

Evaluation of Flow Forecasting Models for Adelaide Hills Catchments

T.J. Baker

A Thesis for the Degree of Master of Engineering Science

University of Adelaide Department of Civil Engineering

November 1991

This Thesis embodies the results of supervised project work making up all of the work for the degree.

ERRATA

To qualify the comments made in Section [6.5.2] of the thesis, the following derivation is given for the solution of the [A] and [B] matrices for an AR(1) multisite model.

Chapter [3] sets out the development of the multisite generation equation, for both the annual case, and further, for the multiperiod, multisite case. The following derivation for the solution of the [A] and [B] matrices used in an AR(1) model is shown for the exact case to highlight the difference between the exact solution and the solution given in the thesis.

The general multisite model is given as -

$$[\mathbf{Z}_{t}] = [\mathbf{A}][\mathbf{Z}_{t-1}] + [\mathbf{B}][\epsilon_{t}]$$
(1)

To derive the solution for the [A] matrix, both sides of Equation [1] are postmultiplied by $[\mathbf{Z}_{t-1}]^{\mathrm{T}}$ and expectations taken.

Thereby giving (using the notation given in Chapter 3) –

$$\mathbf{E}\{[\mathbf{Z}_{t}][\mathbf{Z}_{t-1}]^{\mathrm{T}}\} = [\mathbf{A}]\mathbf{E}\{[\mathbf{Z}_{t-1}][\mathbf{Z}_{t-1}]^{\mathrm{T}}\} + \mathbf{E}\{[\mathbf{B}][\boldsymbol{\epsilon}_{t}][\mathbf{Z}_{t-1}]^{\mathrm{T}}\}$$
(2)

$$\Rightarrow [\mathbf{A}] = \mathbf{E}\{[\mathbf{Z}_t][\mathbf{Z}_{t-1}]^{\mathrm{T}}\} \mathbf{E}\{[\mathbf{Z}_{t-1}][\mathbf{Z}_{t-1}]^{\mathrm{T}}\}^{-1}$$
(3)

$$\begin{split} [\mathbf{A}] &= [\mathbf{M}_1] [\mathbf{M}_0^*]^{-1} \\ where \quad [\mathbf{M}_0^*] &= \mathbf{E} \{ [\mathbf{Z}_{t-1}] [\mathbf{Z}_{t-1}]^T \} \end{split}$$

Similarly, for the solution of the [B] matrix, both sides of Equation [1] are postmultiplied by $[\mathbf{Z}_t]^T$ and expectations taken, giving –

$$\mathbf{E}\{[\mathbf{Z}_{t}][\mathbf{Z}_{t}]^{T}\} = [\mathbf{A}]\mathbf{E}\{[\mathbf{Z}_{t-1}][\mathbf{Z}_{t}]^{T}\} + \mathbf{E}\{[\mathbf{B}][\boldsymbol{\epsilon}_{t}][\mathbf{Z}_{t}]^{T}\}$$
(4)

$$= [\mathbf{A}]\mathbf{E}\{[\mathbf{Z}_{t-1}][\mathbf{Z}_t]^{\mathbf{T}}\} + [\mathbf{B}]\mathbf{E}\{[\epsilon_t][\mathbf{Z}_{t-1}]^{\mathbf{T}}[\mathbf{A}]^{\mathbf{T}} + [\epsilon_t][\epsilon_t]^{\mathbf{T}}[\mathbf{B}]^{\mathbf{T}}\}$$
(5)

By substituting Equation [3] for [A], and rearranging,

$$\Rightarrow [\mathbf{B}][\mathbf{B}]^{\mathbf{T}} = \mathbf{E}\{[\mathbf{Z}_t][\mathbf{Z}_t]^{\mathbf{T}}\} - \mathbf{E}\{[\mathbf{Z}_t][\mathbf{Z}_{t-1}]^{\mathbf{T}}\} \mathbf{E}\{[\mathbf{Z}_{t-1}][\mathbf{Z}_{t-1}]^{\mathbf{T}}\}^{-1} \mathbf{E}\{[\mathbf{Z}_{t-1}][\mathbf{Z}_t]^{\mathbf{T}}\} \\ [\mathbf{B}][\mathbf{B}]^{\mathbf{T}} = [\mathbf{M}_0] - [\mathbf{M}_1][\mathbf{M}_0^*]^{-1}[\mathbf{M}_1]^{\mathbf{T}}$$

The general matrix solution given by Equations [3.19] & [3.22], and further developed for the multiperiod model given by Equations [3.43] & [3.44] have assumed that the underlying process describing the distribution is stationary. This implies that the covariance matrix calculated using $[\mathbf{Z}_t][\mathbf{Z}_t]^{\mathbf{T}}$ is equal to the covariance matrix calculated using $[\mathbf{Z}_{t-1}][\mathbf{Z}_{t-1}]^{\mathbf{T}}$.

