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Abstract: Three-dimensional flower-like BiOI/BiOX (X = Br or Cl) hybrids were synthesized via
a facile one-pot solvothermal approach. With systematic characterizations by X-ray diffraction
(XRD), scanning electron microscopy (SEM), Transmission electron microscopy (TEM), the
Brunauer-Emmett-Teller (BET)specific surface area, X-ray photoelectron spectroscopy (XPS), and the
UV-Vis diffuse reflectance spectra (DRS), the BiOI/BiOCl composites showed a fluffy and porous 3-D
architecture with a large specific surface area (SSA) and high capability for light absorption. Among
all the BiOX (X = Cl, Br, I) and BiOI/BiOX (X = Cl or Br) composites, BiOI/BiOCl stands out as the
most efficient photocatalyst under both visible and UV light irradiations for methyl orange (MO)
oxidation. The reaction rate of MO degradation on BiOI/BiOCl was 2.1 times higher than that on pure
BiOI under visible light. Moreover, BiOI/BiOCl exhibited enhanced water oxidation efficiency for O2

evolution which was 1.5 times higher than BiOI. The enhancement of photocatalytic activity could be
attributed to the formation of a heterojunction between BiOI and BiOCl, with a nanoporous structure,
a larger SSA, and a stronger light absorbance capacity especially in the visible-light region. The in
situ electron paramagnetic resonance (EPR) revealed that BiOI/BiOCl composites could effectively
evolve superoxide radicals and hydroxyl radicals for photodegradation, and the superoxide radicals
are the dominant reactive species. The superb photocatalytic activity of BiOI/BiOCl could be utilized
for the degradation of various industrial dyes under natural sunlight irradiation which is of high
significance for the remediation of industrial wastewater in the future.
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1. Introduction

In the past few decades, intensive research has been focused on the efficient utilization of solar energy
as a promising and sustainable strategy to address the energy crisis and environmental contamination.
Solar energy is a natural resource which is inexhaustible as well as environmentally-friendly [1–3].
Among the solar energy conversion and applications, such as photocatalytic decomposition of organic
pollutants [4–6], solar cells [7], water splitting [8–10], as well as catalytic CO2 reduction [11–13],
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the rational development of efficient semiconductors and construction of optimal heterojunction
nanocomposites to enhance the utilization of solar energy have turned out to be the two most effective
techniques. Among the popular photocatalysts, TiO2 has been widely investigated due to its superb
photocatalytic activity, good chemical stability, relatively low toxicity, and cost [14]. However, TiO2 can
only absorb and respond to ultraviolet light due to its wide band gap (3.2 eV), which severely limits
its practical applications in solar energy conversion. Recently, photocatalysts containing bismuth
with high visible-light-induced activity have attracted considerable attention in designing novel
photocatalysts, such as BiFeO3 [15], BiVO4 [16], Bi2MoO6 [17], Bi2WO6 [18], etc. Bismuth oxyhalides,
BiOX (X = Cl, Br, I), have shown remarkable photocatalytic activity due to their unique structure and
physiochemical properties [19–22]. The bismuth oxyhalides were comprised of a layered structure
of [Bi2O2] slabs interleaved by double slabs of halogen atoms with an internal static electric field,
which could facilitate the rapid separation of photo-generated electrons and holes. Among these new
family members, BiOI shows the highest absorption capacity for visible light irradiation due to its
relatively narrow band gap. However, the photocatalytic degradation of organics on pure BiOI is still
unsatisfactory due to the high recombination rate of the photo-generated carriers, which constrains
the photocatalytic activity for solar energy utilization.

Heterogeneous coupling has been adopted as a fantastic strategy to improve photocatalytic activity
by minimizing the recombination rate of photogenerated carriers. Meanwhile, a nanoporous structure
with a large surface area is especially attractive for heterogeneous photocatalysis due to the multiple
scattering effects [23]. Three-dimensional microstructure hybrids fabricated from nanoscaled building
blocks may further contribute to the enhancement of catalytic performance by providing abundant
transport paths for the reactants to arrive at the active sites. For the hybrid catalysts constructed with
a heterojunction, both of the semiconductors would adjust their bandgaps to obtain the composite
valence band (VB) and conduction band (CB), which could be tuned to be more suitable for visible light
excitation. However, the intrinsic mechanism of the photocatalytic process over BiOI/BiOX (X = Cl
or Br) composites is still uncertain.

In this study, a simple one-pot solvothermal process was adopted to synthesize 3D BiOI/BiOX
(X = Cl or Br) flower-like microspheres with a high specific surface area and superior visible light
photo-absorption ability. The performances of the BiOI/BiOX (X = Cl or Br) composites and pure
BiOX (X = Cl, Br, I) were evaluated by photo-oxidation of methyl orange (MO) under both UV and
visible light irradiation. The BiOI/BiOCl composites also demonstrated an excellent activity for water
oxidation under simulated solar light irradiation. In addition, the information about the composite
band structure and the reactive oxygen species in the photocatalytic process were unveiled for an
in-depth mechanistic study. The composite was finally assessed for practical remediation of versatile
industrial dyes under natural sunlight irradiation.

2. Experimental

2.1. Materials

Bismuth (III) nitrate pentahydrate (Bi(NO3)3
.5H2O) was purchased from Sinopharm Chemical

Reagent Co. Ltd., Shanghai, China. Ethylene glycol (HOCH2CH2OH), potassium iodide (KI), sodium
bromide (NaBr), potassium chloride (KCl), and ethanol (CH3CH2OH, absolute) were obtained from
Nanjing Chemical Reagent Co. Ltd., Nanjing, China. Methyl orange and methyl violet were purchased
from Shanghai Sansi Co. Ltd., Shanghai, China. Direct black 38 was purchased from Tokyo Chemical
Industry Co. Ltd., Tokyo, Japan. 5,5-dimethyl-1-pyrroline N-oxide (DMPO, ≥98.0%) was purchased
from Sapphire Bioscience Pty. Ltd., (Redfern, New South Wales, Australia). Silver nitrate (≥99.0%) and
lanthanum (III) oxide (≥99.9%) was purchased from Sigma-Aldrich (Castle Hill, New South Wales,
Australia). All the chemicals are analytical reagents and were received without further treatment.
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2.2. Synthesis of BiOX (X = Cl, Br, I)

The BiOX was synthesized via a simple solvothermal method. More specifically, 3.88 g
Bi(NO3)3·5H2O and 1.33 g KI were each dissolved in a 40 mL ethylene glycol solution, separately.
Then the Bi(NO3)3 solution was dropped into the KI solution gradually with vigorous stirring for
5 min using a magnetic stirrer on a hotplate to form a homogeneous mixture. Then the solution was
transferred to a 120 mL Teflon-lined autoclave, sealed, and treated in an oven at 160 ◦C for 12 h and
cooled down naturally. The precipitate was filtered and washed with deionized water and ethanol
three times each, and finally dried in the oven at 60 ◦C for 24 h. BiOCl and BiOBr were prepared
following the same protocol based on a mole ratio of Bi(NO3)3·5H2O:NaBr(KCl) = 1:1.

2.3. Synthesis of BiOI/BiOX (X = Cl, Br)

The BiOI/BiOCl and BiOI/BiOBr composites were prepared via a similar procedure according to
a previous report with minor modifications [24]. In a typical procedure, 1.96 g Bi(NO3)3

.5H2O was
dissolved in 80 mL ethylene glycol with vigorous stirring for 30 min to form a transparent solution.
Then, 0.6 g KI and 0.03 g KCl were added into the above solution and continued to stir for another 2 h.
Afterward, the mixed solution was transferred to a 120 mL Teflon-lined autoclave, sealed, and treated
in an oven at 160 ◦C for 12 h and cooled down naturally. The precipitate was filtered and washed
with deionized water and ethanol three times each, and finally dried in the oven at 60 ◦C for 24 h.
Thus, BiOI/BiOCl was obtained. The synthesis of BiOI/BiOBr followed the same procedure based on
a molar ratio of KI:NaBr = 9:1.

