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Abstract: Global climate change and increasing demands for clean energy have brought intensive
interest in the search for proper electrocatalysts in order to reduce carbon dioxide (CO2) to higher
value carbon products such as hydrocarbons. Recently, transition-metal-centered molecules or
organic frameworks have been reported to show outstanding electrocatalytic activity in the liquid
phase. Their d-orbital electrons are believed to be one of the key factors to capture and convert
CO2 molecules to value-added low-carbon fuels. In this review, recent advances in electrocatalytic
CO2 reduction have been summarized based on the targeted products, ranging from homogeneous
reactions to heterogeneous ones. Their advantages and fallbacks have been pointed out and the
existing challenges, especially with respect to the practical and industrial application are addressed.

Keywords: electrochemistry; CO2 reduction; homogeneous catalysis; heterogeneous catalysis;
transition-metal catalyst

1. Introduction

Carbon dioxide (CO2) is a necessary substance for the growth of all living organisms on the
earth and a vital raw material in many industrial processes [1]. Unfortunately, with the rising global
population and the increasing usage of fossil fuels as a result of the dramatic development of industry,
this has led to an unprecedented CO2 generation, making global warming a pressing issue. On this
topic, a vast majority of governments all over the world have expressed their concerns by introducing
a carbon tax and increasing their investment in the issue of climate change. Therefore, discovering a
new energy for reducing CO2 emission and developing viable protocols for capturing and converting
CO2 into useful materials has become critical and urgent with respect to sustainable development.

In order to fulfill the high energy demands of modern society, the conversion and utilization of
CO2 [2] seem to be a more attractive and promising solution than merely capturing and geologically
sequestrating CO2 [3,4]. Since the 1970s, many plausible strategies have proved that CO2 can be
converted by chemical methods [5], by photocatalytic and electrocatalytic reduction [6], and by other
methodologies [7]. However, after decades of investigation, there are still obstacles that hinder the
practical application of transforming CO2 into value-added materials and fuels. Among them, the
most urgent barriers confronted are the high cost of capturing CO2 and the high energy requirements
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for CO2 conversion. These challenges make the catalysts (both photo- and electro-) a feasible and
promising cutting-edge topic in terms of energy sustainability and environmental protection.

In recent years, electrocatalytic CO2 reduction approaches have been investigated by many groups
in the clean energy community [8]. The high thermodynamic stability of CO2 induces challenges
for its reduction; therefore more stable molecules, such as CO, formic acid, formaldehyde, methanol,
methane etc., are generally produced through proton-coupled multi-electron steps (Equations (1)–(6),
Table 1) [6]. In contrast, single electron reduction of CO2 needs relatively high potential energy due to
the large amount of transformation energy between the linear molecule and the bent radical anion
(Equation (7), Table 1). In addition, the kinetics of CO2 electroreduction involves a complicated
reaction mechanism, typically generating a mixture of the aforementioned products. Even in the
presence of electrocatalysts, the reaction rates are still very low. In fact, it is the insufficient catalytic
activity, selectivity, and stability of currently used electrocatalysts that restrain the practical usage
and technological commercialization of the electrocatalytic CO2 conversion systems. Comparing with
the gas phase transformation process, which simplifies product separation and is not bothered by
CO2 solubility issues, liquid phase electrocatalytic reduction of CO2 displays advantages of higher
productivity and less-chaotic outputs [9].

Table 1. Selected standard potentials of CO2 reduction in aqueous solutions 1.

Equation Number Half-Electrochemical
Thermodynamic Reactions E◦ (V)

Equation (1) CO2 + 2H+ + 2e− = CO(g) + H2O −0.53
Equation (2) CO2 + 2H+ + 2e− = HCO2H −0.61
Equation (3) CO2 + 4H+ + 4e− = HCHO + H2O −0.48
Equation (4) CO2 + 6H+ + 6e− = CH3OH + H2O −0.38
Equation (5) CO2 + 8H+ + 8e− = CH4 + 2H2O −0.24
Equation (6) 2CO2 + 12H+ + 12e− = C2H4 + 4H2O −0.34
Equation (7) CO2 + e− = CO2

•− −1.90
1 pH = 7 in aqueous solution vs. standard hydrogen electrode (SHE), 25 ◦C, 1 atmosphere gas pressure, and 1 M for
other solutes.

Transition-metal elements possessing partially filled d orbital electrons are believed to have the
capability to facilitate bonding with CO2 in the formation of active intermediates. In 1975, Aresta and
Nobile first discovered a crystal structure of CO2 bound to a transition metal complex [10]. In this
finding, an η2-bidentate binding mode with significant bending in the CO2 structure, involving the
carbon atom and one oxygen atom, was reported, which proved the advantages of transition-metal
elements as electrocatalysts to mediate the reduction of CO2. Thus, these elements and their related
compounds are most commonly explored as electrocatalysts.

