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ERRATA

To qualify the comments made in Section [6.5.2] of the thesis, the following
derivation is given for the solution of the [A] and [B] matrices for an AR(l)
multisite model.

Chapter [3] sets out the development of the multisite generation equation,
for both the annual case, and further, for the multiperiod, multisite case. The
fbllowing derivation for the solution of the [d'] and [B] matrices used in an
AR(1) model is shown for the exact case to highlight the difference between
the exact solution and the solution given in the thesis.

The general multisite model is given as -

lz¡l: [A][zt-rJ + [B][et] (1)

To derive the solution for the [A] matrix, both sides of Equation [1] are post-
multiplied by lZçrl1 and expectations taken.

Thereby giving (using the notation given in Chapter 3) -

E{lz¡llh_rlr} : [A]E{[zr_r][zt_r]r] + E{tBl[.,][Zt_r]r] (2)

+ [A] : E{lzù[zt-r]r]E {lh-llZ,-rlr}-t (3)

[A] : [Mr][Mö]-'

where [Mð] : E{[ZFL]lZ,-tlr]

Similarly, for the solution of the [B] matrix, both sides of Equation [1] are
postmultiplied by lZdT and expectations taken, giving -

E{fztlfzùt} : [A]E{[zr-1] [ztlr] + E{[B] ¡e¡l[ztJr]

: [A]E{[zr-r][Zr]r] + [B]E{[€t][zr-r]rlAlr + [.r][.r]tlslr]

(4)

(5)
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By substituting Equation [3] for [A], and rearranging,

+ [B] [B] 
r : E {fz dlz ùr } - E {lz rllzt- t I 

r 
} 
p 

{ [ 
z ¡-llzt- r] 

r 
] - 

t E { [zr-t ] lz t)r ]
tBllBlr: [Mo] - [Mr][Mõ]-'llvlt]r

The general matrix solution given by Equations [3.19] k 13.22), and further
developed for the multiperiod model given by Equations [3.43] & [3.44] have

assumed that the underlying process describing the distribution is stationary.

This implies that the covariance matrix calculated using lZ¡llZdT is equal to
the covariance matrix calculated using lZ¡-llZ¡-11.

There is a subtle difference in using the latter form, and it has been noted by
Kuzera [31] that for problems with a limited length of data, the above asymp-

totic solution may not hold true, and may lead to significantly different results.

By replacins [Mô] : E{[Zt-rìlzçlr]

in lieu of [Mo] : ø{fzùlzùr}

in Equations [3.19], 13.221,13.431 & [3.44] the result will overcome matrix in-

consistency for the solution of the [A] and [B] matrices.

The revised equations are thus -

ll

(6)

(7)

For the general case,

lAl : [Mr][Mõ]-1

lBllBlr: [Mo] - [Mr][Mö]-tltvttlt
and for the multiperiod case,

[4"] : [Mr,"][Mõ,"-r]-l

[8"][8"]r : [M0,"] - [Mr,"][Mö,,-r]-t[Mr,"]r

(8)

(e)

Kuczera [31] outlines a method to obtain consistent estimates of the [A] and

[B] matrices when there is missing data in any of the records. This approach

may have made better use of the streamflow records available in this study.

Furthermore, Crosby & Maddock [13] offer a solution technique to produce

a consistent [A] and [B] matrix given a monotone sample (z'.e. when continu-
ous records have different sarting times).



REVISED TEXT

Page 3, Secbion I.3, Paragraph 1: deleie "at any point in time"

Page 40, Section 4.1, Paragraph 3: Replace "rain" with "precipitation".

Page 41, Replace "1700's (or 1800's)" rvith "1700s (or 1800s") respectively &,
Replace "world war one" (or two) with "World trVar One" (or Trvo).
(Also occurs on page 46)

Page 42, Figure [4.1]: Reference) South Australian Engineering &
Water Supply Depariment, publicity material (Water Supply System)

Page 44, Figure [4.2]: Reference [12]
Crarvley P.D. & Dandy G.C. (i989)
Optimal Operating Policies for Ù[ultiple Reseruoír Systerns
(Universiby of Adelaicle - Civil Engineering Department Repori)

Page 58, Section 5.6.i.1, Paragraph 5:

Replace, "Albhough will noi occur ...",
lvith "This lvill not occur ...".

Page 82, Figure [5.8], "Yields" measured in (lvll).

Page 106, Section 7.2.L, Paragraph 1: Remove "in toto".

Figures [5.S] to [5.5], The horizontal axis has the non dimensiona.l units of

"Number of Standa¡d Deviations from the Mean".

Tables [5.9] to [5.13], "Absolute Error" nnits are (M1) for use in Tabies.

Table [5.14], "Units of Yield" are in (ìvll).

Chapter [2], The reference for the Air Passenger Daia is -
Hyndman R.J. (1990) PEST - User Manual
(Universi by of Vlelbourne)

Chapter [5], When referring to the "Warren" station, ii has been incorrectly referred
to as ihe "lVarren River" station. The lVarren station gauges the
South Para River aü the Warren Reservoir. (Occurs on pages 60 & 62).

Appendix [D], Units for all plots -
Horizonlal axis - Number of Standard Deviations from the Mean
Vertical axis - Observed Yieids,.(lvtl).

- Transformed Yields, (Non dimensional).



Contents

Synopsis

List of Figures

List of Tables

1 fntroduction

1.1 Introduction .

L.2 Study Objectives

1.3 Methodology

2 Data Analysis

2.1 Introduction .

2.2 General Analysis

2.2.I Trend

2.2.2 Periodicity.

2.3 Transformations

2.3.L Parametric Transformations

2.3.2 Moment Transformation Equations

ll

vlu

xl

1

1

3

3

I
I

I

I
(

{

l

5

5

8

10

11

t2

I

.l
l

T4

t7

2.3.3 MaximumLikelihood 19



CONTEN"S

2.4 Tests for Normality

2.4.I Skewness Test for Normality

2.4.2 Shapiro--Wilk Test for Normality

2.4.3 Quantile-Quantile Plots

2.5 Robust Methods

3 Model Analysrs

3.1 Introduction

3.2 Univariate Models .

3.2.I Autoregressive Models

3.2.2 Autoregressive Moving Average Models - ARMA

3.2.3 ARIMA modelling

3.3 Multivariate Models

3.3.1 Multivariate Autoregressive Models

3.3.2 Solution for the B Matrix

3.4 Multiperiod, Multivariate Models

3.5 Forecasting

4 System Background

4.I .Background to the Adelaide Water Supply System

4.2 The Headworks System

4.3 The Southern System

4.4 The Northern System

4.4.I Little Para Subsystem

4.4.2 The Torrens System .45



CONTENTS

5 Results

5.1 Introduction

5.2 The Raw Data

5.3 Quality of Streamflow Data

5.4 Quality of Rainfall Data

5.5 Data Set Analysis .

5.6 Transformations

5.6.1 Parametric Transformation .

5.6.2 Moment Transformation

5.7 Significance Testing .

5.8 Investigation of Fitting Methods .

5.9 Summary of Tests Adopted

5.10 Modelling

5.10.1 Multivariate Model

5.10.2 Comparison of Models in Generation & Forecasting

5.10.3 Key Station Approach

5.10.4 White Noise Analysis

5.10.5 Univariate Model

5.10.6 Univariate Generation and Forecasting

5.11 Forecasting

5.12 Application to Operational Hydrology

6 Summary

6.1 Introduction

v

47

47

47

50

52

52

bf)

õt

59

59

64

64

bl)

65

70

76

76

80

80

86

87

99

99

996.2 Data



CONTEN?S

6.3 Transformations

6.4 Tests for Normality

6.5 Modelling

6.5.1 Univariate Model

6.5.2 Multivariate Model

6.6 Generation

6.7 Forecasting

6.8 Application to Operational Hydrology.

7 Recommendations for Further'Work

7.I General Recommendations

7.I.1 Estimation of Parameters

7.I.2 Modelling

7.1.3 Model Verification

7.2 Specific Recommendations

7.2.I Data

7.2.2 Forecasting

Bibliography

A Historical Statistics

B Revised & ïYansformed Statistics

C Myponga River, Serial Correlation Plots

vl

. .100

. .101

. .101

..101

101

105

L02

..103

..103

105

..105

..105

..106

..106

. 106

106

to7

Ll2

Lt7

L26

D Myponga River, Q-Q plots 139



CONTENTS

E Streamflow Data Sets

F Monthly Cross Correlation Matrices

G Five Station Model Matrices

vll

L52

169

198



List of Figures

2.L Stochastic Data Generation - Step Procedure

2.2 Aircraft Passenger Numbers - Raw Data

2.3 Aircraft Passenger Numbers - Transformed Data

2.4 Air. Pass. - De-Seasonalized, Normalized Data

2.5 Air. Pass. - De-Trended, De-Seasonalized, Normalized Data .

4.I Adelaide Metropolitan Water Supply District

4.2 System Schematic

5.1 Gauging Station Locations

5.2 Step Procedure for Data Analysis

5.3 Q-Q plot, Transformed January values at Warren River

5.4 Q-Q plot, Transformed January values at Myponga River

5.5 Q-Q plot, Reaised,, Transformed January values at Warren river

5.6 Quantile-Quantile Plot for White Noise

5.7 Q-Q Plot White Noise us Transformed Data

5.8 Comparison of Stochastic & Deterministic Forecasts .

5.9 Ave To difference of forecast us lag

C.1 Raw Data - January/February

6

9

9

12

13

42

44

49

53

60

61

62

78

79

82

83

VIII

. r27



LIST OF FIGURES

C.2 Transformed Data - January/February

C.3 Raw Data - FebruarY/March

C.4 Transformed Data - February/March

C.5 Raw Data - March/APril

C.6 Transformed Data - March/April

C.7 Raw Data - APril/MaY . . . . .

C.8 Transformed Data - APril/MaY

C.9 Raw Data - MaY/June

C.10 Transformed Data - MaY/June

C.11 Raw Data - June/JulY

C.12 Transformed Data - June/JulY

C.13 Raw Data - JulY/August .

C.14 Transformed Data - July/August

C.15 Raw Data - August/SePtember

C.16 Transformed Data - August/September '

C.17 Raw Data - SePtember/October

C.18 Transformed Data - September/October

C.19 Raw Data - October/November

C.20 Transformed Data - October/November

C.21 Raw Data - November/December

C.22 Transformed Data - November/December

C.23 Raw Data - December/JanuarY

C.24 Transformed Data - December/January

.. .L27

128

. . .I29

130

130

..131

131

L32

..t32

133

. . .133

lx

r28

L29

134

134

135

. 135

136

136

137

. 137

..138

138

D.1 Q-Q plot, JanuarY Raw data ..140



LIST OF FIGURES

D.2 Q-Q plot, January Transformed data . 140

D.3 Q-Q plot, February Raw data L41

D.4 Q-Q plot, February Transformed data t4L

D.5 Q-Q plot, March Raw data ..t42

D.6 Q-Q plot, March Transformed data . .t42

D.7 Q-Q plot, April Raw data ...143

D.8 Q-Q plot, April Transformed data . 143

D.9 Q-Q plot, May Raw data r44

D.10 Q-Q plot, May Transformed data L44

D.11 Q-Q plot, June Raw data L45

D.12 Q-Q plot, June Transformed data L45

D.13 Q-Q plot, July Raw data. . 146

D.14 Q-Q plot, July Transformed data . .L46

D.15 Q-Q plot, August Raw data . .r47

D.16 Q-Q plot, August Transformed data L47

D.17 Q-Q plot, September Raw data . .148

D.18 Q-Q plot, September Transformed data . . 148

D.19 Q-Q plot, October Raw data 749

D.20 Q-Q plot, October Transformed data I49

D.21 Q-Q plot, November Raw data 150

D.22 Q-q plot, November Transformed data . . 150

D.23 Q-Q plot, December Raw data 151

X

D.24 Q-Q plot, December Transformed data 151



L ISt of Tables

5.1 Station, Length & Period of Records

5.2 Monthly Shapiro-Wilk Values for Warren Data - January to
June

5.3 Monthly Shapiro-Wilk Values for Warren Data - July to De-
cember

5.4 Location Parameters (r) adopted

5.5 Comparison of Location Parameters, Full Length us Concurrent
Data Records

5.6 Onkaparinga - Generation Statistics, Zero Skew Transformation

5.7 Onkaparinga - Generation Statistics, Moment Transformation

5.8 Normal Distribution Values given Exceedance Levels

5.9 South Para - Forecasting Model Statistic Comparison .

5.10 Myponga - Forecasting Model Statistic Comparison

5.11 Gumeracha - Forecasting Model Statistic Comparison

5.12 Onkaparinga - Forecasting Model Statistic Comparison

5.13 Millbrook - Forecasting Model Statistic Comparison

5.14 Northern System Annual 90% Exceedance Yields

5.15 Southern System Yields

5.16 Northern System Monthly 90% Exceedance Yields

5.17 Northern System Monthly 70To Exceedance Yields

a

50

63

63

66

73

74

75

84

88

89

90

91

92

94

95

96

96

XI



LIST OF TABLES

Warren River & South Para River - Historical Statistics

Myponga River & Onkaparinga River - Historical Statistics

Gorge & Gumeracha Weirs - Historical Statistics

A.4 Little Para & Clarendon rainfall - Historical Statistics

xll

4.1

^.2
4.3

5.18 Southern System - Annual Pumping Costs for Optimizalion
Results $m 97

5.19 Northern System - Annual Pumping Costs for Optimization
results $m 98

113

Lt4

115

116

8.1 Warren River statistics ..118

8.2 South Para River statistics . 119

8.3 Myponga River statistics L20

8.4 Onkaparinga River statistics T2L

B.5 Gorge Weir statistics r22

8.6 GumerachaWeirstatistics .....I23

8.7 Little Para River statistics I24

8.8 Clarendon P.O. rainfall statistics L25



Chapter 1

Introduction

L.1- Introduction

Throughout history many advances have been made in what at the time was

considered purely theoretical mathematics. This is true to an extent with
stochastic data generation. Much of the theoretical groundwork had been laid
many years before fruitful applications were realized.

This has been mainly due to the fact that the methods require large com-
putational effort, and that the techniques simply were not required until the
late 20th century when our engineering systems have become large, complex
and expensive. In todayts economic climate, the operations of such systems

may affect millions of lives and impact harshly upon the environment.

