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Pion valence distributions in nuclear medium and vacuum are studied in a light-front constituent quark 
model. The in-medium input for studying the pion properties is calculated by the quark-meson coupling 
model. We find that the in-medium pion valence distribution, as well as the in-medium pion valence 
wave function, are substantially modified at normal nuclear matter density, due to the reduction in the 
pion decay constant.
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Introduction One of the most exciting and challenging topics in 
hadronic and nuclear physics is to study the modifications of 
hadron properties in nuclear medium (nuclear environment), and 
also how such modifications affect the observables differently from 
those in vacuum. Since hadrons are composed of quarks, an-
tiquarks and gluons, it is natural to expect that hadron inter-
nal structure would change when they are immersed in nuclear 
medium or in atomic nuclei [1–5]. This question, to study the 
medium modification of hadron internal structure, is particularly 
interesting when it comes to that of pion. To be able to study the 
properties of pion in nuclear medium, one first needs, simpler, ef-
fective quark-antiquark models of pion, which are successful in de-
scribing its properties in vacuum. Among such models, light-front 
constituent quark model has been very successful in describing the 
hadronic properties in vacuum, in particular, the electromagnetic 
form factors, electromagnetic radii and decay constants of pion and 
kaon [6–12]. Recent advances in experiments, indeed suggest to 
make it possible to access to the pion (hadronic) properties in a 
nuclear medium [3–5,13,14].

Among the all hadrons, pion is the lightest, and it is believed 
as a Nambu–Goldstone boson, which is realized in nature emerged 
by the spontaneous breaking of chiral symmetry. This Nambu–
Goldstone boson, pion, plays very important and special roles in 
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hadronic and nuclear physics [15–26]. However, because of its spe-
cial properties, particularly the unusually light mass, it is not easy 
to describe the pion properties in medium as well as in vacuum 
based on naive quark models, even though such models can be 
successful in describing the other hadrons.

Despite of this difficulty, some important studies were made 
[27–29] on the pion structure and its role in a nuclear medium. 
Recently, we also studied the properties of pion in nuclear 
medium [13,14], namely, the electromagnetic form factor, charge 
radius and weak decay constant, by using a light-front constituent 
quark model. There, the in-medium input was calculated by the 
quark-meson coupling (QMC) model [3,30]. We have predicted the 
in-medium changes of pion properties [13,14]: (i) faster falloff 
of the pion charge form factor as increasing the negative of the 
four-momentum transfer squared, (ii) increasing of the root mean-
square charge radius as increasing nuclear density, and (iii) de-
creasing of the decay constant as increasing nuclear density. The 
purpose of this work is, to extend our work for the pion in medium 
made in Refs. [13,14], and study the pion valence distribution am-
plitude in symmetric nuclear matter. We find substantial modifica-
tion of the pion valence wave function and distribution amplitude 
in symmetric nuclear matter at normal nuclear matter density.

The QMC model First, we briefly review the QMC model, the 
quark-based model of nuclear matter, to study the pion proper-
ties in medium. The effective Lagrangian density for a uniform, 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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spin-saturated, and isospin-symmetric nuclear system (symmetric 
nuclear matter) at the hadronic level is given by [30,31],

L = ψ̄[iγ · ∂ − m∗
N(σ̂ ) − gωω̂μγμ]ψ +Lmeson , (1)

where ψ , σ̂ and ω̂ are respectively the nucleon, Lorentz-scalar-
isoscalar σ , and Lorentz-vector-isoscalar ω field operators with,

m∗
N(σ̂ ) ≡ mN − gσ (σ̂ )σ̂ . (2)

Note that, in symmetric nuclear matter isospin-dependent ρ-mes-
on mean filed is zero, and thus we have omitted it. Then the 
relevant free meson Lagrangian density is given by,

Lmeson = 1

2
(∂μσ̂ ∂μσ̂ − m2

σ σ̂ 2) − 1

2
∂μω̂ν(∂μω̂ν − ∂νω̂μ)

