S8 OF THE 4,

ANALYSIS OF A COMBINATORIAL APPROACH TO THE
TRAVELLING SALESMAN PROBLEM

by

Glen R. Thompson B.Sc.(Hons.) (Adel.)

Theslis submitted for the Degree of
Doctor of FPhilosophy
in the University of Adelaide,
Department of Mathematics,

Pebruary, 1968,

Summary

TABLE OF CONTENTS

Signed Statement

Acknowledgements
Chapter 1: Introduction
1«1 General
1.2 The Travelling Salesman Problem
13 p-Optimality of Tours in a Network
1«4 p-Optimality and the Travelling
Salesman Problenm
Chapter 2: Some Results Concerning p-Optimality
2,1 Single-node Segments
2.2 Number of Distinct p-Tours
2:3 Constructive Enumeration of p-Tours
2.1 Congruence of p-Tests
2.5 Degenerate p-Tests
2.6 Testing for p-Optimality
Chapter 3: Algorithms for the Travelling
Salesman Problem
3«1 Algorithm for Generating p-Optimal Tours

il

iv
vi

vii

11
17
17
31

L2
L8
59
65

70
70

3.2 Practical Algorithm for the Travelling

Salesman Problem

3¢3 Accelerated Algorithm

Chapter L:
Appendix:

References:

Discussion

The Combinatorial Theorems of Chapter 2

iii

74
80

85

91

SUMMARY

The subject of this thesis is the study of the recently
introduced concept of p-optimality of tours in a network
and the application of this concept to the Travelling
Salesman Problen.

This study consists of two parts. The first is the
theoretical derivation of the number of trials required
to test whether a given tour is p-optimal, subject to
various assumptions on the nature of an algorithm for
carrying out such a test. The main part of this derivation
consists of the solution of a number of combinatorial
problems concerning the permutations and combinations of
points and arcs on the circumference of a circle. These
combinatorial results are proved using the notation of
tours in a network, although the results themselves can be
stated quite generally. These general statements and some
physical interpretations are included in an appendix.

The second part consists of a study of the practical
application of p-optimality to the Travelling Salesman
Problem. A general algorithm for generating p-optimal

tours is described and its applicability to the Travelling

iv

Salesman Problem is discussed. A practical version of
this algorithm and its application to finding suboptimal
solutions to Travelling Salesman Problems is then
described. This algorithm is based on the generation of
3-optimal tours, and is a modification of an existing
method due to S. Lin. It differs from Lin's method both
in the manner in which 3-optimal tours are generated

and in the way in which the probability of having obtained
an optimal tour at a given stage is estimated. A summary
of extensive computational results enables some empirical
conclusions to be drawn on the applicability of this
algorithm to different sized networks. Finally, an
accelerated algorithm is described. This algorithm
differs from the above systematic algorithm in that instead
of generating 3-optimal tours, it generates "almost
3-optimal" tours by selectively omitting parts of the
systematic algorithm. The effect of these omissions

in practice is a great increase in computational
efficiency, accompanied by only a slight increase in the
number of trial tours requiring to be generated.

Further computational results demonstrate the efficacy

of the accelerated algorithm.

v

SIGNED STATEMENT

This thesis contains no material which has been
accepted for the award of any other degree or diploma
in any University. To the best of my knowledge and
belief, the thesis contains no material previously .
published or written by any other person, except where

due reference is made in the text of the thesis,

(Glen R. Thompson)

vi

ACKNOWLEDGEMENTS

The author is indebted to his supervisor Professor
R.B. Potts for suggesting the topic which led to the
results contained in this thesis, and for his encouragement
and assistance over the past two years. The author glso
wishes to thank his acting supervisor Dr R.G. Keats far
many helpful suggestions during Professor Pott's absence.
He is also indebted to P.G. Pak~-Poy of Traffic¢ Planning
and Research Pty. Ltd. for the opportunity to gain practical
experience of the problem of scheduling deliveries from a
single depot. The author also wishes to thank Mrs W. Hind

for her efficient typing of the manuscript.

vii

CHAPTER 1

INTRODUCTION

1.1 General

The subject of this thesis is the concept of
p-optimality of tours in a network, and its application to
the now~classic Travelling Salesman Problem.

The term p-optimality (where p is a positive integer)
was introduced in 1965 by S. Lin [13], who obtained some
elementary results concerning p-optimality, and developed
an efficient computer programme for computing approximate
solutions to Travelling Salesman problems by generating
3-optimal tours. An earlier method due to Croes [6]
(1958) included a procedure for generating a 2~optimal tour
by the application of operations which Croes called
inversions.

In this thesis the subject of p-optimality is studied
for arbitrary p, and an improved algorithm for generating
approximate solutions to Travelling Salesman problems is
presented.

1.2 The Travelling Salesman Problem

In view of the existing review papers on the Travelling
Salesman Problem, only the major events in the history of
the problem are given here. Comprehensive reviews of
the problem are given by Flood [8] (1955), Arnoff and
Sengupta [2] (1961) and by Bellmore and Nemhauser [L4]

-0

(1966). The last paper also contains an extensive
bibliography.

Attention by mathematicians to the Travelling Salesman
Problem dates back to 1930, when lenger [16] presented the
problem at a mathematical colloquium in Vienna, and stated
that there was no known way of reducing the number of trials
below the number of permutations of the given points
(quoted by F. Bock in Graves and Wolfe [5]). In 1954,
Dantzig, Fulkerson and Johnson [7] published a method of
solution using linear programming. This method was the
fore-runner of the class of methods involving integer
programming, one of the three main classes of methods of
solution. Methods involving dynamic programming form the
second class. Earliest methods in this class were those of
Bellman [3] and Held and Xarp [10], both in 1961. The
third and most recent of the classes of method is the class
of branch and bound algorithms introduced in 1963 by Little,
Murty, Sweeney and Karel [1l4].

Each of the above three classes has certain
disadvantages, and it is difficult to determine whether one
method is necessarily better than the others. A detailea
comparison of the computational results of current methods
has been carried out by Bellmore and Nemhauser [L].

Their conclusion is that for problems involving less than 13

-3=

nodes, a dynamic programming method is preferable because
of its predictable computation time. (Using Lin's
modification of Held and Karp's method, this method is also
more efficient, computationally). For larger problems
(up to 70 nodes) Bellmore and Nemhauser recommend the
branch and bound algorithm of Shapiro [20]. A recent
integer programming method, by Martin [15], appears to be
approximately as efficient, computationally, as the branch
and bound methods, in some examples. However, integer
programming methods have the disadvantage of widely
differing computation times for different problems.

Such a comparison of computational efficiencies is of
limited value, as computation times depend on the nature of
the computers used, and on the ingenuity with which the
various algorithms are programmed. However this
comparison does give a qualitative indication of the
applicability of the various algorithms.

The Travelling Salesman Problem arises in many
practical situations; for example the scheduling of
deliveries from a single depot to a number of customers,
the scheduling of jobs in a machine shop (see Gilmore and
Gomory [9]), and the orientation of an orbiting telescope
to photograph a set of stars, using a minimal amount of

fuel (see Staudhammer and Ash [21]). In practical

-

applications there is frequently the need for a method of
generating '"good" solutions: solutions vhich, although
not necessarily optimal, are almost optimal in some sense,
and are obtained by a computationally efficient procedure.
If a Travelling Salesman algorithm is applied in practice,
to reduce the cost of some delivery operation for example,
then the cost of the computation becomes part of the total
cost of the operation. Using the above algorithms it is
possible for the cost of computation to become a
significant part of the overall cost. The cheapest route
in practice is therefore not necessarily the optimum tour.

Consequently a large number of computational techniques
have been evolved in recent years. These practical methods
vary widely in their nature and in the extent to which it
is possible to guarantee their results. Despite the wide
variation between individual methods, they may be grouped
in three categories.

The first category contains those methods which are
obtained by modifying optimal methods. The branch and
bound methods are particularly amenable to such
modifications, for two reasons. FPirstly, in most branch
and bound methods (see, for example, Little et al [14] and
Sweeney [22]), a sequence of tours of decreasing length is

generated, and together with each tour is calculated a

-5~

lower bound on the length of the optimal tour. Thus, if
a branch and bound procedure is terminated before optimality
has been proved, an upper bound on the possible error is
available. Secondly it is observed in practice that in
many cases a major part of the procedure consists of
proving that the final tour obtained is in fact optimal.
Thus, in many cases, it is possible for a tour resulting
from an abbreviated branch and bound procedure to be
optimal., In a given amount of computing time, however,
better results tend to be obtained from methods in the
remaining two categories.

The second category consists of methods in which a good
starting tour is generated, and then improved by the
application of some set of operations. The methods in
this category are usually based on intuitively reasonable
assumptions, and their success can only be measured by
results obtained in practice. Recent examples of such
methods are those of Roberts and:Flores[19], and
Staudhammer and Ash [21].

Methods in the third category differ from those in the
second in that a random initial tour is subjected to a
rapid tour-improvement procedure. The process is then
repeated a number of times in order to generate a random

sample of a set of short tours, which can be shown, or is

-

presumed, to contain an optimal tour. Examples are the
methods of Reiter and Sherman [23] and Lin [13]. Methods
in this category are applicable to comparatively large
problems. (up to 150 nodes) and at present the method of
Lin, in particular, appears to be computationally the

most efficient. Another advantage of these methods lies in
the fact that the result is a set of short tours, rather
than a single tour. It is convenient in some applications
to select from such a set of tours a "best tour", taking
into consideration various factors in addition to tour
length.

The two algorithms described in Chapter 3 of this
thesis are modifications of Lin's algorithm, and fall into
the third category. The simple modification applied in
the accelerated algorithm in particular results in a marked
increase in computational efficiency, even though a larger
number of short tours needs to be generated.

1.3 p=Optimality of Tours in a Network

In this section the term p-optimality is defined and
some elementary results are obtained. Other basic
terminology and notation are also introduced.

Let & be a given network consisting of n nodes i,
1< 1<n, and links (i,3) Jjoining every pair of nodes

i, 3, i1+ 3 . Let the length (a function of distance

-7~

and/or time) of each link (i,j) Dbe d;q, By convention,
suppose d;y = « for all i, and if there is no direct
path between nodes i and J, let d;5 = co . Throughout
this thesis it is assumed that d;; = d;5; for all i, j.
This assumption is adhered to even though in some instances
it is necessary to distinguish between the two directed
links (i,j) and (j,i).

A tour is defined to be a circuit which includes every
node of the network, and may be represented by a cyclic
permutation (i, i, iz .+ « « 1,) of the node numbers
(vhere i, = 1, for uniqueness of representation).
Equivalently a tour may be represented by a list (which
need not be ordered) of the n 1links occurring in the tour.
The length of a tour (i, i, + « « 1) is the sum of

the lengths of the links in the tour, viz.
L0 .
dini1 + E: a. .
V=
A tour is optimal in 4 if it has minimum length.
If p is an integer and O < p < n , a tour is
defined to be p-optimal if it is not possible to transform
the tour into a shorter tour by replacing a set of p 1links

in the tour by any other set of p 1links. It should be

noted that the second set of links is not necessarily

-8-

disjoint from the first. It follows that if a tour is
p-optimal, then it is g-optimal for all integers gq ,
0O0<g<p.

A useful equivalent definition of p-optimality is the
following: A given tour is p-optimal if and only if for
every tour shorter than the given tour, the given tour
contains at least p + 1 1links which are not contained in
the shorter tour, or equivalently, if and only 1f every
tour shorter than the given tour contains at least p + 1
links which are not contained in the given tour.

The latter alternative definition immediately implies
the following result: If a tour is p-optimal then
either it is optimal or it has at most n - p - 1 1links
in common with an optimal tour.

Two more elementary results are the following: A
tour is optimal if and only if it is n-optimal (since any
tour may be transformed to any other tour by replacing up
to n of its links). Tvery tour is O-optimal and
1-optimal (since it is not possible to alter a tour by
replacing O or 1 of its links). The above results are
stated by Lin [13], who also states two further results
giving physical interpretations of the meaning of
2-optimality and 3-optimality. It may be noted that

part (¢) of Lin's Theorem 3 is incorrect. It is possible

-9-

to construct a 2-dimensional Buclidean network containing

a tour which does not intersect itself and is not 2-optimal.
In order to prepare for Chapter 2, some further

terminology is now introduced. Given an arbitrary tour,

which for the present will be called the initial tour,

let every tour which has exactly n - p links in common
with the initial tour be called a p-tour. In other words,
a p-tour is a tour which can be obtained from the initial
tour by the replacement of p links in the initial tour Dby
p different links. It follows that a tour is p-optimal
if and only if its length is less than or equal to the
length of every g~tour for O < g S P

The theoretical results of Chapter 2 are mainly
concerned with the problem of determining the number of
trials required in an enumerative procedure for testing a
tour for p-optimality. At the present time the only result
through which some of the trials may be avoided is the
result on degeneracy in section 2.5. Apart from minor
variations the procedures described in Chapter 2 consist
of the enumeration of the set of g-tours, for 0 < q <D
and the comparison of the length of each g-tour with that
of the initial tour. The most difficult problem to be
solved in conmnection with this enumeration is the

determination of the number of distinct p-tours obtainable

~10-

from each initial tour. This problem 1s solved in section
2.2, with the aid of a preliminary result proved in section
2.1, As the method used in section 2.2 does not enable
the set of p-tours to be constructed unless another much
larger set of tours is first constructed, a second method
is given in section 2, 3. This method gives rise to some
repetitions; however it has the advantage of providing
a practical meansg of constructing the set of p-tours.
Section 2.4 contains a simplification of the method of
section 2.3, obtained by using the idea of congruence of
p-teste. This simplified method is particularly useful
in practice for p 2 L.

