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A Rac/Cdc42 exchange factor complex promotes
formation of lateral filopodia and blood vessel
lumen morphogenesis
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During angiogenesis, Rho-GTPases influence endothelial cell migration and cell–cell adhesion;

however it is not known whether they control formation of vessel lumens, which are essential

for blood flow. Here, using an organotypic system that recapitulates distinct stages of

VEGF-dependent angiogenesis, we show that lumen formation requires early cytoskeletal

remodelling and lateral cell–cell contacts, mediated through the RAC1 guanine nucleotide

exchange factor (GEF) DOCK4 (dedicator of cytokinesis 4). DOCK4 signalling is necessary

for lateral filopodial protrusions and tubule remodelling prior to lumen formation, whereas

proximal, tip filopodia persist in the absence of DOCK4. VEGF-dependent Rac activation via

DOCK4 is necessary for CDC42 activation to signal filopodia formation and depends on the

activation of RHOG through the RHOG GEF, SGEF. VEGF promotes interaction of DOCK4

with the CDC42 GEF DOCK9. These studies identify a novel Rho-family GTPase activation

cascade for the formation of endothelial cell filopodial protrusions necessary for tubule

remodelling, thereby influencing subsequent stages of lumen morphogenesis.
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A
ngiogenesis is the most common mechanism for physio-
logical and pathological vascular expansion from
pre-existing blood vessels. In cancer, high levels of the

angiogenic factor VEGF secreted by tumour and stromal cells
drives aberrant angiogenic growth that results in tumour blood
vessel tortuosity and hypoxia1,2. Vessel growth from pre-existing
vessels can be through elongation or branching, both of which
require migration of a leading cell that drives the collective
migration of adjacent endothelial cells, a process known as
sprouting. Sprouting may be proximal, promoting elongation or
lateral resulting in branches3. Lateral sprouting requires localized
weakening of intercellular junctions to allow an endothelial cell to
break away from the vessel wall and become a leading cell capable
of forming a new sprout4. Sprouting is preceded by acquisition of
endothelial tip cell morphology characterized by the extension of
numerous filopodial protrusions5,6. Filopodia on tip cells are able
to sense the surrounding microenvironment and drive rapid
extension of a sprout for correct patterning of the developing
blood vessels5,7. In addition, filopodia can initiate intercellular
contacts and bridging of endothelial cells through trafficking and
presentation of the adherens junction molecule VE-cadherin7,8.
Following expansion, blood vessel functionality requires
organization of the endothelial network into three-dimensional
(3D) tubular structures with lumens9.

Signalling to the actin cytoskeleton is central to growth factor
signalling during angiogenesis10,11. The actin cytoskeleton and
cellular processes dependent on it are regulated through the
activity of Rho-GTPases that cycle between active GTP- and
inactive GDP-bound states, controlled by positive regulators
and negative regulators (guanine nucleotide exchange factors
(GEFs) and GTPase-activating proteins, respectively). Endothelial
cell motility and VEGF-driven migration require Rac1 and
RhoJ12,13, cell assembly in vivo depends on activation of RhoA14,
while suppression of sprouting through adherens junctions
requires RhoC signalling to Rho-kinases and actomyosin
contractility4. To identify Rho GEFs required for distinct
processes in angiogenesis, we performed short interfering RNA
(siRNA)-based screens in an organotypic angiogenesis system
that recapitulates distinct stages of endothelial cell association,
sprouting and tubule establishment4,15. These screens identified
the Rac1 GEF DOCK4, a member of the DOCK (dedicator of
cytokinesis) 180 family GEFs16, as key regulator of filopodia
formation and angiogenesis. Previous studies have shown that
DOCK4 controls neuronal outgrowth and branching17, breast
cancer cell and fibroblast migration18,19. Our studies show that
through interaction with the Cdc42 GEF DOCK9, DOCK4
controls generation of endothelial cell filopodial protrusions
necessary for the dynamic remodelling of tubules, lateral
organization of endothelial cells and lumen morphogenesis.

Results
DOCK4 controls tubule remodelling and lumen formation. To
investigate which GEFs are required for angiogenesis, we mod-
ified a coculture angiogenesis assay15,20 to facilitate the formation
of mature tubes with lumens through distinct stages of tubule
morphogenesis (Supplementary Fig. 1a and Supplementary
Movie 1). Endothelial cells were seeded onto a confluent layer
of fibroblasts (CFs); after 14 days culture lumens are present as
shown by 3D reconstructions of confocal images (Supplementary
Movie 1). Lumens in the coculture assay are multicellular20 and
form at sites of lateral endothelial cell–cell contacts
(Supplementary Fig. 1b–d). Lumenized tubes measured B50%
of total tubule length and the glycoprotein podocalyxin was
localized at the apical side of the lumens as previously described
in vivo21 (Supplementary Fig. 1c). Prior to seeding on CFs,

endothelial cells were transfected with RNA interferences
(RNAis) targeting RHO-family GEFs. Knockdown of 22 out of
83 tested GEFs22 impacted on tubule formation (Supplementary
Table 1). DOCK4 knockdown showed marked decrease in
the number of branches although the overall amount of
tubule formation remained unaffected (Supplementary Fig. 1e),
suggesting that DOCK4 is involved in a distinct endothelial cell
process.

When seeded onto fibroblasts, endothelial cells initially form
clusters which remodel and sprout to form a network
of tubules15; lumenized tubes form following suppression of
sprouting, driven by establishment of mature endothelial cell
adherens junctions4 (Supplementary Fig. 1a–d). Knockdown of
DOCK4 by RNAi reduced the number of clusters detected at
3 days after seeding human umbilical vein endothelial cells
(HUVEC) onto fibroblasts (Fig. 1a and Supplementary Fig. 1f).
Early association of endothelial cells, junctional organization of
VE-cadherin and VE-cadherin expression levels were unaffected
by DOCK4 knockdown (Fig. 1b and Supplementary Fig. 1g),
suggesting that DOCK4 is not required for VE-cadherin
function per se; DOCK4 knockdown did not affect endothelial
cell proliferation at that stage (Supplementary Fig. 1h) or
the spreading and bipolarity of single endothelial cells
(Supplementary Fig. 1i). However tubules developed at a faster
rate, with endothelial cells within tubules appearing less spread
and more polarized at earlier timepoints (Fig. 1b). These
observations show that DOCK4 regulates the shape of
endothelial cells in the developing tubules but is dispensable for
initial stages of tubule morphogenesis while subsequent steps
are perturbed with knockdown of DOCK4: sprouting was
blocked (Fig. 1c); the developed tubules were thinner with
fewer lateral cell–cell contacts (Fig. 1d). There was 40% decrease
in lumenized tubes; lumenless cords lacked apposing endothelial
cells and apical organization of podocalyxin (Fig. 1e and
Supplementary Movie 2).

To gain insight into the behaviour of tubules formed in the
absence of DOCK4 and loss of lateral contacts, we followed
HUVEC in coculture by time-lapse microscopy. Control tubules
remodelled actively and sprouted through dynamic protrusions
while maintaining thickness (Fig. 1f and Supplementary Movies 3
and 5). Tubules with DOCK4 knockdown did not remodel or
sprout but elongated in a unidirectional manner and became
thinner with time (Fig. 1f and Supplementary Movies 4 and 6).
Protrusive activity was blocked (Fig. 1f); initiation of protrusions
was observed occasionally in the absence of DOCK4; however,
those were not productive and failed to remodel the tubules
(Fig. 1f and Supplementary Movie 4); anastomosis proceeded
in the absence of DOCK4 (Fig. 1g, Supplementary Fig. 1j and
Supplementary Movies 5 and 6). Altogether, the data show
that DOCK4 is necessary for endothelial cell protrusive activity
and tubule remodelling, organization of lateral contacts and
lumen formation, but is dispensable for tubule elongation and
anastomosis.