There is a subtle difference in using the latter form, and it has been noted by Kuzera [31] that for problems with a limited length of data, the above asymptotic solution may not hold true, and may lead to significantly different results.

$$\begin{split} & \text{By replacing} \qquad [\mathbf{M}_0^*] = \mathbf{E}\{[\mathbf{Z}_{t-1}][\mathbf{Z}_{t-1}]^{\mathrm{T}}\} \\ & \text{in lieu of} \qquad [\mathbf{M}_0] = \mathbf{E}\{[\mathbf{Z}_t][\mathbf{Z}_t]^{\mathrm{T}}\} \end{split}$$

in Equations [3.19], [3.22], [3.43] & [3.44] the result will overcome matrix inconsistency for the solution of the [A] and [B] matrices.

The revised equations are thus -

For the general case,

$$[\mathbf{A}] = [\mathbf{M}_1] [\mathbf{M}_0^*]^{-1} \tag{6}$$

$$[\mathbf{B}][\mathbf{B}]^{\mathbf{T}} = [\mathbf{M}_0] - [\mathbf{M}_1][\mathbf{M}_0^*]^{-1}[\mathbf{M}_1]^{\mathbf{T}}$$
(7)

and for the multiperiod case,

$$[\mathbf{A}_{\tau}] = [\mathbf{M}_{1,\tau}] [\mathbf{M}_{0,\tau-1}^*]^{-1}$$
(8)

$$[\mathbf{B}_{\tau}][\mathbf{B}_{\tau}]^{\mathbf{T}} = [\mathbf{M}_{\mathbf{0},\tau}] - [\mathbf{M}_{\mathbf{1},\tau}][\mathbf{M}_{\mathbf{0},\tau-1}^{*}]^{-1}[\mathbf{M}_{\mathbf{1},\tau}]^{\mathbf{T}}$$
(9)

Kuczera [31] outlines a method to obtain consistent estimates of the [A] and [B] matrices when there is missing data in any of the records. This approach may have made better use of the streamflow records available in this study.

Furthermore, Crosby & Maddock [13] offer a solution technique to produce a consistent [A] and [B] matrix given a monotone sample (*i.e.* when continuous records have different sarting times).

REVISED TEXT

Page 3, Section 1.3, Paragraph 1: delete "at any point in time"

Page 40, Section 4.1, Paragraph 3: Replace "rain" with "precipitation".

- Page 41, Replace "1700's (or 1800's)" with "1700s (or 1800s") respectively &, Replace "world war one" (or two) with "World War One" (or Two). (Also occurs on page 46)
- Page 42, Figure [4.1]: Reference, South Australian Engineering & Water Supply Department, publicity material (*Water Supply System*).
- Page 44, Figure [4.2]: Reference [12] Crawley P.D. & Dandy G.C. (1989) Optimal Operating Policies for Multiple Reservoir Systems (University of Adelaide - Civil Engineering Department Report)
- Page 58, Section 5.6.1.1, Paragraph 5: Replace, "Although will not occur ...", with "This will not occur ...".

Page 82, Figure [5.8], "Yields" measured in (Ml).

Page 106, Section 7.2.1, Paragraph 1: Remove "in toto".

Figures [5.3] to [5.5], The horizontal axis has the non dimensional units of "Number of Standard Deviations from the Mean".

Tables [5.9] to [5.13], "Absolute Error" units are (Ml) for use in Tables.

Table [5.14], "Units of Yield" are in (Ml).

Chapter [2], The reference for the Air Passenger Data is – Hyndman R.J. (1990) *PEST – User Manual* (University of Melbourne)

Chapter [5], When referring to the "Warren" station, it has been incorrectly referred to as the "Warren River" station. The Warren station gauges the South Para River at the Warren Reservoir. (Occurs on pages 60 & 62).

Appendix [D], U	Units for all plots	-
F	Horizontal axis	– Number of Standard Deviations from the Mean
7	Vertical axis	– Observed Yields, (Ml).
		– Transformed Yields, (Non dimensional).