Although many review articles have been published relating to CO2 reduction reactions [8,11–13],
they mainly focus on electrocatalyst effects. In this review, selected recent advances in developing and
applying the electrocatalysts with transition metal centers is presented and discussed. Meanwhile,
the demonstration of electrocatalytic CO2 reduction is begun with homogeneous reactions discussing
the influence of different ligands, followed by heterogeneous reactions with product categories.

2. Useful Notations

Basically, there are four fundamental parameters to compare and evaluate the performance of
electrocatalysts for CO2 reduction. The definitions of them are shown as follows:

(1) Catalytic selectivity (CS).

CS refers to the parts occupied by the intended products from all the reaction products, and this
parameter describes the effectiveness of the reaction. From the definition we can tell that a higher CS
represents a better focusing on the formation of a given product.
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(2) Turnover number (TON) and Turnover frequency (TOF).

TON is the total number of the substrate molecules that a catalyst converts into product molecules,
and TOF is the TON in unit time. The parameters are used as a yard stick to measure the efficiency of
the catalysts.

(3) Faradaic efficiency (FE).

FE is defined as the percentage of electrons employed to generate a desired product. The FE can
be simply calculated by the quotient of moles of electrons consumed in reaction product formation
and the total moles of electrons transferred from anode to cathode. This parameter is not only related
to the product selectivity, but also refers to the energetic efficiency.

εFaradaic =
αnF
Q

where, α is the number of electrons transferred (e.g., α = 8 for reduction of CO2 to CH4), n is the
number of moles of a desired product, F is Faraday’s constant (96,485 C/mol), while Q is the total
charge passed.

(4) The Tafel slope.

The Tafel plot is constructed by the logarithm of the current density changing with overpotential,
and the Tafel slope is the gradient of the plot. It is noteworthy that a lower Tafel slope value indicates
a better performance of electrocatalysts. As for CO2 electroreduction, the Tafel slope value can imply
the reaction mechanism.

3. Homogeneous CO2 Reduction

In the homogeneous electroreduction of CO2, the soluble electrocatalysts act as the electron
transfer agents to facilitate and accelerate the reaction [14,15]. Ideally, the reaction can be driven
near the thermodynamic potential, E◦ (products/substrates). However, in most cases, the difference
between the applied electrode potential, Vapplied, and E◦ (products/substrates) cannot be eliminated.
As such, a significant overvoltage is required in the process of direct electroreduction of CO2. In this
situation, in order to increase the conversion efficiency, catalysts that possess formal potential,
E◦ (Catn+/0), well matched to E◦ (products/substrates) with proper rate constant, kcat, need to be
developed. Additionally, at the electrode, the heterogeneous rate constant, kh, must be high for Vapplied
near E◦ (Catn+/0) to further boost the conversion efficiency. A general layout for a homogenous
electrocatalytic reduction of CO2 is shown in Scheme 1.
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Scheme 1. Homogeneous electrocatalytic reduction of CO2. Reproduced with permission from Ref. [15].
Copyright 2009, Royal Society of Chemistry.

The past decades have witnessed the appearance of many effective homogeneous CO2 reduction
electrocatalysts [16]. In the following subsections, recently published seminal works employing these
catalysts are summarized and classified into two major categories depending on the ligand type:
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(1) metal catalysts with macrocyclic ligands [17]; and (2) metal catalysts with polydentade ligands [18].
It should be noted that this section focuses mainly on introducing recent literature about transition
metal centered homogeneous catalysts for CO2 electroreduction and thus may omit old literature and
other types of CO2 activation reactions.

3.1. Metal Complexes with Macrocyclic Ligands

In 2012, Saveant and co-workers reported a superior molecular system that can efficiently reduce
CO2 to produce CO by Fe complexes [19]. Introducing phenolic groups in all ortho and ortho’ positions
of the phenyl groups for the modification of tetraphenylporphyrin ligand facilitated the catalysis
efficiency of the reaction by the electrogenerated iron(0) complex (Scheme 2). At a low overpotential
(0.47 V), the catalyst manifested a CO FE above 90% through 50 million turnovers over 4 h electrolysis
with no degradation observed. Due to the phenolic hydroxyl substituents, the enhanced activity
appeared to be due to the high local concentration of protons. Meanwhile, inspired by the Ni-Fe
containing metalloenzyme, a cofacial iron(0) tetraphenyl porphyrin dimer, o-Fe2DTPP (Scheme 2),
was also reported to be highly effective in the electroreduction of CO2 [20]. The electrogenerated
Fe0(por) species exhibited excellent CO selectivity from the aspects of a high FE of 95% and a TOF of
4300 s−1 at a moderate overpotential of 0.66 V.
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Another pentadendate N5 ligand (2,13-dimethyl-3,6,9,12,18-penta-azabicyclo[12.3.1]octadeca-1
(18),2,12,14,16-pentaene) was used to synthesize two effective electrocatalysts [21]. The synthesized
CoII complex selectively catalyzed CO2 to generate CO with a high efficiency, while the FeIII centered
electrocatalyst exhibited a high selectivity for the HCOOH product at low overpotential (Scheme 3).
The phenomenon that changing the metal from Co to Fe allows the switching of catalysis product over
two electrons reduction of CO2 is due to different protonation and reduction pathways. Within the
Co-centered complex mediated process, a C-O bond cleavage could be expected which furnishes an
OH− and a CO molecule as the final product (Scheme 3a). However, Fe complexes prefer to form a
η1-OCOH coordinated intermediates through the catalytic pathway and eventually release a formate
molecule (Scheme 3b). Besides, both catalysts showed sustainable catalytic activity over a long period
of time and as well as turnover numbers.
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3.2. Metal Complexes with Polydentade Ligands

