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We derive randomization-based models for experiments with a
chain of randomizations. The estimation theory for these models leads
to formulae for the estimators of treatment effects, their standard
errors, and expected mean squares in the analysis of variance. We
discuss the practicalities in fitting these models and outline the dif-
ficulties that can occur, many of which do not arise in two-tiered
experiments.

1. Introduction. Bailey [2, 3], following Grundy and Healy [22], outlines a
method of deriving randomization-based models for experiments. It provides mixed
models that are randomization-based in the sense that it is the group of permuta-
tions for the randomization that defines the variance matrix on which the analysis
is to be based. It applies to a general class of structures: those derived from a
group of permutations. Although this approach is restricted to groups which are
stratifiable, in the sense defined in Section 2, it includes all poset block structures
and many other structures besides.

A restriction with this approach is that it only applies to a single randomization,
as defined by Brien and Bailey [11], in that the randomization can be achieved using
a single permutation of the set of observational units. Brien and Bailey [11] describe
experiments with multiple randomizations, requiring multiple permutations, and
show how to assess the properties of such experiments in [12, 13]. As for the anal-
ysis of such experiments, Curnow [20], in correcting the analysis of McIntyre [26],
showed how to analyse the results of two-phase experiments by analysis of variance
(anova). Wood, Williams and Speed [48] also discussed the analysis of two-phase
experiments. Brien in [9] indicated how to use tiers to obtain the anova for multi-
tiered experiments and in [10] derived expected mean squares under a mixed model.
Brien and Payne [16] extended the sweep algorithm of Wilkinson [37, 46] to cover
anova for multitiered experiments. Brien and Bailey [11] and Brien and Demétrio
[14] describe how to analyse the data from such experiments by using mixed models.
However, no one has so far given general formulae for the estimators of treatment
effects and their standard errors for multitiered experiments, nor have formulae for
the expected mean squares under randomization-based models been derived.

Section 2 formulates the randomization-based model for a two-tiered experiment
and generalizes it to experiments with two randomizations in a chain. Section 3
describes families of expectation models that lead to a treatment decomposition; the
assumption of structure balance is discussed. The properties of anovas correspond-
ing to randomization-based models are outlined in Section 4. Section 5 contains
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2 R.A. BAILEY AND C.J. BRIEN

a set of examples. Sections 6–9 address the estimation of treatment effects, first
for two-tiered experiments and then for various cases of three-tiered experiments.
Section 10 generalizes this to an arbitrary number of randomizations in a chain.
Section 11 covers the use of software in estimating model parameters, including
a discussion of randomization-based models in the class of all mixed models. Sta-
tistical inference is discussed in Section 12. Section 13 briefly touches on models
other than those described in Section 2. See Section 3 of [12] for definitions of some
terms and notation specific to the approach we take.

2. Randomization-based models.

2.1. The randomization-based model for a two-tiered experiment. As in [11–13],
we randomize the set of objects Γ to another set of objects Υ, so we have a design
function h : Υ → Γ. If the objects in Γ are treatments then h(υ) is the treatment
assigned to unit υ in Υ. We associate a structure with each of Υ and Γ. If VΥ is
the space of all real vectors indexed by Υ, then a structure on Υ is an orthogonal
decomposition of VΥ. This is specified by a set of symmetric, idempotent, mutually
orthogonal matrices projecting onto the subspaces of VΥ in the decomposition.
Similarly, structure on Γ is an orthogonal decomposition of the space VΓ.

The usual initial assumption for the response Yυ on unit υ in Υ is additive:

(1) Yυ = wυ + τh(υ).

In some approaches, wυ is taken to be a constant, but here it is taken to be a
random variable, as in [3, 22]. It depends only on the unit υ which is providing
the response. On the other hand, τi, for i in Γ, is a constant. It depends only on
the treatment i which is applied to υ. Permitting the wυ to be random allows for
measurement error, without the assumption of any particular form for it, and any
random sampling of units that may occur.

Let G be a group of permutations of Υ. We usually take G to be the largest
group of permutations that preserve certain generalized factors on Υ, in the sense
that if F is such a generalized factor and g ∈ G and F (υ1) = F (υ2) then we must
have F (g(υ1)) = F (g(υ2)). In [2, 3] it is argued that if we randomize by choosing g
from G at random then it is appropriate to replace wυ by Wυ, which is the mixture
of the wg(υ) over g in G. Hence we get the randomization-based model

(2) Yυ =Wυ + τh(υ),

where theWυ are random variables which are exchangeable under G: in particular,

(P.a) if there is any g in G for which g(υ1) = υ2 then Wυ1 and Wυ2 have the same
distribution, in particular, the same expectation;

(P.b) if there is any g in G for which g(υ1) = υ2 and g(υ3) = υ4 then the joint
distribution of (Wυ1 ,Wυ3) is the same as the joint distribution of (Wυ2 ,Wυ4),
in particular, Cov(Wυ1 ,Wυ3) = Cov(Wυ2 ,Wυ4).

If the group G is transitive on Υ then property (P.a) is true for all choices of υ1
and υ2, so we may incorporate the constant value of E(Wυ) into each τi and so
assume that E(Wυ) = 0 for all υ in Υ. We restrict attention to cases where G is
transitive, which implies that every unrandomized factor on Υ is equireplicate.
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Let Y and W be the vectors of the random variables Yυ and Wυ respectively.
We often represent the design function h by a design matrix Xh. This is an Υ× Γ
matrix with (υ, i)-entry equal to 1 if h(υ) = i and to 0 otherwise. Then equation (2)
can be rewritten in vector form as Y = W+Xhτ , and E(Y) = Xhτ .

The pattern in the (co)variance matrix C of W is determined by property (P.b),
which implies that C is a patterned matrix with the same entries, including multi-
plicities, in every row; only their order differs. More specifically, there is a set B
of symmetric Υ× Υ adjacency matrices B with entries 0 and 1, whose sum is the
all-1 matrix J, such that if the (υ1, υ2)-entry of B is equal to 1 then the (υ3, υ4)-
entry is equal to 1 if and only if there is some g in G for which either g(υ1) = υ3
and g(υ2) = υ4 or g(υ1) = υ4 and g(υ2) = υ3. Moreover, the product of any two
adjacency matrices is a linear combination of matrices in B. Property (P.b) implies
that there are (co)variances ζB such that C =

∑
B∈B ζBB. For simple orthogonal

block structures, this form of C is the same as the variance matrix for the null
randomization distribution given by Nelder [29].

The group G is said to be stratifiable [1, 7] if the eigenvectors of the matrix C

do not depend on the values of the entries ζB but depend only on their pattern.
Then the common eigenspaces of C, called strata, are the structure on Υ, and
the collection of possible variance matrices is said to have orthogonal variance

structure (OVS). OVS is called ‘orthogonal block structure’ by Houtman and Speed
in [23]. Note that there is no linear dependence among the (co)variances ζB. Unless
otherwise stated, we assume that G is stratifiable and so C has OVS. Then the
number of strata is equal to the number of adjacency matrices.

Let Q be the collection of symmetric, mutually orthogonal, idempotent matrices
projecting onto the strata. Then

∑
Q∈QQ is the Υ×Υ identity matrix IΥ, and the

variance matrix can be re-expressed as

(3) C =
∑

Q∈Q

ηQQ,

with ηQ ≥ 0 for all Q in Q. The values ηQ are the eigenvalues of C and are
called spectral components of variance. The strata are subspaces within which all
normalized contrasts have equal variance under randomization, this variance being
the η for that stratum. Given Q, any two matrices of the form (3) commute with
each other. The matrices Q are linear combinations of the matrices B, and vice-
versa, but in general there is no closed-form expression for the coefficients in these
combinations.

2.2. Application to poset block structures. The majority of experiments con-
ducted in practice, and all the subsequent examples in this paper, have poset block
structures on their units. All poset block structures have stratifiable permutation
groups, as shown in [6]. A poset block structure on Υ is defined by a set H of
generalized factors on Υ: see [11]. Following [45], we write H < F if H and F are
in H and H is marginal to F . There are several ways in which to write C, in terms
of matrices and coefficients that depend on H in H [43, 44]:

(4) C =
∑

H∈H

ζHBH =
∑

H∈H

ψHSH =
∑

H∈H

ηHQH .

Here ζH is the (co)variance under the randomization between elements of Υ with
the same level of H but not the same level of any generalized factor F in H to
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which H is marginal; BH is the Υ×Υ adjacency matrix with entry 1 for such pairs
and entry 0 otherwise; ψH is a canonical component; SH is the Υ×Υ relationship
matrix [24] for H, with (υ1, υ2)-entry equal to 1 if υ1 and υ2 have the same level
of H and to 0 otherwise. Thus SH =

∑
F≥H BF . If kH is the common replication

of all levels of H, then k−1
H SH =

∑
F≤H QF . When H is the generalized factor

consisting of all factors on Υ, the subscript H will sometimes be replaced by Υ,
while the subscript for the generalized factor corresponding to the overall mean is
denoted 0. Expressions in [43, 44] show how to convert one set of coefficients in
equation (4) to another. In particular,

(5) ηH =
∑

F≥H

kFψF .

The natural interpretation of canonical components in this context is as compo-
nents of excess covariance [32]. They are linear combinations of the covariances (ζ
parameters) [29, 32, 44]. Except for ψΥ, which is the variance of each individual
response, they measure the covariation, between the responses on the units in Υ,
contributed by each particular generalized factor in excess of that of any gener-
alized factor which is marginal to it. Thus ψH can negative when ζH < ζF and
F < H, although ψΥ > 0. This is in contrast to nonnegative variance components
σ2H , which occur in the usual formulations of mixed models that we discuss in
Section 11. Estimates of standard errors of treatment effects require estimates of
the spectral components. On the other hand, scientifically interesting hypotheses
about the canonical components are often formulated and tested [19, 32] (see also
Section 11.3) and so estimates of them may also be required.

2.3. The randomization-based model for an experiment with two randomizations

in a chain. For a chain of two randomizations, there are three sets: Υ is ran-
domized to Ω, and Γ is randomized to Υ. Let the corresponding design maps be
f : Ω → Υ and h : Υ → Γ, as in Figure 1. The elements of Γ will be referred to as
treatments and Υ and Ω as unrandomized sets.

set Ω
structure P

set Γ
structure R

set Υ
structure Q

✲ ✲

h
←−

f
←−

unrandomized in design 1
randomized in design 2 unrandomized in design 2

randomized in design 1

Fig 1. Diagram of an experiment with two randomizations in a chain

Suppose that f is randomized by choosing a random permutation from the
group G1 of permutations of Ω, and that G1 is stratifiable with stratum projec-
tors P, for P in P. Like the matrices Q in Section 2.1, the matrices P are known
orthogonal idempotents summing to the Ω × Ω identity matrix IΩ. In Section 2.1
the size of the idempotents is the size of Υ, while here it is the size of Ω.

