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Abstract

Understanding the epidemiology of seasonal influenza is critical for healthcare resource

allocation and early detection of anomalous seasons. It can be challenging to obtain high-

quality data of influenza cases specifically, as clinical presentations with influenza-like

symptoms may instead be cases of one of a number of alternate respiratory viruses. We

use a new dataset of confirmed influenza virological data from 2011-2016, along with high-

quality denominators informing a hierarchical observation process, to model seasonal influ-

enza dynamics in New South Wales, Australia. We use approximate Bayesian computation

to estimate parameters in a climate-driven stochastic epidemic model, including the basic

reproduction number R0, the proportion of the population susceptible to the circulating strain

at the beginning of the season, and the probability an infected individual seeks treatment.

We conclude that R0 and initial population susceptibility were strongly related, emphasising

the challenges of identifying these parameters. Relatively high R0 values alongside low ini-

tial population susceptibility were among the results most consistent with these data. Our

results reinforce the importance of distinguishing between R0 and the effective reproduction

number (Re) in modelling studies.

Author summary

When patients present to their doctor with influenza-like symptoms, they may have influ-

enza, or some other respiratory virus. The only way to discriminate between these viruses

is with an expensive test, which is not performed in many cases. Additionally, results

other than influenza may not be reported. This means that it can be difficult to determine

how much influenza is circulating in the population each season. We used a unique data-

set of confirmed influenza with denominators to fit models for seasonal influenza in New

South Wales, Australia. Knowing the denominators allowed us to estimate population

level trends. We found that the relationship between influenza transmission rates and

immunity due to previous infections was critical, with relatively high transmission
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corresponding to substantial preexisting immunity likely. This existing immunity is criti-

cal to understanding and effectively modeling influenza dynamics.

Introduction

Influenza is a highly contagious, rapidly evolving respiratory virus that circulates globally on a

seasonal basis [1, 2]. It can cause death in at-risk groups, and places a high burden on health

systems (e.g., emergency room (ER) and general practitioner (GP) services). In some cases,

antigenic shift creates circumstances where influenza can be particularly infectious or danger-

ous, resulting in influenza pandemics such as those that occurred in 1918 and 2009. However,

understanding normal seasonal circulation is critical for effective healthcare resource alloca-

tion, forecasting future seasonal dynamics, and early detection of anomalous seasons.

Influenza has been widely studied, through both experimental studies on animal models

such as ferrets (e.g. [3, 4]), and modelling studies based on data from human populations

[5, 6]. There remains substantial uncertainty surrounding the way influenza spreads within

populations. Model-based analyses depend on the underlying assumptions and available data,

and knowledge gaps exist that may be difficult or impossible to test using animal models (e.g.,

for seasonal influenza, long-term patterns of immunity through and across many seasons).

Parameter estimation can also be challenging. For example, a key epidemic parameter is the

basic reproduction number, R0, which is defined using a completely susceptible population.

However, in practice few populations are likely to be completely susceptible, and so estimates

are instead of Re, the effective reproduction number [7, 8]. To determine R0 itself, it is neces-

sary to also have an estimate of the proportion of individuals that are susceptible at the begin-

ning of an outbreak. Unfortunately, estimating the initial susceptible proportion is close to

impossible in practice, given the complexity of immunity and interactions between strains.

Immunity to a strain may vary substantially between individuals with similar infection or vac-

cination histories [9], and the life course of antibodies and interactions between antibodies to

different strains is complex [10]. The rapid evolution and multi-strain nature of influenza

means that individuals may have variable immune responses to different strains, particularly

in the presence of complex phenomena such as “antigenic seniority” [11, 12, 13], whereby

individuals have increased long-term immunity to the first strain they were exposed to during

their lifetime. Recent evidence suggests that there may be some level of immunity existing in

populations even to novel influenza strains with pandemic potential [14, 15]. The presence of

antibodies in an individual, particularly at low levels, may not prevent reinfection but may

reduce the chance of infection when challenged or lead to a milder or asymptomatic illness

[16, 17]. Further, many historical studies have relied on serological data as a means of deter-

mining if influenza infection occurred (e.g. [18, 19, 20]). However, the results of serological

studies can vary substantially based on the criteria used [21], and produce estimates that are

vastly different from active surveillance of symptomatic cases (e.g., [22]), and the relationships

between antibodies and immunity is not completely understood [23].

Estimates for Re are often between 1.0–2.0 (e.g., see [24]), however in rare cases estimates of

R0 have been as high as 22.7 [25, 26]. While these most extreme values may be highly unlikely,

estimates in the intermediate range are plausible when associated with reduced population sus-

ceptibility. Assumptions around parameter values can propagate through a modelling analysis,

and impact on how we understand and characterise epidemic dynamics, e.g., when estimating

the final size of a seasonal epidemic, or when calculating optimal vaccination policy. As such,
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careful analysis of high-quality data, estimating both population susceptibility and R0, is critical

to inform present and future modeling efforts.