Selectively generating CO product through a Ru-based catalyst was achieved by the use of a
bulky bipyridine ligand, 6,6′-dimesityl-2,2′-bipyridine (mesbpy) (Scheme 4) [22]. The Ru complex
exhibited a TOF of 1300 s−1 and 95% FE for CO in the presence of Brønsted acids. Based on the
mechanistic electrochemical and spectro-electrochemical studies, it was found that the cooperative
redox response of the bipyridine ligand and Ru metal center at negative potentials, as well as the
inhibition of Ru-Ru bond formation through steric interactions played critical roles in realizing such a
remarkable performance.
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In addition, the manganese tricarbonyl bromide complexes incorporating bidentate ligands,
were proved to be very effective and robust as a new group of catalysts for CO2 reduction [23,24].
In 2014, Agarwal et al. reported the electrocatalytic reduction of CO2 using two Mn complexes with
N-heterocyclic carbene (NHC) ligands (Scheme 5) [25]. In a wet CH3CN (5% water) solution, the
complexes were able to selectively transform CO2 to CO at the potentials of −1.35 V vs. standard
calomel electrode (SCE) and −1.46 V vs. SCE, respectively. As compared to [MnBr(bpy)(CO)3], both
species exhibited enhancement of catalytic current densities at the voltages. TOF values for converting
CO2 to CO with the assistance of two Mn complexes were 0.08 s−1 and 0.07 s−1, respectively. It is
noteworthy that throughout the electrolysis, H2 product was not observed, suggesting the excellent
selectivity of the developed electrocatalysts, and an average Faradaic efficiency of 34.6% was obtained
at the 4 h mark.
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4. Heterogeneous Electrocatalysis of CO2 Reduction

Although homogeneous catalysts presented excellent activity and selectivity for electrocatalytic
CO2 reduction, the non-recyclable character and high cost still impeded their application in practical
industrial utilization. However, in the heterogeneous electroreduction of CO2, the selected electrode
itself also performs as the electrocatalyst, which artfully overcomes the afore-mentioned difficulties.

A simple alternative for the transition from homogeneous to heterogeneous system in the
arena of electrocatalytic CO2 reduction is to functionalize or modify the electrode with catalytic
effective organic metal complexes [26]. Recently, Reisner’s group reported a novel approach by
immobilizing Mn(bipyridine) catalysts on a carbon nanotube electrode (Scheme 6) [27]. Anchored by
a pyrene unit, the once robust homogeneous CO2 reduction catalyst dramatically transformed to a
quasi-heterogeneous system. In such a hybrid system, the CO2 was effectively reduced with a catalytic
onset overpotential of 0.36 V and with more than 1000 turnovers at 0.55 V. Selectively, CO as the main
product was obtained at high catalyst loading, whereas formate was the dominant product when
lower catalytic loading was adopted.

In addition, taking the advantage of a facile synthesis protocol without any further purification,
with outstanding efficiency and great potential for large-scale applications, the heterogeneous
electrocatalysts yield more promising materials than the homogeneous ones to be applied in real
industrial processes. The carbon dioxide molecule is adsorbed onto the conductive materials and
subsequent reduction occurs on the surface of the electrode. During the past decades, various
transition-metal-centered heterogeneous electrocatalysts have been widely explored for mediating CO2

reduction reactions [28]. Cu, Au, Sn, Hg, Ag, Zn, Pd, etc. have proved to be robust and effective as both
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metal electrodes and electrocatalysts. Meanwhile, several transition metal oxides and chalcogenides
such as TiO2, FeOx, Cu2O, ZnS, MoS2, and VS4, have been reported as versatile electrocatalysts for
CO2 reductions as well [29]. Typically, heterogeneous electrocatalysis reduction of CO2 involves three
major steps: (i) adsorption of CO2 molecules onto the surface of the electrocatalysts; (ii) electron
transfer and/or proton migration; (iii) configuration rearrangement and desorption of products.
However, not all the aforementioned electrodes are able to bind the key intermediates generating
from the first step tightly. Different electrocatalysts have their own protocols to provide diversity
of low-carbon products. Therefore, the following sections summarize recent works categorized by
different main products.