In the above methods the notation of gegments is used.
It has been stated earlier that for a given initial tour
every p-tour can be obtained by replacing p 1links of the
initial tour by p other links. For the purpose of the
above enumerative procedures it is more convenient to
consider every p-tour to be formed from the initial tour by
the following two operations: Firstly p 1links are
deleted from the initial tour to form exactly p chains,
each containing one or more nodes. These chains are called
segments of the initial tour. The second step is to
specify the order and direction in which the p segments

are to appear in the final tour. If the second step is

-t

carried out in such a way that no two segments which are
consecutive in the initial tour are consecutive in the
final tour, then the final tour does not contain any of the
p deleted links, and is therefore a p-tour.

In section 2.5, on the other hand, it is necessary
to consider the sets of deleted and inserted links, instead
of segments, in order to define degeneracy of a p-test.
However, in obtaining the numerical results in section 2.5,
segment notation is again used.

Note that the first five sections of Chapter 2
concern the number of p-tours obtainable from an initial
tour, It is only in section 2.6 that these results are
used to give the number of trials required to test a tour
for p-optimality.

1.0 p=Optimality and the Travelling Salesman Problem

There are two ways in which the concept of
p-optimality nay be applied to the Travelling Salesman
Problem. The first guarantees an optimal solution, but is
not computationally feasible at the present time, except
for very small networks. The second is described in
detail in Chapter 3.

The first .ethod is mentioned here for completeness,
and to suggest some unsolved problems. Clearly one way to

generate an optimal tour is to generate an n-optimal tour,

-12a

where n is the number of nodes in the network. For any
given network there is a smallest value of ©p, say P,
such that p’-optimality implies n~optimality. The problem
of finding such a value of p 1is at present unsolved.

It has not even been found possible to determine an upper
bound on p’ for given n . Lin [13] conjectures that
every (n—1)-optimal tour is optimal, and has proved this
conjecture for n < 6. If proved, this conjecture would
imply that p’ < n-1. Results obtained in practice,
however, indicate that a much stronger result may in fact
hold. Tor example, for n = 6 every 3-optimal tour
generated in a large number of trial networks has been
found to be optimal, and for n = 7 every L-optimal tour
has been found to be optimal. In 2-dimensional Euclidean
networks, computational results from several hundred trial
networks of up to 50 nodes indicate that p’ is less than
in, and probably much less than <n for large n .

This upper bound was obtained by inspection of sets
of 3-optimal tours, on account of the difficulty of
generating p-optimal tours for large D . In no case
vas there found a 3-optimal tour which had less than In
links in common with an optimal tour. These results
suggest that p’ < In . Also, it appears from the limited
results available for moderately large n (up to n = 50)

!
that the ratio %r decreases as n increases. For

-1 3

exanple in the L8-node problem of Held and Karp, the
greatest number of links which occurred in a 3-optimal tour,
but not in the optimal tour, was found to be 17. This
shows that if all 3-optimal tours have been found for this
problem (which is likely, using the algorithm of section
3.2) then p’ < 17 for this problem.

Although the above results are not conclusive in
themselves, they do suggest that the value of p’ may prove
to be sufficiently small for the above method to be
practicable, A second problem to be solved before this
method can be used for large n is that of generating
p-optimal tours efficiently for large p . The methods
used in this thesis (see Chapter 2) are only practicable for
p < 6 at present, and the number of repetitions of steps
is very large unless 7p 1is very small compared to n.

Also, results on degeneracy for p » 6 are not known 4t
present. This first method is not investigated any
further here.

The second method of applying p-optimality to the
Travelling Salesman Problem consists basically of
generating a random sample of p-optimal tours for a suitably
small value of p , and estimating the probability that
this sample contains an optimal tour. This method is

discussed in detall in section 3.2, and uses the same

~f Ly

general approach as that of Lin [13]e Following Lin's
experience with p = 2,3,4, the value p =3 is used in
this method.

Lin assumes that the probability of a 3~optimal tour
being optimal is a function of n, and obtains an
empirical estimate of this probability for each n.

However it is found in practice that the number of distinct
3-optimal tours varies widely in networks of a given number
of nodes. For example, most randomly-generated
2-dimensional networks of 20 nodes are found to possess
only a single 3-optimal tour, but some contain L, distinct
3-optimal tourse. Lin's empirical estimate depends only on
the number of nodes, and therefore does not take account

of this variation between networks.

A second way of estimating the above probability does
not rely on any empirical estimates, and does take account
of the variation between individual networks. This method
is described fully in section 3.2. It consists basically
of estimating the probability that an optimum has been
obtained after v distinct 3-optimal tours have been
generated in g trials, assuming that all 3-optimal tours
are equally probable. Since shorter 3-optimal tours tend
to occur more freguently than longer 3-optimal tours, the

second estimate tends to be somewhat pessimistic. However

15.

this estimate appears to be more realistic than the purely
empirical estimate, as it does not depend on stringent
a priori assumptions.

A possible improvement to the second estimate may be
achieved by obtaining empirically the probability of the
occurrence of each of the v 3-optimal tours in a network.
These probabilities may then be used in the estimation of
the probability that one of a given set of 3-optimal tours
is optimal, instead of assuming equal probabilities. As
an optimal tour almost invariably appears more frequently
than other 3-optimal tours, this third method should give a
more optimistic estimate. However a great amount of trial
data is required to determine the above probabilities and
to test the reliability of the resulting probability of
optimality. This third method has therefore not been
fully tested at the present time.

This second method of applying p-optimality to the
Travelling Salesman Problem is of an essentially Monte-Carlo
nature, and its success is attributable to the following
two empirical facts.

(i) 3«<optimal tours can be generated extremely rapidly
(see section 3.2), and without requiring much computer
storage.

(ii) The number of 3-optimal tours is comparatively small,

-16=

even for medium-sized networks (up to 50 nodes).

The accelerated algorithm described in section 3.3 is
a variation of the second method above. Although the
tours obtained are not necessarily 3-optimal, and there is
a possibility that in some networks the probability of
obtaining an optimal tour could be reduced, the above
methods may again be used to obtain estimates of this
probability. Despite the abovementioned shortcomings of
the accelerated algorithm its greatly increased
computational efficiency is an important consideration in

practical applications.

CHAPTER 2

This chapter consists mainly of the derivation of
results of a theoretical nature, leading eventually to the
number of tours whose lengths need to be tested in order to
test a given tour for p-optimality.

Section 2.1 is independent of the remainder of the
chapter, apart from its application in section 2.2.

Sections 2.2 to 2.4 are concerned with the set of p-tours
obtainable from a given tour. In section 2.2, the exact
number of distinct p~tours is derived for arbitrary p .

In section 2.3 a practical method for generating the set of
all p-tours is described, and the exact number of tours
(including repetitions) obtained using this method is
derived for arbitrary p . In section 2.4, the idea of
congruence of p-tests is defined, and is used in a
modification to the method of section 2.3 which is more
practical for p 2 4. An enumerative procedure for
determining the number of steps in this method is described,
and this number is computed for p < 6.

Section 2.5 contains the only known result which enables
the p-optimality of a tour to be tested without testing the
length of every g-tour for O € g < p. This result depends
on the idea of degeneracy of a p-test, and is of limited use

at present, as there is no known way of enumerating all the

-1 8=

degenerate n-tests, except for p < 5. The effect of this
result is to reduce the number of p-tests which need to be
applied at each stage of the methods of sections 2.3 and
2.4.

In section 2.6, the results of sections 2.2 to 2.5 are
used to determine the number of tours whose lengths need to
be tested in order to test a given tour for p-optimality,
by means of five methods. The number of distinct tours to
be tested is obtained from the result of section 2.2, and
the numbers of tours (with repetitions) using two practical
enumerative procedures are obtained from sections 2.3 and
2., The latter two methods are then modified, for p < 5,
by deleting the degenerate p-tests, using the result of

section 2.5,

-19=

2.1 Single-node Segments

The purpose of thls secotion is to determine the number
g(n,p,q) of ways in which a tour containing n nodes may
be divided into p segments, q of which consist of a
single node, where p and g are given integers. This
number is required in section (2.2) in the derivation
of the exact number of p-tours obtainable from each
initial tour.

In order to divide a tour into p segments it is only
necessary to delete p distinct links from the tour.

A segment consisting of a single node occurs wherever two
of these deleted links are adjacent. Thus the number
g(n,p,q) 1is simply the number of ways of selecting D
objects (points, links, numbers, etc.), from a set of n
objects arrayed on a circle, in such a way that exactly ¢
adjacent pairs of objects occur among the selected objects.
This problem has been solved for the special case q =0
by Kaplansky [11].

The derivation of g(n,p,a) depends on the solution
of three similar problems, defined on a line instead of a
circle, and subject to certain conditions on the first and
last objects. These three linear problems will now be

considered.

~20-~

Problems for a Linear Array of Points.

Given n + 2 points

0, 1, 2, « o o n, n+ 1,
arrayed on a line, let fi(n,p,q) be the number of ways
of selecting p + 2 of these points such that exactly g
adjacent pairs occur, given that the selection must include
points O and n + 1. Alternatively, f4,(n,p,q) is the
number of ways of selecting p of the points 1,2,...,n
such that q adjacent pairs occur, given that points O
and n + 1 have already been selected. Let f,(n,p,q)
be the corresponding number when only point O has been
previously selected, (or equivalently, when only point
n + 1 has been selected). Let f3(n,p,q) be the number
of selections in which neither of the points O and n + 1
are selected.
Lemma 2.1. Given that n2> 2, p=>1, and q 2> 1,

£i(n,p,q) = £4(n-1,p-1,9-1) + £1(n-1,0,9)

- £3(n-2,p-1,q-1) + £;(n-2,p-1,a) (2.1)

Proof. Suppose a given selection of p» points with g
adjacent pairs contains point 1. Then it contains the
pair (0,1). It therefore contains p - 1 of the points
25e0e,01 with g - 1 adjacent pairs occurring among these

points. It follows from the definition of £, that there

-2 =

are fi(n—1,p—1,q-1) such selections. On the other hand
every selection which does not contain point 1 contains
p of the n - 1 remaining points, with gq adjacent pairs.
It follows from the definition of f, that there are
fz(n—1,p,q) selections not containing point 1. The total
number of selections containing p points and gq adjacent
pairs is therefore
,(n,p,a) = £1(n-1,p-1,9-1) + £z(n-1,0,0). (2.2)
Similar reasoning gives
fa(n,p,a) = £4(n-1,p-1,a) + fz(n-1,p,). (2.3)
Subtracting (2.2) from (2.3) gives
£,(n,p,q) = fy(n,p,a) + £1(n-1,p-1,9)
- £y (n=-1,p-1,9=1). (2.4)
Using (2.4) to express fg(n-1,p,q) in terms of £y,
and substituting the result in equation (2.2) gives
equation (2.1). The conditions n > 2, p> 1, 9> 1

ensure that the arguments of f, and f,; are non-negative.

The recurrence %ormula (2.1) can be used; Witﬂ
suitable boundary valﬁes, to derive fi(n;b;q) for ali
hon;negapive integers n, p and q; Boundary values are
now obtained by determining, for each n, the range of
values of p;q for which fikn,p;q) i8S ZEero.

Range of p,d.

From its definition, f, dis only defined for non-

negative integer values of its arguments. Since it is not
possible to select more than n points, it follows that
it p > n,

fa.(n,P,Cl) =0 .
Also, if the n points are all chosen there are n + 1
adjacent pairs, and if no points are chosen there are nho
adjacent pairs (except in the trivial case n = O, in which
points O and n + 1 are adjacent). Thus, for n = 1,

f,(n,n,q) = {1 if g = n+1
0 otherwise, and

f (n,0,9) = {1 if g =0
0 otherwise.

The remaining case 1 € p € n-1 1is now considered.
Lemma 2.2, If 1 < p < n-1 then
fs(n,p,q) =0
whenever ¢ 2 p+1 or g € 2p-n. That is, if n 4+ 2 points
lie on a line, then for every selection of p + 2 of these
points, including both end points, the number ¢q of
adjacent pairs of selected points satisfies the inequalities
2p-n+1 € ¢ € p &
Proof. As there is a total of n + 1 pairs of adjacent
nodes, it follows from the definition of g that there are
n+l1-q pairs of adjacent nodes in which at least one of the
nodes is not selected. Now there are n - p unselected

nodes, and there are at most 2(n-p) pairs of adjacent

-23-

nodes containing one or more of these. That is,
n+l=-q < 2(n-p) ,
therefore g = 2p-n+l .
The other inequality, namely g < p, follows at once from

the definitions of p and Q.