Now that it has been recognised that human society can no longer exploit
what were regarded historically as being infinite resources, such engineering
systems have come under scrutiny and inevitably have to be operated more
efficiently.

Stochastic data generation is one method which may be utilized to aid in
system operation. The method may be used for any system or process that
can be measured through time. In fact it may be defined as -
"The analysis of a time series that behaves in a probabilistic manner'

1



CHAPTER 1. INTRODUCTION

The areas of application include:

a economlcs 
-

- for stock control

- production; for determining how much of a commodity should be
produced,

- for forecasting stock market prices.

o traffic engineering

- for forecasting future traffic demands on roads and highways.

- in analysing traffic behaviour at intersections.

and, of course, hydrology on which this study centres.

Over the last century most water supply systems in Australia have been mon-
itored, with special attention to the measurement of rainfall and gauging of
flow volumes in streams.

In the operation of any reservoir system for urban supply or irrigation, de-
cisions must be made regarding releases, pumpages, the imposition of restric-
tions and the declared allocations (in the case of irrigation). Such decisions
are usually based on the current storage levels in the system, the likely future
inflows and the demands placed on the system.

If more reliable forecasts of inflows and demands are available, less conser-
vative operating decisions can be implemented. For example, there will be less

chance of imposing unnecessary (and politically unpopular) water restrictions,
or the undertaking of expensive pumping programs.

To illustrate the above, research reported by Dandy [12] indicated that up
to a 20Yo saving in pumping costs could be achieved for the Adelaide Head-
works system if perfect forecasts of future inflows were available. Obviously
perfect forecasts cannot be achieved due to the natural variability and unpre-
dictability of rainfall and catchment conditions. However, this figure does give
an indication of the potential savings which could be achieved by improved
forecasting techniques. Most other metropolitan supplies in Australian cities
do not involve as much pumping as Adelaide. However, a crucial operating de-
cision in all systems is the balance of storage maintained between reservoirs to
maximize system reliability. Improved inflow forecasting can aid in decisions
of this kind and hence result in increased reliability of supply.

In irrigation areas an allocation of water for irrigation is announced at the
start of the growing season. The allocation is based on the current state of

2



CHAPTER 1, INTRODUCTION

storage in the reservoirs and estimates of the probability of receiving various
levels of inflow over the growing season. If the uncertainty in inflow forecasts
can be reduced, irrigators will receive a better indication of the likely avail-
ability of water, thus having a better chance to optimize crop patterns.

It can be seen, therefore, that improvement of inflow forecasting is likely to
result in benefits to the users of all major urban and rural supply systems in
Australia.

L.2 Study Objectives

The objectives of this study

o To evaluate the use of unisite and multisite time series models as a tech-
nique for forecasting the runoff from water supply catchments.

o To apply the technique to a set of data for the Adelaide Hills catchments
and identify any problems in the technique.

o To illustrate the use of the forecasting models developed, as input for a
model used for determining optimum operating policies for the Adelaide
Headworks system.

1-.3 Methodology

When attempting rt .?.."y ;"ìì)in time to forecast runofi from a catchment on
a monthly basis there is certain background information which may be used.
This includes the runoff from that and adjacent catchments in previous time
periods, previous rainfall and the state of the catchment e.g. the soil moisture
index and water table levels.

In this study use will be made of rnultisite time series models of inflows. These
utilize the serial correlation of flows at a single site as well as the spatial cor-
relation between sites to forecast future inflows. Other readily available data
such as rainfall is also considered if it increases the forecasting ability of the
model.

Forecasts of inflows for operational purposes are usually required for (1) to
(24) months ahead. This being the case, a monthly multisite model such as

that of Young & Pisano [5a] is appropriate. Such models hav" lr"-u used by

3



CHAPTER 1. INTRODUCTION

Burton [8] to model the major tributary inflows of the Murray River. For the
unisite case, a periodic Thomas & Fiering [51] model will be used. Although
the approach has general application, this study will demonstrate its use by
using data from a set of catchments in the Adelaide metropolitan water supply
district.

It is envisaged that the model(s) developed will be used to assist in mak-
ing operational decisions in the following manner:

At the start of any particular month, historical streamflow data for the pre-
vious months can be used to initialize the model. A large number of possible
future inflow sequences will be generated by the time series model using Monte
Carlo simulation. The generated flow data can then be used to estimate the
flow at each river which will be exceeded with a specified probability over the
next one to twelve months as needed. These forecast flows can then be used
to make rational operating decisions.

4



Chapter 2

Data Analysis

2.L Introduction

The practice of stochastic data generation has, at its core, the development
of a data generation model which will produce replicates of time series data
which are equally as likely to occur in the future as the historical series.

It is not the purpose of a model to exactly replicate the historical data values,
since this would defeat the purpose of producing many sets of "feasible", al-
though distinct data sets. The use of synthetic data allows the hydrologist to
"test" proposed works over many feasible data sets, thus providing an insight
to the risk behaviour of the works.

The purpose of this chapter, is to outline the broad type of data analysis re-
quired to undertake stochastic data generation, and some of the further model
testing used to ensure that the models are adequate.

When considering the use of stochastic data generation, the overall method
of analysis must be borne in mind. Any analysis will follow the same step by
step procedure as a whole but may diverge at some point to overcome sorne
difficulty and then return later to the main procedure of analysis.

The approach to stochastic data generation is, in general, well laid out in
terms of overall requirements, although many methods may be used at each
step to perform certain tasks.

The generalized procedure is shown in Figure [2.1]. As with any engineer-
ing project, the same three basic steps are followed to achieve an efficient and
comprehensive solution. These are -

o Definition of the underlying problem.

5
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Figure 2.1: Stochastic Data Generation - Step Procedure



CHAPTER 2. DATA ANALYSIS

o Theoretical/Practical solution to the above

o Implementation of the solution(s).

The following procedure outlines the broad analysis for stochastic data gener-
ation, but will be based around streamflow generation in particular.

For streamflow generation, the problem definition will be based, on the pro-
posed use of the generated data e.g. for a proposed reservoir, theoretical testing
of various sizes can be carried out to determine the cost/reliability/yield char-
acteristics of each size. Or alternatively a periodic modelling process may be
used to interface with given operating rules to analyse an existing system.

Given the statistical nature of the analysis, the relevant data is collated and
analyzed on a preliminary basis. One of the most important steps in data
generation is to identify the underlying probability distribution that the time
series data belongs to. The reason for this being that the parameters used
during data generation are usually based on a normal distribution. If the data
is not "normal" then it will be transformed to normality by one of the methods
outlined below.

Why the need for normality ? Statistical modelling involves the summation of
terms in generation equations, and hence the summation of distributions. The
normal distribution has the property that when a normal distribution is added
to another normal distribution, then the result is also a normal distribution.
This is not the case for most other distributions, although a special case of the
gamma distribution also satisfies the property.

At the preliminary stage of the historical data analysis the same typical pro-
cedure is always followed. These steps are relatively straightforward and are
not too time consuming.

Subsequent analysis will be dependent upon the outcome of results of the
preliminary analysis and what is indicated with respect to the type of statis-
tical distribution which best fits the data.

The steps of the data analysis phase of the research may be broadly out-
lined as follows -

o Determine the basic statistics and distribution of the raw data.

o On the basis of the above results, choose a theoretical distribution to fit
the data.

o Calculate any parameters required, to transform the raw data to the
chosen distribution.

I



CHAPTER 2. DATA ANA¿YSIS

o Calculate the statistics of the transformed data'

o Standardize the data if necessary given a chosen generation model'

2.2 General AnalYsis

In general a time series may be regarded as the combination of a set of distinct

components.

For hydrologic data the components are usually identified as -

o a trend (ú)

o a periodic or seasonal component (s)

o a deterministic or correlative component (d)

o a random comPonent (e)

Thus any value ø in a data set will be the combination of the above -

x:t*s* d+e (2'1)

To generate stochastic data it is necessary to identify each component and

determine its relative significance'

The graph shown in Figure [2.2] represents a set of data known as the "Air-

c.aft Èu,sr"nger Numb"rJ' for an airline. This data illustrates all of the above

components, with a positive trend,, a strong seasonal component, a regular

d,eterministic value, and high frequency irregularities described by a rand'om

component.

obviously if the observed values were used for analysis then the larger val-

ues due to trend or seasonality would bias the true shape of the underlying

distribution and parameters, such as the mean. By identifying each compo-

nent and its associated parameters, normally distributed generated valucs can

be .,moulded" to resemble the historical data set statistically.

with any stochastic data generation problem the first process after obtain-

ing all useful data associated with the field of study under consideration, is to

siirply ,,eyeball" the data. This is best done graphically, by use of a commer-

.irliy-r*ruilable package to show, for example, histograms or time series plots

(such as Figure 12.21).

Month to month serial scatter diagrams are also useful for the following pur-

poses:

8
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Figure 2.2: Aircraft Passenger Numbers - Raw Data
u?
(o

1 2 3 4 5 6 7 I I 10 11 12 13

Year

Figure 2.3: Aircraft Passenger Numbers - Transformed Data

I
oo
¡t-

oo(o

o
e.8
oz
g8
c 'sro
U'
U)fl8

G)

oo
ôJ

oo
r

q
(o

ro
rj

o
'd

rfì
s



CHAPTER 2. DATA ANA¿YSIS 10

To give a general idea of the lag one serial correlation of the series, and to
indicate the presence of outliers.

From a computational standpoint it is useful to calculate the first three mo-
ments of a data set, namely -

o the mean r : Ti=r',

o the variance V : 52 - li'(e;-ø)2

fL

o the coefficient of skewness 7 : ry

where, r;
n
r
.9

v
I

: sample value.
: number of samples.
: mean value of the sample.
: unbiased sample, standard deviation.
: unbiased sample variance.
: sample skewness.

The mean indicates the order of magnitude of the data, the standard deviation
indicates the amount of relative spread about the mean, and the coefficient of
skewness indicates the shape of the distribution. A positive skewness shows
a longer tail of the distribution in the positive direction, and vice versa for a
negative skewness. Zero skewness indicates a symmetrical distribution. The
above graphical and computational results give the analyst a feel for the data
as well as a preliminary insight to the type of distribution which will fit the
data.

From the preliminary analysis it may be identified that the data is not de-
scribed by a normal distribution. If this is the case, the data set is transformed
from the distribution describing the raw process to the normal distribution by
some technique, and is known as normalizing the data. Figure [2.3] shows the
resultant data set based on Figure 12.21after operating on the observed data by
the In function. This is one technique to transform log-normally distributed
data to normally distributed data.

2.2.L Tbend

The analysis of any continuous random variate can only be attempted by using
sampled data over a constant or varia,ble time step. Either the instanta,neous
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value of the variate at each time step is taken or the value is integrated over
the time step. The latter is the case for hydrological data where the streamflow
yield is the total volume of water yielded in the time step.

The process describing the variate may be changing with time, and as such,
the distribution of the variate is said to be non-stationary. A time series is
said to be stationary if its probabilistic behaviour is constant over time. i.e.
the probability distribution of the series and its time structure does not vary
through time. This is a very important point, since most of the analysis un-
dertaken and derivation of models is based on the assumption of stationarity.

For some time series it may be apparent that some of the parameters of the
distribution are changing through time. It is clear that the mean of the data
shown in Figure [2.2] is increasing through time. For a hydrologic time series,

this non stationarity may be due to changing land use functions, land manage-
ment or global variations in the climate. One example is the widely publicized
greenhouse effect, which refers to the global warming of the earth due to a
build up of COz and other gasses in the atmosphere.

Trend in a statistical parameter may be modelled in a number of ways, tn-
cluding a linear, exponential or power function of time.

2.2.2 Periodicity

Hydrologic or meteorologic data will usually possess a distinct cycle due to
seasonal fluctuations in the climate.

This periodicity may be modelled in one of the following two ways -

o developing a periodic model in which the value of a variable is correlated
with the corresponding value (p) time steps previously, where (p) is the
period of the seasonal cycle.

o by removing the seasonal cycle using the following transformation.

A;'i : 
r;'i - iti Q'2)

s¿

where, ri,j
Yi'i

T;

: detrended data for season (i) and year (j)
: detrended & deseasonalized data

for season (i) and year (j).
: mean value for season (i).
: standard deviation for season (i).s;
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Figure 2.4; Air. Pass. - De-Seasonalized, Normalized Data
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where n : the number of years in the sample.

Trend and periodicity is shown by example in Figure [2.3] which shows a clear
seasonal component and trend embodied in the data, which will be removed
once the process describing the trend and periodicity has been identified. Fig-
ures [2.4] and [2.5] show the deseasonalized and detrended data for the trans-
formed aircraft passenger data shown in Figure [2.3].

2.3 Tlansforrnations

The process of transforming observed data from any given distribution to nor-
mality is an iterative one. Generally a distribution type (e.g. the gamma dis-

ç

i
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Figure 2.5: Air. Pass. - De-Trended, De-seasonalized, Normalized Data

tribution), is selected and the assumption is checked subsequently. Therefore

it is necessary to understand which distributions are most frequently encoun-

tered and the corresponding form of the transformations'

McMa.hon and Mein [36] list the following eight distributions that are fre-

quently used with hydrologic data.

¡ Normal

o Log-Normat (3-parameter Log-Normal)

o Gamma

o Pearson type III

o Log-Pearson type III

o Kritzsky-Menkel

o Gumbel

o Weibull
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The form of each distribution may be found in McMahon & Mein [36]

Each distribution has properties that describe a general shape. e.g. A log-
normal distribution is defined only for positive values and the observed data
is positively skewed.

By identifying the underlying distribution, not only is the form of transfor-
mation to normality known, but the probability of exceedance for a given
value may also be calculated.

Studies of low flow hydrology frequently use a two-parameter gamma distribu-
tion, whereas for studies relating to continuous distributions of streamflow, a

log-normal distribution is commonly found to be suitable.

The Pearson distributions follow from the gamma distribution and are in fact
specialized cases of the gamma distribution. The gamma distribution involves
both a shape and a scale parameter and by the addition of a location param-
eter the Pearson curves are derived.

Three commonly used methods for deriving the parameters of an assumed dis-
tribution to transform the data to normality, are outlined below.

