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SUL'ÍLIARY

The subject of this thesis is thre stud.y of the recentLy

introduced. concept of p-optimality of tours in a network

and. the a,oplication of this concept to the lravelling
Salesman Problen.

This stud.y conslsts of 'clvo parts. The first is the

theoretical d-erlvation of the number of tn1als required.

to test whe'cher a glven tour 1s p-opti¡nal, subject to
various assunrptions on the nature of an algoritÌ¡n for
carrying out such a test. The maln part of this d.erlvatlon

consists of the soLution of a numJ¡en of combinatorial

problens concerning the pernutatlons and. comþlnatlons of
points and. arcs on the clncumference of a clrcle. These

combinatorial results are proved using the notatlon of
tours in a netvrrork, although the results themselves can þe

stated. qulte generally. These general statements and. some

physical interpretations are includ.ed" in an appenclix.

[he second- part consists of a stud.y of the practlcal

applicatlon of p-optimality to the Tnavelllng Salesman

Problem. -4. general algorithm for generating p-optimal

tours is d.escribed. and. its applicability to the Travelling

1\r



Sa1esman Pnoblem is d.lscussed., A practlcal vension of

thls algorltirm and. lts application to find.ing suboptirnal

solutions to lravelling Salesman Problems is then

d-escribed.. This algorithm is based- on the generation of

3-opt1ma1 tours, and. 1s a mod.ificatlon of an existing

method. d.ue tc S" Lin. It d-iffers from Linrs method both

in the manner in ,¡¡h1ch J-optirnal tours ate generáted-

and. in the nay in wlrlch the probabillty of having obtained

an optimal tour at a given stage 1s estimated.. A summary

of extensive computational results enables some empirical

conclusions to. þe d-rav¡n on the applicability of thls

algorithm to d-ifferent sized. netvrorl<s. Finallyr âñ

acceleratect algorithm is d.escribed.. lhis algorlthm

d.iffers from the above systematic algorithn in that instead.

of generating 5-optimal tours, it generates rralmost

J-optimalt' tours by selectively omitting parts of the

systematic algonithm. The effect of these omissions

in practice 1s a great increase in computatlonal

efficiency, accompanied by only a sJ-lgitt increase ln the

nurnJ¡er of trial tours reo,ulring to be generated-.

Further cornpu'uational results d.emonstrate the efficacy

of the accelerated- algorlthn.
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C}IAPTER 1

ÏNTRODUCTÏO}I

1.1 General

Ífre subject of this thesls 1s the concept of
p-optlmallty of tours in a netu¡ork, aniL its applicatlon to
the nor'¡-classic Travelling Salesman Problem.

The term p-optirnality (r,.,.'here p is a positive lnteger)

ï¡as introd-uced. in 1965 by S. L1n Llll, v,flro obtained. some

elementary results concernlng p-optlmality, anil d.eveloped.

an efficient computer programme for computlng approximate

solutlons to Travelling Salesman problems iry generatlng

J-optimal tours. An earller method. d.ue to Croes t 6 ]

( t g¡g) incLud.ed- a procedur.e f or generating a 2-optimal tour

by the appllcation of operations which Croes called.

inversions.

In this thesis the subject of p-optimality is stud.ied.

for arbitrary ll¡ and. an improved- algorithm for generating

approxinrate solutions to Travelling Salesman problems 1s

presented..

1.2 T e1 S e an Prob em

fn viev¡ of the existing review papers on the Travelllng

Salesman Proþlen, only the major events in the history of,

the pnoblem are glven here. Comprehensive revievus of

tlre probLem are given by Floo¿ t I ] ?955), .A.rnoff and-

Sengupta I z I Ugel) and- by Bellmore and- Nemhauser t ¿+ ]
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(lg6A). lhe last paper also contains an extensive

bibliography.

Attentlon by mathematicians to the Travelr-ing salesman

Problem d.ates back to 1930, lrhen llenger L16l presented. the

problem at a mathematical colloqulum in vlenna, and. stated.

that there v¡as no known r',ray of redu-cing the numben of trials
below the number of permutations of the given points
(quoted by F. Bock 1n Graves and. li/olfe t ¡ ]). In 1904,

Dantzlg, Fulkerson and. Jolrnson I I I published. a method. of
solution using linear progranlning. This method- was the

fore-runner of the cJass of rnethod.s involving lnteger
programming, one of the three maln classeg of method.s of
solution. I,fettr.od.s involvlng d.ynamic prognamming forn the
gecond class. EarLiest method.s in tl:is class r,¡'¡ere those of
Bellman llJ and. Held. ana Karp I tO], both iir 196l , The

thlrd. and. most re.cent of the classes of method. is the class

of branch and. borrnd. algorithms introd.uced. in 1963 by Llttle,
I,furty, Slzeeney and. Karel Itt+].

Each of the above three classes has certain
cllsadvantages, and- it is d.ifficult to d.etermine v,rheürer one

methocl 1s necessarily better than the others. A d.etailed

comparison of the eomputational resul-ts of current method.s

has been ca:rried out by Bellmore and. Nemhauser I l+ ].
Their conclusion is that for problems involving less than 13
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nocles, a d-ynamic progranuning method_ is preferable because

of its pred.ictable com.?uta'bion time" (Uslng Lints
n¡od.ification of Helcl and. I(arprs method., this nrethod. is also

more efficlent, computatlonally) o For larger problems

(op to 70 nod.es) Bellmore and. Nemhauser recommend. the

branch and. bound. algorithm of Shapiro [20]. A recent

lnteger programning method., by lr,Íartln 115J, appears to be

approxirnately as efflcient, computatiorr.ally, as the braneh

ancl þound. nethod.s, in some examples. Ho\,/ever, irlteger
programming method.s haVe the d.isad.vantage of wid_eLy

clifferlng coürputatlon times for clifferent problems.

Such a comparison of conputational- efficlencies is of
llmited. value¡ âs computa'bion tiines d.epend. on the nature of

the computers used., and. on the ingenuity lvith rl"¡hich the

variou"s algorlthms are programineÖ. Ilolvever this
comparlson d-oes give a qualitative ind.ication of ilre

applicability of the various algori'bhms.

The Travelling Salesman Problem arlses in many

practical situations; for example the sched_uling of
d-eliveries from a slngle d.epot to a nunber of customers,

the schecLuling of jobs in a machine shop (see Gllmore and.

Gomory t 9 ]), and. the orien-bation of an orbiting telescope

to photograph a set of sta.rsr Llsing a minimal amount of
fu-el (see Staudhamner and. lrsh t 21]). Irr practical
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applications there 1s frequently the need. for a method. of

generating'rgood.'r solutions: solutious r''¡hich, although

not necessarily optimal, are aLmost optirnal in some gense'

and. are ol¡tained- by a cornputationally efficient procedure.

If a Travelllng Salesman al-gorlthm is applieil in practice,

to reduce the cost of some d.elivery operation for example,

then the cost of the computation becomes part of the total
eost of the operation. Uslng 'r,ire above algorlthms it is
possible for the cost of computation to become a

signlficant part of the overall- cost. The cheapest route

in practice is therefore not necessarily the optimum tour.
Consecluently a large number of computational techniques

have been evolvecl in recent years. Tltese practical tnethod.s

vary urid.ely in their nature ancl in the extent to urhich it
1s possíble to guarantee their resuLts. Despite the wicLe

varlation 'oetrn¡een incliv1d.ual method.s, they may be groupeCl

1n three categorles.

The flrst category contains those method.s lvhich are

obtained. by nod.ifylng optimal method.s. Tl:e þranch and.

þound- rnethod.s are particularly amerrable to such

mod.lfications, for tlo reasens. Firstly, in most branch

and. bound. method-s (see, for example, Li'ttle et aI [tl+] and.

Svreeney LzZ)) , a sequence of tours of d.ecreasing length 1s

generated., and. together v¡1'Lh each tour is caleulated. a
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lower bor:nd. on the length of the optimal tour. Thus, if
a branch and 'þound. proced.ure is terminated. before optimallty

has been 1:rovecl, an upper bound on the possible error 1s

available, Seconclly 1t 1s olcserved. in practice that in
many cases a major part of the procedure consists of

proving that the final tour obtalnecl 1s in fact optirnal.

Thus, in many cases, it 1s possible for a tour resulting

from an abbreviated. þranch and- bound. proced-ure to be

optlmal. fn a given anount of coutputlng time, hoïiever,

better results tend. to be obtained. from ntethods in the

remalning tr'¡o categories.

The second- category consists of method.s in v'¡hich a good.

starting tour is generated., and. then improved. by the

applieation of some set of olterations. The method.s in
this category are usual-ly Ìrasecl on intuitlvely reasonable

assumptions, and- their suceess can onLy be measured. by

results obtained. 1n practLce. Recent examples of such

nrethods are tlr.ose of Roberts and. plepes It9], and.

Staud.hammer and. Ash lZll.
lvlethod.s 1n the third. category d.lffer from those in the

second. in that a g¡}g initial- tour is subjected- to a

rapid. iour-irnprovement proceclure. The process is then

repeated. a 4umber of times in orcler to generate a rand-om

sample of a set of short 'bours, ri'rhich can be shovrn, or is
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presumed., to contain an optimal tour. ExamBles are the

method.s of Reiter and. Sherman l?¡l and. Lin [ 15]. Method.s

in this categony are applicable to comparatively large

problerns (up to 150 nod.es) and. at present the method. of

Lln, ln particular, appears to be computationally the

most efficient. Another ad.vantage of these method.s lies in

the fact that the result is a set of short tours, rather'

than a s1ngle tour- It 1s convenient in some applications

to select from such a set of tours a lrbest tourrr, taklng

into consid.eratlon varlous factors in ail-d.ition to tour

length.

The t\n¡o algorithms cLescrlbed. 1n Chapter 3 of this

thesis are mod-ifications of Linrs algorlthm, and. fall into

the third. category, The simple mod.ification appliecl in

the aecelerated. algorithm in partlcular results 1n a markecl

increase 1n cornputa.tlonal efficlency, even though a larger

numþer of short tours need-s to be generated-.

1.3 n-Ontlma itv of Touns in a Netvrorlc

In thls section the term p-optlmality is d-efineiL and.

sorne elemeirtary results are obtained.. Qther basic

terminology and- notation are also introèueed-.

Let it be a given netlrork consisting of n nod.es i t

1<i<
i, i , i + i . Let the l-e*åt-þ (a function of d'istance
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and./ or time) of each link ( i, i ) be dr J , By convention,

suppose dr r = co for all i, and. if there is no d.irect

path Jretr-reen nod.es i and- i, let dt ¡ = co . Throughout

this thesis it is assumed. tlrat dr ¡ - d.J1 for all Ir i.
This assumptlon is aiLhered. to even thoug'h in some lnstances

it is necessary to d.istlnguish between the two d.irected.

links (irj) and (j,i).
/\ -U¿I is d-efined. to be a circult i¡¡hich lnelud.es every

nocle of the netv'¡orlc, and. may be represented. by a cyclic

perrnutation (1r- iz is . t . in) of th.e nocLe numbers

(r,'here i1 = 1 , for uniclueness of representatlon) .

Equlvalent1.y a tour may be represented. by a list (which

need. not þe ord.ered.) of the n links occurring in the tour.

The le+gth of a tour (ir. iz . r . in) i" the sum of

the lengths of the links 1n the tourr viz.
n-1

ulnr"+tdiuir*r'
V=1

A tour 1s qþ,imal, in t1f if Ít has minimum length.

ff p lsanlntegerancl 0<p(nt a touris
d-efined. to be p-optûrtAt 1f it 1s not possible to transform

the tour into a shorter tour by replacing a set of p links
in the tour by any other set of p Links. It should- be

noted. that the second. set of l-lnks is not necessarlly
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d.lsjoint fr.om the first. f t follor¡'¡s that I1 a tour 1s

p-optimal, then it is q-optimal for all integers q. ,

0<
A useful- equivalent d.eflnition of p-optlmality 1s the

follolzing: A given tour is p-optimal if and only if for

every tour shorter tþan the given tour, the given tour

contains at least p + 1 links v,¡hich are not eontalned. in

the shorter tourr oF equivalently, 1f aniL only if every

tour shorter that1 the given tour contalns at least p + 1

lintrcs lvhj.ch are not contained. in the glven tour.

The latter alternative d.efinition immed.iately implles

the follov,ring result: ff a tour is p-optimal then

gilher it 1s optirnal o-r it has at most n - p - 1 llnks

in eommon vith an optimal tour.

Tr,vo more elementary results axe the followlngl A

tour ls optimal if and. onfy if it is n-optimal (since any

tour may þe transformed. to any other tour by replacing up

to n of its links) . IJvery tour is O-optimal and-

1-optimal (since it is not possible to al'cer a tour by

replacing O or 1 of Lts links). The aþove resuLts are

s,cated. by Lin 1131 , ï/i1o also states two further results

giving physlcal lnterpretations of the rneaning of

2-optimallty and. J-optimality. It may be noted. that

part (") of Llnfs Theorem J is incorrect. It is possible
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to construet a 2-d.imensional Euclid-ean netlvork containing

a tour Vrhich d"oes not in'cersect ltseIf and. is not 2-optimal'

In ord.er to prepare for chapter 2, some further

terminology is no'lv introd.ucecl. Given an arbitrary tour,

v¡triclr fo¡i;he present lvill- j¡e called' the ![i!i.af--!qult
Iet every tour v¡hich has exactly n - p l1nks ln coinmon

with the initial tour be callecl a g:!ggg. fn other lvord's'

a p-tour 1s a tour l¡Ihich can'be obtained. from the initial-

tour by the replacement of p 11nks in the lnltial tou-r by

p d.ifferent links. It fol-Ior'¡s that a tour is p-optimal

if and. only if its length is less than or equal to the

length of everY q-tour for O < q. < P .

the theoretlcal results of ohapter 2 are mainly

concerned. v¡ith tlre probletn of iLetermlning the number of

trials recluired. j-n an enumerative proced.ure for testing a

tour for p-optirnality. At the present tlrne the only result

through lvhich some of the trials may be avoifled- 1s the

result on d-egeneracy in section 2.5. Apart from minor

variations the proced.ures d-escribed. in Clr'apter 2 consist

of the enumeration of ttre set of q-tours, for O < q < p

and- the comparison of the ]ength of each q-tour v/ith that

of the initial tour. The most d.ifficult problen to be

solved. in connectlon lviti: this enumeration 1s the

d-eterminatlon of the number of d.istinct p-tours oþtalnaþle
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from eaclr' initial tour. This problem is so1'¡ed. in section

2.2, with the ald. of a preliminary result proved- in section

2.1. Âs the method. used- in section 2.2 cloes not enable

the set of p-tours to be constnrcted. unl-ess another much

larger set of tou-rs is first constructed., a second. metilod-

is given in sectiott 2.J. This nethocl gives rise to some

repetitions; hourever it has the ad.vantage of provld.ing

a practlcal means of constnrcting the set of p-tours.

