([8]7]81

THE IODOTHYRONINES:

MEASUREMENT IN SERUM AND APPLICATION OF THESE MEASUREMENTS TO THE DIAGNOSIS OF THYROID DISEASE.

Richard George SYMONS

B.Sc.(Hons)

A thesis submitted for the degree of Master of Science in the Department of Biochemistry of the University of Adelaide, South Australia.

September, 1980

M,Sc. Na R.G. Symons .Course I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying. : .28 Nov 80Signed : Date

.

CONTENTS

		Page	
SUMMA	RY	xix	
STATEMENT			
ACKNO	WLEDGEMENTS	xxiii	
СНАРТ	ER 1. INTRODUCTION	1	
1.1	EARLY THYROID PHYSIOLOGY	1	
1.2	THE FREE THYROXINE HYPOTHESIS AND THE DIAGNOSIS OF THYROID DISEASE	3	
	THE NATURE OF CIRCULATING THYROXINE	3	
	CIRCULATING FREE THYROXINE	4	
	 Correlation between Free Thyroxine Concentration and Clinical Thyroid Status 	5	
	2. Free Thyroxine and Thyroxine Turnover	6	
	3. Free Thyroxine and Secretion of Thyrotropin	6	
	THE FREE THYROXINE HYPOTHESIS	7	
	DIAGNOSIS OF THYROID DISEASE	9	
0	FREE TRIIODOTHYRONINE	10	
	RECENT DEVELOPMENTS	10	
	A MODEL OF THE REGULATION OF THYROID HORMONE PRODUCTION, ACTION AND METABOLISM	11	
	THE EFFECT OF ALTERING HORMONE FLUX	14	
	CLINICAL INTERPRETATION OF CIRCULATING FREE THYROID HORMONE CONCENTRATION	15	
1.3	DEIODINATIVE METABOLISM OF THE IODOTHYRONINES	18	
	AN HISTORICAL PERSPECTIVE	18	
	REVERSE TRIIODOTHYRONINE AS A WEAK AGONIST OF THYROID HORMONE ACTION	22	

		Page
	ERSE TRIIODOTHYRONINE PRODUCTION AND ARANCE	24
	HOPHYSIOLOGICAL DISTURBANCES IN THYROID MONE METABOLISM	26
1.	Non-Thyroidal Illness	26
2.	Starvation	30
3.	Diabetes	30
4.	Altered Nutritional Intake	31
5.	Summary	32
THY	ROID PHYSIOLOGY IN THE FETUS AND NEONATE	32
	PERTIES OF THE PERIPHERAL DEIODINATING IVITIES	34
1.	Tissue Activities	34
2.	Enzymatic Nature	35
3.	Subcellular Location	36
4.	Reduced-Thiol Requirement	36
5.	Kinetics of the Deiodination Enzyme Activities	5 37
6.	pH Dependence	38
7.	Iodothyronine Inhibition of Deiodination Enzyme Activities	39
8.	How Many Deiodination Enzymes	39
DEI	ODINATION IN THE FETUS AND NEONATE	40
EXP DEJ	PERIMENTAL ALTERATIONS OF THE PERIPHERAL CODINATING ACTIVITIES	41
1.	Propylthiouracil	41
2.	Iodine Containing Drugs	44
3.	Propanolol	45
4.	Glucocorticoids	45
5.	Fasting	46
6.	Glucose and Thyroxine Metabolism	48

ii

		Page
	REGULATION OF THE DEIODINATIVE METABOLISM OF THYROXINE	49
	1. Regulation of 5'-Deiodinase	50
	2. Tissue Specific 5'-Deiodinase Activity	51
	3. Non-Thyroidal Illness	52
	THYROID DISEASE	53
	1. Studies In Vitro	53
	SUMMARY	54
CHAP	TER 2. MEASUREMENT OF THE SERUM IODOTHYRONINES	57
2.1	EARLY ANALYTICAL TECHNIQUES	57
2.2	SPECIFIC AND SENSITIVE ANALYTICAL TECHNIQUES FOR MEASUREMENT OF THE THYROID HORMONE IN SERUM	59
	COMPETITIVE PROTEIN BINDING ASSAYS	59
	GAS LIQUID CHROMATOGRAPHY	60
	RADIOIMMUNOASSAY	61
	1. Production of Specific Antiserum	61
	 Synthesis of High Specific Activity Radioiodothyronines 	61
	3. Inhibition of Serum Binding Proteins	62
2.3	ANALYSIS OF IODOTHYRONINE METABOLITES OF T_4 IN SERUM	64
	REVERSE T ₃	64
	DIIODOTHYRONINES AND MONOIODOTHYRONINES	64
CHAP	TER 3. THE ANALYSIS OF SERUM 3,3',5'-TRIIODO- THYRONINE CONCENTRATION	67
2 1	TNURODUCUTON	67

