 0.07 and 0.04, respectively.
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xXjXj−1 Xj+1Xj−2 Xj+2H

2h

uj
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Figure 5.10: Schematic illustration of the macroscale grid of patches. Let
each of N patches be centred on the macroscale grid points Xj = jH, inside
a macroscale domain [0, L].

Therefore, the generalised Fourier coefficients

bm =
(mπ/2h)[−eαh − 1]− (mπ/2h)[−e−αh − 1]

h[α2 + (mπ/2h)2]
.

Figure 5.9 shows the generalised Fourier series (5.18) of the function 1
for the various partial sums, and in the case of patch ratio r = 1. With five
terms, the partial sum already looks very similar to the function 1. Except
for the Gibbs phenomenon, a very good approximation is obtained with 21
terms.

5.6 Multiple patches across the whole do-

main

An analytic microscale solution of the microscale advection-diffusion pde is
obtained in Section 5.5 by generalised eigenfunction expansion in one patch.
This section extends the analysis to multiple patches. The macroscale model
is based upon dividing the macroscale domain into small, spatially separated
patches. The microscale model is solved within these patches, following ana-
logues in one dimension (MacKenzie & Roberts 2006, Roberts 2003b, e.g.),
neighbouring patches communicate with each other through coupling condi-
tions with strength parametrised by γ.

For patch ratio r = 1, the patches overlap and the analysis reduces to that
of holistic discretisation (Roberts 2003b, e.g.). Analogously, here we adapt
the bcs for holistic discretisation (Roberts 2003b, e.g.) to the case of patch
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scheme r < 1, for the advection-diffusion pde. In this scenario, Section 5.6.3
shows that centre manifold theory suggests there is a slow manifold in the
system (Roberts 1988, Pötzsche & Rasmussen 2006, e.g.) that captures the
macroscale dynamics.

5.6.1 The microscale simulator

This section describes the microscale simulator of the advection-diffusion
dynamics in each patch. As shown schematically in Figure 5.10 we construct
grid points Xj with spacing H, so that Xj = jH, where H = L/N is the
macroscale spacing and L is the length of the entire physical domain. The jth
patch is centrered about the macroscale grid points, and with half width h.
Define uj(x, t) to be the field u in the jth patch. The fields uj evolve according
to the advection-diffusion pde (5.1); that is,

∂uj
∂t

+ V0
∂uj
∂x

=
∂2uj
∂x2

. (5.51)

Then the fields uj predict the original field u(x, t), but only on the patches.
Prediction of the evolution of the field u over the entire domain depends
upon how the dynamics of each patch are coupled to its neighbours.

5.6.2 Coupling microscale patches across gaps

To solve pdes (5.51) for microscale fields uj within the jth patch requires
boundary conditions at the edges of each patch. Such boundary condi-
tions are obtained by interpolating macroscale information from neighbouring
patches onto the edges for each of the microscale patch simulators. We need
to define the macroscale grid value corresponding to the central region of
each patch. As indicated in Figure 5.10 we define the macroscale grid values
(amplitudes) as

Uj(t) = uj(Xj, t), for j = 0, 1, 2, . . . , N, (5.52)

which are used for interpolation between patches to provide boundary values
for each microscale patch (Kevrekidis & Samaey 2009, Cao & Roberts 2013,
e.g.).

Recall that Chapter 4 derived the macroscale interpolation (5.53) which
couples the patches together for the diffusion equation. Here we adapt
this coupling condition to couple the patches together for the advection-
diffusion pde. The values on the right and left edges of each patch, at Xj±h,
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are

uj(±r, t) =

[
1± γrµδ +

1

2
γδ2r2 ± γ2r(r2 − 1)

6
µδ3

+
γ2r2(r2 − 1)

24
δ4 ± γ3r(r4 − 5r2 + 4)

120
µδ5

+
γ3r2(r4 − 5r2 + 4)

720
δ6

± γ4r(r6 − 14r4 + 49r2 − 36)

5040
µδ7

+
γ4r2(r6 − 14r4 + 49r2 − 36)

40320
δ8

+O(δ9) ]Uj(t). (5.53)

To apply the centre manifold theory, Roberts (2003b) implemented non-
local decoupling conditions successfully through the introduction of the cou-
pling strength γ such as

uj(Xj±1, t) = γuj±1(Xj±1, t) + (1− γ)uj(Xj, t),

which is used for coupling neighbouring overlapping elements. The physical
problem of interest is at full coupling γ = 1. However, centre manifold theory
provides full physical support for overlapping elements in a finite neighbour-
hood of γ = 0. The case γ = 0 is the no coupling case where each element
has no influence on its neighbours. The tools and analysis in applying such
coupling of overlapping elements appear to have analogues in other multi-
scale methods, such as the idea of border regions (introduced by Tamarkin
(1928) and used in the heterogeneous multiscale method by E et al. (2007)),
the concept of domain decomposition that improves the convergence of ex-
isting waveform relaxation methods (Abraham et al. 1998, Gander & Stuart
1998, e.g.), and the buffer regions of the gap-tooth scheme and patch dynam-
ics (Samaey et al. 2005, 2006, e.g.).

The coupling strength γ is an artificial parameter which controls inter-
actions and information flow between neighbouring patches. Such an artifi-
cial coupling is important for establishing theoretical support for multiscale
dynamics. A more detailed discussion on the theoretical support for patch
dynamics is given in some applications of such an artificial coupling (Roberts
2003b, Roberts & Kevrekidis 2007, Samaey et al. 2010, e.g.). For the unphys-
ical case where γ = 0, each patch is completely isolated from its neighbours,
dividing the entire domain into decoupled patches. For this case, all eigen-
values have negative real-parts except for one zero eigenvalue. Consequently,
a slow manifold exists in the system, of dimension that equals the number
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of microscale patches. The relevance theorem of centre manifolds, (Vander-
bauwhede 1989, p.128) or (Carr & Muncaster 1983, p.282), assures us that
the evolution on the slow manifold captures the whole dynamics system on
a cross-patch diffusion time. The leading eigenvalue, here −V0/4− π2/r2H2,
is the estimate of the rate of attraction of the whole dynamics to the slow
manifold.

5.6.3 Centre manifold theory supports multiscale
models

This section determines a slow manifold (5.67) and its evolution (5.68),
which are valid in the whole spatial domain for the microscale advection-
diffusion pde. This section finds that coupling conditions (5.53) lead to
centre manifold theory (Carr & Muncaster 1983, Chicone & Latushkin
1997, Vanderbauwhede 1989, e.g.) supporting a slow manifold model for the
advection-diffusion pde (5.1) via its dynamics (5.51) within coupled patches.
Figure 5.12, illustrates one example of the scale separation that underlies
this modelling: the figure shows separation of modes into rapidly decaying
modes and long lasting macroscale modes.

Space rescaling Since we consider the coupling strength γ is “small”, we
rescale the patch dynamics system (5.51). Let ξ be a new microscale space
variable restricted to the jth patch: ξ = (x − Xj)/H in each patch as the
subgrid scale variable instead of x. Thus, the advection-diffusion pde (5.51)
becomes

∂uj
∂t

+
V0

H

∂uj
∂ξ

=
1

H2

∂2uj
∂ξ2

. (5.54)

Equilibria Centre manifold theory is based on the information of the lin-
earisation about equilibria. A family of equilibria of system (5.53)–(5.54)
occurs by setting coupling parameter γ = 0; then within each patch the
advection-diffusion pde (5.54) has equilibria of uj = constant. Further, this
constant is independent in each of the N patches as each patch is completely
decoupled from each other.

Linearisation Now we linearise the advection-diffusion pde (5.54) about
each equilibria to show the existence and emergence of a slow manifold.
The spectrum of the linearised dynamics about each equilibria implies the
existence of a slow manifold (Roberts 2003b). When the coupling parame-
ter γ = 0, then linearly, the dynamics in each patch determines that of the



5.6. Multiple patches across the whole domain 155

whole set of the patch. The dynamics of the pde (5.54) with coupling con-
ditions (5.53) with γ = 0 represent the dynamics within each patch isolated
completely from its neighbours:

∂uj
∂t

+
V0

H

∂uj
∂ξ

=
1

H2

∂2uj
∂ξ2

, such that uj(±r, t) = Uj(t).

As all coefficients are constants, we seek solutions of the form uj ∝ eλ t v(ξ),
for eigenvalue λ and eigenfunctions v(ξ). Substituting and factoring out the
exponential leads to the eigenvalue problem associated with each patch

1

H2
v′′ − V0

H
v′ − λv = 0, v(±r) = v(0), (5.55)

where the prime denotes the derivatives with respect to ξ. We seek solu-
tions v ∝ ezξ to find the characteristic equation

z2

H2
− V0

H
z − λ = 0. (5.56)

The roots of the above quadratic equation (5.56) are

z1,2 =
H

2

(
V0 ±

√
V 2

0 + 4λ

)
.

Two cases of eigenvalues λ are investigated in the following.

The case of real eigenvalue λ

Assume λ ∈ R so that V 2
0 +4λ < 0. That is, the characteristic roots are z1 =

z̄2 = α+ik = H
2

(V0+i
√
−V 2

0 − 4λ), where, α = H
2
V0 and k = H

2

√
−V 2

0 − 4λ.
Thus, a general solution to the differential equation is

v(ξ) = eαξ [c1 cos(kξ) + c2 sin(kξ)] .

To satisfy the insulating1 bcs in (5.55) we need to solve[
eαr cos(kr)− 1 eαr sin(kr)
e−αr cos(kr)− 1 −e−αr sin(kr)

] [
c1

c2

]
=

[
0
0

]
.

The determinant of this system’s matrix must be zero for non-trivial solu-
tions:

−2 sin(kr) [cos(kr)− cosh(αr)] = 0. (5.57)

1When the coupling parameter γ = 0, the patches are uncoupled and the self-referential
nature of the bcs result in a conserved mode.
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Figure 5.11: Illustration of the solutions z1,2 for equation (5.56).

We determine the eigenvalues and the corresponding eigenfunctions from the
characteristic equation (5.57). First, the factor sin(kr) = 0 when microscale
wavenumbers k = π/r, 2π/r, 3π/r, . . . , therefore, the family of wavenum-

bers is kn = πn
rH

. That is, the microscale eigenvalues are λn = −1
4
V 2

0 −
(
πn
rH

)2

with corresponding eigenfunctions vn(ξ) = eαξ sin(knξ). There is also eigen-
value λ0 = 0 corresponding to the equilibrium solution. The set of microscale
eigenvalues of the linearised system is

S =

{
0,−V

2
0

4
− π2

(rH)2
,−V

2
0

4
− 4π2

(rH)2
,−V

2
0

4
− 9π2

(rH)2
, . . .

}
.

Thus, in a spatial domain with N patches, evidently all eigenvalues of
the microscale system are negative, −V 2

0 /4 − π2/(rH)2 or less, except for
one zero eigenvalue associated with each of the N patches. Centre manifold
theory (Roberts 1988, Chicone 2006, Pötzsche & Rasmussen 2006, e.g.) then
supports the existence of a slow manifold for (5.54) for non-zero coupling γ.

The general case of eigenvalues λ

In general, the eigenvalues λ /∈ R. Therefore, the roots of the quadratic
equation (5.56) are

z1,2 =
HV0

2
± (p+ iq). (5.58)

For the general case where the eigenvalues λ /∈ R, the complex roots (5.58) of
the quadratic equation (5.56) is shown in Figure (5.11). A general solution
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to the eigenproblem associated with each patch ode (5.55) is

v(ξ) = Ae(HV0/2+p+iq)ξ +Be(HV0/2−p−iq)ξ.

To satisfy the insulating bcs in (5.55) we need to solve[
e(HV0/2+p+iq)r − 1 e(HV0/2−p−iq)r − 1
e(−HV0/2−p−iq)r − 1 e(−HV0/2+p+iq)r − 1

] [
A
B

]
=

[
0
0

]
.

This system has non-trivial solutions only when the determinant

e2r(p+iq) − er(HV0/2+p+iq) − er(−HV0/2+p+iq)

− e−2r(p+iq) + er(−HV0/2−p−iq) + er(HV0/2−p−iq) = 0.

Simplifying the above expression by taking er(p+iq) and e−r(p+iq) out as com-
mon factors

[e2r(p+iq) − e−2r(p+iq)]− er(p+iq)[erHV0/2 + e−rHV0/2]

+ e−r(p+iq)[erHV0/2 + e−rHV0/2] = 0.

A further simplification is to use the hyperbolic functions cosh and sinh :

2 sinh [2(pr + iqr)]− er(p+iq)
[
2 cosh

(
rHV0

2

)]
+ e−r(p+iq)

[
2 cosh

(
rHV0

2

)]
= 0

4 sinh(pr + iqr) cosh(pr + iqr)− 4 cosh

(
rHV0

2

)
sinh(pr + iqr) = 0

4 sinh(pr + iqr)

[
cosh(pr + iqr)− cosh

(
rHV0

2

)]
= 0. (5.59)

From the characteristic equation (5.59), two cases arise to determine the
decay rate of each mode associated with each patch:

• First, the factor sinh[r(p+ iq)] = 0 when the argument is purely imag-
inary so that r(p+ iq) = inπ, for n = 1, 2, 3, 4, . . . . Therefore, implying
the values of p = 0 and q = πn/r. That is, the microscale eigenvalues
are

λn =
(HV0/2± iπn/r)2

H2
− V0

H

[
HV0

2
± iπn

r

]
= −1

4
V 2

0 −
( πn
rH

)2

, n = 1, 2, 3, . . . .

Thus, the set of microscale eigenvalues of the linearised system contains
the subset

S =

{
−V

2
0

4
− π2

(rH)2
,−V

2
0

4
− 4π2

(rH)2
,−V

2
0

4
− 9π2

(rH)2
, . . .