Now let Yω be the response on observational unit ω in Ω. Applying the randomiz-
ation argument from Section 2.1 to f gives Yω = Zω + Ỹf(ω), where Zω is a random

variable depending only on the unit ω and Ỹυ is a notional effect associated with
unit υ in Υ. Because G1 is stratifiable, we can assume that the random variables
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Zω are identically distributed with mean zero, and that Cov(Z) =
∑

A∈A γAA,
where A is the set of adjacency matrices arising from G1 and the γA are the associ-
ated (co)variances. Following Section 2.1, we can also write Cov(Z) =

∑
P∈P ξPP

where, like the quantities ηQ, the ξP are unknown nonnegative coefficients. Then
Cov(Z) has OVS because G1 is stratifiable.

Similarly, h is randomized by choosing a random permutation from the group G2

of permutations of Υ, and G2 is stratifiable with Υ×Υ stratum projectors Q, for
Q in Q, as in Section 2.1. Rewriting equation (2) as Ỹυ =Wυ + τh(υ) gives

(6) Yω = Zω + Ỹf(ω) = Zω +Wf(ω) + τh(f(ω)).

In turn, this randomization-based model can be rewritten in vector form as Y =
Z+XfW +XfXhτ , where Xf is the Ω ×Υ design matrix for f . Hence E(Y) =
XfXhτ , and the variance matrix V of Y is given by

V = Cov(Z+XfW) =
∑

A∈A

γAA+
∑

B∈B

ζBXfBX′
f =

∑

P∈P

ξPP+
∑

Q∈Q

ηQXfQX′
f ,

because Z and W are independent. The two sets P and Q of idempotents corre-
spond to the eigenspaces of the variance matrices of Z and W, respectively, but
not necessarily to those of V. Although the coefficients ξP and ηQ may not be
eigenvalues of V, we still call them spectral components of variance because they
are the eigenvalues of Cov(Z) and Cov(W) respectively.

As noted in [12], the effect of the design function f is to embed a copy V f
Υ of VΥ

inside the space VΩ of real vectors indexed by Ω. Let Df be the Υ × Υ diagonal
matrix whose (ν, ν)-entry is the replication of unit ν. Then X′

fXf = Df , and the

matrix of orthogonal projection onto V f
Υ is XfD

−1
f X′

f .
To further simplify V, the design f be must be equireplicate. If Q1 and Q2

are in Q then (XfQ1X
′
f )(XfQ2X

′
f ) = XfQ1DfQ2X

′
f . If the common replication

is r then Df = rIΥ, so if we put Qf = r−1XfQX′
f then the Qf are mutually

orthogonal idempotents summing to r−1XfX
′
f , which is the matrix of orthogonal

projection onto the subspace V f
Υ . To simplify notation, as in [12] we shall write Qf

just as Q,
{
Qf : Q ∈ Q

}
as Q, and r−1XfX

′
f as IQ in the three-tiered context.

Thus we have

(7) V =
∑

P∈P

ξPP+ r
∑

Q∈Q

ηQQ.

The formula for V in equation (7) appears very similar to that in equation (2)
of [48]. There are three differences. Here, the two collections of idempotents sum to
I and IQ respectively, whereas those in [48] both sum to I. Equation (7) is justified
by the randomization; the formula in [48] is an assumed model. Moreover, [48] does
not require f to be equireplicate, so the parametrization does not explicitly include
the replication r.

2.4. Pairs of poset block structures. If the structure on Υ is a poset block struc-
ture with set H2 of generalized factors, then r

∑
H∈H2

ηHQ
f
H =

∑
H∈H2

ψHS
f
H ,

where S
f
H = XfSHX′

f which is the Ω × Ω relationship matrix for H when it is
regarded as a factor on Ω, in which case the common replication of its levels is
rkH . If we now write S

f
H just as SH , we have r

∑
H∈H2

ηHQH =
∑

H∈H2
ψHSH .



6 R.A. BAILEY AND C.J. BRIEN

Suppose that the structure on Ω is also a poset block structure, with set H1 of
generalized factors. For H in H1, let the Ω× Ω relationship matrix for H be TH ,
with corresponding canonical component of variance φH and common replication
kH . Then

∑

H∈H1

ξHPH =
∑

H∈H1

φHTH and ξH =
∑

F∈H1, F≥H

kFφF .

Thus, when both structures are poset block structures, equation (7) becomes

(8) V =
∑

H∈H1

φHTH +
∑

H∈H2

ψHSH .

As noted in Section 2.2, even for poset block structures the randomization-based
model for variance differs from a variance-components model. In equation (7), it is
the coefficients ξP and ηQ which must be nonnegative; the corresponding canonical
components may well be negative, except for φΩ and ψΥ, which must be positive.

3. Treatment decomposition and structure balance.

3.1. Families of expectation models in a two-tiered experiment. Consider the
two-tiered set-up in Section 2.1. The design function h embeds a copy V h

Γ of VΓ
inside VΥ. Let Dh be the Γ×Γ diagonal matrix of replications of treatments. Then
X′

hXh = Dh, and the matrix of orthogonal projection onto V h
Γ is XhD

−1
h X′

h, which
we write as IR, because we always associate a structure R with Γ. The elements
of R are derived from a family M of expectation models on Γ, as we now show.

With treatment effects fixed, data analysis usually proceeds by selecting a model
fromM and then estimating the parameters of the chosen model: see [4]. We assume
that M defines an orthogonal decomposition of VΓ, in the following sense. There is
a collection R of Γ×Γ symmetric, mutually orthogonal, idempotent matrices whose
sum is the Γ× Γ identity matrix IΓ; each nonzero model in M is the subspace of
VΓ corresponding to a sum of one or more of the idempotents in R; if M is such
a model then there is at least one idempotent R in R such that Im(R) ≤ M and
M ∩ (Im(R))⊥ is in M; each R in R occurs at least once in this way, so that it
corresponds to the extra sum of squares for fitting a larger model compared to a
smaller model.

For R in R, the subspace Im(R) of VΓ is translated by h into a subspace of
V h
Γ whose Υ × Υ matrix Rh of orthogonal projection is XhR(RDhR)−RX′

h. We
require that h have the property that all such matrices commute with each other.
When M is defined by a collection of orthogonal factors on Γ, this requirement
is equivalent to the condition that the factors remain orthogonal when considered
as factors on Υ. In the two-tiered context, we shall write Rh and {Rh : R ∈ R}
simply as R and R from now on, so that

∑
R∈RR = IR.

There is no requirement for the design h to be equireplicate. For example, sup-
pose that Γ consists of the two levels of a treatment factor. If we parameterize the
expectations as µ + α and µ − α then the estimators are not orthogonal unless
the levels are equally replicated. Choice of parametrization should not affect model
fitting, so we prefer to have one model M1 in which we parameterize the expecta-
tions as α1 and α2, with a submodel M2 in which they are both µ, and a further
submodelM3 in which both expectations are zero. Then we do have orthogonality,
with R = {R1,R0}, where R0 = |Υ|−1

J, which is the projector for the grand
mean, and R1 = IR −R0.
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3.2. Structure balance in a two-tiered experiment. Until Section 9 inclusive, we
insist that h be such that R is structure balanced in relation to Q, in the sense
defined in [12]. This means that there are scalars λQR, for Q in Q and R in R,
such that RQIR = λQRR. This equation means that (i) RQR = λQRR and
(ii) if R1 6= R2 then R1QR2 = 0. The scalars λQR are called efficiency factors. It
follows that each Q is the sum of the following mutually orthogonal idempotents:
(i) Q ⊲ R, for all R in R with λQR 6= 0, and (ii) if it is nonzero, Q ⊢ R. These
idempotents are defined by Q⊲R = λ−1

QRQRQ and Q ⊢ R = Q−
∑′

R∈RQ⊲R,
where the summation is over those R for which λQR 6= 0. This set of idempotents
is denoted Q⊲R in [12].

For each R in R, the efficiency factors λQR are nonnegative and sum to 1. If
each R has some Q in Q such that λQR = 1 then the structure R is said to be
orthogonal in relation to the structure Q.

Note that the matrices Q are determined by the group of permutations used
for randomizing, and hence ultimately by the relevant information about Υ, such
as blocks or managerial constraints. On the other hand, the matrices R depend
on the family of expectation models chosen as appropriate. The former cannot be
altered, but the latter may be refined, perhaps using pseudofactors, in order to
achieve structure balance [27, 49]. This is achieved by judicious replacement of
some matrices R in R by sub-idempotents so that there is a refinement of the
decomposition given by R into smaller subspaces: see [12], Section 4. Thus we have
a larger collection R∗ of mutually orthogonal idempotents, such that each R in R
is a sum of one or more of the idempotents in R∗. For example, in a balanced lattice
square design for k2 treatments in (k+1)/2 squares, where k is odd, R = {R0,RT}
where R0 and RT are the idempotents for the Mean and Treatments, respectively.
However, R is not structure balanced in relation to the structure Q defined by
(k + 1)/2 squares, each formed by k rows crossed with k columns. We form R∗ by
replacing RT by RT,R and RT,C, where these are the idempotents corresponding
to the treatment subspaces partly confounded with rows and columns, respectively:
then R∗ is structure balanced in relation to Q (see [12], Example 5).

3.3. Treatment structure and structure balance in a three-tiered experiment with

two randomizations in a chain. Now consider the three-tiered set-up in Section 2.3.
As in Section 3.1, the effects τ are taken to be fixed, and so we assume that the
family of expectation models gives a set of mutually orthogonal idempotents R in
R whose sum is the orthogonal projector onto V h

Γ in VΥ. Let Mh be the Υ × Υ
idempotent for one of these expectation models. The corresponding Ω × Ω idem-

potent
(
Mh

)f
is given by

(
Mh

)f
= XfM

h
(
MhDfM

h
)−

MhX′
f = r−1XfM

hX′
f

sinceDf = r−1IΥ. Therefore, puttingR
f = r−1XfRX′

f forR inR, we see that the
mutually orthogonal idempotents R in R translate to mutually orthogonal idem-
potents Rf on VΩ. That is, because f is equireplicate, the same formula is used
to convert both the expectation idempotents and the variance idempotents from
Υ×Υ matrices to Ω×Ω matrices. There is still no need for h to be equireplicate.
As in [12], we shall write Rf as R and

{
Rf : R ∈ R

}
as R in the three-tiered

context. We continue to write
∑

R∈RR as IR, which is now an Ω× Ω matrix.
In addition to the condition that f be equireplicate, we assume until Section 9

inclusive that

(i) Q is structure balanced in relation to P, or can be made so, in the sense
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explained in Section 3.4;
(ii) R is structure balanced in relation to Q.

Then R is structure balanced in relation to P ⊲Q, Q⊲R is structure balanced in
relation to P, and (P ⊲Q)⊲R = P ⊲ (Q⊲R), as shown in [12].

Let Q1 be the set of Q in Q for which there is an idempotent P in P with
λPQ = 1. Define the function c from Q1 to P such that c(Q) = P for λPQ = 1. If
Q ∈ Q1 then Im(Q) ≤ Im(c(Q)), and QP = PQ = Q = P⊲Q if P = c(Q), while
QP = PQ = 0 otherwise. Thus Q is orthogonal in relation to P when Q1 = Q.

