

PETROLOGY OF THE LATE JURASSIC TO EARLY CRETACEOUS COALS FROM THE YANG CAO GOU BASIN, NORTHEAST CHINA

TIE ZHAO, B.Sc. Department of Geology and Geophysics The University of Adelaide South Australia 5005 Australia

November 1993

A thesis submitted to the University of Adelaide in the fulfilment of the requirements for the degree of Master of Science

Awarded 1994

Contents

Abst	Abstract		A
List	of	Figures	i
List	of	Tables	Ι
Ack	nov	vledgments	X

PETROLOGY OF THE LATE JURASSIC TO EARLY CRETACEOUS COALS FROM THE YANG CAO GOU BASIN

CHAPTER 1. THE YANG CAO GOU COAL DEPOSITS

1.1	INTRODUCTION	1
12	INTRODUCTION TO SONGLIAO BASIN	2
1.3	AIMS OF THE STUDY	3
1.4	PREVIOUS WORK	4

CHAPTER 2. REGIONAL GEOLOGY

2.1	STRA	FIGRAPHY	5
2.1.1	Lower	Triassic	5
2.1.2	Upper	Jurassic	1
2.1.3	Early	Cretaceou	11

Chapter 3. METHODOLOGY AND TERMINOLOGY

31	INTRODUCTION	18
32	ANALYTICAL METHODS	21
3 2 1	Samples	21
3.2.1	Sample preparation	22
3.2.2	Ontical equipment	22
2.2.3	Maceral analysis and microlithotype analysis	23
2.2.4	Deflectance measurements	24
5.2.5	Reflectance incasticitions analysis	25
3.2.0	Rock-Eval and total organic carbon analysis	

Chapter 4. COAL MEASURES OF THE YANG CAO GOU BASIN

4.1	STRATIGRAPHY OF THE COAL MEASURES	28
42	COAL SEAM NOMENCLATURE, DISTRIBUTION AND OUALITY	31
43	DEPOSITIONAL ENVIRONMENTS OF THE COAL MEASURES	33
44		35

Chapter 5. PETROLOGY AND GEOCHEMISTRY OF COALS FROM THE YANG CAO GOU BASIN

5.1	INTRODUCTION	37
5.2	MICROSCOPIC CHARACTERISTICS - MACERALS	38
5.2.1	Vitrinite	41
5.2.2	Inertinite	43
5.2.3	Liptinite	43
5.2.4	Mineralogy and coal geochemistry	45
5.3	LITHOTYPES AND MICROLITHOTYPES OF THE	
	YANG CAO GO COALS	48
5.3.1	Megascopic characteristics - lithotypes	49
5.3.2	Microlithotypes	54
5.4	DEPOSITIONAL ENVIRONMENTS OF THE	
	YANG CAO GOU COALS	55
5.5	RANK DETERMINATION	67

CHAPTER 6. COAL ORGANIC GEOCHEMISTRY AND OIL SOURCE POTENTIAL

6.1	INTRODUCTION	68
6.2	PREVIOUS WORK	70
6.3	EXPERIMENTAL	70
6.4	RESULTS AND DISCUSSION	71

CHAPTER 7. CONCLUSIONS	80
References	84
APPENDIX I. Sample Location	

APPENDIX II. Plates

ABSTRACT

The Yang Cao Gou Basin, is situated in Jiutai county to the northeast of Changchun city, Jilin province, and is one of several sedimentary coal sub-basins that developed in the late Jurassic to early Cretaceous along the eastern edge of the Songliao Basin, northeast China. The basin contains Jurassic and Cretaceous coal-bearing strata totaling over 2355 m in thickness and lying unconformably above granitic basement rocks.

Petrographic, reflectance, chemical and organic geochemistry studies on coal and shale samples representative of the coal seams of the different sub-basin have been carried out. Vitrinite is the dominant maceral observed in most samples. The high amount of vitrinite and low amount of inertinite indicate a reducing environment. Interpretation of lithotype variations within the seams indicates that the formation of the Yang Cao Gou coals were formed in wet forest-type swamps. Reflectances measured on vitrinite range from 0.35 to 0.67% placing the Yang Cao Gou coals between brown coal and bituminous coal.

There are three groups of coals deposited in the basin: Group II coals formed in shallow lakes, Group I coals formed in fan deltas, and lower Group coals formed in inter-lobe depressions within alluvial fans.

The Yang Cao Gou coal deposits shows a close relationship with paleaoenvironments. The topographic lows in front of and between alluvial fans, in fan delta plains and lake shores are the most favourable areas for coal accumulation.