Effective modelling of influenza dynamics is further complicated by the paucity and quality

of available data. Influenza is difficult to identify clinically; patients presenting with influenza-

like symptoms may have influenza (Fig 1), but they may also have some other respiratory

virus, such as human rhinovirus, or respiratory syncytial virus [27]. To determine the actual

cause of these symptoms requires a (relatively expensive) test, which may be appropriate for an

at-risk individual presenting serious symptoms at a hospital but is unlikely to be necessary for

an otherwise healthy individual in the 15–45 age group (for example). In addition, patients

may be asymptomatic (while potentially still able to infect others), or those with mild symp-

toms may choose not to seek medical treatment at all. So, confirmed cases are likely to be only

a subset of actual cases, with poor “denominator data”. The hierarchical observation process

that links population level epidemic dynamics to observed confirmed cases (Fig 2) may make

identifiability challenging and can in some cases introduce bias to estimates [28, 29, 30].

In this study, we used a new, high-quality dataset along with modern Bayesian parameter

estimation methods to investigate seasonal influenza dynamics in New South Wales, Australia,

from 2011–2016. We used Polymerase Chain Reaction (PCR) confirmed influenza infections

from the Australian Sentinel Practices Research Network (ASPREN; [31]) to fit models.

Within these data, approximately 0.5% of general practitioners (GPs; known as family physi-

cians in North America) within Australia reported each Influenza-like illness (ILI) case that

they observed, along with the number of consultations they performed, and submitted swab

Fig 1. Schematic of influenza-like illness (ILI). Individuals with influenza or other respiratory viruses likely seek treatment at

different, unknown rates, and as such ILI counts include an uncertain mixture of diseases. Virological testing is uncommon outside

high risk groups, but when performed it is possible to use the resulting confirmed influenza data to model the population level

circulation of influenza, specifically. Red quantities are those with known/observed values. Note that some ILI samples sent for

testing return with as positive to none of the tested diseases, suggesting that their ILI symptoms may have some other cause.

https://doi.org/10.1371/journal.pcbi.1006377.g001
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Fig 2. Hierarchical observation process in the presence of confirmed influenza data and known denominators.

This structure allows us to directly model influenza without the other respiratory viruses that make up ILI. Red

quantities are those with known/observed values, and blue quantities need to be estimated in a model.

https://doi.org/10.1371/journal.pcbi.1006377.g002
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samples for c. 20% of these ILI cases for virological testing via PCR. These data were available

weekly. Knowing the numbers of doctors, consultations, ILI observed, and samples tested pro-

vides critical and unparalleled denominator data against which to assess the hierarchical obser-

vation process between population-level influenza dynamics and the observed confirmed

infections. We fit model parameters using approximate Bayesian computation (ABC), assum-

ing the same strain-specific parameters for seasons in which the same predominant strain cir-

culated. By performing this analysis using high-quality confirmed influenza data (including

denominators), state of the art parameter estimation techniques, and minimal assumptions,

we are able to characterize the epidemiology of influenza within populations. In doing so, we

aim to both progress the science of disease modeling, and produce new epidemiological

knowledge around population-level immunity to seasonal influenza.

Model

We chose to use an SEIRS-type model, with an Erlang-2 infectious period and exponential

exposed and immune times, to model seasonal influenza (Fig 3), which is consistent with

known influenza biology. In this form of model, we track the number of individuals in the

population who are susceptible (S), exposed but not yet infectious (E), infectious (I), or recov-

ered and immune from reinfection (R) at any time. We include an observed class (O) to allow

individuals to choose to seek treatment, or not. Note we allow immunity to wane, so that indi-

viduals return from the recovered class to the susceptible class, and include external importa-

tion of cases at a low rate. Transition events are stochastic, with rates that depend on the

number of individuals in each class, and fitted parameters that relate to the epidemiology of

the disease. We fit the initial proportion of individuals that are susceptible to the strain circu-

lating in the given season as a parameter, and model seasons that had the same predominant

circulating strain together, i.e., 2011 and 2013 both had predominantly H1N1pdm09 circulat-

ing, so we fit these seasons to have the same epidemic parameters, but each with a separate ini-

tial population susceptibility. The presence of an exposed class in the chosen model indicates

that there is some lag between when an individual is exposed to the disease, and when they

become infectious. We assume that they are not symptomatic during this exposed period. This

is consistent with many existing models and known influenza epidemiology [32].

By using models aggregated at a state level, without any age- or spatial- structuring, we

make a number of simplifying assumptions. Specifically, we lose the ability to model

Fig 3. Model schematic. Individuals progress from a susceptible (S) class through exposed (E), infectious (I), and recovered (R).

While infectious, individuals may choose to go to the doctor, at which case they move into an observed (O) class.

https://doi.org/10.1371/journal.pcbi.1006377.g003

Characterising seasonal influenza epidemiology using primary care surveillance data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006377 August 16, 2018 5 / 21

https://doi.org/10.1371/journal.pcbi.1006377.g003
https://doi.org/10.1371/journal.pcbi.1006377


heterogeneity in mixing and thus infection rates, vaccination coverage, immunity, or case

ascertainment. We know that these factors should, in reality, be heterogeneous, as there is

strong evidence for variations based on (in particular) age structure [33, 34]. However,

the data we have access to are unfortunately too sparse to effectively parametrize models at

this fine level of detail. In some cases, this may introduce some degree of bias. For example,

newborn children entering the population are necessarily susceptible, and by not tracking

demographics we may overestimate the rate at which immunity wanes (i.e., underestimate

the duration of immunity), which could potentially have some impact on estimates of other

parameters, including R0.