+ 1

2
m2

ωω̂μω̂μ. (3)

Hereafter, we consider the symmetric nuclear matter at rest. Then, 
within Hartree mean-field approximation, the nuclear (baryon) and 
scalar densities are respectively given by,

ρ = 4

(2π)3

∫
d�k θ(kF − |�k|) = 2k3

F

3π2
,

ρs = 4

(2π)3

∫
d�k θ(kF − |�k|) m∗

N(σ )√
m∗2

N (σ ) + �k2
, (4)

here, m∗
N(σ ) is the value (constant) of effective nucleon mass at 

given density (see also Eq. (2)). In the standard QMC model [3,30,
31] the MIT bag model is used, and the Dirac equations for the 
light quarks inside a nucleon (bag) composing nuclear matter, are 
given by,[

iγ · ∂x − (mq − V q
σ ) ∓ γ 0

(
V q

ω + 1

2
V q

ρ

)](
ψu(x)
ψū(x)

)
= 0, (5)[

iγ · ∂x − (mq − V q
σ ) ∓ γ 0

(
V q

ω − 1

2
V q

ρ

)](
ψd(x)
ψd̄(x)

)
= 0 . (6)

Because the nuclear matter interactions are strong interactions, 
the Coulomb interaction is neglected as usual, and SU(2) symme-
try is assumed, mu,ū = md,d̄ ≡ mq,q̄ . The corresponding effective 
(constituent) quark masses are defined by, m∗

u,ū = m∗
d,d̄

= m∗
q,q̄ ≡

mq,q̄ − V q
σ , to be explained later.

As mentioned already, in symmetric nuclear matter within 
Hartree approximation, the ρ-meson mean field is zero, V q

ρ = 0, 
in Eq. (6), and we ignore it. The constant mean-field potentials are 
defined as, V q

σ ≡ gq
σ σ = gq

σ < σ >, and, V q
ω ≡ gq

ωω = gq
ω < ω >, 

with gq
σ , and gq

ω , are the corresponding quark-meson coupling 
constants, where the quantities with the brackets stand for the 
expected values in symmetric nuclear matter [3]. Since the aver-
age velocity is zero, < ψ̄q �γ ψq >= 0, in the nuclear matter rest 
frame, no spacial-dependent source for the vector-meson mean 
fields arise, and only the terms proportional to γ 0 are kept in 
Eq. (6). (More details are given in Ref. [3].)

The same meson mean fields σ and ω for the quarks in Eqs. (5)
and (6), satisfy self-consistently the following equations at the nu-
cleon level:

ω = gωρ

m2
ω

, (7)

σ = gσ

m2
σ

CN(σ )
4

(2π)3

∫
d�k θ(kF − |�k|) m∗

N(σ )√
m∗2

N (σ ) + �k2

= gσ

m2
CN(σ )ρs, (8)
σ

Table 1
Coupling constants, and calculated properties for symmetric nu-
clear matter at normal nuclear matter density ρ0 = 0.15 fm−3, for 
mq = 5 and 220 MeV (the latter values is used in this study and 
was used in Refs. [12,13]). The effective nucleon mass, m∗

N , and 
the nuclear incompressibility, K , are quoted in MeV. (See Ref. [3]
for details.)

mq (MeV) g2
σ /4π g2

ω/4π m∗
N K

5 5.39 5.30 754.6 279.3
220 6.40 7.57 698.6 320.9

CN(σ ) = −1

gσ (σ = 0)

[
∂m∗

N(σ )

∂σ

]
, (9)

where CN (σ ) is the constant value of the scalar density ratio [3,30,
31]. Because of the underlying quark structure of the nucleon used 
to calculate M∗

N (σ ) in nuclear medium (see Eq. (2)), CN (σ ) gets 
nonlinear σ -dependence, whereas the usual point-like nucleon-
based model yields unity, CN (σ ) = 1.