2.4. Characterization Techniques

The crystal structures of the as-synthesized catalysts were characterized via X-ray diffraction
analysis (XRD) with Cu Kα radiation in a X′TRA diffractometer (ARL Company, Swiss, Basel,
Switzerland). Scanning electron microscopy (SEM, X650, Hitachi Company, Tokyo, Japan) and
transmission electron microscopy (TEM, 200CX, JEOL Company, Tokyo, Japan) were employed to study
the surface morphology and structure of the catalysts. The specific surface areas were measured using
N2 adsorption/desorption isotherms on a Micromeritics ASAP 2020, and the pore size distribution
was calculated from the desorption isotherm. The UV-visible diffuse reflectance spectra (DRS) were
performed on a Shimadzu UV-2401 UV-Vis spectrophotometer equipped with an integrated sphere
attachment. X-ray photoelectron spectroscopy with Al Kα X-ray radiation (PHI 5000 VersaProbe,
ULVAC-PHI, Kanagawa, Japan) was adopted to investigate the surface elemental composition. Electron
paramagnetic resonance (EPR) was performed on a Bruker EMX plus spectrometer (Bruker Company,
Rheinstetten, Germany) under the conditions of modulation amplitude (8 G), modulation frequency
(100 kHz), microwave frequency (9.48 GHz), and non-saturating microwave power (1.02 mW). DMPO
was utilized as a chemical probe to capture the produced radicals from photocatalysis. 0.2 g/L
BiOI/BiOCl was first mixed with a 40 µL DMPO solution. Then the mixed solution was extracted
via the capillary and tested under both dark and simulated solar light irradiation after 5 min.
The superoxide radicals (·O2

−) were captured by changing the solution to methanol to quench the
hydroxyl radicals.

2.5. Evaluation of the Photocatalysts

The photocatalytic activities were evaluated by the degradation of organic dyes in aqueous
solution under UV light (CEL-LAX Xe lamp 300 W; UV cut-off filter <400 nm) with a light intensity
of 268 mW/cm2 and visible light (CEL-LAX Xe lamp, 300 W; visible cut-off filter 350–680 nm) with a
light intensity of 405 mW/cm2. Specifically, 0.05 g of photocatalyst was suspended into 250 mL MO
solution (20 mg/L). Prior to irradiation, the suspensions were magnetically stirred in the dark for
1 h to ensure the establishment of an adsorption/desorption equilibrium. During the photocatalytic
process, 3 mL of the reaction solution was extracted every 30 min and centrifuged at 13,000 rpm
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for 15 min to remove the particles. Then the concentration of the MO solution was measured by a
UV-Vis spectrometer (Perkin-Elmer Lambda 900UV/Vis/NIR, Waltham, MA, USA) at the maximum
absorbance wavelength of 465 nm.

The catalysts were also evaluated in a water oxidation process for oxygen evolution. The reaction
was processed in a black jacket reactor with a 300 W Xenon lamp as the simulated solar light source.
Silver nitrate was selected as the electron scavenger. In a typical procedure, 0.1 g of catalyst was
added to 200 mL of solution including AgNO3 (0.03 M) and La2O3 (0.2 g). The suspensions were
mixed under vigorous stirring for 30 min in the dark and degassed to remove the air prior to
irradiation. The produced O2 was in situ analyzed by gas chromatography (Agilent 490 Micro GC,
New South Wales, Australia) equipped with a thermal conductive (TCD) detector (Agilent 490 Micro
GC, New South Wales, Australia).

3. Results and Discussion

3.1. Morphology and Structure

Figure 1 shows the phase structures of the as-synthesized samples of pure BiOX (X = Cl, Br
and I) as well as BiOI/BiOX (X = Cl and Br) composites. The diffraction peaks of a, b, and e in
Figure 1 can be fully indexed to the tetragonal BiOBr phase (JCPDS card No. 78-0348), tetragonal
BiOCl phase (JCPDS card No. 73-2060), and tetragonal BiOI phase (JCPDS card No. 73-2062) with no
impurities. The BiOI/BiOCl and BiOI/BiOBr composites exhibit the characteristic peaks of pure BiOI
whereas no obvious peaks for BiOCl and BiOBr were discovered, possibly due to their low loading
amount. Comparing the profiles of d with e, it can be seen that all diffraction peaks slightly shift to the
higher angles, corresponding to a smaller spacing distance between the different planes. The same
phenomenon could be observed for BiOI/BiOBr. Moreover, the diffraction peaks of the composites are
broader than the corresponding peaks of pure BiOI, indicating that the crystallite sizes of BiOI/BiOCl
and BiOI/BiOBr become smaller during heterogeneous growth, which is in good accordance with the
literature [25–27].
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Figure 1. X-ray diffraction (XRD) patterns of (a) BiOBr, (b) BiOCl, (c) BiOI/BiOBr, (d) BiOCI/BiOl, and
(e) BiOI.

The SEM images of the photocatalysts are presented in Figure 2. All the BiOX samples present
as microspheres with different diameters, morphologies, and microstructures. Among them, BiOBr
shows the largest particle size with a diameter between 1.5 and 2.1 µm, which is larger than that of
BiOCl (0.4–1 µm) and BiOI (0.1–0.5 µm). High-magnification images in Figure 2b,d,f indicate that
all the microspheres are composed of nanoplates with a thickness of 25 nm, which were aggregated
at the core compactly. Moreover, the nanoplates in BiOI in Figure 2b were closely packed together
to form irregular microspheres with no obvious gaps. For BiOCl, the microsphere particles are
presented with regular shapes with multilayers in Figure 2d. The microspheres of BiOBr in Figure 2f
are constructed of diverse diameters with regular shapes and large gaps. As seen from Figure 2g–j, the
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nanocomposites of BiOI/BiOX (X = Br, I) with diameters around 2–8 µm exhibit three-dimensional
micro/nano-architectures aggregated by monolithic or monomeric particles, which are larger than the
pure BiOX (X = Cl, Br, I). More interestingly, compared to the compact BiOI/BiOBr clusters, BiOI/BiOCl
composites appear as more loose and fluffy agglomerates. The hierarchical 3D micro-hybrid with
a porous structure may lead to a high specific surface area and surface-to-volume ratio, as well as
abundant transport paths for charge-carrier separation, which could be favorable for a photocatalytic
process [28].
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Figure 2. Scanning electron microscopy (SEM) images of (a,b) BiOI; (c,d) BiOCl; (e,f) BiOBr;
(g,h) BiOI/BiOCl and (i,j) BiOI/BiOBr with different magnification levels.
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The TEM images further unveiled the morphological structure of the BiOI/BiOCl and BiOI/BiOBr
composites. Figure 3a,c exhibits flower-like 3D architectures and BiOI/BiOBr show a more compact
microstructure. Both of the nanoplates in Figure 3b,d are very thin with a thickness of around 20 nm.
The TEM image in Figure 3b (BiOI/BiOCl) shows a more regular morphology with smaller particle
size than that of BiOI/BiOBr in Figure 3d. In addition, two different lattices of BiOCl can be observed
from the high-resolution transmission electron microscopy (HRTEM) image in Figure 3e with the
d-spaces of 0.301 nm for the (102) plane of BiOI and 0.275 nm for the (110) plane. Figure 3f also exhibits
two different crystalline structures with d-spaces of 0.282 nm and 0.277 nm, which can be assigned to
the (110) plane of BiOI and the (110) plane of BiOBr, respectively. The structures of the composites
revealed in the TEM images are in agreement with the SEM images.Nanomaterials 2017, 7, 64 6 of 18 
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Figure 3. Transmission electron microscopy (TEM) images of (a,b) BiOI/ BiOCl; (c,d) BiOI/ BiOBr
samples and high resolution transmission electron microscopy (HRTEM) images of (e) BiOI/BiOCl;
(f) BiOI/BiOBr.
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3.2. Optical Properties