Results

Posterior distributions

Having chosen the SEIRS-type model, we used ABC to estimate posterior distributions for

model parameters, and to evaluate the impact of these fitted model parameters on underlying

epidemic dynamics at the population level. We parameterized transmission based on physical

quantities, including the latent, infectious, and immune durations, the probability of an infec-

tious person seeking treatment over their infectious period, the basic reproduction number,

R0, and the proportion of individuals susceptible to the circulating strain at the beginning of

each season. R0 was assumed to have seasonal forcing, for which we used variations in temper-

ature (T) from the annual mean (�T ), i.e., R0 ¼
�R0 þ aðT � �TÞ, with �R0 and a being estimated

parameters. Alternate seasonal forcing terms were tested (e.g., based on specific humidity with

the same form as Yang et al. [35]), however these produced similar quality results while requir-

ing more parameters, and were harder to interpret. We therefore chose to use temperature-

based forcing for simplicity. Results were broadly similar between strains, so in the text we

report primarily the H1N1pdm09 results (circulating in 2011 & 2013); a summary of H3N2

(2014 & 2016) appears in Table 1, and figures appear in S1 Text.

Correlation from posterior distributions: R0, susceptibility, and observation. In the

posterior distribution, small R0 values were associated with large initial susceptible popula-

tions, and vice versa, such that the product of mean R0 and initial susceptibility was approxi-

mately 1.0 (Fig 4). The correlation between 1=�R0 and initial population susceptibility was 0.92.

The bivariate posterior density covered the full range of this parameter space with the (bivari-

ate) posterior mode occurring at �R0 ¼ 5:82 and initial population susceptibility of 0.179 (Fig

4). However, note that there was high posterior density across a broad range of parameter

Table 1. Marginal posterior parameter estimates—H1N1pdm09 seasons.

parameter posterior prior

median mode 90% credible interval distribution 90% credible interval

�R0
4.73 2.03 (1.7,15.8) Exponential(1/22.7)

(truncated at 22.7)

(0.722,20.804)

R0 seasonality term (a) -0.0617 -0.0168 (-0.30233, -0.00702) - Exponential(1/0.2) (-0.603, -0.0104)

latent duration (days) 1.26 2.78e-05 (0.0961, 4.6222) Exponential(1/1) (0.0505, 2.9773)

infection duration (days) 3.97 3.23 (0.612, 10.854) Exponential(1/2) (0.102, 5.978)

immune duration (years) 24 11.8 (3.64, 84.86) Exponential(1/27.1) (1.4, 82.0)

Probability of seeking treatment 0.237 0.0843 (0.0505, 0.8081) Uniform(0,1) (0.05, 0.95)

initial susceptibility 2011 0.224 0.0799 (0.0603, 0.6436) Uniform(0,0.75) (0.0375, 0.7125)

initial susceptibility 2013 0.188 0.0762 (0.0395, 0.6015) Uniform(0,0.75) (0.0375, 0.7125)

https://doi.org/10.1371/journal.pcbi.1006377.t001
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values, with the 80% quantile including values of �R0 across the range 2–10. In contrast, the

marginal posterior estimates of these parameters had modes that varied substantially from

the bivariate distribution; with the maximum posterior estimate of �R0 at 2.03 (90% credible

interval 1.7–15.8), and for initial susceptibility, 0.08 (90% credible interval 0.06–0.64) for

H1N1pdm09 seasons. This highlights the importance of considering relationships between

parameters and identifiability issues, rather than relying solely on marginal distributions when

parameters are not independent.

Fig 4. (above) Bivariate posterior distribution of �R0 and initial susceptible proportion in 2011 for H1N1pdm09. Points indicate

accepted ABC parameter sets. Contours indicate posterior credible intervals, such that each contour contains deciles of kernel-

smoothed posterior probability density. (below) Marginal posterior kernel density estimate (blue) and prior distribution (red) for �R0

(left), and initial susceptible proportion in 2011 (right) for H1N1pdm09. Note the difference between high-density regions in the

bivariate plot vs the marginals.

https://doi.org/10.1371/journal.pcbi.1006377.g004
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There is a body of literature suggesting that R0 for influenza is in the 1.0–2.0 range [24].

However, based on these data we have observed most of the posterior density falls outside this

range when a broad prior is used (Fig 4); specifically, the lower limit of the 90% credible inter-

val for �R0 is 1.7, with only 10.6% of accepted parameter sets (2099 of 19772) below 2.0.

The median posterior density for the initial susceptible proportion was 0.224 in 2011 and

0.188 in 2013, suggesting that most individuals are unlikely to be susceptible to the circulating

strain of influenza each year, even when that strain was not the primary circulating strain in

the previous season (however, note again that there was substantial uncertainty in estimates of

initial susceptibility, and it was related to �R0 in the posterior). We also fit a parameter for mean

immune duration, however this parameter was not identifiable given that seasonal fits were

not consecutive, and other strains proliferated in the intervening seasons with complex and

uncertain effects on immunity.

The probability that an individual seeks treatment, pobs, is also critical to understanding

influenza dynamics and surveillance. The median posterior estimate for pobs for H1N1pdm09

seasons was 0.237 (Fig 5), however the 90% credible interval was quite wide (0.0505—0.8081),

suggesting that this parameter remains challenging to identify given these data. The probability

of seeking treatment was also related to �R0 and initial susceptibility. Specifically, those accepted

particles with high initial susceptibility and lower �R0 also had smaller observation probabilities

(Fig 6), and, consequently, larger (population-level) epidemics.