RhoG and Cdc42 are required for tubule formation. DOCK4 is
a member of the DOCK-B subfamily of Rac GEFs16. We studied
whether DOCK4 acts as a Rac1 GEF downstream of the major
angiogenic growth factor VEGF. Rac1 activation assays showed
knockdown of DOCK4 blocks VEGF-mediated Rac1 activation
(Fig. 2a and Supplementary Fig. 1k). Consistent with DOCK4
acting as a Rac1 GEF, Rac1 but not RhoA or Cdc42 interacted
with DOCK4 under conditions that stabilize the GTPase
nucleotide-free state and interaction with GEFs (Supplementary
Fig. 1l). Knockdown of Rac1 resulted in distinct linear tubule
morphology with pronounced reduction in the number of
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Figure 1 | Rac GEF DOCK4 controls lateral remodelling and lumen formation (a) Cluster formation (arrowheads) following DOCK4 depletion (EV, empty

vector; ot, on-target plus siRNA; sh, shRNA1; sp, smartpool siRNA) in HUVEC 3 days after seeding onto CFs. Scale bar, 100mm. Scatter plot: cluster

quantification, n¼ number of time-lapse movies (EV, n¼ 17; non silencing, n¼ 12; DOCK4 sh1, n¼ 18; mock, n¼ 6; nontargeting, n¼6; DOCK4 sp, n¼ 6;

DOCK4 ot, n¼6) from independent experiments (EV, n¼ 3; DOCK4 sh1, n¼ 3; non silencing, n¼ 2; mock, n¼ 2; nontargeting, n¼ 2; DOCK4 sp, n¼ 2;

DOCK4 ot, n¼ 2); lines represent the mean. Knockdown quantified by quantitative PCR (DOCK4 sp, ot) or immunoblot (DOCK4 sh; shown in

Supplementary Fig. 1k). (b) VE-cadherin expression following DOCK4 depletion 2 days after seeding HUVEC onto CFs. (i) and (ii): magnifications of

outlined boxes. Scale bar, 50mm. (c) Branch formation (arrows) following DOCK4 depletion as in b 7 days after seeding HUVEC onto CFs. Scale bar,

100mm. Histogram: branch point index. For each value, the number of branches divided by tubule length±s.e.m.; n¼ number of organotypic cocultures

(EV, n¼8; non silencing, n¼ 11; DOCK4 sh1, n¼ 8; DOCK4 sh2, n¼ 11) from independent experiments (EV, n¼ 3; non silencing, n¼4; DOCK4 sh1, n¼ 3;

DOCK4 sh2, n¼4). (d) VE-cadherin expression 7 days after seeding HUVEC with DOCK4 depletion as in b. Scale bar 25mm. (e) Lumen formation

(asterisk) following DOCK4 depletion as in c 14 days after seeding onto CFs. 3D reconstructions are from confocal Z-stacks (Supplementary Movies 1 and

2). Scale bar, 25mm. Scatter plot: lumenized length as percentage of total length, n¼ number of organotypic cocultures (DOCK4 sh1, n¼ 11; DOCK4 sh2,

n¼ 6; EV, n¼ 15; non silencing, n¼ 7) from independent experiments (DOCK4 sh1, n¼ 2; DOCK4 sh2, n¼ 2; EV, n¼ 3; non silencing, n¼ 2); lines

represent the mean. (f) Images from Supplementary Movies 3 and 4 of tubule formation following DOCK4 depletion (shRNA1, sh; EV, empty vector) 4

days after seeding onto CFs. Arrowheads: white, protrusions persisting 45 h; red, elongating tip. Scale bar, 50mM. Histogram: quantifications over 48 h of

protrusions persisting 45 h±s.e.m.; n¼ number of time-lapse movies (DOCK4 sh, n¼ 19; non silencing, n¼ 11; EV, n¼ 11) from independent experiments

(DOCK4 sh, n¼ 3; non silencing, n¼ 2; EV, n¼ 2). (g) Histogram: quantifications over 48 h of anastomoses±s.e.m.; n¼ number of time-lapse movies (non

silencing, n¼ 11; DOCK4 sh, n¼ 19; EV, n¼ 17) from independent experiments (non silencing, n¼ 2; DOCK4 sh1, n¼ 3; EV, n¼ 3); NS, non significant by

two-tailed t-test. Images from Supplementary Movies 5 and 6 showing anastomoses in Supplementary Fig. 1j. *Po0.05, **Po0.01, ***Po0.001; NS, non

significant by two-tailed t test.
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branches (Fig. 2b and Supplementary Fig. 2a). Supplementary
Figure 2b shows by quantification from time-lapse movies
(Supplementary Movies 7 and 8) blockade of protrusions on
tubules with knockdown of Rac1. This defect in protrusive
activity with Rac1 knockdown, like knockdown of DOCK4, was
not associated with defective migratory behaviour of single
endothelial cells in the organotypic coculture (Supplementary
Fig. 2c). To investigate which other Rho-GTPases are involved in
tubule formation, we performed RNAi screens. Knockdown of a
number of Rho-GTPases perturbed tubule formation to different
extents (Supplementary Table 2). Knockdown of RhoG reduced
the overall levels of tubule formation to a similar extent as Rac1
(Fig. 2b and Supplementary Fig. 2d) although individual tubules
appeared shorter (Fig. 2b). There was marked blockade of tubule
formation in response to Cdc42 knockdown (Fig. 2b and
Supplementary Fig. 2e) associated with inhibition of spreading
and migration of single endothelial cells (Supplementary
Fig. 2f,g). These data show that Rac1, RhoG and Cdc42 are key
regulators of tubule formation and that they control diverse
endothelial cell processes.

DOCK4 controls lateral filopodia formation. Knockdown of
DOCK4 resulted in loss of dynamic remodelling and protrusive
activity. Protrusions and spouts in the coculture system, like
in vivo are led by filopodia5,7 (Fig. 3a–c). At early stages of tubule
formation, VEGF promotes lateral filopodia for generation of
sprouts (Fig. 3a). Filopodia in the coculture system are actin rich
as shown by phalloidin staining (Fig. 3b) and sites of localization
of VE-cadherin (Supplementary Fig. 3a); filopodia extend and
retract dynamically at the tips of developing tubules and at lateral
sites (Supplementary Movie 9). Strikingly, knockdown of DOCK4
blocked filopodia and sprouts (Fig. 3b,c), as did knockdown of
Rac1 (Fig. 3c). While DOCK4 knockdown abolished lateral
filopodia (Fig. 3b,c), filopodia persisted at the tips of tubules
(Fig. 3d and Supplementary Movie 10), suggesting distinct

mechanisms of control at tip and lateral sites. Bleb-like
membrane protrusions were observed on some tubules with
DOCK4 knockdown (Supplementary Movie 10) potentially
indicative of increased actomyosin contractility retracting
filopodia; however, treatment of the cocultures with the ROCK
inhibitor Y27632, which blocks actomyosin contractility4, did not
reverse the blockade of filopodia (Supplementary Fig. 3b).
Altogether, these observations suggest that (i) the defect in
tubule remodelling with knockdown of DOCK4 is due to loss of
filopodia and protrusions, (ii) DOCK4 controls filopodia via a
direct mechanism.