Table 2.1 shows the zero values of fi(n,p,q) for
ns<v. The conditions p > 0, q > O define an
(n+1)x(n+2) upper-left rectangle of this table.

Because of the triangular arrangement of the nonzero
values of fi(n,p,q) and the nature of the recurrence
formula (2.1), it is now possible to generate systemat-
ically all the values of fi(n,p,q). Before doing so,
however, it is convenient to define new variables r, s
as follows:

r

n-mr

il

n-"o P

S

|

P-q g=p~-8S=n-0,-285.

Define
F,(n,r,s) = £, (n,n-r,n-r-s) .
Then the recurrence formula (2.1) TDecomes
F,(n,r,s) = Fy(n=1,r,8) + Fy(n-1,r-1,s)
- Fy(n-2,r-1,8) + F;(n-2,r-1,s-1) . (2.5)
Define

- Apg(n) Fi(n,r,s) N F1(n—‘l,r,s) . (2.6)

\\\3 n+1 n n-1 n-2 n-3 n-ué n-5 n-6 n-7
p J—

n X o] o] o] o] o i o 0 o
n-1 0 o X o} o} o o} o o}
n-2 o] o] o] X X o] 0 o] o]
n=3 o] o} o] o] X X X o} 0
n-ly. o) o) o) o] o) X X X X
I et D N oz ey % - X
n-6 o) o 0 o o o X X
n-7 o] 0 o] o] o o] 0 o] X
TABLE 2.1 Zero values of f,(n,p,q) for n< 7.

Nonzero values are indicated by X. Dotted line indicates

the extent of the table for n =14 .

\\s 0 1 2 3 L 5 6 7 8

r
1 X f 0 o} o} o o) o} o} o
2 X iﬁ“ o o] 0 o 0 0 0
5] X X ””X”t o) o) (e} 0 o] 0
L X xi X X o o} o} o o
5 X4 Xm' X X X o] o} o] o]

e bl < X X o] o] o} o) o]
7 X X X 0 0 0 o] o (o}
8 { X o] o o) o] o] 0 o]
9 X o] 0 o] o) o o] o] 0

=1

ABLE 2,2 Zero values of F,(n,r,s) for n < 9 .

Dotted line indicates the extent of the nonzero values for

n=5o

-2l

Then (2.5) Dbecomes |

Arg(n) = Ap_s s(n-1) + Fy(n-2,r~1,s~1) (2.7)
Equations (2.6) and (2.7) are clearly eguivalent to
(2.1).

The trivial case p = n has already been dealt with.
It is assumed now that O < p < n - 1; that is, 1 € r € n.
From the restrictions on g (for nonzero f,(n,p,q)), namely
0 < g
2p-n+1 < ¢ € P
it follows that for nonzero F,(n,r,s),
s<n-r
O<ss<r-1. (2.8)
The region defined by these inequalities is indicated by the
nonzero values in Table 2.2, for n < 9. The restriction
8 <n-7r defines an upper-left triangle outside which , F;
is zero, as indicated for n = 5 by the dotted line on
Table 2.2,
The procedure originally used to generate Fy(n,r,s)

was to work systematically from the top left corner of
Table 2.2, calculating Ars(n) (for all =n) from equation
(2.7) and then summing the Apg(n) to obtain F,(n,r,s).

The initial values used in this procedure were

o oc o B

Fi(n,1so)

Fl(nyra“1) =
F, (n,r,r) = (2.9)

F, (r+s-1,r,8) =

—2F—

for all n, r, s. (Note that F,(n,r,s) is defined for
negative as well as positive values of r, S.)

This procedure is lengthy and will not be described
in further detail in view of the following result, which
was suggested by numerical results obtained using the above
procedure.,

Lemma 2.3 For all n2 1, r2 1 and all s,

Pu(ne,0) = (M) (1) . (2.10)

Proof It may be shown (using the above recursive
procedure, for example) that the recurrence relations (2.6)
and (2.7) and the boundary conditions (2.9) determine
Fy(n,r,s) wuniquely. Thus it is only necessary to prove
that the above function satisfies these conditions.

(i) Boundary Conditions. From the fact that

<§> =0 if a<Db or b<O0, (a, b integers)

it follows that i
(n r+ > -0 if s>mn-r

s+1

and <r-1>
s

from which it follows that the right hand side of (2.10)

or s < -1,

0 if s> r -~ 1
or s8< 0,

is zero unless conditions (2.8) hold. Also, when
r=1, s = 0, the right-hand side of (2.70) is equal to

n (using the convention \<9> = 1)
: 0

-26-

It follows that conditions (2.9) are satisfied.

(ii) Recurrence Relations. Assuming the above form for

F,(n,r,s), equation (2.6) gives

ere @ = (OUCETHERL

Applying the standard result

(0)=G) () (211

to the term in parentheses gives

e @ = (N0 (212

It follows that

Ars (n) = Apoy g(n=1) = (n:-){(r:)_(P;Z)})

and application of (2.11) to the term in parentheses gives
<n—r><r-2>
8 s-1

= F, (n=2,r=1,8-1) ,

Ars (n) = BDpr.a s(n"1)

i

Thus (2.7) 1is satisfied, and the proof is complete.

The result of Lemma 2.3, written explicitly in terms

£y (n,p,q) = (p?)(n;}i;) , (2.13)

for 0 < p < n-1, and all q. This completes the

of p,q, 1is

derivation of an explicit formula for f£,(n,p,q) for all
N,Psde.

The corresponding results for f, and f3; are now

27—

derived from f£,, using the recurrence relation (2.4).
For convenience the variables r,s are again used. Define
F.(n,r,s) = fz(n,n-r,n-r-s) ,
Fo(n,r,s) = f3(n,n-r,n-r-s) .
In terms of r and s, equation (2.4) becomes
F,(n,r,s) = F,(n,r,s) + Fy(n-1,r,8-1) - F,(n-1,r,s) ,
(2.14)
or, using equation (2.6),
Fy(n,r,s) = Ar,s (n) + F,(n-1,r,s-1) (2.15)

Lemma 2.4 For all n>» 0, O < rs<mn, and all s,

Fy(n,r,s) = <Z><n;r> (2.16)

or, equivalently, in terms of p,q, 1if O < p < n,

fo(n,p,q) = (n;?><n_§_q> . (2.17)

Proof If n>» 1, r> 1, equation (2.15), together
with (2.10) and (2.12), gives

Fp(n,r,s) = <P;1><n;r>) (n;r)(::1>
CoACTAE)

Application of the standard result (2.11) gives (2.16).

The remaining case n = r = 0 1is easily verified.

The values of p,q,r,s for which f, and F,; are

nonzero are found to be

~28-

2p-n € ¢ € p
0 < ¢g s <r,
using the argument of Lemma 2.2. In this case there are
no exceptions to (2.16) and (2.17), wunlike the

corresponding results for ¥, &and f,.

Lemma 2.5 For all n>1, O0<r < n-1, s2 1,
Fs(n,r,s) = <n-r-s><r+1> (2.18)
s=1 S .
Or, in terms of p,q, if 1 < p<n, g < 1-p,
fa(n,p,a) = <n'P+1)<P'1> (2.19)
b-q q .
Proof It can be proved, using similar arguments to those

in the proof of Lemma 2.1, that equations (2.2), (2.3)

and (2.4) remain valid if f, is replaced by f,, and £

by fa. In terms of r,s, equation (2.4) TDecomes
Fs(n,r,8) = Fy(n,r,s) = Fo(n-1,r,s) + Fa(n-1,r,s=1) .

Substituting for PF,, using equation (2.16) and applying

(2.11) twice to the result then gives equation (2.18).

The values of p,q,r,s for nonzero fa(n,p,q) and

Fg(n,r,s) are

-29—

The derivation of these inequalities is again similar to
that for f, (see Lemma 2.2).

Comparison of the above inequalities with the restrict-
ions in Lemma 2.5 shows that the only nonzero values of
Fz(n,r,s) not given by (2.18) occur when either r =n
or s = 0, that is, when either p =0 or p = Q. Now
it is easily shown that p = g can only occur if p = O.
Thus Fg(n,n,0) = f£3(n,0,0) 1is the only nonzero value not
given by (2.18), and it follows from the definition of
f3 that

fs(n,0,0) =1 .

This completes the solution of the problem for a linear
array of points. The numbers f,(n,p,q) and fs(n,p,q)
are now used to solve the problem for a circular array.

Problem on a Circle

Given n points arrayed on a circle, g(n,p,q) is the
number of selections of p of the points which include
exactly gq adjacent pairs of points.

It can be shown from first principles (see Lemma 2.2)

that g(n,p,q) = O unless either

(1) p=g=0
or (ii) p=g=n
or (iid) 1< p < n-1,
0 < q< p-1, and (2.20)
2p-n £ 4 .

-30-

In the following theorem, g(n,p,q) is derived for each of
these three cases.

Theorem 2.1 For all n > 1,

g(n’O’O) b g(n,n9n) =1, (2'21)

and for n> 2, 1 <p < n-1, and all g,

g(n,p,q) = n_ljﬁc:l;)(p:) . (2.22)

Proof The special cases (2.21) are trivial.

Suppose now that n > 2, and 1 <p € n-1. Choose
one of the n points. If a selection of p nodes with g
adjacent pairs includes the chosen point, then it also
includes p-1 of the remaining n-1 points. There are
fi(n-1,p—1,q) such selections. If a selection of p points
with q adjacent pairs does not include the chosen point,
then it contains p of the remaining n-1 points. There

are fz(n-1,p,q) such selections. Therefore

fi(n‘1:P‘1sQ) + fa(n‘19P:Q)

G+ 2
- (e 2)

which on simplification gives (2.22). ©Note that the value

f

g(n,p,q)

of g(n,p,q) given by (2.22) 1is zero unless inequalities

(2.20) are satisfied.

-3 -

It has thus been shown that the number g(n,p,q) .of
ways in which a tour containing n nodes may be divided
into p segments, of which g consist of a single node,
has the values given by (2.21) and (2.22).

2.2 Number of Distinct p=Tours

In this section the number a(n,p) of distinct

p~tours obtainable from an arbitrary initial tour of n
nodes is derived. The results required for the purpose of
this thesis are those for undirected tours. However it is
convenient to consider directed tours first, and then derive
the corresponding results for undirected tours.
Consider an arbitrary p-tour, O < p € n. By
definition there are exactly p links in this tour which
do not occur in the initial tour. Deletion of these p
links leaves p segments, all of which occur, possibly
reversed, in the initial tour. It follows that every p-tour
consists of p segments of the initial tour, arranged in
some order, some subset (possibly empty) of the segments
being reversed.
Thus, for example, if n = 6 and the initial tour is
(11123)-!-56)9
the tour
(1 5 4 2 3 6)

is a 3~tour, because 3 of its links differ from those in the

-30a

initial tour. It consists of the 3 segments

s, = {6,711, sp= {2,31, sz = {L,5]}

in the order s,, s3, 8p with sz reversed.

’ y

Conversely, if a tour is obtained from the initial tour
by firstly deleting p 1links to divide the tour into p
segments, and then rearranging these segments in such a way
that none of the p deleted links are reinserted, then this
tour is a p-tour.

An ordered set of p segments, formed from the initial
tour by deleting p links, is defined to be a partition of
the initial tour into p segments. The above results may
now be summarized as follows.

Lemma 2.6 For each initial tour on a network of n nodes,
the set of p-tours consists of the set of all tours obtainable
from the initial tour by means of the following two steps.
Step (i). TFormation of a partition of the initial tour into
v segments,

Step (ii). Rearrangement of the p segments from step (i)
(by means of a cyclic permutation), followed by the reversal
of a subset (possibly empty) of the segments, in such a way
that none of the links deleted in step (1) are reinserted.
(Note that in each partition there may be some segments
consisting of a single node, and these single-node segments
may not be included in any of the subsets of reversed

segments. Otherwise repetitions will occur.)

-3%~

Corollary For each initial tour on a network of n nodes,
and O < p € n, the number a(n,p) of p-tours is the sum,
over all partitions of the initial tour into p segments,

of the number of ways of performing step (ii) on each

partition.

If the number of ways of performing step (ii) on each
partition could be found, the problem of determining a(n,p)
would now be solved. However, for a given partition, this
number depends not only on the number of single-node
segments, but also on the way in which they are distributed
througliout the tour. For example, suppose there are four
segments in a partition, two of the segments consisting of a
single node. It can be found by trial that if the two
single-node segments are adjacent then only one p-tour can
be obtained from the partition, whereas if they are not
adjacent then three p-tours can be obtained.

It therefore appears to be difficult, if at all possible,
to use the above corollary to determine a(n,p). The
following alternative procedure avoids the necessity of
considering the application of step (ii) to individual
partitions. It is worth noting, however, that the
constructive method described in section 2.3 does in fact
use this approach, after step (ii) has been replaced by a

more general step in which single-node segments are not

-3l

treated as a special case.

The method used in the present section to evaluate
a(n,p) consists essentially of replacing step (ii) by
another more general step, and deleting from the resulting
set of tours all tours which are not p-tours. It must also
be proved, of course, that this set of tours does not
contain any repeated p-tours.