For P ∈ P, equation (7) shows thatV(P⊢Q) = ξP(P⊢Q), because (P⊢Q)Q = 0

for all Q in Q. Hence Im(P⊢Q) is contained in an eigenspace of V with eigenvalue
ξP. Moreover, if Q ∈ Q and λPQ 6= 0, then

V(P ⊲Q) = V
PQP

λPQ

=
ξP
λPQ

PQP+ r
∑

Q∗

ηQ∗

λPQ

Q∗PQP = ξP(P⊲Q) + rηQQP.

If Q ∈ Q1 and P = c(Q) then Im(P⊲Q) is contained in an eigenspace of V with
eigenvalue ξP+rηQ. Otherwise, Im(P⊲Q) is not contained in any eigenspace of V.

If Q is orthogonal in relation to P then

(9) V =
∑

Q∈Q

(ξc(Q) + rηQ)Q+
∑

P∈P

ξP(P ⊢ Q).

The idempotents in this expression are those in P ⊲Q, and the the image of each
is contained in an eigenspace of V. Thus the set of all positive semidefinite (p.s.d)
matrices of the form (9) commute with each other, and have common eigenspaces:
we call this commutative variance structure (CVS). If, in addition, there is no linear
dependence among the coefficients in (9), we have OVS.

3.4. Choice of idempotents. The matrices P are defined by the group G1 of
permutations used to randomize the design f . The matrices Q are first defined as
matrices on VΥ by the group G2 of permutations used to randomize the design h,
and then translated by f to matrices on VΩ. The matrices R depend initially on
the chosen family of expectation models, and are translated by h and then by f .

Strictly speaking, there is no freedom of choice over the Q matrices. However,
as already outlined for design h in Section 3.2, it is sometimes possible to turn a
design f without structure balance into one with structure balance by judicious
replacement of some matrices Q in Q by sub-idempotents, yielding Q∗. The vari-
ance matrix in equation (7) is defined by the original Q: when it is rewritten in
terms of Q* it has the constraint that if Q in Q is the sum Q∗

1 + · · ·+Q∗
n with Q∗

i

in Q∗ then each of Q∗
1, . . . , Q

∗
n has the same spectral component ηQ.

There are two types of multiple randomization that form a chain as shown in Fig-
ure 1: see [11, 12]. For composed randomizations, the randomizations may be done
in either order, because neither needs knowledge of the outcome of the other. In
contrast, randomized-inclusive randomizations have the complication that knowl-
edge of the outcome of the randomization of Γ to Υ is needed before Υ can be
randomized to Ω.

As explained in [11], Section 5.1 and [12], Section 6, this knowledge is needed in
the second case partly because the structure Q on Υ defined by the randomization
of design h is not structure balanced in relation to P. Thus Q needs to be refined
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into sub-idempotents or pseudosources, as described above. The second necessary
ingredient for randomized-inclusive randomizations is that there is at least one
source on Γ that is confounded or partly confounded with one of the sources on Υ
that needs to be split up. In order to work out the partial confounding of sources
on Γ with those on Ω, it is necessary to keep track of the partial confounding of the
former with the pseudosources on Υ. This may require pseudosources on Γ. Most
importantly, the unrandomized version of f is constrained to ensure the correct
partial confounding of (pseudo)sources on Γ with those on Ω.

Although this makes the procedure more complicated than that for composed
randomizations, the randomization-based model is virtually the same. As above, we
have to keep track of pseudosources. For the pseudosources on Υ, it is important to
remember that pseudosources of the same source have the same spectral component
η. This complication can occur for experiments with two composed randomizations
when the second randomization is not consonant: see Example 2. It always occurs
for experiments with two randomized-inclusive randomizations: see Example 4.

4. Analysis of variance.

4.1. A two-tiered experiment. Consider the two-tiered experiment in Sections 2.1
and 3.2. In [12] decomposition tables were used to display the decomposition of VΥ
appropriate for such an experiment. Such a table is a precursor to an anova table
and consists of rows and columns. There is a set of columns for each tier: one column
containing sources, one column containing degrees of freedom, and, if the design
is structure balanced but not orthogonal, a further column showing efficiency fac-
tors. The sources and pseudosources correspond to idempotents in Q or R which,
when they are based on generalized (pseudo)factors, are labelled as described in
Section 3 of [12]. Each row of the decomposition table corresponds to a subspace in
the decomposition specified by Q⊲R. In this paper, we add a column for expected
mean squares to decomposition tables in order to form skeleton anova tables.

The anova table for the analysis of a response variable when the variance matrix
has the form (3), the τi are fixed effects and R is structure balanced in relation to
Q is given in [2, 23, 30]. The data vector y is projected onto each stratum in turn
and then Qy, which is the projection into stratum Im(Q), is further decomposed
according to the elements of Q⊲R involving Q. The following hold.

(A.a) The projections onto different strata are uncorrelated.
(A.b) Any orthonormal basis for Im(Q) gives uncorrelated random variables all

with variance ηQ.
(A.c) If λQR 6= 0, then the expected mean square for Q⊲R is equal to

ηQ +
λQRτ

′X′
hRXhτ

rank(R)
.

(A.d) If Q⊢R is nonzero, then the expected mean square for Q⊢R is equal to ηQ.

For poset block structures, the spectral component ηQ can be expanded using
equation (5) to provide expressions for the expected mean squares in terms of the
canonical components.

The expression τ
′X′

hRXhτ/ rank(R) in (A.c) is a p.s.d. quadratic form in the
parameters τi. If R is defined by a poset block structure on Γ then R = RF for a
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generalized factor F on Γ, just as Q = QH in equation (4). In anova tables, this
expression is written as q(F ). In particular, q0 = τ

′X′
hR0Xhτ , whereR0 = |Υ|−1

J.

4.2. An experiment with two randomizations in a chain. First consider expec-
tations. If P ∈ P then (P ⊢ Q)IQ = 0. If, further, Q ∈ Q and λPQ 6= 0, then
((P ⊲ Q) ⊢ R)IQIR = 0. Since E(Y) = XfXhτ = IQIRXfXhτ , it follows that
E((P ⊢ Q)Y) = E(((P ⊲Q) ⊢R)Y) = 0. If, moreover, R ∈ R and λQR 6= 0,
Section 5 of [12] shows that (P⊲Q)⊲R = λ−1

PQλ
−1
QRPQRQP. Therefore

E(((P⊲Q)⊲R)Y) =
1

λPQλQR

PQRQPIQIRXfXhτ = PQRXfXhτ .

Hence

(E(((P ⊲Q)⊲R)Y))′E(((P⊲Q)⊲R)Y) = τ
′X′

hX
′
fRQPPQRXfXhτ

= λPQλQRτ
′X′

hX
′
fRXfXhτ .

Consider a fixed P in P. Equation (7) shows that

Cov(PY) = PVP = ξPP+ r
∑

Q∈Q

ηQPQP = ξPP+ r
∑′

Q∈Q

ηQλPQP⊲Q

=
∑′

Q∈Q

(ξP + rλPQηQ)(P⊲Q) + ξP(P ⊢Q).(10)

Here
∑′

Q∈Q denotes summation over Q ∈ Q with λPQ 6= 0. The matrices in
equation (10) are mutually orthogonal idempotents which sum to P and have
linearly independent coefficients. Hence they are the projectors onto the eigenspaces
of Cov(PY) with nonzero eigenvalues. Therefore the results for Y in Section 4.1
carry over to PY as follows.

(A.e) The projections onto any two different subspaces of the form Im(P ⊲Q) or
Im(P ⊢ Q) are uncorrelated.

(A.f) If λPQ 6= 0, any orthonormal basis for Im(P⊲Q) gives uncorrelated random
variables all with variance ξP + rλPQηQ.

(A.g) Any orthonormal basis for Im(P⊢Q) gives uncorrelated random variables all
with variance ξP.

(A.h) If λPQλQR 6= 0, then the expected mean square for (P⊲Q)⊲R is

ξP + rλPQηQ +
λPQλQRτ

′X′
hX

′
fRXfXhτ

rank(R)
.

(A.i) If λPQ 6= 0 and (P ⊲Q) ⊢ R is nonzero, then the expected mean square for
(P⊲Q) ⊢R is ξP + rλPQηQ.

(A.j) If P ⊢ Q is nonzero, then the expected mean square for P ⊢Q is ξP.

For poset block structures, the spectral components ξP and ηQ can be expanded
to express the expected mean squares in terms of the canonical components.

We write the expression τ
′X′

hX
′
fRXfXhτ/ rank(R) as q(F ) if R is defined by

a poset block structure on Γ and R = RF for some generalized factor F on Γ.
Finally, consider the whole of P. If Q is orthogonal in relation to P then we

have CVS and so the projected data corresponding to any two different rows of the
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anova table are uncorrelated. Otherwise, we have the situation, such as the one in
[33], where some subspaces corresponding to idempotents of the form P ⊲ Q do
not consist of eigenvectors of V. Then it is still possible to do anova in the sense of
decomposing the sum of squares of the responses according to the subspaces, and
equating the observed values of the mean squares to their expectations, but this
may not have all the properties of classical anova.

In particular, let Q be an idempotent in Q for which there are distinct P1 and
P2 in P with λP1Q and λP2Q both nonzero. Then the projections of the data onto
Im (P1) and Im(P2) are not independent, because

Cov((P1 ⊲Q)Y, (P2 ⊲Q)Y) = (P1 ⊲Q)′


∑

P∈P

ξPP+ r
∑

Q∗∈Q

ηQ∗Q∗


 (P2 ⊲Q)

=
P1QP1

λP1Q


∑

P∈P

ξPP+ r
∑

Q∗∈Q

ηQ∗Q∗


 P2QP2

λP2Q

=
rηQ

λP1QλP2Q

P1QP1QP2QP2 = rηQP1QP2,

which has the same rank as Q. A similar calculation shows that (P1⊲Q1)Y is not
correlated with (P2 ⊲Q2)Y if Q1 6= Q2.

5. Examples. Our first two examples show how straightforward the anova
table is when both designs are orthogonal, in the sense defined in Section 3.2.
Subsequent examples illustrate the application of our results to other structure-
balanced experiments. Further examples are available in [15].

Example 1 (Meat loaves). The two-phase sensory experiment in Figure 2 is
from [11], Section 4.1; the design in the second phase consists of a pair of 6 × 6
Latin squares in each session.

✎
✍

☞
✌2 Rosemary

3 Irradiation

✎
✍

☞
✌3 Blocks

6 Meatloaves in B

✓
✒

✏
✑

3 Sessions
12 Panellists in S
6 Time-orders in S

✲ ✲⊥

✲

216 tastings18 meatloaves6 treatments

Fig 2. Randomization diagram for Example 1: treatments are randomized to meatloaves, which
are in turn randomized to tastings; B denotes Blocks, S denotes Sessions.