		Page
3.2	SYNTHESIS OF ¹²⁵ I-rT ₃	68
	MATERIALS AND METHODS	68
	1. Reagents	68
	2. Gel Filtration Systems	68
	3. Iodination Reaction	70
	4. Thin Layer Chromatography	72
	5. Determination of Specific Activity	73
	RESULTS AND DISCUSSION	74
	1. Oxidative Iodination	74
	2. Gel Filtration	75
	3. Structural Integrity of $^{125}I-rT_3$	77
	4. Storage	77
3.3	PRODUCTION OF ANTISERUM TO BSA-rT3	86
	MATERIALS AND METHODS	86
	1. Conjugation	86
	2. Immunization	87
	3. Assessment of Antisera	87
	RESULTS AND DISCUSSION	89
	1. Conjugation	89
	2. Immunization	89
	3. Assessment of Antisera	91
	4. Cross-Reaction Studies	95
	5. Antiserum Characteristics	96
3.4	THYROID HORMONE FREE SERUM	96
	PREPARATION	96
	EFFECT OF EXTRACTION PROCEDURE ON OTHER	100

		Page
3.5	INHIBITION OF rT ₃ BINDING TO THYROID HORMONE BINDING PROTEINS	102
	MATERIALS AND METHODS	103
	RESULTS AND DISCUSSION	103
	1. Optimisation of ANS in the Charcoal Assay	103
	2. Optimisation of ANS in the Double Antibody Assay	108
3.6	SEPARATION TECHNIQUES	112
	MATERIALS AND METHODS	112
	RESULTS AND DISCUSSION	113
	1. Charcoal Separation	113
	2. Double Antibody Separation	117
3.7	OPTIMISATION OF REAGENT CONCENTRATIONS	118
	EMPIRICAL OPTIMISATION - METHODS	123
	1. Sensitivity	123
	2. Precision Profiles	125
	EMPIRICAL OPTIMISATION - RESULTS AND DISCUSSION	127
	1. Precision Profiles	128
	SIMPLEX OPTIMISATION - METHOD	129
	SIMPLEX OPTIMISATION - RESULTS AND DISCUSSION	130
1	1. Selection of Initial Coordinates	131
	2. The Simplex Pathway	131
	3. Precision Profiles	137
	4. Conclusions	137
3.8	PROCEDURE FOR RADIOIMMUNOASSAY OF 3,3',5'- TRIIODOTHYRONINE	141

v

	NEWLODG	<u>Page</u> 141
	METHODS	141
	1. Assay Reagents	142
	2. Assay Protocol	
	3. Reference Sample Collection	143
	RESULTS AND DISCUSSION	143
	1. Assay Reproducibility	143
	2. Reference Data	144
3.9	VALIDATION OF THE DATA	146
	MATERIALS AND METHODS	147
	1. Extraction of Serum rT_3	147
	2. Comparison of Standards	147
	3. Investigation of T_4 Cross-Reaction	148
	RESULTS AND DISCUSSION	149
	1. Extraction Assay	149
	2. Standards	149
	3. Antiserum Specificity	153
3.10) SUMMARY	155
CHAI	PTER 4. PRINCIPLES OF FREE THYROID HORMONE MEASUREMENT	158
4.1	A CHALLENGING ANALYTICAL PROBLEM	158
4.2	ESTIMATION OF FREE THYROID HORMONE CONCENTRATION BY MEASUREMENT OF THE FREE HORMONE FRACTION	_{DN} 163
	SEPARATION OF FREE AND PROTEIN BOUND HORMONE	163
	l. Equilibrium Dialysis	164
	2. Factors Affecting Thyroid Hormone Binding Serum Binding Protein	to 170
	3. Other Separation Techniques	171