Catalysts 2017, 7, 373  7 of 18 

 

as both metal electrodes and electrocatalysts. Meanwhile, several transition metal oxides and 

chalcogenides such as TiO2, FeOx, Cu2O, ZnS, MoS2, and VS4, have been reported as versatile 

electrocatalysts for CO2 reductions as well [29]. Typically, heterogeneous electrocatalysis reduction 

of CO2 involves three major steps: (i) adsorption of CO2 molecules onto the surface of the 

electrocatalysts; (ii) electron transfer and/or proton migration; (iii) configuration rearrangement and 

desorption of products. However, not all the aforementioned electrodes are able to bind the key 

intermediates generating from the first step tightly. Different electrocatalysts have their own 

protocols to provide diversity of low-carbon products. Therefore, the following sections summarize 

recent works categorized by different main products. 

 

Scheme 6. Schematic representation of [MnBr(bpypyr)(CO)3](Mnpyr) immobilized on a CNT sidewall, 

concentration-dependent dimerization or Mn-H formation, and intermediate-dependent reduction 

of CO2 to CO or HCOOH. Adapted with permission from Ref. [27]. Copyright 2017, American 

Chemical Society. 

4.1. Selective Production of Carbon Monoxide 

CO is one of the important molecules applied in industrial and domestic usage. The syngas 

consisting of CO and H2 can be transferred to liquid hydrocarbons through the famous 

Fischer-Tropsch synthesis. For the formation of CO, the reaction initiates from the reductive 

adsorption of CO2 on the catalysts’ surface to construct a COOH* intermediate. After further 

reduction by another electron coupled to proton transfer, the COOH* intermediate is desorbed from 

the electrode, providing CO and H2O as the final products. From the reaction pathway, in order to 

selectively generate CO product, the catalysts should fulfill the following requirements: a strong 

binding with COOH* and a weak coordinating with the CO molecule. Recently, nanostructured 

catalysts with well-controlled size, composition and surface characteristics based on different active 

sites have been proven robust and effective for reducing CO2 to CO. 

In 2013, Sun and co-workers studied the performance of monodispersed Au nanoparticles 

(NPs) of various sizes [30]. The edge sites of the NPs are considered to accelerate CO formation, and 

the 8 nm Au NPs with an optimal ratio of edge sites thus offered the maximum FE up to 90% at 

−0.67 V vs. reversible hydrogen electrode (RHE) (Figure 1a–e). Meanwhile, similar work was also 

reported by Strasser’s group with the sizes of Au NPs ranging from 1 nm to 8 nm [31]. As 

mentioned, the FE of CO declined with decreasing NP size. Both works suggested that 8 nm is the 

optimal size of Au NPs in CO2 reduction. In the follow up studies, Sun and co-workers designed 

Au nanowires with high aspect-ratios and conducted electroreduction of CO2 to CO at an onset 

potential of −0.2 V vs. RHE (Figure 1f,g) [32]. Under the catalysis of 500 nm length Au nanowires, 

the reduction FE reached 94% at −0.35 V, with a mass activity 1.84 A g−1 (Figure 1h). Furthermore, 

Nam and co-workers proposed concave Au rhombic dodecahedrons as the electrodes with a high 

Scheme 6. Schematic representation of [MnBr(bpypyr)(CO)3](Mnpyr) immobilized on a CNT sidewall,
concentration-dependent dimerization or Mn-H formation, and intermediate-dependent reduction
of CO2 to CO or HCOOH. Adapted with permission from Ref. [27]. Copyright 2017, American
Chemical Society.

4.1. Selective Production of Carbon Monoxide

CO is one of the important molecules applied in industrial and domestic usage. The syngas
consisting of CO and H2 can be transferred to liquid hydrocarbons through the famous Fischer-Tropsch
synthesis. For the formation of CO, the reaction initiates from the reductive adsorption of CO2 on
the catalysts’ surface to construct a COOH* intermediate. After further reduction by another electron
coupled to proton transfer, the COOH* intermediate is desorbed from the electrode, providing CO and
H2O as the final products. From the reaction pathway, in order to selectively generate CO product,
the catalysts should fulfill the following requirements: a strong binding with COOH* and a weak
coordinating with the CO molecule. Recently, nanostructured catalysts with well-controlled size,
composition and surface characteristics based on different active sites have been proven robust and
effective for reducing CO2 to CO.