Table 1 expands Table 2 of [12] to give the skeleton anova that includes the
expected mean squares under randomization; there is no need to show efficiency
factors because both designs are orthogonal.

One consequence of this simple orthogonality, and the lack of pseudosources, is
that each η-coefficient appears in the final column in conjunction with exactly one
ξ-coefficient. Under randomization all of these coefficients must be nonnegative.
However, canonical components such as φSP and φST can be negative, allowing for
correlations within panellists (φSP), or within time-orders (φST), to be negative.

The appropriate ‘Residual’ for each of the three treatments sources is the one
with 10 degrees of freedom, which is ((P # T [S])⊲ (Meatloaves [B]))⊢R, where R
is the structure on the treatments tier.
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Table 1

Skeleton analysis of variance for Example 1

tastings tier meatloaves tier treatments tier

source d.f. source d.f. source d.f. E.M.S.

Mean 1 Mean 1 Mean 1 ξ0 + 12η0 + q0

Sessions 2 Blocks 2 ξS + 12ηB

Panellists [S] 33 ξSP

Time-orders [S] 15 ξST

P# T [S] 165 Meatloaves [B] 15 Rosemary 1 ξSTP + 12ηBM + q(R)

Irradiation 2 ξSTP + 12ηBM + q(I)

R # I 2 ξSTP + 12ηBM + q(RI)

Residual 10 ξSTP + 12ηBM

Residual 150 ξSTP

Example 2 (Cotton fibres). Example 4 of [11] describes a two-phase experi-
ment that consists of a field phase in which cotton is produced in a field trial and
a testing phase in which the cotton is tested for strength. In this example, the use
of both the spectral and canonical components will be illustrated.

The randomization diagram for Plan B is in Figure 3. As discussed in [11], there
is a lack of consonance between the randomization of fibres to tests and the nesting
of the associated factors: nested Fibres is randomized to nesting Operatives and
nesting Block∧Plots is randomized to nested Tests. This forces us to introduce a
two-level pseudofactor F1 that indexes the two groups of 15 fibres; it neither is
nested in nor nests anything.

The middle panel in Figure 3 indicates that the proper randomization for the
first phase is to randomly permute blocks, randomly permute plots independently
within each block, and then randomly permute fibres within each plot. As noted
in [11], the two fibres taken from each plot must be independently randomized to
the two levels of the pseudofactor F1, so that its levels do not correspond to any
inherent property such as strength or length.

✞✝ ☎✆5 K

✓
✒

✏
✑

2 Fibres in B, P
5 Plots in B
3 Blocks

✓
✒

✏
✑

2 Operatives

15 Tests in O

✲

✲

2 F1
✲

5 treatments 30 fibres 30 tests

Fig 3. Composed randomizations in Example 2: treatments are randomized to fibres, which are
in turn randomized to tests; K denotes Potash treatments; B denotes Blocks, P denotes Plots; O
denotes Operatives; F1 is a pseudofactor for Fibres.

The variance matrix under the randomizations is

V = ξ0P0 + ξOPO + ξOTPOT + η0Q0 + ηBQB + ηBPQBP + ηBPFQBPF

= φ0T0 + φOTO + φOTTOT + ψ0S0 + ψBSB + ψBPSBP + ψBPFSBPF,

where TH and SH are the relationship matrices and φH and ψH are the canonical
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components for a generalized factor H from the tests or fibres tiers, respectively.
There is no Q-matrix for the pseudofactor: it is irrelevant to the randomization

of treatments to fibres and is not one of the unrandomized factors, that gives rise
to covariance, in the other randomization. However, we can rewrite QBPF as the
sum of two Q∗ matrices, one for each of F1 and Fibres [Plots ∧ Blocks] ⊢ F1; the
coefficient of both is ηBPF.

The following expressions show how the canonical components in this example
measure excess covariance:

φOT = γOT − γO, φO = γO − γ0, φ0 = γ0,
ψBPF = ζBPF − ζBP, ψBP = ζBP − ζB, ψB = ζB − ζ0, ψ0 = ζ0.

Thus, φ0, φO and φOT measure, respectively, the basic covariance of ‘unrelated’
tests, the excess of the covariance of different tests by the same operator over that
of ‘unrelated’ tests, and the excess of the (co)variance of the same tests over that
of different tests by the same operator. The ψ-parameters from the fibres tier can
be similarly interpreted using the ζ-parameters.

The skeleton anova is in Table 2; again, there is no need to show efficiency
factors because both designs are orthogonal. Now the coefficent ηBPF occurs with
two different ξ-coefficients. This is because the source Fibres [Plots ∧ Blocks] has
been split into two by the pseudofactor.

Example 3 (Two-phase sensory experiment). Section 3 of [16] describes a two-
phase sensory experiment. The first, or field, phase is a viticultural experiment and
the second, or evaluation, phase involves the assessment of wine made from the
produce of the first-phase plots. The randomization diagram for it, given in [11], is
in Figure 4 and the decomposition table for it is derived in [12], Example 1. Here
the skeleton anova is in Table 3. Although there are pseudofactors for the Judges
factor in the evaluations tier, they are ignored in doing the randomization as the
six judges are permuted with no distinction. These pseudofactors are used only to
obtain the systematic layout; they do not give rise to pseudosources.

✎
✍

☞
✌

4 Trellis

2 Methods

8 treatments

✲

✲

✗
✖

✔
✕

2 Squares
3 Rows
4 Columns in Q
2 Halfplots in Q, R, C

48 half-plots

✿

③

✲⊥

✲

3 J2
2 J1

✬

✫

✩

✪

2 Occasions

3 Intervals in O

6 Judges

4 Sittings in O, I

4 Positions in O, I, S, J

576 evaluations

Fig 4. Randomization diagram for Example 3: treatments are randomized to half-plots, which are,
in turn, randomized to evaluations; Q, R, C, O, I, S, J denote Squares, Rows, Columns, Occasions,
Intervals, Sittings and Judges, respectively; J1 and J2 are pseudofactors for Judges.

In this example, neither design is orthogonal, and so efficiency factors need to be
shown in the anova table. The only source in the halfplots tier which is not orthog-
onal to the sources in the evaluations tier is Columns [Squares]: the corresponding
coefficient ηQC occurs in conjunction with two different ξ-coefficients. Similarly,
the treatment source Trellis is nonorthogonal to three idempotents in P ⊲Q, and
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Table 2. Skeleton analysis of variance for Example 2 with expected mean squares in terms of spectral components and canonical components

tests tier fibres tier treatments tier E.M.S.

source d.f. source d.f. source d.f. spectral components canonical components

Mean 1 Mean 1 Mean 1 ξ0 + η0 + q0 φOT+15φO+30φ0

+ψBPF+2ψBP+10ψB

+30ψ0 +q0

Operatives 1 F1 1 ξO + ηBPF φOT+15φO+ψBPF

Tests [O] 28 Blocks 2 ξOT + ηB φOT +ψBPF+2ψBP+10ψB

Plots [B] 12 K 4 ξOT + ηBP + q(K) φOT +ψBPF+2ψBP+q(K)
Residual 8 ξOT + ηBP φOT +ψBPF+2ψBP

Fibres [P ∧ B] ⊢ F1 14 ξOT + ηBPF φOT +ψBPF
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Table 3

Skeleton analysis of variance table for Example 3 (O = Occasions, I = Intervals, S = Sittings, J
= Judges, P = Positions, Q = Squares, C = Columns, R = Rows, H = Halfplots, T = Trellis, M

= Methods)

evaluations tier halfplots tier treatments tier

source d.f. eff. source d.f. eff. source d.f. E.M.S.

Mean 1 1 Mean 1 1 Mean 1 ξ0 + 12η0 + q0

O 1 1 Q 1 ξO + 12ηQ

I [O] 4 ξOI

S [O ∧ I] 18 1

3
C [Q] 6 1

27
T 3 ξOIS + 1

3
12ηQC + 1

27
q(T)

Residual 3 ξOIS + 1

3
12ηQC

Residual 12 ξOIS

J 5 ξJ

O# J 5 ξOJ

I # J [O] 20 1 R 2 ξOIJ + 12ηR
1 R#Q 2 ξOIJ + 12ηQR

Residual 16 ξOIJ

S # J [O ∧ I] 90 2

3
C [Q] 6 2

27
T 3 ξOISJ +

2

3
12ηQC + 2

27
q(T)

Residual 3 ξOISJ +
2

3
12ηQC

1 R# C [Q] 12 8

9
T 3 ξOISJ + 12ηQRC + 8

9
q(T)

Residual 9 ξOISJ + 12ηQRC

Residual 72 ξOISJ

P [O ∧ I ∧ S ∧ J] 432 1 H [Q ∧R ∧ C] 24 1 M 1 ξOISJP + 12ηQRCH + q(M)
1 T#M 3 ξOISJP + 12ηQRCH + q(TM)

Residual 20 ξOISJP + 12ηQRCH

Residual 408 ξOISJP

so information about Trellis differences is available in three different subspaces, as
shown by the three occurrences of q(T) in the table.

Example 4 (Duplicated wheat measurements). Example 9 of [11] is an experi-
ment with a field phase and a laboratory phase. In the field phase 49 lines of wheat
are investigated using a randomized complete-block design with four blocks. Here
the laboratory phase is modified by supposing that the procedure described in [11]
is repeated on a second occasion. That is, two samples are obtained from each plot,
one to be processed on each occasion. Figure 5 gives the randomization diagram
for the modified experiment. Recall that a 7×7 balanced lattice square design with
four replicates is used to assign the blocks, plots and lines to four intervals in each
occasion. In each interval on each occasion there are seven runs at which samples
are processed at seven consecutive times. Pseudofactors are introduced for lines
and plots in order to define the design of the second phase.

The variance matrix under the randomizations is

V = ξ0P0 + ξOPO + ξOIPOI + ξOIRPOIR + ξOITPOIT + ξOIRTPOIRT

+η0Q0 + ηBQB + ηBPQBP + ηBPSQBPS.
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✞✝ ☎✆49 Lines ✲

7 L1,L3,L5,L7

7 L2,L4,L6,L8

✓
✒

✏
✑

4 Blocks
49 Plots in B
2 Samples in B, P

✲

7 P1

7 P2

�

�

✲

✲

2 S1 ✲

✬

✫

✩

✪

7 Runs in O, I

4 Intervals in O

2 Occasions

7 Times in O, I

49 lines 392 samples 392 analyses

Fig 5. Randomized-inclusive randomizations in Example 4: lines are randomized to samples, which
are in turn randomized to analyses; B, P, O, I denote Blocks, Plots, Occasions, Intervals, respec-
tively; L1, . . . , L8 are mutually orthogonal pseudofactors for Lines; P1 and P2 are pseudofactors
for Plots, determined from different Lines pseudofactors in different blocks; S1 is a pseudofactor
for Samples.

Table 4

Skeleton analysis of variance for Example 4

analyses tier samples tier lines tier

source d.f. source d.f. eff. source d.f. E.M.S.