The band gap structure and electronic states of a semiconductor photocatalyst are of crucial
importance to determine the photoabsorption capacity and catalytic performance. Figure 4a displays
the UV-Vis diffuse reflectance spectra of the BiOX (X = Cl, Br, I) as well as BiOI/BiOX (X = Br, Cl)
composites. BiOCl is only responsive to UV light with an absorption edge at approximately 375 nm,
while BiOI exhibits typical optical absorbance in the visible light region with the absorption edge
at about 630 nm. BiOBr shows great absorption capacity in both UV and visible light regions with
the absorption edge at 450 nm. Compared to BiOX, BiOI/BiOX (X = Br, Cl) composites exhibit
enhanced photoabsorption capacity with a slight shift to the lower wavelength. The optical band gap
energy can be evaluated based on the plots of (αhγ)1/2 vs. photon energy [24,26] shown in Figure 4b.
By extrapolating the linear portion of the plots to zero, the band gap energy Eg of BiOCl, BiOBr, BiOI,
BiOI/BiOCl, and BiOI/BiOBr were estimated to be 3.25, 2.85, 1.93, 2.09, and 2.01 eV, respectively, with
the color transition from off-white to brick red with the red shift of the bandgap (Figure 4a, insert).
The results are consistent with previously reported values [25,29,30]. Meanwhile, the band gap of
BiOI/BiOCl is located between BiOI and BiOCl due to the formation of a solid solution, which is also
observed for BiOI/BiOBr.
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3.3. XPS Analysis

To further analyse the surface chemical composition of the BiOI/BiOCl composite, X-ray
photoelectron spectroscopy (XPS) were conducted. The XPS survey in Figure 5a shows that BiOI/BiOCl
contains major elements of Bi, O, I and Cl as well as a certain amount of C (the adventitious carbon
from the XPS instruments [25,31]). In Figure 5b, the two peaks with the binding energies of 158.67
and 163.99 eV are attributed to Bi 4f7/2 and Bi 4f5/2, respectively, which represent the typical Bi3+ in
BiOI/BiOCl composite. The high-resolution O 1s scan is presented in Figure 5c. The dominant peak
at 529.63 eV can be assigned to the lattice oxygen in the (BiO)2

2+ slabs of the BiOI/BiOCl layered
structure, and the other peak at 532.49 eV may be attributed to the surface hydroxyl groups [32].
The peaks of I 3d in Figure 5d can be found at 630.02 and 618.53 eV, which could be attributed to I
3d3/2 and I 3d5/2, respectively, corresponding to I− in the BiOI/BiOCl composite. The high-resolution
scan of Cl 2p is shown in Figure 5e with one peak centered at 197.47 eV, which is ascribed to Cl 2p3/2.
The overall surface chemical compositions including atomic concentrations of the major elements are
listed in Table 1. It is noted that the atomic ratio of I/Cl on the surface of the composite catalyst is
about 2.9:1, which is much lower than 9:1 applied during the catalyst preparation, indicating a high
concentration of chlorine ions on the surface.
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Table 1. Surface chemical composition and concentration of the BiOI/BiOCl catalyst.

Element O 1s Cl 2p Bi 4f I 3d

Atomic % 30.57 2.44 22.03 7.09

3.4. Specific Surface Areas and Pore Structure

A large specific surface area of a photocatalyst is beneficial to the enhancement of the
photocatalytic performance. Nitrogen adsorption/desorption isotherms and the pore size distribution
of the BiOI, BiOCl, and BiOI/BiOCl composites (with a mole ratio of I−:Cl− = 9:1) are estimated
as shown in Figure 6a,b. The isotherms of all three samples fall into type IV isotherms with a
distinct hysteresis loop observed in the range of 0.6–1.0 P/P0, suggesting the formation of capillary
condensation related to mesopores between closely-packed spherical particles [33]. The presence of a
small amount of Cl− in the BiOI exerted obvious influence on the Brunauer-Emmett-Teller (BET) surface
areas and pore structure (Table 2). The BET surface area decreases a little from 42.5 to 37.7 m2·g−1 with
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the average pore size increased from 15.7 to 16.8 nm. Both of the isotherms of BiOI and BiOI/BiOCl
manifest much higher adsorption capacity than BiOCl at high relative pressure (P/P0 in the range
of 0.8–1.0), indicating that larger inter-aggregated pores were generated and became predominant
with larger total pore volumes and a higher adsorption capacity, due to the aggregation of sheet-like
nanoparticles [24]. This could be confirmed by the SEM and TEM images with the flower-like 3D
microstructure interwoven by very thin nanoplates.
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Figure 6. (a) Nitrogen sorption isotherms of BiOI, BiOCl, and BiOI/BiOCl; (b) Pore size distributions
of BiOI, BiOCl, and BiOI/BiOCl.

Table 2. The Brunauer-Emmett-Teller (BET) surface areas and pore structures of the photocatalysts.

Catalyst Surface Area/m2·g−1 Pore Volume (cm3·g−1) Pore Size (nm)

BiOI 42.4 0.20 15.7
BiOCl 17.0 0.046 8.8

BiOCl/BiOI 37.7 0.20 16.8

Compared with pure BiOI, the BiOI/BiOCl composites also exhibited a larger hysteresis loop with
a similar shape for the isotherms. In addition, the pore-size distribution of BiOI/BiOCl composites
became more uniform. The pure BiOI sample contains a bimodal mesopore size distribution from
ca. 2.1 nm to ca. 14.7 nm. In contrast, the larger mesopores in the BiOI/BiOCl composites occupied
the main portion of the total pore volume with a maximum pore diameter of 18.2 nm, which may be
produced from the inter-aggregated secondary particles and the stack of nanoplates.

3.5. Photocatalytic Degradation of MO

3.5.1. Adsorption of MO

All the adsorption experiments were conducted in the dark with an initial concentration of 20 ppm
MO and a catalyst dosage of 0.2 g/L [34]. As shown in Figure 7, both BiOCl and BiOBr achieved
adsorption equilibrium after 30 min with 10% dye adsorption. The pure BiOI and the composites
(BiOI/BiOX, X = Br, Cl) exhibited a higher adsorption capacity of about 25% dye removal in 30 min.

Pure BiOI shows the highest adsorption rate of 25.7% MO removal after 60 min, which could
be due to the highest BET surface area among the photocatalysts. The greater dye adsorption rate
would contribute to faster dye degradation as the larger surface area would be more favourable for dye
molecules to adsorb onto the active sites of the photocatalyst, giving rise to an enhanced photocatalytic
activity. Overall, when 0.05 g of catalyst was introduced into the 20 ppm methyl orange solution, the
adsorption removal efficiencies of all of the catalysts are less than 30% after adsorption equilibrium
in 30 min. In this case, adsorption will not exhibit a considerable influence on the investigation of
photodegradation efficiency.
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Figure 7. Adsorbed MO in the dark for BiOX (X = Cl, Br, I) and BiOI/BiOX (X = Br, Cl) composites
(C0 = 20 ppm, catalyst dosage = 0.2 g/L).

3.5.2. Comparison of Photocatalytic Activity

All the photocatalysts were tested under both visible and UV irradiations as shown in Figures 8
and 9. Figure 8a demonstrates that only 12% of MO was removed after 2.5 h for visible-light irradiation
without any catalyst, suggesting that MO is chemically stable and refractory to decomposition
by photolysis. Both of the composite semiconductors BiOI/BiOCl and BiOI/BiOBr had higher
photocatalytic activity than pure BiOI under visible-light irradiation. Among all the catalysts, the
BiOI/BiOCl composite gave 78% MO removal after 150 min, which was 25% higher than the pure
BiOI. The lattice of single BiOI was expanded by the coupling of BiOX (X = Cl, Br), leading to the
recombination between the lattices to form a three-dimensional spherical structure with heterojunction
interfaces, which will contribute to the efficient separation of photogenerated electron-hole pairs.
As shown in Figure 4, the band edges of both pure BiOI and BiOI/BiOX (X = Cl, Br) fall into the visible
light region, with the composites showing even higher light absorption capacity than the pure BiOI.
The photocatalytic activity enhancement of BiOI/BiOX (X = Cl, Br) could be ascribed to the retardation
of electron-hole recombination with improved interfacial charge transfer efficiency as well as a stronger
light absorption ability.
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Figure 8. (a) Comparison of photodegradation efficiencies of different samples under visible irradiation;
(b) pseudo-first-order kinetics curves of methyl orange (MO) degradation over different samples under
visible irradiation.
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Figure 9. (a) Comparison of photodegradation efficiencies of different samples under UV irradiation;
(b) pseudo-first-order kinetics curves of MO degradation over different samples under UV irradiation.