}
. (5.60)
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• Second, the factor cosh(pr+iqr) = cosh
(
rHV0

2

)
. In this case we expand

the left-hand side using the compound angle formula and equate the
real and imaginary parts, to get

cosh(pr) cos(qr) = cosh

(
rHV0

2

)
, (5.61)

and
sinh(pr) sin(qr) = 0. (5.62)

Equation (5.62) implies either that p = 0 or that q = nπ/r, where n is
an integer.

– First, the case when p = 0 in equation (5.61) leads to impossible
situation

cos(qr) = cosh

(
rHV0

2

)
> 1.

Therefore, the case when p = 0 is rejected.

– Second, the case q = πn/r where n is an integer in equation (5.61)
leads to

cosh(pr)(−1)n = cosh

(
rHV0

2

)
.

Since cosh
(
rHV0

2

)
> 1, then the odd values of n have to be elim-

inated. Hence, for n even we obtain p = ±HV0
2
. Therefore, the

microscale eigenvalues are

λn =
[HV0/2± (±HV0/2 + iπn/r)]2

H2
− V0

H

[
HV0

2
±
(
±HV0

2
+ i

πn

r

)]
= −

( πn
rH

)2

± i πn
rH

V0, for n = 0, 2, 4, . . . .

That is, for all patches combined, but uncoupled, the spectrum
contains the subset

S =

{
0,− 4π2

r2H2
± i 2π

rH
V0,−

16π2

r2H2
± i 4π

rH
V0,−

36π2

r2H2
± i 6π

rH
V0, · · ·

}
.

(5.63)

In a domain with m patches, Figure 5.12 shows some complex pairs of
eigenvalues with non-zero real-parts, while all other eigenvalues have negative
real-parts. No eigenvalue within the patches has a large imaginary part
unless it also has a relatively large negative real-part, and thus we expect
that the transients decay rapidly through microscale dissipation. Also, all
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Figure 5.12: The numerical eigenvalues of the advection-diffusion pde (5.54)
in complex plane. The length scale ratio r = 0.5, and the macroscale spac-
ing H = 1. Here advection speed in (5.54) is V0 = 1. The eigenvalues show
a clear separation of modes: microscale modes decay rapidly at rates faster
than 39; whereas long lasting macroscale modes corespond to eigenvalue near
zero.

other eigenvalues with large negative real-parts are all microscale sub-patch
modes as they correspond to the dissipative modes within decoupled patches.
Such rapid microscale sub-patch modes, and their decay are not of interest
to the macroscale dynamics.

Evidently, from Figure 5.12 the structure of the spectrum of the linearised
system (5.60) and (5.63) shows that there is one zero eigenvalue in (5.63)
for n = 0, λ0 = 0, and all the rest have negative <(λ) ≤ − π2

r2H2 < β < 0.
Based on the Existence and Emergence theorems (Carr 1981, chapter 1)
and (Roberts 2014), we establish the existence and emergence of a slow man-
ifold for the advection-diffusion pde decay like e−βt.
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5.6.4 Computer algebra constructs the slow manifold

Analogous to Section 4.1.2, the slow manifold of (5.54) is parametrized both
by the small parameters r, γ and by grid values Uj(t) = uj(Xj, t) that are

used to measure the field in the jth patch. Define ~U to be the vector of such
parameters, and seek a slow manifold

uj = uj(ξ; ~U, γ, r), (5.64)

such that evolution on the slow manifold is

dUj/dt = U̇ = gj(Uj, r). (5.65)

The evolution g ≈ 0 when we seek a slowly varying solution for system (5.54)
in a neighbourhood of the piecewise constant equilibria.

Substituting the slow manifold ansatz (5.64) and (5.65) into system (5.51)
we obtain

gj = −V0

H

∂uj
∂ξ

+
1

H2

∂2uj
∂ξ2

. (5.66)

Reduce computer algebra handles the algebraic details of the derivation of the
slow manifold (5.64)–(5.65) by solving the pde (5.66) with coupling (5.53)
and amplitude conditions (5.52). The algorithm used to construct a slow
manifold is an iteration based upon the residuals of the governing equa-
tions (Roberts 1997, e.g.). A successive approximation calculates a correc-
tion to reduce the residuals of the governing equation, the pde (5.66), the
bcs (5.53) and amplitude conditions (5.52). The iteration in the algebra is
performed until the governing equations are satisfied; that is, all their residu-
als drive to zero to within a prespecified order of error. By the approximation
theorems such as that by Carr & Muncaster (1983) or Roberts et al. (2011)
we assuredly construct correspondingly appropriate approximations to the
slow manifold of (5.52)–(5.54).

The order of errors in the construction

The order of errors in the slow manifold construction is phased in terms
of the small parameters. The computer algebra of Algorithm 13 in Ap-
pendix B constructs the slow manifold for the advection-diffusion pde to the
error O(γ2, V 3

0 ). We assume that the advection speed V0 is small enough by
truncating in powers of V0 so that we treat the term V0∂u/∂x as a small
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perturbation. The construction predicts the microscale field in the patch as

uj(ξ, t) ≈ Uj +
γξ

2
(−Uj−1 + Uj+1) +

γξ2

2
(Uj−1 − 2Uj + Uj+1)

+
γHV0ξ(ξ

2 − r2)

6
(Uj−1 − 2Uj + Uj+1)

+
γH2V 2

0 ξ
2(ξ2 − r2)

24
(Uj−1 − 2Uj + Uj+1). (5.67)

The corresponding evolution of the grid values on the slow manifold is

dUj
dt
≈ γ

H2
(Uj−1 − 2Uj + Uj+1) +

γV0

2H
(Uj−1 − Uj+1)

+
γr2V 2

0

12
(Uj−1 − 2Uj + Uj+1). (5.68)

By setting the coupling parameter γ = 1, the first two terms of the evo-
lution (5.68) are standard finite difference approximations to advection-
diffusion. The third term modifies the slow manifold by a diffusion which
increases dissipation for finite V0. This surprising result maintains stability
for finite advection (Roberts 2014). Although the pde is linear, the process
of accurate modelling generates such a desirable term V 2

0 that is nonlinear
in the coefficients of the equation.

5.7 Numerical validation of analytical com-

putation of the eigenvalues

As an example, this section calculates the numerical eigenvalues of the eigen-
value problem associated with each patch (5.55) using finite differences.
The numerically obtained eigenvalues are then compared with analytical mi-
croscale eigenvalues (5.60) and (5.63) within each patch. The good agreement
between the numerical and analytical eigenvalues, as shown in Table 5.3, val-
idates our analytical computation of the eigenvalues.

Finite differences

We are concerned with computing approximations by finite difference meth-
ods for the eigenvalues of eigenvalue problem (5.55). The intention is to rep-
resent the function by grid values v0, v1, . . . , vm, vm+1 where vj is our approx-
imation to the solution v(ξj) at the points of the domain ξj. We generate a
finite set of microscale grids on the interval [−r, r]. The microscale grid spac-
ing is ξj = j∆ξ. From the boundary conditions we know that vt0(−r) = v(0)
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and vtm+1(r) = v(0) and so we have m unknown values v1, v2, · · · , vm to
compute. The microscale simulator approximates equation (5.55) by central
differences as

vtj+1 − 2vtj + vtj−1

∆ξ2
−HV0

vtj+1 − vtj−1

2∆ξ
−H2λvtj = 0. (5.69)

Equivalently, we write equations (5.69) as the finite dimensional eigenvalue
problem

Mv = λv,

where v is the m component vector


v0

v1
...

vm−1

vm

, and M the m × m matrix of

finite differences.
Expand the system of algebraic equations (5.55), and collect common

terms(
1

∆x2
− HV0

2∆x

)
vtj+1 +

( −2

∆x2
−H2λ

)
vtj +

(
1

∆x2
+
HV0

2∆x

)
vtj−1 = 0. (5.70)

For simplicity of notation, let A = 1
∆x2
− HV0

2∆x
, B = −2

∆x2
, and C = 1

∆x2
+ HV0

2∆x
.

A matrix form of the eigenvalue problem ode (5.70) is


C B A 0 · · · 0

0 C B A 0
...

...
. . . . . . . . . . . .

...
0 · · · 0 C B A



v0

v1
...

vm−1

vm

 = H2λ


v0

v1
...

vm−1

vm

 .
There are various computer packages designed to solve such systems.

Form an implicit eigenproblem: Given a pde for u(x, t). Suppose we

have coded a discretisation d~u/dt = ~f(~u) and found an equilibrium ~u ∗, which

satisfies ~f(~u ∗) = ~0. We seek the dynamics of small perturbations away from
equilibrium: seek ~u(t) = ~u ∗ + ε~veλt for small ε. The discretisation then
reduces to an eigenproblem λ~v = M~v. But instead of finding the matrix M ,
we invoke the procedure eigs() that uses just the product A~v, this product

we get direct from the function ~f by evaluating ~f(~u ∗+ε~v)/ε for some small ε,
say 10−7. Algorithm 7 implements this method for calculating the numerical
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Algorithm 6 Compute the eigenvalues and eigenvectors of the coded dis-
cretisation of the ode (5.55). Create two matrices, M and B, then solve the
generalised eigenvalue problem for the eigenvalues and right eigenvectors of
the pair (M,B). The patch parameters are r = 0.5, H = 1, and V0 = 1.

1 %construct the matrix M and find the eigenvalues of

2 %advection diffusion.

3 N=161

4 r=0.5

5 x=linspace(-r,r,N);

6 dx=x(2)-x(1);

7 hh=1;

8 vv0 =1;

9 a=1/dx^2+hh*vv0 /(2*dx);

10 b=-2/dx^2;

11 c=1/dx^2-hh*vv0 /(2*dx);

12 M=toeplitz ([b,a,zeros(1,N-2)],[b,c,zeros(1,N -2)]);

13 c=(N+1)/2

14 M(1 ,:)=[ -1 zeros(1,c-2) 1 zeros(1,c -1)];

15 M(N,:)=[ zeros(1,c-1) 1 zeros(1,c-2) -1]

16 B=diag ([0 ones(1,N-2) 0])

17 [v,e]=eig(M,B);

18 e=sort(diag(e));

19 e=e(1:10);

20 z1=(vv0/hh+sqrt(vv0^2/hh^2-4/hh^2*(-e)))/2* hh

21 z2=(vv0/hh-sqrt(vv0^2/hh^2-4/hh^2*(-e)))/2* hh

22 plot(real(z1), imag(z1),'*',real(z2), imag(z2),'+')
23 scatter(real([z1;z2]), imag([z1;z2]),N,abs([e;e]))
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Algorithm 7 Compute the eigenvalues and eigenvectors of the coded dis-
cretisation of the ode (5.55). The patch parameters are given by r = 0.5,
H = 1, and V0 = 1.

1 %Advection diffusion

2 % Compute spectrum of advection diffusion PDE with finite differences

3 global j x hh vv0

4 N=21

5 hh=1;

6 vv0 =1;

7 r=0.5

8 x=linspace(-r,r,N)'
9 j=2:N-1

10 u0=zeros(size(x))

11 small=1e-7

12 fun=@(v) dudt(0,u0(j)+small*v)/ small;

13 [v,d]=eigs(fun ,N-2,N-2)

14 d=diag(d)'
15 v=[NaN(size(d)); v; NaN(size(d))];

16 subplot (2,1,1), plot(x,v(: ,1:4))

17 legend(num2str(d(1:4) ' ,3))
18 xlabel('space x'),ylabel('v(x)')
19 subplot (2,1,2), plot(x,v(:,end -4:end))

20 legend(num2str(d(end -4:end)',3))
21 xlabel('space x'),ylabel('v(x)')
22 %--------------------------------------------------

23 function ut=dudt(t,u)

24 global j x hh vv0

25 dx=x(2)-x(1); % dx=diff(x(1:2))

26 c=( length(u)+1)/2;

27 u=[u(c);u;u(c)];

28 ut=(u(j-1)-2*u(j)+u(j+1))/ dx^2-hh*vv0*(u(j+1)-u(j -1))/(2* dx);
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Table 5.3: Numerical eigenvalues derived by Algorithm 6 for the macroscale
wave modes from Figure 5.12, with patch parameters are given by r = 0.5,
H = 1, and V0 = 1, agree with exact eigenvalues (5.60) and (5.63). Absolute
error is used to compare the quality of the approximation.

Numerical λ Exact λ (5.60) and (5.63) Absolute error

0 0 0
−39.72 −39.73 0.01
−158.1 −158.1 0.00
−157.8± 12.55i −157.9± 12.57i 0.10
−355.1 −355.5 0.40
−630.6 −631.9 1.30
−630.3± 25.03i −631.6± 25.13i 1.30
−984.0 −987.2 3.20
−1414.9 −1421.5 6.60
−1414.7± 37.35i −1421.2± 37.70i 6.50
−1922.5 −1934.7 12.20
−2506.1 −2526.9 20.80
−2505.9± 49.44i −2526.6± 50.26i 20.71
−3164.8 −3198.0 33.20
−3897.6 −3948.10 50.50
−3897.4± 61.22i −3947.8± 62.80i 50.42
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eigenvalue of the ode (5.55) by invoking the matlab function eigs. Table 5.3
lists an example of the result of this Algorithm 7 which is consistent with
the result of Algorithm 6. These results agree with the analytical results of
deriving the macroscale eigenvalues as shown in Table 5.3.

5.8 Nonlinear reaction-diffusion equations

The spatial patch scheme is applied to linear partial differential equations in
the previous chapters and earlier sections of this chapter. In this section, we
analyse how the patch scheme behaves when applied to simulate systems that
manifest themselves on the macroscale as nonlinear reaction-diffusion pdes.
This analysis of the nonlinear reaction-diffusion pde provides insights that
apply to other nonlinear systems.