Filopodia formation and protrusive activity require rearrange-
ments of the actin cytoskeleton23. To investigate the role of actin
remodelling in these processes, we treated the cocultures with low
concentrations of the inhibitor of actin polymerization
Latrunculin B (LatB)24 to block filopodia without affecting
endothelial cell viability and adherens junction formation7. LatB
at 0.01 mg ml� 1 blocks lateral filopodia (Fig. 3e). Treatment of the
cocultures with LatB blocked sprouts, the tubules were long and
thin with fewer lateral contacts resembling tubules with DOCK4
knockdown (Supplementary Fig. 3c,d). The treatment attenuated
lumen formation (Fig. 3f). These experiments show that the
dynamic remodelling and organization of endothelial cells in
developing tubules requires protrusive activity led by filopodia,
and that blockade of cytoskeletal remodelling and protrusive
activity early in tubule morphogenesis influences subsequent
stages of lumen formation.

It is well established that the formation of filopodia depends
on Cdc42 (ref. 25). Therefore, we investigated whether Rac1
controls Cdc42 in endothelial cells. VEGF stimulation strongly
activated Cdc42; strikingly, knockdown of Rac1 abolished Cdc42
activation (Fig. 3g and Supplementary Fig. 3e), while knockdown
of Cdc42 had little effect on Rac1 (Supplementary Fig. 3f). These
data suggest that Cdc42 activation for filopodia formation
depends on Rac1. To corroborate this finding in another cell
system, we performed experiments in a non-endothelial cell type:
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(si, smartpool siRNA) in HUVEC stimulated with VEGF (25 ng ml� 1), bars indicate s.e.m.; n¼4 independent experiments. Rac1 activation following
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three cocultures quantified in each experiment. Table shows knockdown quantified by quantitative PCR. Lower histogram: branch point index. Bars
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with nontargeting control.
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293T cells. Those experiments showed that overexpression of
Rac1 stimulated filopodia formation that was blocked by
knockdown of Cdc42 (Fig. 3h and Supplementary Fig. 3g),
confirming interplay between Rac1 and Cdc42 activation in
filopodia formation (Fig. 3i).

RhoG controls Rac1 activation and filopodia formation. Rac1
activation through DOCK180 family GEFs requires RhoG26,27.
We therefore investigated whether RhoG controls DOCK4-
dependent Rac1 activation and filopodia formation in
endothelial cells. RNAi-mediated knockdown of RhoG blocked
VEGF-driven Rac1 activation (Fig. 4a and Supplementary

Fig. 4a). We established that VEGF activates RhoG
(Supplementary Fig. 4b) and investigated which RhoG GEFs
control RhoG activation downstream of VEGF signalling.
RNAi-mediated knockdown of SGEF but not FLJ1066 and to a
lesser extent Trio reduced activated RhoG levels (Fig. 4b and
Supplementary Fig. 4c). Knockdown of RhoG resulted in
reduction in branches and overall tubule length (Fig. 2b); in
tubules that retained length there was blockade of lateral filopodia
(Fig. 4c). Knockdown of Trio did not affect filopodia or branches
(Fig. 4c and Supplementary Fig. 4d), suggesting it may control a
different RhoG-dependent process. Knockdown of SGEF, as with
the knockdown of DOCK4, blocked lateral filopodia and to a
lesser extent tip filopodia (Fig. 4c); tubules with SGEF knockdown
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Figure 3 | DOCK4 is required for lateral filopodia formation and Cdc42 activation (a) Confocal images of filopodia in organotypic cocultures following
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Cocultures were imaged after 24 h. Scale bar, 50mM. (b) Confocal images of phalloidin staining of filopodia (yellow arrows) in the presence of VEGF

(25 ng ml� 1) 6 days after seeding HUVEC with DOCK4 depletion (EV, empty vector; sh, shRNA1) onto CFs. Scale bar, 25mM. (c) Confocal images of

filopodia as in b after depletion of Rac1 or DOCK4 (EV, empty vector; sh1, shRNA1). Images are maximum intensity projections of confocal Z-stacks. Scale

bar, 50mM. Histogram: filopodia quantifications, error bars indicate s.e.m.; n¼ number of organotypic cocultures (EV, n¼8; Rac sh1, n¼6; DOCK4 sh1,

n¼ 6) from independent experiments (EV, n¼ 3; Rac sh1, n¼ 2; DOCK4 sh1, n¼ 3). Knockdown was quantified by immunoblot (Supplementary Figs 1k and

2a). (d) Confocal images show persisting tip filopodia (red arrow) in tubules with DOCK4 depletion as in b. Scale bar, 50mM. (e) Treatment with

0.01mg ml� 1 Latrunculin B (LatB) blocks lateral filopodia. Cocultures were treated for 48 h starting at 6 days after seeding HUVEC onto CFs. Middle panel

shows filopodia in single confocal Z-stack (asterisk, focus level). Scale bar, 50mM. (f) Histogram: quantification of lumenized length 14 days after seeding

HUVEC onto CFs and following 48 h 0.01mg ml� 1 LatB treatment at 3, 6 and 9 days (6 days total treatment) compared with untreated control. Each value

represents the lumenized length as percentage of total length±s.e.m.; n¼4 organotypic cocultures for each condition. Supplementary Figure 3c,d shows

adherens junctions and thin tubule morphology with LatB treatment. (g) Immunoblots of Cdc42 activation with VEGF stimulation (25 ng ml� 1) in HUVEC

after depletion of Rac1 (ol1, siRNA oligonucleotide 1). Histogram: fold Cdc42 activation (GTP-bound Cdc42/total Cdc42) following Rac1 depletion

(si, siRNA oligonucleotide 1), error bars indicate s.e.m.; n¼ 3 independent experiments; Supplementary Fig. 3e shows Cdc42 activation with shRNA-

mediated Rac1 knockdown. (h) Images of phalloidin-stained 293T cells following overexpression of EGFP–Rac1 and knockdown of Cdc42 (si, siRNA). Vector

(EGFP) and EGFP–Rac1 (top panels) were co-transfected with nontargeting siRNA. Images of wider areas in Supplementary Fig. 3g. Scale bar, 25 mM.

Histogram: filopodia quantifications, error bars indicate s.e.m.; n¼ 30 cells from two independent experiments. (i) DOCK4-Rac1-Cdc42 signalling

module regulates filopodia formation. *Po0.05, **Po0.01, ***Po0.001 by two-tailed t test.
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showed more linear tubule morphology compared with controls
and decrease in branches (Supplementary Fig. 4d). These data
suggest that SGEF and RhoG operate upstream of Rac1 and
DOCK4 to control lateral filopodia and branches. To confirm that
RhoG, DOCK4 and Rac1 operate in the same signalling module,
we performed overexpression experiments in 293T cells.
Overexpression of RhoG resulted in increased Rac1 activation
that was blocked by knockdown of DOCK4 (Fig. 4d). Altogether
the data argue for a RhoG-DOCK4-Rac1 signalling module
downstream of VEGF and in 293T cells (Fig. 4e).