Relative to BiOX (X = Cl, Br), BiOI has a narrow band gap of around 1.9 eV, which can be
excited by visible light with a more efficient utilization of solar energy. Additionally, BiOI and
its composite (BiOI/BiOCl) with larger specific surface areas (SSAs) can not only supply more
active sites for pollutant degradation but also promote the separation of the electron-hole pairs [35].
Nevertheless, BiOCl is severely limited for visible light adsorption due to its wide bandgap (3.25 eV)
which caused a poor catalytic performance in the visible light region. In Figure 8, BiOCl exhibits the
lowest photodegradation activity among all the catalysts under visible light irradiation. According to
pseudo-first-order kinetics [36], the apparent pseudo-first-order rate constants (kapp) were obtained as
a comparative parameter for the photocatalytic activity of different catalysts.

ln
(

C0

C

)
= kKt = kappt or Ct = C0e−kappt (1)

where C0 is the original concentration of the dyes and C is the concentration at the reaction time t; k is
the reaction rate constant; K is the adsorption coefficient of the reactant. The linear time dependence of
ln(C0/C) is plotted in Figures 8b and 9b correspondingly.

Based on the curves from Figures 8b and 9b, the calculated values of kapp and R2 are displayed
in Table 3. As observed in Figure 9b and Table 3, the BiOI/BiOCl composite demonstrates the
highest photodegradation efficiency under UV light irradiation with almost 50% MO removal in
150 min, compared with the pure BiOI catalyst of 40%. Given the performances under visible light
irradiation, BiOBr turns out to be an excellent UV responsive photocatalyst, as BiOBr shows good UV
light absorption capacity according to Figure 4. The BiOI/BiOBr composites present an outstanding
photocatalytic activity under visible light irradiation, yet an inferior activity under UV light irradiation.
In summary, BiOI/BiOCl exhibited the highest photocatalytic performance both under UV and visible
light irradiation, indicating that the intimate interaction between BiOI and BiOCl is crucial for the
formation of a charge-separation heterojunction [37]. However, BiOCl shows the lowest activity
under both UV and visible irradiations, due to the poor light-absorption capability and a low specific
surface area.

Figure 10 shows a typical UV-Vis absorption spectrum of the MO solution during degradation by
the BiOI/BiOCl composite at different time intervals. As the irradiation proceeded, the absorption peak
at 465 nm shows a blue-shift and becomes broadened simultaneously, implying that the decomposition
of MO molecules is due to the demethylation reaction in which the methyl group is substituted by a
hydrogen atom after the homolytic breaking of the nitrogen–carbon bond [38].
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Table 3. Photodegradation rate constants of various catalysts under UV and visible light.

Light Irradiation Photocatalysts Kapp (min−1) R2

UV

BiOCl 0.0022 0.979
BiOBr 0.0036 0.996
BiOI 0.0036 0.998

BiOI/BiOBr 0.0025 0.998
BiOI/BiOCl 0.0044 0.998

Visible

BiOCl 0.0016 0.976
BiOBr 0.0026 0.998
BiOI 0.0050 0.999

BiOI/BiOBr 0.0078 0.999
BiOI/BiOCl 0.0100 0.999Nanomaterials 2017, 7, 64 12 of 18 
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Except for high photocatalytic activity, the lifetime of the photocatalyst is also a key parameter for
the practical application of the catalytic process. To observe sample stabilities, recycling experiments
were conducted with the BiOI/BiOCl composite photocatalyst to degrade MO under visible light
irradiation using an MSR 575/2 metal halide lamp (575 W, Philips, Somerset, NJ, USA) with the
intensity at 250 mW/cm2 (400–1050 nm). As shown in Figure A1, the photocatalytic degradation was
93.5%, 86.6%, and 84.2% for the first, second, and third run, respectively. Thus, the sample exhibits
good stability without a remarkable decline of photocatalytic activity.

According to the previous studies, the valence band energies of BiOI and BiOCl were calculated
to be 2.42 and 3.44 eV, respectively [24,25], both of which are more positive than the standard redox
potential of H2O/O2 (1.23 eV vs. reversible hydrogen electrode (RHE) at pH = 0) [39]. Theoretically,
both BiOI and BiOCl including their composites can oxidize H2O to produce O2. Therefore, BiOI/BiOCl
with the highest photocatalytic activity was chosen to explore the potential for photocatalytic water
oxidation. Figure 11 describes the time dependence of O2 evolution from water over the synthesized
catalysts. As can be seen, the O2 evolution rate is 7.57 µmol/h for BiOI/BiOCl, which is 1.55 and
1.53 times higher than that of pure BiOI (4.87 µmol/h) and BiOCl (4.96 µmol/h) accordingly after 1 h
of simulated solar light irradiation. It is also observed that the water oxidation rates rapidly speeded
up in the first 20 min, then went through a plateau afterwards. This result indicates that an effective
heterojunction has been constructed between BiOI and BiOCl, which leads to an enhancement of
charge transfer and separation efficiency.
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3.5.3. Photocatalytic Mechanism of the BiOI/BiOCl Composite

Given the results above, it could be concluded that the photocatalytic performance of BiOI is highly
promoted after coupling with BiOCl to form an effective heterojunction. To further explore the in-depth
mechanism, in situ electron paramagnetic resonance (EPR) technology was used to probe the reactive
oxygen species in the photodegradation. Both hydroxyl (·OH) and superoxide radicals (·O2

−) were
detected with characteristic peaks as shown in Figure 12. The 5,5-dimethyl-pyrrolidone-(2)-oxyl-(1)
(DMPOX) represents oxidized DMPO impurities due to a long-time irradiation. In Figure 12a, the
weak signals of hydroxyl radicals (·OH) were observed after irradiation for 5 min, indicating that
the photo-generated holes might combine with adsorbed H2O molecules to produce a small amount
of ·OH. Figure 13b revealed that the characteristic peaks of superoxide radicals (·O2

−) with strong
intensities were detected, indicating that the superoxide radicals could be the main reactive oxygen
species during the photocatalytic reaction process. According to recent studies [40–43], surface
peroxo species could be formed via the disproportionation of the superoxide radicals or coupling of
hydroxyl radicals, and become the primary intermediates of photocatalytic reactions, which will be
involved in the photocatalytic reaction processes including photodegradation of organic pollutants
and oxygen evolution. The detailed mechanism involving peroxo species requires further exploration
in future studies.
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Figure 12. Electron paramagnetic resonance (EPR) spectra of hydroxyl (a) and superoxide (b)
radicals over the BiOI/BiOCl sample under solar light irradiation (DMPOX was denoted as oxidized
5,5-dimethyl-1-pyrroline N-oxide (DMPO)).
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According to the semi-empirical equation (Equation (2)) based on the Mulliken electronegativity
theory [44], both the conduction band potential (CB) and valence band potential (VB) of BiOI and
BiOCl were calculated.

EVB = X− Ee + 0.5× Eg (2)

where Eg is the band gap potential, Ee is the energy of free electrons on the hydrogen scale (4.5 eV),
and X is the absolute electronegativity of the constituent atoms.

According to the UV-Vis diffuse spectra, the values of Eg of pure BiOCl and BiOI were calculated
to be 3.25 and 1.93 eV, respectively. The calculated valence band (VB) positions of BiOCl and BiOI were
estimated to be 3.44 and 2.39 eV accordingly. Thus, the conduction band (CB) positions of BiOCl and
BiOI were obtained to be 0.19 and 0.46 eV.