Here we explore the patch dynamics scheme of the simplest non-trivial
example in the class of nonlinear reaction-diffusion pde

∂u

∂t
=
∂2u

∂x2
− u3, (5.71)

for some field u(x, t) and some nonlinear reaction u3. The reaction-
diffusion pde (5.71) is subject to the Dirichlet boundary conditions

u(−H, t) = a, u(H, t) = b, (5.72)

where a and b are constants. We analyse the dynamics of pde (5.71) on one
patch coupled to the domain boundary conditions (5.72) by patch coupling
conditions (5.4). The linear analysis implies that the spectrum supports the
existence of the slow manifold as discussed in Section 5.8.1. Section 5.8.2 then
derives a non-trivial approximation of the slow manifold of the system. Fol-
lowing the method of holistic discretisation, introduced by Roberts (2003a),
Section 5.8.3 analogously derives the slow manifold and the corresponding
evolution of the system (5.71) with time-varying boundary forcing.

In Section 5.8.4, the nonlinear reaction-diffusion pde with boundary con-
ditions (5.72) is solved numerically by using method of lines. Then com-
parisons are made between the long-time dynamical behaviour of numerical
solutions on one patch with the prediction of this slow manifold. For ex-
ample, Figure 5.14 shows a slight difference between the two approaches as
shown in Section 5.8.6.

Before we solve the nonlinear reaction-diffusion pde (5.71) with the patch
non-homogeneous coupling conditions (5.4), let us think about what could
happen for the dynamics of the nonlinear reaction-diffusion pde (5.71) on
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a small patch. Since we assume the patch is small, then the diffusion will
rapidly smooth the field u(x, t) across the small patch. Thus, the diffusion
term is dominant in the microscale dynamics. Recall that h is the patch half-
width, so the patch gets smaller as h → 0. Therefore, the diffusive decay
becomes increasingly more rapid. This is a singular perturbation problem.
Roberts (2014), in his book, detailed how to avoid ‘singular’ perturbations
by rescaling time. Analogously, here we address this case by rescaling the
nonlinear reaction-diffusion pde (5.71) to make it regular.

Time and space rescaling Let ξ and τ be the new microscale space-time
variables. Since the patch size is proportional to the small h, we work on
the scale of the patch by transforming (5.71) to the natural microscale space
scaling x = hξ, so that using the chain rule for the derivative of a function
with respect to x

∂

∂x
=
∂ξ

∂x

∂

∂ξ
=

1

h

∂

∂ξ
. (5.73)

Since the time scale of cross-patch diffusion is proportional to h2, we adopt
the fast natural microscale time scale of t = h2τ so that using the chain rule
for the first derivative of a function with respect to t

∂

∂t
=
∂τ

∂x

∂

∂τ
=

1

h2

∂

∂τ
. (5.74)

Substituting (5.73) and (5.74) into (5.71) yields

1

h2

∂u

∂τ
=

1

h2

∂2u

∂ξ2
− u3. (5.75)

Multiplying both sides of equation (5.75) by h2 we obtain a new version of
the nonlinear reaction-diffusion pde

∂u

∂τ
=
∂2u

∂ξ2
− r2H2u3, (5.76)

with the non-local boundary conditions

u(±1, t) = u(0, t)
(
1− r2

)
+
a

2

(
r2 ∓ r

)
+
b

2

(
r2 ± r

)
, (5.77)

for the microscale field u(ξ, τ). On a small patch ratio r, we are
about to establish the existence of the centre manifold for the reaction-
diffusion pde (5.71). The model predicts the emergent dynamics of the
gap-tooth scheme. In order to construct a centre manifold model we identify
the linearised dynamics about some equilibrium.
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5.8.1 Existence of slow manifold and initial approxi-
mation

This section shows the existence of a slow manifold based upon the linear
dynamics of the microscale system (5.76). The existence of a slow manifold is
essential for finding the evolution on the slow manifold, which describes the
large-scale dynamics of the microscale field u governed by equation (5.71).

Equilibrium and eigenspectrum

One set of equilibria in the microscale system (5.76)–(5.77) is the field u =
constant for r = 0. From the definition (5.3) the equilibria are parametrised
by U as u(ξ, τ) = U and r = 0.

To linearise the microscale system (5.76)–(5.77) we substitute u = U +
û(ξ, τ) for small r and û. Neglecting products of small quantities we obtain

∂û

∂τ
=
∂2û

∂ξ2
, û(±1, τ) = û(0, τ). (5.78)

Assuming a product solution of the form û ∝ eλ τ v(ξ), equation (5.78) be-
comes the eigenvalue problem

d2v

dξ2
− λv = 0, v(±1) = v(0). (5.79)

Observe that the eigenfunction has to be linear in ξ for the eigenvalue λ = 0.
However, the boundary conditions in (5.79) force the eigenfunction v(ξ) to be
constant. Hence, an eigenvalue is λ = 0 and corresponding eigenfunction v =
1.

To solve the eigenvalue problem (5.79) in general we assume that λ =
−k2 < 0. Then a general solution to the differential equation (5.79) is

v(ξ) = c1 cos(kξ) + c2 sin(kξ),

where c1 and c2 are two constants, and k denotes a microscale wavenumber.
Applying the patch homogeneous boundary conditions in (5.79) on the edges
of the patch gives

c1 cos(k)± c2 sin(k) = c1.

Forming as a pair of linear equations,[
cos(k)− 1 sin(k)
cos(k)− 1 − sin(k)

] [
c1

c2

]
=

[
0
0

]
.
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This system has non-trivial solutions only when the determinant

−2 sin(k) [cos(k)− 1] = 0.

Two cases arise to satisfy this requirement.

• Either sin(k) = 0 whenever microscale wavenumbers k = π, 2π, 3π,
. . . , hence, the family of wavenumbers is kn = nπ for n = 1, 2, 3, . . . .
That is, microscale eigenvalues are λn = −n2π2 with corresponding
eigenfunctions vn(ξ) = sin(nπξ).

• Or cos(k) − 1 = 0 when microscale wavenumbers k = 2π, 4π, 6π, . . .,
hence, the family of wavenumbers is kn = nπ for n = 2, 4, 6, . . . , with
corresponding microscale eigenvalues λn = −n2π2 for even n. The
corresponding eigenfunctions vn(ξ) = cos(nπξ). Observe that, for n
even, there must be more than one eigenfunction since equation cos(k)−
1 = 0 has double root at k = nπ. Generalised eigenfunctions occur for
these eigenvalues.

Based upon the structure of this spectrum we identify the existence of a
model. In a spatial domain, all eigenvalues of the linearised system on the
patch is the set

S =
{

0,−π2,−4π2, · · ·
}
. (5.80)

The spectrum of eigenvalues (5.80) of the linearised system is of one zero
eigenvalue and all the rest have negative real-parts, λ ≤ −π2 or less. The
theorem of the existence (Roberts 2014, e.g.), guarantees the existence of a
slow manifold. The slow manifold is tangent to the field u = constant and
r = 0; and it is local in the patch size r. Additionally, the slow manifold
emerges on the microscale time 1/π2 which in the original time is emergence
on the fast timescale r2/π2 as the slowest decay is e−λ1τ = e−π

2τ = eπ
2t/r2 .

5.8.2 The first approximation of the slow manifold

The first non-trivial approximation of the slow manifold of the microscale
reaction-diffusion pde (5.76) is obtained by assuming that r is small, and
seeking a microscale field in the form

u(ξ, τ) = U + û(ξ, U, r),

such that evolution on the slow manifold

dU

dτ
= ĝ(U, r).
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For small û and ĝ, substitute this ansatz into system pde (5.76)–(5.77), and
omit products of small quantities to give

ĝ =
∂2û

∂ξ2
− r2HU3, (5.81)

with boundary conditions

û(±1) = û(0) +

(
a

2
+
b

2
− U

)
r2 +

(
∓a

2
± b

2

)
r. (5.82)

The first non-trivial approximation of the slow manifold of the microscale
reaction-diffusion pde (5.76) is determined from equation (5.81) and coupling
boundary conditions (5.82). The amplitude definition

U = u(0, τ), requires û = 0 at ξ = 0. (5.83)

Integrating equation (5.81) twice with respect to ξ gives the microscale field
in the form

û =
ξ2

2
[ĝ + r2H2U3] + c1ξ + c2.

The constant of integration c2 = 0 by the amplitude condition (5.83). By
subtracting the two boundary conditions (5.82) we determine the constant
of integration c1 = (−a+ b)r/2. Adding the two boundary conditions (5.82)
leads to the evolution correction

ĝ = (a+ b− 2U)r2 −H2U3r2.

Therefore, the microscale field

u ≈ U − ξ

2
(a− b)r +

ξ2

2
(a+ b− 2U)r2,

such that
dU

dτ
≈ (a+ b− 2U)r2 −H2U3r2,

is the first non-trivial approximation to the slow manifold and the new evo-
lution. For the macroscale variables, the microscale field u ≈ U − x(a −
b)/(2H) + x2(a + b − 2U)/(2H2), matches the interpolation from the dis-
tant bcs at x = ±H which are provided by the gap-tooth scheme. On
the slow macroscale time, the evolution on slow manifold is correspond-
ing dU/dt ≈ (a+ b− 2U)/H2 − U3 .
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5.8.3 Varying boundary values with time

Analogous to the analysis of incorporating time-varying boundary forcing
into the diffusion dynamics in Section 4.1.4, we investigate the effects of
time-varying boundary forcing of the field u(x, t) incorporated into the non-
linear reaction-diffusion pde (5.76). The appropriate model contains time
derivatives of a(t) and b(t).

Executing the computer algebra program of Algorithm 14 in Appendix B,
adapted from (Roberts 2014, p.609), the slow manifold expressions of the
solution field u(x, t) is, in terms of ξ = x/h, and τ = t/h2,

u ≈ U + r

(
bξ

2
− aξ

2

)
+ r2ξ2

(
−U +

b

2
+
a

2

)
+ r

(
∂a

∂τ
− ∂b

∂τ

)(
ξ

12
− ξ3

12

)
+ r2

(
∂b

∂τ
+
∂a

∂τ

)(
− ξ

2

24
+
ξ4

24

)
+ r

(
∂2b

∂τ 2
− ∂2a

∂τ 2

)(
7ξ

720
− ξ3

72
+

ξ5

240

)
+ r2

(
∂2b

∂τ 2
+
∂2a

∂τ 2

)(
ξ2

480
− ξ4

288
+

ξ6

720

)
. (5.84)

The time derivatives in this approximate slow manifold (5.84) are the rate of
change, and it tells us how the field is changed with time-varying boundary
values. The first three terms are the parabolic interpolation, modified by the
first and second time derivative in other terms, which capture some sub-patch
interactions between reaction and diffusion. The corresponding evolution on
the slow manifold is

dU

dτ
≈ r2

(
−2U −H2U3 + b+ a− 1

12

∂b

∂τ
+

1

240

∂b2

∂τ 2
− 1

12

∂a

∂τ
+

1

240

∂a2

∂τ 2

)
.

(5.85)
The influnce of boundary value a(τ) in this evolution equation is approxi-

mately a(τ)− 1
12
∂a(τ)
∂τ
≈ a(τ − 1

12
), and similarly for b. Thus, the time delay

is τ − 1/12. The time delay in term b+ a does affect the evolution due to the
symmetry, unlike the difference between boundary values b − a, which does
not affect the evolution on the slow manifold. This evolution on the slow
manifold is able to capture the whole dynamics occurring on a time scale
larger than 1/|λ1| = 1/π2 (Bunder et al. 2013, Roberts 2003b, e.g.).

5.8.4 Method of lines

A numerical computation is one of the effective ways to investigate many
hard problems, and a successful numerical study can discover the mathe-
matical theory behind the phenomena (Presmeg 2006). This section im-
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plements the method of lines to solve numerically the nonlinear reaction-
diffusion pde (5.71) with the following boundary conditions

u(−H, t) = a = 0, u(H, t) = b = 0.5 sin(2t). (5.86)

We use the method of lines because it is effective with respect to ac-
curacy and computational time (Sadiku & Obiozor 2000). The basic idea
of implementing the method of lines for solving the nonlinear reaction-
diffusion pde (5.71) with boundary conditions (5.86) in one spatial dimension
is to discretise in x and integrating in time as a set of ode (this method is
also referred to as a semi-discrete approximation (Foias et al. 1991, Foias
& Titi 1991, e.g.)). It is possible to use a stiff ode routine on the time
derivatives in the resulting system.

Let us discretise the domain in space as xj = j∆x. We replace the second
derivative with respect to x with its finite difference equivalent, the scheme
becomes

dutj
dt

=
utj+1 − 2utj + utj−1

∆x2
− (utj)

3, (5.87)

with boundary conditions (5.86). The initial conditions u0
j = f(xj) for

each j = 1, 2, . . . , N − 1.

• At j = 1⇒
dut1
dt

=
ut2 − 2ut1 + ut0

∆x2
− (ut1)3.

• At j = 2⇒
dut2
dt

=
ut3 − 2ut2 + ut1

∆x2
− (ut1)3.

• At j = N − 1⇒

dutN−1

dt
=
utN − 2utN−1 + utN−2

∆x2
− (utN−1)3.

Therefore, the discrete reaction-diffusion pde (5.87) is

d~u

dt
=

A

∆x2

a~u
b

− ~u3,

where A is an N − 1×N + 1 tridiagonal matrix representing the discretised
form of the second derivative with respect to x. A matrix form of the discrete
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reaction-diffusion pde (5.87) is

d~u

dt
=

1

∆x2


1 −2 1 0 · · · 0

0 1 −2 1
. . .

...
...

. . . . . . . . . . . .
...