		24	Page
		USE OF RADIOLABELLED HORMONE TO DETERMINE FRACTION FREE HORMONE	172
	1.	Specific Activity	173
	2.	Contamination of Tracer with Iodide	173
	3.	Tracer Contamination Other than Iodide	174
	MEA	SUREMENT OF FREE TRIIODOTHYRONINE CONCENTRATION	1 175
4.3		ECT MEASUREMENT OF FREE THYROID HORMONE CENTRATION IN VITRO	177
	EQU	ILIBRIUM DIALYSIS - RADIOIMMUNOASSAY	177
	KIN	ETIC MEASUREMENT OF FREE T4 CONCENTRATION	178
	1.	Principles	178
	2.	Determination of the Fractional Occupancy of the Binding Reagent	181
4.4	DER	IVED INDICES OF FREE THYROXINE CONCENTRATION	184
		SUREMENT OF SERUM UNOCCUPIED T4 BINDING SITE CENTRATION	184
	FRE	E THYROXINE INDEX	187
	Т4/	TBG	193
	EFF	L COMPETITIVE PROTEIN BINDING ASSAYS - THE ECTIVE THYROXINE RATIO AND NORMALIZED ROXINE TESTS	194
CHAP	TER	5. THE ANALYSIS OF FREE THYROID HORMONE	198
5.1	INT	RODUCTION	198
5.2	МАЛ	ERIALS AND METHODS	199
	APE	PARATUS AND MATERIALS	199
	MEI	THODS	200
	1.	Dialysis	201

viii

			Page
	2.	Preparation of Radioiodinated Iodothyronines	201
	з.	Production of Antisera	204
	4.	Standards	205
	5.	Separation Techniques	205
	6.	Optimisation of Assay Sensitivity	206
	7.	Radioimmunoassay Protocol	207
	8.	Other Assays	208
	9.	The Corning Free T ₄ - ¹²⁵ I Radioimmunoassay Test System	211
	10.	Sample Collection	212
.3	EST.	ABLISHMENT OF THE FREE THYROID HORMONE ASSAYS	213
	SYN	THESIS OF $125I-T_3$ and $125I-T_4$	213
	1.	Elution of the Iodination Reaction Products	213
	2.	Structural Integrity of the Tracer Preparation	214
	3.	Storage	214
	ANT	ISERUM CHARACTERISTICS	222
	1.	Cross-Reaction	222
	2.	Concentration and Affinity of Antibody Binding Sites	224
	OPI	IMISATION OF ASSAY SENSITIVITY AND PRECISION	224
	1.	Empirical Procedures	224
	2.	Models of Ligand Binding	234
	SEF	ARATION OF FREE AND ANTIBODY BOUND HORMONE	248
	1.	Charcoal Separation	248
	2.	Double Antibody Separation	251
	3.	Comparison of Separation Techniques	253
		ALYSIS	254 256
	ASS	SAY IMPRECISION	200

5

		Page
5.4	VALIDATION AND CLINICAL USE OF THE ESTABLISHED FREE THYROID HORMONE ASSAYS	256
ŝ.	VALIDATION OF THE FREE THYROID HORMONE ANALYSIS BY EQUILIBRIUM DIALYSIS-RADIOIMMUNOASSAY	260
	 Free Thyroid Hormone Concentration in Healthy Euthyroid Subjects 	260
	2. Free Thyroid Hormone Concentration in Euthyroid Subjects with Elevated Thyronine Binding Globulin Concentration	260
	 Published Concentrations of Free Thyroid Hormone in Serum 	267
	4. Thyroid Disease	269
	5. Equilibrium Dialysis-Radioimmunoassay as Reference Method	271
	ANALYSIS OF FREE THYROID HORMONE CONCENTRATION BY A KINETIC METHOD	273
	 Free Thyroxine Concentration in Healthy Euthyroid Subjects 	273
	2. Free Thyroxine Concentration in Thyroid Disease	279
	 Investigation of the Discrepancy between Clinical Euthyroid Status and Free Thyroxine Concentration 	279
	 Investigation of Thyronine Binding Protein Interference in Measuring Free Thyroxine Concentration 	284
	5. Comparison of the Kinetic and Equilibrium Dialysis-Radioimmunoassay Data	286
	6. Summary	286
	AN INDIRECT MEASUREMENT OF FREE THYROXINE - THE FREE THYROXINE INDEX	289
	 Serum Free Thyroxine Index in Healthy Euthyroid Subjects 	289
	2. Thyroid Disease	290
	3. Correlation with Other Assays of Free Thyroxine Concentration	290