Let ®B(n,p) be the set of tours obtainable from a
given initial tour of n nodes by means of step (i) above,

followed by step (ii)', which is the same as step (ii),

except that the condition that no deleted link may be
reinserted is omitted. Let b(n,p) %Pe the number of tours
(including repetitions) contained in #(n,p).

Derivation of Db(n,p)

If p2 1, the number of ways of rearranging the p

segments of a partition is

(p-1)1!
(including the trivial 'rearrangement' in which the order of
the segments is left unaltered). For each of these
rearrangements there are

op-q
ways of choosing a subset of segments to be reversed, where
g is the number of single-node segments in the partition.
Thus the number of ways of performing step (ii)' is

or=d(p=1)1! . (2.23)

—3H=

For each q, the number of partitions for which (2.23)
gives the number of ways of performing step (ii)' is g(n,p,q).
The total number of tours obtained from the initial tour by

steps (i) and (ii)' is therefore

D
b(n,p) =) 2°-9(p-1)! g(n,p,q)
-
q=0
P
=27 (p-1) 2 2-9g(n,p,q) (2.24)
=0

for 1 <ps<n. If p=0, i.e. no links are deleted, then
the resulting tour is either the initial tour or its
inverse; therefore

v(n,0) =2 , (2.25)
if n>» 3. In the following it will be convenient to
agssume n » 3, so that every tour is distinct from its
inverse. The number a(n,p) is now derived using the
above values of b(n,p).

Derivation of a(n,p)

It follows from the definition of step (ii)' that
every tour in the set 3(n,p) is a k-tour, where O < k < p.
Since, from Lemma 2.6, a tour is a p~tour if and only if
none of the links deleted in step (i) arere-inserted in
step (ii)', it follows that each p-tour occurs exactly once

in #®(n,p). The number of occurrences of each k-tour,

-36~

0 < k <« p-1, is now determined.

Lemma 2,7 Every k-tour, O < k < p-1, occurs in the set
a(n,p) exactly <n—k> times.

p—
Proof Consider an arbitrary k-tour, By definition, the

initial tour contains exactly k 1links which do not occur
in the k-tour. If this k-tour can be obtained from a given
partition by an application of step (ii), then the p 1links
deleted from the initial tour to form this partition include
n'k> such partitions.,
p-

Since the order of the p segments contained in the

the above k 1links. There are <

k-tour is fixed, as is also the direction in which each
segment is traversed, it follows that for each of the above
(n—k) partitions there i1s only one application of step (ii)'

p=-k
which results in the given k-tour, Thus the given k-tour

/ —
occurs Kn k) times,
p-k
Corollary For n>1, and 0 < p < n, the number

a(n,p) of distinct p-tours contained in @(n,p) satisfies

=] X
atmp) = bm,p) =) ("Fa(a,) (2.26)
: p_k
k=0
Proof From Lemma 2,7, each of the a(n,k) k-tours occurs

n-k

p-kK
occurrences of k-tours in ®(n,p), where O < k < p~1, is

~1

3 (Yt
A p-k/

k=0

in the set ®(n,p) exactly (> times, The number of

therefore

37

Since the remaining tours are p-tours, result (2.26)

follows,

Equation (2.26) may be used recursively to evaluate
a(n,p) for all n> 3 and O < p < n, using the trivial
result a(n,0) = 2 for all n as an initial value, and the
values of b(n,p) given by equations (2.24) and (2.25).

An explicit formula for a(n,p) is derived in the
following theorem, The previously derived expressions for
b(n,k) and g(n,k,i) are included here for convenience.

Theorem 2,2 The number of distinet p-tours obtainable

from an initial tour of n nodes is given by

a(n,p) = fm)P‘k(n'k)b<n,k) , (2.27)
K0 .
where
b(n,k) =2 if kx =0 ,
k
= 2k(k—1)! }Z\Z"ig(n,k,i) if 1<k<n,
i=d
and

g(n,k,i) =1 if k=1=0 or k=1=n,

n (E‘)(k'1> if 1<ks<n,
n-k\k-1 i

= Q0 otherwise,

-38-

Proof From equation (2,26),
2 K
b(n,p) = Z(ﬂ‘)a<n,k) : (2.28)
] p-k

The fact that (2.28) implies (2.27) 4is shown by proving
the relation

>_‘(1)P—k<n-k><k-;]> : ; i: E, i (2.29)

(Equatlons (2.27), (2.28) and (2.29) can of course be
written in matrix form). The proof of (2.29) uses the

following elementary properties of binomial coefficients.

O =)D, teres, o)
ZS(—1)r(:> =0, if s> 1. (2.31)
r=0

The case p = J 1is trivial. Consider the case p > J + 1.

The left side of (2.29) may be written

L< R Gy G

(noting that <n—3> =0 if %k < j)., This becomes, using
n-k
equation (2,30),

d)}g(1) p-k p->

-39-

which, using (2.31), is zero for p > j + 1, This
completes the proof of Theorem 2.2, which is the main result
of this section, Note that this result refers to directed

tours.

Undirected tours

In the present section, in order to consider a tour as
an ordered set of directed segments, it has been necessary
to consider directed tours. Throughout the remainder of
this thesis, attention is focussed on undirected tours, and
the corresponding values of a(n,p) and %b(n,p) for
undirected tours are required, Let these values be denoted
by as(n,p) and by(n,p), respectively. In later sections
the subscripts will be omitted, except where ambiguity may
occur,

The value of by(n,p) can be found from b(n,p) by
observing that if a tour is obtainable from a given
partition by means of step (ii)', then so is the inverse of
the tour, since a tour and its inverse consist of the same
segments, traversed in the opposite order and in the opposite
direction, If n> 3, every tour is distinct from its
inverse. Therefore for n > 3 the set a(n,p) consists
entirely of vour-inverse pairs, each pair being equivalent to

a single undirected tour. Thus

by(n,p) = ¥b(n,p) ,

-140-

and likewise
as(n,p) = %a(n,p)

The results for undirected tours are therefore as stated in
Theorem 2.2 for directed tours, except that the expression
for b(n,k) 1is divided by 2. Note that equation (2.27)
is unaffected when a and b are replaced by a; and by,
A Check

Since the number of undirected tours on a network is
3(n-1)!, the sum over all p, O < p < n, of the number of
p~tours is Z(n-1)!. It is of some value, after the lengthy
forezoing derivation of ai(n,p), to verify that this result
in fact holds.

From equation (2.27),

Laun,p) =) f()Pk n'k)mn,k)

=0 p=0k=0

Changing the order of summation and substituting Jj =p - k

gives
n n-k
) aslnp) = }:mn k)) 1)3(“)
p=0 J=0

By (2.31), the only nonzero term on the right side of this
equation is the term in which k = n, Hence

n
2_ as(n,p) = by(n,n)
p=0

- -

and therefore

n
) aslnp) = tat)y (2.32)
p=0

as required. This last result by(n,n) = ¥(n-1)! follows

from (2.24), using the fact that g(n,n,q) = 0 except

when g = n,

Equation (2.3%2) can also be used as a check on

calculationsof values of a,(n,p)

Particular values of as(n,n)

Sample values of as(n,p) are given in Table 2,3, for
3<n< 10, Pormulse for ay(n,p) in explicit polynomial

form are as follows, for O< p< L4, and n>p + 1.

as(n,0) =1

as(n,1) =0

as(n,2) = sn(n-3)
a;(n,3) = #n(n-4)(2n-7)

a;(n,4) = Zpn(n-5)(25n2-229n+534)
Such formulae may be found if necessary for arbitrary p,
either by expansion of (2.27) or by fitting a polynomial
of degree p to the first p + 1 values of a,(n,p) for
nzop+1. These formulae are useful for hand calculation

of ay(n,p) for large values of n.

\p o 1 2 3 L 5 6 7 8 9 10
n i

3 1 0 O 0

L 1.0 2 O 0

5 17 0 5 5 0 1

6 1.0 9 20 15 12 3

7 1 0 1L L9 21 112 70 23

8 1 020 96 302 640 740 54hl 177

9 1027 165 747 2439 L4725 6003 L4500 1553

10 1 0 35 260 1550 7076 20810 L1420 53585 L1740 14963

TABLE 2.3 Values of a,(n,p) for 3<n<10, 0<ps<n.

12—

2.3 Constructive Enumeration of p-Tours

The number a(n,p) is obtained in section 2.2 by a
nonconstructive procedure involving exclusion. As
mentioned following the corollary to Lemma 2,6, this
procedure is made necessary by the difficulty of determining
the number of ways of performing step (ii) on each partition.
In the present section, step (ii) is replaced by a more
general step which enables a constructive enumeration of the
set of p-tours to be carried out. As a result of the
generality of this constructive procedure, the set of trial
tours obtained contains some tours which are not p-tours, as
well as some repetitions among the p-tours. The exact
number of these redundant tours is derived, and this number
is shown to be comparatively small if p is small compared
with n.

Before describing the procedure for constructing the
setﬂof p-tours obtainable from a given initial tour, some
new notation is introduced.

p-Tests and Strict p-Tests

Consider an arbitrary partition consisting of p
segments, where p > 1, From (2.23), the number of ways
of performing step (ii)' has a maximum value of

u(p) = 2271 (p-1)1
when g = 0, 1i.e, when the partition contains no single-node

segments, (In this section tours are assumed to be

-3

undirected, and under this assumption the number of ways of
performing step (ii) is half the corresponding number for
the case of directed tours),

In this maximal case, where every segment can be .
reversed, the operations comprising step (ii)' are called
p-tests, and the corresponding operations comprisihg

step (ii) are called strict p-tests. The number v(p) of

strict p-tests is now determined.
Lemma 2.8 The number of strict p-tests on a partition of

p segments, none of which consist of a single node, is given

by
v(0) =1,
v(p) = Z(1>P‘k(k>u(k> (2.33)
k=0

if p =21, where
u(0) =1 ,
oK1 (1)1

if k > 1. Explicitly, for p =1,

u(k)

-k k-1
vip) = (-1)P 4 p!}i}(1)p : (2.34)
(p—kF'
k=1
Proof The case u(0) = v(0) = 1 1is trivial, Consider

an arbitrary p-test on a given partition of p segments,

where p > 1, and suppose the result is a k-tour, where

-l

0 < k < p, As shown in the proof of Lemma 2,7, there is
no other p-test (on the given partition) which results in
the same k-tour. Thus the set of trial tours resulting
from p-tests on a given partition contains no repetitions.
Now a k-tour can be obtained from a partition of p
segments by re-inserting p - k of the deleted links, and
performing a strict k-test on the resulting k segments.,
The number of ways of re-inserting p - k 1links is
(2)- ¢
and for each of these waysp;ﬁere are ,v(k) strict k-tests.

Therefore, for each k, O < k < p, the number of p-tests

vt

and the total number of p-tests is

u(p) = i@vm . (2.35)
=0

Equation (2.33) ' can now be derived from (2.35), using

resulting in k-tours is

the same arguments as those in the proof of Theorem 2.2,

The explicit formula (2.34) follows immediately from (2.33).

Sample values of v(p) are

v(0) = 1
v(1) =0
V(2) = 1
v(3) = 4

5~

v(L) = 25
v(5) = 208
'V'(6) = 2121
v(7) = 25828

For hand calculastion it is convenient to use formula (2.35)
recursively, with the initial value v(0) =1,

Generation of p-Tours

For an arbitrary initial tour of n nodes, the set of

all p-tours is generated by the following two steps.
(i) Pormation of a partition of p segments,

(1ii)" Application of every strict p-test to each partition.
Step (ii)" differs from step (ii), its counterpart in
section 2,2, in that single-node segments are no longer
treated as a special case. In step (ii)", every subset of
segments is reversed, whereas in step (ii), only those
subsets contalning no single-node segments are reversed.

Once the set of all strict p-tests is constructed, it
is a routine matter (though perhaps lengthy) to apply this
set of strict p-tests to every partition of the initial tour.
The construction of the set of all strict p-tests has been
carried out for p < 7 by an enumerative computer programme
which makes use of the idea of congruence of p-tests (see
section 2.4). The practical details of aspplying these
p-tests efficiently to all partitions are dealt with in

Chapter 3,

L6

Number of Redundant Tours

Redundant tours result from the above procedure in two
ways. Firstly, where single-node segments occur, these
are reversed by some p-tests, without changing the tour.
This causes repetitions of all tours, including p-tours,
obtained from partitions containing a single-node segment.,
Secondly, although a strict p-test applied to a partition
containing no single-node segments always results in a
p~-tour, this is not so for partitions containing single-node
segments, For example a strict p-test may leave two
segments in their original order, provided that one or both
of the segments are reversed, If the reversed segments
happen to be single-node segments then the resulting tour is
not a p-tour, The total number of redundant tours from
both these sources is now found, using the results of section

2,2 and the number v(p) of strict p-tests.

As there are <n> partitions, and v(p) strict
p-tests to each partition, the number of tours generated by
steps (i) and (ii)" is

e(n,2) = (%)v(e) (2.36)
Table 2.4 contains sample values of c(n,p) for small n
and p. Explicit formulae for c(n,p) can be obtained

from (2.36) and (2.34) for all p >0 and n > p.