0 · · · 0 1 −2 1




a
u1
...

uN−1

b

−

u3

1

u3
2

u3
3
...

u3
N−1

 .

Algorithm 8 numerically solves for ~u(t) using matlab’s ode15s routine.

Algorithm 8 Matlab numerically solve the reaction diffusion equa-
tion pde (5.71) with boundary conditions (5.86) using method of lines.

1 % using the method of lines to solve the reaction diffusion

2 % equation u_t = u_xx -u^3

3 N=20 % no of grid points Xn

4 x=linspace(-1,1,N+1)

5 dx=diff(x(1:2)) % grid spacing in x direction

6 freq =2;

7 tspan = linspace (0,12/freq ,21);% Defining time interval for solution

8 u0 = randn(size(x))/3; % initial condition

9 %Vary BCs

10 a=0;

11 b=@(t) 0.5* sin(freq*t);

12 % construct the matrix A

13 A=toeplitz ([1 zeros(1,N-2)] ,[1 -2 1 zeros(1,N -2)]);

14 E = @(t,u) 1/dx^2*A*[a;u;b(t)]-u.^3;

15 [t,u] = ode15s(E, tspan , u0(2:end -1)) % calling function to solve ode

16 u1=[a*ones(size(t)) u b(t)];

5.8.5 Comparison of the long time behaviour

This section compares the numerical solutions of the nonlinear reaction-
diffusion pde in the previous Section 5.8.4 with predictions of the centre
manifold theory (5.84)–(5.85).

The slow manifold evolution (5.85), upon restoring the original time t =
h2τ, is

dU

dt
≈ 1

H2

(
−2U −H2U3 + b+ a− h2

12

∂b

∂t
+

h4

240

∂2b

∂t2
− h2

12

∂a

∂t
+

h4

240

∂2a

∂t2

)
.

(5.88)
To compare the long time behaviour, Algorithm 9 finds numerical solution

to the slow manifold evolution (5.88) by using matlab’s ode15s solver.
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Algorithm 9 Matlab numerically solve the slow manifold evolution equa-
tion pde (5.88) with boundary conditions (5.86).

1 % APPROXIMATION OF CENTER MINFOLD with vary BCs

2 N=20;

3 hh=1;

4 r=0.5;

5 h=r*hh;

6 x=linspace(-1,1,N+1)

7 % initial condition

8 y0 = randn(size(x))/3;

9 %u0=sum(y0)*dx/2

10 u0 = y0(N+1)/2;

11 %u0=10;% initial condition

12 a=0;

13 b=@(t) 0.5* sin(freq*t);

14 b1 = @(t) freq *0.5* cos(freq*t);% first derivative of (b)

15 b2 = @(t) -freq ^2*0.5* sin(freq*t);% second derivative of (b)

16 f = @(t,uu) -2*uu/hh^2-uu.^3+b(t)/hh^2+a/hh^2 ...

17 -r^2*b1(t)/(12)+r^2*h^2*b2(t)/(240);

18 g = @(t,uu) 1/hh^2*( -2*uu -hh^2*uu.^3+b(t)+a ...

19 -h^2*b1(t)/12+h^4*b2(t)/240 );

20 [t,uu] = ode15s(g, tspan , u0)

21 % the microscale field with Vary boundary with time

22 xi=x/h;

23 uc=uu*ones(size(x)) ...

24 +r/2*b(t)*xi ...

25 +r^2*(-uu +b(t)/2)*xi.^2 ...

26 +b1(t)*h^2*r*(-xi+xi .^3)/12 ...

27 +b1(t)*h^2*r^2*(-xi.^2+xi .^4)/24 ...

28 +b2(t)*h^4*r*(7/720* xi -1/72*xi .^3+1/240* xi.^5) ...

29 +b2(t)*h^4*r^2*(1/480* xi .^2 -1/288*xi .^4+1/720* xi .^6);
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Figure 5.13: A space time simulation for a field u(x, t) of the nonlinear
microscale reaction-diffusion pde on one single patch where r = 0.5 and H =
1. (Left) slow manifold predictions for long-term behaviour of the dynamics
system; (right) the solution to the nonlinear reaction-diffusion pde (5.71)
using the method of lines, with random initial conditions.
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Figure 5.14: A space time simulation for a field u(x, t) of the nonlinear
microscale reaction-diffusion pde on one single patch where r = 0.5 and H =
1: left, is the approximations of the slow manifold (dashed curves) and the
method of lines approximations (solid curves), plotted against space, for t =
1.3, t = 3 and t = 4.5; right, the approximations of the slow manifold (dashed
curve) and the method of lines approximations (solid curves), plotted against
space, for x = ±0.5 and x = 0.
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Figure 5.15: Root-mean-square difference (rmsd) of Figure 5.14. In the
short-term the error decays quickly due to initial transients. Observe
that rmsd fluctuates over time but remains at 0.1.

Figure 5.13 compares numerical solutions of the nonlinear reaction-
diffusion pde by the method of lines with predictions of long dynamics be-
haviour of the centre manifold theory. The slow manifold shows a good
qualitative agreement with the solution to the nonlinear reaction-diffusion
dynamics on one patch. The finite difference plot also exhibits some small
amplitude noise at x = 0 which is due to the random initial conditions used
for that method. Figure 5.14 shows that there is reasonable agreement be-
tween the quantitative properties of these predictions.

5.8.6 Evaluation of quantitative error

Measurement errors and uncertainties exist in any quantitative experiment.
By improving techniques and methods, we could reduce such errors and un-
certainties but they can never be completely eliminated. The assessment
of the reliability of results is an important part of any quantitative experi-
ment (Hughes & Hase 2010). This assessment involves identifying and under-
standing the source of errors in order to quantify the reliability and accuracy
of the results.

Figure 5.14 shows a slight difference between the prediction of centre
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manifold and method of lines. The difference is quantified by calculating
the root mean squared difference rmsd. For simplicity, let U denote the
prediction of slow manifold where we define earlier U(t) = u(0, t). Define

rmsd =

√√√√ 1

N

N∑
j=1

(ucj − ulj)2,

where ucj and ulj represent the solution of the slow manifold and method of
lines, for −1 < x < 1, for the nonlinear reaction-diffusion pde over 0 < t < 6.
We discretise the domain in space as xj = j∆x, for j = 0, 1, 2, . . . , 20, and
for some grid spacing ∆x. Figure 5.15 shows an exponential decay in the
short-term and small oscillatory errors in the long-term.

5.9 Conclusion

The analysis presented throughout Chapters 3 and 4 is extended in this
chapter to analyse one-dimensional microscale advection-diffusion dynamics
for both a single patch and for multiple patches. The microscale model is first
solved within one patch, using the eigenfunction expansions which are given
in terms of the biorthogonal basis. The biorthogonal basis consists of two sets
of eigenfunctions which originate from the operator and its adjoint. With the
aid of the biorthogonal basis, the spectral coefficients are determined.

This chapter then extends the analysis to multiple patches applied
to a one-dimensional advection-diffusion equation. We extend the model
of Roberts (2003b) on overlapping elements to the case of patches separated
by gaps. The patch coupling conditions that were found in Chapter 3 are
adapted in this chapter to couple the discrete patches across space. Sec-
tion 5.6.3 determines all eigenvalues of the linear dynamics associated with
each patch which indicates the existence of a centre manifold. In partic-
ular, Figure 5.12 shows the clear separation between the dynamics of the
macroscale modes of interest, and the microscale modes within each patch.
The computer algebra of Algorithm 13 then constructs the slow manifold of
the system.

Section 5.8 applies the patch dynamics scheme to the nonlinear reaction-
diffusion equation. The eigenvalue analysis in Section 5.8.1 supports the ex-
istence of the slow manifold. Section 5.8.2 then derives a non-trivial approx-
imation of the slow manifold of the system. This is followed in Section 5.8.3
by deriving the slow manifold and the corresponding evolution of the system
with time-varying boundary forcing. In Section 5.8.4, the nonlinear reaction-
diffusion pde with boundary conditions (5.72) is solved numerically by using
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method of lines. Then comparisons are made between the long-time dynam-
ical behaviour of numerical solutions on one patch with the prediction of this
slow manifold. Future work could extend the analysis of such patch scheme
to spatial dimensions higher than one spatial dimension.



Chapter 6

Conclusion

This dissertation achieves two aims: first, Chapter 2 develops a patch dy-
namics scheme that uses only a given microscale periodic simulator, such
as molecular dynamics, to predict emergent macroscale properties over large
space scales; and second, Chapters 3–5 explore patch dynamics behaviour
where the microscale is governed by a partial differential equation. Sec-
tion 6.1 summarises the results of the first goal and Section 6.2 concludes
with a summary of the main contributions of the second goal. Then, Sec-
tion 6.3 gives some directions for future research.

6.1 Summary of the periodic atomistic patch

simulations

The first aim of the dissertation is to develop a patch dynamics scheme that
uses only a given microscale periodic simulator, such as molecular dynam-
ics, to effectively predict macroscale behaviour over large space scales. As
a pilot study of a controlled periodic patch scheme, our novel method fur-
ther develops the equation-free patch dynamics scheme (Hyman 2005, Li
et al. 2007, Frederix et al. 2007, Bunder & Roberts 2012, e.g.) to empower
atomistic patch simulations of the system of particular interest over large
spatial dimensions from a given microscopic simulator. We emphasise that
the main contribution is in establishing the mathematical basis for a novel
design of the equation-free scheme incorporating patches with macroscale
periodic boundaries that are not reflecting of the macroscale geometry.

Chapter 2 invokes one microscale, detailed, atomistic patch in a triply-
periodic cubic domain. Our innovation is to couple such a small patch over
unsimulated space: the coupling mechanism has to differ from that used in
patch schemes to date (Liu et al. 2015, e.g.). Analysis of atomistic simula-

180



6.2. Summary of analysed patch dynamics scheme for different classes of pdes181

tions is based upon just one small patch divided into four equal-sized regions.
Section 2.3.1 describes our implementation of a proportional controller over
the action regions to couple such a triply-periodic patch to its neighbours over
unsimulated space. Algebraic analysis and the determination of eigenvalues
in Section 2.4 confirm that the proposed controlled coupling of the periodic
patch was effective for atomistic simulations, and for a control roughly as
predicted by the analysis. Numerical simulations (Section 2.3.2) of the heat
diffusion pdes were successfully implemented by such a proposed controlled
patch scheme. Results (Figure 2.7) show that the developed patch dynamics
scheme can quite well model the heat diffusion pdes. Section 2.5 establishes
the spectral gap of the patch system, and shows the slow emergent macroscale
dynamics. Section 2.5.2 then approximates the macroscale prioritised eigen-
value that characterises such emergent macroscale dynamics. Based on the
approximation of this prioritised eigenvalue, Section 2.5.3 determines good
values for the strength of the proportional controller as a function of the patch
ratio r. An interesting finding presented in Section 2.6 when the diffusivity
was estimated, using a technique similar to homogenisation, to determine
the best control for the simulation.

6.2 Summary of analysed patch dynamics

scheme for different classes of pdes

The second goal of the dissertation is to analyse whether small spatial
patches, such as those with patch ratios r � 1, are able to predict the
coupled macroscale behaviour when the transport phenomena at the given
microscopic equation is governed by a partial differential equation.

Chapter 3 invokes one patch in one spatial dimension for diffusion prob-
lems with forcing boundary conditions. The solution behaviour of the patch
scheme under time-varying boundary conditions is analysed. We show that
there are two classes of eigenfunctions: symmetric and asymmetric within the
patch. It is found that the spectral problem associated with a small patch is a
non-self-adjoint problem. To be able to find spectral expansions, Section 3.4
finds eigenfunctions of the adjoint operator. Then the eigenfunctions of an
operator with those of its adjoint form biorthogonal sets, and the spectral
coefficients in the eigenfunction expansion are found using the eigenfunctions
of the adjoint problem. After obtaining these expansions, Section 3.5.2 pre-
dicts the microscale field in the patch, for small patch ratio r = 0.1, and then
compares such predictions with the field on the complete domain.

Chapter 4 extends the analysis to involve many small patches distributed
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over the domain. The coupling conditions (4.23) with strength parametrised
by γ effectively bridge the gaps between the patches in the spatial domain.
Each patch notionally mimics the local evolution of the microscopic model
as if it were embedded in a larger domain. The artificial small parame-
ter γ is introduced to establish the slow manifold. However, relatively high
orders of the artificial parameter are required so that evaluating at full cou-
pling γ is accurate and presents the physical problem of interest. When the
artificial parameter γ = 0, the patches are uncoupled by the effectively insu-
lating boundary conditions between them. The eigenvalue analysis together
with the centre manifold theory in Section 4.1.2 indicate the existence of
a slow manifold. Computer algebra is used in Section 4.1.3 to construct a
model (4.35) to confirm the diffusion dynamics.

Chapter 5 extends the analysis in Chapters 3 and 4 to the case of
advection-diffusion problems. In the first part of this chapter, the microscale
advection-diffusion system in a single patch is analysed so that the macroscale
dynamics over a comparatively large spatial region can be predicted. The
second part of this chapter analyses the microscale advection-diffusion sys-
tem for multiple patches. We extend the model of Roberts (2003b) on over-
lapping elements to the case of patches separated by gaps. For patch ra-
tio r = 1, the patches overlap and the analysis reduces to that of holistic
discretisation (Roberts 2003b, e.g.). Analogously, we adapt the bcs for holis-
tic discretisation (Roberts 2003b, e.g.) to the case of patch scheme r < 1, for
the advection-diffusion pde. Each patch captures the local evolution of the
microscopic model. The algebraic analysis and numerical determination of
eigenvalues in Section 5.6.3 indicate the existence of a slow manifold. In par-
ticular, Figure 5.12 shows the clear separation between the dynamics of the
macroscale modes of interest, and the microscale modes within each patch.

