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Nonlinear Optimal Control for Active Suppression of Airfoil Flutter via
a Novel Neural-Network-Based Controller*

Difan Tang, Lei Chen, Zhao F. Tian and Eric Hu

Abstract— This paper proposes a novel nonlinear controller
based on neural networks (NNs) for active suppression of airfoil
flutter (ASAF). Aeroelastic flutter can damage airfoils if not
properly controlled. Existing optimal controllers for ASAF are
sensitive to modeling errors while other controllers less prone to
uncertainties do not provide optimal control. This study, thus,
focuses on solving these problems by deriving a new intelligent
model-based control scheme capable of synthesizing nonlinear
near-optimal control laws in real time according to a known
model and online updated system dynamics. A four-degrees-
of-freedom aeroelastic model that has nonlinear translational
and torsional stiffness and employs leading/trailing-edge control
surfaces as control inputs is considered. Optimal control laws
for the nonlinear aeroelastic system is synthesized by solving
the Hamiltonian-Jacobi-Bellman equation through NN-based
value function approximation (VFA) and synchronous policy
iteration in a Critic-Actor configuration. A systematic approach
based on linear matrix inequalities (LMIs) is proposed for
the design of a scheduled parameter matrix for the VFA.
An NN-based identifier is also derived to capture un-modeled
dynamics online. Extended Kalman filters are employed to
tune NN parameters. The proposed controller was tested in
wind-tunnel experiments. Comparisons drawn with a linear-
parameter-varying optimal controller confirms the effectiveness
and validity of the proposed control scheme.

I. INTRODUCTION

Airfoil flutter is a type of self-feeding oscillation due to the
interaction between aerodynamic loads and non-rigid airfoil
structures, occurring at and above a certain airflow velocity
(i.e. flutter boundary) depending on the structural charac-
teristics of the airfoil [1]. Aeroelastic systems in reality are
subjected to various nonlinearities and are generally prone to
the instability known as limit-cycle oscillation (LCO), which
can cause serious damage to the airfoil. To actively suppress
airfoil flutter, existing airfoil control surfaces can be utilized,
as proven effective by extensive studies.

In terms of control methods for suppressing LCOs, various
algorithms apply [2], [3]. Due to the time-varying nature
and nonlinear characteristics of an aeroelastic system and
the increasing demand on wider operation range beyond the
flutter boundary, adaptive and robust control has become a
major focus in recent studies for active suppression of airfoil
flutter (ASAF). These advanced methods include but are
not limited to: online updated linear quadratic regulator [4],
[5], linear-parameter-varying techniques [6], [7], feedback
linearization [8], [9], model reference adaptive control [10],
back-stepping-based adaptive output feedback control [11],
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[12], robust output feedback control [13], modular adaptive
control [14], [15], modified filtered-X least-mean-square
control [16], L1 adaptive control [17], sliding-mode control
[18], finite-time H∞ adaptive fault-tolerant control [19], [20]
and neural network based adaptive control [21]–[23], etc.

However, optimal controllers among the mentioned meth-
ods are sensitive to modeling errors, which means suboptimal
or unsatisfactory performance may result, in the presence of
uncertainties or faults. Though some other controllers are
designed to be more adaptive and robust to the changing
environments and tolerant to un-modeled dynamics, these
methods do not provide nonlinear optimal control. These
two problems, although of significance to improving ASAF
performance, have nevertheless not been addressed.

Therefore, the study in this paper proposes a new method
of nonlinear control for ASAF from the optimal control per-
spective, aiming to reduce the impact of the aforementioned
two problems. Contributions include:

(i) A neural network (NN) based algorithm capable of
synthesizing optimal control laws online for nonlinear
systems is derived, which has a compact configuration
suitable for real-time implementation without jeopardiz-
ing closed-loop stability.

(ii) The compact NN controller relies on a modified form
of value function approximation (VFA) [24], which
however, cannot be directly implemented in its original
form for ASAF applications. This is because the closed-
loop stability is not guaranteed for the aeroelastic dy-
namics that change with different airspeeds. Therefore,
a scheduled parameter matrix synthesized via linear
matrix inequalities (LMIs) is proposed for the VFA
so that the controller remains effective across a wide
airspeed range of interest beyond the flutter boundary.