These are -

¡ Parametric Transformations

o Moment Transformation Equations

o Maximum Likelihood

These are described in more detail below

2.3.L Parametric Tlansformations

This method applies when the parameters in the transformed domain are ei-
ther known or assumed, and as such the observed data is transformed via these
parameters and the resultant data set analysed by first principles.
e.g. If a variate is considered to be log normally distributed then all the
data is transformed by taking the natural logarithm. Alternatively, the shape

parameters of a gamma distribution may be known, and the observed data
transformed to a new series given these parameters. The statistical properties
of the new data set, such as mean and variance etc are derived in the usual
manner using the equations given in section [2.2].
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The following transformations are commonly used to produce normally dis-
tributed data. It is common to try several transformations, and use the one
that produces the closest approximation to normality after transformation.

2.3.1.1 Log TYansformation

The simplest transformation, and most frequently used for hydrologic data,
is the log transformation. For this case it is hypothesised that by taking the
natural logarithm of the observed data the resulting series will conform to a

normal distribution.

yr: ln(r;) (2.5)2.e

where, ír;

U;

: itå observed value
: i¿ä value after transformation

The series of y¡ is then analysed as for the observed series ø; to determine if
has been transformed to normality.

2.3.t.2 Shifted-Log Transformation

The natural extension of the above transformation, is to assume the data
belongs to a three parameter log-normal distribution, and thus be transformed
to normality using the shifted log transformation.

i.e Y; : In(x¿ - r) (2.6)

where, iDi

U;

T

: iúh observed value
: iúh value after transformation
: the location or shift parameter

Clearly, r must be less than the minimum value of x¿.

The value of r may be determined so as to ensute zeÍo skewness after trans-
formation or using the method of maximum likelihood (refer Section 2.3.3).
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2.3.1.3 Box-Cox Transformation

where, ^l

t¿

t.l

The Wilson-Hilferty transformation is based on a "like-gamma" variate, and
transforms skewed data to normality using Equation [2.10]

t,:ft(++ r)Ìå - 1+ #rT (2.r0)

16

The Box-Cox transformation is of a power type defined as -
-ì-1o,.--t - for ÀloYt- I

(2.7)

y;: ln(x;) f or À: g (2.8)

The log-normal distribution is the result of a special case of the above, and it
can be shown that -

o,s À--+o + +rn(x) (2.s)

If y; has a normal distribution, r; is said to have a "porver normal" distribution
for ì I 0. McMahon and Mein [36] calculated (l) for seventeen Australian
streams using annual streamflow data, and found the value of (À) to range
from (-0.26) to (0.70).

The value of (À) has been determined explicitly by Chandler et al [10], but is
most commonly found by choosing a value and iterating until the coefficient
of skewness of the transformed data is as close as possible to zero.

Previous work by Burton [8] using data for the River Murray tributaries found
that the Box-Cox transformation did not give superior results to using a shifted
log transformation.

2.3.1.4 Wilson-Hilferty Tlansformation

: coefficient of skewness of the raw data.
: normal variate ¡ú(0,1)
: gamma-like variate with zero mean

and unit variance.

The method is therefore -

o Standardize the observed values to produce (úr)

o Apply Equation [2.10] to produce normalized (ú¡)
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2.3.2 Moment Tbansformation Equations

Moment transformation equations relate the parameters used to describe a the-
oretical distribution to the parameters of the distribution in the transformed
domain. Here the first (m) moments of a distribution are found and equated
with the parameters in the transformed domain. Thus the parameters after
transformation may be derived empirically from an analysis of the observed
data rather than re-analysing a transformed data set.

In a paper by Matalas [37], the moment transformation equations for a three
parameter log-normally distributed variate are reproduced from Aitchison &
Brown [2] and are shown below.

Í,:A,*erp(0.552,+N")

s7 : erp(2[Si + N"]) - erp(52, + 2X")

_ erp(3Sl) - Sexp(Í2") + 2,r-W
exp(5,-15,R") - L," -

(2.r1)

(2.t2)

(2.13)

(2.14)

where, ø"
sr
^l¡
rf

: sample mean in the raw domain.
: sample standard deviation in the raw domain.
: sample coefficient of skewness in the raw domain.
: sample lag one serial correlation in the raw domain.

X,:s":
A,:

R,:

mean in the log domarn.
standard deviation in the log domain.
location parameter for the 3-parameter
log transformation.
lag one serial correlation in the log domain.
period under consideration.

Use of these equations ensures preservation of the first three moments of the
data in the raw domain.

Further equations are used for multi-variate models to transform the lag zero
and lag one cross correlations to the transformed domain.

These are given, for a time period Í as -
erp(5, q

1
(2.15)^PtQ 

-,o
erp(S| - t) erp(S2o - I)
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s
.l-=

t
szz: ¡-¡

(A) is then given explicitly as -

A:r(t _?l:r_:
.2 .2

(21) can be computed from the raw data.
(22) is found by solving the following equation 

-

18

exp(SoSoR!'o) - 1
(2.16)

eap(S| - r) exp(Sl - I)

where, ,E'o : the lag zero cross correlation between
sites p & q, in the raw domain.

,l'o : the lag one cross correlation between
sites p & q, in the raw domain.

Iütc : the lag zero cross correlation between
sites p & q, in the transformed domain.

Rp'q : the lag one cross correlation between
sites p & q, in the transformed domain.

se : the standard deviation in the
transformed domain at site p.

By inspection of the above equations it can be seen that ,9" may be found by
solving Equation [2.13]. A, & X, rnay only be found by solving Equations
[2.11] and l2.I2l iteratively.

Kite [26] rigorously analyzes the three parameter log-normal distribution and
derives a set of independent equations which explicitly solve for the parame-
ters in the log domain. Kite also produces equations to find the parameters
by using the Method of Maximum Likelihood.

The "Kite"equations are given below for any time period r.

Let (z¡kzz) represent the coefficient of variation of the distributions [X] and
[X - A] (respectively), then

rl'o

(2.r7)

(2.18)

(2.1e)

a2- (2.20)
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where

19

(2.2r)

(2.22)

(2.23)

It may also be shown that -

where, s

r
^l

s
X
A

g : [tn(zl+ t)]+

X : l,q!) -f,t"ç,3 ¡ 1¡

the standard deviation of observed values.
the mean of observed values.
the coefficient of skewness of the observed values.
the standard deviation in the transformed domain
the mean in the transformed domain.
the location parameter.

The solution technique, for any month (r), is to first estimate r, s and 7 from
the raw sample, then find t¿ and .z2 using Equations [2.20] and [2.21]. Finally,
solve for A, S k X using Equations [2.19], 12.221 k,12.231.

2.3.3 Maximum Likelihood

The method of Maximum Likelihood can be used to estimate the parame-
ters of a distribution so as to give the best fit of that distribution to a set
of observed data. The method produces asymptotically unbiased parameter
estimates which have the smallest possible variance of any asymptotically un-
biased estimator (Loucks et al [35]).

The drawback with the maximum likelihood approach is that it will not nec-
essarily produce parameter estimates for all sets of data. The method may be
described as follows -

Assume that a set of independent observations (ø1, -.. ,,rn) have been made
of a continuous random variable (X). The likelihood of making these observa-
tions given an assumed probability density function (pdf) for (X) is defined as

follows -

L(*t,...,r"19) : f,(xtlQ), f,@rlq)..-o f,(u"lØ) (2.24)

where L(*t,. . . , u"19) is the likelihood of making the observations (",,' . . ,rn)
given the (pdf) of (X) has the parameter set O and /,(clO) is the (pdf) of (X)
for a given parameter set O.
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As the observations are assumed to be independent, the probability ofobserv-
ing all of them is proportional to the product of the individual (pdf)'s. The
maximum likelihood estimate of O is the value that maximizes L(ry,,. . . , ø"lO).

For example, consider a random variable (X) which is considered to have a
three parameter log-normal distribution. Its (pdf) is given by -

f,@): ffi"*v¡fig,þ-,)- t u)'l (2.25)

where (¡rr) and (ol) arc the mean and variance of ln(r) and (r) is the location
parameter. The likelihood function is given by -

L(rr,- .- ,rnlþv,ou,r) : fIi=tÍ,(u;l¡tu,or,r¡ (2.26)

In this case it is easier to maximizeThe logarithm of the likelihood function.

i.e. ln(L) : In{fI!:tf,(rr¡ru,ou,r)} (2.27)

In(L) : D ln{f ,(n ;lp,u, ou, r)}
fL

i-1
(2.28)

(2.2s): -å h@;{zn) - n{In(on)} - +f¡r,,1', - 
r) - ttcl2

to find the maximum of h(L), the partial derivatives of ln(L) with respect to
Fyros and r are found and set equal to zero. i.e

ôlnL 1 å-
-ã":AL._rÍtn(,t-r)- Pvf :o (2.30)

ïInL n 2"-."- --'" + - ![tn(r,-r)-þuf2:00oo oy ' ol ;=,

ôlnL _ I $,ln(¿¡ - r) - ¡¿r, _ n
0r -o?21 @,-r) r-v

v t=L

(2.31)

(2.32)

From which

(2.33)

ln(r¿-r)-p;2 (2.34)

r may be found by substituting Equation [2.33] in Equation [2.32]. þu k ov
are then given by Equations [2.33] U 12.341.

r,: *imç,, -,¡

"i__:äl
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2.4 Tests for Normality

In Section [2.1] it was noted that it is usually convenient for modelling pur-
poses for the generated data to be normally distributed with zero mean and
unit variance (i.e. ¡ú(0,1)). This can be achieved by applying a suitable
transformation to the raw data. Before transforming the data, the underlying
distribution of the data needs to be determined.

No one method or test is available to determine the distribution of the sample
data explicitly. One common process is that a distribution is assumed, the
data is transformed and the assumption checked by a relevant test of normal-
ity on the transformed data. This raises two further questions; firstly, which
distribution to try, and secondly, which test to use.

The question of distribution type can be found in previous literature or experi-
ence. For hydrologic data, the log-normal, gamma or log Pearson distributions
have frequently been found to provide reasonable results.

The question of testing is more complex. One of the simplest and most widely
used testing method is to determine if the coefficient of skewness of the trans-
formed data is significantly different from zero. This is based on the symmetry
property of the normal distribution.

Many authors in this field when publishing work based on actual data, present
the work with the transformation type assumed or give details of already well
known transformations applied to their data, with little or no rigorous testing.
In fact little work has been compiled into the testing of distribution type.

Three methods were used in this study -

o Testing that the skewness is not significantly different from zero

o The Shapiro-Wilk test for normality.

o Use of Quantile-Quantile plots for each data set.

Initially most emphasis was placed on the first method, with the remaining
tests used to support the assumption of distribution type and subsequent trans-
formation.

2.4.L Skewness Test for Normality

In this method, the coefficient of skewness is calculated for the transformed
data and then tested using the standard error of estimate (S.E.E.).
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The equation given in Matalas [37] for the (S.E.E.) on thè coefficient of skew-
ness is given as -

S.E.E.: 6N(¡r - 1)

(N-2XN+lXN+3) (2.35)

where (N) is the number of observations.

The significance level chosen in this study was 5To. Assuming the sampled
coefficient of skewness is approximately normally distributed, it is not consid-
ered to be significantly different from zero if it lies within 1.96 standard errors
from zero . The null hypothesis of normality can therefore not be rejected.

2.4.2 Shapiro-\Milk Test for Normality

The Shapiro-Wilk Test is shown by Pearson [a1] to provide the best test for
departure from normality.

This quantitative test attempts to weight the observed order statistics against
the corresponding normal order statistics. Shapiro and Wilk [47] give the
weighting factors on the basis of the best linear unbiased estimate of standard
deviation, given as - 

h

ã :Db¿,n(*n-¡+t - x¡) (2.36)
i=1

where, o
o

h

ÍD;

bi,n

The following description of the test is based on Pearson [a1].

If the observed order statistics, íD; a,Íe plotted against the corresponding ex-
pected normal order statistics, ((f) then the best linear unbiased estimate
of the slope of this regression line is, apart from a normalizing constant, the
estimate (,â) of the population (ø) given in equation [2.36].

population standard deviation.
best estimate of the sample standard
deviation.

!(n)orl(n - 1) according to whether (n)
is even or odd.
iúh sample value.
weighting factor for the i¿¿ normal order
statistic given a sample of size (n).

The test statistic (W) is proportional to the ratio of the square of an esti-
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mate based on this slope to the usual mean square estimate, given as -

23

w:W ex:)Di=t(t¡ - E)'

the coefficients ø¿,,, are given in Table [15] of Pearson [41] and are the normal-
ized coefficients ó;,,, of equation [2.36].

1.e Do?,n: I

Note that (on-i+r,n : -ai,n)1so that the numerator of the W-ratio can be
written as -

h

,q' : {Dø,¿,n(íDn-;+t - rr)}' (2.3S)
i=1

Once the W-statistic has been computed for a data set then Table [16] of
Pearson may be used to test the significance.

The drawback of this method is that exact values fot a;,n are only available for
n : 20, and approximate values for up to n : 50.

2.4.3 Quantile-Quantile Plots

The third test, is the use of quantile-quantile plots. This method is graphical
by nature and thereby involves a physical judgement rather than an empirical
test. Here, the order statistics are plotted against the corresponding normal
order statistics on normal probability paper. The resulting line of best fit
through the points should be straight if the assumption of normality for the
transformed data proves correct. Sample plots are shown in Appendix [D].

2.5 Robust Methods

One approach that, in principle, lends itself to the estimation of statistical pa-
rameters in a more complete manner, is by the use of a field of statistics known
as robust statisti,cs. The field has been largely unrecognized by hydrologists
with most literature being found'in statistical texts with the case studies and
data used being derived from the fields of economics or medicine.

Robust statistics tries to overcome contamination problems within data sets
being due either to gross errors (outliers) or discontinuities. i.e. if 19 out of
20 points lie on a straight line and the 20th point is far from that line, then a
linear regression will weight the outlier with as much importance as all other
19 values. A robust analysis will more heavily weight the correlative values.
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Hampel et al [20] states that robust statistics is concerned with the fact that
many assumptions commonly made in statistics (such as normality,linearity
or independence) are, at best approximations to reality. Any method'of deal-
ing with the above form of problem such as subjective rejection (of outliers)
or any other formal rejection rule belongs to the field of robust statistics in a
broad sense.