Section 5.8 applies the patch dynamics scheme to a simple scenario in-
volving nonlinear reaction-diffusion. The eigenvalue analysis in Section 5.8.1
supports the existence of the slow manifold. Section 5.8.2 then derives a
non-trivial approximation of the slow manifold of the system. Following
this, Section 5.8.3 derives the slow manifold and the corresponding evolution
for the system with time-varying boundary forcing. In Section 5.8.4, the
nonlinear reaction-diffusion pde with boundary conditions (5.72) is solved
numerically by using method of lines. Then comparisons are made between
the long-time dynamical behaviour of numerical solutions on one patch with
the prediction of this slow manifold.
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6.3 Future directions

This section highlights the possible future directions based on the work in
this dissertation.

In Chapter 2, we develop the patch dynamics scheme for large atomistic
simulations. Further research could investigate some important issues con-
cerning the optimal core and action region sizes, optimal weight functions
for the averages in the regions, and refining the interpolation that couples
the patches. Section 2.3.1 implements a proportional controller (Bechhoe-
fer 2005, e.g.) to couple the patch to the surrounding macroscale varia-
tions. In future developments, one could explore proportional-integral and
proportional-integral-derivative controllers with the aid of projective integra-
tion in time (Gear & Kevrekidis 2003, Kevrekidis & Samaey 2009, e.g.).

Although Chapter 2 focuses on the macroscale temperature diffusion
emerging from an atomistic simulation, the equation-free patch scheme does
usefully apply to wave systems (Cao & Roberts 2013, 2016) and so we expect
that controlled periodic-patches should also be able to reasonably predict the
emergent density-momentum waves of an atomistic simulation.

In computational non-Newtonian fluid dynamics, the local stresses are
determined by using a model constitutive equation. However, there are some
difficulties in applying computational fluid dynamics methods, which require
the constitutive equation of the complicated flow problems, especially for
dense polymeric liquids. These difficulties are due to the unknown constitu-
tive relation. Nevertheless, the rheological properties of such materials could
be investigated using microscopic simulations such as molecular dynamics
simulations. Microscopic simulations are often used for extremely small ma-
terial. For large scale and long time fluid motion, there are also difficulties
in applying microscopic simulations due to the enormous computation time
needed. In this scenario we could apply a patch dynamics scheme to a poly-
meric liquid to describe the flow behaviour of such complex fluids.

Chapter 3 derives the patch coupling conditions in (3.10) which do not
form a self-adjoint Sturm–Liouville system. Further research could find ef-
ficient coupling between the patches that preserves self-adjointness and also
predicts the correct macroscale behaviour. Section 3.6 proposes a modi-
fied patch dynamics scheme with time-delayed communications. One future
study could adapt the delayed patch scheme for massive parallelisation where
each processor simulates the macroscale properties on a few patches. One
could research how to tackle slow data transfer speeds compared to processor
speeds. One could also find patch coupling conditions that involve some time
delay, so that some delay in data transfer is accounted for in the algorithm.
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The analysis in Chapters 3–5 concentrates on issues associated with spa-
tial coupling on a one-dimensional domain. Further work could analyse and
implement efficient time simulations to empower future simulations to faith-
fully model microscale dynamics.



Appendix A

Ancillary material

A.1 Code for 3D atom simulation

This ancillary material provides the numerical code for simulating a mi-
croscale patch of atoms coupled over macroscale empty space to boundary
values of temperature. It is included to document and potentially reproduce
the results.

A.1.1 Main driver code

1 % coded 3d simulation of position and velocity of

2 % interacting atoms. Uses ode23 to do time integration.

3 global ll mucontrol TL TR ii nfns nAux hh Khsq

4 nAtom=343 % number of atoms

5 tEnd=30 % end time of simulation

6 ll=nAtom.^(1/3); % length of periodic patch (inter-atom eq is at one)

7 %mucontrol=34.673; % zero is no control

8 mucontrol=0; % zero is no control

9 TL=0.5, TR=1.5 % macroscale boundary values of temp

10 hh=ll % macroscale BCs applied at +/-hh

11 rng('shuffle'); seed=100+floor(900*rand); %random realisation seed

12 fileroot=['ctrlpatch' num2str(seed) 'N' num2str(nAtom)]

13 nAux=12; % number of auxillary variables computed

14 Khsq=1; % coefficien of control

15 rng(seed);

16 % distribute atoms, randomly up to one per box

17 ns=ceil(ll);

18 i=linspace(-0.5,0.5,2*ns+1);

185
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19 [j,i,p]=meshgrid(ll*i(2:2:end));

20 [~,k]=sort(rand(size(i(:)))); [tmp,k]=sort(rand(size(i(:))));

21 xq=[i(k(1:nAtom)) j(k(1:nAtom)) p(k(1:nAtom)) zeros(nAtom,3)]';

22 % add smallish, mean-zero, random position and velocity

23 zz=rand(6,nAtom)-0.5; zz=zz-repmat(mean(zz,2),1,nAtom);

24 xq=xq+0.32*diag([1,1,1,3,3,3])*zz; xq=xq(:);

25 %xq=xq+0.1*diag([1,1,1,2,2,2])*zz; xq=xq(:);

26

27 % for imposing triple periodicity in space

28 ii=1:6:6*nAtom; ii=[ii ii+1 ii+2]+nAux;

29 % simulation in time from given ICs

30 nfns=0;

31 [ts,Txqs]=ode23(@hctrlhddtu3dode,[0 tEnd],[zeros(nAux,1);xq]);

32 % impose periodicity on the computed positions

33 xqs=Txqs(:,nAux+1:end); ii=ii-nAux;

34 xqs(:,ii)=xqs(:,ii)-round(xqs(:,ii)/ll)*ll;

35 % auxillary quantities at middle of time steps

36 Tuvws=diff(Txqs(:,1:nAux))./repmat(diff(ts),1,nAux);

37 tsx=(ts(1:end-1)+ts(2:end))/2;

38 nFunctions=nfns

39 hctrlgraphs % draw graphical output

A.1.2 Interpose periodicity on positions

This function avoids Matlab’s ode23 objecting to discontinuities as atoms
move across edges of the periodic box.

1 function dxq=hctrlhddtu3dode(t,xq)

2 % Computes time derivative of position and velocity of

3 % interacting particles for Matlab integrator.

4 % AJR & HA Jan 2015 -- 2016

5 global ll ii nfns

6 nfns=nfns+1;

7 % impose triple periodicity on positions

8 xq(ii)=xq(ii)-round(xq(ii)/ll)*ll;

9 dxq=hctrlhddtu3d(xq,t);

10 end
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A.1.3 Time derivatives of position and velocity

1 function dTxq=hctrlhddtu3d(Txq,t)

2 % Computes time derivative of position and velocity of

3 % interacting particles. Force triply periodic in

4 % space, periodicity ll. For the moment ignore that this

5 % dynamical system is sympletic. AJR & HA Jan 2014 -- 2016

6 global ll mucontrol TL TR nAux hh Khsq

7 % unpack positions

8 xq=Txq(nAux+1:end);

9 x=xq(1:6:end);

10 y=xq(2:6:end);

11 z=xq(3:6:end);

12 % d/dt position = velocity

13 dxq=nan(size(xq));

14 dxq(1:6:end)=xq(4:6:end);

15 dxq(2:6:end)=xq(5:6:end);

16 dxq(3:6:end)=xq(6:6:end);

17

18 % Assume triple images enough to capture all significant.

19 [xxt,xx,lls]=meshgrid(x,x,[-ll 0 ll]);

20 [yyt,yy,lls]=meshgrid(y,y,[-ll 0 ll]);

21 [zzt,zz,lls]=meshgrid(z,z,[-ll 0 ll]);

22 [ddx,px]=min((xx-xxt+lls).^2,[],3);

23 [ddy,py]=min((yy-yyt+lls).^2,[],3);

24 [ddz,pz]=min((zz-zzt+lls).^2,[],3);

25 ds=sqrt(ddx+ddy+ddz)+1e-8;

26 % forces as a function of distance (with extra / dist)

27 fs=ds.^(-7-1)-ds.^(-13-1);

28 fs=-min(100,-fs); % ad hoc limit on force

29 fx=(xxt(:,:,1)-xx(:,:,1)-(px-2).*ll).*fs;

30 fy=(yyt(:,:,1)-yy(:,:,1)-(py-2).*ll).*fs;

31 fz=(zzt(:,:,1)-zz(:,:,1)-(pz-2).*ll).*fs;

32 % d/dt velocities = sum of forces

33 dxq(4:6:end)=sum(fx,2);

34 dxq(5:6:end)=sum(fy,2);

35 dxq(6:6:end)=sum(fz,2);

36

37 % proportional controller of the patch temperature

38 halfcore=ll/8; % halfwidth of core and action regions

39 xaction=ll/4; % action regions centred at quareter points
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40 % Find which atoms are in each region

41 jl=(abs(x+xaction)<halfcore);

42 jc=(abs(x )<halfcore);

43 jr=(abs(x-xaction)<halfcore);

44 % unpack velocities and KEs, to find regional temperatures

45 u=xq(4:6:end); v=xq(5:6:end); w=xq(6:6:end); ke=(u.^2+v.^2+w.^2)/2;

46 Tl=mean(ke(jl));

47 Tc=mean(ke(jc));

48 Tr=mean(ke(jr));

49 % Control towards specified environmental temperature

50 h=ll/2;

51 r=h/hh;

52 T0=(Tc/(1-r^2/48)-r^2*(TL+TR)/(96-2*r^2));

53 Tintl=(1-13*r^2/(48))*T0 +(TL+TR)/2*(13*r^2/48)+(TL-TR)*r/4;

54 Tintr=(1-13*r^2/(48))*T0 +(TL+TR)/2*(13*r^2/48)+(TR-TL)*r/4;

55 Tldiff=(Tintl-Tl)*Khsq/Tl;

56 Trdiff=(Tintr-Tr)*Khsq/Tr;

57 % de/accelerate in dirn of velocity, propto control

58 dxq(4:6:end)=dxq(4:6:end)+mucontrol/h^2*(Tldiff*jl+Trdiff*jr).*u;

59 dxq(5:6:end)=dxq(5:6:end)+mucontrol/h^2*(Tldiff*jl+Trdiff*jr).*v;

60 dxq(6:6:end)=dxq(6:6:end)+mucontrol/h^2*(Tldiff*jl+Trdiff*jr).*w;

61 % energies and mean momentum, when tooclose then need more energy code

62 pe=(-ds.^(-6)/6+ds.^(-12)/12).*(fs>-100);

63 %tooclose=sum(sum(fs<=-100)-1); if tooclose>0, tooclose=tooclose, end

64 pe=sum(pe(:))/2; ke=sum(ke); tot=pe+ke;

65 % other auxillary quantities are mean velocity in regions

66 ul_av=mean(u(jl)); vl_av=mean(v(jl)); wl_av=mean(w(jl));

67 uc_av=mean(u(jc)); vc_av=mean(v(jc)); wc_av=mean(w(jc));

68 ur_av=mean(u(jr)); vr_av=mean(v(jr)); wr_av=mean(w(jr));

69 %aux=[Tl;Tc;Tr;ul_av;vl_av;wl_av;uc_av;vc_av;wc_av;ur_av;vr_av;wr_av];

70 aux=[Tl;Tc;Tr;ke;pe;tot;uc_av;vc_av;wc_av;ur_av;vr_av;wr_av];

71 % return auxillary quantities and atomic time derivatives

72 dTxq=[aux;dxq];

73 end

A.2 Code to compute many realisations

This ancillary material provides the numerical code for simulating a mi-
croscale patch of atoms to determine diffusivity K. It is included to docu-
ment and potentially reproduce the results.
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A.2.1 Main driver code

1 %coded 3d simulation of position and velocity of

2 % interacting atoms. Uses ode23 to do time integration.