(iii) Wind-tunnel experiments were conducted to validate the
proposed method. To the best of our knowledge, it is the
first experimentally validated approach in this regard.

II. AEROELASTIC SYSTEM

The study in this paper is based on a typical rigid airfoil
section featuring two-dimensional vibration modes (i.e. the
first plunge and first pitch mode oscillations) under linear
unsteady aerodynamic loads in subsonic flow [9], [10], [25].
Leading-edge (LE) and trailing-edge (TE) control surfaces
are used to suppress flutter. Nonlinear translational and
torsional stiffness is introduced in a polynomial form up
to the second order. To better capture the control delay
due to servo dynamics, a four-degrees-of-freedom (4-DOF)



aeroelastic system as in [26] is considered (details of the
model not repeated herein due to space limit).

The aeroelastic system can be expressed in a state-space
control-affine form as:

ẋ(t) = f(x(t), U∞) + g(x(t))u(t); x(0) = x0, (1)

where x(t) ∈ Rnx denotes nx system states; u(t) ∈ Rnu
refers to nu control inputs; f(x(t), U∞) ∈ Rnx describes
system internal dynamics that are dependent on the airflow
velocity U∞; g(x(t)) ∈ Rnx×nu are control input dynamics.

III. PROPOSED CONTROLLER

A. Continuous-Time HJB Equation and Policy Iteration

For a fixed velocity U∞, equation (1) can be reduced to:

ẋ(t) = f(x(t))|
U∞=U

+g(x(t))u(t); x(0) = x0, (2)

which can be written in a compact form:

ẋ(t) = F(x(t),u(t))|
U∞=U

; x(0) = x0, (3)

where U ∈ R+ is any valid value of U∞.
For convenience in discussion, the dynamics associated

with a constant velocity U is hereafter written in a simpler
form by omitting the notation of U∞ = U .

The control problem is to find a control law/policy u(t) to
minimize the following performance index (cost function):

V (x0) =

∫ ∞
0

[Q̄(x(τ)) + R̄(u(τ))]dτ, (4)

with Q̄(x(t)) and R̄(u(t)) = uT(t)Ru(t) being positive-
definite functions, in which R ∈ Rnu×nu is a positive-
definite weighting matrix.

Differentiating (4) yields its infinitesimal version that is a
nonlinear Lyapunov equation [27], written as:

V T
x (x)F(x,u) + Q̄(x) + R̄(u) = 0; V (0) = 0. (5)

Let V ∗(x) denote the optimal (minimal) cost function,
named as the ‘value function’, and let V ∗x (x) , ∂V ∗(x)/∂x
denote its derivative with respect to x, The corresponding
optimal control policy is then given by:

u∗(x) = −1

2
R−1gT(x)V ∗x (x), (6)

which satisfies the Hamilton-Jacobi-Bellman (HJB) equation
based on (5):

−1

4
[V ∗x (x)]

T
g(x)R−1gT(x)V ∗x (x)

+ Q̄(x) + [V ∗x (x)]
T
f(x) = 0; V ∗(0) = 0. (7)

That is, by solving (7) for V ∗(x), the optimal control
can then be obtained as in (6), given that the system internal
dynamics f(x) and control input dynamics g(x) are known.

The HJB equation is nonlinear and difficult to solve
directly. Instead, it can be solved recursively through the
successive approximation method introduced in [28], which
is generally recognized as a policy-iteration approach [29].
Despite different forms of realization, the policy-iteration
algorithm basically involves two steps – policy evaluation

(using (5) as a ‘critic’) and policy improvement (using (6)
as an ‘actor’, with V ∗x (x) substituted by V u(i)

x (x) associated
with the control policy u(i)(x) at an iteration step i).
Starting with an initial admissible control policy u(0)(x),
the algorithm proceeds until convergence is reached at V ∗(x)
and u∗(x). The iterative use of (5) and (6) thus forms the
‘critic-actor’ algorithm structure. In the case of synchronous
policy iteration, the iterative use of (5) and (6) is performed
simultaneously and continuously, with the superscript ‘i’ in
V u(i)

x (x) and u(i)(x) representing an infinitesimal time step.