It is this CN (σ ) or gσ (σ ) that gives a novel saturation mech-
anism in the QMC model, and contains the important dynamics 
which originates in the quark structure of the nucleon. Without 
an explicit introduction of the nonlinear couplings of the meson 
fields in the Lagrangian density at the nucleon and meson level, 
the standard QMC model yields the nuclear incompressibility of 
K � 280 MeV with mq = 5 MeV, which is in contrast to a naive 
version of quantum hadrodynamics (QHD) [32] (the point-like nu-
cleon model of nuclear matter), results in the much larger value, 
K � 500 MeV; the empirically extracted value falls in the range 
K = 200–300 MeV. (See Ref. [33] for the updated discussions on 
the incompressibility.)

Once the self-consistency equation for the σ including the 
quark Dirac equations, Eqs. (5), (6), and Eq. (8) have been solved, 
one can evaluate the total energy per nucleon:

Etot/A = 4

(2π)3ρ

∫
d�k θ(kF − |�k|)

√
m∗2

N (σ ) + �k2

+ m2
σ σ 2

2ρ
+ g2

ωρ

2m2
ω

. (10)

We then determine the coupling constants, gσ and gω , so as to 
fit the binding energy of 15.7 MeV at the saturation density ρ0 =
0.15 fm−3 (k0

F = 1.305 fm−1) for symmetric nuclear matter.
In Refs. [12,13], the quark mass in vacuum was used mq,q̄ =

220 MeV to study the pion properties in symmetric nuclear mat-
ter. With this value the model can reproduce the electromagnetic 
form factor and the decay constant well in vacuum [8]. Thus, 
we use the same value in this study. The corresponding coupling 
constants and some calculated properties for symmetric nuclear 
matter at the saturation density ρ0, with the standard values of 
mσ = 550 MeV and mω = 783 MeV, are listed in Table 1. For com-
parison, we also give the corresponding quantities calculated in the 
standard QMC model with a vacuum quark mass of mq = 5 MeV
(see Ref. [3] for details). Thus we have obtained the necessary 
properties of the light-flavor constituent quarks in symmetric nu-
clear matter with the empirically accepted data for a vacuum con-
stituent light-quark mass of mq = 220 MeV; namely, the density 
dependence of the effective mass (scalar potential) and vector po-
tential. The same in-medium constituent quark properties which 
reproduce the nuclear saturation properties (and used in Refs. [13,
14]) will be used as input to study the pion properties in symmet-
ric nuclear matter.

In Figs. 1 and 2 we respectively show our results for the neg-
ative of the binding energy per nucleon (Etot/A − mN ), effective 
constituent light-quark mass, m∗

q , in symmetric nuclear matter (left 
panel of Fig. 2), and the in-medium pion decay constant, f ∗

π (right 
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panel of Fig. 2), which were calculated in Ref. [12,13]. For f ∗
π

shown in the right panel of Fig. 2, more explanations will be given 
later. Thus, we can say that the in-medium pion properties ( f ∗

π as 
well), are driven by the effective constituent light-quark mass m∗

q , 
which is self-consistently calculated and constrained by the sym-
metric nuclear matter saturation properties.

Next, we study the pion valence wave function and distribution 
amplitude (DA) in symmetric nuclear matter using the in-medium 
constituent light-quark properties obtained so far.

The model The light-front constituent quark model we use here 
[8,9], although simple, is quite successful in describing the prop-
erties of pion in vacuum, such as the electromagnetic form factor, 
charge radius and weak decay constant. The model was also ex-
tended for kaon in Ref. [11]. This fact of success in describing 
properties in vacuum is a prerequisite to study the in-medium 
changes of the pion and kaon properties. In this study, we focus 
on the pion. For some in-medium properties of pion studied in 
the past, see Ref. [13]. Note that, we simply use the terminology 
medium or nuclear medium hereafter, instead of explicitly specify-
ing symmetric nuclear matter, otherwise stated.