3 %compute the Temp Difference between left and right action regions

4 global ll ii nfns hh nu maxfns

5 if 0, NnuTdsTcss=[];

6 else NnuTdsTcss=load('NnuTdsTcss.txt');

7 end

8 rng('shuffle');

9 nAtom=512; % number of atoms

10 tEnd=15;% end time of simulation

11 maxfns=tEnd*2e3;% limit the total function evaluations

12 % currently, equilibrium inter-atom distance is one

13 ll=nAtom.^(1/3);% length of periodic patch (inter-atom eq is at one

14 hh=ll % macroscale BCs applied at +/-hh should make smaller fraction

15

16 for nu=[0.1 0.2 0.4:0.4:4]

17 for repeatit=1:1

18 seed=100+floor(900*rand); %random realisation seed

19 fileroot=['pwoc' num2str(seed) 'N' num2str(nAtom) 'nu' num2str(round(10*nu))]

20 rng(seed);

21 % distribute atoms, randomly up to one per box

22 ns=ceil(ll);

23 i=linspace(-0.5,0.5,2*ns+1);

24 [j,i,p]=meshgrid(ll*i(2:2:end));

25 [~,k]=sort(rand(size(i(:)))); [tmp,k]=sort(rand(size(i(:))));

26 xq=[i(k(1:nAtom)) j(k(1:nAtom)) p(k(1:nAtom)) zeros(nAtom,3)]';

27 % add random position and random velocity

28 zz=rand(6,nAtom)-0.5; zz=zz-repmat(mean(zz,2),1,nAtom);

29 % 0.1,1,6 gives Tc=0.15 for N=343

30 % 0.2,1,6 gives Tc=0.4

31 % 0.25,1,6 gives Tc=0.6

32 %xq=xq+0.25*diag([1,1,1,6,6,6])*zz;

33 xq=xq+0.1*diag([6,6,6,2,2,2])*zz;

34

35 % for imposing periodicity in all three dimensions of space

36 %ii=1:6:6*nAtom; ii=[ii ii+1 ii+2];

37

38 % for imposing periodicity in all three dimensions of space

39 ii=1:6:6*nAtom; ii=[ii ii+1 ii+2]+3;
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40 % integration in time, initially to reach quasi-equilibrium

41 ii=ii+3; % accounts for three Temps at front of vector

42 % simulation in time from given ICs

43 nfns=0;

44 [ts,Txqs]=ode23(@vaddtu3dodew,[0 tEnd],[0;0;0;xq(:)]);

45 xqs=Txqs(:,4:end); ii=ii-3;

46 xqs(:,ii)=xqs(:,ii)-round(xqs(:,ii)/ll)*ll;

47 % differentiate the temperature integrals in the zones

48 Tl=diff(Txqs(:,1))./diff(ts);

49 Tc=diff(Txqs(:,2))./diff(ts);

50 Tr=diff(Txqs(:,3))./diff(ts);

51 ts2=(ts(1:end-1)+ts(2:end))/2;

52 nFunctions=nfns

53 % Exclude transients from averages

54 j=find(ts2>2);

55 meanTdiff=mean(Tr(j)-Tl(j));

56 stdTdiff=std(Tr(j)-Tl(j));

57 meanTc=mean(Tc(j));

58 stdTc=std(Tc(j));

59 NnuTdsTcs=[nAtom nu meanTdiff stdTdiff meanTc stdTc]

60 NnuTdsTcss=[NnuTdsTcss;NnuTdsTcs];

61 save('NnuTdsTcss.txt','NnuTdsTcss','-ascii')

62 % Plot the temperature differences between left and right regions

63 figure(1)

64 subplot(2,1,1);

65 plot(ts2,Tr-Tl)

66 subplot(2,1,2);

67 plot(ts2,[Tl Tc Tr]),legend('left','centre','right','Location','SouthEast')

68 print('-depsc2', [fileroot 'Ts'])

69 end% repeat-loop

70 end% nu-loop

71

72 unix('say "I have finished the atomistic simulation"')

A.2.2 Interpose periodicity on positions

This function avoids Matlab’s ode23 objecting to discontinuities as atoms
move across edges of the periodic box.

1 function dxq=vaddtu3dodew(t,xq)

2 % Computes time derivative of position and velocity of
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3 % interacting particles for Matlab integrator.

4 global ll ii nfns maxfns

5 if nfns>maxfns, error('**** Too many function---abort'), end

6 % impose triple periodicity on position

7 nfns=nfns+1;

8 xq(ii)=xq(ii)-round(xq(ii)/ll)*ll;

9 dxq=vaddtu3dw(xq,t);

10 end

A.2.3 Time derivative

1 function dTxq=vaddtu3dw(Txq,t)

2 % Computes time derivative of position and velocity of

3 % interacting particles. Force doubly periodic in

4 % space, periodicity ll.

5 global ll nu

6 xq=Txq(4:end);

7 % unpack positions

8 x=xq(1:6:end);

9 y=xq(2:6:end);

10 z=xq(3:6:end);

11 n=size(x,1);

12 % d/dt of positions are the velocities

13 dxq=nan(size(xq));

14 dxq(1:6:end)=xq(4:6:end);

15 dxq(2:6:end)=xq(5:6:end);

16 dxq(3:6:end)=xq(6:6:end);

17 % Assumes these are enough to capture all significant.

18 % Symmetry should be maintained.

19 % Find full distance matrix.

20 % those within half a period of each atom??

21 [xxt,xx,lls]=meshgrid(x,x,[-ll 0 ll]);

22 [yyt,yy,lls]=meshgrid(y,y,[-ll 0 ll]);

23 [zzt,zz,lls]=meshgrid(z,z,[-ll 0 ll]);

24 [ddx,px]=min((xx-xxt+lls).^2,[],3);

25 [ddy,py]=min((yy-yyt+lls).^2,[],3);

26 [ddz,pz]=min((zz-zzt+lls).^2,[],3);

27 ds=sqrt(ddx+ddy+ddz)+1e-8;

28 % forces as a function of distance (with extra / dist)

29 fs=+ds.^(-7-1)-ds.^(-13-1);

30 fs=-min(100,-fs);% ad hoc limit on force
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31 fx=(xxt(:,:,1)-xx(:,:,1)-(px-2).*ll).*fs;

32 fy=(yyt(:,:,1)-yy(:,:,1)-(py-2).*ll).*fs;

33 fz=(zzt(:,:,1)-zz(:,:,1)-(pz-2).*ll).*fs;

34 % d/dt velocities are the sum of forces

35 dxq(4:6:end)=sum(fx,2);%du/dt

36 dxq(5:6:end)=sum(fy,2);%dv/dt

37 dxq(6:6:end)=sum(fz,2);%dw/dt

38 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

39 % Deal with averages over x-intervals of this half size.

40 halfcore=ll/8;

41 % Set the action regions centred at the quarter points of the period

42 xaction=ll/4;

43 % find which atoms are in each region

44 jl=(abs(x+xaction)<halfcore);

45 jc=(abs(x )<halfcore);

46 jr=(abs(x-xaction)<halfcore);

47 %unpack velocities and KEs, to find regional temper

48 u=xq(4:6:end); v=xq(5:6:end); w=xq(6:6:end); ke=u.^2+v.^2+w.^2;

49 Tl=mean(ke(jl));

50 Tc=mean(ke(jc));

51 Tr=mean(ke(jr));

52 % de/accelerate in dirn of velocity, forcing heating/cooling at some rate

53 h=ll/2;% patch half-width

54 dxq(4:6:end)=dxq(4:6:end)+nu/h^2*(jr/(2*Tr)-jl/(2*Tl)).*u;

55 dxq(5:6:end)=dxq(5:6:end)+nu/h^2*(jr/(2*Tr)-jl/(2*Tl)).*v;

56 dxq(6:6:end)=dxq(6:6:end)+nu/h^2*(jr/(2*Tr)-jl/(2*Tl)).*w;

57 %return quantities and atomic time derivatives

58 dTxq=[Tl;Tc;Tr;dxq];

59 end

A.3 Results of 58 computational simulations

This appendix contains the results of 58 computational simulations with
different cooling/heating parameters ν and different initial conditions. The
average temperature difference Tr−Tl, and core temperature field Tc averaged
over t > 2, for different forcing cooling/heating parameters ν, are listed. The
simulation is of 512 atoms in a patch of spatial periodicity 2h = 8.
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Table A.1: Compute the average temperature differences Tr − Tl , and a
core temperature field Tc averaged over t > 2, for different forcing cooling/
heating parameters ν. The simulation is of 512 atoms in a patch of spatial
periodicity 2h = 8.

ν Tr − Tl Tc
0.100 0.009 0.126
0.100 0.010 0.124
0.100 0.016 0.123
0.100 0.010 0.260
0.100 0.017 0.254
0.100 0.033 0.259
0.100 0.011 0.163
0.100 0.011 0.175
0.100 0.016 0.181
0.100 0.009 0.102
0.100 0.009 0.109
0.100 0.009 0.105
0.200 0.021 0.135
0.200 0.024 0.124
0.200 0.022 0.131
0.200 0.012 0.262
0.200 0.024 0.254
0.200 0.031 0.252
0.200 0.024 0.169
0.200 0.028 0.175
0.200 0.025 0.184
0.200 0.026 0.102
0.200 0.029 0.107
0.200 0.035 0.115
0.500 0.077 0.129
0.500 0.068 0.131
0.500 0.062 0.136
0.500 0.066 0.245
0.500 0.064 0.256

ν Tr − Tl Tc
0.500 0.072 0.243
0.500 0.074 0.175
0.500 0.052 0.174
0.500 0.051 0.174
0.500 0.069 0.115
0.500 0.076 0.109
0.500 0.078 0.113
0.700 0.088 0.135
0.700 0.098 0.132
0.700 0.098 0.141
0.700 0.110 0.248
0.700 0.092 0.248
0.700 0.102 0.253
0.700 0.091 0.180
0.700 0.097 0.166
0.700 0.076 0.171
0.700 0.102 0.114
0.700 0.099 0.120
0.700 0.101 0.114
0.900 0.131 0.134
0.900 0.123 0.132
0.900 0.130 0.133
0.900 0.118 0.140
0.900 0.127 0.241
0.900 0.118 0.255
0.900 0.125 0.247
0.900 0.1132 0.170
0.900 0.126 0.177
0.900 0.119 0.173
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Reduce programs

This appendix lists the computer algebra codes that constructed the slow
manifold models. The code of Section B.1 generates the slow manifold and its
evolution of the gap-tooth scheme applied to the diffusion pde in Chapter 4.
Section B.2 lists the code for constructing the slow manifold (5.67) and the
corresponding evolution (5.68) on the slow manifold of the gap-tooth scheme
applied to the advection-diffusion pde by solving the pde (5.66) with cou-
pling conditions (5.53) and amplitude conditions in Chapter 5. Section B.2
also lists the computer algebra code to construct the slow manifold (5.84) and
the corresponding evolution (5.85) (on the slow manifold) of the gap-tooth
scheme applied to the reaction-diffusion pde.

B.1 Computer algebra code constructs the

slow manifold of the diffusion PDEs

This section describes how the Reduce code of Algorithm 10 solves the
coupled patch system (4.26) and (4.23) to construct the slow manifold
model (4.35) and its evolution (4.36).

Preliminaries

Lines 3–4 Set up the printing format to improve printing of the results

Lines 6–13 Define the operator linv to act as the inverse of Lv = d2v/dξ2

with boundary conditions v(0) = 0 and v(+1) = v(−1).

Lines 16–17 Firstly, define the macroscale parametric variable U to de-
pend upon time; and secondly define time derivatives of U, that is dU

dt
, as g(j)

194
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since gj =
dUj

dt
, by definitions in Section 4.1.2, at the time of replacement and,

as g(j) stores the current approximation of the macroscale evolution (4.26).

Lines 18–19 Assign the linear, slow subspace, approximation of the slow
manifold to be the initial value of the variables u_j and g(j), that is, piece-
wise constant fields and no evolution (the initial evolution of the variables is
zero)

Line 22 Execute iterations in a safe for-loop. The truncation of the asymp-
totic approximation is controlled by the let command which informs Reduce
to discard any factor in γ3 or higher. Thus all expressions are computed to
an error of O(γ3). The let command is one advantage of Reduce. In other
computer algebra systems, one need to substitute γ3 = 0 frequently into
various expressions to achieve the same aim.

Iteratively construct slow manifold model

Line 24 Now start the iteration, repetitively find corrections until all resid-
uals are zero (to a maximum of nine iterations).

Line 25 Within the iteration, compute the residuals, in the jth patch,
of the required equations as a very direct translation of the algebraic form
of the diffusion pde (4.26), the patch boundary conditions (4.23), and the
amplitude condition (4.3).

Lines 26–41 Coupling conditions are coded in terms of classic Lagrange
interpolation. Thus, let the interpolation fields here to be functions of the
surrounding macroscale grid values.

Line 43 Choose the correction to the evolution g so that at the slow man-
ifold corrections exists.

Line 44–45 Solve for the correction to the microscale field u and update
the current approximation.

Line 46–48 Terminate the iteration when all residuals are zero to the
specified order.
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Algorithm 10 Construct the slow manifold of the diffusion pde (4.26) to
errors O(γ3).

1 %Use iteration to form the slow manifold model of the diffusion

2 % formating for printed output

3 on revpri; on div; off allfac;

4 factor gamma ,hh ,r,xi;

5 %provide linear algebra functions

6 operator linv; linear linv;

7 let { linv(xi^~p,xi)=>(xi^(p+2)-(1-(-1)^p)*xi/2)/(p+1)/(p+2)

8 , linv(xi ,xi)=>(xi^3-xi)/6

9 ,linv(1,xi)=>(xi^2)/2 };

10 operator mean; linear mean;

11 let { mean(xi^~p,xi)= >(1+( -1)^p)/2/(p+1)

12 , mean(xi ,xi)=>0

13 , mean(1,xi)=>1 };

14 % parametrise slow manifold with uu(j)

15 %LetU , depend on t

16 operator uu; depend uu,t;

17 let df(uu(~k),t)=>sub(j=k,gj);

18 % initial approximation in jth patch

19 uj:=uu(j); gj:=0;

20 % iterative refinement patch size r

21 %the slow manifold is local in parameter gamma so we have

22 % to truncate the analysis in some power of gamma

23 let gamma ^3= >0;% We can iterate to error gamma^4 as well

24 % iterate until equations satisfied

25 for iter :=1:9 do begin

26 respde:=-df(uj,t)+df(uj,xi ,2)/hh^2;

27 uuj:=sub(xi=0,uj); % mid -patch value

28 dduuj:=sub(j=j+1,uuj)-2*uuj+sub(j=j-1,uuj);%delta ^2

29 mduuj :=(sub(j=j+1,uuj)-sub(j=j-1,uuj ))/2;%mu*delta

30 dddduuj :=sub(j=j+1,dduuj)-2* dduuj+sub(j=j-1,dduuj);%delt^4

31 mddduuj :=( sub(j=j+1,dduuj)-sub(j=j-1,dduuj ))/2;%mu *delt^3

32 mddddduuj :=( sub(j=j+1,dddduuj)-sub(j=j-1,dddduuj ))/2;%mu *delt^5

33 dddddduuj :=sub(j=j+1,dddduuj )-2* dddduuj+sub(j=j-1,dddduuj );%delt^6

34 resrcc :=sub(xi=+r,uj)-sub(xi=0,uj)%RCC

35 -gamma *(+r*mduuj+r^2/2* dduuj)

36 -gamma ^2*(+(r^3-r)/6* mddduuj +(r^4-r^2)/24* dddduuj)

37 -gamma ^3*(+(r^5-5*r^3+4*r)/120* mddddduuj +(r^6-5*r^4+4*r^2)/720* dddddduuj );

38 reslcc :=sub(xi=-r,uj)-sub(xi=0,uj)%LCC

39 -gamma*(-r*mduuj+r^2/2* dduuj)

40 -gamma ^2*(-(r^3-r)/6* mddduuj +(r^4-r^2)/24* dddduuj)

41 -gamma ^3*(-(r^5-5*r^3+4*r)/120* mddddduuj +(r^6-5*r^4+4*r^2)/720* dddddduuj );

42 resamp :=sub(xi=0,uj)-uu(j);

43 write

44 gj:=gj+(gd:=-( resrcc+reslcc )/hh^2/r^2+ mean(respde ,xi));

45 write

46 uj:=uj+hh^2* linv(-respde+gd,xi)+xi*(reslcc -resrcc )/2/r;

47 if {respde ,resrcc ,reslcc ,resamp }={0,0,0,0}

48 then write iter :=10000+ iter;

49 end;

50 end;
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B.1.1 Construct the slow manifold model with physi-
cal boundary conditions

This section lists the computer algebra code of Algorithm 11 to construct
the slow manifold (4.40) and the corresponding evolution (4.41) of the diffu-
sion pde (4.26) with physical boundary conditions to the errors O(γ2).