B. NN-based Value Function Approximation (VFA)

Note that solving for V u(i)

(x) in a direct way is difficult.
To implement the policy iteration, an appropriately structured
representation of V ∗(x) is necessary, which can be a neural-
network (NN) approximation. For this purpose, a modified
form of value function approximation (VFA) [24] is used:

V ∗(x) =
1

2
xTPx+W TΦ(x) + ε(x), (8)

where Φ(·) = [φ1(x), · · · , φN (x)]
T

: Rn → RN contains N
hidden-layer neurons, each of which is a nonlinear activation
function; W ∈ RN is a vector of ideal NN weights; P ∈
Rnx×nx is a diagonal positive-definite matrix; ε(x) ∈ R is
the approximation error.

Remark 1: This VFA allows a compact critic-actor con-
figuration more suitable for online implementation by elim-
inating the actor NN tuning loop and critic NN logic switch
mechanism [24]. The activation functions Φ(x) can be se-
lected according to the high-order Weierstrass approximation
theorem [30] so that ε(x) is sufficiently small [27].

The derivative of V ∗(x) with respect to x is given by:

V ∗x (x) ,
∂V ∗(x)

∂x
= Px+∇ΦT(x)W +∇εT(x), (9)

where ∇Φ(x) ,
[
∂Φ(x)
∂x

]T
is the gradient of Φ(x), and

∇ε(x) ,
[
∂ε(x)
∂x

]T
is the gradient of ε(x).

Due to the approximation error ε(x), the associated con-
trol law is near optimal:

u(x) = −1

2
R−1gT(x)

[
Px+∇ΦT(x)W

]
. (10)

This near-optimal control results in:

εH =
[
xTP T + Ŵ T∇Φ(x)

]
[f(x) + g(x)u(x)]

+Q̄(x) + R̄(u), (11)

where εH is the HJB approximation error due to ε(x) in (8).
Recall that (8) contains a double-layer NN (i.e.W TΦ(x)),

which is nonlinear in the hidden layer Φ(x) but linear in the
output layer weights W . Let Ŵ be the estimate of the ideal
weights. To implement policy iteration, Ŵ need to be tuned
dynamically so that Ŵ →W and thus (8) approximates a
target value function. In this case,

V̂ (x) =
1

2
xTPx+ Ŵ TΦ(x), (12)



û(x) = −1

2
R−1gT(x)

[
Px+∇ΦT(x)Ŵ

]
. (13)

The resulting nonlinear Lyapunov equation then becomes:[
xTP T + Ŵ T∇Φ(x)

]
[f(x) + g(x)û(x)]

+Q̄(x) + R̄(û) =εH + ξ, (14)

where ξ is the error of weights estimation in a tuning process.
For uniform convergence of Ŵ to the ideal W so that ξ

is minimized, an extended Kalman filter (EKF) can be used.
Since Ŵ is the parameter vector to be estimated, (14) can
be rearranged in the following form:{

˙̂W = 0 +w

y = h(x, Ŵ )− εH − ξ + v
, (15)

with y = [f(x) + g(x)û(x)]− Q̄(x)− R̄(û), and

h(x, Ŵ ) =
[
xTP T + Ŵ T∇Φ(x)

]
[f(x) + g(x)û(x)],

where 0 is a null matrix (since Ŵ is a constant vector), w
and v are white-noise inputs with covariance matrix Qf � 0
and Rf � 0 , respectively.

Remark 2: In the system described by (15), Ŵ are system
states, and there are no drift dynamics for Ŵ . However,
nonlinearities are present in the output dynamics, which
are associated with ∇Φ(x) as well as ẋ. Thus a nonlinear
observer is needed to estimate the system states Ŵ .

Remark 3: White-noise inputs w and v in fact do not
physically exist in the system of (15). Therefore, the corre-
sponding covariance matrices Qf and Rf have no physical
implication. w and v is given in (15) purely in support of
the use of Qf and Rf for EKF implementation [31].

Introducing an EKF into the system of (15) yields:{
˙̂W = Kf (y − ŷ)

ŷ = h(x, Ŵ )
, (16)

where ŷ denotes the estimated output and Kf ∈ RN×1 is
the EKF gain.

