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Modern sensing technologies developed within the field of photonics incorpo-

rate a number of optical and acoustic phenomena. One such effect that has become

a focal point in biosensing is whispering gallery modes. These modes occur within

optical cavities that exhibit a degree of symmetry, and are thus able to support res-

onating waves. This thesis develops the theory of resonances, exploring under what

conditions a micro or nanoscale device can sustain these resonances, and for which

physical criteria the resonance conditions deteriorate. The study is then extended to

consider the biological cell. The discovery of a biological cell resonator, in which

modes are definitively sustained without artificial assistance, represents the culmi-

nation of this thesis.

The properties of resonators and their emitted energy spectra are studied within

the general framework of the Finite Difference Time Domain method, requiring su-

percomputing resources to probe the transient behaviour and interactions among the

electromagnetic fields. The formal theory of Mie scattering is extended to develop a

cutting-edge, computationally efficient model for general, multilayer microspheres,

which represents a valuable achievement for the scientific community in its own

right. The model unifies the approaches in the field of mathematical modelling to

express the energy spectrum in a single encompassing equation, which is then ap-

plied in a range of contexts.
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The gulf between modelling and biological resonators is bridged by an in-depth

study of the physical characteristics of a range of biological cells, and the selec-

tion criteria for viable resonator candidates are developed through a number of de-

tailed feasibility studies. The bovine embryo is consequently selected as the optimal

choice.

The scientific advancements contained within each chapter, including the im-

proved models, the selection criteria and the experimental techniques developed, are

integrated together to perform the principal measurements of the spectra within a

biological cell. Evidence is established for the ability of a bovine embryo to sustain

whispering gallery modes. This is a significant finding covering extensive research

ground, since it is the first such measurement world-wide. The ability of a cell to

sustain modes on its own represents a conceptually elegant paradigm for new tech-

nologies involving on-site cell interrogation and reporting of the status and health of

a biological cell in the future. The methodological and technological developments

contained within this interdisciplinary thesis thus become a vital asset for the future

realisation of autonomous biological cell sensors.
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