\\EL o 1 2 3 L 5
n -
3 1.0 3 b
n 1. 0 6 16 25
5 1 0 10 LO 125 208
6 1 0 15 80 375 1248
7 14 0 21 140 875 L368
8 1 0 28 224 1750 116L8
9 1 0 36 336 3150 26208
10 1 0 L5 L8O 5250 52416
TABLE 2. Values of c{(n,p)

for

i i S, . . S s e i e [S = S

6 7
24241
14847 25828
593883 206624
178164 929808
445410 3099360
3¢ n< 10

and

-7~

For example

c¢(n,0) =1

e(n,1) =0

c(n,2) = tn(n-1)

c(n,3) = %n(n—1)(n—2)

o(n,4) = 5gn(n-1)(n-2)(n-3) .

The number of redundant tours obtained using steps (i) ahd
(ii)" is the difference between the total number of tours
obtained and the number of digtinct p-tours, namely

6(n,p) = c¢(n,p) - a(n,p) .

For example,

£n;0) = 5(n,1) = 0

5(n,2) = n

&(n,3) = n(3n-8)

5(n,L4) = $n(17n2-107n+210) .

It follows that the ratios E for the above cases are,

a\n,p

respectively

1 o 204
2n °? on ’ 25n °

. . 8(n 1
It can be shown that the ratio E%ﬁf%% is of order =

¢, 0,

for all p. Thus for sufficiently large n, the
proportion of redundant tours obtained using the above
constructive procedure is comparatively small, If on the
other hand n is not much greater than p, the number of

redundant tours may be large, as can be seen from a

~L.8—

comparison of Tables 2.3 and 2.l.

2.l Congruence of p-Tests

The reason for introducing congruence of p-tests is to
overcome the difficulty of implementing the enumerative
procedure of section 2.3 in practice. It is necessary
in this procedure to apply v(p) strict p~tests to every
partition of the initial tour. As v(p) 1increases very
rapidly with p (for example v(4) = 25, v(5) = 208,

v(6) = 2121), the task of writing a computer programme to
carry out this procedure becomes prohibitive, even for quite
small values of p . The outcome of the present section

is a means of classifying p-tests, and a simplified
enumerative procedure in which the number of distinct
p-tests to be applied at each stage is reduced by a factor
of approximately D

Consider an arbitrary partition of an initial tour into
p segments, all of which may be reversed (assuming as in
gsection 2.3 that all segments are treated alike, regardless
of the fact that reversal of a single-node segment does not
produce a change in the resulting tour) . Let the segments
be labelled consecutively

1y 25 3, o o « 5 D
where segment 1 1is chosen arbitrarily. Let an arbitrary

p-test be represented by the order and direction of the

-9~

segments in the resulting tour as follows. Let the order
of occurrence of the segments in the final tour be given by
the p-cyocle

s =(8;, 8z « « s Bp)
where s, = 1 for uniqueness of representation. Let the
direction of each segment be specified by

o0 = Oy 5 Oz 5 o o o 5 Op}

where

o] { 1 if segment s; 1is not reversed,

-1 if segment s; 1is reversed.
For the purpose of this section let the above p-test Dbe
denoted by
alo) _ (8,9 8,72 o o o 5,%P),
and let a; ©be called the index of segment sy 1n the
p-test, and o the index of the p-test. Thus for example
the trivial p-test, in which the initial tour is unaltered,
is denoted by
(1t 2t 3 ... D),

and its inverse, which results in the same tour traversed
in the opposite direction, is

(1=1 p=1t (p-1)=%1 . . . 2°1) .,
Generally, the inverse of a p-test s<a) is defined to be
the p-test which results in the inverse of the tour

resulting from s(q), and is denoted by

-50-

(572) (7)) J (3% gz g ;%-2 L L, s3%2)

In networks in which all tours are undirected, each p-test
and its inverse result in the same undirected tour. Tach
p-test is therefore defined to be equivalent to its inverse,
and ambiguity is avoided in the notation by specifying, for
example, that sz < sp In numerical examples the above
notation for p-tests is abbreviated by omitting superscripts
+1, and replacing superscripts -1 by a dash,. Thus the
p-test (17t 3t 2°t 5t 1) i written (1' 3 2/ 5 L4).
(a)’ t(ﬁ)

Two p-tests s , on a given partition, are

defined to be congruent if t(ﬁ) can be obtained from s(a)
by rotating the segment labels. For example the strict
6-test (1 2! 3 4! 5 6!) (see fig. 2.1, part (iv)),
gives rise to the following 5 6-tests on clockwise
rotation of the segment labels:

(17 20 3w 5 6)

(1r 2 3 W 5 6')

(1/ 2t 3 4 5 6&')

(1/ ol 32)4[5! 6!)

(17 2 3w 5 6.

Further examples illustrated in fig. 2.1 show the possible

cases which can occur,

(1) (17 2! 3' L' 5' 6') is congruent to itself only.

(1) (1 2 3’ L4 5! 6) is congruent to (1 2’ 3 L' 56').

(iii) (1 2/ 3’ L 5’ 6') 1is congruent to (1’ 2' 3 L4’ 5’ 6)
and (17 2 3" L' 5 6').

2
H
&)
% %

& -]

(1): (1'2/3'y'5'6") (ii): (1 2345 6")

3
(-]
4
5

(iv): (1 273'u'5'6’)

(v): (1 273 4!5'6") (vi): (1/2'5 L 3'6)

Figure 2,1 Examples of strict p-tests for p=64

-5~

(iv) (see above)
(v) (1 27 3 L' 5’ 6’) is also congruent to 5 other
p-tests.

Examples (i) to (v) give all the 18 strict 6-tests in
which the order of the segments is unchanged. Example (vi)
is another case in which a 6-test is congruent to two others.
It differs from example (iii) in that after 3 rotations
it is not the original tour itself but its inverse which is
obtained. Tours of this form present one of the main
difficulties in the enumeration of the congruence classes of
p~-tests in undirected networks.
Enumeration of Congruence Classes of p-Tests

One theoretically simple method of dividing the set of
all p~tests into congruence classes is to generate, for each
p-test, the congruence class containing the p-test and then
choose a representative from this class by some rule,
However, this procedure is extremely lengthy for p > 3,
and the resulting list of representatives is not classified
or ordered in any particular wayi Instead, the following
two-stage method is used. This method has the advantage
of giving a means of classifying the congruence classes of
p-tests, as well as saving computation time.

Before describing the method, the definition of

congruence is put into an algebraic form, for computational

~52-

purposes., Suppose the segments of an arvitrary partition
are labelled 1, 2, « « ¢« » p , and a p-test t(ﬁ)
results from applying a p-test s(a) after rotating the
segment labels by adding k (modulo p) to each label.
The resulting p-test .is therefore, in terms of the original
segment labels sy,
((84+K)% (sp+k)%*2 . o o (sp+K)%P) .
To conform with the convention that the first segment should
be segment 1, this p-test is rewritten
((sj+k)q3 (sj+1+k)a3+1 o o (sj_1+k)a3'1)
where Jj 1is chosen so that
sy+k = 1 (mod p)
i.e. S = 1+p=-k.
Thus s(a) and t(ﬁ) are congruent if there is an integer
k, 1 £k <p, such that
ty = 8y.441+k (mod p)
B1 Ogmgst (2.37)
for all i, where J is such that s; =1+ p -~ k .

The set of all p-tests t(ﬁ) congruent to a given p-test
s(a) can therefore be generated using equations (2.37)
for k = 1,2,¢e00yD=1s

The two stages in the following procedure arise from
the fact that for congruence of p-tests s(a) and t(ﬁ),

the conditions on the cycles s and t, and on the indices

53.

o and £ may be stated separately, as in (2.37). Let the

first of these two conditions be referred to as congruence

& (o)

of the cycles s and t. Clearly if p-tests
+(8)

and
are congruent then the p-cycles s and t are
congruent.

The first stage consists of the formation of the

congruence classes of p-cycles., One representative from
each class is then chosen. Yhere inverse pairs occur
among the representatives, one of each pair is deleted
(using some convenient rule).

In the second stage the set of all p-tests associated

with each of the above representative p-cycles is generated.
The resulting p-tests contain representatives of every
congruence class of p-tests. Three cases can occCur.

(i) If a cycle s is not congruent to its inverse, and
it belongs to a congruence class of cycles containing p
cycles, then it can be shown that no two p-tests s(a) and
s(ﬁ) (where B # a) are congruent. It follows that in
this case there is nothing further to be done: all the
resulting p-tests belong to different congruence classes.
(ii) If a cycle s 1is not congruent to its inverse, and
there are less than p cycles in the class containing s,
’ s<ﬁ) are congruente.

then some pairs of p-tests s(a)

If the number of cycles in the class containing s 1is m,

~5l4=

then it can be shown that m is a divisor of p, and that
rotation of the segment labels through a multiple of m
leaves s unaltered. It follows that congruent p-tests
s(a) and s(ﬁ) can be detected by rotating the index
x through multiples of m. A represgentative of each
class of congruent p-tests is then chosen.
(iii1) This case is the most difficult to deal with in
practice. Fortunately only a relatively small number of
p—-cycles have this property. (It can be shown that this
third case does not cccur at all if p 1is odd.) If a
cycle s 1is congruent to its inverse and there are m(< p)
cycles in the class containing s, then the following two
steps are needed in order to detect pairs s(a), s(ﬁ) of
congruent p-~tests. Firstly, if m < p then each p-test
needs to be rotated through multiples of m, as in case (ii).
Secondly, for all m, the inverse of each p-test must also
be rotated through multiples of m. (Again, as in case (ii),
only the indices need to be considered in this rotation,
as rotation through multiples of m leaves the cycles s
and s~-* unaltered.) A representative of each of the
resulting classes of p-tests is then chosen.

As described above,this procedure results in a set of

representatives of the congruence classes of p-tests onan

arbitrary partition of a tour in an undirected network.

55

For the purpose of generating p-tours, the corresponding
result for strict p-tests is required. It is easily
proved that in a given congruence class, either every p-test
is strict or every p-test is not strict. It follows that
the above procedure can be used to generate a set of
representatives of the classes of strict p-tests by simply
deleting all nonstrict p-tests at the beginning of the
second stage.

A computer programme based on the above method was
written to enumerate the congruence classes of strict
p-tests for p < 6. The numbers of classes for
p = 3,4,5,6 are, respectively

2, 9, L5, 363 (2.38)

For p = 3, for example, there are two congruence classes
of cycles, each containing only one cycle, namely (1 2 3)
and (1 3 2) respectively. The second class contains
the inverse of the cycle in the first class, and is ignored.
There are four strict p-tests obtainable from (1 2 3),
namely

(17213), (172 3"), (1 2/3"), (1'2'3") .
Since m = 1 in this case, it is an example of case (ii)
in the second stage of the procedure, and the result is
that the first 3 3-tests are congruent and the last one

is congruent only to itself. This simple example illustrates

~56-

the main steps in the procedure. The results for p = L4
are as follows. The numbers in brackets are the numbers of
elements in the respective congruence classes.
Representative cycles: (omitting inverses)

(1 2 3 W (x1)

(1 3 2 U4) (xh)
(note that the second class consists of two cycles and their
inverses).

Representative strict p-tests:
(11 2" 3' 4') (x1)
(1 2/ 37 L) (xL)
(1 2/ 3 4') (x2)

(1 3 2 4 (xL)
(1 3 2" 4) (xL)
(1 3 2t 4) (x4)
(1 3" 2'4) (x2)

(1 3* 2 Yy (x2)
(1 3 2' L) (x2)

Similar tables have been obtained for p = 5,6, The way in
which these representatives are used is now described.

Simplified Method for Enumerating p-Tours

This method is a variation of the method of section
2.3, and consists of the following three steps.
(1) Form a partition of the initial tour into p segments,
labelled consecutively 1,2, sesy Do

(ii) Apply a set of representative p-tests to this partition

._57_

(iii) TRotate the segment labels by adding 1 (mod p) and
repeat step (ii). Repeat this step until segment labels
have been rotated p - 1 times,
These steps are repeated for all partitions of the initial
tour.

The number of p-tests applied to each partition in
this procedure is p times the number of congruence classes;
for example, for p = 3,4,5,6, the numbers are

’ 36 , 225 , 2178 ,

n
respectively. The number of partitions is .

D
Sample values of the number e(n,p) of resulting p-tours
(including repetitions) are given in Table 2.5.

The only disadvantage of this method is that, because
some congruence classes contain less than p p-tests,
some p-tests are applied more than once to each partition.
For example for p = 3, 6 3-tests are applied to each
partition instead of L. The proportion of repetitions is
therefore 3. However this is the worst case, and can be
handled easily by the method of section 2.3. As p
increases, however, and the method of section 2.3 becomes
increasingly difficult to apply, the proportion of
repetitions in the simplified method decreases, as a

comparison of Tables 2.4 and 2.5 shows. These proportions

are, for p = 3,4,5,6,

\\i_ o 1 2 3 L 5 6
n_ e o
3 1 0 6
b 1 0 2, 36
5 1 0 10 60 180 225
6 1 0 15 120 540 1350 2178
7 1 0 21 210 1260 4725 15246
8 1 0 28 33 2520 12600 6098
9 10 36 504 L4536 28350 182952
10 1 0 L5 720 7560 56700 L57380

TABLE 2.5 Values of e(n,p) for 3<n<10, 0<p<g6.