Rac GEF DOCK4 is in a complex with Cdc42 GEF DOCK9. We
sought to gain understanding of the molecular mechanism of
Cdc42 and Rac interplay and how it influences filopodia and
tubule formation. First we showed that knockdown of DOCK4 in

endothelial cells blocks Cdc42 activation downstream of VEGF
(Fig. 5a and Supplementary Fig. 5a). We then investigated which
GEF controls Cdc42 activation. We screened a number of GEFs
including DOCK9, DOCK10, DOCK11, FGD3 and FGD6, on the
rationale that either they are Cdc42 GEFs or because their
knockdown resulted in tubule morphology similar to knockdown
of Cdc42 in the RNAi screen (Supplementary Table 1).
Knockdown of DOCK9 blocked VEGF-driven Cdc42 activation
(Fig. 5b and Supplementary Fig. 5b). Knockdown of DOCK9
inhibited lateral filopodia and to a lesser extent tip filopodia
(Fig. 5c); tubules with DOCK9 knockdown showed more linear
tubule morphology compared with controls (Supplementary
Fig. 5c). In 293T cells, Rac1 overexpression increased Cdc42
activation that was blocked by knockdown of DOCK9 (Fig. 5d).
Consistent with RhoG acting upstream of DOCK4 and Rac1,
RhoG overexpression resulted in increased Cdc42 activation that
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was blocked by knockdown of DOCK4 or DOCK9 (Fig. 5d).
Altogether, the data delineate a signalling module, SGEF-
RhoG-DOCK4-Rac1-DOCK9-Cdc42 downstream of
VEGF, which controls lateral filopodia formation (Fig. 5e).

To gain insight into how Rac1 activation might lead to
activation of Cdc42, we isolated interaction partners of DOCK9
by pull-down assay in 293T cells and analysed the complexes by
liquid chromatography tandem mass spectrometry (LC-MS/MS).
Analysis showed there is interaction between DOCK4 and
DOCK9 (Fig. 6a) that was corroborated by western blotting:
DOCK4 was detected in DOCK9-immunoprecipitated complexes
following overexpression of DOCK4 (Fig. 6b); association of
endogenous DOCK4 with endogenous DOCK9 was detected in
HUVEC in the presence of VEGF that was blocked with
knockdown of Rac1 (Fig. 6c). We investigated further the
interaction between DOCK4 and DOCK9. Members of the
DOCK-A and DOCK-B subfamilies including DOCK4 can
homodimerize via their DHR2 domains28 and may interact
with ELMO via their Src homology 3 (SH3) domains26,29,30.
Interaction between DOCK4 and DOCK9 required both the
DOCK4 DHR2 and SH3 domains (Fig. 6d) with the minimal SH3
domain sufficient for association (Fig. 6e). These data show that
in addition to its involvement in the interaction with ELMO, the
DOCK4-SH3 domain also mediates interaction with DOCK9.

This is in agreement with the MS analysis, which identified
ELMO as an interaction partner of DOCK9 (Fig. 6a).
DOCK9 lacks an SH3 domain, suggesting its association with
ELMO is indirect. Pull-down assays using GST–ELMO, showed
DOCK9 interaction with ELMO is through DOCK4 since
knockdown of DOCK4 reduced binding of DOCK9 to ELMO,
while the DOCK4–ELMO interaction (Supplementary Fig. 5d)
was unaffected by knockdown of DOCK9 (Fig. 6f). The MS
analysis identified a number of other DOCK9-interacting proteins
that included zyxin (Supplementary Table 3 and Fig. 6a), a
component of filopodial focal complexes and regulator of actin
polymerization31,32. Knockdown of zyxin attenuated filopodia
formation (Fig. 6g). Altogether, the interaction data argue for
DOCK4 homodimers interacting with ELMO and DOCK9 via the
DOCK4-SH3 domains and DOCK9 interacting with zyxin to
directly influence actin dynamics.

DOCK4 controls blood vessel lumen formation in vivo. The
in vitro analyses suggested an in vivo role for DOCK4 in new
vessel formation. DOCK4 expression was abundant in tumour
blood vessels in vivo (Supplementary Fig. 6); therefore, we
investigated if DOCK4 controls lumen formation in tumours.
First we used a xenograft tumour model where s.c. injection of
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tumour cells with irradiated ecotropic retrovirus producers results
in transduction of the host vasculature and endothelial-specific
gene expression15. We used this approach to deliver short hairpin
RNAs (shRNAs) for knockdown of DOCK4 in the vasculature of
BE colorectal tumours15. Delivery of two different DOCK4
shRNAs using this approach resulted in changes in the
morphology of tumour blood vessels (Fig. 7a) consistent with
performance of the co-injected retroviral producer lines
(Supplementary Fig. 7a). Tumours DOCK4 shRNAs targeted to
the vasculature lacked large calibre lumens compared with
controls (Fig. 7a). To evaluate vessel functionality, we assessed
hypoxia by staining tumour sections for carbonic anhydrase
CA-IX33. Control tumours had CA-IX-positive hypoxic regions
around the necrotic centre (Fig. 7b); necrotic regions were less
prominent with DOCK4 shRNA, although hypoxia was observed
in areas lacking larger lumens (Fig. 7b). The data show that
DOCK4 is required for generation of blood vessel lumens in
tumours and that changes in blood vessel calibre by knockdown
of DOCK4 impact on tumour hypoxia.

To confirm these results by means of genetic deletion, we
generated a Dock4 constitutive mouse knockout line
(Supplementary Fig. 7b,c). Homozygous deletion of Dock4 leads

to early embryonic lethality (Supplementary Fig. 7d); therefore,
we employed Dock4 heterozygous mice in tumour experiments.
Heterozygous mice and wild-type controls were implanted
intracranially with a syngeneic breast cancer cell line (EO771
flucII) which gives rise to highly vascularized tumours in the
brain (M. Lorger, unpublished data). Vessel morphology varied in
the tumours, with areas of lumenized large calibre vessels and
areas of small capillaries (Supplementary Fig. 8a,b). Analysis of all
identifiable lumenized vessels in tumour sections showed decrease
in lumen size in tumours grown in Dock4 heterozygous mice
compared with controls (Fig. 7c, and Supplementary Fig. 8b). In
control tumours, B38% of vessels with lumens had larger calibre
(435mm), compared with 21% in tumours grown in hetero-
zygous Dock4 null mice (Fig. 7c), corroborating findings in the
xenograft model. In developmental angiogenesis, a similar effect
in blood vessel lumen size was detected in the brain parenchyma
of E13.5 Dock4 heterozygous embryos (Supplementary Fig. 9a). In
controls, B31% of vessels with lumens had relatively large calibre
(420mm), whereas in heterozygous Dock4 null mice the
percentage of vessels with larger lumens was 9%. Differences in
lumen size were not associated with changes in pericyte coverage
in wild-type or Dock4 heterozygous embryos (Supplementary
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Fig. 9b). Differences were not detected in the calibre of the aortas
of heterozygous Dock4 null mice (Supplementary Fig. 9c),
potentially indicating that different molecules operate in the
aorta and the brain microvasculature during blood vessel lumen
formation. Although we cannot exclude contribution of non-
vascular cell types in the observed effects of DOCK4 genetic
deletion in blood vessel development, altogether the data show
that DOCK4 regulates blood vessel lumens in tumours and
during development in vivo.