Mean 1 Mean 1 Mean 1 ξ0 + η0 + q0

Occasions 1 S1 1 ξO + ηBPS

Intervals [O] 6 Blocks 3 ξOI + ηB
S1 #B 3 ξOI + ηBPS

Runs [O ∧ I] 48 P1 [B] 24 1

4
LinesR 24 ξOIR + ηBP + 1

4
q(LR)

S1 #P1 [B] 24 ξOIR + ηBPS

Times [O ∧ I] 48 P2 [B] 24 1

4
LinesT 24 ξOIT + ηBP + 1

4
q(LT )

S1 #P2 [B] 24 ξOIT + ηBPS

R#T [O ∧ I] 288 Plots [B]
⊢

144 3

4
LinesR 24 ξOIRT + ηBP + 3

4
q(LR)

3

4
LinesT 24 ξOIRT + ηBP + 3

4
q(LT )

Residual 96 ξOIRT + ηBP

Samples [B ∧ P]
⊢

144 ξOIRT + ηBPS

Randomized-inclusive randomizations are used in this experiment, as the outcome
of the randomization of lines to samples must be known before the samples can
be randomized to analyses. The Plots pseudofactors P1 and P2 are used to ensure
appropriate partial confounding of sources from the lines tier with sources in the
analyses tier. These pseudofactors do not give idempotents in V, because they do
not contribute to the variance matrix; they are irrelevant to the randomization of
lines to samples, and are not among the unrandomized factors, that give rise to
covariance, in the randomization of samples to analyses. However, as in Example 2,
QBP can be rewritten as the sum of three Q∗-matrices each with coefficient ηBP.
This results in the coefficient ηBP occurring with three different ξ-coefficients in the
skeleton anova in Table 4, which is an extended version of the decomposition table
given for Example 5 in [12]. To obtain structure balance, Im(QBPS) is decomposed
as the sum of five subspaces involving the pseudofactor S1 so that QBPS can be
rewritten as the sum of five Q∗-matrices each with coefficient ηBPS. As a conse-
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quence, the coefficient ηBPS occurs with five different ξ-coefficients in Table 4.

Example 5 (Small example). Figure 6 is the randomization diagram for the
first example in [48]. The levels of pseudofactor U1 give the treatments allocated
to units in the first phase. The small open circle indicates the nonorthogonal block
design (group-divisible for U1) for the second phase. As the design allocating units
to plots in the second phase depends on the outcome of the randomization of
treatments to units in the first phase, the randomizations are randomized-inclusive.

✞✝ ☎✆2 Treatments ✲

✞✝ ☎✆4 Units

2 U1

2 U2

�

✲

✛

✚

✘

✙
4 Blocks

3 Plots in B

2 treatments 4 units 12 plots

Fig 6. Randomization diagram for Example 5: treatments are randomized to units, which are in
turn randomized to plots; B denotes Blocks; U1 and U2 are pseudofactors for Units, forming groups
of units determined by the treatments.

The skeleton anova in Table 5 agrees with the conclusions reported in [48].
However, it is more informative. For example, using Section 7, the variance of
the within-blocks estimator of the treatment difference is equal to (2/6) × (ξBP +
(8/3)ηU)/(8/9). Table 5 shows that an estimator of ξBP+(8/3)ηU is twice the mean
square for Plots [B]⊲ (U ⊢U1) minus the Residual mean square.

Table 5

Skeleton analysis of variance for Example 5

plots tier units tier treatments tier

source d.f. eff. source d.f. eff. source d.f. E.M.S.

Mean 1 Mean 1 Mean 1 ξ0 + 3η0 + q0

Blocks 3 1

9
U1 1 1

9
Treatments 1 ξB + 1

9
3ηU + 1

9
q(T)

5

9
U ⊢U1 2 ξB + 5

9
3ηU

Plots [B] 8 8
9

U1 1 8
9

Treatments 1 ξBP + 8
9
3ηU + 8

9
q(T)

4

9
U ⊢U1 2 ξBP + 4

9
3ηU

Residual 5 ξBP

6. Estimation in a two-tiered experiment. Estimation of treatment effects
and variances is straightforward in a two-tiered experiment with structure balance.

6.1. Estimating treatment effects and variances in one stratum. For data satis-
fying the conditions in Section 4.1, the following are also shown in [2, 23, 30].

(E.a) The best linear unbiased estimator of the treatment effects RXhτ , using only
the projected data QY, is R(Q⊲R)Y/λQR, which is equal to RQY/λQR.

(E.b) The variance matrix of the above estimator is (ηQ/λQR)R.
(E.c) From (A.d) in Section 4.1, an unbiased estimate of ηQ is given by the mean

square for Q ⊢R, if Q ⊢ R is nonzero.
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6.2. Treatment structure orthogonal to variance structure. If R is orthogonal
in relation to Q then each R in R has some Q in Q such that λQR = 1. Then all
the information on RXhτ is in stratum Im(Q). Hence result (E.a) in Section 6.1
gives RQY as the overall best linear unbiased estimator of RXhτ . Result (E.b)
shows that the variance matrix of this estimator is ηQR, and result (E.c) that the
mean square for Q ⊢R is an unbiased estimator for ηQ, if Q ⊢ R is nonzero.

6.3. Estimating treatment effects from multiple strata when variances are known.

Suppose that R is not orthogonal in relation to Q. As shown in [23, 31], if the
coefficients ηQ are known then we can combine information on RXhτ from all
strata for which λQR 6= 0 to obtain its generalized least squares (GLS) estimator,
which is the best linear unbiased estimator. In our notation, it is given by

(11) RXhτ̂ = θ−1
R

∑

Q∈Q

η−1
Q RQY,

where θR =
∑

Q∈Q λQRη
−1
Q . The variance matrix of this estimator is θ−1

R R.

6.4. Estimating treatment effects and variances from multiple strata. However,
usually the coefficients ηQ are unknown and must be estimated. One method for
this is to use the mean square for Q ⊢ R to estimate ηQ. Nelder [31] argued that,
especially for designs in which some strata have few Residual degrees of freedom,
estimates should instead be obtained by equating the expected and observed values
of the mean squares for what Houtman and Speed [23] called ‘actual residuals’. Even
though normality is not assumed, these estimates are the same as those obtained
by REML [34] because, as is shown in [23], Section 4.5, and [35], the same set
of equations has to be solved for both. As will be discussed in Section 11.2, the
constraints on the variance parameters being estimated here are different from
those for a variance-components model.

As noted in [23, 31], the estimation of the coefficients ηQ requires an iterative
procedure, because their estimation needs the estimated value of τ and vice versa.
Given working estimates η̂∗Q of ηQ, a working estimate τ̂

∗ of τ can be obtained
from equation (11): thus a revised estimate of each ηQ can be computed as

(12)
y′ (Q ⊢ R)y +

(∑′
R∈R {y′(Q⊲R)y − λQRτ̂

∗′X′
hRXhτ̂

∗}
)

d′Q
,

where
∑′

R∈R means summation over R ∈ R for which λQR 6= 0, and d′Q are the
effective degrees of freedom for this estimator, which are given by

d′Q = trace (Q ⊢ R) +
∑′

R∈R

[
1− θ−1

R (η̂∗Q)−1λQR

]
traceR.

Since Q ⊢ R and R are both idempotent, their traces are equal to their ranks.
The numerator of expression (12) is the sum of two parts. The first is the Residual

sum of squares in this stratum from the anova; the second is the difference between
the sum of squares of the treatment estimates from just the data projected onto
Im(Q) and the sum of squares of the combined estimates, summed over all R for
which λQR 6= 0. The former does not depend on ηQ, but the latter does. The
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effective degrees of freedom make it clear that, even when Q⊢R = 0, there can be
information to estimate ηQ.

If estimates of the canonical components are required these can be obtained from
the estimates of the spectral components.

7. Estimating treatment effects and variances in a single part of P ⊲ Q.

Suppose that λPQ 6= 0, so that there is an idempotent P ⊲Q. Consider an idem-
potent R in R for which λP⊲Q,R 6= 0. Theorem 5.1 of [12] shows that λP⊲Q,R =
λPQλQR. Applying the results of Section 6.1 with Y and Q replaced by PY

and P ⊲ Q respectively, and using equation (10) for Cov(PY), we find that
the best linear unbiased estimator of the treatment effect RXfXhτ , using only
the projected data (P ⊲ Q)Y, is R((P ⊲ Q) ⊲ R)Y/λPQλQR, which is equal
to RQPY/λPQλQR. Moreover, the variance matrix of this estimator is equal to
R(ξP+rλPQηQ)/λPQλQR. Result (A.i) in Section 4.2 shows that the mean square
for (P⊲Q)⊢R is an unbiased estimator for ξP+rλPQηQ, if (P⊲Q)⊢R is nonzero.

In Example 3, the effects for M and T#M are estimated in just the source
P [O ∧ I ∧ S ∧ J] ⊲ H [Q ∧ R ∧ C] and the Residual mean square for H [Q ∧ R ∧ C]
is an unbiased estimator of ξOISJP + 12ηQRCH.

8. Full estimation in a three-tiered experiment which is anova-applicable.

8.1. Full or partial anova. Call the triple (P,Q,R) anova-applicable if it satis-
fies the following condition:

(13) for every Q in Q, if QIR 6= 0 then Q ∈ Q1.

That is, if the source for an R in R is (partially) confounded with a source for
some Q, then the latter source must be confounded with the source corresponding
to a single P. Section 4.2 shows that when this condition is satisfied then the
idempotents in P ⊲Q whose subspaces are contained in eigenspaces of V include
all those which have any part of R partially or totally confounded with them.

Condition (13) is satisfied when Q is orthogonal in relation to P, so that Q1 = Q.
ThenV is given by equation (9), possibly with OVS. Estimation of treatment effects
and their variances proceeds as in Section 6. Examples 1, 2 and 4 are like this. We
call this full anova.

Under full anova, if no (P ⊲ Q) ⊢ R = 0, we estimate linear combinations of
spectral components from the anova, even if they are not needed for standard
errors of treatment effects. Otherwise, formula (12) can be used, but with P ⊲Q

replacing Q. In Example 1, all the information about each treatment source in
R \R0 is contained in (P # T [S])⊲M[B]. Also, the difference between the mean
squares for ((P # T [S])⊲ (M [B])) ⊢ R and (P # T [S]) ⊢Q estimates 12ηBM.

In general, put P ∗ Q = Q1 ∪ {P ⊢ Q : P ∈ P}. Then the images of all the
idempotents in P ∗ Q are contained in eigenspaces of V. If (P,Q,R) is anova-
applicable but Q is not orthogonal in relation to P then we have partial anova,
using only the information in P ∗ Q. A treatment idempotent R in R may be
nonorthogonal to more than one part of P⊲Q, but these are all in P∗Q. Section 4.2
shows that estimators of variances of treatment effects which are in different parts
of P ∗ Q are uncorrelated, and so information can be combined as in Section 6.4.