Based on analysis and discussion above, a schematic illustration was proposed to unravel the
formation of the BiOI/BiOCl heterojunction structure in Figure 13. Under visible light irradiation,
only BiOI with a narrow band gap of 1.93 eV could be excited, with photo-generated electrons in the
valence band being excited to a higher potential edge than the original one to form a new conduction
band [27], which is even higher than the CB of BiOCl. According to energy band structure theory,
electrons from the CB of BiOI will be transferred to the lower lying CB of BiOCl to generate an
electron center; meanwhile, the holes from the VB of BiOCl will be transferred oppositely to the VB
of BiOI to create a hole center. Herein, the photo-excited electrons and holes could be efficiently
separated with a lengthened lifetime. Moreover, since the new conduction band of BiOI is more
negative than the reduction potential of O2/·O2

− (−0.33 eV) [16], the oxygen molecules could be
reduced to ·O2

− radicals by the electrons, which is further supported by the EPR results. Compared
with the standard reduction potential of ·OH/H2O (2.27 eV) or ·OH/OH− (2.38 eV) [16], the VB
potential of BiOI is 2.39 eV, indicating that oxidative holes (h+) on the surface of BiOI experienced
difficulty in directly oxidizing H2O or OH− into ·OH. Instead, most of the h+ would react with dye
molecules directly and synergistically promote the dye decomposition. However, the VB potential of
BiOCl is 3.44 eV, which is positive enough to oxidize H2O or OH− into ·OH radicals. Thus, the small
amount of h+ left in the VB of BiOCl could produce some hydroxyl radicals, contributing to the dye
degradation as well. In summary, the unique heterojunction between BiOI and BiOCl could render
the charge carrier separation and transport more efficiently, which are the key factors for improved
photocatalytic performance, compared to the pure BiOI. The strong light absorption capacity of the
BiOI/BiOCl composite as well as the enlarged specific surface area also account for the excellent
photodegradation efficiency.
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3.5.4. Photodegradation of Dyes under Natural Solar Light Irradiation

To further investigate the practical application of the optimal photocatalysts, two other typical
dyes of methyl violet (MV) and direct black (DB) together with methyl orange were studied for the
estimation of the photodegradation effectiveness of the BiOI and BiOI/BiOCl composites under natural
solar light irradiation. All of the experiments were performed simultaneously outdoor (Nanjing, China)
at noon (11:30 a.m.–3:00 p.m.) in the summer season of June, under the same conditions listed in
Section 3.5.2 except for the light source. The degradation efficiency results are depicted in Figure 14.
Among the three dye pollutants, methyl violet is most vulnerable to sunlight irradiation on the
catalysts. 100% MV degradation could be achieved in 210 min under natural sunlight irradiation on the
BiOI/BiOCl composite. Moreover, the degradation of methyl violet attained a superior reaction rate in
the first 60 min. Overall, the degradation rate was enhanced by using BiOI/BiOCl as the photocatalyst
rather than the pure BiOI for MO and MV. Based on the analysis of the molecular structure of the three
dyes, it could be deduced that the degradation efficiency of the dyes was closely related to the azo
functional groups in the molecular structure. All the dye molecular structures are listed in Table A1.
Zero, one, and three azo groups were functionalized in methyl violet, methyl orange, and direct black,
respectively, which might account for the reason that direct black is refractory to be decomposed on
both the BiOI and BiOI/BiOCl catalysts.Nanomaterials 2017, 7, 64 15 of 18 

 

  

Figure 14. Photocatalytic degradation of typical dyes under natural solar light irradiation with (a) 

BiOI and (b) BiOI/BiOCl.  

4. Conclusions 

In summary, flower-like 3D BiOI/BiOX (X = Br or Cl) hybrids have been successfully fabricated 

via a facile one-pot solvothermal approach. The BiOI/BiOCl hybrids present fluffy and porous 3D 

microspheres with large specific surface areas and high light absorption abilities. Under visible light 

irradiation, both of the composites exhibited significant enhancement of the photocatalytic oxidation 

performance compared to pure BiOI. The apparent reaction rate for MO degradation is 2.1 times 

higher over BiOI/BiOCl, and 1.6 times higher over BiOI/BiOBr than that of pure BiOI. Moreover, 

BiOI/BiOCl demonstrated a slight promotion under UV light irradiation, which is 1.3 times higher 

than pure BiOI. Moreover, the BiOI/BiOCl composite also displayed excellent water oxidation ability 

with enhanced O2 evolution from the water. The enhancement of photocatalytic activity could be 

attributed to the formation of a heterojunction between BiOI and BiOCl, which facilitates the 

separation and transportation of charge carriers more efficiently with a rationally-engineered energy 

band structure. In addition, the nanoporous structure, larger specific surface area, and the stronger 

light absorption capacity both in the visible and UV region also contributed to the excellent 

photocatalytic activity of the BiOI/BiOCl composites. The photodegradation was evidenced to be 

ascribed to the superoxide radicals, oxidative holes, and a minor amount of hydroxyl radicals. This 

study deepens the understanding of BiOI/BiOCl composites for enhanced photodegradation and 

water oxidation. The rational design of hybrid materials in photocatalysis will provide promising 

candidates for further applications in photocatalysis and solar energy conversion. 

Acknowledgments: This work was financially supported by the Australian Research Council (DP150103026) 

and by College students Innovation and Enterprise Training Foundation of Jiangsu Province (No: 

201313646005Y).  

Author Contributions: Yazi Liu and Xiaoguang Duan conceived the experiments and wrote the manuscript 

under the guidance of Hongqi Sun and Shaobin Wang. Jian Xu helped to design the experiments. Liqiong Wang 

and Ping Xu conducted the experiments. Huayang Zhang helped to analyze the data. 

Conflicts of Interest: The authors declare no conflict of interest. 

  

0 50 100 150 200 250

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 

 

D
e

g
ra

d
a

ti
o

n
 r

a
te

Time/min

 Methyl Orange

 Methyl Violet

 Direct Black

(a)

0 50 100 150 200 250

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 

 

D
e

g
ra

d
a

ti
o

n
 r

a
te

 

Time/min

Methyl Orange

Methyl Violet

 Direct Black

(b)

Figure 14. Photocatalytic degradation of typical dyes under natural solar light irradiation with (a) BiOI
and (b) BiOI/BiOCl.

4. Conclusions

In summary, flower-like 3D BiOI/BiOX (X = Br or Cl) hybrids have been successfully fabricated
via a facile one-pot solvothermal approach. The BiOI/BiOCl hybrids present fluffy and porous 3D
microspheres with large specific surface areas and high light absorption abilities. Under visible
light irradiation, both of the composites exhibited significant enhancement of the photocatalytic
oxidation performance compared to pure BiOI. The apparent reaction rate for MO degradation is
2.1 times higher over BiOI/BiOCl, and 1.6 times higher over BiOI/BiOBr than that of pure BiOI.
Moreover, BiOI/BiOCl demonstrated a slight promotion under UV light irradiation, which is 1.3 times
higher than pure BiOI. Moreover, the BiOI/BiOCl composite also displayed excellent water oxidation
ability with enhanced O2 evolution from the water. The enhancement of photocatalytic activity could
be attributed to the formation of a heterojunction between BiOI and BiOCl, which facilitates the
separation and transportation of charge carriers more efficiently with a rationally-engineered energy
band structure. In addition, the nanoporous structure, larger specific surface area, and the stronger light
absorption capacity both in the visible and UV region also contributed to the excellent photocatalytic
activity of the BiOI/BiOCl composites. The photodegradation was evidenced to be ascribed to the
superoxide radicals, oxidative holes, and a minor amount of hydroxyl radicals. This study deepens
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the understanding of BiOI/BiOCl composites for enhanced photodegradation and water oxidation.
The rational design of hybrid materials in photocatalysis will provide promising candidates for further
applications in photocatalysis and solar energy conversion.

Acknowledgments: This work was financially supported by the Australian Research Council (DP150103026) and
by College students Innovation and Enterprise Training Foundation of Jiangsu Province (No: 201313646005Y).

Author Contributions: Yazi Liu and Xiaoguang Duan conceived the experiments and wrote the manuscript under
the guidance of Hongqi Sun and Shaobin Wang. Jian Xu helped to design the experiments. Liqiong Wang and
Ping Xu conducted the experiments. Huayang Zhang helped to analyze the data.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A
Nanomaterials 2017, 7, 64 16 of 18 

 

Appendix A 

 

Figure A1. Cycling runs in the photocatalytic degradation of MO with BiOI/BiOCl as the 

photocatalyst under visible light irradiation. 

Table A1. Molecular structures and characteristics of the dyes. 

Dye Molecular Structure Application  Safety 

Methyl 

Orange  

N

N

N

S

-O

O

O

Na+

 

pH indicator 
mutagenic 

properties 

Methyl 

Violet 

N N

N+ Cl-

 

purple dye for 

textiles  

mutagen and mitotic 

poison 

Direct 

Black 

 

silk 

dyeing/printing/ 

leather shading 

carcinogenicity and 

reproductive toxicity 

References 

1. Zhang, Z.; Shao, C.; Li, X.; Sun, Y.; Zhang, M.; Mu, J.; Zhang, P.; Guo, Z.; Liu, Y. Hierarchical assembly of 

ultrathin hexagonal SnS2 nanosheets onto electrospun TiO2 nanofibers: Enhanced photocatalytic activity 

based on photoinduced interfacial charge transfer. Nanoscale 2013, 5, 606–618. 