Discussion
We show that DOCK4 controls tubule filopodia and protrusions
required for the dynamic behaviour of endothelial cells in
developing tubules and for lumen formation (Fig. 8a). This
finding is unexpected: DOCK4 is a member of a family of Rac
GEFs16,34 which have previously been implicated in the control of
lamellipodia formation19,27, rather than filopodia formation,
which is driven by Cdc42 (ref. 35). However, studies in
Drosophila have shown that during dorsal closure, Rac1 is
required for formation of filopodial structures and that expression
of constitutively active Rac induces prominent filopodia alongside
large lamellipodia36, thereby implicating Rac1 in the control of
both lamellipodia and filopodia. Studies in mammalian cells
employing dominant negative mutants, and genetic studies in
Caenorhabditis elegans suggest that Rac operates downstream of
Cdc42 (refs 25,37). However, we show that Rac1 activation by

DOCK4 is required for Cdc42 activation by the GEF DOCK9.
Importantly, we demonstrate that DOCK4 is in a complex
with DOCK9, an association dependent on the amino terminal
SH3 domain of DOCK4. The SH3 domain of DOCK family
GEFs is known to interact with sequences in ELMO proteins
containing proline-rich (pXXp) motifs29; several such pXXp
motifs are present in the protein sequence of DOCK9 that may
mediate the interaction with DOCK4. As the DOCK4 DHR2
domain is also necessary for the DOCK4–DOCK9 interaction, we
propose that homodimerization of DOCK4 mediated by the
DHR2 domain38 permits one DOCK4-SH3 domain in the
homodimer to interact with ELMO and one with DOCK9
(Fig. 8b). This is supported by the association between DOCK9
and the DOCK4-SH3 domain (Fig. 6e), and the association
between DOCK9 and ELMO being dependent on DOCK4
(Fig. 6f). These findings present a paradigm of how activity of
GTPases with apparent distinct functions can be co-ordinately
regulated via association of their respective GEFs to control
common cellular processes.

We demonstrate that VEGF activates a RhoG-DOCK4-
Rac1-DOCK9-Cdc42 signalling module that controls lateral
filopodia formation, while some tip filopodia persist when this
signalling pathway is blocked. These filopodia may present a
subpopulation with distinct functions, as reported previously in
other cell systems39, for example, they may promote spreading
and survival of tip cells. The data suggest that alternative
molecular mechanisms are in play for those tip filopodia which
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sections to show hypoxic regions. Scale bar, 200mm. (c) Lumen analysis in EO771 tumours implanted in Dock4 wildtype (WT) and heterozygous (Het)

mice (three tumours from each condition). Left scatter plot: average lumen width; right scatter plot: frequency of lumen size; n¼4 tiled images for each

tumour representing two tumour levels, each image across a tumour section. *Po0.05, **Po0.01, ***Po0.001 by two-tailed t-test compared with

indicated controls.
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may depend on PI3K signalling and the downstream effector
ARAP3 (ref. 40,41). Alternatively, tip filopodia may require
different thresholds of VEGF and/or different rates of actin
polymerization and stability, or may be regulated by different
extracellular cues. Activation of the signalling pathway may be
through DOCK4 association with VEGFR2, either directly or
through an adaptor such as Grb2 which is known to interact with
DOCK pXXp motifs42. Interaction would then promote
association of DOCK4 with DOCK9 and ELMO for
translocation of the complex to the plasma membrane following
RhoG activation27. Our studies show that RhoG and the RhoG
GEF, SGEF, regulate the DOCK4-Rac1-DOCK9-Cdc42
signalling module. RhoG and SGEF knockout mice are
viable43,44, suggesting that vascular defects are mild or selective
pressure for generation of a functional vasculature can overcome
requirement for upstream regulators in vivo. Although
knockdown of SGEF, DOCK4 or DOCK9 in endothelial cells in
the coculture system had similar effects on filopodia formation
and tubule morphology, the GTPases play additional roles: Cdc42
is necessary for endothelial cell spreading and migration, whereas
RhoG may also control tubule length. These observations support
the notion that GTPases integrate signals from multiple pathways
while the GEFs act to transduce specific signals. Rho proteins may
act in a signalling pathway to orchestrate and to fine-tune signal
transduction by providing multiple points of integration, and to

coordinate the action of multiple effectors for control of complex
cellular processes.

Knockdown of DOCK4 resulted in loss of lateral contacts and
inhibition of lumen formation. Dock4 homozygous genetic
deletion in mice is embryonic lethal prior to the onset of
vascularization, precluding analysis of vascular phenotypes. Both
global genetic deletion of a single Dock4 allele in tumour-bearing
mice and targeted knockdown in the vasculature of xenograft
tumours perturbed blood vessel lumen formation, supporting the
findings in the tissue culture angiogenesis model. Vascular
lumens in vivo arise through different mechanisms45: extension
of a transcellular lumen through coalescing intracellular
vacuoles46,47; or intercellular hollowing, through separation of
apposing endothelial cells and redistribution of pre-formed
junctions to the periphery of the developing tube21,48. The
latter requires polarization in the apical-basal axis and lateral
cell–cell contacts21,48, a feature of sprouting tubules in tissue
culture and angiogenic blood vessels in vivo including
intersegmental vessels in zebrafish embryos and retinal vessels
in mice48,49. Knockdown of DOCK4 in the coculture assay
resulted in a loss of dynamic tubule remodelling, affecting lateral
cell–cell contacts, followed by defective lumen formation. The
unidirectional tubule elongation associated with this loss of lateral
filopodia and protrusive activity following knockdown of
DOCK4, resembles the directionally persistent cell motility
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Figure 8 | Model of regulation of filopodia formation and lumen morphogenesis by Rac GEF DOCK4 (a) Stages of tubule development and lumen

formation in the presence or absence of DOCK4. Dynamic remodelling via lateral filopodia and protrusions leads to formation of lumens lined by apposing

endothelial cells. In the absence of DOCK4, lack of dynamic protrusive activity and dynamic remodelling leads to thin tubules lacking lateral cell–cell

contacts which do not form a lumen. (b) Signalling downstream of VEGF activates the SGEF-RhoG-DOCK4-Rac1-DOCK9-Cdc42 signalling

pathway and promotes interaction of Rac GEF DOCK4 with Cdc42 DOCK9.
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described previously following Rac1 inhibition50. This suggests
that Rac activity must be precisely regulated to balance tubule
elongation and lateral protrusions. Our study shows that
filopodia-led protrusions and cytoskeletal remodelling are
necessary for the correct organization of endothelial cells in the
developing tubules, and that blocking these processes early in
tubule formation impacts on lumen morphogenesis.

Methods
Cell culture and antibodies. Human dermal fibroblasts (HDF) and HUVEC were
from TCS CellWorks (Buckingham, UK) and were cultured in DMEM containing
10% FCS and Human Large Vessel Endothelial Cell Growth Medium (TCS Cell-
Works). HUVEC–enhanced green fluorescent protein (EGFP)15 was generated by
infection with a retrovirus harbouring EGFP followed by fluorescence-activated cell
sorting. HUVEC were used to passage 6 and HDF between passages 7 and 11.
HEK293T cells were purchased from Clontech Laboratories, cultured in DMEM
containing 10% FCS, expanded on collagen-coated plates for the first two passages
according to the Clontech protocol and used to passage 8. NIH 3T3 fibroblasts were
from C.J.M. and were cultured in DMEM containing 10% FBS; BE colon carcinoma
cells, originally from the American Type Tissue Collection, were from C.J.M. and
were cultured in DMEM containing 10% FCS. EO771 flucII cells (C57BL/6J breast
cancer cell line) were obtained from M.L. and were cultured in RPMI 20% FBS,
1 mM sodium pyruvate, 2 mM L-Glutamine and 1� non-essential amino acids.