However, the linear combinations of spectral components in the expected mean
square for parts of P ⊲Q outside P ∗Q are not involved in this process, and their
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anova-estimators may not have good properties. A similar situation arises in two-
tiered experiments if the group is not stratifiable but all treatment subspaces are
contained in known eigenspaces of the variance matrix (see Example 16 in [3]).

In the special case that R is orthogonal in relation to P ⊲ Q, each R in R
has unique idempotents Q in Q and P in P such that λPQλQR = 1, so that
λPQ = λQR = 1. Hence, Condition (13) is satisfied. Then P⊲Q = Q, RQP = R

and the effect RXfXhτ is estimated in just the one part P ⊲ Q of P ∗ Q. The
anova may be either full or partial. The full anova tables obtained by putting data
into each of Tables 1 and 2 are like this. The estimator for RXfXhτ , and its
variance matrix, obtained by simplifying the expressions given in Section 7, are
RY and (ξP + rηQ)R, respectively. If ξP and ηQ are not known, the mean square
for (P⊲Q)⊢R provides an unbiased estimate of ξP+rηQ, unless (P⊲Q)⊢R = 0.
Estimation of treatment effects and their standard errors proceeds exactly as in
Section 6.2.

8.2. Difficulties that do not arise in two-tiered experiments. Even when (P,Q,R)
is anova-applicable, some phenomena can occur that are not possible in two-tiered
experiments, even for the straightforward special case where P and Q are both
poset block structures, Q is orthogonal in relation to P, and R is orthogonal in
relation to Q.

8.2.1. Inestimability of some spectral and canonical components. For a two-
tiered experiment with OVS and R orthogonal in relation to Q, the estimability
of spectral components of variance is easily determined. If Q ⊢ R is nonzero then
its mean square provides the best unbiased quadratic estimator of ηQ; otherwise,
there is no estimator for ηQ. In particular, η0 is never estimable.

In a three-tiered experiment, the expected mean square for each Residual source
is a linear combination of a ξ-parameter and an η parameter. It may not be possible
to estimate ξ and η separately. This affects the estimability of canonical compo-
nents, although it appears that often more individual canonical, than spectral,
components are estimable. The parameters ξ0, η0, φ0 and ψ0 are never estimable.

Otherwise, the simplest way in which two spectral components cannot be esti-
mated separately occurs when a generalized factor F on Υ is randomly assigned
to a generalized factor H on Ω with the same number of levels. Then only a linear
combination of ξH and ηF can be estimated, and hence only a linear combination of
φH and ψF . In Example 1, Blocks are assigned to Sessions, both of which have three
levels. As a result, only ξS +12ηB is estimable, as is shown in Table 1, where these
two components only occur together. Correspondingly, only φS + ψB is estimable.

In the special case that |Υ| = |Ω|, Lemma 4.2 of [12] shows that P ⊲Q = Q and
so there are no idempotents of the form P ⊢ Q. Thus every expected mean square
contains one ηQ and one ξP. If κ is any constant smaller in modulus than all the
ηQ and all the ξP, then κIΩ can be added to

∑
ξPP and subtracted from

∑
ηQQ

without changing the variance matrix V in equation (7). Thus none of the spectral
components of variance can be estimated, although sums of the form ξc(Q)+ηQ can
be. For estimates of standard errors, these sums are all that is needed, and so there
is no problem. However, for comparing sources of variation, estimates of canonical
components are required. Except for φΩ and ψΥ, each canonical component is a
multiple of a difference between spectral components. This may well be estimable,
even though the corresponding spectral component is not.
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In Example 2, none of the spectral components is estimable. If relative magni-
tudes of sources of variation are to be investigated, then the canonical components
are needed: all of these are estimable except for φOT and ψBPF, whose sum is
estimable, and φ0 and ψ0. Thus the only real restriction in estimating canonical
components in this experiment is that it is not possible to separate variability aris-
ing from Tests and Fibres. Plan A for Example 4 of [11] is an alternative design
for this experiment. It has no pseudosources, but exhibits the same inestimability.

8.2.2. Negative estimates of spectral components. As noted in Section 2.3, all
spectral components of variance must be nonnegative and hence so must any linear
combination with positive coefficients. However, if one mean square involving both
a ξ and an η is less than that involving just the same ξ, then the anova-estimate
of η is negative. This is analogous to a negative estimate of a nonnegative variance
component; the component should be set to zero.

In Example 1, Table 1 shows that the appropriate Residual source for all three
treatment sources is the one with expected mean square equal to ξSTP + 12ηBM.
Suppose that this mean square turns out to be smaller than the one whose expecta-
tion is ξSTP. Then we set ηBM to zero and combine the two Residual mean squares
to obtain a better estimate of ξSTP. See Section 11.3 for further discussion.

8.2.3. The effect of pseudosources. If there are pseudosources for Q then some
η-coefficients occur with more than one ξ-coefficient, even if Q is orthogonal in
relation to P. This can lead to what we call linearly dependent commutative vari-

ance structure (LDCVS), in which the eigenspaces of V are known but the eigen-
values satisfy some linear equations. This gives a set of sources whose expected
mean squares are linearly dependent: simply equating them all to their data mean
squares may give inconsistent results. Suppose that for i, j in {1, 2} the idempotent
Q∗

ij corresponds to a pseudosource for Qj and is totally confounded with Pi. Then
the expected mean squares for the four idempotents (Pi ⊲Q∗

ij) ⊢ R are ξ1 + rη1,
ξ1 + rη2, ξ2 + rη1 and ξ2 + rη2. To estimate either the spectral or canonical com-
ponents by equating expected and observed mean squares requires that the the
sum of the middle two observed mean squares is equal to the sum of the outer
two. This situation is similar to the case, discussed by Bailey et al. [5], of a mixed
model with LDCVS that is orthogonal to the treatment structure. They show that
all four combinations of the following can occur: all variance components can be
estimable, or not; and each estimable component may, or may not, have a unique
estimator using the mean squares in the anova.

9. Estimation in a three-tiered experiment which is not anova-applicable.

If V is known then we can estimate treatment effects by GLS, which gives different
results from ordinary least squares if R is not orthogonal in relation to P ⊲Q.

Equation (7) gives

V = IVI =
∑

P∈P

ξPP+ r
∑

P∈P

∑

Q∈Q

∑

P∗∈P

ηQPQP∗.

Put αQ =
∑

P(λPQ/ξP). Then direct calculation shows that

V−1 =
∑

P∈P

1

ξP
P−

∑

P∈P

∑

Q∈Q

∑

P∗∈P

(
rηQ

1 + rηQαQ

)
1

ξPξP∗

PQP∗.
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Consider R in R. When the ξP and ηQ are known, the GLS estimator of the
treatment effectRXfXhτ is (RV−1R)−RV−1Y, with variance matrix (RV−1R)−.
For a chain of randomizations, R = RIQ =

∑
QRQ, so

RV−1 =
∑

P

∑

Q

1

ξP
RQP−

∑

P

∑

Q

∑

P∗

(
rηQ

1 + rηQαQ

)
1

ξPξP∗

RQPQP∗

=
∑

P

∑

Q

1

ξP
RQP−

∑

Q

∑

P∗

(
rηQαQ

1 + rηQαQ

)
1

ξP∗

RQP∗

=
∑

P

∑

Q

1

ξP

(
1

1 + rηQαQ

)
RQP.

Hence

RV−1R =
∑

P

∑

Q

1

ξP

(
1

1 + rηQαQ

)
RQPQR =

∑

Q

(
αQλQR

1 + rηQαQ

)
R = θRR,

with θR =
∑

Q∈Q αQλQR(1 + rηQαQ)
−1. Thus the GLS estimator of RXfXhτ is

1

θR

∑

P

∑

Q

1

ξP

(
1

1 + rηQαQ

)
RQPY,

with variance matrix θ−1
R R.

This estimator is a linear combination of the RQPY. There are no terms in
R(P⊢Q), because all projectors of this form are zero for a chain of randomizations.

In the special case that R is orthogonal in relation to Q there is a unique Q such
that RQ = R while RQ∗ = 0 if Q∗ 6= Q, so the estimator is a linear combination
of the RPY, as shown in [48]. The scalar θR specializes to that given in [48].

In the anova-applicable case, we have θR =
∑

Q∈Q λQR(ξc(Q) + rηQ)
−1 and

RXfXhτ̂ = θ−1
R

∑

Q∈Q

(ξc(Q) + rηQ)
−1RQY.

If V is unknown, canonical components need to be estimated using REML fol-
lowed by estimation of the treatment effects using estimated GLS (EGLS).

10. Extension to more than two randomizations in a chain. We have
seen that, even with structure balance, there can be difficulties with anova estima-
tion for a three-tiered experiment. One solution can be to use software designed for
fitting mixed models. This does not need to be restricted to designs with structure
balance, or to experiments with three tiers, so we begin by generalizing Section 2.

As discussed in [11], Section 6, and [12], Section 7, more than two randomizations
are possible. For example, a multiphase experiment can consist of p phases and
involve p randomizations. Then there are p sets, Ωi for i = 1, . . . , p, and another
set Γ for the first phase. There is a design function h : Ωp → Γ; if the objects in Γ
are treatments then h(ω) is the treatment assigned to unit ω in Ωp. A stratifiable
group Gp of permutations of Ωp is used to randomize h. For i = 1, . . . , p− 1, there
is a design function fi : Ωi → Ωi+1, so that fi(ω) is the unit in Ωi+1 assigned to unit
ω in Ωi; there is also a stratifiable group Gi of permutations of Ωi which is used to
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randomize fi. It is assumed that fi is equireplicate, with replication ri+1/ri, where
r1 = 1, so that each element in Ωi is assigned to ri elements in Ω1.

Let Yω be the response on unit ω in Ω1. For ω in Ω1, put s1(ω) = ω, si+1(ω) =
fi(si(ω)) for i = 1, . . . , p−1 and t(ω) = h(sp(ω)). The randomization-based model
in equation (6) can be generalized to

Yω =

p∑

i=1

Zi,si(ω) + τt(ω),

where Zi,si(ω) is the random effect, under randomization by Gi, for unit si(ω) in Ωi.
For this model, E(Y) = XsXhτ , where Xs is the Ω1 × Ωp design matrix for sp

and Xh is the Ωp × Γ design matrix for h. Generalize IR to be the Ω1 × Ω1

matrix of orthogonal projection onto Im(XsXh). Also, V =
∑p

i=1 Vi, where Vi =
ri
∑

Pij∈Pi
ξijPij and each Pij is an idempotent of Vi with spectral component ξij.

To this point, there is no need for structure balance, nor do any of the structures
need to be defined by factors. However, if the randomization of fi is based on a
tier of factors Hi defining a poset block structure on Ωi then Vi =

∑
H∈Hi

φHSH ,
where SH is the Ω1 × Ω1 relationship matrix for H considered as a factor on Ω1.