Hampel et al [20] defines robust statistics as -

A body of knowled,ge partly formalised, into 'theories of robustness"
relating to ileaiations from idealised, assumptions in statistics

and outlines the following areas that Robust Statistics may try to answer.

¡ Is the data unanimous in its message, or do different parts of the data
give different impressions.?
In this case, what does the bulk of the data infer ?

o Which minorities behave differently and how ?

o What is the influence of different parts of the data on the final result ?

o Which data are of crucial importance, either for model choice or for the
final results, and which should be examined with special care ?

o How many gross errors can be tolerated by the design ?

Huber [23] is accredited with developing some of the modern techniques for
robust analysis. Three of which are as follows, but not expounded upon here.

¡ Minimax approach

o Capacities approach

o Influence functions approach

The reader may further investigate such methods by reading Huber's text.
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Model Analysis

3.1- f ntroduction

The use of stochastic data generation models has evolved from the early years
of this century when Hazet in (191a) attempted to produce a synthesized series
of streamflow data by concatenating the annual yields for fourteen streams in
the U.S.A.. Sudler in (1927) extended this theory by not only concatenating
a series of a given length but choosing at random, (via the shuffiing of cards)
each sample within the series and repeating the exercise a number of times
until a desired length of record had been formed. The purpose of such models
was to produce a longer data sequence than the original one. This was required
for use as an operational tool to test proposed works.

Whenever contemplating the use of data generation techniques, the end re-
sult must always be borne in mind. The statistical properties required to be
reproduced by a particular model will greatly influence the type of model cho-
sen and the degree of complexity required.

In the last quarter century the techniques of stochastic data generation have
come to the fore in hydrologic analyses, with much documentation on the data
analysis involved, and types of models that may be applied. In the nineteen
fifties Hurst extensively studied the Nile river and postulated the now well
known Hurst phenomenon of increasing ranges within data sets as the length
of records increase. In the sixties Matalas was credited with progressing data
generation into a new era with work involving regionalizing of parameters and
multivariate techniques. In the seventies and eighties the advent of progres-
sively superior digital computers has allowed these techniques to flourish and
be used as a matter of course.

This chapter will outline the common types of models used for data gener-
ation. These models may be used for any form of continuous variable, but

25
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subsequent discussion will be illustrated using streamflow data.

Note also, that the models assume, except where noted, that the data is nor-
mally distributed.

Since, not all synthetic generation requirements are identical, a number of
models have been developed, or more generally extended from the earliest
mathematical models. These requirements may be based on the time period
used or the number and type of parameters that the hydrologist wishes to
preserve in the generation process.

3.2 lJnivariate Models

Univariate models are concerned with the temporal characteristics of a single
time series. The models try and describe such characteristics based on some

serial correlation with an event that has occurred previously. These models
form the foundation of stochastic data generation and embody all the principles
necessary to further develop the theory to higher order cases.

3.2.L Autoregressive Models

The simplest and most commonly used model is a first order autoregressive
model known as a Markov model. Markov (1856-1922) was a Russian math-
ematician who postulated that the outcome of a trial is somehow related (or
dependent) upon the previous trial(s).

Hydrologically this seems intuitive as a high monthly streamflow is more likely
to be followed by another month of high streamflow, or a dry month followed
by another dry month rather than a very wet month. This process describes
the persistence in hydrologic data, and it is this persistence that forms the
basis of stochastic data generation. In fact it is the prime characteristic to be
preserved in the generated data.

The Markov model in its simplest form is given as -
Ut: Qa;t * et

At
o

: generated value for time period (t).
: autoregressive parameter, estimated

from the sampled data.
: known value in time period (t-1).
: random normal variate.

Ut-t
€¡

where,

(3.1)
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In order to preserve the mean and standard deviation , as well as the time
structure of the series, the above equation takes the following form -

Ut:U*p{y;t-A)*oo | - p?(,,) (3.2)

where, v
ov

Pt

€¡

Ut

Mean of normalized values.
standard deviation of normalized
values.
lag one autocorrelation coefficient of
the normalized values.
random normal variate.
value of generated series in time
period (t).

The above model is known as a lag one Markov model or a lag one autore-
gressive model. This type of model may be applied to a univariate case of, for
example, annual streamflow yields.

The intuitive approach developed above may further be extended to an au-
toregressive model of order (p), and is denoted as an AR(p) model.
The model is written in general as -

Ut : U * Or(y¿-r - !) +... t Ar(yt_p - y) * e,

Or alternatively as -

(3.3)

p

ut:u+Do¡(st-¡-!)*et (3.4)
j=l

where, Oj : the jÚå autoregressive coefficient.
with other parameters defined as per equation [3.2]

The coefficients (Õ¡) may be found either by the method of moments or by
maximum likelihood. Salas et al [a3] gives a more complete description of solv-
ing for the autoregressive coefficient. (Oo) as well as step by step procedures
for AR(p) models, both annual and multi-period.

Thomas and Fiering [51] further extend the above approach to introduce a
seasonal component. For this case, the model parameters are updated on a
periodic basis and the persistence is described by the serial correlation coeffi-
cient between peliods in lieu of a constant autocorrelation.

A periodic AR(1) model is given as -

At : Ut I br(Yr-t - at-t) + o, (3.5)r - p?(,,)
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where,

where,

bt: PtLct-t

generated value in time period (t).
mean of normalized values in
time period (t).
standard deviation of the normalised
values in time period (t).
lag one serial correlation coefficient

between time periods (t) and (t-1).
normal random variate in time period (t)
regression coefficient between time
periods (t) & (t-1).
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(3.6)

Ut

Ut

O¿

Pt

€1

bt

In the above type models it is possible to replace (e¿) with a value that will

introduce a skewness into the generated data similar to that of the historical

d,ata i.e. transform (e) instead of (r;)'

For example, using the wilson & Hilferty transformation, the procedure is

as follows -

o Generate all (e¿) values

o Apply the following equation to the above values to produce like-gamma

values -
2

e.r,r: 
7

(1 +ä-$l' (3.7)2

"l

where, €¿

€1,t

'l

: norlnal random variate N(0,1)
: like-gamma variate G(0,1,'Y)
: the coefficient of skewness of e",r

o Use the (et,t) random variates in the model

This can be used to produce a series at(t :1, . . . , n) with a specified coefÊcient

of skewness. McMa-hon & Mein [36] cite that the procedure breaks down for

large values of skewness and autocorrelation'

McMahon & Mein [36] also suggests two methods of generating periodic data

such that both the annual and monthly streamflow characteristics are pre-

served. These are -
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o the two tier model - where monthly and annual data is generated with
the monthly data proportioned to sum to the generated annual value.

o method of fragments - where only annual data is generated and then
distributed to each month by choosing at random a "fragment" which
is the fraction of monthly to annual yield for one of the observed yearly
data sets.

Salas et al [a3] and Box & Jenkins [6] extensively discuss properties and solu-
tions of autoregressive models.

3.2.2 Autoregressive Moving Average Models - ARMA

The autoregressive models outlined above may be generalized to represent a
wider range of time series by the inclusion of moving average terms.

A moving average model considers the magnitude of the stochastic compo-
nent in the previous time step(s) in generating the next value.
If [Y] describes a normal variate and lZl is defined as

where, al

U;

llv
oy

þt-
Y; - lly

oy

: normalized and standardized sample values
: normalized sample values.
: mean of a;.
: standard deviation of. y;

A o€t-n

(3.8)

(3. 1o)

then [Z] may also be described as a series of weighted random variables -
zt : €t * O1e1-1 * @2e¡-2 t ". (3.9)

where, O, : the j¿¿ moving average parameter.

A moving average process of order (q) limits the above series to (q) weighted
terrns -

zt: €t - Or€r-r - @zet-z
q

zt:€i-D@jet-i (3.11)
j=l

Combining equations [3.a] and [3.11] and using the standardized variate lZ) an
ARMA model is fully described as -

pq
zt:ÐQ jzt-j - I @¡e¿-¡ ! e¡ (3.12)

j=l j=l
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for which p + q f 2 parameters must be evaluated from the observed data.

The reader is referred to Salas-et al [43] and Box & Jenkins [6] for an ex-

tensive discussion of the estimation of parameters for ARMA(p,q) models as

well as "goodness of fit" tests associated with these models.

3.2.3 ARIMA modelling

A model which is commonly referred to in the literature, and extensively noted
by Box & Jenkins [6] is the autoregressive integrated moving average model.
The ARIMA model is a more general case of the ARMA models outlined
above. An ARIMA model is used when the observed data is found to be non-
stationary.

A method of transforming a non-stationary series to a stationary series rs

by the use of ilifferencing. This, simply stated is the transformation of the ob-
served series by calculating the "difference" between adjacent observed values
(d) times. Usually (d) only needs to be (1) or (2). Thus the series is said to
be "integrated" and the transformed series is used for analysis in an ARMA
model in the same way shown above.

3.3 Multivariate Models

The models outlined in section [3.2] are based on a single variable, and are
applicable to systems that may adequately be described by a single process.

In reality though, the design or ongoing operation of many real systems will be
dependent on many components and will require a concurrent view of all com-
ponents for decision making. For example, the Adelaide Metropolitan water
supply system has ten reservoirs and associated catchments divided into two
distinct distribution systems and augmented by three major pipelines from the
Murray river. Such systems are geographically large and may involve several
hydrologic and water use series.

For multivariate modelling, not only is the time dependent nature of a se-

ries preserved but also the spatial dependency between variates.

The principles and theory outlined for univariate analysis is directly appli-
cable to multivariate analysis although an increased order of magnitude in
effort is required to solve for the model parameters.
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3.3.1 Multivariate Autoregressive Models

Two papers stand out in the literature as pioneering work in the field of mul-
tivariate stochastic data generation. Both papers were authored/co-authored
by N.C. Matalas. In Matalas [5] a method is proposed where the statistical
properties of a gauged streamflow site are used in conjunction with the gen-
eralised relationships of hydrological characteristics at an ungauged site. The
theory for this multiple regression technique is not shown here as all sites for
this study were gauged.

What is regarded as being the founding work for multivariate data genera-
tion is embodied in the second of the two papers by Matalas [37].

The technique outlined in this paper ensures that the means, standard devia-
tions, lag one serial correlations and lagzero cross correlations of the historical
series are reproduced in the synthetic series.

From section [3.2.1] it is recalled that the Markov process or lag one autore-
gressive model is defined as -

Ut:UIpr(yr_t-a)Iou | - p?r, (3.13)

where the parameters are defined as for equation [3.2]

For a multivariate case the cross correlations between historic events needs
to be considered with the estimates (g), @ò and (p1).

The simplest method of generating multivariate data is based on a weakly
stationary generating process defined as -

lzû: [A][zt-r] + [B][€r]

: an (n * 1) vector of generated values
in time period (t).

: (n * n) matrix to preserve time &
spatial characteristics of the data.

: (n * n) matrix similar to [A].
: (n * 1) vector of random ¡f(0,1) values

the model.

(3.14)

where, lztl

tAl

tBl
[.t ]
n
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Note that a typical element of the vector lZ¡l is generated from an equation
of the form

zi(t) :io¡,¡z¡(t- 1) + iu,,¡r¡1t¡ (J.15)
j=l j=l

which is similar to a regression equation with correlated residuals, where the
elements of the [A.;] matrix¡ ai,j are the generalised least-square regression
coefficients.

For the case of two stations, expansion of equation [3.14] shows the depen-
dence of each component in the generated [Z] matrix on the elements of the
correlative matrices, [A] & [B].

,l : at fil_1* at,zzl_y t h,tel * h2e? (3.16)

zl : a2¡z!-1* az,zzl-¡ * bz¡el * bz,ze?

the normal, standardized generated value
in time period (t) at site (i).
the pth row and qúä column, element of the

[A] matrix.
the pth row and q¿ä column, element of the

[B] matrix.
the random generated value
in time period (t)

(3.17)

where, zl

ûp,q

br,o

ei

The [A] and [B] matrices are estimated in a manner similar to the (O) or (O)
coefficients in a univariate model, such that the temporal and spatial charac-
teristics of the historical records are preserved in the generated data.

Given that [Z] is in standardized and normalized format, by postmultiply-
ing both sides of equation [3.14] by IZ;IT and taking the expected value, a
solution for the [A] matrix is given as

lMrl : [n][vto] (3.18)

Rearranging gives

lAl : [Mr][Mo]-l lr.ro¡
where

lMol : E{lzùlzrlr} (3.20)

[M6] is an (n*n) matrix whose elements are the lagzero cross correlations for
a site (p) rvith site (q).
and

M1 : E{[zùlzr_lr] (3.21)
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[M1] is an (n * n) matrix whose elements are the lag one cross correlations for
site (p) with site (q).

The [M6] matrix is symmetrical about the leading diagonal, with leading di-
agonal elements equal to (1).

The [M1] matrix is not necessarily symmetrical and has leading diagonal el-
ments equal to the lag one serial correlation at site (p), (p :1,..,n).

By post multiplying equation [3.la] by lzrlT and taking expected values the
solution for the [B] matrix is obtained.

lBllBlr: [Mo] - [Mr][Mo]-1[Mr]r (3.22)

3.3.2 Solution for the B Matrix

The solution of [B] given that [B][B]t : [C] is a symmetrical matrix, does not
possess a unique solution. Two methods are available to provide a satisfactory
solution for [B].

The first method uses a technique of upper triangulation and subsequently
solves for the lower triangular components by use of algebraic equations, and
is suggested by Matalas [37], based on a method by Harman [21]. The second
method is based on a principal components approach, deriving an explicit ma-
trix solution. Both methods are outlined below -

3.3.2.1 Solution of the B-Matrix by Upper Tliangulation

The method adopted by this study, which is outlined below is taken from Kot-
tegoda [29].

The method assumes that the [B] matrix is lower triangular.
If [B][B]r and [C] are written in full -

ór,r 0 0

bz,t br,z o

ó¡,r b",z

0

0

0

ór,,

0

0

bn,t

bn,z

bn,s

:

bn,n

[B][B]T:

bn,t bn,z

ós,s

bn,n 00
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ct,t ct,2

czJ c2,2

Cl,n

C2,n

lcl :

Cn,! Cn,2 Cn,n

The diagonal elements are derived by -
är,1 : ("r,r)å

bz,r:("r,r-b'r,r)L

In general, for the leading diagonal

b*,* : (rr,r - b'r,r-, - b"n,*-, b'r,)*

Also, for the lower diagonal elements

(3.23)

(3.24)

(3.25)

,ll
[,f
;,1l.