-58-

’ 11, _1_1_) _51_.

25 208 2121

o

Thus for p > 5, the number of repetitions due to the
simplified method is very small.

The advantage of the simplified method for p > 5 1is
apparent from the number of p-tests requiring to be applied
at each stage: for p = 5 the number is 45 instead of
208, and for p = 6 the number is 363 instead of 2121,

Note that the procedure used in this section to
enumerate the set of congruence classes of strict p-tests
relies largely on a lengthy enumeration, which is carried
out by computer. Theoretical results concerning the
number of congruence classes for arbitrary bp (comparable,
say, with the results of sections 2.1 - 2.3) are not known

at the present time.

_59..

2.5 Degenerate p-Tests

The preceding sections have been devoted to the
derivation of the number of distinct p-tours per initial
tour, and the number of trial tours required to enumerate
the p-tours in practice. These numbers are to be used in
section 2.6 to determine the number of trial tours required
in a purely enumerative procedure for testing a given tour
for p-optimality. Although there are no powerful
mathematical methods for testing a tour for p-optimality,
there is one way of avoiding the need to consider certain
trial tours in enumerative procedures.

Consider the following example for n =8 and p = 4.
Let the initisl tour be (1 2 3 L 5 6 7 8) and the
final tour be (1 7 6 4 5 3 2 8). The deleted
links are (1,2), (3,4), (5,6) and (7,8), and the added
links are (1,7), (6,4), (5,3) and (2,8). If the final
tour is shorter than the initial tour, then

Ay 7+dg,+dsa+dze < dyp+dgi+dse+dse o
Therefore either
dy7+dzs < dyo+dse »
or
dei+dss < das+dse
or both. It follows that one or both of the tours
(1 7 6 5 4L 3 2 8)
(+ 2 3 5 4 6 7 8)

-60-

must be shorter than the initial tour. Since the above
tours are both 2-tours, it follows that if the initial

tour is 2-optimal, then the L-tour (1 7 6 L4 5 3 2 8)
is longer than the initial tour. Thus, in testing a
2-optimal 8-node tour for L-optimality it is not necessary
to test the length of this tour. A p-test which results

in a p-tour with the above property is called degenerate.

Degeneracy is now discussed in detail, and the number of
degenerate strict p-tests is derived, for p < 5.

Consider an arbitrary partition of an initial tour
into p segments, none of which consist of a single node.
Let the nodes be labelled so that the p deleted links, in
order of their occurrence in the initial tour, are

L,=(1,2), t,=(3,4), e o o 5 Lp=(2p-1,2p)
where node 1 1is chosen arbitrarily. (Nodes not attached
to a deleted link are ignored for the present.) Consider
an arbitrary strict p~test consisting of the insertion of
the p 1links

my = (ii,i2)9 mz=<ia,14), o v sy mp=(izp-1,i2p) >
written in order of their occurrence in the resulting
p-tour, where i, = 1 for uniqueness of representation.
Suppose 4 and J are subsets of the sets of deleted
links and inserted links, respectively, and let 4/ and J!

be the sets of nodes attached to the links in 4 and J,

-61 -

respectively.

A strict p-test is defined to be degenerate if there

exist nonempty sets J4,7, as defined above, with the
following properties.
(a) The sets 4’ and J' are identical.
(b) Replacement of the links in 4 by those in J results
in a tour.
(¢) Their complements ~4 and ~J are nonempty, and
replacement of the links in ~4 by those in ~J results
in a tour.

Let g be the number of links in 4 (or 7). Since
the links in 7 belong to a strict p-tour,the links in J
all differ from those in J. The operation (p) is
therefore a strict g-test. Similarly, the operation in
(¢) 1is a strict r-test where r = p-q. If the length of

the initial tour is L, then the length of the p-tour is

= i - Z ale,) + Z d(my) - z a(ey) +zd(m1)

Lied myed je~d mye~J
Therefore for this length to be less than L it is

necessary that either

—60-

Z alty) > Z a(my)

Lqed myed

or
— .
Noate) > N a(my)

[

/.

1 E~S mye~J

(4N

or both. This implies that one or both of the g-tour and
r~tour resulting from steps (b) and (c) are shorter
than the initial tour. The following result has thus been
proved.
Lemma 2, If a given tour is (p-1)-optimal, then
every p-tour resulting from a degenerate strict p-test is
longer than the given tour.

Thus, if a tour is being tested for p-optimality by
systematically applying strict g-tests, for ¢ = 2,3,+44,D,
then all degenerate strict g-tests may be omitted.

Number of degenerate strict p-tests

The problem of determining the number of degenerate
strict p-tests is in general unsolved, although it is
possible to obtain the number by an enumerative procedure,
for sufficiently small values of p. For p =04 it is
easily shown by trial that the only two degenerate p-tests

are

-6 B

(176L5328),
(1324576 8)
or, in the segment notation of section 2.4
(17 4 3 2), (14 32 .
These L-tests are congruent under rotation, and therefore
the number of degenerate strict L~tests under congruence
is 1.

For p = 5, the above sets 4,7 each contain 2 or 3
links (if such sets exist at all). Since the rdles of
these sets and their complements may be interchanged, it
may be assumed that 4 and J each contain 3 links. The
set of degenerate strict 5-tests is now enumerated by
combining a strict 3-test and a strict 2-test on a
partition of 5 segments in every possible way. Of the
<5> = 10 ways of choosing 3 of the 5 deleted links,

(2) there are 5 ways in which the 2 remaining links are
adjacent, and

(ii) in the other 5 ways, the 2 remaining links are
separated by 1 chosen link.

In case (i) there are 4 strict 3-tests on the chosen 1links,
and for each of these 3-tests there is one strict 2-test

on the remaining 2 links. Listing the resulting 20 tours
shows that they are distinct.

In case (ii) there are again L strict 3~tests on the chosen

links; however it is only possible to apply a strict 2-test

6L

to the remaining links for 2 out of the 4 3-tests. In the
remaining two, an attempt to apply e 2-test to the
remaining 2 links results in the formation of two cycles.

There are thus 10 5-tests resulting from case (ii),
giving a total of 30 distinct degenerate strict 5-tests.
Under congruence, the number of distinct degenerate strict
5-%ests becomes 6. These are illustrated in Fig. 2.2.
In nos. (i)~-(iv) the 2-test is applied to the adjacent
links (1,2) and (9,10). In (v) and (vi) the 2-test is
applied to the nonadjacent links (3,4) and (7,8)

For p = 6 the task is more difficult owing to the
fact that there may be more than one way of obtaining a
6-test as a result of applying two 3-tests. The actual
number of degenerate strict 6-tests has not yet been
determined; however it is known to be at least L498.

The main application of degeneracy at the moment is
to reduce the number of p-tests requiring to be applied
to each partition of a tour in order to test the tour for
p-optimality. However it is also of interest to note that
the proportion of degenerate p-tests appears to be increasing
with p. For p = 2,3,4,5,6 the proportions are

2 30 98

regspectively. This suggests the possibility that for

moderately large n the number of tests required to prove

8 7

(iii):

(198546732 10)

10

8

(v): 7
(16732 98L5 10)

(1i): % 7

(198457632 10)

10

8

(iv): 7

(1986704L573210)

(vi):

(154892376 10)

Figure 2,2 Degenerate strict 5-tests. Each is

congruent to 4 other 5-tests.

Pgl
I
o
-
N
W
=
w

3 L
6 16 23
10 4o 115 188

15 80 345 1128
21 140 805 39438
28 22l 1610 10528
36 336 2898 23688
L5 L80 1830 L7376

O OV oo~ Oyl W
B T T UL (S
O O O O O O O ©

-

TABLE 2.6 Number of nondegenerate p-tours obtained by

constructive enumeration, for 3 < n< 10, 0 <pPp<5b5H.

hY 0 1 2 3 L 5
gl
3 1 0 3 6
I 1 0 6 2l 32
5 1 0 10 60 160 195
6 1 0 15 120 1,80 1170
7 1 0 21 210 1120 1095
8 1 0O 28 336 2240 10920
9 1 0 36 504 Lo32 24570
10 1 0 45 720 6720 149140

TABLE 2.7 Number of nondegenerate p-tours obtained from
simplified method, using congruence, for 3 < n < 10 ,

-65_

optimality (i.e. n-optimality) may be much less than the
astronomical number required in the purely enumerative
procedure, The subject of degeneracy of p-tests is yet to
be fully investigated.

2.6 Testing for p=Optimality

It is assumed that a tour is tested for p-optimality
by comparing its length with that of every g-tour, for
0O<qgq<p (or 2< q<p, since the only O~tour is the
initial tour, and there are no 1=tours) .

In this section, the number of distinct trial tours
is first obtained from the result of Theorem 2.2. The
numbers of trials required in the constructive procedures
of sections 2.3 and 2.4 are then obtained and compared with
the number of distinct trial tours. Finally, the number of
trial tours resulting from the latter two procedures after
degenerate p-tests have been omitted, is obtained, and a
further comparison made. vith the exception of the final
results involving degeneracy, which are limited to p < 6,
the number of trials in each case can be derived for all
n and p from the results of the preceding sections.

The results are illustrated by means of numerical values
for n £ 10, and explicit formulae for p < L and all n.

Number of Trial Tours

The number of distinct trial tours (excluding the

66—

initial tour) is

b
AmM=Zﬂm® (2.39)

Q=2

for all p = 2, where a(n,q) is the number of distinct
g-tours derived in section 2.2. Sample values are given
for n< 10 and p < 10 in Table 2.8. Examples of
explicit formulae obtained from (2.39) are

A(n,2) = $n(n-3)

A(n,3) = in(n®-14n+25)

A(n,L)

Enumerative Procedures

It

%En(25n3—330n2+1511n-2070) .

Similarly, using the constructive procedure of section

2.3 the number of trial tours is

)
Cmm=Ldm® (2.40)
Q=2
for p 2> 2. Sample values of C(n,p) are given in
Table 2.9, and some explicit formulae derived from (2.40)
are
c(n,2) = in(n-1)
C(n,3) = $n(4n-9n+5)

c(n,l) = %ﬂn(25n3-13un2+239n-130) .
Using the simplified procedure of section 2.4, which

makes use of the congruence of p-tests, the number of

10 10 11

O »m N O

29 L4 56 59

1. 63 154 266 336 359

20 116 418 1058 1798 2342 2519

27 192 939 3378 8103 14106 18606 20159

10 | 35 295 1845 8921 29731 71151 124736 166476 181439

2 3 L 5 6 7 8 9 10
AN |
3
Ly
7

Y
5
6
8
9

TABLE 2.8 Values of A(n,p) for 3<n<10 , 2<p<nn.

o) 2 3 L

3 3 7

L 22 W7

5 10 50 175

6 15 95 L70

; 21 161 1036

8 28 252 2002

9 36 372 3522

10 L5 525 5775
TABLE 2.9 Values of C(n,p)

and 0 < p <7

5 6 7

383

1718 3839

54400 20251 46079
13650 73038 279662
29730 207894 1137702
58191 503601 3602961

for 3<n < 10

~67~

trial tours is

D
E(n,p) = \ e(n,q)
L

Q=2
for p 2 2. Numerical values are given in Table 2.10,
and some explicit formulae are
E(n,2) = in(n-1)
E(n,3) = #n(2n®-5n+3)
E(n,h4) = %n(Bna—u2n2+73n-39) .

Comparison of A(n,p) and C(n,p) shows that the
number of repetitions occurring in the purely enumerative
procedure is of order nP-?1, Since the total number of
trial tours is of order nP, the number of repetitions
becomes insignificant for sufficiently large ne

The simplified method results in a somewhat larger
number of repetitions. The number [E(n,p) - A(n,p)] of
repetitions in this case is of order nP. However, the
effect of this disadvantage 1s not great in practice.

The proportions of repetitions, for p = 3,4,5,6 are
asymptotically equal to
1 a 17 X4

2 7 25 208 * 2121 °

respectively. The proportion therefore appears to decrease
quite rapidly as p increases. It is fortunate that the

worst cases, p < 4, happen to be the cases which are

;\P 2 3 T 5 6

3 9

L 30 66

5 10 70 250 475

6 15 135 675 2025 14203

Fi 21 231 1491 6216 21462

8 28 360 288L 15484 76468

9 36 5L0 5076 33426 216378

10 45 765 8325 65025 522405
TABLE 2.10 Values of E(n,p) for 3 <n < 10

o<p<g<6.

and

-68=

handled relatively easily by the first method, and also that
for p > 5, when the simnlified method becomes more
important (even essential), the effect of this disadvantage
becomes comparatively small.

Effect of Degeneracy

The effect of making use of degeneracy is now
investigated for p < 6. If at each stage of the above
enumerative procedure the degenerate g-tests are omitted,
the numbers of strict g-tests for gq = 4,5,6 are 23, 188,
and at most 1623, respectively, from section 2.5. There
is no change in the number of trial tours for p < 3.