If all of f1, . . . , fp and h are structure-balanced then the results of Sections 3, 4,
7 and 8 can be extended to more than two randomizations. In particular, generalize
Q1 be the set of idempotents Q in Pp for which there is an idempotent Pci(Q) in Pi

for i = 1, . . . , p such that Pcp(Q)Q = Q and Pci(Q)Pci+1(Q) = Pci+1(Q) for i = 1,
. . . , p− 1. The condition for anova-applicability becomes

for every Q in Pp, if QIR 6= 0 then Q ∈ Q1.

11. Obtaining estimates from data for experiments with a chain of

randomizations. How can standard software be used to obtain, from data, esti-
mates of treatment effects and their standard errors and/or estimates of canonical
components, under randomization-based models? Assume that, for i = 1, . . . , p,
Pi is given by a poset block structure defined by a set Hi of generalized factors on
Ωi, which are then expressed as factors on Ω1. Two possible procedures, based on
mixed models, are anova and mixed-model fitting.

11.1. Analysis of variance. This is the method of choice for anova-applicable
cases in which the structure R on Γ is also orthogonal in relation to Q1, and other
cases in which it has been decided that each treatment effect is to be estimated from
a single source, as might be done in Example 3. Other anova-applicable cases can
be dealt with by anova followed by combination of information, as in Section 6.4.

Anova can also be used to estimate canonical components when there is CVS
and R is orthogonal in relation to Q. If there is LDCVS then a generalized linear
model (GLM) estimates the components. One fits a GLM to the observed mean
squares involved in the estimation. The GLM has a gamma distribution, identity
link, dispersion parameter equal to 2, weights equal to the degrees of freedom and
anXmatrix that contains, in each row, the coefficients of the canonical components
for the expected mean square corresponding to the observed mean square.

The advantage of anova is that it is a noniterative procedure in which all the
quantities are well-defined. Further, nonnegativity constraints are easily imple-
mented as a manual procedure applied after the anova has been obtained, and
the inestimability of variance parameters is often inconsequential.
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However, most anova software does not produce combined estimates of fixed
effects, so that it is simpler to use mixed-model fitting. A further difficulty with
anova for multitiered experiments is that software for it is not generally available,
GenStat being the only package that has specific facilities [17]. However, it may
be possible to specify a set of terms that will produce the correct decomposition
by omitting some sources. For example, the correct decomposition is obtained for
Example 2 from an anova or a regression model with the sources Operatives, Blocks,
Treatments, Plots [Blocks] and Residual. This is akin to fitting a mixed model of
convenience, as described in [14], because it does not contain terms for all the
potential sources of variation that have been identified for the experiment.

11.2. Classes of mixed models for structures defined by factors. Most mixed-
model software uses a conditional model ([25], Appendix A1, and [41], Section
4.6):

Y = Xτ + ZU+E,

with E(Y | U) = Xτ + ZU, Cov(U) = ZGZ′ and Cov(Y | U) = Cov(E) = R,
where τ is the vector of fixed-effects parameters, X is an indicator-variable matrix
for fixed effects with one row for each observation and a column for each fixed
effect, Z is an indicator-variable matrix with a row for each observation and a
column for each random effect, U is the vector of random effects, E is the vector of
random unit effects, and G and R are symmetric matrix functions of the variance
parameters. This usage of R is unrelated to its usage elsewhere in the paper.

This conditional model can be re-expressed in the following marginal form:

(14) E(Y) = Xτ and Cov(Y) = V = ZGZ′ +R.

The model for the variance matrix in equation (14) is referred to as the unstructured
variance model; the only condition imposed is that V is p.s.d.

We are concerned with models for the Ω1×Ω1 variance matrix V that are based
on sets Hi of generalized factors on Ω1. Put H =

⋃p
i=1Hi. Let E be the set of those

generalized factors in H that uniquely index the units in Ω1, and let U = H \ E .
This allows us to write Cov(U) = ZGZ′ =

∑
U∈U ZUGUZ

′
U and R =

∑
E∈E RE .

All software allows the fitting of variance models based on variance components,
for which GU = σ2UIm(U), where m(U) is the number of levels of U , and RE =
σ2EIΩ1

. The variance-components model for the matrix V in equation (14) is V =∑
U∈U σ

2
USU +

∑
E∈E σ

2
EIΩ1

, where ZUZ
′
U = SU . For such models, it is required

that all variance components are nonnegative, which implies that V is p.s.d.
Some software allows negative estimates of the variance components: this is

essentially fitting a canonical-components model for the variance matrix, whose
general form is obtained by replacing each σ2-parameter with a φ-parameter:

(15) V =
∑

U∈U

φUSU +
∑

E∈E

φEIΩ1
.

This differs from the variance-components model in that the φU , for U in U , are
not required to be nonnegative, although V is required to be p.s.d.

Randomization-based models are inherently marginal linear mixed models. The
expectation is as given in equation (14), with X replaced by XsXh. For the variance
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part of the model, equation (8) is generalized to

V =

p∑

i=1

Vi =

p∑

i=1

∑

H∈Hi

φHSH ,

which is of the form given in equation (15).
The particular features of randomization-based models are:

(R.a) For i = 1, . . . , p, all the factors initially defined on Ωi are deemed random.
(R.b) For i = 1, . . . , p, Vi is p.s.d., so that linear combinations of the canonical

components corresponding to its spectral components must be nonnegative.
This implies that φΩi

≥ 0 for i = 1, . . . , p but that other canonical compo-
nents can be negative.

(R.c) The factors on Γ, the treatment factors, are usually regarded as fixed.

The set V of possible estimates of a model for V is a subset of the set M
of Ω1 × Ω1 real symmetric matrices. If F is any subset of H, put M(F) ={∑

F∈F aFSF : aF ∈ R for F in F
}
. For the models described above, the sets of

possible estimates are:

Unstructured: VUS = {M ∈ M : M is p.s.d.};
Canonical-components: VCC(H) = M(H) ∩ VUS;
Variance-components: VVC(H) =

{∑
H∈H aHSH : aH ∈ R

+
0 for H in H

}
;

Randomization-based: VRB(H1, . . . ,Hp) = {
∑p

i=1Vi : Vi ∈ VCC(Hi) for i = 1, . . . , p}.

Clearly, VVC(H) ⊂ VRB(H1, . . . ,Hp) ⊂ VCC(H) ⊂ VUS.

11.3. Mixed-model fitting. By mixed-model fitting, in the case where variances
are unknown, we mean REML estimation of variance parameters followed by EGLS
estimation of the fixed effects. It is preferred for estimation of effects in cases
that are not anova-applicable, including all those without structure balance, and
for estimation of canonical components when there is not OVS. It might also be
deployed in anova-applicable cases because of software availability or because it is
convenient to use a method that covers virtually all the cases. Mixed-model fitting
can also be used when V is known: the variance parameters are fixed at their
known values. It cannot be used for those anova-applicable cases in which R is
not orthogonal in relation to Q1 and separate analyses are required for different
parts of Q1. Further advantages of mixed-model fitting are that pseudofactors are
unnecessary and that combined estimates of treatment effects are obtained when
R is not orthogonal to the other structures. A disadvantage of mixed-model fitting
is that it is an iterative procedure that can have computational difficulties. Using
anova estimates of canonical components as initial values helps surmount these.

In obtaining the fitted values for a randomization-based model using data from
an experiment, a problem is that mixed-model software usually fits only variance-
components models and perhaps canonical-components models. The default for
GenStat directives [36] is to fit canonical-components models and it is an option in
both ASReml-R [18], a commercial package for R [39], and in PROC MIXED in SAS
[40]. The R packages lme4 [8] and nlme [38] fit variance-components models only.
Because VRB(H1, . . . ,Hp) 6⊆ VVC(H), we recommend fitting canonical-components
models. Even so, a number of difficulties arise: (i) all canonical components in the
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given model must be estimable, (ii) software does not allow the separate specifi-
cation of the factor sets Hi and so cannot impose the constraint that each Vi is
p.s.d., and (iii) software requires the fitted canonical components to be nonzero to
avoid singularities in the matrices involved in the computations.

For some variance models, it is inherently impossible to estimate all variance
parameters, as required in (i). This should be investigated when designing an exper-
iment so that any problems can be identified and rectified before the experiment
is run. The anova table is extremely useful for this and, in particular, we advocate
the use of ‘dummy analyses’ in which anova is applied to randomly generated data
to check the properties of designs. These analyses are implemented in GenStat
for structure-balanced three-tier experiments; they can be achieved in R, in many
cases including those with R not structure balanced in relation to Pp, by judicious
specification of the Error function in a call to the aov function. Another possibil-
ity is to perform a dummy mixed-model analysis, although this requires that the
generated data are a reasonable fit to the model to be tested.

Inestimability of variance parameters can arise in two ways. First, a variance
parameter is not estimable if it is completely confounded by one or more fixed
effects. For example, if there is some H in H for which SHIR = SH then neither
φH nor ξH is estimable. In particular, as pointed out in Section 8.2.1, components
corresponding to the overall mean are never estimable and mixed-model-fitting
software usually excludes them; if not, they must be dropped. However, if other
canonical components are inestimable for this reason then this is usually a sign
that the experiment suffers from some form of pseudoreplication; dropping such
components results in incorrect estimates of standard errors and so is inadvisable.
The avoidance of such design deficiencies is one reason we urge the use of dummy
analyses to check proposed designs.

Let H̃ be the set of all factors in H which do not correspond to the overall mean.
The other cause of inestimability is linear dependence among the matrices SH for
H in H̃. Then canonical components need to be dropped so that those remaining
correspond to a linearly independent set of SH for H in H∗, where H∗ ⊂ H̃ and
VCC(H

∗) = VCC(H̃). The model based on H∗ is a ‘model of convenience’. There is
a choice about which canonical components to drop in forming H∗. When all the
structures on Ωi, i = 1, . . . , p, exhibit structure balance then a skeleton anova table
can aid in detecting the cause of inestimability of the type outlined in Section 8.2.1
and so in determining which canonical components to drop.

Section 8.2.1 shows that in Example 1 the canonical components for Sessions and
Blocks are inestimable. The term for one or other must be omitted from the mixed
model. This should not be taken to imply that the designer or the analyser of the
experiment is assuming that either does not contribute to the variability. Indeed,
the estimated component should be regarded as estimating the sum of these two
canonical components. Also, the spectral components for Sessions and Blocks are
confounded and so it is not possible to check that each is nonnegative, although the
nonnegativity of ξS + 12ηB should be checked. All the other spectral components
except ξ0 and η0 are estimable and so their nonnegativity can be verified.

For Example 2, the symbolic mixed model, derived using Step 1 in [14], is:

K | Operatives + Operatives∧Tests
+ Blocks + Blocks∧Plots + Blocks∧Plots∧Fibres.
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As outlined in Section 8.2.1, none of the spectral components is estimable and so
their nonnegativity cannot be checked, although the nonnegativity of sums such as
ξOT + ηB should be. However, all canonical components other than φ0 and ψ0 are
estimable, except that only φOT+ψBPF is estimable. One of these two terms needs to
be omitted. Omitting Blocks∧Plots∧Fibres is, in effect, setting ψBPF = 0, and hence
ηBPF = 0. Again, it is not assumed that this is the true value of the components.
The constraint is imposed merely to obtain a solution, and the supposed estimate
of φOT is actually an estimate of φOT + ψBPF.