In 2013, Sun and co-workers studied the performance of monodispersed Au nanoparticles (NPs)
of various sizes [30]. The edge sites of the NPs are considered to accelerate CO formation, and the
8 nm Au NPs with an optimal ratio of edge sites thus offered the maximum FE up to 90% at −0.67 V
vs. reversible hydrogen electrode (RHE) (Figure 1a–e). Meanwhile, similar work was also reported
by Strasser’s group with the sizes of Au NPs ranging from 1 nm to 8 nm [31]. As mentioned, the FE
of CO declined with decreasing NP size. Both works suggested that 8 nm is the optimal size of Au
NPs in CO2 reduction. In the follow up studies, Sun and co-workers designed Au nanowires with
high aspect-ratios and conducted electroreduction of CO2 to CO at an onset potential of −0.2 V vs.
RHE (Figure 1f,g) [32]. Under the catalysis of 500 nm length Au nanowires, the reduction FE reached
94% at −0.35 V, with a mass activity 1.84 A g−1 (Figure 1h). Furthermore, Nam and co-workers
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proposed concave Au rhombic dodecahedrons as the electrodes with a high density of atomic steps on
the surface, obtaining enhanced efficiency over that of Au film [33]. After long-term electrocatalytic
testing, the morphologies of such concave rhombic dodecahedrons were still maintained. In addition,
Kanan et al. constructed Au NPs with a high density of grain boundaries, which was proven to be a
powerful approach to improve the catalytic activity of metal NPs [34].
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Figure 1. (a–e) Transmission electron microscope (TEM) images and potential-dependent Faradaic
efficiencies of the 4, 6, 8, and 10 nm Au nanoparticles (NPs). Adapted with permission from Ref. [30].
Copyright 2013 American Chemical Society; (f) Edge site weight percentage for the Au nanowires and
NPs; (g,h) TEM image and potential-dependent Faradaic efficiencies of the Au nanowires. Adapted
with permission from Ref. [32]. Copyright 2014, American Chemical Society.

Similarly, relevant studies demonstrated that the optimal size of Ag NPs for CO2 reduction
was 5 nm. Hwang and co-workers discovered the optimal choice by comparing three different
sizes of easy-synthesized carbon-based Ag NPs (Figure 2a–d) [35]. Comparing to polycrystalline
Ag foil, the 5 nm Ag/C catalysts provide four times enhanced CO FE at −0.75 V vs. RHE with
the smallest overpotential about 0.63 V (Figure 2e). In Salehi-Khojin’s study, the 5 nm Ag NPs
boosted the conversion of CO2 to CO at a 10 times higher conversion rate than the bulk silver
electrode in an ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM-BF4) solution [36].
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Moreover, after two-step de-alloying in an aqueous HCl solution, a two-dimensional nanoporous
Ag electrocatalyst could be prepared from an Ag-Al precursor (Figure 2f) [37]. The readily made
catalyst delivered a nearly 150 times larger surface area and exhibited at least 20 times higher activity
in comparison with that of the polycrystalline silver in the electroreduction of CO2 (Figure 2g).
Such a remarkable performance was associated with the amazing stability of COOH* intermediates
on the highly curved surface, thus overcoming the kinetic barrier to produce CO at a relatively
small overpotential.
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Figure 2. (a–c) TEM images of the 3, 5, and 10 nm Ag NPs load on carbon supports; (d) High-resolution
transmission electron microscope (HR-TEM) image of the 5 nm Ag/C catalyst; (e) CO partial current
densities of three typical Ag/C catalysts with different NP sizes. Adapted with permission from
Ref. [35]. Copyright 2015, American Chemical Society; (f) The schematic representation, scanning
electron microscope (SEM), and HR-TEM images of a nanoporous silver electrocatalyst with highly
curved internal surface (scale bar 500 nm & 2 nm); (g) CO2 reduction activity of nanoporous silver.
Adapted with permission from Ref. [37]. Copyright 2014, Nature Publishing Group.

Apart from Au and Ag NPs, small Pd particles also presented good selectivity for CO formation in
the CO2 reduction process, with the FE approaching a maximum value of 91.2% at−0.89 V vs. RHE [38].
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In addition, the catalytic activities of the Cu NPs increased with the decreasing sizes of the particles,
however, not as profound as with the noble metal NPs [39]. Intriguingly, effectiveness can be promoted
by changing the morphology. The Yin group prepared high-energy Cu surfaces for the electroreduction
of CO2 by an etching process [40]. The rhombic dodecahedra structure with abundant high-energy
(110) facets originated from Cu nanocubes with exposed (100) facets (Figure 3a,b). It is noteworthy
that the selectivity of specific binding agents is the key factor in determining the etched morphologies
of Cu NPs. The formation of Cu rhombic dodecahedra was achieved in N,N-dimethylformamide
solvent. Meanwhile, due to its strong capping of (100) facets of Cu, hexapod-shaped NPs with cubic
arms formed under the promotion of the etching process on the corners and edges by oleylamine.
The current density of the ready-made Cu electrode was nearly three times higher than that of the Cu
nanocubes, at −1.4 V vs. RHE. Noticeably, the selectivity toward CH4, C2H4, C2H6, and C3H8 was
also higher on Cu(110) facets than on the original Cu(100) facets. These results indicated the enhanced
catalytic activity and C1, C2 selectivity of the Cu rhombic dodecahedra catalyst (Figure 3c).