Section 2.1+ contains a slrnpllficatlon of the method. of

section 2.3c obtained. by using the id.ea of congruence of

B-tests. this sinplifieit method. is partlculanly useful

in practice for p >z 4.

In the above metl:od.s the notatlon of q-egmen,tq is used..

ft has been stated. earlier that for a given initial tour

every p-tour can 'oe obtalned. by replaciirg p l-inks of the

initial- tour by p other Iinlcs. For the purpose of the

above enurnerative procedr^lres it is more convenient to

consid.er every p-tour to be formed. from the lnitlal tour by

the following turo operatlons: Firstly p links are

d-eleted. f::om the initial tour to form exactly p chains¡

each coirtaining one or more nod.es. These chalns are calIed.

segments of tlre inj.tial tour. The second. step is to

specify the orcler ancl d.irection in uhich the p segments

are to appear in the f1nal tour. ff tþe seeond. s-bep is
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carriecl oì.rt iir such a 1'/ay tirat no tv'¡o segments v'¡hlch are

consecutive 1n the inltial- tour are consecutive in the

final tour, then.bhe final tc1rn d.oes not con'caln any of the

p d.eleted. lintrcs, and. is therefore a p-tour.

In section 2"5, on -bhe otiler hand-, 1.b is necessary

to consid.er the sets of d.eleted- and inserted- linlcs, instead-

of segmen'bs, in ord.er to clefine d-egeneracy of a p-test.

I-Iol'¡ever, in obtaining the numerical resuLts in section 2.J,

segment notation is again used..

Note that the flrst five seetions of Chapter 2

concern the nurnber of p-tours obtainaþle froln an initial

tour. It is only in section 2.6 that these results are

used. to give the number of trials required. to test a tour

for p-optimalit.

1 ,lr p-opti4qllU apÈ__

There are tvro r,rays in r'¡hich the concept of

p-optlmality nläy be applied. to the Travelling salesman

Problen. The first guarantees an oirtimal solutionr but is

not computational-ly feasiì¡le at 'che present tine, except

for very smal] netr,¡orkg. The second- is d.escrlbed. in

d-etail in Chapter J.

The f irst ,.rethod_ is ilentioned- here for conpletenesst

and. to suggest some unsolved- problems" Clearly one Ï.¡ay to

generate an optiinal tour 1s to generate an n-optimal tour,
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Where n is 'bhe number of nocles in tþe net¡ork. For any

given network there is a smal-lest value of P¡ say þ' ,

such that p/-optiinality implies n-optirnality' The problem

of find.ing such a value of p is at present unsolved-.

It has not even been found. possible to d.etermine an upper

bound. on p' for given n . Lin l13l coniectures that

every (n-1 )-optimal tour is optimal, and. has proved. this

conjecture fon n < 6. If proved., thls conjecture would.

1mp1y that p' ( n-1. Results obtaineil in praetlce,

ho'ivever, ind.ica'ce that a much stronger" result may 1n fact

i:oId.. For example , lor rr = 6 every i-optimal 'bour

generated. 1n a lange number of tr1al netv¡orks has been

found- to be optimal, and. fon n = 7 every 4-optimal tour

has been found. to be optirnal. fn 2-d.imens1onal Euclldean

networks, computational results from several hund.red- trlal

netlzorks of up to !O nod.es inri.icate that p¿ is less than

Ln, and. probably rnuch less than ån fon large n o

This upper roound. r,-¡as obtained. by inspection of sets

of J-optimal tours¡ oû account of the d-ifficul$r of

generating p-optlmal tours for large p . In no case

l:,¡as there found. a J-optinal tour v¡hich had. less than $n

l1nlcs in comtnon with an optimal tour. These results

suggest that p, < {-n . Àlso, it appears from the 11mited.

resnl'cs available for mod.erately large n (rrp to n = !O)

d.
nthat the ratio d.ecrëases as n lncreases. For
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exanlple in the [B-nod.e problern of Helo and Karp, the

greatest number of l.inks ivhich occuruecL ln a J-optirnal tour,
but not in the optimal tour, u¡as found to be 17. This

shor',rs that 1f all J-optimal- tours have been found. for this
problem (v,rhich is Iilrely, using the algorithm of section

3.2) then pt <

Although the above resul-ts are not concluslve in
themselves, they d.o suggest that ttre vafue of p' nay prove

to be sufficiently sma1l for the above method to be

practicable. A seconcl problen to be solved. before this
methôd. can be used. for large n is that of generatlng

p-optimal tours efflciently for large p . The method-s

used. in this thesis (see Clrapter 2) are only practicable fon

p<
is very large unless p ls very smal1 eompared. to 11.

A1so, results on ilegeneracy for p > 6 are not knor,irn ât
present. This first method. is not investigated. any

further here.

The second. method. of applying p-optimality to the

Travelling Salesman Problem consists basieally of
generatlng a rand.om sample of p-optlmal tours for a suitably

small value of p , and. estimating the orobabllity that

this sample contains an optimal tour. This method. is
d.iscussed. 1n d-etail ln section 3.2, and. uses the same
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general approach as that of T,in ll1l. f'olLowing Lints

experience lrith p = 2r3r4, th.e value P = 3 is used. in

this method..

T-,in assumes that the probabillty of a J-optimaL tour

being optimal is a f\rnction of nr and- obtalns an

empirical estlmate of this prrcbability for each rI.

Ilolvever it is found. in practice ttrat the number of d.istinct

J-optimal tours varies vriflely 1n netv'¡orks of a given number

of nod.es. tr'or example, most rand.omly-generated.

2-d.imensional netvrorks of 20 nod.es are found- to possess

only a s1ng1e J-optimaL tour, but some contain 4 dlstinct

J-optimal tours. Linf s empiricaÌ estimate d.epend-s only on

the numþer of nod.es, aitd- thenefore d.oes not take account

of this variation þetu¡een netl'/orks.

A seconcl vray of estlmating the above probability does

not rely on any emBirical estimates, anil d.oes take account

of the variation betlyeen lnd.ivid.ual netr¡'rorks. Thls method.

is d.escrlbed. fully in section 3.2. It eonslsts basicalS-y

of estimating the probability that an optimun has been

oþ1;ained. after v iListinct J-opt1mal tours have þeen

generated. in p tr1a1s, assuming that all J-opt1ma] tours

are equally pr"obable. Since shorter 5-optirnal tours tend.

to occur more frequently than longer J-optimal toursr the

second. estlmate tend.s to be somev'¡hat pessimistic. Holvever
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this estimate appears to be more realistic tiran the purely

empirical estimater âs it d.oes not d.epend. on stringent

a priori assumptiorrs¡

A possible improvement to the seconcl estimate may be

achieved. by obtaining empirically the probabillty of the

occurrence of each of the v J-optilnal tours in a netv'¡ork'

These probabilities may then be usecL in the estintation of

'r;he probability that one of a given set of ]-optinal tours

1s optimal, instead. of assumlng equal probabilities. As

an optimal tour almost invariably ap¡rears more frequently

than other J-optimal tours, thls third. method- should. glve a

more optimistic estimate. Hov'¡ever a great amount of triaL

d.ata is required. to d.eternlne the above probabllities and.

to test the reliability of the resulting probability of

optimality, This third. method. has therefore not l¡een

fu1Iy tested. at the present time.

Thls second. method- of applying p-optimal-ity to the

Travelling Salesman Problem is of an essetltially Monte-Carlo

nature, and- 1ts success is attriþutaþle to the foIlor''¡lng

t'Jvo enpirical facts.
(i) J-optimal tou-rs can be generated- extremely rapld-1y

(see section 3.2), and. rvithout requlrlng much computer

storage,

(li) The number of 3-optimal tours is comparatively sma]l'
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even for med.lum-slzed. netv¡orks (up to þO nod.es).

The accelerated. algoritlrm d.eecrlbeil ln sectl oî 3.3 1s

a variation of the second. method. above. Although the

tours obtalned. are not necessarlly ]-optimal-, and. there is
a poss1bility that 1n some networks the probabillty of

obtalnlng an optimal- toun couLd- be recluc ed-, the above

method.s may agaln be used. to obtaln estimates of thls
probabllity. Desplte the abovementloned. shortconlngs of

the accelerated. algorlthm 1ts greatly Íncreased"

computatlonal efflciency is an lmportant eonsid.er-atlon ln
practlcal appllcations.



CH/\PTER 2

ULTS COT{CI]RhTÏ1\TG

this chapter consists mainly of the cLerivatlon of
resul'us of a theoretical nature, lead.ing eventually to the

numl¡er of tours r.¡hose lengths neecl to þe tes'r;ed. in ord.er to

test a given tour for p-optimality.
Section 2.1 is independ_ent of the remaind_er of the

chapter, apart from its application 1n section 2.2.

Sections 2.2 to 2"14 axe concerned- with the set of p-tours

obtainable from a given tour. fn section 2.2, the exact

number of d.istinct p-tours 1s derived. for arbitrary p .

In section 2.3 a practical method. for generatlng the set of
all p-tours 1s d.escrlbed., and. the exact number of tours
(lnclud.ing repetitlons) obtained. uslng thi.s method. 1s

d.erived- for arbitrary p . In section 2.\, the id.ea of

congralence of p-tests is d-efined., and- is used in a

mod.ification to the method. of section 2.J vrJ;,i-ch is more

practical for p > 4. /\rr enumeratlve procedure for
d.etermlning the number of steps in 'blris method. is described.,

and. this number. is cornputed. for p < 6.

Section 2.! contains the only knov¡n result whlch enabLes

the p-optimallty of a tour to be tested. v¡ithout testing the

length of every q-tour for O <

on the idea of d-egeneracy of a p-test, and. is of limlted. use

at present, as there is no lcnov,¡n v¡ay of enumerating all the
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d-egenerate p-tests, except for p ( 5. The effect of this

result 1s to red.uce the numbel" of p-tests t¡¡hieh need. to be

applied. at each stage of the method.s of sections 2.3 and

2.4"

In sectiort 2.6, the results of sections 2,2 to 2.5 are

used. to d.eternine the number of tours whose lengths need. to

þe tested. in ord.er to test a given tour for p-optimalltyt

by means of flve method.s. The numþer of d.lstlnct tours to

be tesied- is obtalned. from the result of section 2"2, and.

the numbers of tours (r,vith repetitions) using two practical

enumeratlve procedures are obtained. from sections 2.3 ar¡:ð-

2.11. The latter tlvo method.s aÏ'e then mod-ified., for P ( 5t

by d.eleting the d.egenerate p-tests, using the result of

sectlon 2.5.
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2.1 Slnsle-nod-e Sesmentg

The purpose of thls oootion is t6 d.etcrmine the number

g(nrpra) of ïiays in which a tour containing n nod'es nay

þe d.ivid_ed. into p segmentsr Q of v,¡hich consist of a

single nod_e, where p and. q are given integers. This

number 1s required. in section (Z.Z) in the d-erivation

of the exact numl¡er of Þ-tour.s o'btainable fnom each

initial tour.

In ord.er to clivid.e a tour into p segments it is only

necessary to clel-ete p d.istinct ]inks from the tour.

A segment consistlng of a single nod.e occurs v'¡herever two

of these d-e]eteil. links are ad.jacent. Thus the number

g(nrp,A) is simply the number of ways of selecting p

objects (points, llnks, numlcersr etc.), from a set of n

objects arrayed. on a circle, ifi sucb. a r/ay that exactly q.

ad jacent pairs of objects occur ainong the selected- objects.

Thls problem has been solved. for the special case g = O

1ry Kaplansky [tt].
The clerivation of g(nrprq.) d.epend.s on the solutlon

of three similar problems, cl-efinefl on a l-ine instead. of a

cincle, and. subiect to certain cond-itions on tlre first aniL

last objects, These three linear problems !'.¡ill nolv be

consiclered..
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Pfobf ems-foJ a. Line .

Given n+ 2 points

O, 1, 2, . . . II¡ n + 1,

arrayed. on a line, 1et fr.(nrprA) be the num'oer of \¡iays

of selecting p + 2 of these points such that exactly q.

adjacent pairs occur, given that the selection must lnclud.e

points O and. n + 1. Alternatively, fr(nrpre) is the

number of vrays of selecting p of the polnts 1r2r.. o err

such that q. ad-jacent pairs occur, given that points 0

and. n + t have alread.y been selected.. Let f"(rrprq.)
be the correspond.ing number t','hen only polnt 0 has been

prevlously selected., (or equivalently, t'¡hen only point

ïl + t has been selectecl). Let f"(nrprq.) be the number

of seleetions in vrhlch neither of the points O and. lL + 1

are selected..

Lemma 2.1. Given that n > 2, p > 1t and. q, > 1,

11 (n'-o'q) = 
:'::;l'lr,'n'T,'n],; :'i:;;-:,11,,_, (z.t)

Proof . Suppose a gj-ven selectlon of p points with q.

adjacent pairs contains point 1. Then it contains the

pair (Or'l ). f t therefore contains p 1 of the polnts

2e, o. eTL r,vith q. - 1 ad.jacent pairs occurring among these

points. f t follovrs from the d.eflnÍtion of f1 that there
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are fr(n-1 ,Þ-1 ,q-1 ) such selections. On the other hand

every selection l1'hich d.oes not contain point 1 contalns

p of the n - 1 remainlng points, with q ad.jacent pains.

It follows from the d"efinition of fz tirat there are

tr(n-1rpre) selections not contalning point 1. The total

number of selections containlng p polnts and. q ad.jacent

pairs ls therefore

f1(nrp,a) = fr(n-1rp-1rq-1) + fs(n-1 ,PrQ). (2'2)

Simil-ar reasoning gives

fr(nrpre) = 1t(n-1 ,p-1 ,q) + f¿(n-1 ,Pr8). (2'3)

Subtracting (z.z) from (2.3) gives

f 
" 

(*rÞ r a) = lt(trp, q.) + f 1 (n-1 ,P-1 ,8)

- tt (n-1 ,p-1 , a-1 ) . ( 2,1+)

Uslng (2.Lù to express f p (n-1 ,P, Q) in terms of f t,

and. suþstituting the result in equation (Z.Z) gives

equation (Z.l). The cond.itions n > 2t þ )- 1, q > 1

ensure that the arguments of fL and. fz are non-negative.

The recurrence formuLa (z.l)

suitable bound.ary values, to d-erlve

non-negatlve integers nr P ana q.

can be ttsed., vrith

f r (nrb, q.) for all
Bound.ary valuee are

novü oþtained. by d.eterminlng, for each
-l

n, the range of

1S ZelO.q.),p,values of p, q for r'¡fricn f. (t

Rance of Þ.q.