To study the in-medium pion properties, we use the input cal-
culated by the quark-meson coupling (QMC) model [3] as men-
tioned already. The QMC model was invented by Guichon [30] to 
describe the nuclear matter based on the quark degrees of free-
dom. The self-consistent exchange of the scalar-isoscalar σ and 
vector-isoscalar ω mean fields coupled directly to the relativistic 
confined quarks, are the key and novelty for the new saturation 

Fig. 1. Negative of the binding energy per nucleon for symmetric nuclear mat-
ter, (Etot/A) − mN , as a function of nuclear density ρ (ρ0 = 0.15 fm−3) with the 
vacuum quark mass value mq = mq̄ = 220 MeV (q = u, d), calculated by the QMC 
model (taken from Ref. [13]). The corresponding incompressibility K obtained is 
K = 320.9 MeV.
mechanism of nuclear matter as we explained. The model was ex-
tended, and has successfully been applied for various nuclear and 
hadronic phenomena [3]. In the following we briefly summarize 
the input used for the present study of the pion properties in nu-
clear medium.

The constituent mass of the light quarks (q and q̄, with q = u, d) 
in the light-front constituent quark model in vacuum [13] is, mq =
mq̄ = 220 MeV. Then, all the nuclear matter saturation properties 
are generated by using this light-quark mass value. In other words, 
the different values of mq in vacuum generate the corresponding 
different nuclear matter properties, except for the saturation point 
of the symmetric nuclear matter, ρ = ρ0 (normal nuclear matter 
density, 0.15 fm−3) with the empirically extracted binding energy 
of 15.7 MeV. This saturation point condition is generally used to 
constrain the models of nuclear matter.

Here, we note that the pion mass up to normal nuclear mat-
ter density is expected to be modified only slightly, where the 
modification δmπ at nuclear density ρ = 0.17 fm−3, averaged over 
the pion isospin states, is estimated as δmπ � +3 MeV [4,34–36]. 
Therefore, we approximate the effective pion mass value in nu-
clear medium to be the same as in vacuum, m∗

π = mπ , up to 
ρ = ρ0 = 0.15 fm−3, the maximum nuclear matter density treated 
in this study. Furthermore, since the light-front constituent quark 
model is rather simple, and based on a naive constituent quark 
picture, the model cannot discuss the chiral limit of vanishing (ef-
fective) light-quark masses.

We next study the pion properties in symmetric nuclear mat-
ter. The effective interaction Lagrangian density for the quarks and 
pion in medium is given by,

Leff = −ig∗ (q̄γ 5 �τq · �φ) �∗ , (11)

where the coupling constant, g∗ = m∗
q/ f ∗

π , is obtained by the “in-
medium Goldberger-Treiman relation” at the quark level, with m∗

q
and f ∗

π being respectively the effective constituent quark mass and 
pion decay constant in medium, �φ the pion field [8,9,11], and �∗
is the π -q-q̄ vertex function in medium. Hereafter, the in-medium 
quantities are indicated with the asterisk, ∗ .

Symmetric pion valence wave function The pion valence wave func-
tion used in this study to calculate the pion distribution amplitude 
(poion DA) [37,38], (and to be able to calculate also parton distri-
bution function [39,40]), is symmetric under the exchange of quark 
and antiquark momenta. This π -q-q̄ vertex function, �(k, P ) in 
vacuum with the arguments k and P stand for momenta, is the 
same as that used for studying the properties of pion [8,9,41] and 
kaon [11]. However, for the in-medium �∗ , the arguments of the 
function are replaced by those of the in-medium [13]:
Fig. 2. Effective constituent quark mass m∗
q (q = q̄ = u, ̄u, d, ̄d) (left panel), and the pion decay constant calculated in symmetric nuclear matter (right panel), both taken from 

Ref. [13].