To construct the slow manifold (4.48) of the diffusion pde (4.26) with
physical boundary conditions to the errors O(γ2), we simply execute the
computer algebra code of Algorithm 11 with time-varying boundary condi-
tions incorporated as in Algorithm 12. Algorithm 12 shows how to simply
code time-varying boundary values, and that we discard any sufficiently high
order derivatives in time. The iterative computer algebra considers all the
information interactions between time-varying boundary values and the out-
of-equilibrium dynamics of the field.
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Algorithm 11 Construct the slow manifold of diffusion pde (4.26) with
physical boundary conditions to errors O(γ2).

1 %Use iteration to form the slow manifold model of the diffusion

2 % connect to physical BCs

3 % formating for printed output

4 on revpri; on div; off allfac;

5 factor gamma ,hh ,r,xi;

6 %provide linear algebra functions

7 operator linv; linear linv;

8 let { linv(xi^~p,xi)=>(xi^(p+2)-(1-(-1)^p)*xi/2)/(p+1)/(p+2)

9 , linv(xi ,xi)=>(xi^3-xi)/6

10 ,linv(1,xi)=>(xi^2)/2 };

11 operator mean; linear mean;

12 let { mean(xi^~p,xi)= >(1+( -1)^p)/2/(p+1)

13 , mean(xi ,xi)=>0

14 , mean(1,xi)=>1 };

15 % parametrise slow manifold with uu(j)

16 %LetU , depend on t

17 operator uu; depend uu,t;

18 let df(uu(~k),t)=>sub(j=k,gj);

19 % initial approximation in jth patch

20 uj:=uu(j); gj :=0;1

21 % for physical bcs

22 operator lbc; operator rbc;

23 let { lbc(~j)^2=>lbc(j), lbc(~j)*lbc(~k)=>0 when j neq k

24 , rbc(~j)^2=>rbc(j), rbc(~j)*rbc(~k)=>0 when j neq k };

25

26 % iterative refinement patch size r

27 let gamma ^2= >0;

28 % iterate until equations satisfied

29 for iter :=1:9 do begin

30 respde:=-df(uj,t)+df(uj,xi ,2)/hh^2;

31 resrcc :=sub(xi=+r,uj)-(1-gamma*r^2)* sub(xi=0,uj)

32 -gamma*r*(-1+r)/2*( lbc(j)*a+(1-lbc(j))*sub({xi=0,j=j-1},uj))

33 -gamma*r*(1+r)/2*( rbc(j)*b+(1-rbc(j))*sub({xi=0,j=j+1},uj));

34 reslcc :=sub(xi=-r,uj)-(1-gamma*r^2)* sub(xi=0,uj)

35 -gamma*r*(-1+r)/2*( rbc(j)*b+(1-rbc(j))*sub({xi=0,j=j+1},uj))

36 -gamma*r*(1+r)/2*( lbc(j)*a+(1-lbc(j))*sub({xi=0,j=j-1},uj));

37 resamp :=sub(xi=0,uj)-uu(j);

38 write

39 gj:=gj+(gd:=-( resrcc+reslcc )/hh^2/r^2+ mean(respde ,xi));

40 write

41 uj:=uj+hh^2* linv(-respde+gd,xi)+xi*(reslcc -resrcc )/2/r;

42 if {respde ,resrcc ,reslcc ,resamp }={0,0,0,0}

43 then write iter :=10000+ iter;

44 end;

45 end;
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Algorithm 12 Construct the slow manifold of diffusion pde (4.26) with
time-varying physical boundary conditions to errors O(γ2).

1 % connect to BCs

2 depend a,t; depend b,t;

3 let { df(a,t,~p)=>0 when fixp(p) and p>2

4 , df(b,t,~p)=>0 when fixp(p) and p>2 };

B.2 Construct the slow manifold of

advection-diffusion and reaction-

diffusion equations

This section lists the computer algebra code of Algorithm 13 to construct the
slow manifold (5.67) of the advection-diffusion pde (5.54) to errorsO(γ2, V 3

0 ).
This section also lists the computer algebra code of Algorithm 14 with

time-varying boundary conditions to construct the slow manifold (5.84) of
the reaction-diffusion pde (5.71) on a small patch, size r, coupled to ‘distant’
boundaries.
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Algorithm 13 Construct the slow manifold of advection-diffusion pde (5.54)
to errors O(γ2, V 3

0 ).

1 % Computer algebra constructs the slow manifold in the

2 on revpri; on div; off allfac;

3 % define operators

4 factor gamma ,hh ,r,xi ,vv0;

5 operator linv; linear linv;

6 let { linv(xi^~p,xi)=>(xi^(p+2)-(1-(-1)^p)*xi/2)/(p+1)/(p+2)

7 , linv(xi ,xi)=>(xi^3-xi)/6

8 ,linv(1,xi)=>(xi^2)/2 };

9 operator mean; linear mean;

10 let { mean(xi^~p,xi)= >(1+( -1)^p)/2/(p+1)

11 , mean(xi ,xi)=>0

12 , mean(1,xi)=>1 };

13 % parametrise slow manifold with uu(j)

14 operator uu;

15 % this operator depends upon time

16 depend uu,t;

17 let df(uu(~k),t)=>sub(j=k,gj);

18 % initial approximation in jth patch

19 uj:=uu(j); gj:=0;

20 % iterative refinement patch size r

21 let gamma ^2=>0;% We can iterate to error gamma^3 as well

22 let vv0^3=>0

23 % iterate until equations satisfied

24 for iter :=1:9 do begin

25 respde:=-df(uj,t)-vv0*df(uj ,xi)/hh+df(uj ,xi ,2)/hh^2;

26 uuj:=sub(xi=0,uj); % mid -patch value

27 dduuj:=sub(j=j+1,uuj)-2*uuj+sub(j=j-1,uuj);%delta ^2

28 mduuj :=(sub(j=j+1,uuj)-sub(j=j-1,uuj ))/2;%mu*delta

29 d4uuj:=sub(j=j+1,dduuj)-2* dduuj+sub(j=j-1,dduuj);%delt^4

30 md3uuj :=(sub(j=j+1,dduuj)-sub(j=j-1,dduuj ))/2;%mu *delt^3

31 md5uuj :=(sub(j=j+1,d4uuj)-sub(j=j-1,d4uuj ))/2;%mu *delt^5

32 d6uuj:=sub(j=j+1,d4uuj)-2* d4uuj+sub(j=j-1,d4uuj);%delt^6

33 resrcc :=sub(xi=+r,uj)-sub(xi=0,uj)%RCC

34 -gamma *(+r*mduuj+r^2/2* dduuj)

35 -gamma ^2*(+(r^3-r)/6* md3uuj +(r^4-r^2)/24* d4uuj)

36 -gamma ^3*(+(r^5-5*r^3+4*r)/120* md5uuj +(r^6-5*r^4+4*r^2)/720* d6uuj);

37 reslcc :=sub(xi=-r,uj)-sub(xi=0,uj)%LCC

38 -gamma*(-r*mduuj+r^2/2* dduuj)

39 -gamma ^2*(-(r^3-r)/6* md3uuj +(r^4-r^2)/24* d4uuj)

40 -gamma ^3*(-(r^5-5*r^3+4*r)/120* md5uuj +(r^6-5*r^4+4*r^2)/720* d6uuj);

41 resamp :=sub(xi=0,uj)-uu(j);

42 write

43 gj:=gj+(gd:=-( resrcc+reslcc )/hh^2/r^2+ mean(respde ,xi));

44 write

45 uj:=uj+hh^2* linv(-respde+gd,xi)+xi*(reslcc -resrcc )/2/r;

46 if {respde ,resrcc ,reslcc ,resamp }={0,0,0,0}

47 then write iter :=10000+ iter;

48 end;

49 end;
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Algorithm 14 Constructs the slow manifold discretisation on a finite domain
with time-varying boundary conditions of the reaction-diffusion pde (5.71)
on a small patch, size r, coupled to ‘distant’ boundaries.

1 on div; off allfac; on revpri; factor r,df; % improve printing

2 depend a,tau; depend b,tau;

3 let { df(a,tau ,~p)=>0 when numberp(p) and p>2

4 , df(b,tau ,~p)=>0 when numberp(p) and p>2 };

5 % solves v''=RHS s.t. v(0)=0 and v(+1)=v(-1)

6 operator linv; linear linv;

7 let { linv(xi^~~p,xi)=>(xi^(p+2)-(1-(-1)^p)*xi/2)/(p+1)/(p+2)

8 , linv(1,xi)=>(xi ^2)/2 };

9 % solvability condition operator

10 operator solg; linear solg;

11 let { solg(xi^~~p,xi)= >(1+( -1)^p)/(p+2)/(p+1)

12 , solg(1,xi)=>1 };

13 % parametrise slow manifold with uu

14 depend uu,tau; let df(uu,tau)=>g;

15 % linear approximation is constant field in patch

16 u:=uu; g:=0;

17 % truncate asymptotic expansion in patch size r

18 let c^2=>0;

19 respde:=-df(u,tau)+df(u,xi ,2)-r^2*hh^2*u^3-c*df(u,xi);

20 let r^3=>0;

21 % iterate until equations satisfied

22 for iter :=1:20 do begin

23 respde:=-df(u,tau)+df(u,xi ,2)-r^2*hh^2*u^3;

24 resrbc :=sub(xi=+1,u)-(1-r^2)* sub(xi=0,u)-a*(r^2-r)/2

25 -b*(r^2+r)/2;

26 reslbc :=sub(xi=-1,u)-(1-r^2)* sub(xi=0,u)-a*(r^2+r)/2

27 -b*(r^2-r)/2;

28 resamp :=sub(xi=0,u)-uu;

29 write

30 g:=g+(gd:=-( resrbc+reslbc )+solg(respde ,xi));

31 u:=u+linv(-respde+gd,xi)+xi*(reslbc -resrbc )/2;

32 if {respde ,resrbc ,reslbc ,resamp }={0,0,0,0}

33 then write iter :=10000+ iter;

34 end;

35 u:=u; g:=g;

36 end;
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Carr, E. J., Perré, P. & Turner, I. W. (2016), ‘The extended distributed
microstructure model for gradient-driven transport: A two-scale model
for bypassing effective parameters’, Journal of Computational Physics
327, 810–829. doi:10.1016/j.jcp.2016.10.004.

Carr, E. J. & Turner, I. W. (2014), ‘Two-scale computational modelling
of water flow in unsaturated soils containing irregular-shaped inclusions’,
International Journal for Numerical Methods in Engineering 98(3), 157–
173. doi:10.1002/nme.4625.

Carr, J. (1981), ‘Applications of centre manifold theory’, Applied Mathemat-
ical Sciences 35. doi:10.1002/zamm.19820621019.

http://dx.doi.org/10.1103/RevModPhys.77.783
http://dx.doi.org/10.1103/PhysRevB.60.2391
http://dx.doi.org/10.1007/978-0-387-76426-9
http://dx.doi.org/0.21914/anziamj.v53i0.5074 
http://dx.doi.org/10.21914/anziamj.v54i0.6137
http://dx.doi.org/10.1093/imamat/hxv034
http://dx.doi.org/10.1016/j.jcp.2016.10.004
http://dx.doi.org/10.1002/nme.4625
http://dx.doi.org/10.1002/zamm.19820621019


204 Bibliography

Carr, J. & Muncaster, R. G. (1983), ‘The application of centre manifolds to
amplitude expansions. ii. infinite dimensional problems’, Journal of differ-
ential equations 50(2), 280–288. doi:10.1016/0022-0396(83)90078-5.

Carrier, J., Greengard, L. & Rokhlin, V. (1988), ‘A fast adaptive multipole
algorithm for particle simulations’, SIAM journal on scientific and statis-
tical computing 9(4), 669–686. doi:10.1137/0909044.

Cheng, H., Greengard, L. & Rokhlin, V. (1999), ‘A fast adaptive multipole
algorithm in three dimensions’, J. Computational Physics 155, 468–498.
doi:10.1006/jcph.1999.6355.

Chicone, C. (2006), Ordinary Differential Equations with Applications,
Vol. 34, Springer New York. doi:10.1007/0-387-35794-7.

Chicone, C. & Latushkin, Y. (1997), ‘Center manifolds for infinite dimen-
sional nonautonomous differential equations’, Journal of differential equa-
tions 141(2), 356–399. doi:10.1006/jdeq.1997.3343.