Fig 5. Marginal posterior kernel density estimate (blue) and prior distribution (red) for pobs, for H1N1pdm09.

https://doi.org/10.1371/journal.pcbi.1006377.g005
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When simulating from the posterior distributions (Fig 6), the range of parameter estimates

accepted in the posterior induce a diversity of associated epidemic characteristics. Specifically,

population epidemic metrics such as the attack rate (total proportion of the population

infected over a season), and the proportion of the population susceptible at the beginning of a

season, are related to R0 and the probability an individual seeks treatment (Fig 6). The majority

of posterior probability mass is around the region in which 10-30% of individuals in the popu-

lation are susceptible at the beginning of a season, and 75% of accepted particles had an attack

rate below 14.1% (less than 970,000 infections occur per year). An attack rate in this region

does align with previous estimates in other studies [36]. However, parameter sets are also

accepted in regions of parameter space resulting in larger proportions of susceptible individu-

als at the beginning of the season, associated with larger epidemics, and smaller probabilities

that each infectious individual seeks primary care. We note that these estimates more closely

resemble modelling results such as those of [13], who estimated susceptibility and attack rate

using a multistrain model and assuming R0 = 3.0. Only c. 15.4% of accepted parameter sets

had �R0 in the range 2.5< R0 < 3.5, and simulations from these parameter sets resulted in c.

Fig 6. The relationship between �R0 and the population level attack rate of simulated realisations of the process, across 2011 and

2013 H1N1pdm09. For each accepted particle, the process was simulated again, and the total number of infected individuals from

these new realisations was recorded, and converted into an annual attack rate (by dividing by the total population, and by 2 as it is

the average over two seasons). Point colour indicates the probability of an individual seeking treatment; larger attack rates

correspond to smaller treatment probabilities given that they all fit the same data. The red line shows where the product of �R0 and

the attack rate would be equal to one; this is the line around which the majority of posterior density for initial population

susceptibility values was situated (i.e., the density in Fig 4). This can be interpreted as indicating that, for points under this line, not

all susceptible individuals became infected during the season.

https://doi.org/10.1371/journal.pcbi.1006377.g006
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37.2% of individuals being susceptible at the start of a season, and c. 880,000 annual infections

(c. 12.7% attack rate), vs 22.4% susceptibility and c. 7.7% attack rate (medians) for the full

posterior.

Latent and infectious periods. The median posterior density for the mean infectious

duration was 3.97 days, and for the latent duration was 1.26 days. These estimates align well

with historical data on influenza epidemiology [32]. However, for each of these parameters,

the posterior credible intervals were wide, and closely resembled the prior. Given the weekly

resolution of the data it is unlikely that these parameters could be identified more precisely.

Variation between seasons and strains

Initial susceptibility values in seasons of the same strain were highly correlated (e.g. correlation

coefficient 0.90 between initial susceptibility in 2011 and 2013). The posterior densities had

similar forms between strains, however the H3N2 seasons (2014 & 2016) had slightly lower

median �R0, associated with slightly higher initial susceptibility (Tables 1 & 2). For H3N2 sea-

sons, the maximum bivariate posterior density occurred at �R0 ¼ 4:71 and initial susceptibility

0.22 (in 2014) (S1 Text).

Discussion

An understanding of seasonal influenza transmission is of critical public health concern, how-

ever effective inference can be constrained by the availability of high-quality data. In this

study, we have used confirmed, multi-year virological data from a primary care surveillance

network to perform model parameterisation for seasonal influenza in New South Wales, Aus-

tralia. Making minimal assumptions around parameter values, we observe strong posterior

relationships between R0 and population susceptibility, with higher R0 values corresponding

to lower levels of susceptibility to the circulating strain. These results emphasise the challenges

of identifying parameters around susceptibility, transmission, and observation, and highlight

the substantial uncertainty that remains in these areas. We encourage caution when making

modeling assumptions, choosing priors, and interpreting results, particularly when parameters

are related.

The point that R0 is not clearly identified in influenza data has been made previously [7, 8],

observing that many studies report R0 while actually estimating Re = R0S0, where S0 is the pro-

portion of the population that is initially susceptible. Our results provide an additional line of

evidence to reinforce this idea, with the majority of accepted parameter sets having parameters

and model states such that R0 times the proportion of individuals that are susceptible at the

Table 2. Marginal posterior parameter estimates—H3N2 seasons.

parameter posterior prior

median mode 90% credible interval distribution 90% credible interval

�R0
3.93 2.16 (1.65, 13.03) Exponential(1/22.7)

(truncated at 22.7)

(0.722, 20.804)

R0 seasonality term (a) -0.0973 -0.0512 (-0.3539, -0.0189) - Exponential(1/0.2) (-0.603, -0.0104)

latent duration (days) 1.32 6.88e-05 (0.0953, 4.6134) Exponential(1/1) (0.0505, 2.9773)

infection duration (days) 3.93 2.88 (0.511, 10.775) Exponential(1/2) (0.102, 5.978)

immune duration (years) 22.6 8.51 (3.52, 86.72) Exponential(1/27.1) (1.4, 82.0)

Probability of seeking treatment 0.202 0.0893 (0.0518, 0.7238) Uniform(0,1) (0.05, 0.95)

initial susceptibility 2014 0.275 0.138 (0.0692, 0.6657) Uniform(0,0.75) (0.0375, 0.7125)

initial susceptibility 2016 0.26 0.134 (0.0663, 0.6336) Uniform(0,0.75) (0.0375, 0.7125)

https://doi.org/10.1371/journal.pcbi.1006377.t002
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start of a season lies between 1 and 2, whereas actual R0 values are generally much higher. The

maximum posterior estimates when both R0 and susceptibility were considered had �R0 ¼ 5:81