Antibodies used in these studies were sourced as follows: Millipore: Rac1 (clone
23A8, 1:1,000), RhoG (clone 1F3B3E5, 1:1,000), NG2 (AB5320, 1:200); Bethyl
Laboratories: DOCK4 (A302-263A; immunoblot, 1:1,000; immunohistochemistry
(IHC), 1:100), DOCK9 (A300-530A; 1:1,000); Santa Cruz: Cdc42 (sc-8401, 1:250),
endomucin (clone V.7C7, 1:100), CD31 (sc-1506, 1:100), VE-cadherin (sc-6458;
1:100), EGFP (sc-8334, 1:1,000); R&D Systems: podocalyxin (AF1658, 1:100);
Abcam: collagen IV (ab6586, 1:500), CA-IX (ab15086, 1:100); Sigma-Aldrich: Flag
(clone M2, 1:1,000), ERK (M3807, 1:500), phospho-ERK (M8159, 1:500), DAPI
(1:1,000); Cell Signaling: Cdc42 (clone 11A11, 1:1,000); Genetex: Ki67 (GTX16667,
1:100); Molecular Probes: Texas Red-conjugated phalloidin (T7471, 1:500), Alexa
Fluor 488 and Alexa Fluor 546 secondary antibodies (1:300).

Plasmids. For expression of GST–SH3 a fragment of the human DOCK4 com-
plementary DNA corresponding to the SH3 domain (sequence shown in
Supplementary Fig. 10b) was PCR amplified and subcloned into a modified
pGEX4T2 vector containing AscI/PacI restriction sites. The construct harbouring
GFP-tagged wild-type RhoG was a kind gift from Professor Len Stephens (the
Babraham Institute, Cambridge); pEF–Flag–Dock9 was from Professor Martin
Schwartz51; GFP-tagged DOCK4 was from Professor Hironori Katoh17; Flag-
tagged DOCK4, DOCK4DDHR2 and DOCK4DSH3 were from Dr Vijay Yajnik19;
CB6–EGFP–Rac wt was from Dr Michael Way (the London Research Institute);
GST–ELMO was from Professor Jean-François Côté (the University of Montreal).

siRNAs and transfection. For RNAi screens, Dharmacon (Lafayette, USA)
siGENOME SMARTpool oligonucleotide duplexes were used with the exception of
Rac1 for which validated SMARTpool oligo14 was used. Results with siGENOME
SMARTpools were validated with ON-TARGETplus individual oligonucleotides
and shRNAs (Thermo Scientific, Open Biosystems). Sequences of siRNAs and
shRNAs are listed in Supplementary Fig. 10. HUVEC cultured in six-well plates
were transfected with 10 nM oligonucleotide duplexes using GeneFECTOR (Venn
Nova, Inc.) according to the manufacturer’s protocol, and HEK293T cells cultured
in six-well plates were transfected with 10 nM oligonucleotide duplexes and 800 ng
plasmid DNA using Lipofectamine 2000 (Invitrogen) according to the
manufacturer’s protocol. HEK293T cells were cultured on fibronectin-coated plates
(10 mg ml� 1; Sigma-Aldrich) for immunofuorescence and biochemical assays.
HUVEC were cultured on fibronectin-coated plates for biochemical assays.
Biochemical assays were performed 48 h after transfection.

shRNAs and viral transduction. For stable knockdown HUVEC stably expressing
shRNAs or empty vector EGFP control were generated by lentiviral infection in the
presence of polybrene (8 mg ml� 1). Lentiviral vectors (pGIPZ) harbouring shRNAs
and EGFP were obtained from Open Biosystems. Virus production was according
to http://tronolab.epfl.ch/webdav/site/tronolab/shared/protocols/LVproduction.pdf
and supernatants for infection were used at 1:4 dilution of harvested virus-con-
taining supernatants. HUVEC were infected at B70% confluence and used in
biochemical assays 48 h after infection, or seeded onto coculture assays following
fluorescence-activated cell sorting of EGFP-expressing cells. Ecotropic retrovirus
producer lines used in the xenograft co-injection model were generated by trans-
fection of TE-FLY-Mo packaging cells15 by calcium phosphate of retroviral vectors
harbouring shRNAs, followed by selection in 0.5 mg ml� 1 puromycin. High-titre
producer clones were chosen following titration of harvested retroviruses in 3T3
fibroblasts following infection and selection with 0.5 mg ml� 1 puromycin15.

Quantitative real-time one-step PCR. Quantitative real-time PCR (RT-PCR) was
performed using QuantiTect Primer Assays (Qiagen GmbH), BRILLIANT II SYBR
Green QRT-PCR Master Mix KIT and the 7900HT Fast Real-Time PCR System
(Applied Biosystems). Experiments shown are representative of three independent
experiments.