According to recent studies, multi-component catalysts exhibited alternative properties
to single-component catalysts. Takanabe and co-workers explored the CO2 electroreduction
performance of a Cu-In electrode prepared by electrochemical reduction of the oxide-derived Cu
in a two-electrode system (Figure 3d,e). The as-prepared electrode selectivity reduced CO2 to CO
product, while suppressing the formation of H2 [41]. After extensive trials, the CO was produced as
almost the sole product of CO2 reduction, reaching an FE up to 90% at −0.5 V vs. RHE (Figure 3f).
The Tafel slope over 0.12 V dec−1 indicated that the rate-limiting step in the mechanism was the initial
single-electron transfer. Density functional theory (DFT) calculation showed the replacement of one
Cu by In atom on the four-fold site which disfavored H adsorption by 0.12 eV, while the CO adsorption
energy was constant. Also, the In atom enhanced the stability of COOH* by roughly 0.1 eV, thereby
reducing the trend to release formate as final product.
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Figure 3. (a) TEM imagies of Cu nanocubes; (b) TEM images of Cu rhombic dodecahedrons; (c) The
FE of Cu nanocubes and Cu rhombic dodecahedra toward CO2 electroreduction. Adapted with
permission from Ref. [40]. Copyright 2016, American Chemical Society; (d,e) HR-TEM images and
energy dispersive spectrometer element mapping of Cu-In catalysts; (f) the long-term stability test for
the Cu-In catalyst. Adapted with permission from Ref. [41]. Copyright 2015, Wiley-VCH Verlag GmbH
& Co. KGaA.
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As a costless and promising alternative to replace noble-metal catalysts in hydrogen evolution
reaction (HER), MoS2 also exhibited superior CO2 reduction performance (Figure 4a) [42]. Comparing
with the noble metals, such a cost-effective substitute selectively reduced CO2 to CO with a high
current density and low overpotential (0.054 V) in an ionic liquid (Figure 4b–d). Due to the metallic
character and a high d-electron density, the Mo-terminated edges are the main characteristic related to
its catalytic performance (Figure 4e–g). A thorough review on this material family was conducted by
Jaramillo et al., so this review does not go into any details [43].
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Figure 4. (a) High-angle annular dark-field (HAADF) images (scale bar, 5 nm) of the MoS2 flakes;
(b) Cyclic voltammogram curves for MoS2 catalysts; (c) CO and H2 Faradaic efficiency at different
applied potentials; (d) Overview of different catalysts’ performance at different overpotential; (e) The
Mo atom at the edge and Mo atom with in the lattice; (f) s, p, and d orbital of the Mo-edge atom;
(g) Projected density of states of d band of the Mo-edge atom, Ag atom from bulk and from a Ag-slab.
Adapted with permission from Ref. [42]. Copyright 2014, Nature Publishing Group.

4.2. Selective Production of Formate

As one of the most commonly used raw materials in modern industrial processes, the selective
production of formate through CO2 electroreduction is one of the facilitated ways to satisfy the supply
requirement. Recent attention has been paid to further increase the selectivity and decrease the
overpotential through the electrolytic process.

In 2016, ultra-thin Co related nanosheets of 4-atoms-thick were prepared through a
ligand-confined growth strategy by Xie et al. (Figure 5a,b) [44]. Compared with bulky samples,
the surface Co atoms of the atomically thin layers produced formate during CO2 electroreduction with
higher intrinsic activity and selectivity at lower overpotential, 0.24 V (Figure 5c). The partially oxidized
nanostructured cobalt electrocatalyst further attained stable current densities of about 100 A/m2 over
40 h, with almost 90% FE for formate at−0.85 V vs. SCE. Gas chromatography quantified the remaining
10% of the charge causing H2 evolution (Figure 5d). Based on mechanistic studies, it was speculated that
the declined onset potential from 0.73 V to 0.68 V upon partial oxidation was related to the facilitated
rate-determining chemical reaction by the cobalt oxides. Another fast-heating strategy was applied to
generate 1.72 nm thick Co3O4 layers, which were ideal models of transition-metal-oxide-based atomic
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layers for CO2 reduction (Figure 5e) [45]. Abundant active sites and high electrical conductivity of
the as-prepared nanosheets exhibited promotion for the electroreduction of CO2. At −0.88 V vs. SCE,
the ultrathin Co3O4 nanosheet electrocatalyst had a current density of 6.8 A/m2 with a formate FE of
over 60% in 20 h (Figure 5f,g).
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with permission from Ref. [44]. Copyright 2016, Nature Publishing Group; (e) Typical TEM image for
Co3O4 atomic layers with an average thickness of 1.72 nm; (f,g) Linear sweep voltammograms and
Faradaic efficiency for formate on Co3O4 with different thicknesses. Adapted with permission from
Ref. [45]. Copyright 2016, Wiley-VCH Verlag GmbH & Co. KGaA.