The EKF gain Kf can be computed from:

Kf = SHTR−1f , (17)

HT =
∂h(x, Ŵ )

∂Ŵ
= ∇Φ(x)[f(x) + g(x)û(x)], (18)

Ṡ = Qf − SHTR−1f HS, (19)

where H ∈ RN×1 is defined as in (18), and S ∈ RN×N
is a symmetrical positive-definite matrix with initial state
S(0) = S(0)

T � 0.
Note that the matrix P proposed and discussed in [24] is

constant and hence does not suit a wide flight envelop with
varying airspeed U∞. To overcome this problem, we propose
a systematic approach in the following for the selection of
P to cope with U∞ dependent dynamics as in (1).

Linearizing (1) about x = 0 gives:

ẋ = Ap(U∞)x+Bpu+wp, (20)

where

Ap(U∞) ,
∂f(x, U∞)

∂x

∣∣∣∣
x=0

, Bp ,
∂g(x)

∂x

∣∣∣∣
x=0

,

and wp is unit white-noise input.
With performance output z considered, there is:ẋz

y

 =

Ap(U∞) I Bp

Cz 0 Ez
Cp 0 0

xw
u

 , (21)

where Cp = I for full-state feedback, Cz = [Q
1
2 0]T, and

Ez = [0 R
1
2 ]T.

Let P (U∞) be a matrix scheduled with U∞. A Lyapunov
matrixX(U∞) = XT(U∞) � 0 and an auxiliary parameter-
dependent performance variable Z(U∞) are introduced to
form the following linear matrix inequalities (LMIs):[

Ẋ +AT
cX +XAc X
X −νI

]
≺ 0, (22)

[
X CT

cz

Ccz Z

]
� 0, (23)

and
Tr(Z) < ν, (24)

where

Ac , Ap(U∞)− 1

2
BpR

−1BT
p P (U∞),

Ccz , Cz −
1

2
EzR

−1BT
p P (U∞),

and ν is a performance index.
Let B̄c , 1

2BpR
−1BT

p , G(U∞) = P (U∞)X−1(U∞),
Y (U∞) = X−1(U∞), then (22) and (23) can be transformed
into:

−Ẏ +ApY + Y AT
p + B̄cG+GTB̄T

c ≺ 0, (25)[
Y (CzY +EzG)T

CzY +EzG Z

]
� 0. (26)

A(U∞) can be structured as:

A(U∞) = A1 +A2U∞ +A3U
2
∞. (27)

Thus Y (U∞) and G(U∞) take the same structure as:

Y (U∞) = Y1 + Y2U∞ + Y3U
2
∞, (28)

and
G(U∞) = G1 +G2U∞ +G3U

2
∞. (29)

Solving for Y (U∞) andG(U∞) through (24) to (26) gives
P (U∞) in the form of:

P (U∞) = G(U∞)Y −1(U∞). (30)



C. Identifier NN

The information of f(x, U∞) and g(x) is required for
the real-time synthesis of nonlinear optimal control laws. Al-
though the knowledge of f(x, U∞) and g(x) is analytically
available, the presence of un-modeled dynamics or uncer-
tainties can degrade controller performance as discussed in
Section I. To mitigate this problem, an NN-based identifier
is proposed in the following form:

ẋ = WT
s Φs(x,u) + εs, (31)

where WT
s ∈ Rnws×nx and Φs(x,u) ∈ Rnws are the ideal

NN weights and nonlinear activation functions, respectively.
In light of [32], the system states x can be filtered as:

x = WT
s η(x) +Aµ(x) + εx, (32)

η̇(x) = −Aη(x) + Φ(x,u), η(x0) = 0, (33)

µ̇(x) = −Aµ(x) + x, µ(x0) = 0, (34)

where η(x) ∈ Rnws and µ(x) ∈ Rnx are auxiliary regres-
sors, A = σInx×nx with σ ∈ R+, and εx = e−Atx0 +∫ t
0
e−A(t−τ)εsdτ .
Denote the estimate of x by x̂. For fast estimation of Ŵs

towards Ws, the EKF is considered for online tuning. In
this study, multiple EKFs in a parallel configuration instead
of a single EKF are employed, based on the fact that the
columns ofWs are exclusively associated with the respective
single state of x. By doing so, the computational expense
is significantly less than using only one multi-input multi-
output EKF [31]. On this basis, we have:{

˙̂W s(i) = Ks(i)(x(i) − x̂(i))

x̂(i) = Ŵs(i)η(x) +Aµ(x)
, (35)

where Ks ∈ Rnws is the EKF gain and subscript (i) restricts
the parameters to the ith decoupled EKF.