Pull-down assays and immunoblotting. For pull-down assays cells were grown
on fibronectin-coated plates (10 mg ml� 1). HUVEC were either cultured in
100 mm plates for 2 days to 80% confluence, serum starved in basal Angiogenesis
Growth Medium (TCS CellWorks) for 5 h and stimulated with VEGF
(25 ng ml� 1); or HUVEC were transfected with siRNAs, after 24 h Human Large
Vessel Endothelial Cell Growth Medium was replaced with Angiogenesis Growth
Medium (TCS CellWorks) with addition of supplements and antibiotics, and after
a further 24 h HUVEC were serum starved in basal Angiogenesis Growth Medium
for 5 h and stimulated with VEGF (25 ng ml� 1). HEK293T cells were transfected in
60 mm plates at 80% confluence and pull-down assays were performed 48 h after
transfection. Cells were lysed in Rho lysis buffer (50 mM Tris-HCl pH 7.4, 10%
Glycerol, 1% NP40, 5 mM MgCl2, 100 mM NaCl, EDTA-Free Complete protease
inhibitors (Roche), 1 mM DTT) and pull-down assays were performed using GST–
PAK1–CRIB52 for activated Rac1 and Cdc42, GST–ELMO129 for activated RhoG
or GST–SH3(DOCK4). For expression of recombinant proteins, BL21 pLYsS
Escherichia coli were transformed with pGEX PAK1–CRIB, pGEX ELMO1, pGEX
DOCK4-SH3 or pGEX empty vector and transformants were grown in 500 ml LB
medium containing 100 mg ml� 1 ampicillin (ELMO1, DOCK4-SH3 and empty
vector constructs) or 100 mg ml� 1 ampicillin and 50mg ml� 1 chloramphenicol
(Sigma-Aldrich; PAK1–CRIB construct) until the cultures reached an OD600 of 0.3.
Protein expression was induced with 0.3 mM IPTG (Sigma-Aldrich) for 3 h
(PAK1–CRIB) or 1 mM IPTG (ELMO1, DOCK4-SH3 and empty vector) at 37 �C,
bacterial cultures were pelleted, resuspended in 25 ml ice-cold TBS containing
10 mM MgCl2, 1 mM PMSF, 1 mM DTT and lysed by sonication on ice using a
12 mm probe (Soniprep MSE 150). Triton X-100 (10%) was added to the lysate and
incubated with rocking at 4 �C for 30 min. Following centrifugation in a Sorvall
RC5B, supernatants containing recombinant proteins were incubated with
Glutathionine pre-coated agarose-sepharose beads (0.5 ml, GE Healthcare Bio-
Sciences AB) at 4 �C for 1 h, washed and pelleted according to standard methods,
and resuspended in 750 ml wash buffer. About 60ml suspension of beads bound to
the recombinant proteins were added to each pull-down assay and incubated at
4 �C for 45 min. The beads and bound protein were collected by centrifugation at
13,400g for 5 min, washed twice with Rho wash buffer (TBS containing 10 mM
MgCl2, EDTA-free complete protease inhibitors, 1 mM DTT) and stored at
� 80 �C prior to analysis. Proteins in pull-down samples were resolved by SDS–
polyacrylamide gel electrophoresis (PAGE). Samples were resuspended in 4�
loading buffer (NuPAGE, Invitrogen) with 50 mM DTT and heated to 70 �C for
10 mins. Polyacrylamide pre-cast gels (10%) were used for detection of proteins up
to 100 kDa; 3–8% gradient polyacrylamide pre-cast gels were used for higher
molecular weight proteins. Electrophoresis was performed at 150 V in either 1�
MES running buffer (Invitrogen) for 1 h or 1� MOPS running buffer (Invitrogen)
for 3 h in the presence of NuPAGE Antioxidant (Invitrogen). About 10 ml of
molecular weight marker (Dual Colour Marker, Biorad 10–250 kDa) was used to
track electrophoresis. The fractionated proteins were transferred to polyvinylidene
fluoride filters. The Li-COR Odyssey system (Li-COR Biosciences) was used for
detection and quantifications of Rac1 and RhoG; the ECL Plus detection system
(GE-Healthcare-Amersham) and ImageJ software (http://rsbweb.nih.gov/ij/) were
used for detection and quantification of Cdc42. Assays were repeated at least three
times in independent experiments. Uncropped scans of key western blots shown in
main figures are shown in Supplementary Fig. 11. For nucleotide-free pull-down
assays, Rac1, RhoA and Cdc42 GST fusion proteins were prepared in the presence
of 10 mM MgCl2 (ref. 53), and pull-down assays were performed as described
above in the presence of 15 mM EDTA to chelate magnesium ions and stabilize the
nucleotide-free GTPase form51.

Co-IP assays. About 3� 106 HUVECs were plated onto 150 mm fibronectin-
coated plates and transfected the following day with siRNAs. After 24 h, Human
Large Vessel Endothelial Cell Growth Medium was replaced with Angiogenesis
Growth Medium with addition of supplements and antibiotics, and after a further
24 h HUVEC were serum starved in basal Angiogenesis Growth Medium for 5 h
and stimulated with VEGF (25 ng ml� 1). Cells were lysed with 1 ml NP40 lysis
buffer (20 mM Tris-HCl pH 7.5, 150 mM NaCl, 1% NP40, EDTA-free Complete
protease inhibitors, 0.1% phosphatase inhibitor cocktail 2 (Sigma-Aldrich)).
HEK293T cells were plated at a density of 3� 106 onto 100 mm fibronectin-coated
plates and transfected the following day with siRNAs and plasmid DNA. Two days
after transfection, the cells were lysed with Rho lysis buffer (50 mM Tris-HCl pH
7.4, 100 mM NaCl, 10% Glycerol, 1% NP40, 5 mM MgCl2, EDTA-free Complete
protease inhibitors, 0.1% phosphatase inhibitor cocktail 2). Lysates were cen-
trifuged at 13,400g for 20 min and supernatants were pre-cleared by incubation
with Protein G-coupled Sepharose beads (Pierce) for 30 min at 4 �C. Cleared lysates
were incubated with anti-DOCK9 antibody (A300-530 A; 3 mg) for 2 h at 4 �C
followed by incubation with Protein G-coupled Sepharose beads for 30 min at 4 �C.
The beads were centrifuged at 13,400g for 2 min and washed with lysis buffer.
Protein complexes bound to the beads were resolved by SDS–PAGE, and proteins
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were detected using the ECL Plus detection system. Quantifications were carried
out using Li-COR Image Studio Lite Software (http://www.licor.com/bio/products/
software/image_studio_lite/index.html).

Mass spectrometry. A complementary DNA encoding DOCK9 protein
(KIAA1058, corresponding to isoform b, NM_001130048.1) was PCR amplified
and cloned into the AscI/PacI restriction sites of a Creator donor plasmid
(Addgene #11690, V37 pDNR MCS SA) and recombined into a mammalian
expression vector with a 3� FLAG N-terminal tag (Addgene #11707, V180 pLP
Triple-Flag SD—Acceptor). The integrity of the final construct was confirmed by
sequencing. Plasmid encoding 3� FLAG–DOCK9 or 3� FLAG empty expression
vector was transfected into HEK293T cells with a PEI-based method. Two days
after transfection, the cells were washed, chilled on ice and lysed using immuno-
precipitation (IP) buffer on ice containing 50 mM HEPES pH 7.5, 150 mM NaCl,
1 mM EGTA, 0.5% NP40, 1% Sodium deoxycholate, 10% Glycerol, 1.5 mM MgCl2,
25 mM b-glycerophosphate, 10 mM sodium pyrophosphate, 100 mM NaF,
10mg ml� 1 aprotinin, 10mg ml� 1 leupeptin, 1 mg ml� 1 pepstatin A, 1 mM sodium
orthovanadate, 1 mM PMSF, 100 nM Calyculin A and 1:1,000 dilution of Benzo-
nase (Sigma-Aldrich). After IP with M2-agarose (Sigma-Aldrich), the beads were
washed three times with ice-cold IP buffer and once with ice-cold 200 mM
ammonium bicarbonate. Proteins were eluted from the beads with 50 mM phos-
phoric acid, pH 2.5 and subjected to solid-phase (SCX) trypsin digestion with
reduction and S-alkylation with iodoacetamide. The peptides were separated and
analysed by LC-MS/MS using an Orbitrap Elite mass spectrometer. MASCOT was
used to identify proteins from the MS/MS peak lists.

Organotypic angiogenesis assay and viral transduction. In the organotypic
angiogenesis assay4, 8.5� 103 HUVECs transfected with siRNAs or infected with
lentiviruses were seeded onto CFs that had been plated at 2� 104 cells onto 24-well
plates and grown to confluency over 7 days. Seeding was 18 h after HUVEC
transfection or infection, in 50:50 Large Vessel Endothelial Cell Growth Medium
and DMEM 10% FCS, which was replenished every 2 days. Tubule formation was
assessed 5 days after seeding by CD31 staining or by visualization of EGFP-
expressing HUVEC; where indicated the coculture media were replenished with
media containing VEGF (25 ng ml� 1; Sigma-Aldrich) up to 48 h prior to imaging
and without prior media change. For lumen assays, the culture media were changed
to Angiokit Optimized Growth Medium at 9 days after seeding HUVECs onto CFs.
Treatment of the cocultures with LatB (Santa Cruz) was at 0.01 mg ml� 1.
Treatment with the ROCK inhibitor Y27632 (Tocris) was at 10 mM4. Treatment
schedules are shown in Supplementary Fig. 1a.