Chitode, J. (2008), Numerical Techniques, Technical Publications.

Cisternas, J., Gear, C. W., Levin, S. & Kevrekidis, I. G. (2004), ‘Equation-
free modelling of evolving diseases: coarse-grained computations with
individual-based models’, Proceedings of the Royal Society of London A:
Mathematical, Physical and Engineering Sciences 460(2050), 2761–2779.
doi:10.1098/rspa.2004.1300.

Constantin, P., Foias, C., Nicolaenko, B. & Temam, R. (2012), Integral man-
ifolds and inertial manifolds for dissipative partial differential equations,
Vol. 70, Springer Science & Business Media. doi:10.1007/978-1-4612-3506-
4.

Courant, R. & Hilbert, D. (1965), Methods of mathematical physics, Vol. 1,
CUP Archive.

Dada, J. O. & Mendes, P. (2011), ‘Multi-scale modelling and simulation in
systems biology’, Integrative Biology 3(2), 86–96. doi:10.1039/c0ib00075b.

Deymier, P. A., Runge, K. & Muralidharan, K. (2016), Multiscale Paradigms
in Integrated Computational Materials Science and Engineering, Springer.
doi:10.1007/978-3-319-24529-4.

Dolbow, J., Khaleel, M., Mitchell, J. et al. (2004), ‘Multiscale mathematics
initiative: a roadmap’.

http://dx.doi.org/10.1016/0022-0396(83)90078-5
http://dx.doi.org/10.1137/0909044
http://dx.doi.org/10.1006/jcph.1999.6355
http://dx.doi.org/10.1007/0-387-35794-7
http://dx.doi.org/10.1006/jdeq.1997.3343
http://dx.doi.org/10.1098/rspa.2004.1300
http://dx.doi.org/10.1007/978-1-4612-3506-4
http://dx.doi.org/10.1007/978-1-4612-3506-4
http://dx.doi.org/10.1039/c0ib00075b
http://dx.doi.org/10.1007/978-3-319-24529-4


Bibliography 205

Dove, M. T. (2008), ‘An introduction to atomistic simulation methods’, Sem-
inarios de la SEM 4, 7–37. http://www.ehu.eus/sem/seminario_pdf/

SEM_SEM_4_7-37.pdf.

E, W. (2011), Principles of multiscale modeling, Cambridge University Press.

E, W. & Engquist, B. (2003), ‘Multiscale modeling and computation’, Notices
of the AMS 50(9), 1062–1070.

E, W., Engquist, B., Li, X., Ren, W. & Vanden-Eijnden, E. (2007), ‘Hetero-
geneous multiscale methods: a review’, Commun. Comput. Phys 2(3), 367–
450. doi:10.1.1.225.9038.

Eckhaus, W. (2012), Studies in non-linear stability theory, Vol. 6, Springer
Science & Business Media. doi:10.1007/978-3-642-88317-0.

Falbo, C. E. (1995), Analytic and numerical solutions to the delay differen-
tial equations, in ‘Joint Meeting of the Northern and Southern California
Sections of the MAA’.

Fan, J. (2011), Multiscale analysis of deformation and failure of materials,
Vol. 5, John Wiley & Sons. doi:10.1002/9780470972281.

Fateman, R. (2003), ‘Comparing the speed of programs for sparse
polynomial multiplication’, ACM SIGSAM Bulletin 37(1), 4–15.
doi:10.1145/844076.844080.

Fish, J. (2010), Multiscale methods: bridging the scales
in science and engineering, Oxford University Press.
doi:10.1093/acprof:oso/9780199233854.001.0001.

Foias, C., Jolly, M., Kevrekidis, I. & Titi, E. (1991), ‘Dissipativity of
numerical schemes’, Nonlinearity 4(3), 591. http://stacks.iop.org/

0951-7715/4/i=3/a=001.

Foias, C. & Titi, E. S. (1991), ‘Determining nodes, finite difference schemes
and inertial manifolds’, Nonlinearity 4(1), 135. http://stacks.iop.org/
0951-7715/4/i=1/a=009.

Frauenheim, T., Pederson, M. R. et al. (2000), Computer simulation of mate-
rials at atomic level, Vol. 1, John Wiley & Sons. doi:10.1002/3527603107.

Frederix, Y., Samaey, G., Vandekerckhove, C. & Roose, D. (2007), ‘Equation-
free methods for molecular dynamics: a lifting procedure’, PAMM
7(1), 2010003–2010004. doi:10.1002/pamm.200700025.

http://www.ehu.eus/sem/seminario_pdf/SEM_SEM_4_7-37.pdf 
http://www.ehu.eus/sem/seminario_pdf/SEM_SEM_4_7-37.pdf 
http://dx.doi.org/10.1.1.225.9038.
http://dx.doi.org/10.1007/978-3-642-88317-0
http://dx.doi.org/10.1002/9780470972281
http://dx.doi.org/10.1145/844076.844080.
http://dx.doi.org/10.1093/acprof:oso/9780199233854.001.0001
http://stacks.iop.org/0951-7715/4/i=3/a=001
http://stacks.iop.org/0951-7715/4/i=3/a=001
http://stacks.iop.org/0951-7715/4/i=1/a=009
http://stacks.iop.org/0951-7715/4/i=1/a=009
http://dx.doi.org/10.1002/3527603107
http://dx.doi.org/10.1002/pamm.200700025


206 Bibliography

Frenkel, D. & Smit, B. (1996), ‘Understanding molecular simulations: from
algorithms to applications’, Academic, San Diego . doi:10.1063/1.881812.

Galvanetto, U. & Aliabadi, M. (2010), Multiscale modeling in solid
mechanics: computational approaches, Vol. 3, World Scientific.
doi:10.1504/IJMMP.2010.035952.

Gander, M. J. & Stuart, A. M. (1998), ‘Space-time continuous analysis of
waveform relaxation for the heat equation’, SIAM Journal on Scientific
Computing 19(6), 2014–2031. doi:10.1137/S1064827596305337.

Gates, T., Odegard, G., Frankland, S. & Clancy, T. (2005), ‘Compu-
tational materials: multi-scale modeling and simulation of nanostruc-
tured materials’, Composites Science and Technology 65(15), 2416–2434.
doi:10.1016/j.compscitech.2005.06.009.

Gear, C. W. & Kevrekidis, I. G. (2003), ‘Projective methods for
stiff differential equations: problems with gaps in their eigenvalue
spectrum’, SIAM Journal on Scientific Computing 24(4), 1091–1106.
doi:10.1137/S1064827501388157.

Gillespie, D. T. (1976), ‘A general method for numerically simulating the
stochastic time evolution of coupled chemical reactions’, Journal of com-
putational physics 22(4), 403–434.

Givon, D., Kupferman, R. & Stuart, A. (2004), ‘Extracting macroscopic
dynamics: model problems and algorithms’, Nonlinearity 17(6), R55.
http://stacks.iop.org/0951-7715/17/i=6/a=R01.

Gorban, A. N. & Karlin, I. V. (2005), ‘Invariant manifolds for phys-
ical and chemical kinetics’, Lecture notes in physics 660, 1–489.
doi:10.1007/b98103.

Guenther, R. B. & Lee, J. W. (1996), Partial differential equations of math-
ematical physics and integral equations, Courier Corporation.

Haberman, R. (2004), Applied partial differential equations: with Fourier
series and boundary value problems, Vol. 4, Pearson Prentice Hall Upper
Saddle River.

Hadjiconstantinou, N. G. (1999), ‘Hybrid atomistic–continuum formulations
and the moving contact-line problem’, Journal of Computational Physics
154(2), 245–265. doi:10.1006/jcph.1999.6302.

http://dx.doi.org/10.1063/1.881812
http://dx.doi.org/10.1504/IJMMP.2010.035952
http://dx.doi.org/10.1137/S1064827596305337
http://dx.doi.org/10.1016/j.compscitech.2005.06.009
http://dx.doi.org/10.1137/S1064827501388157
http://stacks.iop.org/0951-7715/17/i=6/a=R01
http://dx.doi.org/10.1007/b98103
http://dx.doi.org/10.1006/jcph.1999.6302


Bibliography 207

Hadjiconstantinou, N. G. & Patera, A. T. (1997), ‘Heterogeneous atomistic-
continuum representations for dense fluid systems’, International Journal
of Modern Physics C 8(04), 967–976. doi:10.1142/S0129183197000837.

Hairer, E., Lubich, C. & Wanner, G. (2003), ‘Geometric numerical integra-
tion illustrated by the Störmer–Verlet method’, Acta Numerica 12, 399–
450. doi:10.1017/S0962492902000144.

Hassard, P., Turner, I., Farrell, T. & Lester, D. (2016), Simulation of micro-
scale porous flow using smoothed particle hydrodynamics, in J. Sharples
& J. Bunder, eds, ‘Proceedings of the 17th Biennial Computational Tech-
niques and Applications Conference, CTAC-2014’, Vol. 56 of ANZIAM J.,
pp. C463–C480. doi:10.21914/anziamj.v56i0.9408.

Holian, B. L. & Ravelo, R. (1995), ‘Fracture simulations using
large-scale molecular dynamics’, Physical Review B 51(17), 11275.
doi:10.1103/PhysRevB.51.11275.

Horstemeyer, M. F. (2009), Multiscale modeling: A review, in J. Leszczynski
& M. K. Shukla, eds, ‘Practical Aspects of Computational Chemistry’,
Springer, chapter 4, pp. 87–135. doi:10.1007/978-90-481-2687-3 4.

Hughes, I. & Hase, T. (2010), Measurements and their uncertainties: a prac-
tical guide to modern error analysis, Oxford University Press.

Hummer, G. & Kevrekidis, I. G. (2003), ‘Coarse molecular dynamics
of a peptide fragment: Free energy, kinetics, and long-time dynamics
computations’, The Journal of chemical physics 118(23), 10762–10773.
doi:10.1063/1.1574777.

Hyman, J. M. (2005), ‘Patch dynamics for multiscale problems’, Computing
in science & engineering 7(3), 47–53. doi:10.1109/MCSE.2005.57.

Isenberg, J. & Gutfinger, C. (1973), ‘Heat transfer to a draining film’,
International Journal of Heat and Mass Transfer 16(2), 505–512.
doi:10.1016/0017-9310(73)90075-6 .

Jaiswal, D. K., Kumar, A. & Yadav, R. R. (2011), ‘Analytical solution to
the one-dimensional advection-diffusion equation with temporally depen-
dent coefficients’, Journal of Water Resource and Protection 3(01), 76.
doi:10.4236/jwarp.2011.31009.

Jones, J. E. (1924), On the determination of molecular fields. ii. from the
equation of state of a gas, in ‘Proceedings of the Royal Society of London

http://dx.doi.org/10.1142/S0129183197000837
http://dx.doi.org/10.1017/S0962492902000144
http://dx.doi.org/10.21914/anziamj.v56i0.9408
http://dx.doi.org/10.1103/PhysRevB.51.11275
http://dx.doi.org/10.1007/978-90-481-2687-3_4
http://dx.doi.org/10.1063/1.1574777
http://dx.doi.org/10.1109/MCSE.2005.57
http://dx.doi.org/10.1016/0017-9310(73)90075-6 
http://dx.doi.org/10.4236/jwarp.2011.31009


208 Bibliography

A: Mathematical, Physical and Engineering Sciences’, Vol. 106, The Royal
Society, pp. 463–477. doi:10.1098/rspa.1924.0082.

Kairn, T., Daivis, P. J., Matin, M. L. & Snook, I. K. (2004), ‘Effects of con-
centration on steady-state viscometric properties of short chain polymer so-
lutions over the entire concentration range’, International journal of ther-
mophysics 25(4), 1075–1084. doi:10.1023/B:IJOT.0000038501.03469.76.

Kalweit, M. & Drikakis, D. (2011), ‘Multiscale simulation strategies and
mesoscale modelling of gas and liquid flows’, IMA journal of applied math-
ematics pp. 661–671. doi:10.1093/imamat/hxr048.

Kevorkian, J. & Cole, J. D. (2012), Multiple scale and singular perturbation
methods, Vol. 114, Springer Science & Business Media. doi:10.1007/978-1-
4612-3968-0.

Kevrekidis, I. G., Gear, C. W., Hyman, J. M., Kevrekidid, P. G., Runborg,
O., Theodoropoulos, C. et al. (2003), ‘Equation-free, coarse-grained mul-
tiscale computation: Enabling mocroscopic simulators to perform system-
level analysis’, Communications in Mathematical Sciences 1(4), 715–762.
doi:10.4310/CMS.2003.v1.n4.a5.

Kevrekidis, I. G. & Samaey, G. (2009), ‘Equation-free multiscale computa-
tion: Algorithms and applications’, Annu. Rev. Phys. Chem. 60, 321—44.
doi:10.1146/annurev.physchem.59.032607.093610.

Kiuchi, K., Kyutoku, K., Sekiguchi, Y., Shibata, M. & Wada, T. (2014),
‘High resolution numerical relativity simulations for the merger of bi-
nary magnetized neutron stars’, Physical Review D 90(4), 041502.
doi:10.1103/PhysRevD.90.041502.

Knap, J. & Ortiz, M. (2001), ‘An analysis of the quasicontinuum method’,
Journal of the Mechanics and Physics of Solids 49(9), 1899–1923.
doi:10.1016/S0022-5096(01)00034-5.

Koumoutsakos, P. (2005), ‘Multiscale flow simulations us-
ing particles’, Annu. Rev. Fluid Mech. 37, 457–487.
doi:10.1146/annurev.fluid.37.061903.175753.

Kreyszig, E. (2011), Advanced engineering mathematics, John Wiley & Sons.

Lewandowska, J., Szymkiewicz, A., Burzyński, K. & Vauclin, M. (2004),
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