;

1

			Page
	4.	Thyronine Binding Globulin Interference	291
		DIAGNOSTIC USE OF FREE THYROID HORMONE SUREMENT	293
CHAP	TER	6. PHYSIOLOGICAL STUDIES	297
6.1		ESTIGATION OF THYROID PHYSIOLOGY DURING TE STRENUOUS EXERCISE	297
	INT	RODUCTION	297
	MET	HODS	298
	RES	ULTS	299
	DIS	CUSSION	304
	1.	Effect of Exercise on Serum Protein	304
	2.	Serum Iodothyronine Concentration during Acute Strenuous Exercise	305
	3.	Changes in Glucose Metabolism during Exercise and the Effect on Peripheral T ₄ Metabolism	306
	4.	Response of the Hypothalamic-Pituitary- Thyroid Gland Axis to Exercise	309
	5.	Conclusion	310
6.2		EFFECT OF THE RADIOOPAQUE DYE, SODIUM ODATE, ON THYROID PHYSIOLOGY	311
	INT	RODUCTION	311
	MET	HODS AND MATERIALS	312
15	RES	ULTS	313
	DIS	CUSSION	314
	1.	Clearance of Serum Total Iodide	314
	2.	Mechanism of Action of Sodium Iopodate	318
	3.	Effect of Sodium Iopodate on Pituitary Functio	on 321
	4.	Interpretation of Thyroid Function Tests after Administration of Radiographic Agents	322
	5.	Conclusion	323

х

				Page
6.3			ATHOPHYSIOLOGY DURING SEVERE NON- ILLNESS	323
	INTR	ODUCT	ION	323
	SUBJ	ECTS		325
	METH	ODS		328
	RESU	LTS		328
	DISC	USSIO	N	332
	1.	Total to Se	and Free T_3 Concentration in Moderate vere Non-Thyroidal Illness	332
	2.	Avail in Mo	ability of Thyroid Hormone to the Tiss derate to Severe Non-Thyroidal Illness	ues 333
	3.	Inhib Thyrc	oitors of Thyroid Hormone Binding to onine Binding Proteins	335
	4.		tary Function during Moderate to e Non-Thyroidal Illness	337
	5.	Prese	Investigation of Thyroid Disease in the ence of Moderate to Severe Non- oidal Illness	e 338
	6.	Concl	lusions	341
Appe	ndix	l. I	DERIVATION OF EQUATIONS USED IN THE TEX	КТ 344
Appe	ndix	2. 0	CLEARANCE OF T ₃	362
Appe	ndix	3. 2	ABBREVIATIONS	363
Appe	ndix	4. 0	ORAL COMMUNICATIONS AND MANUSCRIPT	371

BIBLIOGRAPHY

372

ŝ

LIST OF FIGURES

		Page
1.1	A Model of the Regulation of Thyroid Hormone	16
	Production, Action, and Metabolism	
1.2	Sequential Monodeiodination of Thyroxine	27
1.3	Proposed Mechanism of Action of 5'-Deiodinase	43
	and the Relationship of this Activity to	
	Glucose Metabolism	14
3.1	Elution of Reaction Mixture Post Radioiodin-	80
	ation of 3,3'-T ₂ through Sephadex LH-20	
3.2	Thin Layer Chromatogram of the Fractions	81
	Eluted from the $3,3'-T_2$ Radioiodination	
	Reaction Mixture	
3.3	Elution of Reaction Mixture Post Radioiodin-	82
	ation of $3,3'-T_2$ through Sephadex G-25	
3.4	Structural Integrity of $125I-rT_3$	83
3.5	Determination of Specific Activity	84
3.6	Effect of Aging on Specific Activity	85
3.7	Response of Rabbits to Immunization with	90
	rT ₃ -BSA Conjugate	
3.8	Binding and Displacement Characteristics of	93
	Antisera obtained from Rabbit 2	
3.9	Binding and Displacement Characteristics of	94
	Antisera obtained from Rabbit 4	
3.10	Cross-Reaction Characteristics of rT_3 Anti-	97
	serum Rabbit 2 (days 99/102)	
3.11	Affinity of Antiserum Produced by Rabbit 2	98
	for T ₄	