From its d.efinition, f1 is only d.efined. for non-
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negative integer values of 1ts argpments. Slnce it 1s not

possible to select more than n points, it follov¡s that

1f p>n,
f"(n,P,9) - o '

.A,lso, if the n points are all chosen there are n + I
ad.jacent pairs, and- if no points are chosen there are ho

ad.jacent pairs (except in the trivial case rr = O, in whlch

points O ancl n + 1 are ad-jacent). Thus, for rr )- 1,

fr(n,nre) =ç1 if o=û*1
ftO othervrise, and.

f (.,o,q.) =f1 if 8=0
Lo otherwi.se.

The remalning case 1 < p ( n-1 is nor'-:¡ consld-ered.

LeruZ=U.. If 1<p(n-1 then

f, (nrp, q.) - o

r,.'henever q > p+1 or q. < Zp-tt. That is, if n + 2 points

I1e on a liire, then for every selection of p + 2 of these

points, includ.ing both end. polnts, the numþer q of

açtjacent pairs of selected. points satisfies the lnequalitlee

2p-n+1(q<p.
Proof " As there is a total of n + 1 palrs of ad.iacent

nocles, it folIor¡¡s from the clefinltion of q. that t'here are

n+1-q pairs of ad.jacent nod.es in v¡hich at least one of the

nod.es is not sel-ected., ldow there a.re n - p unselected.

nod,es, and. there are at most 2(n-p) pairs of ad.jacent
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nocLes cgntalning one or moré of these. that is,

n+1-q <

therefore q. >

The other inequallty, namely q. < p, follolvs at once from

the d.efinltions of p ancl Q.

Taþle 2,1 shorr¡s ttre zero values of f1(trprq) for

n < 7. The coniLltions p > 0, q, > O d-efÍne an

(n+1)x(n+2) upper-left rectangle of this ta'ol-e.

Beoauge of the trlangular arrangement of the nonzero

values of f.(nrpra) and. the nature of the recurrence

formula (Z.l), it 1s now possible to generate systemat-

ically all the values of f1 (nrprcl). Before cloing so,

hovr¡ever, it is convenient to d.efine new varlables t, s

as follovrs:

f=Il-P P=fI-f

S=?-q Q=P S=Il-r-S'

Def ine

F" (nrr, s) = f" (nrrt-rrn-r-s) .

Then the recurrence formula (z.t) becomes

Fr(nrrrs) = Fr(n-1 rrrs) + Fr(n-1 rr-1 rs)

- F1 6-2rr-1 , s) + F¿ (n-2rt-1 ,s-1 ) .

Def ine

4".(n) = Fr(nrrrs) - F1(n-1rrrs) .

(2.5)

(2,6)
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Then çz.S) þecomes

4"" (n) = Ar- 1 " 
(n-1 ) + F, (n--2¡r.-1, s-1 ) (2.7)

Equations (2.6) an¿ (Z.l) ane clearly equivalent to

(2.1).

The trivial- ease p = rr has alread.y been d-ealt v'¡ith.

It ls assumed. now that O ( p ( n - 1; tl:at 1s, 1 < n ( n.

From the restrictions on q. (ror nollzero f1(nrPra)), namely

O<q.

2p-n+1 <

it fo1lov,rs that for nonzero Fr.(nrrrs),

s(n-r
o<s<r-1. (z.g)

The reglon d.efined. by these Ínequalities is ind.icated. by the

nonzero values in Taþle 2.2, for n < 9. The restnlction

s < n - r d,efines an uppen-left triangle outsid.e lvhloh ." Ft

is zetor âs ind,icated. for n = 5 by the d.otted- l1ne on

Table 2.2.

fhe procedure origlnally useil to generate F, (*, rr E)

1¡/as to v¡ork systematically from the top left corner of

Table 2.2, calculating Â"" (n) (for all n) from ecluatlon

(2.7 ) and. then surnming the A" 
" 

( r) to obtain Fr (n, r, s) .

The lnitial values used. 1n this proced.ure were

F1(nrl,O) = rl

F1 (n, T ¡-1) = o
F, (n, ?,r) - o (2.9)
Fr(r+s-1rrrs) = o
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for all n, r, so (Note that F.(nrrrs) is clefined. for
negative as rzel-l as positive values of v, s. )

This proced.ure ls lengthy and. will not l¡e descriþed-

in fur.ther d.etail in viev¡ of the follov'ring resultr which

v/as suggested by numerlcal results o'otained. uslng -bhe above

proced.ure.

!,enrna-2rj_ For all rL> 1, 121 and. all s,

F,(n,r,s) = (ï1,) (";,) . (z.ro)

Prggq It may be shovrn (us ing the aþove recursive

proceclur.e, for exarnple) that the recurrence relatlons (2.6)

and. (2.7) and. the bound.ary cond.itiotts ç2.9) d.etermine

Fr(nrrrs) unlquely. Thus i'b is only necessary to prove

that the above function satlsfies these cond-itions.

(l) Boun*.a{fy CgJnd.itigns. From the fact that

(;) =O if a<b or b<O, (urb integers)

it follo';:'s that n-r+1
s+1 )

=0 if
or

s>ri.-T
s< -1 ,

and 
lr-1\ =o if s> r_1
\s/ or s<0,

from v,¡hich it follous that the rlght tland. sid.e of (Z.lO)

1s zero unless cond.ltions (Z.B) frofa. -A'Iso, lthen

r = 1, û = O, the right-hand. sicle of (Z.lO) is eclrr-al to

11 (using the convention lo\ = 1) .
\o/
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It fol-lows that cond.itions (Z.g) are satisfied-,

Recurrence Relations. Assumlng the aþove form for( ii)

F" (n, r, s) r GQr-lâtion (2.6) glves

ars (,,) = (":,)[(ï:;,X:;;)] .

Applying the stand.ard. result

(^;') =0.(,,1,) (2,')
to the term 

ï,:ïï':?::,i;::\
\s^ r). (2.12)

It folloÌvs that

ars (,,) a,_ r " 
(n.1 ) = ("""X(ï, X""r)] ,

and. application of (Z.lt) to the term in parentheses gives

a", (n) - a.-r 
"(n-1 , = (";"X::;)

- F1(n-2 ,:n-1 ,s-1 ) ,

Thus (2.7) is satlsfiecL, and. the proof ie complete.

The result of Lemma 2.3, lvritten explicltly in terms

of prer is
(
\ q.

f . (nrp, q.) =
p+1 n-'o-1\

n-.,n ) '
îhis completes the

X (2.t3)

for O < p < n-1, and. all ec

d.enlvation of an explicit formula for
hrP ¡ 9.

The correspond.lng results for îz

fr (nrp, q.) for all

aniL fs are norr
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d.erivecl from f 
", 

using the recuruence rel-atlon (2.4).

For cOnvenience the varlabl-es 1, rS are agaln used-. Deflne

Fr(nrrrs) - f2(nrn-rrn-r-s) ,

F" (n, rr s) = fs (nrn-rrn-r-s) .

In terms of T and. s, ecluatlon (2.4) becomes

Fr'(nrrrs) - tr'1(nrrrs) + Fr(n-1 ,rrs-1) - Ft(n-1 ,rrs) ,

(2.14)

orr using ec¿uatlon (2"6) ,

Fr(nrrrs) = Arr" (") + Fr(n-1rrrs-1) (2'15)

lem,ma :?:.:[ For al.l TL Þ- 0r O <

'r\/n-r\F, (n, r, s) = ('V tt-" ) ( 2.16)
\",/\, s )

orr equivalently, ln terms of Prgr 1f O ( P ( rlr

r2(n,P,e) = (";tX,,-;-*) 2.n)

If n à 1, t > 1, equation (2,15), together

(2, to) and. (z.lz), glves

F,(n,r,s) = (";,Xï') . ("""X::i)

= (ï')[(""').(::;)] 
.

Application of the stand-arct result (2.11) gives (2.16).

The remaining caÊe 1l = F = 0 is easily verified-'

The values of Pr Qr Pr s for v"hlch f z anil F2 are

nonzero are found. to be
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O<p<n 0<r<n
2p-n(q.<p O<s<

o<q. s<
using the argunient of Lemma 2.2. In thls case thene are

no exceptions to (2.t6) and. (2,17), un11}<e tlre

correspond.lng results for F1 and. f¿,

LegrlçZr_5 For all n> 1, O < r < r-1, s Þ 1,

F" (n, r, s) = (n-'-'\(r+t \ (z.ta)
\s-1l\s/.

Or, in terms of prer if 1 ( B

f" (n,B, q) = (n-r+t y
\ p-c¿ /\

The values of p¡errrS

F" (n, r, s) are

1<p(n-1
o<q_<p

2p-n-1 <

¡ Q(1-P,

a

for nonzero f"(nrpra) and.

o<
o<

s<

<n
p-1 \

qr)
(2.19)

PI_g.Af It can be proved., using slmilar argrrments to those

in the proof of lemma 2.1 , that equatione (Z.Z) , (2.3)

and. (2.4) remain valid. 1f f t is replaced. by f ,, anil f z

by fs. In terms of r¡sr equation (2.4) becomes

F"(nrrrs) - Fz(nrrrs) - Fz(n-1 ,rrs) * Fz(n-1rrrs-1 ) .

Substltuting for F* using equation (2.16) and- applying

(2.t1) twice to the resuLt then gives equation (2.18).
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the d.erivatlon of these inequalities is again similar to

that for f L (see Lemma 2.2) "

Comparison of the above inequalitles lvith the reslrlct-

ions 1n Lemma 2.5 shol.¡s that the only nonzepo values of

F"(nrrrs) not given by (e.tA) occur i'rhen eitlrer r = rÌ

or s=Or thatis, lvheneither p=O or p=Qr Nov'¡

it is easily sholvn that p = q can only occur if p = O'

Thus F"(nrnrO) = fs(nrOrO) is tlre only rLonze1.o value not

given by (e.tB), and. it follor:,.s from the d.eflnition of

f s that
fs(nrOrO) = 1 .

Thls coinl:letes the solution of the problem for a linear

arcay of polnts. The numbers f,(nrP,A) anil f"(nrp,q)

are now useiL to solve tþe problem fof a clrcular array.

Problem on a Circle

Given n points arrayed- on a c1rcle, g(nrprq.) 1s the

number of selectlons of p of the points v¡hich lncLud.e

exactly q. ad.jacent palns of pointe.

It ca¡ be shov/n from first Ðr1nclples (see Lemma 2.2)

that g(n,p, A) = O unless either
(i) p = I = o

or (ii) P=q=rr
or (ifi) 1 < P < rt-1 t

o<
2p-n ( q. ,
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In the follov,ring theorem, g(nrprq.) 1s d.erived- for each of

these three eases.

Theorem 2.1 Fon all n> 1,

g(nrp, q.) =
n-p

n-p

g(nrOrO)=g(nrn,n)=1t

and. for rL > 2, 1 < p ( n-1r and- all Q¡

(z.zt)

(z.zz)

Proof The speeial cases (2.21) are trivÍal"
Suppose nour that n2 2, and. 1 < p ( n-1 . Chooee

one of tþe n points. If a selection of p nod.es wlth q

ad-jacent pairs includ.es the chosen point, then it also

includ.es p-1 of the retnaining n-1 points. There are

f1(n-1rp-1re) such selectione. If a selection of p points

vrrith q. ad.jacent pairs d.oes not includ.e tlle chosen polntt

then it contalns p of the remalnlng n-1 points. There

are f"(n-1 rpre) such selections. Therefore

g(nrp,e) = fr(n-1 rP-1 ra) + fs(n-1 rP,Q)

/n-B-1 \/p\ . / "-BYp-1 \= \B-q.-1/\n/ 
* rp-q/\ q, )

=1"-n)/p-r)[n-e p +11
\p-q_/\ q ,/Ln-P P-q. )

which on simplification gives

of B(nrp, q) glven by (z"zz)

(Z.ZO) are satisffed..

(z"zz). Note that the value

is zero unless inequalities
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It has thus been shov''n that the numþer g(nrprA) of

u/ays in r¡,¡hich a tour containing n nod.es rnay be d.ivid-Þd.

into p segments, of v'¡hich q. consist of a single nod.et

has the vaLues given by (z"zl) and. (2.22) .

2.2 Number of Distinct 'o-Tor.rrs

In this sectioir the numþer a(nrp) of d.istinct

p-tours obtainaþIe from an arbitrary initial tour of n

nod.es is d.erived., The results required. for the punpose of

this thesis are those for und-irected. tours. Hol'¡ever it ls

convenient to consid.er d-irected. tours flrst, and. then d.erlve

the correspond.lng results for und.irected. tours.

Coirsid.er an arþ1tr.ary p-tour, 0 ( p < n. By

definition there are exactly p l-lnks 1n this tour whlch

d.o not occur in the initlal tour. Deletlon of these p

links leaves p segments, all of which occur, possibly

reversed., in the inltial tour, It follolvs that every p-tour

consists of p segments of the initial toure arranged. 1n

some ord-er, some eubset (possibly empty) of the segments

being reversed..

Thus, for example, it 11 = 6 and. the lnitial tour is
(t z 3 4 5 6),

the tour
(r 5 h z 3 6)

is a J-tour, because 3 of its links d.iffer from those in the
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initial tour. ft conslsts of tILe 3 segments

s1 = Í.611\ ¡ sz= Í.2131 , ss = [4r¡ j

in the ord.er sr , s", Ér, vrlth sB reversed-.

Conversely, if a tour is obtained. fron the initial tour

by firstly d.eleting p llnks to d.ivlÖe the tour into p

segments, and. then rearranging these segments in such a Yray

that none of the p d-eleted- links are reinserted.' then thls
tour is a p-tour.

An ord-ered. set of p segments, formecl from the initial
tour by d.eleting p links, is d.efined. to be a partition of

the initial tour into p segments. The above nesu1ts may

now be surnmarized. as folIows.

Lemma 2.6 For each initia-L tour on a network of n nod.est

the set of p-tours consists of the set of all tours obtainable

from the inltlal tour by means of the following tvro steps.

Step (i). Formation of a partitlon of the initlal tour into
p segments.

Step (li). Rearrangement of the p segrnents from step (i)
(by means of a cycllc penmutation), followed by the reversal

of a subset (posslbly empty) of the segments, in such a r/ay

that none of the links deleted. in step (i) are rei.nserted..

(wote that 1n each partltion there may be some segme:ts

consisting of a single nod.e, and- ttrese single-nod.e segments

nay not be includ.ed. in any of the subsets of reversed.

segments, Otherwise repetltions u¡il1 occur.)
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Cgto-IlAry For each lnitial tour on a netuiork of n nod.es,

and. 0 ( p ( o, the number a(nrp) of p-tours is the sum,

over all partitions of the initlal tour into p segments,

of the number of vays of performing step (li) on each

partition.