Each EKF gain vector Ks(i) can be computed by:

Ks(i) = Ss(i)H
T
s(i)R

−1
s , (36)

HT
s(i) =

∂x̂(i)

∂Ŵs(i)

= η(x), (37)

Ṡs(i) = Qs − Ss(i)Hs(i)
TR−1s Hs(i)Ss(i). (38)

where Qs and Rs are defined the same as Qf and Rf .
As can be seen from (37), Hs(i) is the same among the

individual EKFs in the parallel configuration. It is also to be
noted Hs(i) is not constant but state-dependent, indicating
the nonlinearities involved in system identification, which
justifies the use of the EKF instead of linear observers.

The internal dynamics f(x, U∞) can be given by the NN
identifier in an indirect manner, since the estimated derivative
of system states used by (16) can be obtained through (31),
with Ws and u replaced by Ŵs and û, respectively.

The input dynamics g(x) can then be obtained as:

ĝ(x) =
∂F̂(x, û)

∂û
=
∂Ŵ T

s Φs(x, û)

∂û
=
∂Φs(x, û)

∂û
Ŵs.

(39)

Fig. 1. Wind tunnel experiment setup (1, pressure transducer; 2, airfoil
section; 3, wind tunnel test duct; 4, custom I/O board; 5, dSPACEr DS1104
R&D controller board; 6, virtual spring-damper system; 7, controller PC;
8, power source)

Remark 4: The use of the Identifier NN is mainly for
updating the knowledge of system dynamics accessed by the
real-time controller synthesis scheme. The known dynamics
(i.e. known analytical model) are embedded into the Identi-
fier NN in the form of the initial values of Ws obtained via
pre-training the NN using known dynamics. Therefore, any
mismatch between the actual dynamics and the analytical
model can be captured and used to update Ws in real time.

IV. WIND-TUNNEL EXPERIMENTS

Experiments were performed in a temperature-regulated
closed-loop wind tunnel at the University of Adelaide, Aus-
tralia, and the setup is shown in Fig. 1. The wind-tunnel has
a 0.5×0.5 m testing duct, and is able to generate up to 30 m/s
smooth airflow with 0.5% turbulence intensity. The leading-
and trailing-edge control surfaces of the airfoil section are
each driven by a servo motor, with the corresponding deploy-
ment angle fed back via an optical encoder. Instead of using
physical springs for plunge and pitch stiffness, a virtual-
spring-damper system (VSDS) was developed in this study,
where two electric motors were used to mimic the elastic
force/torque using force feedback from a 6-axis force/torque
transducer. The parameters of the overall aeroelastic system
are listed in Table I. With the stiffness and damping setting
of the VSDS as in Table I, the system had a flutter boundary
around 14.6 m/s. Flutter was initiated by means of giving
the VSDS a pulse signal along the plunge DOF.

In consideration of the 3rd order nonlinear plunge and
pitch stiffness in polynomial form, a power series of acti-
vation functions containing the powers of 8 system states
up to 4th order and 2 control inputs limited to 1st order
were used for the Identifier NN in accordance with the
high-order Weierstrass approximation theorem [30]. This
renders 135 activation functions for Φs(x). Initial weights
were determined via simulation-based training for 14.6 m/s
airspeed. Similarly, Φ(x) of the Critic NN contains the
powers of 8 system states only (no control inputs) up to
4th order. This gives 65 activation functions. M(U∞) and