(for H1N1pdm2009 seasons), however there was substantial uncertainty in this estimate, with

high posterior density across the range 2–10. This is consistent with previously calculated R0

values for historic pandemic influenza seasons or within populations that were likely to have

high levels of initial susceptibility, such as on the island of Tristan da Cunha in 1971, with R0

in the range 3.73–10.69 [37]. The highest extreme of our posterior estimates for R0 exceed

these estimates (in association with very low population susceptibility), and may be so high as

to be implausible outside of unique outbreak scenarios. It is likely that with more data, poste-

rior estimates would become more precise, however given the data available these extreme

values cannot be discarded. We also emphasise that in epidemic studies marginal parameter

estimates should be considered with caution, as maximum posterior density estimates from

marginal distributions are very different to those from bivariate posterior distributions, given

the strong nonlinear relationships between key parameters. This is illustrated clearly by com-

paring Figs 4 and 5.

While there may be cases where only the effective reproduction number is important, it is,

in our view, generally inappropriate to model a seasonal virus that has underlying immunity

within a population without specifically considering that immunity. Doing so could create bias

in predictions or model outputs, and, in the worst case, detrimentally affect public health out-

comes if or when incorrect parameter estimates are used to inform resource allocation or vac-

cination strategies. For example, it may be more effective to target vaccination resources at

individuals or households (or geopolitical regions) with higher likelihoods of susceptibility

based on infection history in previous years. This likely differs from the optimal strategies if

underlying immunity is ignored. Forecasting in the presence of mutation or antigenic drift is

also of concern, with model assumptions likely to lead to vastly differing predictions particu-

larly when made based on limited data at the start of a potential pandemic. Moreover, confu-

sion over estimates may lead to problems when making comparisons between diseases. In

every case, researchers should critically consider the modeling assumptions being made and

the impact that they may have on parameter estimates and subsequent analyses.

Observing potentially high transmissibility alongside lower susceptibility for seasonal influ-

enza supports the idea that population susceptibility, rather than increased transmission, is the

primary factor differentiating influenza strains with pandemic potential at a particular time

from strains exhibiting routine seasonal circulation. The H1N1pdm09 strain that emerged and

caused a pandemic in 2009 provides a specific example: when we fit parameters to this same

strain in 2011 and 2013, it had relatively low levels of population susceptibility, and therefore

routine, seasonal epidemics. It is likely that the difference between the circulation of the strain

in 2009 and later years is due to differences in population susceptibility: because there were no

similar strains circulating prior to 2009, a large proportion of the population (and specifically,

anyone born after the most recent pandemic of a similar strain, in the late 1970s) was effec-

tively naive, or only protected by cross-immunity. A confounding observation is that many

estimates of Re during pandemic seasons have fallen in the range 1.0-2.0 [24]; whereas we may

expect these estimates to by higher given increased population susceptibility. There are myriad

reasons which could contribute to lower than expected estimates of transmissibility in a pan-

demic. The most critical factor is that, while population susceptibility is increased relative to

seasonal circulation, there remains some level of immunity within populations, particularly in

older age cohorts, either due to previous exposure to similar strains or cross-immunity with

other strains [8, 15, 38, 39]. Additionally, studies which estimated Re for the 2009 pandemic

highlighted possible impacts of factors including: public-health containment measures or
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changes in public behaviour due to pandemic awareness [38, 40, 41, 42]; outbreak timing coin-

cident with school vacations [40, 43]; climatic conditions (with the initial outbreak occurring

during summer in the Northern Hemisphere [42, 43]); or challenges in data collection (includ-

ing sampling associated specifically with public-health programs, and potential variation in

case ascertainment across age groups [39, 40]). It is also important to note that novel strains

(e.g., transmitted from animal hosts) require the capacity to spread in humans, in addition to

novelty and sufficient population susceptibility, before they can induce a pandemic [44].

We acknowledge that our results, particularly surrounding high R0 estimates in the bivari-

ate posterior distribution, are provocative, and may challenge conventional wisdom. While we

have endeavoured to take a principled approach that makes as few assumptions as possible,

there are aspects of the study with the potential to introduce bias, and there remains substantial

challenges in identifiability between parameters, particularly R0, the proportion of individuals

that are susceptible, and the probability an individual seeks treatment. Specific modelling

choices that could contribute to higher-than-expected R0 values are discussed in subsequent

paragraphs. These include:

• Choice of priors, which inevitably impacts the resulting posterior distributions; restricting

priors to lower R0 values would necessarily result in lower posterior estimates of R0.

• Modelling all influenza circulation within a season as a single strain (i.e., the primary strain

circulating in that season), when in practice there are low levels of other strains circulating.

• Constant population size, and thus not tracking population turnover within a season.

• Homogeneous mixing and a single age class (rather than an age-structured population),

given that in practice parameters including transmissibility, susceptibility, and treatment

seeking behaviour vary with age in complex ways.

It is difficult to be certain of the impact of particular assumptions on parameter estimates,

given the complex interactions between parameters. It is possible that, combined, these model-

ling assumptions could have contributed to higher-than-expected posterior estimates of R0.