If the number of ways of performlng step (ii) on each

partltion coulcl be found., the Broblem of cletermining a(nrp)

would. now be sol-ved.. Hor¡¡ever, f or a given partition, this
numþer d.epend-s not only on the number of single-nod.e

oegments, but also on the way in whlch they are d.istributed.

throughout the tour. For exanple, suppose there are four
segnents in a partition, tv¡o of tlre segnen ts conslsting of a

single nod-e. It can be found. by trlal that if the two

single-node segments are ad.jaeent then only one p-tour can

be obtained fnom the partition, r',¡hereas if they are not

ad.jacent then three p-tours can be obtained..

It therefore appears to be d.ifficrrlt, if at all possible,

to use the above eorollar"y to d.etermlne a(nrp). The

following alternative proced.ure avoliLs the necessity of

consid.ering the appl,lcation of step (ii) to lnd.ividual

pantltions. It is worth noting, hov¡ever, that the

constructive method. d.escrlþed. in section 2.5 d.oes in fact
use thls approach, after step (ii-) has been replaced. by a

more general step in v¡hlch s1ng1e-node segments are not
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treated. as a special câsê.

The method. used in tJre ltresent section to evaluate

a(nrp) conslsts essentially of replaclng ste;o (ii) by

another more general step, ancl d.eleting from the resulting
set of tours all tours r'.¡hich are not p-tours. It nust also

be proved-, of course, that this set of tours d.oes not

contain any repeated. p-tours.

T,et ß(nrp) be the set of tours obtainaþle from a
given initial tour of n nocLes by means of step (i) above,

followeö by step (:.i)' , v,rhich is the same as step (ii),

excep.t that the cond"ition that no d.eleted. link may be

reinsented. 1s onitted.. Let b(nrp) þe the number of tours

(lnclud.ing repetitions) contalned. 1n ß(nrp).

Deriye-t-l on of ¡f¡"-B)
If p > 1 , the number of I'rays of rearranging the B

segments of a partitlon is
(p-t ) t

(incIud.lng the trivia] trearrangement' in r,¡hich the ord.er of

the segments is l,eft unaLtered) " For each of these

rearrangements there are

2p'q

v/ays of chooslng a subset of segrnents to be reversecl, trvhere

q. is the number of single-nod.e segments in the partition.
Thus tlre nurnber of yÍays of performing step (ii) t is

zl:q.(p-t)! . (z.zl)
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For each g¡ the nurnber of partltlons for v¡hich (2,23)

gives the nurnber of r,n¡ays of perforrnlng step (ii) t 1s g(nrPrQ).

The totaL nunber of tours obtained. from the 1n1tla1 tour by

steps (i) and. (ii)' is therefore

p

þ(n,p) =t zp'q(p-r)! e(n,p,a)
¿-J

Q=o

p

= 2n (p-1) ! ! z- qs(n,p, a) Q,z4)
/-r

g=0

for 1 < p < n.t If p = O¡ i.e. no links are d-eleted" then

the resultlng tour 1s either the lnitial tour or its

inverse; therefore

b(n,o) =2, (2.25)

if n > 3. In the following it vv1Ll be convenlent to

asslune rL > 3t so that every tour 1s dlstlnct from its
inverse. The number a(nrp) is now d.erÍved. using the

above values of þ(nrp).

Derlvatlon of a(n.p)

It follolvs from the d.efinition of step (ii) t that

every toun in the set ß(nrp) is a k-tour, where O ( k ( p.

Since, from lemma 2.6, a tour 1s a p-tour 1f and. only lf
Tr.one of the ]lnks d.eleted 1n step (r) ar"re-lnserted. in
step (ii) t, it foLlovrs that each p-tour occurs exactly once

in ß(nrp). The number of occurrences of each k-tour",
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O < k < p-1 , is now determlned..

Lemma 2.7 Eveny k-tour, 0 < k < p-1 t occurs ln the set

ø ( n, p ) exaetly l"-o\ tirnes .
\p-kl

P_ro.€ Consicler an arbitrary k-tour. By d.efinitlon, the

1nltial tour contalns exaetly k links whlch d.o not occur

in the k-toun. If this k-tour can be obtained. frorn a glven

partítion by an application of step (ii¡, then the B links
d.eIeted. from the lnitlal tour to form this partltlon include
the above k links. There are l"-n) such pantì-tlons,

\p-r</
Since the order of the p segments eontaineil 1n the

k-tour is fixed.r âB is also the d.lreetion 1n which each

segment is travensecl, it foIlor,¡s that for each of the above

l"-n) partitions there 1s only one application of step ( ii )t\p-kl
whlch results in the glven k-tour. Thus the given lc-tour

occurs í"-o) tines,
\p-k/

Co{-o11ary Fon rL )- 1, and. 0 < p < tl, the nunrber

a(nrp) of d.istinct p-touns contalned. in O(nrp) satisfies

a(nrp) = t(nrp) -
ï

¡n-t<)a(n,k)\p-kl
a (2.26)

Proof tr'rom Lemma 2.7 t

in the set g(nrp) exact

oecurrences of k-tours in

a(nrtc) k-tours occurs

tlmes. The numben of
whene O < k < p-1, 1s

ïÇ*la(n,k)

thenefore

k=O
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Sinee the remaining toure are p-tours, result (2.26)

fo11ows,

Equation (2.26) r"y be used. reeursively to evaluate

a(nrp) for all n > 3 and. O ( p ^< rrr using the trivial
result a(nrO) = 2 for all n as an lnltial value, and. the

values of þ(nrp ) glven by equations (z.zt+) and. (2,25) ,

An explicit formula for a(nrp) 1s d.enived. 1n the

followlng theorem. The previously derived. exprèssions for
b(nrk) and. g(nrkr l ) are lnclud.ed. here for convenlenee.

Theorem 2.2 The number of d.lstinct p-touns obtainable

from an lnitlal tour of n nodes Ís glven by

a(nrp ) =

k

T
1=0

g(nrkrl)=1 if k=1=O

-p-
)' (_.1 ¡n-tc(n-t<)b(n,k) ,/-' \p-kl

(2.27)

where

and.

k=0

b(nrk)=2lf k=0,

1zk(rr-r ) r 2 g(nrkrl) lf 1<k<n,

" /"-k\1k-1\- n-k\k-t/\ I /

ork=1=n,
1<k<n,

¡¡ 0 otherwlee.

1f
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Proof Frorn ecluatlon (2.26) ,

b(n,p) =

The fact that (z.ZA)

the relatlon

p
'i'1"-o)a(n,k) . ( z.zl)
4_, \p-kl

k-0

impliee (2.21) f " shounr by pnovlng

_p_

)'(-., ¡n-t(n-x)f"-J)= I ir p=k çz,ze)
k!o, \p-xl\tc-¡l= o if ;rk

( Equations (2.27) t (z ,zB) ana (z ,zg) can of course be

written in matnÌx fonm). The proof of (Z,Zg) uses the

following elementary properties of binornial eoefflcients.

00=0(:::) 't<n<s' (z'3o)

s

L,-.',"$-o, ir s >

f=O

The case p = J 1s trivial. Conslder the case p > J + j.
The left sld.e of (2.29) tory be wnltten

_-p_

\'(_., ,r*fJ:X)ß:Ð

"1 \

(noting that ¡n-i) = o if k < J). îhls becomes, using\n-rl
equation (2,3O),

_ *p_

f;:J)L'-')'--1;.l)
kej
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which, uslng (2,31), is zero for p >

eompletes the pnoof of Theorem 2.2t whlch is the nain result
of this sectlon. Note that this result nefers to directed.

tours.

Undirected touns

In the present section, in order to consider a tour as

an ordered. set of d-irected. segments, 1t has been necessary

to consid.er d.irected. tours. Throughout the nemainder of
this thesis, attention is focussecl on und.irected. tours, and-

the corres'ooncling values of a(nrp) and. b(nrp) fon

undirected. tours are requlred.. Let these values be d.enoted.

by ar(nrp) and br(nrp), respectively. In laten sections

the subÉcrlpts will be omitted, except where amblguity may

occur.

The value of br(nrp) can be found. fnom b(rrp) by

obsenving that if a toun is obtainable fron a given

partition by means of step (li)t, then so is the inverse of
the tour, slnee a toun and. its inverse consist of the same

segrnents, traversed. in the opposlte order and. 1n the opposite
d-irection. rf n > 3, every tour is d.lstinct from its
inverse. Therefone for n > 3 the set ø(nrp) conslsts
entirely of r,our-lnverse pairs, each palr belng equlvalent to
a single undirected tour. Thus

br(n,p) = å¡(^rp) ,
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and. likewlse

ar(n,p) = t^(nrp) ,

The results for und.lrected. tours are therefore as stated. 1n

Theorem 2.2 for d.irected. touns, except that the expresslon

for b(nrk) 1s d.ivid.ed by 2. Note that equation (2.27)

is unaffected when a ancl b are replaced. by â1 and. b1.

A Check

Since the number of unilÍrected. tours on a network 1s

å(n-t )1, the sum over all p, O < p ( rrr of the number of
p-tours is å(n-t ) t . It is of some value, after the lengthy

for:egoing derlvatlon of a:.(hrp), to verify that this nesult

in fact hold.s.

l'nom equation (2.27) ,

P=o p=Ok-O

Changlng ihe or¿er of summation anÖ suþstltuttng j = p - k

gives

Ë",(',p) = ËË 
(-.,)n-n(;-Ð",(',k)

nnn-k

I ",(n,p) = f o,.(',k) I (-r )r("T)
p=O k=O j=O

By (2.31), the only nonzero term on the right sÍd.e of thle
equation is the term ln which k = n, Hence

Itl
P=o

ar (nrp ) = br (ttrtr) ,



and. therefore

-l+1-

I ar(n,p) = f(n-t )t (2,32)

This last result rt(n,n) = f,(n-t )! follows

uslng the fact that g(nrnrg) = O except

n

P=O

as nequired..

fron (2.24) t

when g = n.

Equation (2.32) can also be used. as a check on

calculatlonsof values of ar(n,p)
Partleular values of a. (n.'o)

Sample values of ar(nrp) are glven fn Table 2.3¡ for
3 < n < '10. Formulae for al(nrp) fn expllclt po1¡momlal

forn are as follou¡s, for O < p < l+, and n > p + 1,

ar(nro) = 1

a1(nr1) = O

a1(n,2 ) = ån(n-j)
a¡.(n, 3) = |n(n-h) Qn-l)
ar (n,4) = þ{"- 5)Q1nr-zz9n+03\)

Such fonmulae may be found. if neeessary for anbitrary pr

elther by expanslon of (2.27) or by fitting a polynomial

of d.egnee p to the first p + 1 values of ar(nrn) for
n > p + 1. îhese formulae are useful for hanil calculatlon
of ar(nrB) for large values of n,

I



p 0123 4 5 6 7 B 9 10

3

4

5

6

7

B

9

10

100 0

10200
105501

1092015123
1 o 1l+ l+9 91 112 70 23

1 o 20 96 3o2 6¿ro 74o 5!4 j77

1 o 27 165 747 2439 4725 6oo3 ¿+5oo 1553

1 0 35 260 1550 7076 20810 41420 53585't+1740 14963

ÎABLE2.3 Valuesof ar(rlrp) for j<n<10ro(p(n.
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2.J Constructive Enumeration of p-Tours

The numben a(nrp) i" obtained- in section 2,2 by a

nonconstnuctive procedure involving exclusion. As

mentioned follor,ving the corollary to Lemma 2.6, this
proced.ure is inad.e necessary by the difficulty of determinlng

the number of tvays of per.forming step (ii) on each partÍtion.
Tn the present section, step (ii) is replaced. by a more

genenal step which enables a constructive enumeration of the

set of p-tours to be carried- out. As a result of the

generality of this constructive proced.ure, the set of trial
tours obtained. contains sone tours which are not p-tours, as

well as some repetitions among the p-tou.rs. [he exact

number of these reciunCant touns is derived,, and. thls numben

is shoïun to be compar.atively snal1 if p is sma11 compared

with n.

Before d-escribing the proced.ure for constructlng the

set of p-tours obtainable from a given initlal tour, some

new notation is Íntroduced..

p-Tests and. Strict p-lests

Cc¡nsid.er an arbltrary partition coneisting of p

segrnents, whene p > 1, From (2.23), the number of ways

of perforrning step (ii)t has a maximum value of

u(p) = 2P-1(p-r)r
when e = or i.e. when the partltion contains no slngle-nod.e

segments, (In this sectlon tours are assumed_ to be
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und.inected, and uncler thls assumption the nunben of ïuays of
performlng step (ii) is half the cornespond.ing number fon

the ease of d.irected. tours).

fn this maxltnal ease, where every segment can be

revensed-, the operatione conprising step (ii)t are ealled.

p-testg, and. the correÊponding operations cornpribtñg

step ( il) are ea11ed. strict p:tests. The nuriben v(p ) of
etrict p-tests is now detenmlned..

Lemma 2.8 The nunben of strict p-tests on a partition of
p segments, none of whlch conÊlst of a single nod.e, 1s given

by

v(o) = 1 ,

v(p) = f ,-,r )n-o0'tol Q.33)
k-o

if p > 1, i¡¡here

u(o)=1,
u(k) = zk'-1(k-i )t

1f k > 1. Explieitlyr for p >

.q
v(p) = (-1 )p+pl)'C-.1 lp-k-zki- . (2.34)

/-r E'G:E}
k='1

Proof The case u(0) = v(O) = 1 ls tr1via1, Consid-er

an arbitrary p-test on a glven partition of p segments,

where p ). 1, and. suppose the result is a k-toun, where
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O < k < p. As shovnr in the proof of Lemma 2,7t there is
no other p-test (or the gtven partition) which results 1n

the same k-tour. thus the set of trial tours resulting
fron p-tests on a given partition eontains no repetitlons.

Notn¡ a k-tour can be obtained. from a partitlon of p

segmente by re-inserting p - k of the c1eleted. links, and.

penforning a strict k-test on the resultlng k segments,

The number of ïvays of re-inserting p - k links is

(":.) = e)

/B\
\r/'(t) 'and. the total numbe:: of p-tests is

-p.u(p) = l'fi)"Col . (2.30)
k=O

Equ-atlon (2,3j) can now be denlved fnom (zJD), using
the same argunents as those 1n the proof of rheonem 2.2.
The expllcit fonmula (2.3t+) follows immed.iately from (2,33).

and. for ea.ch of these vrays there are

Therefore, for each k, O < k ( p,

nesulting in k-tours is

Sample valuee of v(p) are

v(o) = 1

v(1) = o
v(2) = 1

v(l) = l¡

t.r(x 
) strlct k-tests.

the number of p-tests
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v(4) = 25

v(5) = zo8
v(6) = 2121

v(z) = z5BzB

For hand. calculation it is convenient to use formula (2.35)

necunsivel}l. with the inltial value v(O) = 1,

Ge4era@
For an arbitrary inltial tour of n nod.es, the set of

all p-tours is genenated. by the following two stepe.