TABLE I
PARAMETERS OF THE EXPERIMENTAL AEROELASTIC SYSTEM

Prm.a Values Prm.a Values

ρ 1.225 kg/m3 ch 14 kg/s
b 0.0753 m cα 0.042 kg·m2/s
mα 0.851 kg cβservo 4.231× 10−4 kg·m2/s
mβ 0.030 kg cγservo 4.327× 10−4 kg·m2/s
mγ 0.058 kg kh 50 + 300h2 N/m
S 0.26 m kα 0.3 + 30α2 Nm/rad

r3c/4 0.0805 m kβservo 4.57× 10−3 Nm/rad
rα 0.0329 m kγservo 4.70× 10−3 Nm/rad
rβ 0 m Îα 2.431× 10−3 kg·m2

rγ 0 m Îβ 2.307× 10−6 kg·m2

Clα 6.573 Îγ 4.791× 10−6 kg·m2

Clβ 3.472 Lβ 0.0875 m
Clγ −0.1453 Lγ −0.01 m

Cmα,eff. −0.4505 Cmγ,eff. 0.2066
Cmβ,eff. −1.4993
a Refer to [26] for the meaning of symbols.

G(U∞) were designed using the parameters in Table I
for airspeeds from 14.6 m/s to 20 m/s with a griding of
50 evenly spaced points. P (U∞) was calculated in real
time using (30). Q̄ in (4) was structured as xTQx, with
Q = diag(1, 1, 10−4, 10−4, 0.1, 0.1, 10−4, 10−4). Other
weightings are R = 100I , Qf = 1000I , Rf = I , Qs(i) =
1× 105I , and Rs(i) = 1.

Tests were conducted at two different airspeeds, and flutter
was allowed to develop to reach LCO before the controller
under testing was turned on. To ensure consistent initial
conditions x(tc) throughout all tests under the same settings,
where tc is the time when the controller is switched on, the
controller was configured to be triggered when α crossed
zero immediately after 15 seconds. This means tc > 15 s. For
comparison, an linear-parameter-varying (LPV) controller in
the form of linear-quadratic-regulator (LQR) synthesized by
means of LMIs [6] was reconstructed for the 4-DOF model
as in [26] with the parameters in Table I and the weighting
Q and R same as those used by the proposed NN controller.

Plunge and pitch responses as well as control surfaces de-
flections of the airfoil section in the wind-tunnel tests under
the proposed NN controller and the LPV-LQR controller at
different airspeeds are plotted in Fig. 2 for 14.8 m/s and
Fig. 4 for 18 m/s. Higher airspeeds were not tested due to
the torque output limit of the VSDS motors. For elegance of
presentation and ease of reading, tc is offset to zero in each
plot and LCOs before controllers are activated are presented
in dotted curves. Since both controllers are off before t = tc,
only the full trajectories of control surfaces deflections under
the proposed controller are shown for illustration purpose.
The trajectories of NNs weights are plotted in Figs. 3 and 5.

At 14.8 m/s, the flutter was effectively suppressed within
1.5 seconds under the proposed NN controller, with only
mild demands on the deflection of control surfaces. By
comparing Figs. 2 and 3, it can be seen the Identifier NN has
higher rate of convergence than that of the Critic NN, which
means the latter is able to access updated and more accurate
system dynamics for control law improvement. The Critic
NN also settles 1 second before the flutter is fully suppressed,

Fig. 2. Suppressing developed flutter at 14.8 m/s airflow speed using an
LPV-LQR controller and the proposed NN controller (NNC)

Fig. 3. Convergence trajectories of the Critic and Identifier NNs weights
of the proposed controller at 14.8 m/s airflow speed

indicating satisfactory parameter convergence. This validates
the selection of the activation functions sets for both the
Identifier NN and the Critic NN, and also indicates that near-
optimal control is obtained. In comparison, it takes longer for
the LPV-LQR controller to fully suppress the flutter. Similar
phenomena can be observed for 18 m/s, as shown in Figs. 4
and 5, where however, relatively larger differences between
the the responses under the two controllers can be observed.

To better capture the difference between the two con-
trollers, performance cost is evaluated for t = 0→ 4 s using
the experiment data with discrete approximation. Costs are
each calculated and averaged from 4 tests under the same
settings for data consistency. It is found that that the proposed
NN control suppresses the flutter better with lower costs
at both airspeeds (4.893 for 14.8 m/s; 0.545 for 18 m/s),
compared with those of the LPV-LQR control (5.372 for
14.8 m/s; 0.627 for 18 m/s).