xiii

	<u> </u>	age
3.12	Scatchard Analysis of Antiserum Rabbit 2	99
	(days 99/102)	
3.13	Effect of ANS on Binding of 125 I-rT ₃ to Charcoal,	107
	Serum Protein and Antiserum	
3.14	Effect of ANS on Binding to Serum Protein and	111
	Antiserum in the Double Antibody Method	
3.15	The Use of Charcoal to Separate Free and	115
	Antibody Bound ¹²⁵ I-rT ₃	
3.16	Relative Displacement of 125 I-rT ₃ by Exogenous	116
	and Endogenous rT_3 at Various Charcoal	
	Concentrations	
3.17	Optimisation of Precipitating Reagents in the	119
	Double Antibody Method	
3.18	The Effect of Incubation Time and Temperature	120
	on Double Antibody Separation	
3.19	Temperature Lability of the Precipitated	121
	Immunocomplexes in the Double Antibody Assay	
3.20	¹²⁵ I-rT ₃ Binding to Anti-rT ₃ at 4° and 37°C	122
3.21	Measurement of Sensitivity	126
3.22	Simplex Optimisation	135
3.23	Precision Profiles of the Simplex Vertices A, E	138
	and G and the Empirically Optimised Double	
8 - 6	Antibody and Charcoal Assays	
3.24	Displacement Curves for the Simplex Vertices	139
ř	A, E and G, and the Empirically Optimised Assay	
3.25	Reverse T_3 and T_4 Concentration in Thyroid	145
	Disease	

		Page
3.26	Cross-Reaction of T4 at Various Concentrations	154
	of rT ₃	
3.27	Assay of rT_3 in the Presence of Excess T_4	156
4.1	Changes in $[TT_4]$, $[TBG_0]$, $[TBG]$ and T_3U in	192
	Acute Illness, during Pregnancy and during	
	Ingestion of Oral Contraceptives	
5.1	Analysis of Free Thyroid Hormones by	202
	Equilibrium Dialysis-Radioimmunoassay	
5.2	Elution of Reaction Mixture Post Radio-	215
	iodination of 3,5-T ₂	
5.3	Elution of Reaction Mixture Post Radio-	216
	iodination of T_3	
5.4	Thin Layer Chromatography of Fractions Eluted	217
	from the T_3 Iodination Reaction Mixture	
5.5	Self-Displacement of 125 I-T ₃	218
5.6	Characterization of T_3 Antiserum #478	225
5.7	Optimisation of Serum-Free T_3 Assay Reagent	226
	Concentrations-Empirical	
5.8	Optimisation of Serum-Free T_3 Assay Reagent	227
	Concentrations - One Binding Site Model	
5.9	Optimisation of Serum-Free T ₃ Assay Reagent	228
	Concentrations - Two Binding Site Model	
5.10	Serum-Free T_3 Assay Precision Profile	229
5.11	95% Confidence Limits of Estimates of T_3	231
	Concentration	
5.12	Scatchard Analysis of T ₄ Antisera	235
5 13	Characterization of T_{μ} Antiserum #492	236

xiv

		Page
5.14	Optimisation of Serum-Free T ₄ Assay Reagent	237
	Concentrations - Empirical and One Binding	
	Site Model	
5.15	Optimisation of Serum-Free T_4 Assay Reagent	238
	Concentrations - Self-Displacement of $125I-T_4$	
5.16	Serum-Free T4 Assay Precision Profile	239
5.17	Charcoal Separation of Free and Antibody	249
	Bound Tracer	
5.18	Optimisation of the Precipitating Reagent	252
	Concentrations in the Double Antibody	
	Separation Technique	
5.19	The Effect of Serum in the Serum-Free T_3 and	257
	T ₄ Assays	
5.20	Free T_4 and Free T_3 Concentrations in Euthyroid	d 261
	Subjects and in Subjects with Thyroid Disease	
5.21	Relative Changes in Total and Free ${\tt T_3}$ and ${\tt T_4}$	265
	and in FTI in Elevated TBG States	
5.22	Percentage of Subjects with Elevated TBG with	266
	Outlying fT_4 and fT_3 Concentrations	
5.23	Comparison of fT_4 Concentration Assayed by	277
0	the E/D-RIA and Corning (Modified) Technique	
5.24	Precision Profile of the Corning (Modified	278
	Method) fT ₄ Assay	
5.25	Corning Free T ₄ Assay: Relationship Between	282
	Fraction 125 I-T ₄ Bound to Immobilized Anti-	
	body and the Serum T_4 Concentration	
5.26	Relationship Between the T_4 Concentration and	288
	the FTI	