(t) Formation of a partition of p segments.

(if)'r Applicatlon of every strict p-test to each partition.

step (ll)" d.iffers from step (ll), lts counterpart 1n

section 2,2, 1n that slngle-nod.e segments are no longer

treated. as a special case. In step (ti)", eveny subset of

segments is reversed-, whereas in step ( lf ), only those

subsets contalnlng no single-nod.e segments are reversed..

Once the set of all strlct p-tests 1s constructeÔ, it
is a noutine matter (tfrough perhaps lengthy) to apply thls

set of strict p-tests to every partltion of the lnitiaL tour.

The construetion of the set of all stnlet p-tests has been

carnied. out for p < 7 by an enumerative computer programme

which malces use of the iclea of eongnuence of p-tests (see

section Z.Lr). The practical d-eta1Is of applying these

p-tests efficiently to all partitlons are d.ealt with in
Chapter J.
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Number of Redund.ant Tours

Red.und.ant tours nesuJt from the above proced.ure 1n two

ways. Flrstly, whene si-ngle-nod-e segrnents occur, these

âre reversecl by some p-tests, without changlng the tour.
îhls cau.ses ?epetitions of all tours, lnclud.lng p-tours,
obtained. from partitions containing a single-nod.e eegment.

Second.ly, although a strict p-test applied. to a partition
cofitaining no single-nocle segments always results in a

p-tour, this is not so for partitlons containing single-nod.e

segments. For example a strict p-test may leave two

segments in their original ord-en, provided- that one or both

of the segments are neversed, If the reversed. segments

happen to be slngle-nod.e segments then tire resulting tour ls
not a p-tour, The total number of reclundant tours from

both these soLlrees is now found., using the results of section
2;2 and the number v(p) of strlet p-tests.

As there are lì partitions, and v(p) stfict
\p/

p-tests to each pantition, the number of tours generated by

steps (i) and (ii)tr is
c(n,p) = l")r,(p) (2.36)

\p/
Table 2.4 contains sample values õf c(nrp) for smal1 n

and. p. E:cpliclt formulae for c(nrp) can be obtained.

from (2,36) and. (z.l,+) for att p >



p 012 3 4 5 76

3

4

5

6

7

B

9

10

gæ z¿
o<P<7.

103
106
1 0 10

1015
1021
'l o28
1036
101+5

2121

1¿+847

59388

\78164

lù51+10

25828

206621+

9298o8

3099360

4

16

4o

BO

140

2ZLr

336

48o

25

125

375

875

1750

3150

5250

208

121+B

4368

11648

26208

52416

Values of c(nrB) for 5 ( n < 10 and-
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Fon example

c(n,O) = 1

c(nrl ) = o

e(n,2) = ån(n-1 )

c(n,f ) = þi"-r )(n-z)
c(n,4) = ffi"{"-1) (n-z) (n-i ) .

lhe nunber of red.und.ant tours obtalned. uslng steps (1) ahd.

(ii)t' fs the d.Ífference between the total nunber of tou,nþ

obtalned and. the nuriber of d.lgtlnct p-toure, namel-y

Þ(n,p) = e(n,p) - a(nrp) .

For exarnple,

O(n;O) = O(nr1) = o

ô(nr2) = n

6(n,f) = n(3n-8)

o(nr4) = ån(i7n2-107n+210) .

It fol-lows that the ratlos
respectively

fon the above caseg are,

o, o, h,, h,, H,
It ean be ohown that the natio -ô:l+¿e¿ ls of ord.en La\nrP/ n
for all p. fhus for sufficlently large n, the

proportlon of red.undant tours obtalned. uslrrg the above

constructlve proced.ure is comparatively small, rf on the

other hand n ls not much greater than pr the number of
red.und.ant tours may be langer âs can be aeen fnom a

Olt.o )a(nrP /
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comparison of Tables 2,3 and. 2.L¡.

2.4-@p:!qs-E.
The reason for introd.ucing congruence of p-tests is to

overcome the d.ifficulty of implementing the enumerative

proced.ure of section 2.3 in ¡rractice. ft is necessary

1n this proced.ure to apply v(p) strict Þ-tests to every

parti'bion of tire lnitlal- tour. As v(p) increases very

rapldly i¡,¡ith p (for example v(4) = 25, v(5) = 2OBr

v(6) - 2121), the task of v¡riting a computer prôgramìne to

carry out thls proced-ure 'becomes prohibltive, even for quite

small values of p . The ou-ucome of the present section

is a means of classifying p-tests, and. a simpllfleit

enumenative procedure in v,¡hieh the number of d.istinct

p-tests to þe applled- at each stage is reduced. by a factor

of approximately p .

Consid.er an adol'brary partition of an initial tour into

p segments, all of truhich may be reversed. (assuming as in

section 2,5 that alL segments are treateil a11ke, regard.less

of the faci" that reversal of a eingle-nod-e segment d-oes not

prod-uce a change 1n ttre reeulting tour). Let the segments

be l-abeLled consecutively

1t 2, 3, . . . r P

where segment 1 1s chosen arl¡itrarily. Let an arbitrary
p-test be represented. by the ord.er and. d.lrection of tÀe
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segments ln the resulting tour as follows. Let the ord.er

of occurrence of the segments in the final tour be glven by

the p-cyoIe

s = (s" 92 . . . sp) , r

lyhere s1 = 1 for unlqueness of rellresentatlon. T-,et the

d.irection of each segment be specified by

C[ = [o, t t,e, 2 ) . r , cxpl ,

rvhere

d1 = [ 1 if segment s¡ 1s not reversed-'

L-t lf segment s¡ 1s reversed..

For tþe purpose of this section let the above p-test be

clenotecl by

"(ø) = ("ro" srd' . . " spoo),

and- let cx¡ be called- the j;g!e: of segnent s1 in the

p-test, anC[ q. the ÅÊèex of the p-test. Thus for example

the trivial p-test, in vrhich the inltial tour 1s una-l-tered-t

1s d.enoted. bY

(tt2L3Lr.,pl),

and. its inverse, uhich results 1n the same tour traversed-

1n the opposite d.irectionr is
(1-1 p-1 (p-1)-t . . . 2-t) ,

Generally, the inverse of a p-test "(ø) is d.efineiL to be

the p-test lvhich results 1n the inverse of the tour

resulting from "(a), and. is d.enoted- þy
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(s- t ¡ 
(-a) 

= (";o. 
";oo so-;dn- r. . . . s;ctz) .

Tn networks in v¡hich al-l tours are und-irected., each p-test

and- 1ts inverse result in the same und.irecteil tour. Each

p-test 1s therefore d.eflned. to be equivalent to 1ts inverse,

and. ambigulty j-s avoid.ed. 1n the notation by specifylng, for
example, that ss <

notation for B-tests 1s abbreviated. by omitting superscripts

+1 , and. repJ-acing superscripts -1 by a d.ash. thus the

p-test ( 1= t 3t 2't 5t 4" ) 1s vrritten (1' 3 2' 5 4) .

Two p-tre"tru 
"(ø) , t(þ) , on a given partition, are

d ef ined to þe -p¡fgif4 rf t(f ) can be obtainecL fron u 
(ø)

by rotating the segment laþels. For example the strict

6-test (r 2t 3t l+t 5' 6t) (seefig.2.1 , part(iv))'

gives rise to the folloyying 5 6-tests on clockwlse

rotation of the segment label-s:
| 2t 3' l+' 5' 6 )
| 2t 3' L+' 5 6',)

(1

(r
(1' 2' 3, 4 5' 6')
(1' 2t 3 4, 51 6',)
(1, z 3' h. D, 6,) .

Further examples illustrated. in fig. 2.1 show the posslþle

cases lvhich câî occlLf'

(i) (t' 2' 3' 4' 5' 6') 1s congruent to itself only.

(ii) (1' 2 3' 4 5t 6 ) l" congruent to (t 2t 3 l+' 5 6').

(iii) ( 1 2t 3t 4 5' 6') is congruent to (1' 2' 3 l+' 5t 6)

and. (1'23'\',56',).



õ

6€

(r) t (1,2,314t5,6,)

õ

(ii): (r z' 3 4',' 5 6',)

5

6

5

I

66

L

5

(rri)r (t 2'7't+ 5'6') ( iv) r ( t 2t 3tl+' 5' 6')

L

Þ6

4
L

(v)¡ (t z'3 4t5t6') (vi); (1t 2t 5 4 t'6 )

Flgqre -2r:l Examples of strict p-tests for" p=6'æ
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(1") (see above)

(") (t 2t 3 4' D' 6') is atso congruent to 5 other

p-tests.
Ilxamples (i) to (") give all the 18 strict 6-tests in
rvhich the ord.er of the segments 1s unchanged.. Example (vi)

is another case in v,¡hÍch a 6-test is congrrrent to tv'¡o others.

It d.iffers from example (iii) ln tlrat after 3 rotations

it 1s not the original tour itself 'out 1ts inverse lvhich 1s

obtalned.. Tours of this form present one of the ma.in

d.ifficulties in the enumeration of the congn¡errce classes of

p-tests in und.irected. netlvorks"

ests

One theoretical]y simple nrethod. of d.ivirling the set of

all p-tests into congruence classes is to generater for eacl:

n-test, the congruence class containing the p-test and. then

choose a representatlve from this class by some rule,
Hor,vever, thls proceclure is extrernely lengthy for p > 3,

and. the resul-ting llst of representatlves is not classified

or orclered. irr any particular viay¿ Instead, the following

trr'¡o-stage method. is used.. This method- has the ad.vantage

of givlng a neans of classifying the congruence classes of

p-testsr âs v,¡el1 as saving computation tlme.

Before d.escrlbing the method., the d.efinition of

congruence is put into an algebraic form, for computatlonal-

4D[/\ù
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purposes. Suppose the segments of an arbitrary partltion
are l-abelled. 1, 2, o . . , p r ând- a p-test tG)
resuLts from applying a p-test "(a) after rotating the

segment labels by ad.d.ing k (modulo p) to eaeh label-.

The resulting p-test'is therefore, in terms of the original
segment labeIs sr r

( (s"+x)sr (sr+tc)d3 . . . (sp+ic)dn¡ .

To conform v¡ith ttre convention that the first segment should.

be segment 1 , this p-test is retr'¡ritten

( ("¡+k)cl (s¡*1+k)q"11'L . o , (s¡-1+k)crJ-1)

r¡rhere j 1s chosen so that

s¡+k = 1 (mod. P)

1.€. s5 = 1+P-k¡
Thus *(ø) ancL t@) are congruent 1f there is an integer

k, 1<k<p, suchthat
t1 = sJ- ¿.r.r*k (rnod. P)

l3t = d¡- r+ t Q.3l)
forall i, !'/here i lssuchthat s¡= 1+p-k.

The set of all p-tests t(n) congment to a glven p-test

"(ø) can therefore be generated. using equatlons (2.37)

for k = 1r2r...¡p-1 .

The two stages 1n the folLowlng procedure arise from

the fact that for congruence of p-tests "(a) and- tG) ,

the conitltlons on the cycles s and. t' and. on the ind.ices
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d. and. P may ìle stated. sepa.rately, as 1n (2.37) . Let the

flrst of these two cond.itions be referred. to as _q.oêgruence

of the g¿c-tgg s and. t. Clearly if p-tests 
"(o) and-

tØ) are congruent then the p-cycles s and. t are

congruent.

the flrst stage consists of the formation of the

congruence classes of p-cycles. One rellresentative from

each class 1s then chosen" \,',|ìrere lnverge pairs occur

among the representatives, one of each pair is d.eleted.

(us1ng some convenient rule).

In the second stage the set of a1l- p-tests associated-

with each of the above representative p-cycles 1s generated..

fhe resulting p-tests contain representatives of every

congruence class of p-tests. fhree eases can occur.

(i) If a cycle e is not congruent to its inverse, and

it 'belongs to a congruence class of cycles eontalning p

cycles, then it can be shor''¡n that no tvro p-tests "(ø) ancL

"(ø) (where fl I a) are congruent. ït follous that 1n

this case there 1s nothing further to be d-one: all the

resultlng p-tests belong to d.ifferent congru.ence classes.

(ii) If a cycle s is not congruent to 1ts inverse, and-

there are l-ess than p cycles in the cl-ass containing s¡

then some palrs of p-tests "(a), .(f) are congruent.

If the number of cycles in the class containing s is m,
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then it can þe shov¡n that m 1s a d.lvisor of P¡ and- that

rotation of the segment l-abels through a multlple of m

leaves s unal-tered-. ft folloi'rs 'bha'r; congruent p-tests

"(ø) 
and. 

"(ø) can be d.etected by rotating the lnd.ex

cr through multiples of' Í1. A representative of each

class of congruent p-tests is then ehosen.

(iii-) Thls case ls the most d.ifficult to d.ea1 with 1n

practice. Fortunately only a. relatlvely smal1 number of

lr-eyeles have this property. (It can be shov,¡n that this

third. case d.oes not occur at all if p is od.cl. ) f f a

cycle s is congruent to its inverse and- there are m(< p)

cycles in the class containing s, then the following two

steps are need-ed in ord.er to d.etect paÍrs 
"(o), ,(É) of

congruent p-tests. Firstly, 1f m < p then each p-test

need.s to be rotateiL through rnultlples of m, as in case (ii).

Second.ly, for all me the inverse of each p-test nust also

be rotated. th::ougir multiples of m. (Agaln, as in case (il),

only the inclices need- to be consiclered. in this rotationt

as rotatlon throug'h rnultiples of m leaves the cycles s

and- s-1 unaltered..) A representative of each of the

resulting classes of p-tests is then chosen'

As d.escribed. aboverthis procedure results in a set of

representatives of the collgruence classes of p-tests on an

arbitrary partitiorr. of a tour in an und.lrected. netv¡ork.
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Fon the purpose of generating p-tours, the correspond-ing

result for strict p-tests is required.' It 1s easily

proved. that in a given congruence cIass, either every p-test

is strlct or every p-test is not strict. It follows that

the above proced.ure can be used. to generate a set of

representatives of the elasses of strict p-tests by simply

d.eletlng all nonstrict p-tests at the beglnnlng of the

second. stage,

A computer programme based. on the above methoil u¡as

written to enumerate the congruence classes of strict

p-tests for p < 6, The numbers of classes for

p = 3r4r516 are, respeetivelY

2, 9, 45, 363 (2.3a)

For p = 3, for exanple, there are two congruence classes

of cycles, each containing only one cycle, namely (t 2 3)

and. (t 3 2) respectively. The second- class contains

the lnverse of the cycle in the first classr and- is ignored..

There are four strlct p-tests obtalnaþIe fron (t 2 3),

namely

(1t2t3 ), (l'z 3'), (r z'3'), (1'2'3') .