Palmore and co-workers investigated the reduction of CO2 on Cu foams with a hierarchical
porosity [46]. Both the distribution of products and their FE presented a significant difference from
those provided by smooth electropolished Cu electrodes. The highest FE of formate was up to 29%
through increasing the thickness of the copper nanofoams which could suppress the HER process.
The main reasons for obtaining such results were the high surface roughness, hierarchical porosity,
and confinement of the reactive species. In addition to non-precious metals, Pd has the ability to
convert CO2 to formate with no overpotential. Unfortunately, within such an activity process, the low
reaction rates and deactivation pathway have limited its application. Kanan et al. discovered that Pd
NPs dispersed on a carbon support exhibited a high mass activity at an overpotential of 0.20 V [47].
In an aqueous solution containing CO2

− and HCO3
−, the FE of formate could reach up to 100%.

It was assumed that an electrochemically generated Pd hydride surface could be the inducement for
the reduction of CO2. The electrode could be contaminated by the formed CO products, and brief
exposure to air would remove CO to restore activity. Meanwhile, Jaramillo and co-workers presented
a facile tuning AuPd alloy thin film, as being effective in CO2 electroreduction [48]. The alloys were
found to generate 2e− products (i.e., H2, CO, and formate) during the conversion process. Different
from the pure Au or Pd metals, the alloy thin films were more active and selective for formate
production. These results indicated that the synergistic effect of Au and Pd in AuPd alloys fructified
new performances rather than simple addition of the individual components.
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4.3. Selective Production of Methanol

Methanol, as a liquid fuel, is one of the most important products generated directly from
electrocatalysis reduction of the CO2 process. Based on the mechanism, the protonation of a key
intermediate CH3O leads to the final formation of the methanol molecule. During this process, more
protons could combine with carbon atoms, providing methane as a competitive product. Recently,
nanostructured CuAu alloys with no organic additives were synthesized by electrochemical deposition
with a nanoporous Cu film (NCF) template (Figure 6a) [49]. The alloy material exhibited superior
catalytic activity and selectivity for the transformation of CO2 into alcohols. The FE of methanol
was 15.9% on the Cu63.9Au36.1/NCF electrode, which is almost 18 times higher than that of pure
Cu (Figure 6b). In addition, the FE for formate in such an apparatus decreased with the increase of
atomic percentage of Au in CuAu alloys. Meanwhile, Jung and co-workers further investigated the
details of electroreduction of CO2 to methanol, attempting to discover new effective catalysts through
DFT calculations [50]. A few criteria, such as CO binding energy, OH binding energy, and H binding
energy, were combined and collectively used as activity and selectivity determining descriptors [51].
Accordingly, the W/Au alloy was found to be a promising counterpart with increased efficiency
and promoted selectivity toward methanol production in comparison to conventional Cu catalyst
(Figure 6c,d).
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Figure 6. (a) SEM image of CuAu sample deposited on nanoporous Cu film; (b) Faradaic efficiency of
methanol and ethanol on different electrodes. Adapted with permission from Ref. [49]. Copyright 2015,
Elsevier; (c) Free energy diagram for the CO2 electroreduction to CH4 or CH3OH (shown in red) and
(d) Free energy diagram for the H2 evolution reactions at zero electrode potential for Cu (black) and
W/Au (blue). Adapted with permission from Ref. [50]. Copyright 2014, American Chemical Society.

4.4. Selective Production of Methane

As the most significant component of natural gas, methane has become an alternative fuel in both
industrial and domestic facilities. Therefore, methanizing CO2 through electrochemical methods is a
promising process to convert greenhouse gases to valuable fuels. However, as the reduction of CO2 to
CH4 involves an eight-electron process, the formation of a wide range of products, such as ethylene,
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hydrogen, carbon monoxide, and formate, can hardly be avoided. To date, the majority of studies on
the CO2 electroreduction to CH4 adopted Cu-based materials as the catalyst. Alivisatos and co-workers
proposed that the well-dispersed Cu NPs supported on glassy carbon exhibited up to 4-fold greater
methanation current densities as compared to relatively pure copper foil electrodes [52]. The FE for
CH4 on such Cu NPs reached 80% at −1.25 V, which is the highest value till now. Also, the Tafel plot
showed the reaction pathway was CO2→CO2

−→CO2-CO2
−→CO→CH4, and the rate-limiting step

was the formation of CO2-CO2
−. Meanwhile, guided by the dramatic composition effect, various