V. CONCLUSIONS
As validated in wind-tunnel experiments, the proposed

controller successfully mitigates the impact of modeling
uncertainties and improves ASAF from the optimal con-
trol perspective. The proposed LMI-based synthesis for the
design of a scheduled parameter matrix to generalize the
modified VFA and adapt it to the ASAF application is shown
to be effective. Experiments also confirm that the proposed
controller is suitable for real-time implementation.



Fig. 4. Suppressing developed flutter at 18 m/s airflow speed using an
LPV-LQR controller and the proposed NN controller (NNC)

Fig. 5. Convergence trajectories of the Critic and Identifier NNs weights
of the proposed controller at 18 m/s airflow speed

REFERENCES

[1] A. V. Balakrishnan, Aeroelasticity: The Continuum Theory. New
York, NY: Springer, 2012.

[2] L. Chen, F. He, and K. Sammut, “Vibration suppression of a principal
parametric resonance,” Journal of Vibration and Control, vol. 15,
no. 3, pp. 439–463, Feb 2009.

[3] M. G. Soto and H. Adeli, “Recent advances in control algorithms for
smart structures and machines,” Expert Systems, vol. 34, no. 2, pp.
1–14, Apr 2017.

[4] C.-G. Pak, P. P. Friedmann, and E. Livne, “Digital adaptive
flutter suppression and simulation using approximate transonic
aerodynamics,” Journal of Vibration and Control, vol. 1, no. 4, pp.
363–388, Jan 1995.

[5] P. P. Friedmann, D. Guillot, and E. Presente, “Adaptive control of
aeroelastic instabilities in transonic flow and its scaling,” Journal of
Guidance, Control, and Dynamics, vol. 20, no. 6, pp. 1190–1199,
Nov-Dec 1997.

[6] Z. Prime, B. Cazzolato, C. Doolan, and T. Strganac, “Linear-
parameter-varying control of an improved three-degree-of-freedom
aeroelastic model,” Journal of Guidance, Control, and Dynamics,
vol. 33, no. 2, pp. 615–619, Mar-Apr 2010.

[7] G. Chen, J. Sun, and Y.-M. Li, “Adaptive reduced-order-model-based
control-law design for active flutter suppression,” Journal of Aircraft,
vol. 49, no. 4, pp. 973–980, Jul-Aug 2012.

[8] J. Ko, T. W. Strganac, and A. J. Kurdila, “Adaptive feedback
linearization for the control of a typical wing section with structural
nonlinearity,” Nonlinear Dynamics, vol. 18, no. 3, pp. 289–301, 1999.

[9] G. Platanitis and T. W. Strganac, “Control of a nonlinear wing section
using leading- and trailing-edge surfaces,” Journal of Guidance,
Control, and Dynamics, vol. 27, no. 1, pp. 52–58, Jan-Feb 2004.

[10] J. Ko, T. W. Strganac, J. L. Junkins, M. R. Akella, and A. J. Kurdila,
“Structured model reference adaptive control for a wing section with

structural nonlinearity,” Journal of Vibration and Control, vol. 8,
no. 5, pp. 553–573, Jul 2002.

[11] W. Xing and S. N. Singh, “Adaptive output feedback control of a
nonlinear aeroelastic structure,” Journal of Guidance, Control, and
Dynamics, vol. 23, no. 6, pp. 1109–1116, Nov-Dec 2000.

[12] S. N. Singh and L. Wang, “Output feedback form and adaptive
stabilization of a nonlinear aeroelastic system,” Journal of Guidance,
Control, and Dynamics, vol. 25, no. 4, pp. 725–732, Jul-Aug 2002.

[13] K. Zhang and A. Behal, “Continuous robust control for aeroelastic
vibration control of a 2-D airfoil under unsteady flow,” Journal of
Vibration and Control, vol. 22, no. 12, pp. 2841–2860, 2016.

[14] N. Bhoir and S. N. Singh, “Output feedback modular adaptive control
of a nonlinear prototypical wing section,” Nonlinear Dynamics,
vol. 37, no. 4, pp. 357–373, 2004.