For p = 4 the number of trial tours becomes

A5n(23n°-122n242170-118)
Numerical values for n < 10 are given in Table 2.11.
For all p, the reduction in the number of trial tours is
of order nP. For p = 4,5,6 these reductions are

asymptotically equal to

- 30 & v 498 &
respectively.
In the simplified procedure, the omission of degenerate

p-~tests has a similar effect. In this case the number of

trial tours for p = L4 is

%n(7n3—38n2+68n-37) ,

6 22 L5

10 50 165 353
15 95 LL0 1568
21 161 966 491k
28 252 1862 12390
9 36 372 3270 26958
0 L5 525 5355 52731

\\3 2 3 L 5
n

3

L

5

6

7

8

1

TABLE 2,11 Number of trials to prove p-optimality by

constructive enumeration procedure, excluding degenerate

g -tours, for 3<ng 10, 2<p< b,

\\\i 2 3 L 5
4 -
3 3 9
L 6 30 62
5 10 70 230 1425
6 15 135 615 1785
[4 21 231 1351 5416
8 28 364 260L. 13524
9 36 540 4572 29142
10 L5 765 7L40 56580

TABLE 2,12 As for Table 2.10, for simplified procedure

using congruence of p-tests.

-69-

and numerical values for n < 10 and p < 5 are glven in
Table 2.12, For p < 3 there are again no reductions,
and for p = 4,5, the reductions are asymptotically equal
to

St

respectively.

From the viewpoint of practical application, the
results of this section may be summarized qualitatively as
follows. The most efficient method for testing a tour for
p-optimality is the method of section 2.3, modified by
deleting degenerate p-tests, If, however, the storage
and/or programming requirements of this method are
prohibitive, the simplified method may be used, with only
a slight decrease in computational efficiency.

On the other hand, the theoretical results themselves

have some merit, as is explained in the Appendix.

CHAPTER 3

ALGORITHMS FOR THE TRAVELLING SALESMAN PROBLLEM

The previously described methods for testing a
tour for p-optimality enable the algorithms in this chapter
to be described very briefly. Section 3.1 contains a
general algorithm for generating p-optimal tours, which
forms the basis of the algorithms for the Travelling
Salesman Problem. Section 3.2 contains the basic
algorithm in which a suitably sized set of 3-optimal tours
is generated. Of importance in this algorithm is the
estimation of the probability that a given set of 3-optimal
tours (with repetitions) contains an optimal tour. 1In
section 3.3 the method of section 3.2 is modified by
selectively bypassing sections of the systematic tour-
improvement procedure. Computational results indicate
that the resulting accelerated algorithm is an efficient
method for practical purposes, particularly in networks of
more than 20 nodes.

3.1 Algorithm for Generating p-Optimal Tours

In the following algorithm, a systematic tour-
improvement procedure is applied to a given tour, resulting
in a p-optimal toure.

Suppose the partitions of a given tour into g
segments (2 € q < p) may be generated in some specified

order. The steps of the algorithm are as follows:

-79-

1. Apply steps 2 to 7 (inclusive) for q = 2, «ey Ds

2. Generate the first partition of the current tour into
g segments,.

3. Apply steps 4 to 6 for each strict g~test.

L. Apply the g-test to the segments of the partition.

5. Calculate the length of the resulting tour.

6. If this tour is shorter than the current initial tour,
go to 9 ; otherwise continue.

7. If all partitions into ¢ segments have not been
generated, generate the next partition and go to 3 ;
otherwise continue.

8. Ixit: the current tour is now p=-optimal.

9, Replace the current tour by the shorter tour and go to 1.

This algorithm makes use of the direct method of section

2.3 to enumerate the p-tours of the current tour at each

stage, The simplified method of section 2.4 may be

incorporated in the above procedure by making the following
two alterations:

(a) 1In step 3, instead of applying every strict g-test,

apply only one representative from each congruence class of

strict g-tests.

(p) 1Instead of generating each partition once only,

generate firstly (in some order) those partitions in which
n-1

a given link is deleted. There are <
g-1

> such partitions

~72-

for each q. Then repeat this process for each of the
n - 1 other links. Clearly this amounts to rotating the
segment labels in every possible way. The resulting number
of partitions (with repetitions) is
() - 4 -

q-1 q
The above two alterations enable the simplified procedure
to be obtained by simply altering the sets of partitions and
strict g-tests, thus avoiding the need to physically rotate
the segment labels.

The above algorithm is quite general, the only

limitations to its practical application being the physical
size of the set of strict g-tests, and the number of steps

required. The above general statement of the algorithm

does not specify how the g-tests are to be ordered, or how

the tour lengths are to be compared. These questions have
an important effect on computational efficiency in practice;
however they need to be answered individually for each
value of Q. They may therefore be regarded as programming
problems, and are not discussed any further in this section.
The result of the above procedure is a single p-optimal
tour for each given tour. It is of course possible to
obtain every p-optimal tour by repeating this procedure for

a suitable set of initial tours. If such a set could be

73

found for some ©p, and all the p-optimal tours generated,
then an optimum tour could be found by finding the shortest
p-optimal tour by inspection. However, such a set cannot
be found at present. (This problem is probably as
difficult as that of finding the p-optimal tours
themselves.)

An alternative method for generating sets of p-optimal
tours consists of applying the above algorithm to a set of
randomly generated initial tours. The resulting set of
p-optimal tours contains repetitions, and is not necessarily
a random sample of the set of all p-optimal tours.

However, because the initial tours are randomly generated,
and because the p-optimal tours are obtained by applying a
large number of small improvements to the tour, it seems
recasonable to suppose that the resulting set of p-optimal
tours does form a random sample. Computational results
(see section 3.2) indicate that this assumption is
acceptdable, although it gives a somewhat pessimistic
estimate of the probability that the shortest of a given
set of p-optimal tours is optimal. It is found that
shorter p-optimal tours almost invariably occur more
frequently than longer p-optimal tourse. Details of the
estimation of this probability are given in the following

section, where this method is discussed in detail for p = 3.

-7l

3.2 Practical Algorithm for the Travelling Salesman Problem

As a result of experiments using p = 2,3,4, Lin
([13], p.2263) concludes that the case p = 3 is the most
useful for practical purposes, for medium~sized networks
(up to 100 nodes). The algorithm for generating 3-optimal
tours differs in detail from that of Lin, the main difference
being the organization of the steps to make use of the fact
that the number of steps required to invert a segment of a
tour is proportional fo the number of nodes in the segment.
This algorithm is now described in detail, omitting
programming details such as the use of temporary storage
locations and the method used to invert segments.

Let [dy4] be the distance matrix and let a tour be
represented by the permutation t, where for each node 1i,
t(i) is the node following i in the tour. The three
links deleted at each stage are labelled (i,,iz), (JisJz)
and (ky,k;) as in Figi3.1, ih which the two 3-tests applied
in this procedure are illustrated. The steps of the
algorithm are as follows: (i, is an arbitrary initial
value for i,).

1. i, = i,
2. ip = Ji = t(iy)

Jo = ky = t(Js)
k, = t{ky)

(13 2) (17 3 2)

Figure 3.1: The two 3-tests applied in the

practical algorithm.

3. di = dizki + d-

Jike
d. = d. + 4
B igky Jaky

be If dp <d, go to 7.

. If 4. . + 4. . d < 4. + d ot N
2 i1 Jede i kyKg 172 1, 8 to 9

6. t(i,) = Js
t(ky) = 1,
+(if) ko

c o = Ja
0 2.

+ d

K, Ky S

d1112 + djijz diijz + d; 4, go to 9.
1) = J2
4) = J1
2) = kg
vert segment from iz to J; o
=10 = Js
to 2.
.= kg
3 = t(k1)
P ky Z i, » 80 to 3.
PR P
iz = Ky = t(ji)
{2 t(ki)
[f ko A21i; , go to 3.
If ip = i , exit. (Tour t is now 3-optimal).
i, = i
Go to 2.

In this description the equal sign is used in the sense of
replacement. Note the 3 nested loops in the procedure:

steps 2 to 12 are carried out for each value of (i,,1;) ,

-76~

steps 3 to 10 for each value of (Ji,J=), &and steps 3 to 9
for each value of (k;,kp)e

It can be seen from Fig.3.1 that in the first iteration
for each (Jy,Jz), in which j, = k, , the 3-test (1732)
results in a 2-test applied to the links (i,,i,) and
(k4 ,k2)e Thus 2~optimality and 3-optimality are tested in
the one routine. Apart from this variation, the above
algorithm is that of section 3.1, using the simplified
method of generating p-tours. A method for determining
the number of 3-optimal tours needing to be geneprated in
order to achieve a given probability-of-obtaining an optimal
tour is now described.

Number of Trial Tours

Suppose firstly that the probability of obtaining every
3-optimal tour is to be greater than some given level
(e.g. *001). Suppose that the 3-optimal tours occur with
equal probability, and that at some stage, v distinct
tours have been obtained in x4 trials. The probability
that there exists a further 3-optimal tour is smallest if

the number of 3-optimal tours is v + 1, and is eqgual to

(v+1) <1 -%TY = (v+1) <vl+1'># 5

This is the probability that one of the v + 1 3-optimal

tours is not obtained in any of the u trials. The number

77

of trials required to reduce this probability below *001,
for example, is given by

i logio v = (u=1)logio(v+l) € =3
which gives

g = 3+ log(v+l) . (3.1)
log(v+1)-log v

Some particular values of the smallest integers u(v) with

this property are:

u(1) = 11 p(5) = L8
u(2) = 20 u(6) = 58
u(3) = 29 u(7) = 68
u(l) = 39 p(8) =78

These numbers may be incorporated in a routine for
attempting to generate the set of all 3-optimal tours by
specifying that if v tours have been found, then the total
number of trials is to be pu(v).

If only an optimal tour is required, then (3.1)

becomes simply

[T 3 (3.2)
log(v+1)-log v

for a tolerance level of *001, and for example,

p(1) = 10 u(5) = 38
p(2) =17’ p(6) =45
u(3) = 24 u(7) = 52
p(l) = 31 u(8) =59 .

These numbers are used in a routine for attempting to

generate an optimal tour in the same way as for generating

~78~

the set of all 3-optimal tours.

Computational Results

Average computation times for networks of various
sizes are shown in the following table. These results were
obtained using a Control Data 6400 computer. Because of
the probabilistic nature of the method, computation times
may be expected to vary from one network to another.
However, variations of more than 20% for sets of 11 or more

tours are uncommon.

Number Av. time Number Av. time

of nodes per tour of nodes | Dper tour
8 22 msec. 20 620 msec.
10 50 " 00 85y "
12 99 i 2L 1+20 sec.
13 132 " 30 2+
14 159 i 36 5eQ1 M
15 223 " L2 8§16 "
16 277 . L8 11+3 N
18 432 b

The programme used to obtain these results is written in
FORTRAN, apart from the procedures for generating pseudo-
random initial tours and for inverting segments of a tour.
A programme written entirely in assembly language shoulad
effect substantial improvements to these computation times.

The following table shows results obtained from the

79.

method for generating all 3-optimal tours for samples of

randomly generated two-dimensional Euclidean networks.

Number Number of Number of distinct
of nodes Networks 3=-optimal tours
1 2 3 L
13 200 184 14 5 0
15 165 123 30 10 2
7 78 52 17 8 1
20 1O 2% 14 n ,E_J

This table shows the numbers of randomly generated networks
containing 1,2,3, ... distinct 3-optimal tours. Samples
obtained for larger networks were too small to be of value.
This tgble enables a priori estimates of the probgble number
of steps required in the above algorithm for generating
optimal tours. For example, the percentages of 15-node
networks containing 1,2,3 and L 3-optimal tours are,
respectively, 7L°'5%, 18*2% 6°1% and 1°2%. Using (3.2),
the numbers of trials in these cases are 10, 17, 24 and 31,
giving total computation times of 2°23, 3°69, 5*35 and
6°91 seconds. The probabilities of obtaining these
computation times for a given random network are, from
above, O0°*745, 0°182, 0*061 and 0°012 respectively.

The above table can be extended to include larger networks,
although the amount of computation time reguired increases

very rapidly for increasingly large networks.

3¢3 Accelerated Algorithm

The accelerated algorithm is a variant of the algorithm
described in the preceding section. The algorithm for
generating 3-optimal tours is modified by introducing a
rule whereby the innermost loop is omitted, or skipped,
under certain conditions. Tours resulting from this
algorithm are not necessarily 3-optimal; however if a
suitable rule is chosen, the probability of resulting tours
being 3-optimal can be very high.

There are many possible ways in which steps may be
skipped. For example, Lin [13] "flags" each link which
occurs in a 3-optimal tour, and in his procedure, if the
link (i,,1p) is flagged, both the inner loops are skipped.
This results in a great decrease in computation time.
However, the skipping procedure is so severe that there
is little chance of the resulting tour being 3-optimal.

Lin therefore applies his standard 3-optimal algorithm to
the resulting tour. A further disadvantage is the fact
that no skipping is possible until at least one 3~optimal
tour has been found. In the following method the first
difficulty is overcome by using a less severe skipping
procedure, and the second is overcome by flagging certain
short links a priori,.