2. Bhatkhande, D.S.; Pangarkar, V.G.; Beenackers, A.A. Photocatalytic degradation for environmental 

applications—A review. J. Chem. Technol. Biot. 2002, 77, 102–116. 

3. Ke, J.; Sun, H.Q.; Zhang, H.Y.; Duan, X.G.; Liang, P.; Li, X.Y.; Tade, M.; Liu, S.M.; Wang, S.B. Facile assembly 

of Bi2O3/Bi2S3/MoS2 n-p heterojunction with layered n-Bi2O3 and p-MoS2 for enhanced photocatalytic water 

oxidation and pollutant degradation. Appl. Catal. B 2017, 200, 47–55. 

Figure A1. Cycling runs in the photocatalytic degradation of MO with BiOI/BiOCl as the photocatalyst
under visible light irradiation.

Table A1. Molecular structures and characteristics of the dyes.

Dye Molecular Structure Application Safety

Methyl Orange

Nanomaterials 2017, 7, 64 16 of 18 

 

Appendix A 

 

Figure A1. Cycling runs in the photocatalytic degradation of MO with BiOI/BiOCl as the 

photocatalyst under visible light irradiation. 

Table A1. Molecular structures and characteristics of the dyes. 

Dye Molecular Structure Application  Safety 

Methyl 

Orange  

N

N

N

S

-O

O

O

Na+

 

pH indicator 
mutagenic 

properties 

Methyl 

Violet 

N N

N+ Cl-

 

purple dye for 

textiles  

mutagen and mitotic 

poison 

Direct 

Black 

 

silk 

dyeing/printing/ 

leather shading 

carcinogenicity and 

reproductive toxicity 

References 

1. Zhang, Z.; Shao, C.; Li, X.; Sun, Y.; Zhang, M.; Mu, J.; Zhang, P.; Guo, Z.; Liu, Y. Hierarchical assembly of 

ultrathin hexagonal SnS2 nanosheets onto electrospun TiO2 nanofibers: Enhanced photocatalytic activity 

based on photoinduced interfacial charge transfer. Nanoscale 2013, 5, 606–618. 

2. Bhatkhande, D.S.; Pangarkar, V.G.; Beenackers, A.A. Photocatalytic degradation for environmental 

applications—A review. J. Chem. Technol. Biot. 2002, 77, 102–116. 

3. Ke, J.; Sun, H.Q.; Zhang, H.Y.; Duan, X.G.; Liang, P.; Li, X.Y.; Tade, M.; Liu, S.M.; Wang, S.B. Facile assembly 

of Bi2O3/Bi2S3/MoS2 n-p heterojunction with layered n-Bi2O3 and p-MoS2 for enhanced photocatalytic water 

oxidation and pollutant degradation. Appl. Catal. B 2017, 200, 47–55. 

pH indicator mutagenicproperties

Methyl Violet

Nanomaterials 2017, 7, 64 16 of 18 

 

Appendix A 

 

Figure A1. Cycling runs in the photocatalytic degradation of MO with BiOI/BiOCl as the 

photocatalyst under visible light irradiation. 

Table A1. Molecular structures and characteristics of the dyes. 

Dye Molecular Structure Application  Safety 

Methyl 

Orange  

N

N

N

S

-O

O

O

Na+

 

pH indicator 
mutagenic 

properties 

Methyl 

Violet 

N N

N+ Cl-

 

purple dye for 

textiles  

mutagen and mitotic 

poison 

Direct 

Black 

 

silk 

dyeing/printing/ 

leather shading 

carcinogenicity and 

reproductive toxicity 

References 

1. Zhang, Z.; Shao, C.; Li, X.; Sun, Y.; Zhang, M.; Mu, J.; Zhang, P.; Guo, Z.; Liu, Y. Hierarchical assembly of 

ultrathin hexagonal SnS2 nanosheets onto electrospun TiO2 nanofibers: Enhanced photocatalytic activity 

based on photoinduced interfacial charge transfer. Nanoscale 2013, 5, 606–618. 

2. Bhatkhande, D.S.; Pangarkar, V.G.; Beenackers, A.A. Photocatalytic degradation for environmental 

applications—A review. J. Chem. Technol. Biot. 2002, 77, 102–116. 

3. Ke, J.; Sun, H.Q.; Zhang, H.Y.; Duan, X.G.; Liang, P.; Li, X.Y.; Tade, M.; Liu, S.M.; Wang, S.B. Facile assembly 

of Bi2O3/Bi2S3/MoS2 n-p heterojunction with layered n-Bi2O3 and p-MoS2 for enhanced photocatalytic water 

oxidation and pollutant degradation. Appl. Catal. B 2017, 200, 47–55. 

purple dye for textiles mutagen and mitotic
poison

Direct Black

Nanomaterials 2017, 7, 64 16 of 18 

 

Appendix A 

 

Figure A1. Cycling runs in the photocatalytic degradation of MO with BiOI/BiOCl as the 

photocatalyst under visible light irradiation. 

Table A1. Molecular structures and characteristics of the dyes. 

Dye Molecular Structure Application  Safety 

Methyl 

Orange  

N

N

N

S

-O

O

O

Na+

 

pH indicator 
mutagenic 

properties 

Methyl 

Violet 

N N

N+ Cl-

 

purple dye for 

textiles  

mutagen and mitotic 

poison 

Direct 

Black 

 

silk 

dyeing/printing/ 

leather shading 

carcinogenicity and 

reproductive toxicity 

References 

1. Zhang, Z.; Shao, C.; Li, X.; Sun, Y.; Zhang, M.; Mu, J.; Zhang, P.; Guo, Z.; Liu, Y. Hierarchical assembly of 

ultrathin hexagonal SnS2 nanosheets onto electrospun TiO2 nanofibers: Enhanced photocatalytic activity 

based on photoinduced interfacial charge transfer. Nanoscale 2013, 5, 606–618. 

2. Bhatkhande, D.S.; Pangarkar, V.G.; Beenackers, A.A. Photocatalytic degradation for environmental 

applications—A review. J. Chem. Technol. Biot. 2002, 77, 102–116. 

3. Ke, J.; Sun, H.Q.; Zhang, H.Y.; Duan, X.G.; Liang, P.; Li, X.Y.; Tade, M.; Liu, S.M.; Wang, S.B. Facile assembly 

of Bi2O3/Bi2S3/MoS2 n-p heterojunction with layered n-Bi2O3 and p-MoS2 for enhanced photocatalytic water 

oxidation and pollutant degradation. Appl. Catal. B 2017, 200, 47–55. 

silk
dyeing/printing/leather

shading

carcinogenicity
andreproductive

toxicity



Nanomaterials 2017, 7, 64 17 of 19

References

1. Zhang, Z.; Shao, C.; Li, X.; Sun, Y.; Zhang, M.; Mu, J.; Zhang, P.; Guo, Z.; Liu, Y. Hierarchical assembly of
ultrathin hexagonal SnS2 nanosheets onto electrospun TiO2 nanofibers: Enhanced photocatalytic activity
based on photoinduced interfacial charge transfer. Nanoscale 2013, 5, 606–618. [CrossRef]

2. Bhatkhande, D.S.; Pangarkar, V.G.; Beenackers, A.A. Photocatalytic degradation for environmental
applications—A review. J. Chem. Technol. Biot. 2002, 77, 102–116. [CrossRef]

3. Ke, J.; Sun, H.Q.; Zhang, H.Y.; Duan, X.G.; Liang, P.; Li, X.Y.; Tade, M.; Liu, S.M.; Wang, S.B. Facile assembly
of Bi2O3/Bi2S3/MoS2 n-p heterojunction with layered n-Bi2O3 and p-MoS2 for enhanced photocatalytic
water oxidation and pollutant degradation. Appl. Catal. B 2017, 200, 47–55. [CrossRef]

4. Li, Y.B.; Zhang, H.M.; Liu, P.R.; Wang, D.; Li, Y.; Zhao, H.J. Cross-linked g-C3N4/rGO nanocomposites
with tunable band structure and enhanced visible light photocatalytic activity. Small 2013, 9, 3336–3344.
[CrossRef]