Ultimately, there remains substantial uncertainty around parameter estimates, with wide cred-

ible intervals and correlated posterior distributions consistent with the challenges of identifia-

bility for R0, susceptibility, and treatment seeking behaviour. The present study does not claim

to provide a definitive answer, rather it should inspire further research with high-quality data-

sets and careful analysis that at least considers a full range of plausible priors, and that consid-

ers interactions between parameters rather than marginal estimates.

It is important to emphasise that throughout this study we chose to use general, uninforma-

tive priors, in an effort to avoid imposing any strong assumptions around parameter values. A

reasonable alternative approach to this would be to use information from the literature to

impose informative priors, such as by reducing the prior density for larger values of R0, or

making assumptions around population susceptibility. It is possible that informative priors

could shift the resulting posterior distributions, and even impact the way that the study is

interpreted. We emphasise the importance of carefully considering the priors used for this

type of modelling study, and in interrogating how these choices might impact modelling

outcomes.

A key limitation of this study is that we considered each of the study years to have only a

single circulating influenza strain, which disregards the low levels of circulation of other strains

that did occur. The impact of the circulation of these other strains, even at low levels, could

potentially bias parameter estimates. Constructing distinct models for the different strains

means that we could not use these models to understand cross-immunity between strains.
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Models that consider multiple strains and their interactions, or asymptomatic infections,

would be ideal, but parametrizing these more realistic models is likely to be very challenging

without both a better epidemiological understanding of how immunity and cross-immunity

between strains works, and high resolution data including these strains. A further critical limi-

tation of this work is that we did not consider population turnover or age structure. Age struc-

ture plays a key role in immunity, treatment-seeking behaviour, and transmission between

individuals. By not including age structure, we necessarily assume that individuals mix homo-

genenously with age, that immunity is uniform across ages and wanes consistently, and that

vaccination coverage is uniform across age groups: all of which are known to be incorrect

assumptions. Future work should seek to include age structure in models such as this, while

seeking to ensure that the available data and computation resources are sufficient to effectively

fit additional parameters. It is likely that to produce detailed models with cross-immunity and

age structure, a detailed longitudinal cohort study would be required, including regular sam-

pling of multiple types (e.g., serology and virology) and potentially movement or contact

tracing. Existing studies such as the Fluscape cohort study [45] will provide a starting point,

however more regular sampling regimes may be necessary to elucidate the most complex

dynamics.

While high-quality data and modern parametrization methods are helpful, there are limits

to what may be reasonably determined using highly filtered weekly data. We are not able to

effectively discriminate infectious durations, nor latent periods, and credible intervals on

many parameters (e.g., the probability of seeking treatment) were quite broad. It is conceivable

that this may be possible with daily data, additional testing, or by incorporating other data

sources.

It is important to emphasise that the modelling in this study directly considers confirmed

influenza. Such data are not typically directly available, particularly with denominator data.

Were it more common to report negative test results (or, test results positive for other respira-

tory viruses), then alternate data sources of confirmed influenza, such as national notifications

databases, would be more valuable and provide higher resolution with which to investigate sea-

sonal influenza.

Conclusion

Seasonal influenza can be a challenging process to characterize given the complex nature of

immunity and the inability to discriminate influenza from other respiratory viruses without

testing. In this study, we used confirmed virological influenza data, with known denominators,

to ensure that the model is specifically based on true influenza cases and the hierarchical obser-

vation process is accurate, and modern Bayesian inference techniques, with uninformative,

unbounded priors, to ensure that assumptions around these priors did not impact on the

resulting parameters estimates. We identified strong posterior relationships between R0, popu-

lation susceptibility, and the probability an infected individual seeks treatment. The bivariate

posterior distribution had maximum density where relatively high R0 values correspond with

low levels of population susceptibility (while the effective reproduction number Re remains

within the expected range). This was in sharp contrast to the values that would be obtained by

considering only the marginal posterior distribution of each parameter. This highlights the

importance of carefully considering the challenges of identifiability in parameter estimates,

and in particular the importance of considering immunity alongside transmissibility in model-

ling studies. While there remains uncertainty around parameter estimates, we encourage

researchers to consider carefully the challenges of identifying related parameters, and the

impact that strong prior and modeling assumptions can have on parameter estimates.
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Methods

Data were obtained as part of the ASPREN project ([31]; https://aspren.dmac.adelaide.edu.

au/), a database of general practitioners (GPs) distributed throughout Australia. The target

coverage is approximately one GP per 200,000 people in metropolitan areas, and one GP per

50,000 people in regional areas. This database is continually updated and requires the volun-

tary participation of GPs, so there is variation between years and states. All GPs in the database

reported to ASPREN the number of consultations they performed each week, along with every

case of influenza-like-illness (ILI) that they observed. GPs were asked to take swab samples

from a proportion of those patients presenting ILI symptoms—25% from 2012–2014, 20% in

2015–2016. In practice, not all GPs took samples, and the proportion of patients for which

samples were taken varied substantially, however we use exact denominators accounting for

the testing doctors and the number of ILI patients they observed. These swab samples were

sent for PCR testing, resulting in respiratory virus virology data for each sample. In this study,

we used those data from New South Wales, as this is the most populous state in Australia and

has the most confirmed influenza cases.