Slnce n = 1 in tlris case, it is an example of case (il)

in the second. stage of the proced.ure, ancl tþe result is

t]aat the flrst 3 J-tests are congruent ancL the last one

1s congruent only to 1tse1f. This simple example illustrates
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the main steps in the pnocedure. The restllts for P = 4

are as fol-lor¡rs. The numbers 1n brackets are the numbers of

eLenents in the respective congruence classes.

Representative cycles: (omitting lnverses)

(r 2 i t+) ("1)

(t 3 z 4) (xh)

(note that the second. class consists of two cycles and. their
inverses) .

Representatlve strlct p-testsl
(1'
(r
(r

Zt 3t 4,)
2, 31 4,)
2t 3 ¿l')

24
?I 4
2t l+

Í 2t 4
12 4

2I l+

("1)
(r4)
(* 2)

(x4)
(x4)
(xt+)

(" 2)
(* 2)
(r 2)

(t
(r
(r
(r
(1

(r

3

3

3

3

3
,3

')
)

r)

)
,)

)

Slmilar tables have been obtained. for p = ie6, The way in

vrhich these representatives are usecl is noï'/ d,escr1loed..

Si.mpllfied. itriethod. for
This method ls a vaxíat'1on of the method. of section

2.3, and. conslsts of the follovring three steps.

(i) Form a partitlon of the initial tour. into p segrnørts,

labelled. consecutively 1t2, .oôr pr

(ii) Apply a set of representative p-tests to thls partitior¡
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(ifi) notate the segment labels by ad.d.ing 1 (mod. p) and.

repeat step (ii), Repeat thls step untll segment labeIs

have þeen rotateil p - 1 tlmes.

These steps are repeated- for all partitions of the inltial
tour.

The number of p-tests appliect to each partition in

this proced.ure is p times the numþer of congruence classes¡

for exampler for p = 3r\1516, the numbers are

6, 36, 225, 2178r.
/n\

respectively. The number of partitions is (n/ .

Sarnple values of the numþer e(nrp) of resulting P-tours

(including repetitlons) are given 1n Table 2.J.

The only d.isad.vantage of this methoil ts that, because

some congruence classes contain less than p p-tests,

some p-tests are applled. more tlran once to each partition.

For example for p = 3, 6 J-tests are applied- to each

parti'bion instead. of 4' The proportlon of repetitions is

therefore +. Hol.¡ever this is the wor:'gt case, and. can be

hand.leit easlly by the method. of section 2.J. As p

increases, however, and. the method. of section 2.J becomes

increaslngly d.lfficult to appIy, the proportlon of

repetitlons in the simplified- method. d-ecreasesr as a

comparison of Taþ]es 2.\ and. 2,J shows. These proportlons

are, for p = 3 r\r5 16 ,



p 0123 4 5 6

3

4

5

6

7

B

9

10

I

1

1

1

1

1

I

1

0

o

0

o

0

o

o

o

3

6

10

15

21

2B

36

I+5

6

24

60

120

210

336

504

72o

36

r80

5l+o

1260

2520

t+536

7560

225

1350

4725

12600

zBi50

567oo

2178

15246

60984

182952

45738o

TABLE2.Ã Valuesof "(ttrp) for j<n<10rO(p(6.
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2
-¿+

11
25

lL
208

JJ_
2121

¡,

lhus for p > 5, the numþer of reBetltlons due to the

slrnpllfied. method. ls very smaL1.

The aiLvantage of the slmplified. nethod. for p > 5 ls

apparent fron the number of p-tests nequlrlng to be applied'

at each stage: for p = 5 tTre numþer 1s 45 lnstead. of

2OB, anil for p = 6 the nunþer is 363 insteact of 2121 .

Note that the procedure used- in thls section to

enumerate the set of congruence classes of strlct p-tests

rel-les largely on a J-engthy enumeratlon, whlch is carrled.

out by conputer. Theoretlcal results concerning the

number of congruence classes for arbltrary p (comparable,

sâ¡rr rr,¡1th the results of sections 2.1 2.3) are not l<nown

at the present t1ne.
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2.5 Degenerate 'p-Tests

The preced-1ng sections have been d-evoted. to the

d.erivation of tl:e number of d.istinct p-tours per lnitial
tour, and tlre number of trial tours required. to enumerate

the p-tours in practice. These numbers are to be used. ln
section 2.6 to d.etermine the number of trial tours required.

in a purely enumerative proceclure for testing a given tour

for p-optinrality. Al-though there are no pov¡erful

mathematlcal method-s for testing a tour for p-optinaLlty,

there is one t'ray of avold.ing the need. to conslcler certain

trial tours in emrmerative procedures.

Consld.er the folJ-owing example for ri = I and p = 4.

Let the initlal tour be (t 2 3 l+ 5 6 7 8) and the

flnal tour be (t 7 6 l+ 5 3 2 B). The d.eleted.

1lnks are (l ,z), (3,1+), (5,6) and (7,8) ' and. the adiled

linics are (l ,7), (6,4) , (5,3) and. (e,B). rf the final
tour is shorter than the lnitial tour, then

d.17*iL6¿*dss+dzB < d-12+d.sc*d-s6fd7s .

Therefore either
d-17*d'2s ( d.12fd-7s ¡

or

d.6a*d.ss ( d-sa*d.56 e

It follov,¡s that one or both of the tours

(t 7 6 5 4 3 2 B)

(r 2 5 5 4 6 7 B)

or both.
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must be shorter than the inltial tour. since the above

tours are both 2-tours, it folIor.rs that 1f the initlal
tour is 2-optimat, tlren the J+-tour (t 7 6 h D 3 2 S)

is longer than the initial tour. Thus, in testing a

2-optlmal B-nod.e tour for J-¡-optlmallty 1t 1s not neceqsary

to test the length of thls tour. A p-test lvhich results
1n a p-tour l.¡ith tlre above property is called -Leg_eng.A!_e.

Degeneracy is norv d.iscussed. in d.etai1, and ilre nulrþer of
clegenerate strict p-tests is d.enlved., for p < 5.

Consid.er an arbitrary partition of an initial tour
into p segments, none of which conslst of a single node.

Let the nod.es be labeLled. so that the p deleteit links, in
ord.er of tJ:eir occurnence in the lnltlal tour,, are

Lt=(i,2), [z=(3rL+), .. . , Lp=(zp-trzp)
ivhere nod.e 1 is chosen arbltrarily. (irlodes not attached.

to a deleteil Link are lgnored. for the present.) consid.e:r

an arbitrary strict p-test consistlng of the insertion of
the p links

fll= (ir.rlr), mz=(i"ri.), , , . , mp=(i"p_rriro) ,

vr¡ritten in ond-er of their occurrence in the resulting
p-tour, where il = 1 for uniqueness of representatlon.

Suppose ît and. 7 are subsets of the sets of d.eleted.

links and. inserted.1inks, respectively, and 1et Åt and 7t

þe the sets of nod.es attached. to the l-lnks in ¿ and. J,
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respectively.

A strÍct p-test is d.efined. to be ggæglek if there

exist nonempty sets 3rJ, as cl.efined- above, vith the

follov¡ing properties .

(") The sets Å t and. 7 t are lclenticaJ.

(¡) Replacement of tfre lintcs 1n Å by those in 7 resuLts

in a tour.
(") Their complements *î3 and. -7 are nonempty, and.

replacement of the links in *Å by those in -J results

in a tour.

Let q. þe the number of links in Å (or 7). Since

the links in 7 belong to a strlet p-tour, the l1nks 1n J

all d-iff er from those in ú. The openation (¡) ls
therefore a strict q-test. Sinrllar'1y, the operation 1n

(") is a strict r-test v,¿here r = p-er If the length of

the initial tour is L, tiren the length of the p-tour is

],-
p

I a(2, )
p

I a(*, )+

+

1=1 i=1

I I a(*') - L ¿(¿r) +a(¿r) T a(*, )L
III¡€-7

L ltis
!, ç.8 m1€J l'' 1e-Å

Therefore for thls length to be less than

necessary that either
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ç--ì
) a(¿r) >
LJ
t.1eÅ

I a(*, )

m1€7

or

-\') a(¿r) >/-L
t 1€-d fl¡G-7

or both. This implles that one or both of the q-tour and

r-tour resulting from steps (¡) and. (") are shorter
than the lnitial tour. The followlng result has thus been

proved..

lemma 2.9 If a given tour is (p-t )-optlrnaI, then

every p-tour resulting froin a degenerate strict p-test is
longer than the given tour,

Thus, lf a tour is being tested. for p-optinality by

systema'bically applying strict q-tests, for e = 213r.rr¡p¡
then all d.egenerate strict q-tests may be omitted..

N-umben of iLesenerate strict p-tests

The rrrobLe¡o of d.etermining the num'oer of d.egenerate

strlct p-tests is in general- unsolved., although i.t ls
possible to obtain the nuinber by an enumerative procedure,

for sufficiently smaLl values of p. For p = l1 it is
eas11y shown by trial tha.t the only two d.egenerate p-tests
are
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(t76)+532 a),
(t i z \ 5 7 6 s)

opr 1n the segment notation of sectlon 2.4

(t, U 3t z) , (1 4' 3 z') .

These l¡-tests are congruent und.er rotation, and. therefore

the number of clegenerate strict [-tests und.er congruence

1s 1.

For þ = 5, the above sets ó rJ each contain 2 ot 3

l1nks (lf such sets exlst at all). Since the nôLes of

these sets and their complements may be interchanged., it

may be assumed. that ¿ and. 7 each contain J links. The

set of d.egenerate strict 5-tests is novr enumerated. by

comblning a strict 3-test and. a strict 2-test on a

partition of 5 segments in every possible ï'/ay. Of the

f5\ = 10 vúays of chooslng 5 of the 5 d-eleted- links,
\t/
(1) there are þ r'rays 1n lvhich the 2 renaining 11nks are

ad.jacent, and.

(ii) ln the other þ wayo, the 2 remaining links are

separated by 1 chosen l-ink.

In case (i) there are 4 strict J-tests on the chosen links,

and. for each of these 3-tests there is one strlct 2-test

on the remainlng 2 links. Listing the resulting 20 tours

sho'ws that they are d.istinct.

fn case (ii) there are again 4 strlct 3-tests on the chosen

l1nks; hov,iever it is only possible to apply a strict 2-test
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to the remaining links for 2 out of, t¡re 4 J-tests' fn the

remaining tl¡,ror an attempt to apply a 2-tegt to the

retlaining 2 linlcs resul'cs 1i:. the formatlon of tt'¡o cycles'

There are thus 1O 5-tests resulting from case (il) t

giving a total of 30 d.lstinct d.egenera'be strÍct 5-tests'

Uncler cong-ruence, the number of d.istinct d.egenerate strict

þ-,cests becomes 6. These are illustrated- in Fig' 2.2.

In nos. (i)-(i") the 2-test is applied- to the adiacent

l1nks (l ,z) and (9,to). In (") an<L (vi) the 2-test 1s

appliecL to the nonadJacent linlcs (lr4) and- (7rB)'

For p = 6 the task is more d.ifficult ovring to the

fact, that there may be more than one \Yay of obtainlng a

6-test as a result of applying tlvo J-tests. The actual

number of d.egenerate strict 6-tests has not yet been

d.etermined.; hor¡,¡ever it is lcnov¡n to be at l-east 498.

The main applieation of d-egeneracy at the moment is

to red.uce the num'oer of p-tests recluirlng to be applled-

to eacl1 partltlon of a tour in ord.er to test the toun for

p-optimality. Ilo'lvever it 1s also of lnterest to note that

the proportion of d-egenerate p-tests appears to þe increasing

with p. For p = 213141516 the propontions are

o' o &, #, àtleastffi'
nespectively, This suggests the 1:osslbility that for

mod.erately large n the number of tests requireÖ to prove
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0

0

0
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o

o 23

3

4
5

6

7

B

9

01

1

1

1

I

1

1

1

1

3
6

't0

15

21

2B

36

45

3
6

10

15

21

28

36
l+5

4
16

rp
80

140

221+

336
l+80

6

zLt

60

120

210

316

50l+

720

23

115

345
805

161o

28gB

l+B5o

188

1128

391+8

10528

23688
I+7376

195

117o

4095
10920

24Eto
]+9140

TABLE 2.6 Nr¡mber of nond-egenerate p-tours obtalnecl by

congtrtrctlveenu¡neratlon, for 5<n< 10 r O<p< 5.

p 01 23 54

3

4
5

6

7
I
9

o1

1

1

1

1

1

I
1

1

o

o

0

o

0

0

o

0

32
160

l+80

1120
224A
I+atz
67zo

9.8.LL j22a Number of nond.egenerate p-tours obtalned. fnon

slmplified- nethoil, ueLng congruence, fon 3 < n ( 10 ,
o<P<5.
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optimality (1.". n-optimality) may be nruch less than the

astronomical number required. in the purely enumerative

proced.r:re, The subject of d.egene?a.cy of p-tests is yet to
be fuI1y investlgated.

2.6 Testine for p-Optl

It 1s assumed. that a tour 1s tested. for p-optlnality

by comparing its length rrrith that of every q-iour' for
O < q < p (ot 2 < q. < p, since the only O-tour is the

lnitlal tour, and. there are no 1-tours).

In this section, the number of d.istinct trial tours

is first obtained. from the result of lheorem 2.2. The

numbers of trials reclulred. in the constructive procedures

of sections 2.3 and, 2.1+ are then obtained. and. compared. lzith

the number of d.istinct trial tours. Itinalfy, the number of

trial- tours resulting from tl:e latter tnro proced.ures after

itegenerate p-tests have been omitted-, is obtained-, and a

frrrther comparison mad.e. t:'/ith the exception of the final
results lnvol-ving clegeneracy, vrhich are límited- to p < 6,

the number of trlals in each case can be d.erlved. for al-l

n and. p from the results of the preced.ing secti-ons.

The results are iLlustra'bed. by means of numericaL values

fon n ( 10, and. e:cplicit formulae for p < 4 and- all n.

Num-ber of Tr1al Tours

The number of d.1st1nct trial tours (exclud-ing the
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initial tour) is
p

A(n,p)=\ a(n,q.) (z.tg)
L-)
8=2

for al"l p ) 2, r,vhere a(n, q.) is the number of d-istinct
q-tours d.erived. in sectior: 2.2. Sanrple values are given

for n < 10 and. p < 10 1n Table 2.8. Examples of

e)qg11cit formulae ol¡tained. from (Zð9) are

A(n,2) = ån(n-3)
A(n,J) = ån(n2-1hn+e5)

A(n,4) =

Enumeratlve Proc ed.ures

Similarly, uslng the constructlve proced.ure of section

2.3 the nunber of trial tours 1s

J
C(n,p)=\ c(n,cr) (2.40)

L-
4=2

for p > 2¿ Sample values of C(nrp) are given in

Table 2.9, and. some explicit formulae clerived. from (2.4O)

are

þt 2lns -JJenz + I j1 I n-2o7 o) a

c(n,2) = |n(n-1)
c(n,3) = åt(¿*'-9n+5)

c(nr¿+) = fl*"( 25ns-1JLp2+239n-13o) .