5. Kumar, S.; Surendar, T.; Baruah, A.; Shanker, V. Synthesis of a novel and stable g-C3N4–Ag3PO4 hybrid
nanocomposite photocatalyst and study of the photocatalytic activity under visible light irradiation. J. Mater.
Chem. A 2013, 1, 5333–5340. [CrossRef]

6. Jun, Y.S.; Lee, E.Z.; Wang, X.; Hong, W.H.; Stucky, G.D.; Thomas, A. From melamine-cyanuric acid
supramolecular aggregates to carbon nitride hollow spheres. Adv. Funct. Mater. 2013, 23, 3661–3667.
[CrossRef]

7. Wu, X.; Lu, G.Q.M.; Wang, L. Shell-in-shell TiO2 hollow spheres synthesized by one-pot hydrothermal
method for dye-sensitized solar cell application. Energ Environ. Sci. 2011, 4, 3565–3572. [CrossRef]

8. Hou, Y.; Wen, Z.; Cui, S.; Guo, X.; Chen, J. Constructing 2d porous graphitic C3N4 nanosheets/nitrogen-doped
graphene/layered MoS2 ternary nanojunction with enhanced photoelectrochemical activity. Adv. Mater.
2013, 25, 6291–6297. [CrossRef]

9. Li, M.; Luo, W.; Cao, D.; Zhao, X.; Li, Z.; Yu, T.; Zou, Z. A co-catalyst-loaded Ta3N5 photoanode with a high
solar photocurrent for water splitting upon facile removal of the surface layer. Angew. Chem. Int. Ed. 2013,
52, 11016–11020. [CrossRef] [PubMed]

10. Li, Y.; Takata, T.; Cha, D.; Takanabe, K.; Minegishi, T.; Kubota, J.; Domen, K. Vertically aligned Ta3N5 nanorod
arrays for solar-driven photoelectrochemical water splitting. Adv. Mater. 2013, 25, 125–131. [CrossRef]
[PubMed]

11. Zhang, J.; Guo, F.; Wang, X. An optimized and general synthetic strategy for fabrication of polymeric carbon
nitride nanoarchitectures. Adv. Funct. Mater. 2013, 23, 3008–3014. [CrossRef]

12. In, S.I.; Vaughn, D.D.; Schaak, R.E. Hybrid CuO-TiO2−xNx hollow nanocubes for photocatalytic conversion
of CO2 into methane under solar irradiation. Angew. Chem. Int. Ed. 2012, 51, 3915–3918. [CrossRef] [PubMed]

13. Mao, J.; Peng, T.; Zhang, X.; Li, K.; Ye, L.; Zan, L. Effect of graphitic carbon nitride microstructures on the
activity and selectivity of photocatalytic CO2 reduction under visible light. Catal. Sci. Technol. 2013, 3,
1253–1260. [CrossRef]

14. Chen, X.; Mao, S.S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications.
Chem. Rev. 2007, 107, 2891–2959. [CrossRef] [PubMed]

15. Zhang, Y.; Schultz, A.M.; Li, L.; Chien, H.; Salvador, P.A.; Rohrer, G.S. Combinatorial substrate epitaxy:
A high-throughput method for determining phase and orientation relationships and its application to
BiFeO3/TiO2 heterostructures. Acta Mater. 2012, 60, 6486–6493. [CrossRef]

16. Zhao, W.; Liu, Y.; Wei, Z.; Yang, S.; He, H.; Sun, C. Fabrication of a novel p–n heterojunction photocatalyst
n-BiVO4@p-MoS2 with core–shell structure and its excellent visible-light photocatalytic reduction and
oxidation activities. Appl. Catal. B 2016, 185, 242–252. [CrossRef]

17. Ke, J.; Duan, X.G.; Luo, S.; Zhang, H.Y.; Sun, H.Q.; Liu, J.; Tade, M.; Wang, S.B. UV-assisted construction of
3D hierarchical rGO/Bi2MoO6 composites for enhanced photocatalytic water oxidation. Chem. Eng. J. 2017,
313, 1447–1453. [CrossRef]

18. Zhang, G.-Q.; Chang, N.; Han, D.-Q.; Zhou, A.-Q.; Xu, X.-H. The enhanced visible light photocatalytic
activity of nanosheet-like Bi2WO6 obtained by acid treatment for the degradation of rhodamine B. Mater. Lett.
2010, 64, 2135–2137. [CrossRef]

19. Lei, Y.; Wang, G.; Song, S.; Fan, W.; Zhang, H. Synthesis, characterization and assembly of BiOCl
nanostructure and their photocatalytic properties. CrystEngComm 2009, 11, 1857–1862. [CrossRef]

http://dx.doi.org/10.1039/C2NR32301J
http://dx.doi.org/10.1002/jctb.532
http://dx.doi.org/10.1016/j.apcatb.2016.06.071
http://dx.doi.org/10.1002/smll.201203135
http://dx.doi.org/10.1039/c3ta00186e
http://dx.doi.org/10.1002/adfm.201203732
http://dx.doi.org/10.1039/c0ee00727g
http://dx.doi.org/10.1002/adma.201303116
http://dx.doi.org/10.1002/anie.201305350
http://www.ncbi.nlm.nih.gov/pubmed/23946184
http://dx.doi.org/10.1002/adma.201202582
http://www.ncbi.nlm.nih.gov/pubmed/22987610
http://dx.doi.org/10.1002/adfm.201203287
http://dx.doi.org/10.1002/anie.201108936
http://www.ncbi.nlm.nih.gov/pubmed/22392837
http://dx.doi.org/10.1039/c3cy20822b
http://dx.doi.org/10.1021/cr0500535
http://www.ncbi.nlm.nih.gov/pubmed/17590053
http://dx.doi.org/10.1016/j.actamat.2012.07.060
http://dx.doi.org/10.1016/j.apcatb.2015.12.023
http://dx.doi.org/10.1016/j.cej.2016.11.048
http://dx.doi.org/10.1016/j.matlet.2010.06.042
http://dx.doi.org/10.1039/b909013b


Nanomaterials 2017, 7, 64 18 of 19

20. Ye, L.; Zan, L.; Tian, L.; Peng, T.; Zhang, J. The {001} facets-dependent high photoactivity of BiOCl nanosheets.
Chem. Commun. 2011, 47, 6951–6953. [CrossRef] [PubMed]

21. Iwase, A.; Kudo, A. Photoelectrochemical water splitting using visible-light-responsive BiVO4 fine particles
prepared in an aqueous acetic acid solution. J. Mater. Chem. 2010, 20, 7536–7542. [CrossRef]

22. Cheng, H.; Huang, B.; Wang, Z.; Qin, X.; Zhang, X.; Dai, Y. One-pot miniemulsion-mediated route to
BiOBr hollow microspheres with highly efficient photocatalytic activity. Chem. Eur. J. 2011, 17, 8039–8043.
[CrossRef] [PubMed]

23. Soler-Illia, G.J.D.A.; Sanchez, C.; Lebeau, B.; Patarin, J. Chemical strategies to design textured materials:
From microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem. Rev. 2002,
102, 4093–4138. [CrossRef] [PubMed]

24. Jia, Z.; Wang, F.; Xin, F.; Zhang, B. Simple solvothermal routes to synthesize 3d BiOBrxI1−x microspheres and
their visible-light-induced photocatalytic properties. Ind. Eng. Chem. Res. 2011, 50, 6688–6694. [CrossRef]

25. Dong, F.; Sun, Y.; Fu, M.; Wu, Z.; Lee, S.C. Room temperature synthesis and highly enhanced visible light
photocatalytic activity of porous BiOI/BiOCl composites nanoplates microflowers. J. Hazard. Mater. 2012,
219–220, 26–34. [CrossRef] [PubMed]

26. Xiao, X.; Hao, R.; Liang, M.; Zuo, X.; Nan, J.; Li, L.; Zhang, W. One-pot solvothermal synthesis of
three-dimensional (3d) BiOI/BiOCl composites with enhanced visible-light photocatalytic activities for the
degradation of bisphenol-a. J. Hazard. Mater. 2012, 233–234, 122–130. [CrossRef] [PubMed]