Cu catalysts were also investigated. Sun and Yan synthesized bimetallic CuPt NPs with diverse
Cu/Pt ratios (Figure 7a) [53]. The highest FE for CH4 was 21% at −1.8 V obtained on the sample of
Cu3Pt1 NPs (Figure 7b). DFT calculations suggested that the protonation of adsorbed CO* to form
adsorbed HCO* was the key step in the reaction process. Jin et al. prepared new Au3Cu alloy NPs
via a phase-stabilized synthesis, the size of which could be facilely tuned by controlling the amount
of Au precursors (Figure 7c) [54]. Compared to Au NPs, the Au3Cu surface could absorb more CO
molecules, which promoted the formation of CH4, thus leading to the distinct selectivity of CO2

reduction products (Figure 7d). In addition, Mul and co-workers investigated the influence of KHCO3

concentration and CO2 pressure on the production selectivity of Cu electrodes [55]. The results revealed
that the selectivity of CH4 increased from 1% to 20% with the increase of electrolyte concentrations.
Importantly, the low CO2 pressures could be better in selectively producing CH4 through the CO2

reduction process.
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Figure 7. (a) TEM images of the Cu-Pt alloy NPs; (b) The Faradaic efficiency of H2 and CH4 using
different Cu-Pt NPs at −1.6 V. Adapted with permission from Ref. [53]. Copyright 2014, Royal Society
of Chemistry; (c) TEM image of the Au3Cu truncated nanocubes; and (d) the Faradaic efficiency of
Au3Cu and Au NPs for CO2 electroreduction. Adapted with permission from Ref. [54]. Copyright
2013, Royal Society of Chemistry.

4.5. Selective Production of C2 Products

In the arena of electrochemical CO2 reduction, Cu catalysts not only showed effective catalytic
performance in generating C1 products, the robust catalytic activity also presented potential for
formation of C2 products. According to recent studies, the selectivity of C2H4 can be effectively
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improved by surface treatments of Cu materials. For instance, a roughened copper electrode with
copper NPs coated surfaces was found to be very effective in electrochemical CO2 conversion
towards ethylene production [56]. In addition, Baltrusaitis and co-workers investigated the
effectiveness of cuprous oxide films of various thickness and [100], [110], and [111] orientation in the
electrocatalytic reduction of CO2 [57]. The experimental results demonstrated that the parent Cu2O
film thickness rather than the different orientation was the main factor that affected the selectivity
of the process, which provided an FE up to 35% for C2H4 at −1.1 V. With thickness of Cu2O film
increasing, the selectivity for ethane soared, while that for ethylene declined. Meanwhile, a novel
3D chrysanthemum-like structured Cu nanoflower catalyst was prepared by Yu and co-workers,
which expressed electrocatalytic CO2 reduction selectively to C2H4 product with an FE value of about
10% at −0.9 V in aqueous solution [58].

Recently, Lewis and co-workers prepared Ni-Ga bimetallic films employing a drop-casting strategy
with three different phases for reducing CO2 to the highly reduced C2 products including ethylene
and ethane and C1-product methane [59]. In aqueous bicarbonate electrolytes at neutral pH, the onset
potential was found to be−0.48 V vs. RHE, which was 0.25 V more positive than that of polycrystalline
copper. The Ni5Ga3 phase provided the highest yield of 0.25 mol h−1 for acetate production. An isotope
labeling experiment was also conducted with 13CO2 to confirm that the origin of the generated C2

products was from the reduction of CO2.

5. Conclusions and Outlook

In recent years, a number of novel transition-metal-centered electrocatalysts have been developed
for the electrocatalytic reduction of CO2. Instead of focusing on optimization of the reaction conditions,
most of the latest studies intended to purposefully design the structures and constitutions of the
catalysts, as well as investigate the actual reaction mechanisms. This review summarizes the
recent progress of CO2 electroreduction that is dependent on its catalytic phase states. Although
numerous works have shown powerful strategies in converting CO2 to value-added C1 or C2

products, there are still several challenges and constraints remaining, such as moderate catalytic
activity, insufficient product selectivity, and inadequate catalyst stability. It seems that the maturity
of CO2 electroreduction technology is still far away from fulfilling the requirements for industrial
and commercial applications. To overcome these deficiencies, enormous efforts should be made on
the following aspects: (1) Innovation of electrocatalysts to enhance activity and stability; (2) Further
fundamental understanding through experimental and theoretical modeling; (3) Optimization of
electrolytes, reaction apparatus, and system designs for practical applications.

In summary, in order to overcome excessive and environmentally harmful CO2 emissions, and
to remit energy shortage issues, it is of critical importance to develop electroreduction of CO2 to
generate value-added low-carbon fuels. With continued and extensive efforts focusing on overcoming
the confronted difficulties on insufficient catalyst activity, product selectivity, and catalyst stability,
we believe that e CO2 electroreduction technology will become practical in the near future.
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