Uslng the simplified- procedure of section 2,4t whlch

makes use of the congruence of p-testsr the numben of
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6

10
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7
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5404
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58191

3839
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503601

1+6079

279662

1137702

3602961

S.Æ-?g2 Values of C(nrp) for J < n ( 10

and 0(p<7 L
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trial tours is
p

E(n,p) = ç e(n,q.)
L--
Q=2

for p > 2. Numerical values are given in TaþIe 2.1O,

and- some expliclt formulae are

E(n,2) = {n(n-1)
E(n,3) = ån( znq -5n+3)

tr(n,h) = 2"(6na-[!na +73n-39) .

Comparlson of A(nrp) and. C(ttrp) shorrs that the

number of repetitlons occunrj.ng in the purely enumerative

procedure is of orcler nD-l. Since the total number of

trial tours is of ord.er rrÞ, the number of repetitions
becomes insignlflcant for sufficiently large rr¡

The simpllfied. method. resul-ts 1n a someïvhat S.anger

nunber of repetitlons. The number [p(ttrp) - A(nrp)] of

repetitlons in thls case 1s of ord.er nP. However¡ the

effect of this disail.vantage 1s not great In practlce.

the proportions of repetltions, for p = 3r4r516 are

asymptotlcally equal to

1MJL572'25' 2o8' 2121'

respectively. The proportion therefore appears to Oecrease

quite rapid.ly as p increases. It 1s fortunate that the

v¡orst cases¡ p ( 4r happen to be the cases which are
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n

3

4

5

6

7

I
9

10

3

6

10

15

21

28

36

45

9

3o

7o

135

231

364

540

765

66

250

675

1t+91

2884

5076

8325

t+75

2025

6216

1 5484

33\26

65025

l+2o3

21462

761+68

zt637B

522405

TASLE 2.1O Values of E(nrB) for 5 ( n ( 10 anct

o<p<6.
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hand,led relatively easlly by the finst methoiL, and. a1-so that

for p > 5, when the simoLifled. method. þecomes more

lmportant (even essential), the effect of this d.isad.vantage

becomes comparatively sinall.

Effect of Deeeneracv

The effect of maklng use of d.egeneracy 1s now

investigated. for p < 6. If at each stage of the above

enumeratlve proced.ure the d.egenerate q-tests are omitted.,

the numbers of strict c¿-tests for g = 41516 are 23, 188,

and. at most 1623, respectively, from section 2.5, There

1s no change in the number of tnial tours for p < 3.

For p - ¿+ the number of trial tours loecomes

¿l

i+r( 23ns -122n2+21 7n-1 1 8) .

Numerical values for n < 10 are given in Table 2.11.

For all p¡ the reduction in the number of trial tours 1s

of ord.er nP. tr'on þ = 41516 these reductions are

asymptotically equal to

&,"r , &nu' , ar leasr ff¡u ,

respectùve1y.

fn the simpllfied. procedure, the omission of d.egenerate

p-tests has a sinrilar effect. In this case the number of

tr1al tours for p = l+ 1s

år(7n"- 3Bn2+6Bn-3Ð ,
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9
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q.-tours, for J < n ( 10, 2 < P < 5 .
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I_W,IJ.1å As for Tabl-e 2-1O, for slmplifled- proced'ure

using congruence of P-tests.
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and. frurnericaL values for n ( 10 and. p < 5 are glven in

Table 2.12. For B < 3 there are again no rêductlons,

and. for p = 4r5, the red.uctlons are asymptotically equal

to

å"
6r

l+5"
I ,

respeotlvely.

Fronr the vleu"point of practical- applicatlon, the

results of this section may be sumnarizecl clualitatlvely as

foIlows, The most efficlent method. for testing a tour for
p-optlnallty 1s the method. of section 2,3, mod-ified. by

d.elet1ng d-egenerate p-tests. If, hotrYever, the storage

and/or programming requlrements of thj.s method- are

prohlbitive, the simpllfled nethod. may be used, 'trvith only

a slight d.ecrease in cornputatlonal efficÌency.

On the other hand., the theoretical results themselves

have some meritr âs is explalned. in the Appenclix.
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ITLGORITHMS FOR . 
THE Tzu\VELLTNG SArlìSl\{Æ$ IEæI-,E-U

The pneviously d.escribed. method.s for testing a

tour for p-optimality enable the algorlthms in this chapter

to be iLescrlbed. very br1efly. Section J,1 contains a

general algorlthm for generating p-optimal tours, whlch

forms the basls of the algorithns for the Travelling

Salesman Problem. Sectj-on 3.2 contalns the basic

algorithrn in whlch a suitably sized- set of 3-optimal tours

is generated., Of importance 1n this algorithm is the

estimation of the probabllity that a given set of J-optimal

tours (with repetitions) contains an optirnal tour. In

section 3.5 the method. of section J.2 is mod.ified. by

seLectlvely bypassing sectlons of -bhe systematic tour-

improvemerrt procedure. Computational results j-nd-icate

that the resulting accelerated. algorlth¡n is an effieient
method. for practical purposes, particularly ln netl'¡orks of

more than 20 fiod.es.

3.1

In the foLlowLng algorithm, a sy3ternatlc tour-

improvement proced.ure is applied. to a glven touf, reSulting

1n a p-optimal tour"

Suppose the partitlons of a glven tour into q.

segments (z <

ord-er. The steps of the algorith.m are as follows:
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1, Apply steps 2 to 7 (lnclusive) for e = 2t .rr pr

2, Generate the first partltion of the current tour into
q. segments.

3. Apply steps 4 to 6 for each strict q-test'

4. Apply the q-test to the segments of the partitlon'

5. Calculate the length of the resulting tour.

6. If this tour is shorter than the current initlal tour,

go to 9 ; othervrlse continue,

7. If all partitions lnto q. segments have not þeen

generated., generate the next partitlon and. go to 3 ì

other.wise contlnue"

B. trxit¡ the current tour is noTir p-optimal,

9, Replace the current tour by the shorter tour and go to 1

this algorlthn makes use of the d.irect methoit of section

2.3 to enunerate the p-tours of the current tour at each

stagen The simplified. method. of section 2.4 may be

incor-ponated. in the above procedure 'by maklng the following

two alterationr¡:
(u) in step 3, instead of àpplying every strlct q-test,

aBply only one representative from each congruence class of

strict q-teets.

(¡) Tnstead. of generatlng each partition once onIy,

generate firstly (1n some ord.er) those partltions in u¡hich

a given linlc 1s d.eleted.. There are l*t) such partltlons
\q-t /

c
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for each eo Then repeat this process for each of the

n - 1 other Iinks. Clearly this amounts to r"otatlng the

segment labels in every possible lrâgr The resulting number

of panti'bions (r',iith repetitions) is

',1"-t\ = n/") .
\q.-1l \q/

The above tl¡o alteratlons enable 'bhe simplified. procedure

to be obtained. by sfunp]y altering the sets of partitlons aniL

strict q-tests, thus avoid-ing the need. to physically rotate

the segment labels.
The above algorithm is quite general, the only

liurltations to its prac'r,ical application being the physical

size of the set of strict q-tests, and. the number of steps

required.. The above general statement of the algorithm

d.oes not specify hov.¡ the q-tests are to be ord.ered-, or how

the tour lengths are to þe compared-. These cluestions haVe

an important effect on computational efflciency in practice;

hov,¡ever they need. to be anslvered lnd.ivld.ually for each

vaLue of er They nay therefone be regard.ed. aS programmj-ng

problems, and- are not d.iscussed- any further 1n this section.

The result of the above procedure is a single p-optimal

tour for each given tour. It 1s of course possible to

obtain every p-optimal tour by re-oea,ting this proced.ure for

a suitable set of initlal tours, If such a set could- be
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found. fon some pr and. a1l the p-optimal tours generated.,

then an optlmurn tour could. be found by find.ing the shortest

p-optimal tour by inspectlon. Hov,¡ever, such a set cannot

be found. at present. (This problem is probably a.s

d.ifficrrLt as that of find-ing the p-optimal tours

themeelves. )

An alternative rnethod. for generating sets of, p-optimal

tours consists of applying the above algorithm to a set of

rand.omly genenated. inltial tours. The resulting set of

p-optimal tours contains repetltions, and- is not necessarily

a rancl-om sarnple of the set of all p-optimaL tours.

However, because the initlal tours are rand.omly generated.,

and- because the p-optimal tours are obtalned. by applying a

large number of small lmprovements to the tour, it seems

reasonaþle to suppose that the resulting set of p-optimal

touns d.oes form a rand.om sample. Computatlonal resul-ts

(see section 3,2) ind.icate that this assumptlon is
acceptelble, although it gives a somewhat pessimistic

estimate of the probability that the shortest of a given

set of p-optimal tours 1s optirnal. It 1s found. that

shorter p-opt1na1 tours almost invariably oecur Ìnore

frecluently than longer p-optimal tours. Details of the

estination of thls probability are given in the following

section, r'¡here this method. is cliscussed- in d.etail for þ = 3.
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3.2 g1

As a result of experlmen'ûs using p = 2r3r4, Lin
([1]] , p.2263) conclud.es tirat the case þ = 3 is the most

useful for practical purposes, for med.ium-s1zed. networks

(op to 100 noiLes). The algonlthm for generating J-optimal
tours d.iffers in d.etail from that of Lin, the rnain d.lfference

being the organization of the steps to make use of the fact
that the number of steps requlred. to invert a segment of a

tour is proportlonal þo the number of nod.es in the segment.

This algonithm 1s nor¡y d.escribed. in d.etal1, omitting
programming d.etails such as the use of temporary storage

locations and. the nrethod. used. to lnvert segments,

Let ldrl] be the d.istance natrix and- let a tour be

represented. by the permutation t, where for each nod.e i,
t(i) is the nod.e following 1 1n the tour. The three

links d.eleted. at each stage are labell-ed. (i" , i, ) , ( jr, ja )

and. (To|r'r) r" ln Figr3"1, ih which the iwo J-tests applied.

in this proced.ure are iIIustrated.. The steps of the

algorithm are as fol-lows: (to is an arbitrary initlal
value for 1r).

i1=1o
La=jt=t(11)
iz-lrr.=t(¡r)
kz = t(tc. )

1 a

2.



11 L2

?
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Figure 3o1: The two J-teste applled. in the

practlcal algorlthm.
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7,rf
Tf

iLz

d.
L.¡

d.e - d.= r- + d.*- lzKz Jt

i2 +d.
Jr. iB

d.. <Ktlíz + d't. , go to 9.

t(ir) = jz
t(t<t ) = Iz
+l t,,) - kP

,t ro = Jt
io 2.
urrr, + uJ"i, + do"o, * dlr-J, + ö'2 r 8o to 9'

") = jz
ir) = Jr
-") = ka

i¡ert segment from 12 to Jt r

-1o=jr
to 2.

,=ks
¡ = t(i<")
t' kr líL ¡ Boto 3.

1=Jz
tz -kr = t(i")
t2 = t(t<t)
If k, I i1 r Boto 3.
If Lp = 1o , exlt. (Tour t ls nou/ J-optimal).
i1=18
Go to 2.

In thig d.escnlptlon the equal slgn is used- in the senÊe of

replacement, Note the 3 nested. looBs in the procedur¡e:

steps 2 to 12 are carried. out for each value of (i"rlr) ,

d.rtJz+
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steps 3 to 10 for each value of (jrrir), and. steps 3 to 9

for each value of (kr rk, ).
It can be seen from I':Lg.J.1 that 1n the first iteration

for each (jr,jr), in which iz = kt , the J-test (|t32)

results 1n a 2-test applled. to the links (irrir) and.

(t<.rkr). Thus 2-optimality and 5-eptimality are tested. in
the one routine. Apart from this variation, the aþove

algorithm is that of section 3"1 , llsing the slmplified.

method. of generatlng p-tours. A nrethod- for d.etermining

tl:e numþer of J-optimal tours need.iirg to be generated. in

ord.er to achleve a glven probablli-ty-of--obtainlng an optimal

tour is noln¡ d.escribed..

Nu@en -gf SrjLaI lgg¡æ
Suppose firstly that the probability of obtaining every

J-optimal tour is to be greater than some given level
(".g. 'OO1). Suppose that the J-optimal tours oecur v'¡ith

equal probability, and- that at some stage, v d.istinct

tours have J¡een obtained. in p trlals. The probabillty

that there exists a further l-optlmal tour 1s smallest 1f

the number of 3-optimal tours is v + 1 t and. is equal to

(v+t) (, - L)' = (v+1) l-*Y ¡
\ ñ/ \ydl

y+1

trials,
This is the probablLity that one of tlre

tours is not ol:tained. in any of the LL

J-optimal
The number
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of trials requlred. to reduce this probability below '001 ,

for example, 1s given by

tL 1og1s v r (tt-l)1ogro(v+1 ) < -3

lvhich gives

lr>
1og(v+1 )-1og v

Some partlcular values of ttre snallest integers p(v) with

this property are:

þL(i) = i1 þ(5) = 48
p(z) = zo p(6) = 58

p3) = zg þ¿ft) - 68

p()+) = 39 u,(B) = 78 ö

These numbers may be incorporated. in a routlne for
attempting 'bo generate the set of all J-optimal tours by

specifying that if v tours have -lreen found., then the total
number of trials is to be p(v).

ff only an optiinal tour is required., then 3.1)
becomes simply

lr> 3 (3.2)
1og(v+1 ) -1og v

for a tolerance leve1 of '001, and. for examplet

p(1) = 10

p(2) = 17'

Pß) = 24

p,(l+) = 31

lr
lr
p

lr

(s) =38
=\5
=52
=59.

(6)
(7)
(8)

These numbers are used- in a routine for attempting to

generate an optimal tour 1n the same iray as for generating
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the set of all J-optirnal tours.

Comnutational Results

Average conputatlon tines for netl-,¡orks of various

sizes are sl'lourn in the folLowlng table' These resuLts were

obtalned. using a Control Data 6400 conputer. Becan:se of

the probabilistic nature of the method., computatlon times

may be expected. to vary from one netr¡¡ork to another.

I{ov¡ever, variations of more tinan 2V/" for sets of 11 or more

tours are unconmon,

620 msec.

B5l+ rr

1,20 s€c.
2'41 1r

5'01 rr

g, 16 rt

11.3 r1

20

22
24

3o

36
)+z

4e

22 msec.