xv

5.27 Relationship between Total and Free Thyroid 292 Hormone Concentration

Page

- 6.1 Iodothyronine, TSH, and Total Protein 302
 Concentrations, T₃SU and FTI during and after Acute Strenuous Exercise
- 6.2 Changes in rT₃, T₃ and TSH Concentrations 303 Relative to Alterations in Total Protein Concentration during and after Acute Strenuous Exercise
- 6.3 Total Iodide, and Total and Free Triiodothyro- 316 nine Concentrations after Ingestion of Sodium Iopodate
- 6.4 Total T_4 , Free T_4 , and TSH Concentrations, and 317 FTI after Ingestion of Sodium Iopodate
- 6.5 Total and Free T₃ Concentrations in Euthyroid, 330 Untreated Hypothyroid Subjects, and in Patients with Non-Thyroidal Illness
- 6.6 Concentrations of rT_3 , T_4 , fT_4 and TSH, and 331 FTI in Patients with Non-Thyroidal Illness

xvi

		Page
2.1	Published Procedures for the Radioimmuno-	66
	assay of Reverse T ₃	
3.1	Oxidative Radioiodination Procedure	71
3.2	Radioimmunoassay Protocol for the Assay of	142
	3,3',5'-Triiodothyronine in Serum	
3.3	Changes in Serum Constituents during	101
	Preparation of Thyroid Hormone Free Serum	
3.4	Simplex Optimisation	133
3.5	Comparison of Extraction and Direct Assay	149
3.6	Comparison of rT_3 Standards	150
4.1	Data used for the Solution of Equations A4,	167
	A6, A9 and Al0	ĸ.
4.2	Effect of Serum Dilution on Free Hormone	168
	Concentration during Equilibrium Dialysis	
4.3	Rationale of the Corning Kinetic Method for	185
	the Measurement of fT_4	
4.4	[TBG] and [TT ₄]/[TBG _O] in Euthyroid Subjects	190
	with altered [TBG _O]	
4.5	Rationale of the FTI and ETR	197
5.1	Protocol for Radioimmunoassay of ${\tt T}_3$ and ${\tt T}_4$	209
	in Dialysates	
5.2	Storage of $125I-T_3$ and $125I-T_4$ in Ethanol/	220
	Water (3:1)	

		Page
5.3	Cross-Reaction of Iodothyronines and	223
	Iodotyrosines in the Serum-Free ${\tt T}_3$ and ${\tt T}_4$	
	Assays	
5.4	Assay Quality Control Data	258
5.5	Total and Free T_3 and T_4 Concentrations and	263
	FTI in Euthyroid Subjects	
5.6	Published Data on Free T_3 and Free T_4 Concen-	268
	trations in Euthyroid Subjects	
5.7	Thyroid Disease	270
5.8	Comparison of fT_4 Concentrations Measured by	275
	the Corning fT_4 Assay and E/D-RIA	
5.9	Free T ₄ Quality Control Data	276
5.10	Effect of Dilution on the Estimate of fT_4	287
	Concentration by the Corning fT_4 Assay	
	(Modified Method)	
6.1	Basal Concentrations of the Tota 1 and Free	315
	Iodothyronines, TSH and Total Iodide	
6.2	Published Total and Free T_3 in Non-Thyroidal	327

Illness

SUMMARY

The development of sensitive and specific techniques for the measurement of the iodothyronines has led to dramatic advances in the areas of thyroid hormone metabolism and action, and their regulation.