í

b*,r:# (3.26)

b*,2:
("*,, - b, t ô*,t ) (3.27)

bz,z

and, in general for all remaining elements

bhi: (rr,¡ - b¡¡bx¡ - b¡,zb*,2 b¡,¡ab*,¡-r)
(3.28)

bj,j

Kottegoda [29] also derives the general solution to the (p¿å) order autoregressive
multivariate model.
In general

p

[zd:Dln¡][2,_;] +[B][e¿] (3.2e)
j=l

Note the similarity between the univariate and multivariate cases in the overall
form of the equation.

In general [NI;] represents the covariance matrix with elements correspond-
ing to the lag (j) cross correlation between two sites (p) and (q).

By post multiplying equation [3.29] by lZçilT and taking expectations.

M; :ÐA¡Mr-¡ (for i : I,2,3,...,p)
j=7

I

!

I

The general simultaneous solution being given as -

(3.30)
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Mt
Mo

[At, Ar,. . ., Ao] : lMt, M2,..., Mo

MT_, MT_" Ms

Similarly by post multiplying equation [3.29] by ÍZrl' and taking expectations,
then -

tBltBlr - Mo- Ë A¡Mî (3.31)
j=l

and [B] is found from the method shown for the AR(l) case above, for each
time period (ú)

Salas et al [a3] derive the [A] and [B] matrices for the multivariate AR(l)
and AR(2) cases, and extend the theory to an ARMA(p,q) model.

3.3.2.2 Solution of the B-Matrix by Principal Components

This second method has been utilized by Rodrigtez k Bras [7] together with
associated adjustments to define the [B] matrix if a solution cannot be found
directly.

Rodriguez and Bras outline the method as follows -
We know that there are an infinite number of solutions for [B], since equation

13.221is satisfied by any matrix of the form [B] . [D] where [D] is orthogonal,
implying [D][D]T: [I], for any such [D].

r. e. lcl : [B]tDltDlr[B]r: [B][B]r (3.32)

Now define a further matrix [P] as follows -

[P] : [Pr...Pfl]

where P¡ is the iúA eigenvector of matrix [C]

(3.33 )

The matrix [P] is also orthogonal i.e. [P][P]T : [I].

Define ("t . . . e,,) as the eigenvalues of matrix [C], and using the properties
of eigenvalues and eigenvectors, it follows that -

Ms
Ml

Mp-t
Mp-z

I
I

I

t
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[c][Pi] : Piei

Define [E] * a diagonal matrix of eigenvalues, as follows -

€1 0

tEl
0 en

Therefore Equation [3.3a] may be given in matrix form as

tcltPl : [P][E]

thus

[c] : [P][E]lPl-l : [B][B]r
therefore

lBl : [P][E]r/2
where

0

IE]

36

(3.34)

(3.35)

(3.36)

(3.37)

"l/"L/2

0 " ' .'^/"

Rodriguez & Bras state that the above procedure is limited by the algorithms
used in finding the eigenvalues and eigenvectors and that for large matrices
such procedures may result in errors or instabilities.

Even using the methods outlined above it is still possible in practice to produce
a non positive definite covariance matrix [B][B]T.

Rodriguez & Bras attribute this to data transformations or to numerical anoma-
lies, especially if the z(t)'s are highly correlated.

To overcome this problem a method outlined in Rodriguez & Bras [7] (and
attributed to Mejia & Millan, 1974) should produce positive definite matrices
as required. This method was not used in this study, but is shown for com-
pleteness.

A new [B][B]T matrix is defined as follows -
lB'l[B']r : [B][B]r + À; (3.38)

where,

l)l 0

0 ... lrl
(3.3e)lj
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and ) is the most negative eigenvalue of the original [B][B]T matrix. The
above is repeated until [B'][B']T become positive definite, but obtaining )¡
from the last [B'][B']T matrix.

Once t [B'] matrix has been found the model equation is modified as follows

1z(t) : \Mã [AZ(t-1)+ B'e(t)]

This new model preserves the mean and variance of the historical data, affect-
ing only the correlation coefficients by the following factor -

(3.40)

(3.41)

(3.42)

(3.43)

1

1*Dprtr

The degree of change may be calculated from the above and determined to be
significant or not.

3.4 Multiperiod, Multivariate Models

In the analysis of a water resource system there is a need to consider the multi-
ple components and demands of the system, but there may also be operational
decisions made over relatively short time periods. These decisions are based on
the cyclic nature of the inputs superimposed on the demands. This frequently
means that within year decisions need to be made and multiperiod models are
required to aid in such decision making.

The AR(l) model with periodic parameters is defined as -
Zr:A"Zr-t*Bre"

where, r
Z,

: the period in question.
: normalized and standardized generated

values in time period r.
: the (n x n) matrix of coefficients to preserve

the temporal and spatial characteristics between time
periods ¡ and r - L. (Similarly for B").

: an (n * 1) vector of i/(0,1) random
variates.

A"

€1

The periodic matrix parameters were derived by Salas & Pegram [44]
as follows -

A,: Mt"Ml,)-,
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B,BT : Mo,, - Mt,"Mo, Ml,,1
r-l (3.44)

1.1 t.2
T k',, T k,,
2.1 2.2

T k'," T k',,

l.n
T k",

2.n
T k',,

M¡",r:

n.l n,2 rl.nr*1" rlrl" rt ,"

where (rff ) is found by correlating the values (zi,) and (rt,,"_*) for a period
(r),for u:I...,ff-å.

Salas et al [a3] also derive the parameters for a multiperiod, multivariate AR(2)
model.

3.5 Forecasting

The forecasting of data is a natural progression of data generation. For this
case the value(s) at some lead time (/) are required to be known within a cer-
tain probability or confidence of the actual value.

The model that best fits the data is still used and a forecast found by con-
ditional expectations. Box & Jenkins show that the forecast which has the
minimum mean square error is given by -

24t) : E[z(t + I)lz(t), 
"(t - 1), . . .] (3.4b)

i.e lhe expected value of z¿ given the preceding values through infinite history.
Such forecasts are of great interest operationally and for this research will be
utilized within an optimization program used to minimize pumping costs for
the Adelaide metropolitan water supply system.

Chatfield [11] outlines and compares different forecasting models, but all quan-
titative models are based to some degree on the Box-Jenkins ARIMA mod-
elling forecasts.

The three different approaches to forecasting are

o Subjective - Using judgement, intuition or practical knowledge.

o Univariate - Based on past observations; fitting a model and then ex-
trapolating (projection methods).

o Multivariate - Based on taking observations on other variables into ac-
count. Regression methods are of this type. Also known as causal or
projection methods.
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Before choosing a forecasting procedure, it is essential to consider how the
forecast is to be used, what accuracy is required, how many variables are to be
forecast, how much data is available and how much t'lead" time is necessary.



Chapter 4

System Background

4.L Background to the Adelaide Water Sup-
ply System

The climate of South Australia is unique not only to Australia, but also with
respect to land masses along similar latitudes in the Northern Hemisphere.
This is due to the extensive ocean areas and the absence of a broad land mass

connecting the Antarctic with the tropical regions. Australia, in general does

not receive the same weather extremes characteristic of the Northern Hemi-
sphere.

The South Australian climate is described as hot, dry summers with relatively
mild nights, and cool but not severe winters with most rainfall occurring dur-
ing the months of May to August.

South Australia is by far the driest of the Australian states and Territortes
with just over 80% of the state receiving an average of less than 250 millimetres
of rain annually. Over the southern half of South Australia the main source of
rain is from showers associated with unstable moist westerly airstreams occur-
ring fairly regularly during the winter months of June to August. The wettest
part of the state is in the Mount Lofty Ranges, immediately east of the capi-
tal, Adelaide. The average annual rainfall for this area is approximately 1200

mm. The Mount Lofty Ranges encompasses almost all of the catchment area
available for metropolitan water supply. The topography of the area has a
low flat plain from the sea to the ranges of approximately 20 lem, with the un-
dulating and hilly uplands of the ranges, generally running parallel to the coast.

40
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4.2 The Headworks System

Since Australian settlement in the
lation for South Australia in the 1

land use changes and significant human impact. During early colonization the
populace had access to only rain water tanks or carting from rivers.

The increase in population in the late I saw the need to augment the prim-
itive water supply techniques, and in 186 the state's first reservoir (Thorndon
Park) was commissioned. Gradually through the years, and due to the climate
and topography, Adelaide has been required to develop a complex reservoir
and distribution network to maintain an acceptable supply of water to its con-
sumers, (approximately one million in 1990). \ryith expanding technology and
industry in post world war two, and the need for a reliable water supply, the
catchment areas could not cope with the consumer demand, and the water
supply system required augmentation further by pumping from the Murray
River.

Today, the Murray River supplies on average approximately 40% of Adelaide
metropolitan supply, and in 1982-83 the value was as high as 80%, indicating
a high dependence on this source.

The system now consists of nine metropolitan reservoirs, two major pipelines
from the Murray River, and a further reservoir and pipeline to the north used
to supplement the system. Figure [4.1] shows the area under study.

Together with approximately 8000 frrn of mains, 120 storage tanks and 48

pumping stations, the system requires a combination of experience and tech-
nological input to safely continue use without restrictions to the consumers.
The Adelaide metropolitan system can be conveniently grouped into two main
systems composed of a total of four main catchment areas.

The systems are described as -

¡ the Northern system

o the Southern system

The four catchment areas are -

o South Para system - 228 lcm2

o Torrens system - 347 lcm2

o Onkaparinga system - 45I km2

l.l.f
8dUÁ

1)
708y and the steady growth of popu-
the general area has undergone many
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o Myponga system 
- 

L24 lcmz

Figure [4.2] shows a schematic of the Adelaide Headworks System.

4.3 The Southern System

The Southern system consists of the Onkaparinga and Myponga catchment
areas with three of the nine reservoirs and one pipeline, namely the Murray
Bridge - Onkaparinga pipeline.

The reservoirs are -

¡ Mt. Bold Reservoir - This reservoir is an on-stream storage on the
Onkaparinga River and has a catchment area of 388 lcmz and a capacity
of 45.9 Gl.

o Myponga Reservoir - Situated on the Myponga River, it is another on-
stream storage with a catchment size of I24 lemz and a capacity of 26.8
Gl.

o Happy Valley Reservoir - This is an off-stream storage with no practical
catchment associated with it and a capacity of 12.7 Gl.

Pipeline -

o Murray Bridge - Onkaparinga pipeline - The pipeline is 48 lem in length
and a (66") MSCL pipe. The line transfers water from Murray Bridge
to the southern system and discharges into the Onkaparinga River im-
mediately south of the town of Verdun.

4.4 The Northern System

The Northern system consists of the South Para and Torrens catchment sys-
tems and contains the following reservoirs and pipelines. -

4.4.O.3 South Para system

¡ Warren Reservoir - The reservoir is constructed on the South Para
River, has an associated catchment area of lI9 km2 and a capacity of
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4.77 Gl. The reservoir is not strictly included in the metropolitan ar€a
and can be used to supplement the Northern system, although its major
function is to supply the Barossa Valley region to the north of Adelaide
and the Yorke Peninsula region.

o South Para Reservoir - The second of the on-stream storages built on
the South Para River, it has an associated catchment of L09 km2 and a
capacity of 51.3 Gl.

o Barossa Reservoir - This reservoir is an off-stream storage, supplied by
releases at the South Para reservoir. It to has no appreciable catchment
area, but has a capacity of 4.51 Gl.

Pipeline -

o Swan-Reach Stockwell Pipeline - This pipeline is 54 km in length and
transfers water from the Murray River at Swan Reach to the 'Warren

Trunk Main. This is subsequently discharged to either the north of the
state or to Warren reservoir.

4.4.L Little Para Subsystem

¡ Little Para Reservoir - This reservoir is situated on the Little Para
River and is the most recently constructed dam (1979) with a catchment
area of 83 lcmz and a capacity of 20.8 Gl.

4.4.2 The Torrens System

o Millbrook Reservoir - This reservoir is an on-stream storage on the Tor-
rens River with an associated catchment area of 233 km2 and a capacity
of 16.5 Gl.

r Kangaroo Creek Reservoir - This reservoir is downstream of Millbrook
reservoir and is the second of the Torrens River on stream-storages. The
catchment area is 55 lcm2 and this figure does not include the Millbrook
or upstream catchments. Capacity is surveyed as 19.0 Gl.

o Hope Valley Reservoir - Further downstream of Kangaroo Creek reser-
voir is the off-stream storage of Hope Valley reservoir. The catchment
area associated with this reservoir alone is 57 lcm2 and it has a capacity
of 3.47 Gl. This reservoir is the site of Adelaide's first water filtration
plant, commissioned in September 1977.

Pipeline -
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o Mannum - Adelaide Pipeline - The pipeline \Mas cómmissioned in 1954
and extends 60 ,trn in length from the river town of Mannum to a terminal
storage in the suburb of Modbury. The pipeline is not uniform in size
over its length.

In South Australia streamflow gaugings generally began in systems where
works were being constructed or feasibility studies made of proposed works.
Thus the extent of streamflow records follows the gradual colonization¡f South
Australia, starting with the Torrens catchment system in the late 180d:J, Onka-
paringa in the post world war one period, then the general South Para system
in the post world war/¡vo period, and in recent history the Little Para sub-
system in the late 1960/s.



Chapter 5

Results

S.L Introduction

In order to understand the difficulties associated with this form of stochastic

analysis as well as the subtleties that may arise during a practical approach

as opposed to a purely theoretical analysis, sets of hydrological data from
Adelaide Hills catchments were used to apply the stochastic data generation

models described previously.

This chapter outlines the methods adopted for data analysis and testing, as

well as the models used for data generation.

5.2 The Raw Data

As cited in Chapter [1] this research uses the Adelaide Metropolitan Water
Supply System af¡ a case study. The study is based on hydrological data appli-
cable to the region, namely streamflows and rainfall. As noted in the previous

chapter, a monthly time step model has been adopted for operational consid-

erations.