A

LIST OF FIGURES

	<u>FIGU</u>	JRE	<u>PAGE</u>
	1.1	Location map of Yang Cao Gou Basin	2
	1.2	Geological map of the Jurassic to early Cretaceous deposition in the Songliao Basin.	3
	2.1	Correlation of the coal measures, eastern margin of the	
		Songliao Basin	5
	2.2	Geology of the eastern edge of the Songliao Basin	5
	2.3	Location map of the coal-bearing sub-basins, eastern margin of the	
		Songliao Basin	6
	2.4	Palaeogeographic map of the Sha Hezi Formation.	9
	2.5	Isopach map of the Yingcheng coal measures.	10
	2.6	Palaeogeographic map of the Yingcheng Formation.	14
	3.1	Stages of coalification.	19
	3.2	Point graticule used for microlithotype analysis	23
	4.1	Geological map of the Yang Cao Gou Basin	28
	4.2	Correlation of coal-bearing sequences of the Yingcheng Formation.	29
	4.3	Correlation and seam distribution of Group II coal beds in the upper	
		member of the Yingcheng Formation.	30
	4.4	Isopachs of the lower Group coals, Yang Cao Gou Basin	31
	4.5	Isopachs of Group I coals, in lower member of the Yingcheng	
7		Formation	31
	4.6	Sample localities and isopach map of Group Π coals	
		in Yingcheng Formation	32
	4.7	Distribution of Group II coals	32
	4.8	Contours of ash contents of Group II coals	32
	4.9	Contours of calorific value of the Group II coals	33
	4.10	Cross section of the K_1y^{3-2} sequences, Yang Cao Gou Basin	33
	4.11	Stratigraphy of the alluvial fan sequences, lower coal member	34

<u>FIGURE</u>

4.12	Stratigraphy of the fluvial deposition of K1y3-1 and K1y3-2	34
4.13	Stratigraphy of the lake shore sequence of the Yingcheng Formation	34
4.14	Sedimentary facies variation, Yingcheng Formation	35
5.1	Maceral compositions of Yang Cao Gou Basin coals	39
5.2	Maceral compositions of the coal seams II1e, II2e and seam I	40
5.3	Maceral composition of coal seams II_{1w} , II_{2w} and II	42
5.4	Frequency distribution of macerals in the Yang Cao Gou Basin	43
5.5	Densinite plus attrinite vs depth for Groups I and II coals	45
5.6	Vitrinite reflectance vs volatile matter content	47
5.7	H/C and O/C atomic ratios for Group II coals	4 8
5.8	Relationship between vitrinite reflectance and calorific value	49
5.9	Variation in lithotypes and macerals of the Group Π coals	52
5.10	Variation in lithotypes and macerals of the Group I coals	53
5.11	Variation in lithotypes and macerals of the lower Group coals	54
5.12	Average maceral composition of Yingcheng Formation	54
5.13	Microlithotype composition of Yang Cao Gou coals	55
5.14	Maceral compositions of Groups I, II and lower Group coals	57
5.15	Ternary composition diagrams by lithotype	57
5.16	Coal facies diagrams for Yingcheng Formation lithotypes	58
5.17	Maceral compositions of coal samples indicating depositional	
	environment based on inferred lithotypes	59
5.18	Ternary facies diagram for the Yang Cao Gou Basin coals	60
5.19	Ternary diagram showing depositional environments of	
	Permian coals from the Cooper Basin	61
5.20	Ternary facies diagram of the microlithotype compositions of coals in	
	Yingcheng Formation plotted on the Smyth model	62
5.21	Variation and distribution of average maceral compositions	
	of seam II	63
5.22	Variation of average maceral compositions of seams II_1 and	
	Π_2 and seams I ₁ , I ₂ , I ₃ , I ₄ , and I ₅	64

<u>FIGURE</u>

PAGE

5.23	Variation and distribution of average maceral composition of	
	seams II, II_{1e} , I_1 , I_2 , I_3 , I_4 and I_5	64
5.24	Borehole and collieries location map	64
5.25	Relationship between ash content and attrinite plus densinite	65
5.26	Relationship between telovitrinite and attrinite plus densinite	65
5.27	Maceral compositions of the Zone 1, Zone 2 and Zone 3 of the coals	65
5.28	Palaeogeographic map of K_1Y^2	66
5.29	Palaeogeographic map of $K_1 Y^{3-1}$	67
5.30	Palaeogeographic map of $K_1 Y^{3-2}$	67
5.31	Reflectance of vitrinite In Yang Cao Gou Basin coals in relation to the	
	German and A. S. T. M. rank classifications of coals	68
	a 	
6.1	Kerogen type and n-alkane distribution, Songliao Basin	70
6.2	Kerogen type and maturity in coals and shales from Yang Cao Gou	
	and adjacent sub-basins	71
6.3	Rmax vs Hydrogen Index as determined by Rock-Eval pyrolysis	72
6.4	TOC vs Hydrogen Index as determined by Rock-Eval pyrolysis	72
6.5	Hydrogen Index vs three maceral groups for samples from	
	Songliao Basin	72
6.6	Triangular diagram of n-alkane + n-alkene distribution	73
6.7	Variation in yield of normal hydrocarbons with ratio of normal	
	hydrocarbons to C_6 - C_8 aromatics for pyrolysates of	
	Songliao Basin coals	74
6.8	Variation in yield of C_6 - C_8 phenols in pyrolysis-GC with	
	maturation as measured by Tmax from Rock-Eval analysis	74
6.9	Variation in yield and composition of normal hydrocarbons	
	in pyrolysis-GC with proportion of liptinite for eastern	
	Songliao Basin coals	75
6.10	Relationship between Paraffin Index and Hydrogen Index	
	for Songliao Basin coals	75
6.11	Plot of vitrinite reflectance vs production index	76
6.12	Variation in composition of normal hydrocarbons with proportion	
	of liptinite in Songliao Basin coals	76