Firstly, a link (i,j) is flagged if it is one of the

-89 -

shortest 3 1links attached to node i or jJ. (The number
3 1s not essential to this procedure; however it is found
that for randomly generated networks in 2 dimensions, this
gives the best results. For specialized applications a
different number may be preferable.)

Secondly, in the algorithm of section 3.2, the
innermost loop (in which (k,,k;) is incremented) is
skipped if the link (i,,Js) is not flagged (see Fig. 3.1).
This choice of rule may be justified as follows. Firstly,
link (i4,jz) 1is the only inserted link common to both
3-tests for every choice of (ky,kp)a Secondly, in the
initial stages of the procedure, when the current tour still
contains a large number of relatively long links, only
substantial improvements are made, thus saving, possibly,

a number of steps in which only small improvements are made.
Also, near the end of the procedure, when the tour contains
a large number of relatively short links, it appears
unlikely that the tour will be improved by inserting an
unflagged link. Finally, the repetition due to the fact
that the first p-test is congruent to itself ensures that
this p—-test is applied to every partition unless all three
of the inserted links are unflagged.

In spite of the above reasons in favour of the above

skipping rule, any of a number of other rules could prove

-8~

in practice to be just as effective. Generally a rule
consists of: Skip the innermost loop and/or the second
loop if certain of the deleted links are flagged and/or
certain of the inserted links are unflagged. The many
resulting rules differ in their relative effects at the
start and finish of the procedure. Some combinations may
be dismissed at the outset as absurd (e.g. '"skip both loops
if any one of the deleted links is flagged.’ Using this
rule it is impossible to obtain a tour containing a large
proportion of flagged links, unless there happens to be a
large number of steps in which 3 unflagged links are
replaced by 3 flagged links.) However there remain several
rules which appear feasible, and the only way to compare
these rules is to compare experimental results.

FProm computations carried out on networks of 48 nodes,
it appears that the above rule is the most effective in
practice, combining computationai speed with a high
probability that the resulting tour is 3-optimal. A second
rule also gave good results in that the computation was
three times as fast; however the proportion of resulting
3=-optimal tours was about one third that of the above method.
This rule is: Skip the innermost loop if both (i,,ip)
and (jl,jg) are flagged. The added computational speed

appears to result from the fact that this rule causes much

~8 3

of the lengthy final stages to be skipped. This may also
be the source of the decreased probability of 3-optimality.
This second rule may be of value for very large problems
in practice, in cases where computational speed is of
primary importance, and where the need is only for a tour
which is reasonably short.

Average computation times for the accelerated algorithm

(using the former rule for the skipping procedure) are as

follows:

Number Av. time Number Av, time

of nodes per tour of nodes per tour
10 25 msec. 35 830 msec.
15 85 " Lo 1*1 sec.
20 190 " L5 1e2 M
25 330 " 50 qey M
30 550 "

Much wider variations in computational speed were obtained
with this method. In some cases times varied between 05
and 1°8 times the average.

In the accelerated algorithm, no alteration is made to
the procedure for determining the number of trials required
in order to achieve a given probability of obtaining an
optimum., This is exactly as described in section 3.2.

Note that as the number of nodes increases, the ratio

-8ly—-

of the computation times decreases sharply. This decrease
more than offsets the increase in the number of trials
resulting from the presence of tours which are not 3-optimal.
For example, in the 48-node network of Held and Karp [10],
the average time per tour is 0°81 seconds, while the
increase in the number of trial tours is less than 30%.

(The low computation time in this case is probably due to

the presence of a large number of flagged links in the
optimal tour).

The accelerated algorithm in this section serves a
twofold purpose for practical applications. Firstly, it
supplies a method of obtaining individual shoft tours in
an extremely short time, even for large networks, for
applications in which computation time is of primary
importance, Secondly, it provides an improved method for
obtaining optimal or near-optimal tours, for applications in
which the length of the resulting tour is of primary
importance. It is particularly applicable to large

networks.

CHAPTER L

This thesis contains contributions, of both a
theoretical and a practical nature, to the subject of
p-optimality of tours in a network, and its application to
the Travelling Salesman Problem.

The main theoretical results are the combinatorial
results proved in sections 2.1, 2.2 and 2.3, in particular
Theorems 2.1 and 2.2, and Lemma 2.8. Apart from their
application in section 2.6 to the determination of the
number of trials required to test the p~optimality of a
tour, these results are believed by the Author to be of
some merit in themselves, in the field of combinatorial
analysis. The general combinatorial significance of these
results is demonstrated by the general statements in the
Appendix,. To the Author's knowledge, there has previously
been no investigation into the permutations ard combinations
of points on a circle in which a fixed number k of
adjacent pairs of points remain adjacent, except for the
special case Lk = 0. (For k = 0, see Kaplansky [11]
for a result on combinations, and Riordan [18] for results
on permutations). \

Throughout the text, a number of unsolved problems
are mentioned., Firstly, in section 2.4 it is noted that

there is no theoretical method for determining the number of

~86=

congruence classes of strict p-tests. Secondly, present
results concerning the number of degenerate strict p-tests
are limited to p < 5. Also, the number of distinct
p-tours resulting from nondegenerate strict p-tests is not
known., (This suggests the extension of the idea of
degeneracy to p-tours instead of p-tests.) Problems
involving the lengths of tours in a network are likely to
be even more difficult, as results will generally depend on
some property of the distance matrix. There is for
example the determination of p’ 1in a given network (or
possibly bounds on p’, in general) such that p/-optimality
of a tour implies optimality. Also, (see section 3.1)
there is no way of avoiding repetitions when generating
a set of p-optimal tours in a network. Finally, there is
of course the problem of generating p~optimal tours for
large Do The solution of this problem depends on the
determination of a method for generating p-tours which does
not depend largely on enumeration. Some, at least, of
these problems should provide fruitful areas for further
research.

The main results of a practical nature are the
improved estimate of the probability that a given set of
p-optimal tours contains an optimum (see section 3.1 and

3.2), and the accelerated algorithm of section 3.3. This

~87-

algorithm enables good approximate solutions to Travelling
Salesman problems to be obtained for networks containing up
to 145 nodes (using a computer with a 32K core). Thus,
together with Lin's method, the above method handles larger
problems than other known methods. For problems containing
less than 50 nodes the computational efficiency of the
accelerated algorithm allows a very high probabiiity of
obtaining an optimum tour to be reached in a comparatively
short time.

Despite the extremely good practical results obtained
with the accelerated algorithm, it remains true that
optimality cannot be proved using this method. However,
as solutions to the above (and other) problems are found,
better methods of applying p-optimality to the Travelling
Salesman Problem may be developed, methods which may

eventually lead to a method of obtaining optimal solutions.

APPENDIX

THE COMBINATORIAL THEOREMS OF CHAPTER 2

With the exception of the result of section 2.1, the
combinatorial results of chapter 2 are stated and proved
using the notation of tours in a network. The results may
however be restated in such a way as to illuminate their
combinatorial nature.

Theorem 2.2 may be restated as follows, Let af(n,r)
be the number of ways of permuting n points on a circle
in such a way that exactly r adjacent pairs of points
remain adjacent. Then

a(n,r) = a(n,n-r) ,
vhere a(n,p) 1is given by equation (2.27).
Alternatively o{(n,r) is the number of cyclic permutations
on §1,2, +es, n} in which there occur exactly r pairs
of the form i,i+1 or i,i-1 (mod n). This is a
generalization of a result due to Riordan [18], who derived
a recurrence formula for the case 1r = 0.

The main result of section 2.3, namely Lemma 2.8, may
be restated as follows, using the obvious notation of
'dominoes'! for convenience. Suppose p dominoes are
labelled (1,2), (2,3)5++.(p=1,p), (Dy1). The nunmber of ways
of arranging these dominoes on the circumference of a

circle such that no two egqual numbers are adjacent is

-89

2v(p), where v(p) is given by equations (2.33) and (2.34).
This result may also be stated as a variation on the well-
known 'Probléme des Ménages' (see Riordan [17], chapter 8):

p married couples at a party have been dancing, no man
dancing with his wife. The number of ways of seating the
dancing partners at a circular table in such a way that

no man is seated next to his wife is 2v(p). ©Note that
there is no restriction here that men and women should sit
in alternate positions. If this restriction is added,

then it can be shown that the number of ways becomes, for

pz1,
R -
w(p) = 2 Z (~1)P K(]Dx(k) ;
k=0
where
x(0) = 1
x(k) = (k=1)!

(c.f. equation (2.33)). Also, the number of p-cycles on
{1,2, «se, D} containing no pairs (i,i+1) (mod p) is
sw(p) .

It is interesting to note that the result of
Kaplansky [11], of which Theorem 2.1 is a generalization,
may also be generalized in two further ways (see Lagrange

[12] and Abrahamson [1]), yet these two generalizations do

—-90-

not appear to be related to the result of Theorem 2.1 in
any other way.

The following is an incidental result which follows
from Theorem 2.,2: The number of ways of placing n
numbers i , 2 < i < n~2, on a circle such that
(a) the sum of the n numbers is a multiple of n, and
(b) the sum of any contiguous subset of less than n of

the numbers is not a multiple of n ,
is a(n,n), given by (2.27). This result is obtained by
considering the differences (mod n) of the node numbers
in strict n-tests on a network of n nodes.

A further topic which is of some interest in connection
with the above problems is that of the generating functions
associated with the above numbers. Note that for all the
above problems, explicit solutions are obtained, as well as

recurrence formulae.

2

9.

10.

REFERENCES

i« Abrahamson, "Explicit Expressions for a Class of
Permutation Problems", Canad. Math. Bull. 7 (196L)
345=350.

E.L. Arnoff and S.S. Sengupta, "The Travelling Salesman
Problem", Progress in Operations Research, Vol.I,
(R.L. Ackoff, ed.), Wiley, New York, 1961.

R. Bellman, "Dynamic Programming Treatment of the
Travelling Salesman Problem", J.ACM, 9 (1962) 61-63.

M. Bellmore and G, '‘Nemhauser, "An Analysis of Algorithms
for the Travelling Salesman Problem", unpublished paper;
abstract in ORSA Bull. 14 (1966) supp.2.

P. Bock, "Mathematical Programming Solution of Travelling
Salesman Examples", Recent Advances in Mathematical
Programming, (R.L: Graves and P. Wolfe, ed.), McGraw=Hill,
New York, 1963,

GiA. Croes; "A Method for Solving Travelling Salesman
Problems", Opns Res. 6 (1958) 791-812.

G. Dantzig, D. Fulkerson and S. Johnson, "Solution of a
Large Scale Travelling Salesman Problem", Opns Res. 2

(1954) 393-410.
M. Flood, "The Travelling Salesman Problem", Opns Res. L
(1956) 61-75.

P.C. Gilmore and R.E. Gomory, "Sequencing a One State
Variable Machine: A Solvable Case of the Travelling
Salesman Problem", Opns Res. 12 (1964) 655-679.

i, Held and R. Karp, "A Dynamic Programming Approach to
Sequencing Problems", J.SIAM. 10 (1962) 196-210.

11.

12,

13,

14,

15.

16.

17

18.

19.

20.

-90-

I. Keplansky, "Solution of the 'Probléme des Ménages'",
Bull. A.M.S. 49 (1943) 784-785.

R. Lagrange, "Sur les Combinaisons d'Objets Numérotes',
Bull. des Sci. Mathématiques (2) 87 (1963), 1 iére partie,
p.29_Ll-2' ‘

S. Lin, "Computer Solutions of the Travelling Salesman
Problem", Bell System Teche. J. L4 (1965) 2245-2269.

JeDsC. Little, K«G. Murty, D.W. Sweeney, C. Karel,
"An Algorithm for the Travelling Salesman Problem",
Opns Res. 11 (1963) 972-989.

G.T. Martin, "Solving the Travelling Salesman Problem
by Integer Linear Programming", CEIR, New York, 1966,

K. Menger, "Botenproblem'", Ergebnisse eines Mathematisch-
gn Kolloquiums, Heft 2 (K. Menger, ed.) B.G. Teubner,
1932,

Je« Riordan, "An Introduction to Combinatorial Analysis",
Wiley, New York, 1958.

J« Riordan, "A Recurrence for Permutations Without Rising
or Falling Successions", Ann. Math. Statist. 36 (1965)
708-710.

S.M. Roberts and B. Flores, "An Engineering Approach to
the Travelling Salesman Problem", Man. Sci. 13 (1966)
269-288.

D. Bhapiro, "Algorithms for the Solution of the Optimal
Cost Travelling Salesman Problem", Sc.D. Thesis, Washing-
ton University, St. Louis, 1966.

-93_

21+ J. Staudhammer and M. Ash, "A Sufficiency Solution of
the Travelling Salesman Problem", System Development
Corp., Santa Monica, Calif., 1966.

22. D.W. Sweeney, "The Exploration of a New Algorithm for
Solving the Travelling Salesman Problem", M.S8. Thesis,
MeI.Te, 1963.

23, S. Reiter and G. Sherman, "Discrete Optimizing ",