The raw data was supplied in two separate stages. Initially, seven stream-

flow data sets were supplied by the South Australian Engineering and Water
Supply Department (E.&W.S.). These data sets consisted of the estimated
natural monthly inflows into each of the respective catchments, expressed as

a volume in (Ml).

Figure [5.1] shows the position of gauging stations.
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These gauging sites are referred to as follows -

o Warren

o South Para
(at the Barossa diversion weir)

o Little Para

o Onkaparinga (At the Clarendon Weir)

o Myponga

o Torrens system (At the Gumeracha Weir)

o Torrens system (At the Gorge Weir)

48

: G.S. 505 500

: G.S. 505 501

: G.S. 504 503

: G.S. 503 500

: G.S. 502 501

: G.S. 504 500

: G.S. 504 501

Further to the above, seven rainfall data sets were supplied by the Bureau of
Meteorology, Melbourne Office. These stations were chosen because they en-

compass all the metropolitan water catchment areas, as well as their proximity
to the streamflow gauging stations.

In line with the above, these values represented the monthly total rainfall
for a given station, expressed in units of. 1/10th mrn.
Figure [5.1] shows the positions of the rainfall gauging stations.

These stations are -

o Thorndon Park

o Clarendon P.O.

o Millbrook Reservoir

o Meadows

o Myponga Reservoir

o Mt. Bold Reservoir

o Paracombe

: R.F. 023

: R.F. 023

: R.F. 023

: R.F. 023

: R.F. 023

: R.F. 023

: R.F. 023

027

710

731

730

738

734

807

Table [5.1] gives the data set length, and period of record.

Fiering and Jackson [17] give some advice and quantitative guidance on the
desirable length of historical records. In any case the hydrologist will always
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201969-1988Paracombe
701914-1983Myponga Res.

L021887-1988Meadows

751914-1988Millbrook Res

501939-1988Mt. Bold Res

1141875-1988Clarendon PO
1011879-1979Thorndon

Rainfall Stations

Little Para 1969.1983 15

661918-1983Gumeracha
1001884-1983Gorge

871898-1984Onkaparinga
511934-1984Myponga
421939-1980South Para
461939-1984Warren

Length yrsPeriodStation

Streamflow Stations

Table 5.1: Station, Length & Period of Records

use the entire period of record available, and will only be able to use that
period as a base. Thus the decision on length of record has, more generally
than not, been set.

The length of record does however give an indication as to the expected con-
fidence associated with the results.

5.3 Quality of Streamflow Data

It is commonly stated that stochastic data generation does not increase the
amount of information available, nor increase the quality of historical data.
This is not only a simple statement, but one that must always be remembered
when reviewing results.
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The streamflow yields supplied, although referred to as natural inflowS to the
catchments, are in reality reconstructed figures based on gauged values at the
respective sites, and water balance equations composed of variables that ideally
remove the human induced effects on the system. The water balance equations
for some of the sites have up to twelve variables and include effects such as

reservoir evaporation, changes in storage, volumes pumped from the Murray
River eúc.

As the individual components contain measurement and other errors, the yield
data also contains errors which influence the results to an unknown extent. In
many cases the water balance equations involve the difference of terms of sim-
ilar magnitude. In such cases the errors are magnified as a percentage of the
final estimated yield. The effect of the water balance equations is clear for
some data, such as the South Para and Warren data sets where numerous
problems resulted and these will be discussed below.

Two effects consistently lead to difficulties or infeasible solutions.-

o If, in the water balance equation the calculated inflow is negative, the
value is truncated to zero. The logic being such, that a natural inflow
cannot be negative. This has the effect of truncating the lower end of
the distribution without giving due weighting to the magnitude of the
calculated negative value.

o Secondly, it was apparent that potential outliers existed in the data sets.
These unduly biased the historical statistics, especially the higher order
moments of skewness and kurtosis.

Although a correlation of single, large events (suspected outliers) with
the rainfall data was attempted, no conclusive result could be drawn as

whether these values should be deleted from the data set. This effect is
more extensively discussed in Section [2.5] on robust statistics.

Almost all the streamflow data sets used contained some missing data, but
generally less than five percent of values for any particular month were miss-
ing. These values were replaced by the mean values for the particular month
determined from the remaining values.

To summarize the general quality of streamflow data, the Myponga data set
was the least affected by errors in the water balance equation and as such is of
good quality, the Onkaparinga and Torrens at Gorge and Gumeracha weirs are
acceptable, although since the Gorge gauging includes the Gumeracha value,
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the two data sets are at times inconsistent. The South Para set includes the
Warren values, which is to its detriment, as the'Warren gauged data is clearly
most affected by the truncation effect. Inclusion of Warren data with South
Para data will only further contaminate the sample. These two data sets can
only be described as poor and often lead to analysis problems due to large
outliers and a grossly disproportionate number of. zero yields throughout the
year due to truncation.

The Little Para gauging station has only been recording since 1968, and was
only compiled to 1984. This period of record is ideally too short for meaningful
stochastic analysis but is required as an input into the optimization program
developed for the Adelaide Metropolitan System for which the generated data
will be used.

5.4 Quality of Rainfall Data

The rainfall records were received and analysed after preliminary analysis of
the streamflow data. The analysis used was the same for both series. The
seven data sets used were of high quality, consistently producing good results.
No missing data existed in the files, nor did there seem to be any outliers.

Appendix [A] summarizes the statistical data only for the Clarendon P.O.
rainfall gauging station since similar patterns were found throughout the other
rainfall data sets.

5.5 Data Set Analysis

As cited in chapter [2] it is preferable to have normally distributed data for
synthetic data generation. The raw data may belong to any one of a number
of distributions. Using the raw data the parameters required to transform the
data to a de-trended, de-seasonalized, zero mean, unit variance, normal distri-
bution will be found.

Sections 12.3] k, [2.4] described the types of distributions that may be en-
countered as well as the testing procedures considered. Figure [5.2] outlines
the method of analysis adopted in this study. Initially the data sets were
generally overviewed, missing data identified and basic statistics calculated.
Throughout the study all parameters calculated refer to an individual month
and site. Thus a total of 7(siúes) + l2(rnontlzs) : 84 streamflow distributions
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Standardize data and
start Model Generation

Re-Analyse for ln(X-t)

Calculate Parameters by
Moment Transformations

Calculate Location Parameter
by accepted method
(i) First Principles
(ii) Loucks equation

NO

ls Coeff icient of skewn€ss = 0 YES

Perform Lag (O) and Lag ( I )
Serial Correlations
between all sites.

Plot Annual llean against Year and
Monthly llean against Month

Produce Scatter Diagnams
between consecutive months

Figure 5.2: Step Procedure for Data Analysis
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urere considered rather than considering each gauged site as a single continuous

data set.

To gain an appreciation for the type of data being used, the first four moments

of the raw data series were computed, namely, the mean, standard deviation,
coefficient of skewness and the coefficient of kurtosis. Initial data values \ryere

calculated on a personal computer with the use of the commercially packaged

program "Quattro". For such analysis, as well as preliminary monthly serial

scatter diagrams, this program ïv¿tsi adequate, although limited-

In addition to the four statistical moments computed, the lag one serial correla-

tion coefficients were calculated, giving an insight into the degree of persistence

of the monthly data. The mean and standard deviation are required for use in
a data generation model whereas the coefficient of skewness and coefficient of
kurtosis were used to investigate if the data conforms to a normal distribution
for which these values are zero and three respectively.

From the above results it was apparent that, in general, the data did not

conform to a normal distribution for any monthly data set at a particular
site. All gauged streamflow sites with the exception of Little Para produced

highly skewed values and low monthly serial correlations. The Little Para site

produced the largest serial correlations as was reflected in the monthly serial

scatter diagrams, (an example of these are shown in Appendix [C] for the My-
ponga data set, together with the transformed values; see later). It is to be

noted that the Little Para record is only fifteen complete years and as such

has not been influenced by extreme events or cycles to the same extent as the
other stations.

The statistics for the historical data at all sites are tabulated in Appendix 1'r::''

tAl.

In general the streams have high positive monthly skewness coefficients, in
the order of (2.5) or more, with correspondingly high values of coefficient of
variation, generally of the order of (1.0) to (1.5) but frequently these may rise

to values in excess of (2.0). They thus have similar characterstics to other

Australian streams. (McMahon & Mein [36])

Major streams in the Northern Hemisphere are characterised by low coeffi-

cients of variation, (generally less than 0.5) and very low coefficients of skew-

ness by Australian standards, (mostly less than 0.5) with negative skewness

common. The higher variability of streams under study (latitude - 35' S) is
also shown by McMahon to be reflected in world values where lower variation
occurs in colder or tropical regions than in temperate climates.

Jacobs [25] extensively analysed the available records for the Adelaide Hills
catchments, and obtained similar results to this study. The data sets used for
each study originated from the same gauging stations yet differences occurred
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in basic statistics at some stations which shows the high variability of this
regional data and the effect that specific values which have been included in
one study but not the other can have on statistical moments.

In the analysis it was found that the use of higher moments to identify nor-
mality is prone to inconsistencies.

As

and

the coefficient of skewness f" : Ës

the coefficient of kurtosis Ç - DLr(',-¡')'
nSa

it can be seen that as l*, - tt,l becomes larger, it has an increased effect on
the parameters. The parametric approach to statistics a,ssumes that the data
is free of outliers i.e. values which are not from the true population. If large
outliers are a part of a series in question then they may have a disproportion-
ate effect on the estimated parameters.

This, in fact, was the case for the data used in this study. Due to the large
discontinuities and coefficients of variation (o,f p,,) apparent in the data, it
l¡¡as suspected that some monthly data sets contained a small number of very
large, highly suspect values. This can be seen from the lag one serial plots
shown in Appendix [C] for the raw data, where, in some cases, the bulk of the
data is concentrated in one corner of the plot with one or two values far from
the centroid of the data.

An example of the effect on coefficients was found for the January monthly
data for Little Para, where the summation of (ø - fr)3 *as almost entirely due
to one of the fifteen values. Removal of the apparent outlier would result in a
significantly lower coefficient of skewness.

Given the sizable effect of the above values on the skewness, the coefficient
of kurtosis was affected by another order of magnitude. Due to this dominat-
ing effect on the kurtosis, it was subsequently deleted from the analysis. As
this coefficient was not used beyond the initial stages it has not been tabulated
with the other parameters.

Given that no trend has been reported in previous works published by the
E.&W.S. Department of S.A. dealing with the data supplied, or in consul-
tants' work undertaken using streamflow data from the Adelaide metropolitan

þ

I
tri

',1:
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area, no significant trend w¿ì,s expected within each monthly data set at any
of the stations.

The method of trend analysis used was to produce a time series plot of mean
annual values against time. Given the variability of the data and the length of
records it was considered necessary only to identify if any trend in the mean
was apparent and ignore potential changes in higher order moments.

The above plots were highly variable and did not indicate any definite trend.
A, t-test was performed on the annual mean values to test for statistical signif-
icance. The null hypothesis was that there is no significant trend.

The parameter tested was the (m) coefficient in the regression equation -

Y:mTlc (5.1 )

where, : anûual yield.
: time (years).
: regression coefficients.

the t-value is defined as mf Standard, error which has (IÍ - 2) degrees of free-
dom. This t-value was tested at the 5 percent significance level for a two tailed
t-test.

No significant trend was apparent in any of the data sets used.

5.6 Transformations

It was stated in Chapter [2] that hydrological data frequently possesses char-
acteristics of a log-normal distribution. Physically this may be described
by streamflow yields only taking on positive values, and the non-linear rain-
fall/runoff characteristics of a catchment.
Therefore the above analysis was.repeated for the natural logarithms of all the
data sets.

This transformation resulted in significantly lower skewness values, (in gen-
eral below 0.5 in absolute value), and the monthly serial scatter diagrams
(Appendix [C]) indicated a higher lag one serial correlation. Using the sim-
ple test for coefficient of skewness shown in section 12.4.11, a large number of
monthly coeficient of skewness values, remained significantly different from
2e10.
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Given the tendency to normality shown by the above transformation the anal-

ysis was extended to a three parameter log-transform'
The transformed values being defined as -

y;: In(n¿ - r) (5.2)

where, U;
íri
T

: transformed value.
: observed value.
: location parameter

In the above equation, the location parameter (r) is generally negative, result-

ing in a positive shift.

Two methods outlined in sections [2.3.1] and 12.3.21 were used to identify

the (z) value for a given series.

o Parametric Transformation

o Moment Transformation

5.6.1 Parametric TÌansformation

The calculation of an appropriate shifting parameter (") bV this method is an

iterative one of choosing the distribution parameter values and subsequently

testing the transformed sequence.

Two methods were used to choose an estimate of (r) -

. an equation given by Loucks et al [35]

o systematic search.

5.6.1.1 Approximate Method using a Parametric Equation

The following equation for (r) is given in Loucks et al [35]:

t
flf n - I-g.5,:-

t1 !tn-2ts.5
(5.3)

where, 11 : the minimum observed value'
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Ío.s
&n

where, þ,
ot
Ío.s
T

: the median value.
: the maximum observed value.

: mean of the sample
: standard deviation of sample
: median of sample.
: location parameter.
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This method is very simple, requiring only three values to be sought from the
observed series to define the shifting parameter.

Given the variability of the data used as mentioned above and the simplic-
ity of Equation [5.3], the results were quite surprising. The method frequently
produced transformed coefficient of skewness values less than (0.5) in absolute
value, with small values (0.2-0.3) in the low flow months where small absolute
changes in a shift can result in significant changes to the skewness.

This result is remarkable given the data used, since for some sites the value ei-
ther side of the median, especially in the low flow months, can be significantly
different.

The approach to the formulation of Equation [5.3] seems to be supported by
a similar result derived by Sangal & Biswas [45], using only the mean, median
and standard deviation of the observed data, given as -

r : l,o.s - -, 
oZ . (5.4)

2(p" - *o.u)

By inspection of equation [5.3], it is evident that as rt * rn tends to (2 * rs.5)
the (r) value tends to infinity. This will occur for data which has a symmetrical
distribution i.e. a small coefficient of skewness. Although will not occur for a
true log-normal distribution on which the derivation has been based, but was
apparent for some of the actual monthly series used.