Because influenza has multiple strains, interactions between those strains are complex, and

immunity from one strain may not confer protection to a different strain, we chose to model

seasons with different strains separately. Specifically, the predominant strain in 2011 and 2013

was H1N1pdm2009, and the predominant strain in 2014 and 2016 was H3N2, so we per-

formed model fitting separately on these two datasets. In doing so, we assume that epidemic

parameters (e.g., R0) were consistent across seasons for a single strain, and we explicitly fit the

proportion of the population susceptible and number infected at the start of each season. In

2012 and 2015 there were multiple strains with substantial circulation, and so we chose not to

fit these seasons rather than making strong assumptions around interactions between strains.

Historical climate data were obtained from the Australian Government Bureau of Meteo-

rology (www.bom.gov.au/climate/data), at station 066062 (Sydney—Observatory Hill). We

used climate data from Sydney, the state capital, as both the majority of the population and the

majority of GPs in the study were located here. Climate data consisted of observations of tem-

perature, precipitation, and absolute humidity, taken every three hours (i.e., 8 times per day),

continuously from 1955–present. Note that three-hourly observations creates a cyclic tempera-

ture pattern with both daily and annual periods. So as to avoid having unrealistic diurnal

dynamics, we used the average daily temperature rather than the three-hourly observations

themselves. We used a fixed, total population size of 6.9 million, based on 2011 Australian

Bureau of Statistics estimates. While the population of New South Wales is increasing over

time, including demography would add considerable complexity, which we wished to avoid.

Hierarchical observation process

The critical concern when using these data is an understanding of how underlying population-

wide influenza dynamics translate to observed, confirmed influenza cases in the available data-

set. We propose that filtering occurs at three levels:

• Not all influenza cases are identical in morbidity, and given mild or asymptomatic cases

patients may or may not choose to consult a GP. We assume that each infectious individual

has some (unknown, independent and identically distributed) probability of consulting a

GP.

• Only a small proportion of GPs are part of the ASPREN network, and the proportion that

are has varied over time. We then assume that an infectious patient who attends a GP has
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some probability (fixed, estimated from data, varying annually) of that GP being part of the

ASPREN network.

• ASPREN doctors are instructed to send a proportion of their ILI cases for swab testing. This

target proportion has varied over time, and the proportion of cases that doctors actually

send for testing has varied significantly beyond that. We assume that each infectious patient

who attends an ASPREN GP has some probability (fixed, estimated from data, varying

weekly) of being sent for testing.

There may well be variation from these fixed parameters in practice. However, if all param-

eters were allowed to vary freely then it would not be possible to identify them, as only the

result of all three levels of filtering is observed.

Models

We considered a continuous-time stochastic epidemic model, with an SEIRS structure, with

an observation class and Erlang-2 sojurn times in the infectious class (modelled by splitting

these classes into two consecutive compartments) (Fig 3). This process was approximated in

discrete time with 8 timesteps per day. So as to avoid diurnal dynamics with transmission rates

varying within days and being maximised in the early hours of the morning, we used the daily

mean temperature at each timestep. We also allow external importation of cases, at a per-sus-

ceptible rate ξ (constant through time) which we fit as part of the model. Note that because

of the structure of the model, the mean infectious time of an individual is 2/(2γ + λ) (see S1

Text). The model was parameterized based on physical epidemiological quantities, which were

then transformed into model-based rates, which appear in Table 3.

Given these transformed parameters, transitions for the SEIR model are as appears in

Table 4, using the increments that appear in Table 5.

We chose this parameterisation so as to put priors on the physical quantities of interest.

That is, priors were defined on R0, mean latent, infectious and immune durations, and the

probability of observation over the infectious period, and then transformed to obtain epidemic

model parameters such as β and γ. Initial conditions were fit for each season, so that suscepti-

bility to the circulating strain in that season could be determined. Prior distributions for epi-

demic parameters appear in Table 1. Per-susceptible external importation of cases at a low rate

was used to allow for the possibility of epidemic fade-out and reintroduction from elsewhere,

and was assigned an exponential prior distribution with rate 109 (approximately 3 individual

Table 3. Relationship between fitted epidemic quantities and transformed model parameters. Multiplying by 8 in

these transformations is to account for using 8 timesteps per day.

fitted epidemic quantity transformed model parameter

infectious duration Dinf recovery rate parameter g ¼

ffiffiffiffiffiffiffiffiffi
1� pobs
p

8Dinf

probability of seeking treatment pobs treatment-seeking rate parameter l ¼
2� 2

ffiffiffiffiffiffiffiffiffi
1� pobs
p

8Dinf

α = 3γ + λ

mean basic reproduction number �R0

seasonality term a
R0 ¼

�R0 þ aðT � �T Þ, infection rate β = R0(2γ + λ)/2

rate of external importation ξ not transformed

immune duration waning immunity rate η = 1/(8 × immune duration)

latent duration rate of becoming infectious σ = 1/(8 × latent period)

proportion susceptible at season start Syear
0 not transformed

infected individuals at season start Iyear
0 not transformed

https://doi.org/10.1371/journal.pcbi.1006377.t003
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case importations per year per million susceptible individuals). We did not reject simulation

runs in which fade-out occurred, except to require circulation of influenza in any week in

which there were influenza cases observed.