Contents

Ĭ

Sу	nops	sis																						ÎÎ
Li	st of	Figures	ł																				v	iii
Li	st of	Tables																						xi
1	Intr	oductio	n																					1
	1.1	Introdu	ction .	•••••	• • •	•	· •	5 341	•	• •			• •	8	. •		•		•	•		• 2		1
	1.2	Study C)bjectiv	es		•••	•	•	ě.		4	145	• •	8.9	31	8 3	÷	a.		·	•	×>		3
	1.3	Method	ology	• • •	n e a	• •			R			•	e 10	2.2	31	2 2			•		•	ž 8	0	3
2	Dat	a Analy	sis																					5
	2.1	Introdu	ction .	• • 3	< × >	• •			*			•5	e 4	•	•	ei le			•	R 3	•	3 3	•2	5
	2.2	General	Analys	sis			10	۲	ŝ	• •		•		•	٠	• •	•	8	5. 1	•	•		ł	8
		2.2.1	Frend	• • •	* * *		×.	- 240		• •	•	٠	• •		æ	* 3			9 2		•2			10
		2.2.2	Periodio	city			× :			• •	(8			•		8	Ĩ.	•		•	x 0		11
	2.3	Transfo	rmation	IS.			oe a			• : •			•	e :					۰		•2	* *	e.	12
		2.3.1	Parame	tric	Tran	isfo	rma	tio	ons	8.	9			8	•		1		•				•	14
		2.3.2	Momen	t Tra	ansfo	orm	atic	n	Eq	lua	tic	ons	5.		en e		•		•	×	٠	•		17
		2.3.3	Maxim	ım I	likeli	ihoo	od .				•		8	8.9	•		8	•	×				•	19

	2.4	Tests for Normality	1
		2.4.1 Skewness Test for Normality	1
		2.4.2 Shapiro-Wilk Test for Normality	2
		2.4.3 Quantile–Quantile Plots	3
	2.5	Robust Methods	3
3	Moo	del Analysis 2	5
	3.1	Introduction	5
	3.2	Univariate Models	6
		3.2.1 Autoregressive Models	6
		3.2.2 Autoregressive Moving Average Models – ARMA 2	9
		3.2.3 ARIMA modelling 3	0
	3.3	Multivariate Models	0
		3.3.1 Multivariate Autoregressive Models	1
		3.3.2 Solution for the B Matrix	3
	3.4	Multiperiod, Multivariate Models	7
	3.5	Forecasting	8
4	Syst	tem Background 4	0
	4.1	Background to the Adelaide Water Supply System 4	0
	4.2	The Headworks System	1
	4.3	The Southern System	3
	4.4	The Northern System	3
		4.4.1 Little Para Subsystem	5
		4.4.2 The Torrens System	5

CONTENTS

ł

5	Res	ults	47
	5.1	Introduction	47
	5.2	The Raw Data	47
	5.3	Quality of Streamflow Data	50
	5.4	Quality of Rainfall Data	52
	5.5	Data Set Analysis	52
	5.6	Transformations	56
		5.6.1 Parametric Transformation	57
		5.6.2 Moment Transformation	59
	5.7	Significance Testing	59
	5.8	Investigation of Fitting Methods	64
	5.9	Summary of Tests Adopted	64
	5.10	Modelling	65
		5.10.1 Multivariate Model	65
		5.10.2 Comparison of Models in Generation & Forecasting	70
		5.10.3 Key Station Approach	76
		5.10.4 White Noise Analysis	76
		5.10.5 Univariate Model	80
		5.10.6 Univariate Generation and Forecasting	80
	5.11	Forecasting	86
	5.12	Application to Operational Hydrology	87
6	Sum	imary	99
	6.1	Introduction	99
	6.2	Data	99

v

167

CONTENTS

	6.3	Transf	ormations	100
	6.4	Tests f	for Normality	101
	6.5	Model	ling	101
		6.5.1	Univariate Model	101
		6.5.2	Multivariate Model	101
	6.6	Genera	ation	102
	6.7	Foreca	sting	103
	6.8	Applic	cation to Operational Hydrology	103
7	Rec	omme	ndations for Further Work	105
	7.1	Genera	al Recommendations	105
		7.1.1	Estimation of Parameters	105
		7.1.2	Modelling	. 105
		7.1.3	Model Verification	106
	7.2	Specifi	ic Recommendations	106
		7.2.1	Data	106
		7.2.2	Forecasting	106
Bi	bliog	graphy		107
A	His	torical	Statistics	112
В	Rev	vised &	Transformed Statistics	117
С	My	ponga	River, Serial Correlation Plots	126
D	My	ponga	River, Q–Q plots	139

vi

CONTENTS		vii	
E	Streamflow Data Sets	a v	152
F	Monthly Cross Correlation Matrices		169
G	Five Station Model Matrices		198