5.6.1.2 Systematic Search

A computer program "TRANS' was written to identify the (r) value which
produces zero skewness after transformation of a given series. The program
simply uses a trial value of shifting parameter, starting at the minimum ob-
served value of streamflow and transforms the data on the basis of this value
using Equation [5.2]. The coefficient of skewness is then calculated and tested
to determine whether it is within some predefined bounds of zero. In general
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the bounds used were (*/- 0.1), but where time allowed, bounds of (+/- 0.05)

were used.

Note that these bounds are well within 1.96 standard errors of the estimate,

which is generally around (0.6) for data sets of the size used. Of the seven

streamflow sets, five behaved well and produced reasonable values of (r) for

all twelve monthly series. The Warren and South Para sites were troublesome,

due to the high number of truncated values in many of the monthly series'

This individual method of parametric transformation is hereafter referred to

as the method o1 zero slcew.

5.6.2 Moment Tlansformation

The Moment Transformation Equations shown by Matalas [37] are given in

Chapter [2] as Equations [2.11] to [2.14].

It is to be noted that these equations have no physical significance. The sole

purpose of these equations is to produce parameters in the log domain which

when used with generated normally distributed data preserve the statistics of

the original data upon backtransformation.

The values obtained by this method for the shifting parameter (r) were far

greater than that required to produce zero skewness in the transformed data.

Srrbr"qrr"ntly the resultant values of skewness after transformation are signif-

icantly different from zero and generally greater than the value calculated for

the raw data.

By inspection of Equations [2.11] to [2.1a] the transformed standard devia-

tion is based only on the raw skewness of a series and is undefined for zero or

negative skewness values.

5.T Significance Testing

Significance testing was undertaken on the transformed data to test the trans-

formed series for normality, when data sets were transformed by first principles.

The tests used were -

o The Shapiro-Wilk Test

o Normal Probability Paper Quantile/Quantile plots (Q-Q plots)

59
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Figure 5.3: Q-Q plot, Transformed January values at Warren River

Although both of the above methods were used to test a transformed series, the
Shapiro-\Milk test was only used to validate the result of the Quantile/Quantile
plots, due to the restrictions of the ShapireWilk test outlined in Section

12.4.21. With the aid of the "S" statistically based computation/graphics pack-
age 1421, the following quantile/quantile plots for each monthly series at each

station were produced,

o R¿w data

o Log Transformed data

o Shifted-log Transformed data
(Based on a (r) value found by systematic search)

o Shifted-log Transformed data
(Based on a (r) value derived from the moment transformation equa-

tions)
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Figure 5.a: Q-Q plot, Transformed January values at Myponga River

A typical example is shown for two sites for the month of January in Figures
[5.3] and [5.a].

For the plot based on the Warren station January series, it can be seen that
the truncated values from the water balance equation have a significant effect
on the tail of the distribution, since any undefined value for the transform
[("t - t) < 0] is set to zero. This result significantly affected the low flow
months (November to April) at the Warren and South Para stations, and to a
lesser extent, the Torrens at Gorge and Gumeracha sites, and the Onkaparinga
at Clarendon site. These truncated values occurred too frequently to ignore
for subsequent analysis.

In order to overcome this problem, the original records for all streamflow sta-
tions were reviewed and the truncated values replaced with the actual negative
values calculated from the water balance equations. The reason for doing this
was to identify the underlying distribution for each series on the assumption
that the negative values were the result of consistent error in the data recon-
struction process. The following stations required replacement of truncated
values. -
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Figure 5.5: Q-Q plot, Reuzsed, Transformed January values at Warren river

o South Para

o Torrens at Gorge

o Torrens at Gumeracha

o Onkaparinga at Clarendon

The summary statistics for the revised data sets are given in Appendix [B]

The shifting parameters (r) were re<valuated using the systematic search
procedure and the quantile/quantile plots were recompiled. Figure [5.5] shows

the revised series for the Warren station in January. Comparing figures [5.3]
and [5.5] it can be seen that a vast improvement in the transformed series

occurred. Subsequentl¡ all series produced reasonable Q-Q plots-

For the Warren station, the monthly Shapiro-\Milk values are compared in
Tables [5.2] U [5.3] for the two series for raw data and a shifted log transform.

Values above 0.988 are significant at the 5To level i.e. normality may be as-

sumed.
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*
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*
*

*
rr¡*

*

t
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The above results indicate that the best fit to the underlying distribution
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0.90441.01881.02390.87110.85680.9353
Trans. data -

revised.

0.96980.97370.87890.83160.88050.8201
Trans. data -
original record

0.62790.45641.01870.9t420.73730.8776
Raw data -

revised.

0.62560.44600.89210.69240.47900.5347
Raw data -

original record

JunMryAptMarFebJan

Table 5.2: Monthly Shapiro-Wilk Values for'Warren Data - January to June

DecNovOcts"pA,rgJul

1.01681.00901.01920.95270.95260.9548
Trans. data -

revised.

0.83070.95860.99420.94810.95340.9540
Trans. data -
original record

0.95750.72220.63760.86890.89560.7776
Raw data -

revised.

0.77800.68400.63540.86800.89560.7778
Raw data -

original record

Table 5.3: Monthly Shapiro-Wilk Values for Warren Data - July to December
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is obtained using a three parameter log normal distribution using the revised
data sets. This indicates that the compilation of data at least reflects the
pattern of temporal changes of streamflow, even if the absolute values are
questionable.

5.8 fnvestigation of Fittittg Methods

Extensive work on fitting two and three parameter log-normal distributions
to hydrologic data has been carried out by Stedinger [49].
Stedinger writes - "the mean square error of estimation of selected quanti-
ties was used to evaluate the efficiency of alternative methods for fitting the
two parameter and three parameter log normal distributions. Monte Carlo re-
sults show that use of a maximum likelihood parameter estimation dominates
for fitting the 2-parameter log-normal distribution, for samples of 25 or more
log-normal variates. For the 3-parameter, standard moment method performs
best for log-normal distributions with low skew coefficients."

Stedinger goes on to say, that a good fitting procedure may be obtained by
combining the moment or maximum likelihood methods already studied for the
2-parameter distribution with some technique which provides a reasonable es-
timate of (r). Cohen (1957) essentially does this by combining the maximum
likelihood estimates for the mean and standard deviation for a known (r).

Stedinger gives a method for determining the location parameter by explicit
solution, i.e. without the need to iterate.

It is also noted that the fitting technique may depend upon what the final
result is required 1or, e.g. fitting the top end of the data or the bottom end.

The results of the above work qualify the findings and method used in this
analysis, in that a known method was used to find the 3-parameter log-normal
location parameter (r), and then the other parameters found using Maximum
Likelihood.

5.9 Summary of Tests Adopted

On the basis of the revised records, the transformation using a systematic
search approach for each data set was based on the following -

o the computed ¡ value was not more than 3ø from ¡l
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o The Coefficient of Skewness of the transformed series is within 1.96 stan-
dard errors of estimate.

o The straightness of the Q-Q plots.

o The shifting parameter z does not truncate the observed series upon
transformation.

Table [5.4] indicates the location parameters (z) adopted.

A zero value indicates that the two-parameter log transformation sufficed and
"normal' indicates that no transformation was required.

A complete tabulation for each of the data sets after transformation is given
in Appendix [B].

5.10 Modelling

The above sections describe the methods and analysis required to extract all
useful information from the data and to shape the data into a usable form for
data generation.

The following stages of data generation are distinct from the data analysis
phase, yet use the parameters identified above as input for a chosen model.
The sections below outline the models chosen in this study, and use of the gen-
erated data with respect to the Adelaide Metropolitan Water Supply System.

In Chapter [3] it was shown that either a univariate or multivariate analysis
could be used for data generation and that a multivariate analysis attempts
to preserve the spatial correlation of the hydrological processes. Both univari-
ate and multivariate modelling procedures \ryere undertaken in this study, with
each model analysis designed to produce the same performance parameters for
comparison. These models are outlined below.

5.10.1 Multivariate Model

The sample [Mo] & [Mr] matrices are covariance matrices. Theoretically [Ms]
& [Ml] should be positive semi-definite. Using practical streamflow data with
the associated and inherent sampling errors together with mathematical ma-
nipulations that may lead to round--off error, it is possible for either or both
of these matrices not to be positive semi-definite.
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It has been noted by Kuczera [31], Crosby & Maddock [13] and Fiering [16]
that if the records between variates are of differing lengths then problems may
arise with the consistency of either the [M6] matrix or the [B][B]T matrix,
thus not allowing a solution to either of the [A] or [B] matrices used in a
multivariate generation equation.

If records of unequal length are used to estimate the lag zero and lag one
covariance matrices [Mo] & [Mr], respectivel¡ the covariance estimate [C]
may not be positive definite, thereby preventing decomposition of [C]. The
problem may be overcome by truncating the larger records to the length of
the shortest of the records at the expense of discarding useful information. If
the missing data is due to the different records having different starting times
then Crosby & Maddock [13] show how [C] can be made positive definite.

Crosby & Maddock [13] refer to the above entire sample as being monotone,
i.e if we have (N) sets of continuous data, but they have differing start times
then the sample is referred to as a monotone sample.

It may be that the existence of a monotone sample causes either (or both)
of the [M6] or [B][B]T matrices not to be positive definite.

They further state that since the eigenvalues are variances in the principal
component system, some of the variances are negative. A covariance matrix
with negative eigenvalues is inconsistent. Even if [Mo] & [Mr] are consistent
and are used to define the [B][B]T matrix, the resultant may be inconsistent,
therefore making it impossible to solve for a [B] matrix with all real values.

Fiering [16] & Beard [3] have both developed techniques for producing consis-
tent estimates for the [Ms] matrix. In fact, both techniques can be used to
produce a consistent [Mo] matrix when the data sets are not only monotone
but have records missing in a non systematic way.

Crosby & Maddock show that neither Fiering's nor Beard's methods guarantee

[B][B]T to be consistent and go on to develop and apply their own method
which not only produces a consistent [M6] matrix, but a [B][B]T matrix as

well. Their method is based upon a maximum likelihood estimate developed
by Anderson [1]. This method seems to be mathematically complex and diffi-
cult to apply.

The main thrust of this study was aimed at the production of a multivari-
ate model for use a,ri an operation tool. The model chosen is described in
Chapter [3] as a multivariate, multiperiod autoregressive model of order (1),
i.e. an AR(l) model.

The matrices associated with such a model were developed for an annual model
by Matalas [37] and the derivation of matrices for the periodic case given by
Salas et al [a3].
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This model is given by the equation 13.421

lZ¡l: [At][zt_r] + [Bt][et] (5.5)

where [A¿] and [B¿] are given by equations [3.43] and [3.44], and for lag one
are given by -

[Ar]: lMr,rlÍMo,r_rl-t (5.6)

and

larllBrl' : IMo,rf - [Mr,r]lMo,r_rf-LlM1,r1r (5.7)

êt: a vector of N(0,1) random variates

The computer program developed for this model is known as "GENESIS'.

A typical analysis using this method involves taking the historical data sets of
a given length, and firstly computing the historical statistics and then trans-
forming the data to normality given a user-defined command.

The generation equation is given as equation [5.5] above, based on standard-
ized, transformed values. These values must then be "shaped" to resemble the
historical form by "backtransforming" the generated data, which is simply the
reverse analysis of the data transformation sequence i.e. (for a three parame-
ter log transformation)

Ut: Ft * oút

tt: est + Tt

: value in the log domain for time period (t)
: value in the raw domain.
: individual generated value.
: location parameter
: mean of yt .

: standard deviation of y¿.

(5.8)

(5.e)

where Ut

T¿

Z¡

T¡

llt
O¡

5.10.1.1 Solution of the ttAtt matrix

This section describes the problems encountered with solution of the [A] ma-
trix when using data for six streamflow sites and one rainfall site. It was found
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that in this study a solution for either of the [,4.] or [B] matrices was not always

defined.

The following two problems were encountered -

o the [M6] matrix is singular

¡ the [M6] matrix is close to singularity.

For a multiperiod, multisite model as adopted, there needs to be an [A¡] and a

[B¿] matrix for each time period (t). This increases the probability of failure as

the model will only require one of these matrices to be undefined to fail. Also,

it can be shown mathematically, that as the number of stations increases, it
becomes more likely that the [Mo,t-r] matrix will be singular. This results in

[Mo,t_r]-l being undefined, thus no [A¡] matrix can be found. This implies
that the model has an upper bound on the number of stations for effective use.

The second problem is where an [M6,¿-1] matrix is close to singularity. Here,

the problem is of more concern as it can easily be overlooked during the model
identification stage, although the final result will still be in error. When the

[Mo,t-r] matrix is close to singularity then one or more of its eigenvalues may
be very small. (In the order of 1/100th or 1/1000th of the remaining eigenval-

ues.) This has the effect that some elements of the inverted matrix are of the

order of 100 or 1000 times the remaining elements.

For the multisite model adopted, when these elements are used to define the

[A¡] matrix, the values in corresponding positions in the matrix are very large.

Therefore, the [A¿] matrix may well be defined, but when used to generate data

it produces values 100 or 1000 times the order expected in the log domain. Sub-

sequent backtransformation from the log domain to the r¿u domain requires

the exponentiation of these already very high values, resulting in a computer
overflow.

For the analysis undertaken in this study the above problem occurs with the

simultaneous use of the Warren and South Para data sets or the Gorge and

Gumeracha data sets within the same multivariate model, due to the high
cross correlation between pairs of stations.

Ideally the elements of the [A] matrix should be bounded bV (+/-1), for mean-

ingful data generation. Thus the elements of the [A] matrix should be checked

upon computation for the above effect.
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5.LO.L.2 Solution for the 6(Btt matrix

Similarly to the previous section the description below pertains to an analysis
using all streamflow sites.

Once any problems of defining the [Ä.¿] matrix have been overcome, then at-
tention can be turned to the inevitable problem of defining the [B] matrix.
The method used to solve for the [B¿] matrix as shown in section [3.4.1] fre-
quently leads to individual elements of the matrix being undefined. Again,
the use of a multiperiod model magnifies the problem because of the increased
number of matrices to define.

Lack of definition arises in this case since elements on the leading diagonal
involve the square root function applied to the manipulation of various lag
zero and lag one correlation components. This may lead to a negative value
which häs no real root. Subsequent calculations to define off diagonal val-
ues require the ill-defined diagonal value to be used, further complicating the
problem.