128 J.P.B.C. de Melo et al. / Physics Letters B 766 (2017) 125–131
�∗(k + V , P ) = C∗

((k + V )2 − m2
R + iε)

+ C∗

((P − k − V )2 − m2
R + iε)

, (12)

where V μ = δ
μ
0 V 0 is the vector potential felt by the light quarks 

in the pion immersed in medium, and can be eliminated by the 
variable change in the k-integration, kμ + δ

μ
0 V 0 → kμ . The nor-

malization factor associated with C∗ is modified by the medium 
effects. (See also below Eq. (14), and Ref. [13] for details.) The reg-
ulator mass mR represents soft effects at short range of about the 
1 GeV scale, and mR may also be influenced by in-medium effects. 
However, we employ m∗

R = mR in Eq. (12), since there exists no es-
tablished way of estimating this effect on the regulator mass. This 
can avoid introducing extra source of uncertainty.

The Bethe–Salpeter amplitude in medium, �∗
π , with the vertex 

function in medium �∗ is given by,

�∗
π (k + V , P ) = /k + /V + m∗

q

(k + V )2 − m∗2
q + iε

γ 5�∗(k + V , P )

× /k + /V − /P + m∗
q

(k + V − P )2 − m∗2
q + iε

. (13)

By eliminating the instantaneous terms, namely eliminating the 
terms with gamma matrix γ + in the numerators and k+ and 
(P+ − k+) in the denominators with the light-front convention 
a± ≡ a0 ± a3, and integrating over the light-front energy k− , we 
obtain the in-medium pion valence wave function �∗

π ,

�∗
π (k+, �k⊥; P+, �P⊥)

= P+

m∗2
π − M2

0

[
N∗

(1 − x)(m∗2
π −M2(m∗2

q ,m2
R))

+ N∗

x(m∗2
π −M2(m2

R ,m∗2
q ))

]
, (14)

where, N∗ = C∗(m∗
q/ f ∗

π )(Nc)
1
2 is the normalization factor with 

the number of colors Nc [8,9,13], x = k+/P+ with 0 ≤ x ≤ 1, 

M2(m2
a , m2

b) ≡ �k2⊥+m2
a

x + (�P−�k)2⊥+m2
b

1−x − �P 2⊥ , the square of the mass 
M2

0 is M2
0 =M2(m∗2

q , m∗2
q ), and mR is the regulator mass with the 

value m∗
R = mR = 600 MeV [8,13]. Note that the model used in 

Refs. [7,10] does not have the second term in Eq. (14). This means 
that the pion valence wave function in Refs. [7,10] is not symmet-
ric under the exchange of quark and antiquark momenta.

The present model with the symmetric vertex [8,9,11,41], was 
demonstrated successful in describing the pion properties in nu-
clear medium [13,14]. The pion transverse momentum probability 
density in medium, P∗

π (k⊥), in the pion rest frame P+ = m∗
π is 

calculated by,

P∗
π (k⊥) = 1

4π3m∗
π

2π∫
0

dφ

m∗
π∫

0

dk+M∗2
0

k+(m∗
π − k+)

× |�∗
π (k+, �k⊥;m∗

π , �0)|2, (15)

and the integration over k⊥ for P∗
π (k⊥) leads to the in-medium 

probability of the valence component in the pion, η∗ [8,9,13]:

η∗ =
∞∫

dk⊥k⊥ P∗
π (k⊥). (16)
0

Table 2
Properties of pion in medium, taken from Ref. [13], with ρ0 = 0.15 fm−3.

ρ/ρ0 m∗
q [MeV] f ∗

π [MeV] < r∗2
π >1/2 [fm] η∗

0.00 220 93.1 0.73 0.782
0.25 179.9 80.6 0.84 0.812
0.50 143.2 68.0 1.00 0.843
0.75 109.8 55.1 1.26 0.878
1.00 79.5 40.2 1.96 0.930

The pion decay constant in medium (see Fig. 2 (right panel)), 
in terms of the pion valence component with �∗

π (k+, �k⊥; m∗
π , �0), 

is calculate by [8,13]:

f ∗
π = m∗

q(Nc)
1/2

4π3

∫
d2k⊥dk+

k+(m∗
π − k+)