27. Yang, C.; Li, F.; Zhang, M.; Li, T.; Cao, W. Preparation and first-principles study for electronic structures of
BiOI/BiOCl composites with highly improved photocatalytic and adsorption performances. J. Mol. Catal. A
2016, 423, 1–11. [CrossRef]

28. Li, J.; Lu, G.; Wang, Y.; Guo, Y.; Guo, Y. A high activity photocatalyst of hierarchical 3d flowerlike ZnO
microspheres: Synthesis, characterization and catalytic activity. J. Colloid Interface Sci. 2012, 377, 191–196.
[CrossRef] [PubMed]

29. Zhang, X.; Ai, Z.; Jia, F.; Zhang, L. Generalized one-pot synthesis, characterization, and photocatalytic
activity of hierarchical BiOX (X = Cl, Br, I) nanoplate microspheres. J. Phys. Chem. C 2008, 112, 747–753.
[CrossRef]

30. Li, T.B.; Chen, G.; Zhou, C.; Shen, Z.Y.; Jin, R.C.; Sun, J.X. New photocatalyst biocl/bioi composites with
highly enhanced visible light photocatalytic performances. Dalton Trans. 2011, 40, 6751–6758. [CrossRef]
[PubMed]

31. Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium
oxides. Science 2001, 293, 269–271. [CrossRef] [PubMed]

32. Ai, Z.; Ho, W.; Lee, S.; Zhang, L. Efficient photocatalytic removal of no in indoor air with hierarchical
bismuth oxybromide nanoplate microspheres under visible light. Environ. Sci. Technol. 2009, 43, 4143–4150.
[CrossRef] [PubMed]

33. Sing, K.S. Reporting physisorption data for gas/solid systems with special reference to the determination of
surface area and porosity (recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619. [CrossRef]

34. Xu, J.; Liu, Y.Z.; Wang, L.Q.; Ye, F. Low Temperature Preparation and Photocatalytic Activity Study of BiOI
Powder. Environ. Prot. Sci. 2015, 41, 79–82.

35. Huang, Y.; Ai, Z.; Ho, W.; Chen, M.; Lee, S. Ultrasonic spray pyrolysis synthesis of porous Bi2WO6

microspheres and their visible-light-induced photocatalytic removal of NO. J. Phys. Chem. C 2010, 114,
6342–6349. [CrossRef]

36. Liu, Y.Z.; Yang, S.G.; Hong, J.; Sun, C. Low-temperature preparation and microwave photocatalytic activity
study of TiO2-mounted activated carbon. J. Hazard. Mater. 2007, 142, 208–215. [CrossRef] [PubMed]

37. Hou, Y.; Laursen, A.B.; Zhang, J.; Zhang, G.; Zhu, Y.; Wang, X.; Dahl, S.; Chorkendorff, I. Layered
nanojunctions for hydrogen-evolution catalysis. Angew. Chem. Int. Ed. 2013, 52, 3621–3625. [CrossRef]
[PubMed]

38. Dai, K.; Chen, H.; Peng, T.; Ke, D.; Yi, H. Photocatalytic degradation of methyl orange in aqueous suspension
of mesoporous titania nanoparticles. Chemosphere 2007, 69, 1361–1367. [CrossRef] [PubMed]

39. Liu, J.; Liu, Y.; Liu, N.; Han, Y.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S.T.; Zhong, J.; Kang, Z. Water splitting.
Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015,
347, 970–974. [CrossRef] [PubMed]

http://dx.doi.org/10.1039/c1cc11015b
http://www.ncbi.nlm.nih.gov/pubmed/21556418
http://dx.doi.org/10.1039/c0jm00961j
http://dx.doi.org/10.1002/chem.201100564
http://www.ncbi.nlm.nih.gov/pubmed/21626589
http://dx.doi.org/10.1021/cr0200062
http://www.ncbi.nlm.nih.gov/pubmed/12428985
http://dx.doi.org/10.1021/ie102310a
http://dx.doi.org/10.1016/j.jhazmat.2012.03.015
http://www.ncbi.nlm.nih.gov/pubmed/22502896
http://dx.doi.org/10.1016/j.jhazmat.2012.06.062
http://www.ncbi.nlm.nih.gov/pubmed/22818177
http://dx.doi.org/10.1016/j.molcata.2016.06.007
http://dx.doi.org/10.1016/j.jcis.2012.04.008
http://www.ncbi.nlm.nih.gov/pubmed/22542480
http://dx.doi.org/10.1021/jp077471t
http://dx.doi.org/10.1039/c1dt10471c
http://www.ncbi.nlm.nih.gov/pubmed/21617792
http://dx.doi.org/10.1126/science.1061051
http://www.ncbi.nlm.nih.gov/pubmed/11452117
http://dx.doi.org/10.1021/es9004366
http://www.ncbi.nlm.nih.gov/pubmed/19569343
http://dx.doi.org/10.1351/pac198557040603
http://dx.doi.org/10.1021/jp912201h
http://dx.doi.org/10.1016/j.jhazmat.2006.08.020
http://www.ncbi.nlm.nih.gov/pubmed/16982137
http://dx.doi.org/10.1002/anie.201210294
http://www.ncbi.nlm.nih.gov/pubmed/23427144
http://dx.doi.org/10.1016/j.chemosphere.2007.05.021
http://www.ncbi.nlm.nih.gov/pubmed/17588640
http://dx.doi.org/10.1126/science.aaa3145
http://www.ncbi.nlm.nih.gov/pubmed/25722405


Nanomaterials 2017, 7, 64 19 of 19

40. Chen, C.C.; Lei, P.X.; Ji, H.W.; Ma, W.H.; Zhao, J.C. Photocatalysis by Titanium oxide and
polyoxometalate/TiO2 cocatalysts. Intermediates and mechanistic study. Environ. Sci. Technol. 2004,
38, 329–337. [CrossRef] [PubMed]

41. Wu, J.M.; Zhang, T.W.; Zeng, Y.W.; Hayakawa, S.; Tsuru, K.; Osaka, A. Large-scale preparation of ordered
Titania nanonods with enhanced photocatalytic activity. Langmuir 2005, 21, 6995–7002. [CrossRef] [PubMed]

42. Yang, J.X.; Wang, D.G.; Zhou, X.; Li, C. A theoretical study on the mechanism of photocatalytic oxygen
evolution on BiVO4 in agueous solution. Chem. Eur. J. 2013, 19, 1320–1326. [CrossRef] [PubMed]

43. Nakamura, R.; Imanishi, A.; Murakoshi, K.; Nakato, Y. In situ FTIR studies of primary intermediates of
photocatalytic reactions on nanocrystalline TiO2 films in contact with aqueous solutions. J. Am. Chem. Soc.
2003, 125, 7443–7450. [CrossRef] [PubMed]

44. Zhao, W.; Guo, Y.; Wang, S.; He, H.; Sun, C.; Yang, S. A novel ternary plasmonic photocatalyst: Ultrathin
g-C3N4 nanosheet hybrided by Ag/AgVO3 nanoribbons with enhanced visible-light photocatalytic
performance. Appl. Catal. B 2015, 165, 335–343. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1021/es034384f
http://www.ncbi.nlm.nih.gov/pubmed/14740755
http://dx.doi.org/10.1021/la0500272
http://www.ncbi.nlm.nih.gov/pubmed/16008414
http://dx.doi.org/10.1002/chem.201202365
http://www.ncbi.nlm.nih.gov/pubmed/23208855
http://dx.doi.org/10.1021/ja029503q
http://www.ncbi.nlm.nih.gov/pubmed/12797819
http://dx.doi.org/10.1016/j.apcatb.2014.10.016
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Experimental 
	Materials 
	Synthesis of BiOX (X = Cl, Br, I) 
	Synthesis of BiOI/BiOX (X = Cl, Br) 
	Characterization Techniques 
	Evaluation of the Photocatalysts 

	Results and Discussion 
	Morphology and Structure 
	Optical Properties 
	XPS Analysis 
	Specific Surface Areas and Pore Structure 
	Photocatalytic Degradation of MO 
	Adsorption of MO 
	Comparison of Photocatalytic Activity 
	Photocatalytic Mechanism of the BiOI/BiOCl Composite 
	Photodegradation of Dyes under Natural Solar Light Irradiation 


	Conclusions 
	