[15] V. M. Rao, A. Behal, P. Marzocca, and C. M. Rubillo, “Adaptive
aeroelastic vibration suppression of a supersonic airfoil with flap,”
Aerospace Science and Technology, vol. 10, no. 4, pp. 309–315,
2006.

[16] J. J. Carnahan and C. M. Richards, “A modification to filtered-X
LMS control for airfoil vibration and flutter suppression,” Journal of
Vibration and Control, vol. 14, no. 6, pp. 831–848, 2008.

[17] K. W. Lee and S. N. Singh, “L1 adaptive control of a nonlinear
aeroelastic system despite gust load,” Journal of Vibration and Control,
vol. 19, no. 12, pp. 1807–1821, 2013.

[18] S. Dilmi and B. Bouzouia, “Improving performance for nonlinear
aeroelastic systems via sliding mode controller,” Arabian Journal for
Science and Engineering, vol. 41, no. 9, pp. 3739–3748, Mar 2016.

[19] M.-Z. Gao and G.-P. Cai, “Finite-time fault-tolerant control for flutter
involving control delay,” Journal of the Franklin Institute, vol. 353,
no. 9, pp. 2009–2029, Mar 2016.

[20] M.-Z. Gao, G.-P. Cai, and Y. Nan, “Finite-time fault-tolerant control
for flutter of wing,” Control Engineering Practice, vol. 51, pp. 26–47,
Mar 2016.

[21] S. Gujjula, S. N. Singh, and W. Yim, “Adaptive and neural control of
a wing section using leading- and trailing-edge surfaces,” Aerospace
Science and Technology, vol. 9, no. 2, pp. 161–171, Mar 2005.

[22] Z. Wang, A. Behal, and P. Marzocca, “Model-free control design
for multi-input multi-output aeroelastic system subject to external
disturbance,” Journal of Guidance, Control, and Dynamics, vol. 34,
no. 2, pp. 446–458, Mar-Apr 2011.

[23] C. Brillante and A. Mannarino, “Improvement of aeroelastic vehicles
performance through recurrent neural network controllers,” Nonlinear
Dynamics, vol. 84, no. 3, pp. 1479–1495, Jan 2016.

[24] D. Tang, L. Chen, and Z. F. Tian, “Neural-network based online
policy iteration for continuous-time infinite-horizon optimal control
of nonlinear systems,” in Proceedings of the 3rd IEEE China Summit
and International Conference on Signal and Information Processing,
Chengdu, China, Jul 2015.

[25] T. O’Neil and T. W. Strganac, “Aeroelastic response of a rigid wing
supported by nonlinear springs,” Journal of Aircraft, vol. 35, no. 4,
pp. 616–622, Jul-Aug 1998.

[26] Z. D. Prime, “Robust scheduling control of aeroelasticity,” Ph.D. The-
sis, School of Mechanical Engineering, The University of Adelaide,
Adelaide, Australia, 2010.

[27] M. Abu-Khalaf and F. L. Lewis, “Nearly optimal control laws for
nonlinear systems with saturating actuators using a neural network
HJB approach,” Automatica, vol. 41, no. 5, pp. 779–791, May 2005.

[28] G. N. Saridis and C.-S. G. Lee, “An approximation theory of optimal
control for trainable manipulators,” Systems, Man and Cybernetics,
IEEE Transactions on, vol. 9, no. 3, pp. 152–159, Mar 1979.

[29] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
Cambridge, MA: MIT Press, 1998.

[30] B. A. Finlayson, The method of weighted residuals and variational
principles: With application in fluid mechanics, heat and mass trans-
fer. New York, NY: Academic Press, 1972.

[31] D. Simon, “Training radial basis neural networks with the extended
Kalman filter,” Neurocomputing, vol. 48, no. 1-4, pp. 455–475, Oct
2002.

[32] H. Modares, F. L. Lewis, and M.-B. Naghibi-Sistani, “Adaptive
optimal control of unknown constrained-input systems using policy it-
eration and neural networks,” Neural Networks and Learning Systems,
IEEE Transactions on, vol. 24, no. 10, pp. 1513–1525, Oct 2013.