List of Figures

2.1	Stochastic Data Generation – Step Procedure	6
2.2	Aircraft Passenger Numbers – Raw Data	9
2.3	Aircraft Passenger Numbers – Transformed Data	9
2.4	Air. Pass. – De–Seasonalized, Normalized Data	12
2.5	Air. Pass De-Trended, De-Seasonalized, Normalized Data	13
4.1	Adelaide Metropolitan Water Supply District	42
4.2	System Schematic	44
5.1	Gauging Station Locations	49
5.2	Step Procedure for Data Analysis	53
5.3	Q–Q plot, Transformed January values at Warren River	60
5.4	Q–Q plot, Transformed January values at Myponga River $\ . \ .$	61
5.5	Q-Q plot, Revised, Transformed January values at Warren river	62
5.6	Quantile–Quantile Plot for White Noise	78
5.7	Q-Q Plot White Noise vs Transformed Data	79
5.8	Comparison of Stochastic & Deterministic Forecasts	82
5.9	Ave $\%$ difference of forecast vs lag	83
C.1	Raw Data – January/February	27

C.2 Transformed Data – January/February
C.3 Raw Data – February/March
C.4 Transformed Data – February/March
C.5 Raw Data - March/April
C.6 Transformed Data – March/April
C.7 Raw Data – April/May
C.8 Transformed Data – April/May
C.9 Raw Data – May/June
C.10 Transformed Data – May/June
C.11 Raw Data – June/July
C.12 Transformed Data – June/July
C.13 Raw Data – July/August
C.14 Transformed Data – July/August
C.15 Raw Data – August/September
C.16 Transformed Data – August/September
C.17 Raw Data – September/October
C.18 Transformed Data – September/October
C.19 Raw Data – October/November
C.20 Transformed Data – October/November
C.21 Raw Data – November/December
C.22 Transformed Data – November/December
C.23 Raw Data – December/January
C.24 Transformed Data – December/January
D.1 Q–Q plot, January Raw data

D.2 Q-Q plot, January Transformed data
D.3 Q-Q plot, February Raw data
D.4 Q-Q plot, February Transformed data
D.5 Q–Q plot, March Raw data
D.6 Q-Q plot, March Transformed data
D.7 Q-Q plot, April Raw data
D.8 Q-Q plot, April Transformed data
D.9 Q–Q plot, May Raw data
D.10 Q–Q plot, May Transformed data
D.11 Q–Q plot, June Raw data
D.12 Q–Q plot, June Transformed data
D.13 Q–Q plot, July Raw data
D.14 Q–Q plot, July Transformed data
D.15 Q–Q plot, August Raw data
D.16 Q-Q plot, August Transformed data
D.17 Q–Q plot, September Raw data
D.18 Q-Q plot, September Transformed data
D.19 Q-Q plot, October Raw data
D.20 Q-Q plot, October Transformed data
D.21 Q-Q plot, November Raw data
D.22 Q-Q plot, November Transformed data
D.23 Q-Q plot, December Raw data
D.24 Q-Q plot, December Transformed data

List of Tables

5.1	Station, Length & Period of Records	50
5.2	Monthly Shapiro–Wilk Values for Warren Data — January to June	63
5.3	Monthly Shapiro–Wilk Values for Warren Data — July to December	63
5.4	Location Parameters ($ au$) adopted \ldots	66
5.5	Comparison of Location Parameters, Full Length <i>vs</i> Concurrent Data Records	73
5.6	Onkaparinga – Generation Statistics, Zero Skew Transformation	74
5.7	Onkaparinga – Generation Statistics, Moment Transformation .	75
5.8	Normal Distribution Values given Exceedance Levels	84
5.9	South Para – Forecasting Model Statistic Comparison	88
5.10	Myponga – Forecasting Model Statistic Comparison	89
5.11	Gumeracha – Forecasting Model Statistic Comparison	90
5.12	Onkaparinga – Forecasting Model Statistic Comparison	91
5.13	Millbrook – Forecasting Model Statistic Comparison	92
5.14	Northern System Annual 90% Exceedance Yields	94
5.15	Southern System Yields	95
5.16	Northern System Monthly 90% Exceedance Yields	96
5.17	Northern System Monthly 70% Exceedance Yields	96

LIST OF TABLES

5.18	Southern System – Annual Pumping Costs for Optimization Results \$m
5.19	Northern System – Annual Pumping Costs for Optimization results \$m
A.1	Warren River & South Para River – Historical Statistics 113
A.2	Myponga River & Onkaparinga River – Historical Statistics 114
A.3	Gorge & Gumeracha Weirs – Historical Statistics
A.4	Little Para & Clarendon rainfall – Historical Statistics 116
B. 1	Warren River statistics
B.2	South Para River statistics
B.3	Myponga River statistics
B. 4	Onkaparinga River statistics
B.5	Gorge Weir statistics
B.6	Gumeracha Weir statistics
B.7	Little Para River statistics
B. 8	Clarendon P.O. rainfall statistics

xii