Immunostaining and imaging. HUVEC-HDF cocultures15 for confocal imaging
were grown on glass bottom dishes (Mat Tek Corporation). For visualization of
lumens, the cultures were fixed in 4% paraformaldehyde, washed and
permeabilized with 0.1% Triton X-100, followed by blocking in 0.5% BSA. Collagen
IV (1:500) and podocalyxin (1:100) antibodies were applied at 4 �C overnight,
secondary antibodies conjugated with Alexa Fluor 488 and Alexa Fluor 546
(1:1,000) were applied for 1 h. Filopodia protruding from tubules with lentiviral
EGFP expression were visualized in live cultures using confocal microscopy. Unless
otherwise stated, confocal images of filopodia and lumens are maximum intensity
projections of Z-stacks (15 sections of 1 mm thickness) obtained using a Zeiss
LSM710 inverted confocal microscope controlled by the Zen acquisition software
using a � 40 oil immersion Plan-Apochromat lense; or a Nikon A1R confocal
microscope controlled by NIS-Elements C software using a � 40 oil immersion
CFI S.Fluor lense. Filopodia in confocal images (maximum intensity projections) or
phase contrast images were counted manually with counts corroborated by two
observers; three or four images of tubules 400–500-mm long with identifiable tips
were quantified for each organotypic coculture. Quantification of lumens was from
maximum intensity projections of Z-stacks; lumen length was identified by apical
podocalyxin staining37; four or more images of established tubes of B250–500 mm
individual length were quantified for each organotypic coculture; sproutso170mm
were excluded from the analysis. Confocal Z-stacks were 3D-rendered using the
Visualization module of Volocity software, except for the 3D movies that were
performed using the automatic surface rendering function of Imaris 7.5 software
(Bitplane AG, Switzerland). Staining of tumour sections was as described above
using endomucin (1:100) and CA-IX (1:200) antibodies applied overnight at 4 �C.

IHC of cocultures was performed using a mouse anti-human CD31 Tubule
Staining Kit (TCS CellWorks) according to the Angiokit protocol (TCS
CellWorks). Phase contrast images of cocultures stained for CD31 by IHC were
obtained with a Nikon light microscope using a � 4 objective, or an Olympus
CKX41 inverted microscope using a � 40 objective for filopodia visualization.
Quantification of tubules, branches and total tubule length was from
immunohistochemical images using the Angiosys software (six or more images
were quantified for each organotypic coculture) or from immunofluorescence
images manually using the Volocity software for determination of tubule length.

Time-lapse microscopy and cell tracking. Multisite time-lapse microscopy of
HUVEC stably expressing EGFP was performed in a humidified, CO2-equilibrated
chamber using a Diaphot inverted microscope (Nikon, Kingston upon Thames,

UK) equipped with a motorized stage (Prior Scientific, Oxford, UK)4. Confocal
time-lapse movies of filopodia were generated using a motorized stage and the
Zeiss Zen software. Images shown of the time-lapse movies are representative of
the experiments quantified. Cell spreading and bipolarity were assessed using the
image processing and analysis modules of Simple PCI. Displacement rates were
determined using the manual tracking modules of Volocity and ImageJ software.

Generation of Dock4 null mice. The Dock4 null mouse line was generated using
gene targeted C2 ES cells (Clone N01793P1_W109G2) obtained from Norcomm,
part of the International Knockout Mouse Consortium. Southern blotting was
performed to confirm the Dock4 targeted allele using a 720 bp probe located 50 of
the targeting vector homology region. The ES cells were then microinjected into
CD-1 blastocysts to generate chimaeras and these mice mated with C57BL/6J to
effect germline transmission of the mutant allele. Heterozygous mice were
incrossed and pregnant dams killed for analysis of embryos. Genotyping was by
PCR using the following primer pairs:

WT Band—Dock4_50F (50-CACACACCTGCTACATCATGC-30) and
Dock4_50 WTR (50-TTTACCTCCCTGTGCTCCAC-30); KO Band—Dock4_50F
and Dock4_50KOR (50-CATTGGTGAGCAGAGCCTTCG-30).

All animal use was authorized by the University of Leeds Animal Ethics
Committee and by the Home Office, UK and experiments were performed
according to Home Office Regulations and the CCCR guidelines. All animals were
maintained in Optimice individually ventilated cages (Animal Care Systems) at
21 �C, 50–70% humidity, light/dark cycle 12:12 h on RM1 diet (Special Diet
Services, Witham, UK) ad libitum and bedding of Pure ‘o Cell (Datesand,
Manchester, UK) with enrichment of Sizzlenest (International Product Supplies,
London, UK).

Embryo analysis. Serial transverse sections (4mm) of formalin-fixed E13.5
embryos were cut using a microtome. Slides were dried overnight at 37 �C and
heated for 20 min at 60 �C. Haematoxylin and eosin staining of every tenth section
was used to select the anatomical level according to the ref. 54. IHC for CD31, NG2
and DOCK4 was carried out using standard methods. Images were captured using
an Axioplan Zeiss microscope fitted with AxioCam color camera and AxioVision
4.6 software (Carl Zeiss). Images at the brain level were captured using a � 20
objective and at the lung level using a � 4 objective. Vessel diameter for each
lumen was defined, and the best fit circle for each lumen was determined using the
AxioVision software (smallest identifiable lumens were 8 mm).

In vivo tumour models. About 1x106 BE cancer cells were co-injected s.c. with
10� 106 retrovirus producers irradiated at 20 Gy in the flanks of 6–8-weeks-old
MF1 nude mice. Tumours were excised when they reached 1.3 cm diameter, fixed
in 4% paraformaldehyde and cryosections (10 mm) were immunostained. Images
were acquired using Zeiss 710 inverted confocal microscrope with a � 20 Plan-
Apochromat dry lens. For CA-IX a � 20 objective and motorized stage were used
to acquire 3� 3-tiled images (Zeiss Zen software). Lumen and total vessel numbers
were counted using the ImageJ cell counter plugin. For the intracranial model,
1� 105 EO771 cells were injected stereotactically into the striatum of 9–10-week-
old Dock4� /þ and WT siblings (three females each). Mice were culled and
tumours excised on presentation of neurological symptoms in the first mouse, fixed
as described for s.c. tumours. Images of sections across whole tumours were
generated using tile-scanning of 6� 6 Z-stacks (compiled from 5 mm slices using
NIS-Elements AR software) acquired with a Nikon A1R confocal microscope, � 10
objective. Lumen width was measured using Volocity as the shortest representative
measurement across the lumen. Lumens were defined as visible gaps surrounded by
endomucin staining on sections imaged as above (smallest identifiable lumens were
15 mm). Image file names were allocated random numbers and analysed blind.

Cancer patient samples. Specimens were from Leeds Teaching Hospital NHS
Trust patients under Leeds research ethics committee approval. Informed consent
was obtained from all participants.

Statistical analyses. Data are presented as mean values with s.e. generated by
independent repeats of experiments. P values were obtained from t-tests with
unpaired samples except for analysis of the pull-down assays where a paired test
was used. P values of o0.05 represent statistically significant differences.
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