For (ii), a check that the spectral components are nonnegative is the only option
to ensure that the constraints on them are met. A GenStat procedure for this has
been developed. Equation (5) is used to obtain the estimated spectral components
from the estimated canonical components. If any spectral component is negative
then the linear combination of canonical components on the right-hand side of
equation (5) has to be constrained to zero in a refit of the model. If there are
several negative spectral components, it may be that some canonical components
are constrained to zero.

Difficulty (iii) occurs because the estimate of some canonical component happens
to be zero. It has to be addressed by removing this canonical component from
the model, which implies that a pair of spectral components are equal. It is not
something that can be anticipated ahead of having the data.

12. Statistical inference. In order to perform hypothesis tests or compute
confidence intervals one has to assume that the response follows a multivariate nor-
mal distribution whose expectation and variance are those described in Section 10
for the randomization-based model. Some justification for this approach is that,
over all possible randomizations, the distribution of the data has this expectation
and variance. The only further assumption that is required for inference is that of
multivariate normality, although the guarantee for the associated expectation and
covariance strictly applies only over future re-runs of the experiment. The role for
randomization in an analysis based on this model is to ensure that the sources of
variation taken into account by the designer have terms in the model; that is, it
links the model to the design. Irrespective of the number of tiers, the randomiz-
ation does not itself produce distributions whose third and higher-order moments
are those of a multivariate normal distribution.

13. Other Models. Steps 2 and 3 of the method in [14] suggest changes
that could be made to the expectation and variance of randomization-based mod-
els. Here we concentrate on changing treatment factors from fixed to random and
changing unrandomized factors from random to fixed. The first of these produces a
randomization-based model, but the second does not; the latter does not preserve
the variance matrix under randomization as part of the model.

13.1. Treatment factors regarded as random. The simplest modification to the
model in equation (1) is to assume that the τi, for i in Γ, are random variables
with common mean µ and variance matrix CΓ, which may be as simple as σ2ΓIΓ or
may be based on a poset block structure on Γ. So long as h is equireplicate, CΓ

translates easily to add an extra variance matrix to V.
Varieties in early generation variety trials are often regarded as random: see [42].
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If Lines are designated random in Example 4 then the variance matrix becomes

V = ξ0P0 + ξOPO + ξOIRPOIR + ξOITPOIT + ξOIRTPOIRT

+η0Q0 + ηBQB + ηBPQBP + ηBPSQBPS

+8σ2LIR.

13.2. Unrandomized factors regarded as fixed. Sometimes it is appropriate to
classify unrandomized factors such as Sites, Centres, Laboratories, Sex or Judges
as fixed. It requires that there is no confounding between fixed sources. It results
in the exclusion of the corresponding subspaces from the REML estimation of
variance parameters, with canonical components effectively being set to zero and
effects added to the expectation, so the variance matrix may have LDCVS. In the
expected mean squares, q(H) replaces rikHφH if generalized factor H on Ωi is
designated as fixed.

Suppose that Operatives in Example 2 is to be considered fixed. This removes φO
from the expression for the variance matrix, and Im (P0 +PO) is excluded from
the REML estimation of the canonical components. The effect on the expected
mean squares in Table 2 is to replace ξO by ξOT + q(O) and 15φO by q(O).

14. Discussion. This paper extends randomization-based models to multi-
tiered experiments with two or more randomizations in a chain, and discusses
the estimation of treatment effects and their standard errors, and canonical com-
ponents, under the assumption of such a model. There are novel aspects to the
estimability of spectral and canonical components in such experiments, including
that the variance matrix can exhibit LDCVS.

We have emphasised the usefulness of a skeleton anova in checking the properties
of a design and of anova in analysing anova-applicable experiments and for supply-
ing initial estimates for mixed-model fitting. A limitation is software availability.

Otherwise, mixed-model fitting software is used to fit a randomization-based
model. In this, one has to ensure that estimates of ‘variance components’ can be
negative and be vigilant that estimates of spectral components are nonnegative.

While potentially negative canonical components are mandated for randomization-
based models, they have the additional benefit of allowing for negative correlation,
which is realistic in some circumstances: see [28]. Littell et al. [25], Section 4.7, rec-
ommend that unconstrained estimates be allowed in order to control Type I error,
and show that they can achieve greater power; this agrees with the conclusions of
Wolde-Tsadik and Afifi [47]. However, caution is required in ascribing a negative
estimate for a component to negative population correlation. As Searle, Casella
and McCulloch [41], Section 3.5, show, for a variance component just above zero,
there can be a high probability of a negative estimate if the number of treatments
is less than 5 and the number of replicates less than 25. Gilmour and Goos [21]
demonstrate that simply allowing negative variance components is not a panacea,
especially in small experiments.
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România. MR0468083

[36] Payne, R. W., S. J. Welham, and S. A. Harding (2012). The Guide to REML in GenStatr

(15th Ed.). Hemel Hempstead: VSN International. URL:
http://www.genstat.co.uk/resources/documentation/, (accessed November 21, 2012).

[37] Payne, R. W. and G. N. Wilkinson (1977). A general algorithm for analysis of variance. J.
R. Stat. Soc. Ser. C. Appl. Stat. 26, 251–260.

[38] Pinheiro, J. C. and D. Bates (2000). Mixed Effects Models in S and S-PLUS. New York:
Springer.

[39] R Development Core Team (2012). R: A Language and Environment for Statistical Comput-
ing. Vienna, Austria: R Foundation for Statistical Computing. URL:
http://www.r-project.org/, (accessed November 21, 2012).

[40] SAS Institute Inc. (2010). SAS/STATr 9.22 Users Guide. Cary, NC: SAS Institute Inc.
[41] Searle, S. R., G. Casella, and C. E. McCulloch (1992). Variance Components. New York:

John Wiley & Sons. MR1190470
[42] Smith, A. B., B. R. Cullis, and A. R. Gilmour (2001). The analysis of crop variety evaluation

data in Australia. Aust. N. Z. J. Stat. 43, 129–145. MR1855705
[43] Speed, T. P. (1987). What is an analysis of variance? Ann. Statist. 15, 885–910. MR0902237
[44] Speed, T. P. and R. A. Bailey (1987). Factorial dispersion models. Int. Stat. Rev. 55, 251–277.

MR0963143
[45] Tjur, T. (1984). Analysis of variance models in orthogonal designs. Int. Stat. Rev. 52, 33–81.

MR0967202
[46] Wilkinson, G. N. (1970). A general recursive procedure for analysis of variance.

Biometrika 57, 19–46.
[47] Wolde-Tsadik, G. and A. A. Afifi (1980). A comparison of the “sometimes pool”, “some-

times switch” and “never pool” procedures in the two-way ANOVA random effects model.
Technometrics 22, 367–373. MR0585634

[48] Wood, J. T., E. R. Williams, and T. P. Speed (1988). Non-orthogonal block structure in
two-phase designs. Aust. J. Statist. 30A, 225–237.

[49] Yates, F. (1936). A new method of arranging variety trials involving a large number of
varieties. J. Agric. Sci. 26, 424–455. Reprinted with additional author’s note in Yates, F.
(1970) Experimental Design: Selected Papers. pages 147–180. Griffin, London.

Professor R. A. Bailey

School of Mathematics and Statistics

University of St Andrews

St Andrews, Fife KY16 9SS

United Kingdom

E-mail: rab@mcs.st-and.ac.uk

School of Mathematical Sciences

Queen Mary University of London

Mile End Road

London E1 4NS

United Kingdom

Dr C. J. Brien

Phenomics and Bioinformatics Research Centre

School of Information Technology and Mathematical Sciences

University of South Australia

GPO Box 2471, Adelaide, SA 5001

E-mail: chris.brien@unisa.edu.au

The Australian Centre for Plant Functional Genomics

Waite Campus, University of Adelaide

Urrbrae, SA 5064

Australia

URL: http://chris@brien.name

http://www.ams.org/mathscinet-getitem?mr=0176576
http://www.ams.org/mathscinet-getitem?mr=0174156
http://www.ams.org/mathscinet-getitem?mr=0234582
http://www.ams.org/mathscinet-getitem?mr=0458743
http://www.ams.org/mathscinet-getitem?mr=1652264
http://www.ams.org/mathscinet-getitem?mr=0319325
http://www.ams.org/mathscinet-getitem?mr=0468083
http://www.genstat.co.uk/resources/documentation/
http://www.r-project.org/
http://www.ams.org/mathscinet-getitem?mr=1190470
http://www.ams.org/mathscinet-getitem?mr=1855705
http://www.ams.org/mathscinet-getitem?mr=0902237
http://www.ams.org/mathscinet-getitem?mr=0963143
http://www.ams.org/mathscinet-getitem?mr=0967202
http://www.ams.org/mathscinet-getitem?mr=0585634
mailto:rab@mcs.st-and.ac.uk
mailto:chris.brien@unisa.edu.au
http://chris@brien.name

	1 Introduction
	2 Randomization-based models
	2.1 The randomization-based model for a two-tiered experiment
	2.2 Application to poset block structures
	2.3 The randomization-based model for an experiment with two randomizations in a chain
	2.4 Pairs of poset block structures

	3 Treatment decomposition and structure balance
	3.1 Families of expectation models in a two-tiered experiment
	3.2 Structure balance in a two-tiered experiment
	3.3 Treatment structure and structure balance in a three-tiered experiment with two randomizations in a chain
	3.4 Choice of idempotents

	4 Analysis of variance
	4.1 A two-tiered experiment
	4.2 An experiment with two randomizations in a chain

	5 Examples
	6 Estimation in a two-tiered experiment
	6.1 Estimating treatment effects and variances in one stratum
	6.2 Treatment structure orthogonal to variance structure
	6.3 Estimating treatment effects from multiple strata when variances are known
	6.4 Estimating treatment effects and variances from multiple strata

	7 Estimating treatment effects and variances in a single part of P Q
	8 Full estimation in a three-tiered experiment which is anova-applicable
	8.1 Full or partial anova
	8.2 Difficulties that do not arise in two-tiered experiments
	8.2.1 Inestimability of some spectral and canonical components
	8.2.2 Negative estimates of spectral components
	8.2.3 The effect of pseudosources


	9 Estimation in a three-tiered experiment which is not anova-applicable
	10 Extension to more than two randomizations in a chain
	11 Obtaining estimates from data for experiments with a chain of randomizations
	11.1 Analysis of variance
	11.2 Classes of mixed models for structures defined by factors
	11.3 Mixed-model fitting

	12 Statistical inference
	13 Other Models
	13.1 Treatment factors regarded as random
	13.2 Unrandomized factors regarded as fixed

	14 Discussion
	References
	Author's addresses