50 rr

gg rr

132 ,
159 rr

223 rr

277 rr

\sz '!r

I
10

12

13

14

15

16

1B

Äv.
per

time
tour

Numb er
of, nocLes

Av. time
per tour

Number
of nod.es

lhe programme used. to obtain these results is v'¡rittên in

FORTRAN, apant from the procedures fon generat'ing pseud-o-

rand-orn inltial tours anfl for inverting segments of a tour.

A programme written entirely in assembly language should.

effect substantial improvements to these computation times.

The following tabl-e shows results obtalned. from the
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nethod- for generatlng all 5-optimaL tours for samples of

randoml¡r generated. two-d.imensional EucLid-ean networks,

184
123

52
¿)

11

30
17

11

1

5

o
a

l+

0

2

1

2

200
165

7B

4o

13

15

17

20

12 34
Number of
Netv¡orks

Number
of nod.es

Numþer of d.istinct
]-optimal tours

Thls table shov'¡s the numbers of rand.omly generated. netv¡orks

containlng 11213, c.. d.lstinct J-optinal tours. Samples

obtained. for larger netu¡orks were too snall to ïre of valueo

This tqble enables a priorl estimates of the probqble number

of steps required. ln the above algorlthn for generating

optimal tourso For example, the percentages of 15-nocle

netv¡orlcs containing 1r2r3 and. l-¡ J-optlmal tours ape,

respectlvely , 74'5%, 1B'4 6'1% and. 1'ryo. Uslng (3.2) ,
the numbers of trÍa1s in these cases are 10, 17t 2l+ and' 31 t

giving total- computation times of 2'23, 3'69, 5'35 and.

6'91 second.s. The probabilities of obtaining these

computatlon tlmes for a given rand.om netvrork are, from

above, 0'745, O'182, 0'061 and- O'012 respectively"

The above table can be extencled to includ.e larger networkst

although the arnount of computatlon tine required. increases

very rap1d.1y for increasir:gly large netv¡orks.
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J'J Accelerated Algorithn
The acoelerated. algorithm is a variant of the algorithm

d.escri'bed. Ín the preced.lng section. The algorithm for
generating J-optlmal tours is mod.ifled. by introduclng a

rule vrhereby the innermost loop 1s omitted., or g!þ!91!,
und.er certain cond.itions. Tours resulting frorn this
algorithm are not necessarily J-optimal; hor.,¡ever if a

suitable rule is chosen, the pnobabllity of resulting tours

being 5-optimal can be very high.

There are many possible ïïays in lvhich steps may be

skipped.. For example, L1n [13] Itflagsrr each linlc whlch

occurs in a J-optirnal tour, and. in his proced.ure, if the

Link (irrir) i" flagged., úoth the inner loops are sklpped..

This results in a great d.ecrease in computation tlme,

Hot'¡ever, the sklpping procedure is so severe that there

is 1itt1e chance of the resulting torJr being 3-optfmat.
f,1n therefore applies his stand-ard. J-optimal algorlthrn to
the resulting tour. A funther d.lsad.vantage is the fact
that no skipping is possible until at least one J-optimal
tour has been found.. In the foLlolving method_ the first
d.ifficulty 1s overcome by using a less severe skipping
procedure, anil the second. is overcome by flagging certain
short l.inks a priorÍ.

Firstly, a l1nk (irj) is flagged. lf 1t is one of the
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shortest 3 links attached. to nod.e i or j. (ttre nu¡nben

3 is not essential to this procedure; hov,¡ever it is found-

that for rand-oilly generated netl',¡orks in 2 d.imensions, thls
gives the best results. For special.-ized. applicatlons a

d.iff erent number may be pref erable. )

Second.ly, in the algorlthm of section 3.2, the

li:nermost loop (in which (kr rkr) l" lncremented.) is
skipped- if the l1nk (Itrjr) fs not flagged. (see F1g. 3.1).
Tiris choice of nule may be justifled- as follows. Firstly,
link (ir.rjr) is the only insentecl link conmon to both

J-tests for every choice of (krrkr). Seconilly, 1n the

inltial stages of the procedure, rrrrhen the current tour st1l1

contains a large number of relatively long links, only

substantial improvements âre made, thus saving, possibly,

a nunrber of steps in which only smal-1 lmprovements are mad.e.

AJ-so, near the end. of the procedure, wherr tlre tour contains

a large number of relatively short l1nks, it appears

un11ke1y that the tour will be improveil by inserting an

unflagged. l-ink. Finally, the repetition d.ue to the fact
that the first p-test 1s congruent to itself ensures that

thls p-test is applied. to every partition unless aLl three

of the inserted. links are unflaggeÖ.

In splte of the above reasons in favour of tþe above

sklpping rule, arqr of a number of other rules cotrlit prove
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1n practice to be Just as effective. Generqlly a rule
consists of: Sklp the innermost loop and/or the second

loop if certain of the d.eIeted. l-lnks are flaggeil and,/or

certaln of the inserted. links are unflagged." The many

resultlng rules d-iffer in thelr reLatj.ve effects at the

start and. finish of the procedure. Some combinations may

be d.isnissed. at the outset as absurd. (""g, rrskip both loops

if any one of the d-eleted. links is flagged-.rr Using this
rule it is lmpossible to obtain a tour containing a iarge
proportion of flagged. links, unless 'chere happens to be a
large numbef of steps 1n v¡hich 3 unflagged. l1nks are

replaced. by 3 flaggecl links.) Horr'¡ever tlrere renain several

nrles v¡hich appear feasible, and the only vuay to compare

these rr:Ies is to compare expenlmental results.
From computations carried. out on netr.'¡orks of 48 nod.es,

it appears-bhat the above rule is the most effective in
practice, cornroining eomputational speed. r,¡1th a hlgh

probability that the resulting tour is J-opt1ma1. A seconiL

nule also gave good. resulte in that the computation was

tirree times as fast; hovrever the proportion of resulting

J-optimal tours was about one third. that of the above method..

This rule is: Skip ttre innermost loop if þoth (irrir)

and. (jtrjr) are flagged.. The ad-d.ed- conrputational speed"

appears to resul-t from tire fact tha,t thls rule causes mueh
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of the lengthy f1na1 stages to be skipped.r This may also

be the sollrce of the d.ecreased. probabllity of ]-optimality.
This second. rule may be of value for very large problems

in practice, in cases v¿here computational speed. is of

pri-rnary lmportance, and- l'rhere the ireed. is onJ-y fon â tour

which is reasonabl.y short.

Average computation times for the accelerated. algorlthm

(using the forner rule for the sklpplng procedure) are as

follows:
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Ifuch wid.er variations in compUtational speecl 1,Tere obtained.

lvith this method.. Tn some cases times vartied. bett¡veen 0'5

anil 1'B times the average'

In the accelerated. algorlthm, no alteration is nad.e to

the procedure for d-etermlning the number of trials required

ln ord-er to achieve a given probability of obtalnÍng an

optirnurn. fhls is exactly as d.escribed. in sectlon J.2'
Note that as the numþer of nod.es increasese the ratio
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of the computation times d.ecreases sharply. This d-ecrease

more than offsets the increase in the number of trial-s
resulting from the presence of tours which are not J-optimal.
For exanple, 1n the l+B-nod-e netvrork of He1d. and. Karp [tO],
the average time per tour 1s O'B1 eeconds, while the

lncrease in the nurnber of trial tours 1s less than 3q".
(Tfre tow computation time 1n thls case is probably d.ue to

the presence of a large number of flagged- l1nks in the

optimal tour).
The accelerated. algorithn in this section serves a

tv¿ofold purpose for practical applications. trrirstly, it
supplies a method. of obtaining ind.ivid.ual short tours in
an extremely short time, even for large networks, for

applications 1n 'which computation tlme is of pnlmary

importance. SeconcLly, it provid-es an improved. method for
obtaining optimal or near-optlmal tours, for applications in
v¡hlch the length of the resulting tour is of primary

importance. It is parttcularly applicable to lange

netr¡¡orks.
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DISCUSSION

This ttresis contains contributlons, of both a

theoretical and. a pnactical nature, to the subject of

p-optlmality of tours in a netv¡ork, and- its application to
the Travelllng Salesman Problem.

The main theoretical i:esults are the comþinatorlal

resuLts proved. in sections 2.1g 2,2 and, 2.J, ln particulan

Tlreorems 2o1 and. 2,2, and. lemma 2oB. Apart from their
application 1n section 2.6 to the d-etermination of the

nu¡nber of trials required. to test the p-optimallty of a

tour, these results are belleved- by the Author to be of

some merit in thensel-ves, in the fiel-d- of combinatorlal

analysls. The general eombinatorial significance of these

results is d.emonstrated. by the general statements in the

Appendlx. To the Authorrs knowled.ge, there has previously

been no lnvestigation lnto the permutatlons arid. combinations

of points on a clrcle in l¡rhloh a fixed. numþer k of

ad.jaeent pains of polnts remain ad.jacent, except for the

special case k = O. (For k = Oe s€€ Kaplansky [11]
for a result on combinations, and. Rj-ord.an [18] for results

on pernutations), 
r

Throughout the text, a number of unsolved. problems

are mentloned.. Firstly, in sectiqn 2,4 it is noted. that

there is no theoretical methoiL for d-etermining the number of
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congruence classes of strict p-tests. Second.ly, present

results concerning the number of d.egenerate strict p-tests

are 11mitecl to p ( 5. Also, the number of d-istinct

p-tours resulting from nond.egenerate strict p-tests is not

knoïvn. (ffris suggests the extension of the id.ea of

d.egeneracy to p-tours instead. of p-tests.) Problems

lnvolvlng the lengths of tours in a network are 1ike1y to

be even more d.ifficult, as results v'¡ilI generally d.epend- on

some property of the d.lstance matrix. There is for

example the d.etermination of pt in a given network (ot

posslbly bound.s on pt , 1n general) such that p/-optirnality

of a tour implies optimallty. ALso, (see section 3.1)

there is no lvay of avoid.ing repetitlons l'rhen generating

a set of p-optimal tours in a network. Finally, there is

of course the problem of generatlng p-optimaL tours for
large Il. the solutlon of this problem d.epend.s on the

d-eterminatlon of a method. for generating p-tours u¡hich cloes

not d.epend. largely on enumeratLon. Some, ãt least, of

these problems should. provld.e fruitful areas for further

research,

The rnaln results of a practical nature are the

improved. estimate of the probabllity that a given set of

p-optimal tours contalns an optimum (see section 5.1 and-

3,2), and. the accelerated. aLgorlt¡m of sectlon 3.3. Thls
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algorlthm enabl.eÊ good âpproximat€ solutions to Travelling

SaJ-esman problems to be obtained. for nett¡u¡orks containlng up

to 145 nod.es (using a computer r¡¡ith a 32K core), lhus,

together v'¿ith T,inr s metLrod., the above method. handl-es larger
problems than other known method.s, For problems containing

less than lO nod.es the computati-onal efficiency of the

accelerated. algorlthm allov¡s a very high pnobability of

obtaining an optimum tour to be reached. in a comparatively

short time.

Desplte the extremely good" practlcal resuLts obtained.

v¡ith the acceLerated" algorlthm, it reinains true thât
optiinality cannot be proved. using this method.. Holvever,

âs soluti ons to the above (and. other) problems are found.,

better rnethod.s of ap1rIy1ng p-optimality to the Travelling

Salesman Problem may be d.eveloped., method-s r-rhich may

eventually lead- to a method- of obtaining optimal soLutions.



APPEiVDIX

THE CoMBTNATORTAJ, TTTEOREMS OF CHAPT_ERiI

ï't¡ith the exception of the result of section 2.1t the

combinatorlal- results of chapter 2 are statecl and. proveiL

using the notatlon of tours in a network. The results may

hol¡¡ever be restated. in such a u¡ay as to illuininate their
combinatorial nature.

Theorem 2.2 may be restated. as follot'¡s. Let ø(nrr)

be the number of tn¡ays of permuting n points on a clrcle
ln such a ln/ay that exactly v ad.jacent pairs of polnts

remain ad.j acent. Then

a(n, r) = a(nrn-r) ,

tr,¡here a(nrp) is glven by equation (2,27).

Alternatively cr(nrr) is the numþer of cycl1c permutatlons

on ll ,Ze ., . ¡ rrJ in vr¡lr1ch there occur exactly x pairs

of the form iri+1 or i'i-1 (mod. n). [rris 1s a

generallzaf.ion of a resul-t d.ue to Rlord.an [18], v,rho d.erlveit

a recurrence formula for the case p = O.

The main resul_t of sectlon 2.J, namely Le¡runa 2o8e may

þe restated. as follovrs¡ üsing the obvioug notation of
I d.orninoes I f or convenience. Suppose p d.ominoes are

LabeIled. (l ,Z), (2r3)r...(p-1 ,p), (pr1).Ihe number of ways

of arranging ttrese d-ominoes on the circumference of a

circl-e such that no tlvo equal numbers are ad.jacent is



-89-

2v(p), vrhere .rr(p) is given by ecluations (2.1il and- (2.34),

Thls result may also be stated- as a variatlon on the well--

known rProblème d.es l,t6nagest (see Riord-an 1171, chapter B):

p married. couples at a party have been dancing, no nan

d.ancing lvitlr his lr¡ife. The number of vays of seating the

d.ancing partnens at a circular table in such a uray that
no man is sea'bed. next to his wife ls 2v(p). Note that
there is no restriction here that rnen and. 1¡/omen should. sit
in alternate positions. If this restriction is ad.d.ed.,

then it can be shown that the number of l',rays becomesr for
p> 1 ,

p

w(p) = 2I (-1 )n-(n)"(r.)
k=O

where

x(o) = 1

x(k) = (t<*t)l

(c.f. equation ç2.33)). Also, the number of p-cycles on

Í.1 ,2, ..., p] containing no palrs (1ri+t) (mod p) j.s

å*(p).
It is interesting to note that the resuLt of

Kaplansky [11], of rvhich Theorem 2.1 1s a generalization,

may also be generalized. in two frrrther ïuays (see T,agrange

l12l and. Abrahamson [ 1 ] ) , yet these tv¡o generalizatlons d.o
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not appear to be related. to the resuLt of rheorein 2.1 in
any other way.

The following 1s an incid-ental result which follows
fron Theorem 2.22 The number of v/ays of placing n
numbers i , Z <

(a) the sum of the n numbers is a muItlple of 11, and.

(u) the sum of any contlguous subset of less than n of
the numbers is not a multiple of n ,

is a(nrn) , given by (2.27) . This result is obtained. by
consldering the d.ifferences (moo. n) of the nod.e numbers
1n strict n-tests on a netv¡ork of n nodes.

A firrther toplc which is of some interest 1n connection
vrith the above problems is that of the genera.ting f\rnctions
associated. with ttre above numbers. Note that fon all the
above problems, explicit sol-utions are obtained.r âs well as
recurrence formulae.
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