The current concepts of the regulation of thyroid hormone concentration and metabolic action by the hypothalamic-pituitary-thyroid gland axis are reviewed. Also reviewed in detail are those studies implicating the role of the peripheral target tissues in altering thyroid hormone concentration and metabolic action by regulating thyroxine (T_4) metabolism to the biologically active 3,3',5-triiodothyronine (T_3) and the biologically inactive 3,3',5'triiodothyronine (rT_3) .

A radioimmunoassay for rT_3 and the equilibrium dialysis-radioimmunoassay (E/D-RIA) technique for measuring the free thyroid hormones were developed in order to evaluate their usefulness in the diagnosis of thyroid disease, particularly where peripheral metabolism of T_4 was abnormal, as in non-thyroidal illness. The assay sensitivity and precision required were attained by empirical manipulation of the tracer and antibody concentrations.

The simplex technique was also used to establish the rT_3 assay. This led to the development of an assay with much lower binding than the empirical assay but similar sensitivity and precision. It was concluded that this technique provided an objective and practical approach to developing radioimmunoassays which relied less on develop-

xix

mental experience than the conventional empirical techniques.

The empirically established serum-free thyroid hormone assays were compared to displacement curves generated using one and two binding site models of hormone binding to antibody. The models and the equations used to determine precision profiles were derived from the law of mass action. The generated precision profiles suggested higher imprecision and poorer sensitivity than was attained in practise. However, it was concluded that the theoretical prediction of precision profiles was a valuable aid to the rapid establishment of radioimmunoassays of a particular required sensitivity and precision.

Free thyroid hormone concentration was within the euthyroid reference range in nearly every subject with abnormal thyronine binding protein (TBP) concentration. A considerable number of these subjects had abnormal free thyroxine index (FTI) or free T_4 (fT_4) concentration as measured by the Corning Free T_4 assay. It was concluded that the Corning assay was prone to binding protein interference.

While all patients with thyroid disease studied had abnormal FTI and fT_4 (Corning), 37% had either fT_4 or fT_3 concentration (E/D-RIA) in the euthyroid reference range. The assay of rT_3 provided no additional information which might be helpful to the diagnosis of thyroid disease in these subjects.

A group of patients with moderate to severe nonthyroidal illness was characterized by the absence of symptoms

XX

of hypothyroidism and low T_3 concentration but free T_3 was not depressed to the same extent suggesting an uncharacterized binding abnormality. The tissue supply of thyroid hormone was considered adequate in view of the normal fT_4 and TSH. Reverse T_3 was variable and provided no useful information in the diagnosis of thyroid disease in this group.

The cholecystographic agent, iopodate (Biloptin), caused a marked increase in total and free rT_3 , reduction in total and free T_3 , and stimulation of TSH secretion. The interference in T_4 metabolism caused by this agent necessitates the correct timing of thyroid function tests in patients undergoing cholecystography.

The stressful stimuli, acute strenuous exercise, caused an increase in both rT_3 and T_3 . These results suggested that there were mechanisms operating in strenuous exercise which caused effects on thyroid pathophysiology different to those seen in other states of stress.

xxi

This is to certify that the work embodied in this thesis has not been previously submitted for the award of a degree in any other institution.

September, 1980.

ACKNOWLEDGEMENTS

I wish to thank Dr. Maurice L. Wellby for the provision of facilities in the Department of Clinical Chemistry, The Queen Elizabeth Hospital, South Australia, to carry out the work described in this thesis, and for the guidance and encouragement given as supervisor.

I would like to acknowledge the role of Mr. Stuart Elliot in drawing attention to the Simplex technique for optimising chemical systems, and the theoretical models used for optimising competitive protein binding assays; the help of Mr. Michael O'Halloran in statistical analysis of data; the generosity of Ms. Jan Gooden in providing thyroid function tests and helping with sample collection; and the expert technical assistance of Ms. Julia McEntee and Ms. Barbara McArthur; all of whom were staff members of the Department of Clinical Chemistry, The Queen Elizabeth Hospital, South Australia.

The investigation of peripheral metabolism after ingestion of cholecystographic agents was performed in collaboration with Dr. Clive Beng, Department of Clinical Chemistry, The Queen Elizabeth Hospital, South Australia, and the study of thyroid pathophysiology during acute strenuous exercise in collaboration with Dr. Michael Hooper, Endocrine Unit, Royal Adelaide Hospital, South Australia.

xxiii