We chose to use exponential prior distributions so as to avoid putting maximum limits on

the values these parameters may take, i.e., in the same sense that you would choose uniform

priors to be uninformative, but with infinite positive support. Rates for the infectious and

latent period exponential priors were chosen so that the means were within a reasonable range

of influenza epidemiological parameters. The prior for �R0 was initially chosen as Exponential

with large mean so as to have a relatively flat density; we truncated this prior at the highest

published estimate of R0 for influenza, 22.7 [25]. While arguments could be made for a more

informative prior with further reduced density at higher R0 values, we chose to retain this rela-

tively uninformative prior so as to minimise modelling assumptions. The probability that an

individual chooses to seek treatment was assumed to be constant, both within and between

seasons. In practice this may not be the case, particularly when a circulating strain is unusually

transmissible, or produces stronger symptoms (in either case, potentially leading to greater

media attention). However, the hierarchical observation structure means that we are able to

capture some of this effect in the variation in testing probabilities, as we explicitly use the

actual testing proportions given in our dataset, which varied each week.

Note that we incorporate vaccination into this model by removing, deterministically, a pro-

portion of susceptibles to a separate vaccinated class (i.e., they are still counted as part of N but

otherwise do not interact with the model dynamics). Specifically we remove 21% of the popu-

lation, based on published vaccination rates and efficacy statistics in Australia [46, 47]. We

chose to do this rather than take vaccination rate as a fitted parameter so as to minimize the

number of parameters to be fit. Consequently, we set the prior for initial season susceptibility

to be uniformly distributed from 0 to 0.75. We used temperature as the covariate with which

to enable seasonal forcing, following the relationship R0 ¼
�R0 þ aðT � �T Þ (with T the daily

Table 5. Single-timestep increments for each model compartment.

increments

DSt ¼ Binomial St ; 1 � exp � b
ðI1þI2þO1þO2Þ

N� 1
þ x

� �� �� �

ΔEt = Binomial(Et, 1 − exp(−σ))

ðDII
1;t ;DIO

1;tÞ ¼ Multinomial I1;t ;
2g

2gþl
ð1 � expð� ð2gþ lÞÞÞ; l

2gþl
ð1 � expð� ð2gþ lÞÞÞ

� �

ðDIR
2;t ;DIO

2;tÞ ¼ Multinomial I2;t ;
2g

2gþl
ð1 � expð� ð2gþ lÞÞÞ; l

2gþl
ð1 � expð� ð2gþ lÞÞÞ

� �

ΔO1,t = Binomial(O1,t, 1 − exp(−2α))

ΔO2,t = Binomial(O2,t, 1 − exp(−2α))

ΔRt = Binomial(Rt, 1 − exp(−η))

https://doi.org/10.1371/journal.pcbi.1006377.t005

Table 4. Model transitions.

transitions

St+1 = St + ΔRt − ΔSt

Et+1 = Et + ΔSt − ΔEt

I1;tþ1 ¼ I1;t þ DEt � DII
1;t � DIO

1;t

I2;tþ1 ¼ I2;t þ DII
1;t � DIR

2;t � DIO
2;t

O1;tþ1 ¼ O1;t þ DIO
1;t � DO1;t

O2;tþ1 ¼ O2;t þ DIO
2;t þ DO1;t � DO2;t

Rtþ1 ¼ Rt þ DIR
2;t þ DO2;t � DRt

https://doi.org/10.1371/journal.pcbi.1006377.t004
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mean temperature and �T the mean temperature over the study period). A number of studies

have considered a variety of climate covariates and their interaction with influenza transmis-

sion both in populations and experimental models (e.g., [48, 49]); with indications that rela-

tionships with and between climate factors are complex and may vary globally [50]. We noted

similar quality model fits when using the specific humidity formulation presented by Shaman

et al. [51], however we chose to use the simplest seasonal link, temperature, as this form pro-

duced similar quality fits while requiring fewer parameters and enabling greater ease of

interpretation.

Model fitting

We used approximate Bayesian computation [52, 53] to calculate posterior distributions for

the model parameters. Specifically, we generated candidate parameter sets from the prior dis-

tributions listed above. For a given candidate parameter set, we simulated a realisation of the

model, and observed the sample path (i.e., the number of infected individuals attending ASP-

REN doctors each week in the simulated realisation) for 2011 and 2013 (H1 seasons), or 2014

and 2016 (H3 seasons). We compared this simulated realisation to the true sample path, using

the square root of mean squared error as score function

D :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

#weeks

X#weeks

i¼1

ðtruei � candidateiÞ
2

s

;

with truei the observed number of cases in the ith week from the ASPREN dataset and candida-

tei the number in the simulated realisation from the candidate parameter set. There were 104

weeks in each of the study periods (# weeks). The parameter set is accepted if D is less than

some tolerance level, in this case set to 4.5. We observe that this choice of score function and

threshold produces reasonable model fits, while still being high enough to accept parameter

sets regularly. Choice of score function in ABC is problem-specific [54], and it is likely that a

variety of other metrics could reasonably be used to produce reasonable fits. Note that a candi-

date parameter set can produce a range of scores given that realisations are stochastic, and the

accepted realisations are generally among the best possible realisations from the given parame-

ter set (i.e., those that most closely fit the data), however, the average realisation from these

parameter sets still fit the data relatively well (S1 Text).

Kernel density estimates were constructed from posterior samples using the algorithm of

Botev et al. [55].

Supporting information

S1 Text. Supplemental information. Text includes a derivation for the transition rates, a full

set of posterior parameter estimates, and details of some simulated examples.

(PDF)
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