�∗
π (k+, �k⊥;m∗

π , �0). (17)

Some properties of the pion in symmetric nuclear matter ob-
tained in Ref. [13], are summarized in Table 2. The results listed 
in Table 2 are summarized as follows. As the nuclear density in-
creases, the in-medium effective constituent quark mass, m∗

q , and 
the pion decay constant, f ∗

π , decrease, while the root mean square 
charge radius, < r∗2

π >1/2, and the probability of valence compo-
nent in the pion state, η∗ , increase. This can be understood as 
follows. The reduction in mass, m∗

q , makes it easier to excite the 
valence quark component in the pion, and resulting to increase 
the valence component probability η∗ in the pion. Furthermore, 
the valence wave function spreads more in coordinate space by 
the decrease of m∗

q , and reduces the absolute value of the wave 
function at the origin ( f ∗

π ∝ |�∗
π (�r = �0)| reduction [42]), namely, 

increases < r∗2
π >1/2.

In-medium pion distribution amplitude Pion DA provides informa-
tion on the nonperturbative regime of the bound state nature of 
pion due to the quark and antiquark at higher momentum trans-
fer, and it was calculated with different approaches, such as QCD 
sum rules [43,44], and lattice QCD [45]. Our study here is based 
on the light-front constituent quark model.

The pion valence wave function in vacuum is normalized 
by [46,47] (aside from the factor 

√
2 difference):

1∫
0

dx

∫
d2k⊥
16π3

�π(x, �k⊥) = fπ

2
√

6
. (18)

This is an important constraint on the normalization of the qq̄
wave function [46,47], associated with a probability of finding a 
pure qq̄ state in the pion state. According to this normalization, the 
in-medium pion valence wave function is normalized by replacing 
fπ → f ∗

π in the above. Since the pion decay constant in nuclear 
medium is modified, the pion valence wave function in nuclear 
medium is also modified via this normalization.

In order to examine more in detail as to how the change in f ∗
π

impacts on the in-medium pion valence wave function, we show 
in Fig. 3 the pion valence wave functions in vacuum (left panel) 
and ρ = ρ0 (right panel).

One can notice that the in-medium pion valence wave function 
in momentum space has a sharper peak and localized in narrower 
regions both in x and k⊥ than those in vacuum. Of course, the 
total volume, the quantity integrated over x and �k⊥ , is reduced in 
medium, corresponding to the reduced f ∗

π . This fact is reflected 
in the wave function in coordinate space, that it becomes spread 
wider, and generally its hight is reduced.

The corresponding pion valence DA in medium, denoted by 
φ∗ (x) (not normalized to unity), is calculated as
D A



J.P.B.C. de Melo et al. / Physics Letters B 766 (2017) 125–131 129
Fig. 3. Pion valence wave functions in vacuum (ρ = 0) [left panel] and in medium (ρ = ρ0) [right panel] v.s. x and k⊥ = |�k⊥|, where P+ = mπ = m∗
π and P⊥ = |�P⊥| = 0. The 

wave functions are given in the units, 10−8 × (GeV)−1. Notice that the differences in the vertical axis scales for the left and right panels.

Fig. 4. Pion valence distribution amplitudes (left panel), and the ratios divided by that of the vacuum (right panel). (See also Table 2.)

Fig. 5. Normalized pion valence distribution amplitudes (left panel), and the magnified ones (right panel), both in vacuum and in medium.
φ∗
D A(x) =

∫
d2k⊥
16π3

�∗
π (x, �k⊥). (19)

Note that, Eq. (19) holds also for the other pseudoscalar mesons 
Mps such as kaon and D-meson, by replacing �∗

π (x, �k⊥) →
�∗

Mps
(x, �k⊥) in the above.