iii

FIGURE

6.13	relationship between free (S_1) hydrocarbons and the	
	hydrogen index using convertional Rock-Eval pyrolysis data	
	for eastern Songliao Basin coals	77
6.14	Representative pyrolysis-GC of sample 892-101A	77
6.15	Representative pyrolysis-GC of sample 892-119	78
6.16	Representative pyrolysis-GC of sample 892-Y5	79

<u>PAGE</u>

LIST OF TABLES

TABLE		PAGE
2.1	Type section of the Huoshinling Formation, eastern margin	
	of the Songliao Basin	8
2.2	Type section of clastic member of Shahezi Formation	10
2.3	Type section of the lower member of the Yingcheng Formation	12
2.4	Stratigraphy of the middle member of Yingcheng Formation	13
2.5	Stratagraphy of the upper member of the Yingcheng Formation	14
2.6	Stratigraphy of the Denglouku Formation	16
3.1	Coal maceral classification	19
3.2	Microlithotype analysis using a 20 point graticule	24
3.3	Rock-Eval interpretive guidelines	27
4.1	Lithology of units in the upper member of the Yingcheng Formation	30
4.2	Proximate analysis data for some Group I coals in the Yang Cao Gou Basin	32
4.3	Proximate analysis data for some Group II coals in the Yang Cao Gou Basin	34
4.4	Jurassic to Cretaceous climate variations of North China	36
5.1	Results of petrographic analyses of coal and shale samples	37
5.2	Results of the ultimate analysis of Group II coals, Yang Cao Gou Basin	44
5.3	Lithotype terminology used in this study	51
5.4	Microlithotype compositions of Group II coals	51
5.5	Reflectance data from Yang Cao Gou and adjacent basin coals	61
6.1	Location of samples other than Yang Cao Gou Basin coals	71
6.2	Rock-Eval and TOC data from coals and shales samples	72
6.3	Petrographic and geochemical data on selected Songliao Basin coals	76

I

Statement

To the best of the writer's knowledge, and except where due reference is made in the text of the thesis, this thesis contains no copy or paraphrase of previously published material nor any material that has been accepted for the award of any other degree or diploma in any university.

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying.

November 1993, Tie Zhao

ACKNOWLEDGEMENTS

The author wishes to acknowledge B.H.P. Ltd. for providing financial assistance (B.H.P. postgraduate scholarship).

I would like to especially thank Prof. L. A. Frakes and Dr. David McKirdy (Department of Geology, The University of Adelaide).for their friendly advice and supervision; they have ushered me into a new field.

I am sincerely grateful to Mrs. Esther Frakes for her great moral encouragement and friendship throughout the years. Without her help to me and to my family, this study could hardly have been completed.

I would like to express my sincere thanks to Prof. Dongpu Zhao of the Changchun Geology of College for his initial suggestion on my research proposal and for his thoughtful arrangements for my field investigations carried out in China in late 1987.

I would like to thank staff members of The Geological Survey of Jilin province, P. R. China, in particular, Mr. Chunzi Yang, for their kind support, and for supplying data and samples during my field work.

I am especially grateful to staff members of The Bureau of Mineral Resources, Geology and Geophysics (BMR), in particular, Dr. C. Boreham, for help with the organic geochemical analyses.

I also greatly thank the staff members of AMDEL Limited, in particular, Mr. Brian Watson, for his supervision of the vitrinite reflectance measurements.

I would like to thank to DR. A. C. Cook (University of Wollongong) for valuable and useful suggestions and constructive comments.

I would like to thank Mr. Bernd Michaelsen for his time and personal assistance.

Thank are also due to:

Staff members of the department (UA) for technical assistance; in particular: Dr. K. Turnbull and Mr. P. McDuie (TOC), Mr. J. Stanley and Mrs. C. Badcock (XRD), Mr. W. Mussared and Mr. G. Trevelyan (sectioning), and Mr. R. Barrett (photography).

Last but not least, thanks to my dear wife Bo for moral support and for tolerating a massive disruption of our daily life.