We show in Fig. 4 the pion valence DA, φ∗
D A(x), for several 

nuclear densities including in vacuum ρ/ρ0 = 0 (left panel), and 
the corresponding ratios divided by the vacuum one φD A(x) (right 
panel). Indeed, the significant reduction of the in-medium pion va-
lence DAs (φ∗

D A(x)) is obvious in Fig. 4, reflecting the reduction 
of f ∗

π .
Next, we study pion valence DAs normalized to unity, or nor-

malized pion valence DAs in vacuum and in medium. By this, we 
can study the change in shape due to the medium effects. We 
show in Fig. 5 the calculated normalized pion valence DAs, φ∗(x)
both in vacuum (ρ/ρ0 = 0) and in medium (left panel), and their 
magnifications (right panel). The in-medium change in shape is 
moderate when the nuclear densities are small, but it becomes ev-
ident when the density becomes ρ0.

Furthermore, it may be useful to define effective pion valence DA
using the valence probability in vacuum η and in medium η∗ . (See 
Eq. (16) and Table 2.) The pion states in vacuum, |π >, and in 
medium, |π >∗ , can respectively be written as,

|π > = √
η|qq̄ > +a|qq̄qq̄ > +b|qq̄g > +· · · , (20)

|π >∗ = √
η∗|qq̄ >∗ +c|qq̄qq̄ >∗ +d|qq̄g >∗ + · · · , (21)

where a, b, c and d are constants, and g denotes a gluon, and + · · ·
stands for the higher Fock components in the pion states. The 
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, 
Fig. 6. Effective pion valence distribution amplitudes in vacuum and in medium, 
respectively multiplied by √η and √η∗ .

quantity η∗ in Table 2 indicates that the valence qq̄ component 
in the pion state increases in medium as nuclear density increases. 
The effective pion valence DAs, 

√
η∗φ(x)∗ , in vacuum (ρ/ρ0 = 0)

and in medium are shown in Fig. 6. They may respectively corre-
spond to the first terms of Eqs. (20) and (21).

Since η∗/η is enhanced in medium, effective pion valence DA 
in medium is also enhanced, on the top of the corresponding 
medium-(shape)modified normalized pion valence DA. The obvi-
ous enhancement of effective pion valence DA in medium can be 
seen around x = 0.5. This quantity may be useful when one studies 
some reactions in medium (in a nucleus) involving a pion, based 
on a constituent quark picture of pion.

Summary We have studied the impact of in-medium effects on 
the pion valence distribution amplitudes using a light-front con-
stituent quark model, combined with the in-medium input for the 
constituent light-quark properties calculated by the quark-meson 
coupling model. The in-medium constituent light-quark properties 
inside the pion are consistently constrained by the saturation prop-
erties of symmetric nuclear matter.

The in-medium pion mass is assumed to be the same as that 
in vacuum, based on the extracted information from the pionic-
atom experiment, and some theoretical studies. This information 
extracted is valid up to around the normal nuclear matter den-
sity. Thus, the results obtained in this study, combined with the 
light-front constituent quark model, are valid up to around the nor-
mal nuclear matter density, but cannot discuss reliably the chiral 
limit, the vanishing limit of the (effective constituent) light-quark 
masses. We need to rely on more sophisticated models of pion to 
be able to discuss the chiral limit in medium, as well as in vacuum.

Due to the reduction in the pion decay constant in medium, 
the pion distribution amplitude in medium normalized with the 
pion decay constant, is appreciably reduced in nuclear medium. 
Because the valence component probability in medium increases 
as nuclear density increases, we have defined an effective pion dis-
tribution amplitude normalized to the square root of the valence 
probability in the pion state. This may give some information for 
the effectiveness of the valence quark picture of pion in nuclear 
medium. Within the present light-front constituent quark model 
approach, the effectiveness of the valence quark picture of the 
pion in medium, becomes more enhanced as nuclear density in-
creases, due to the increase of the valence component in the pion 
state.

Although the present study is based on a simple, light-front 
constituent quark model, this is a first step to understand the 
impact of the medium effects on the internal structure of the 
pion immersed in nuclear medium. In the future, we plan to 
make similar studies for kaon, D-meson, and ρ-meson in nuclear 
medium.
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