For such cases offending elements were set to zero, so as to produce a so-

lution. The [B¡] matrix only affects the stochastic component of the model,
and this prôblem was not considered too significant for the end result. The
number of occurrences of the problem needs to be checked by inspection of the

[El6] matrices to gain an idea as to the extent of the problem.

The above action seems reasonable, given that the [B¿] matrix is arbitrarily
defined as lower triangular (in lieu of upper triangular, or the use of principal
components to solve for the [B¡] matrix). In the generation of a new vector
of flow values, the first value in the vector has only one component in the

[B¿] matrix contributing to the solution, yet the (iúh) value has the summation
of (i) stochastic components. Considering that some random component (q)
may occur in any position of the (e) vector, then whether one value or n values
are used should not be too significant as there is equal probability of a sum of
these terms equalling zero. As long as each row of the [B¿] matrix has at least
one non zero value, the desired result should be produced.

5.LO.2 Comparison of Models in Generation & Fore-
casting

It has been shown that difficulties have occurred with using a large number of
stations as well as data with questionable reliability. Does the result affect the
viability of the particular model or not ? i.e. should more work be undertaken
in this direction or should some other method be used ? To evaluate this we
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need to know how well the model can behave, and between what bounds and
under what circumstances.

Given the above results and conclusions formed during the study it was de-
cided to take the best of our data and models and to try to forecast better
streamflows than those obtained previously.

As discussed, a multiperiod, multivariate model becomes unstable as its size
increases. Also interdependence of data can result in mathematical inconsis-
tencies.

To avoid these problems a five station model was adopted using only one
streamflow site from each river system together with one rainfall station.

The following sites were chosen, for reasons of data quality and geographic
position -

o South Para

o Myponga

o Torrens at the Gumeracha Weir

o Onkaparinga River at Clarendon'Weir

¡ Millbrook Rainfall Station

The reason for choosing the Millbrook rainfall station rather than the previ-
ously used Clarendon P.O. station was that Millbrook is centrally located and
its record length encompasses the concurrent record length of the streamflow
sites. Also, all rainfall sites have good quality data and similar characteristics.

As noted previously, Crosby & Maddock [13] cite that the problem of ma-
trix inconsistency is less likely to occur by using a concurrent data set. As
such the records for the above stations were truncated to their concurrent data
period, of 1939 to 1980. This is still a reasonable length to use for our purposes.

Using the above data records the same procedure to determine model pa-
rameters was completed i.e.

o Find the location parameter for each site and month for a 3-parameter
log-normal distribution.

o Decide if the above parameters are reasonable and alter if required.

o Determine the coefficients for the multisite model using the above and
then use the model to forecast data.
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Table [5.5] shows computed for each site and month

given i4 t't. f"U t concurrent length of record (1939-

Ioao¡.' The resu that the streamflow data does in

fact conform to a stationary process, as the parameters are not too different

between the two data records.

The data and subsequent parameters computed were in fact found to generate

data well, with good- 
"orrerporrdence 

between generated and historical statis-

tics. Tabies [5.6J & [5.7] shãw how well the model preserves the moments of

each distribuiio' drr.ìrrg g"rreration mode- The results are for the Onkaparinga

streamflow station and are the summation statistics based on a five site mul-

tiperiod model where eighty replicates of eighty years of data were generated'

r.ut" [5.6] has the location parameter determined from a zero sleew approach,

*h"."u,, tr¡t" [5.7] has the location parameter determined from Matalas mo-

ment transformati,on equations .

comparing the generated rrs historical values shown in tables [5.6] and [5'7]

girr"n t*oãiff".Ãt procedures for transforming the historical data, it can be

Jeen that the first túree moments have been fitted by the moment transforma-

tion equations better than by the zero skew method, although the zero skew

methoã still fits the data well. This is not surprising since the moment trans-

formation method is designed to specifrcally reproduce the values for the first

three moments of a distribution.

comparison of both the median statistic and percentage zeto value, indicates

that the zero skew method has fitted the historical distribution better as it
has replaced the lower end of the distribution more correctly than that of the

moment transformation method.

Given that our most critical operating stages are during' or a result of, the low

flow periods then fitting the lower end of the distribution is of more importance

here, than particular values of distribution moments'

For the data used the location parameters could not just be set Io zero when

using moment transformation equations, as suggested by McMahon & Mein

t36]if high percentage zero values are encountered, as this would result in a

small or nil p.r".nta!" zero value being generated. This simply is a result of

the data being used for this studY.

The reason for showing these tables when comparing forecasting models is

to indicate that the uuitity of a model to reproduce sample statistics when

used for generation is not a good indication of its ability to perform when

forecasting. This places in perspective the difficulties that lie ahead for this

form of hydrologic analYsis.
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5.L0.3 K"y Station Approach

As noted in Sections [5.10.1.1] & [5.10.1.2] difficulties were encountered with
the solution of the [A¡] and [B¿] matrices given inconsistency or near incon-
sistency.

The reasons for this are embodied in the time structure of the data itself and
in particular for the data used for this study given the compilation procedure.

For the analysis undertaken in this study the above problem occurs with the
simultaneous use of the Warren and South Para data sets or the Gorge and
Gumeracha data sets within the same multivariate model, due to their inter-
dependence.

The above case highlights that a "key-station" approach may be appropri-
ate where correlations are high. i.e. remove one of the offending sites from the
multisite model and subsequently correlate the transformed flows at this site
to the transformed flows at another " lcey site" .

5.LO.4 -White Noise Analvsis

One of the major assumptions made when using the approach adopted in this
study is that the processes describing the variants are stationary (or at least
weakly stationary) and that the model parameters are calibrated on data be-
longing to a normal distribution. If either of these two assumptions are broken
then data will not be generated in the raw domain to mirror that of the historic
data.

The question may then be asked, how do we determine if the above two as-
sumptions are held ? (and if not, what is the degree of difference in the answer
?)

In Section [5.5] it is described how the original data was tested for trend,s ev-
ident, and that no statistically significant trend was found in the lower order
moments. This is one way of indicating that the data is at least weakly station-
ary, yet gives no indication that both assumptions hold together throughout
the analysis.

One method at our disposal is to analyse the white noise component of the gen-
eration equation. Here, the calibrated model was taken, (i.e. given [Ar] &[Br] V(t)
and the values for [X¿]&[Xt-r] over some period of the historic record are used
in the following rearranged equation to compute the white noise components
at each site for each time period.

I
il''¡

1

þ
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€t : [Br]-r llztl- [At][zt-r]] (5.10)

The data used for this analysis was the period 1940 to 1980 for the sites below

o South Para

o Myponga

o Gumeracha

o Millbrook R.F. station

The epsilon values (q) were computed at each site, for each month and year

over the above period. These (e;) values represent a set of random components

required to produce perfect forecasts. If the analysis of these values is such

that they may be able to be produced by randomly sampling an N(0,1) distri-

bution, then we can confidently predict that the model will produce reliably
generated data.

The following tests were used to analyse the q values at each site -

o Quantile-Quantile Plots (Refer Figure [5.6])

. Q-Q Plots of e¿ values os corresponding transformed data (Refer Figure

[5.7])

o Histograms

¡ Time Series Plots

o Lag 0 & Lag 1 Covariance Matrices

The lag zero and one covariance matrices indicated that the epsilon values

were in fact independent of serial and spatial correlation.

All other graphical plots were easily interpreted as the epsilon values being

derived from an N(0,1) distribution.

Thus it may be concluded that the type of model and data used does con-

form to its base assumptions and that the calibration of the model has been

achieved such that meaningful generation results will occur.

77
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5.10.5 Univariate Model

During the development of the multivariate model, it became evident that a
multivariate model had definite shortcomings as well as being time consuming

and possessing a high chance of failure for the operational component of this

study.

A far simpler approach was initiated for comparison with the multivariate

model to determine if the increased effort required was justified. Thus a uni-

variate model was concurrently developed. The model adopted by this study

\ry'as a periodic Thomas and Fiering model. See section [3.2]

The generation equation is reproduced here together with the necessary trans-

formation.
ut: ut + nrft@r-r - yL) r ot r - p7G,) (5.11)

where
At: In(u - rt)

: Mean of normalized values for
time period ú.

: standard deviation of normalized values.
: lag one autocorrelation coefficient of

the normalized values.
: random normal variate.
: value of generated series.
: flow value in the raw domain.
: location parameter for a

three parameter log transformation.

(5.12)

where, At

oy

Pt

€¿

Ut
î¿
T¿

A periodic model was chosen to be in line with operational requirements, with
forecasting of data a priority, rather than extensive lengths of continuously

generated data. The computer program developed for this purpose is known

as "SINGEIv1'. This model is straightforward in development using the same

principles, procedures and parameters from the data analysis phase as for the

multivariate case. No major problems occurred in the development of this type

of model and it has proven to be very successful in application.

5.10.6 Univariate Generation and Forecasting

Generation and forecasting was undertaken using both parametric and mo-

ment transformation approaches to parameter estimation.

It was generally found that the moment transformation equation approach,
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although physically irrelevant, produced superior results for the generation of
monthly data sets of a given number of years, although the parameters used

from the parametric transformation approach produced reasonable data.

Mejia [38] recommends that if the coefficient of variation of the data is greater
than (0.75), then the third parameter (r) of the log normal distribution should
be set to zero and the remaining transformed parameters determined from the
moment transformation equations. This has the effect of reducing the number
of generated negative values. This was not attempted here.

During forecast mode, the Matalas moment transformations did not always

backtransform to reasonable results for individual cases, thus relying on a
parametric transformation approach to be used for forecasting.

The method of forecasting used is based upon running the generation equation
approximately (100) times using the previous months value as an initialization.
The forecast adopted was the mean or median (both were investigated) of the
(100) values generated.

The generation equation, given above is of the form -

Ut+t : C oef ficient * (yr) * Stochastic C omponent

From this it can be seen that for (100) replicates (or ideally, an infinite se-

ries) that the expected value of the stochastic component will tend to zero for
N(0,1) randomly generated values. Thus the procedure for forecasting data is
based solely on the deterministic component of the equation.

The above was proven graphically by producing (100) stochastic forecasts for
each month of the year at the Myponga streamflow gauging station, and su-

perimposing the deterministic forecasts, for various values of the yield for the
previous month.

(Refer to figure [5.8] for comparison of forecasts)

The result indicated that the deterministic line coincided approximately with
the average of the stochastic line. The stochastic line had large variations in
forecasts for small variations in initializing values due to the random compo-
nent.

Various performance statistics rilere used to evaluate the quality of the genera-

tion model. These were based upon running the model over a known historical
record and comparing the percentage and absolute differences of the forecast
values with the historical value.

The model performance was evaluated using updated monthly forecast val-
ues and compared with the use of a constant historical mean as the forecast
value. The performance variables indicate a moderate increase in efficiency for
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Figure 5.8: Comparison of Stochastic & Deterministic Forecasts

forecasts of one to two months ahe¿d in the low flow months and up to three to
four months in the higher flow months. The forecasting model gave no better
results than the unconditional monthly mean for longer forecasting horizons.

Figure [5.9] iltustrates the above result. It shows the average percentage of
forecasting error for various lead times at the Myponga site for the month of
August.

The forecasting model is better than the historical mean for lead times of
up to 3 months but no better beyond that.

The operation of water supply systems often involves using a forecast inflow
that has pTo probability of exceedance. This study was required to forecast
various values corresponding to many different exceedance probabilities.

In this case the usual testing of models for preservation of statistical moments,
such as the mean, is less important, than the preservation of the tails of the
generated distribution. This will be inherently more difficult as the variability
in magnitude of forecasting values in the tails increases.

50%

70%

90%

Exceedance Values
90%-so"L

The use of the model for making forecasts with a specified probability of ex-
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ceedance is detailed in the following sections.

5.10.6.1 One Step Forecasts

For forecasting to assist in operatioûs we need to estimate the value of a future
streamflow which will be exceeded with a specified probability given the most
recent streamflow information. The following univariate model was used in
this study and is expressed in a slightly different terminology.

53
2

Ui,t: In(x;,¿ - r¿)

a;,t : f, + 
#(U¿,t-t -ù-¿-r) * or{l - p7r,,,

where, t;,t : streamflow in month (t) and year (i)
U;,t : transformed streamflow in month (t)

and year (i).

(5.13)

(5.14)

and
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e;,t :

,t

Ut:
A¿:

Pt:

-r.282-0.842-0.524-0.2530.000o(p) 
I

-9080706050p%

Table 5.8: Normal Distribution Values given Exceedance Levels

84

(5.16)

(5.15)

Now, let U!,rly;,r-t be the value of A;,t which is exceeded with probability p
given a known value û;,r-t.Substitutingû¿t-tfor y;,¡-1in Equation [5.14], it
is apparent that the only random variable on the right hand side is e;,¿. As é¡,¿

is normally distributed with zero mean and unit variance, therefore, y;,tlû;,t_t
will also be normally distributed.

From Equation [5.1a]:

E[y¡,rly;,r-r]: y, + 
ffi@,,¿-l - a;,r-r)

and
Var[y;,¿lf;,ú-l] : 

"?(L - p?)

standard normal variate
for month (t) and year (i); N(0,1)
location parameter for month (t)
mean of A¿,, for month (t)
standard deviation of A¿,,

for month (t)
correlation coefficient between y;í aÍrd yi,t-r

| - p? (5.17)

where E[X] denotes the expected value of X

and Var[X] denotes the variance of X.

Hence Ul¡ly¡,r-, can be found using tables of the standard normal distribution.

i.e. u!,rlv¿,r-t : ut * ffi{u,,r-, - !t) t Q(p)o¡

Values of O(p) are given in Table [5.8].

Equation [5.13] describes a deterministic, monotonic relationship between (y;,¿)
and (r¿,¿). It follows, therefore, that r!,rlã;,¿-1 cân be found frorn y!,rly¿,r-r by
using the inverse of Equation [5.13].

i.e. rl*lû¡,r-t: erp(y!,lû;,r-t) * r, (b.18)
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Therefore to estimate a one-step forecast of. r!,, given the previous value îi¡-r,
Equations [5.17] and [5.18] should be used. The value fi;,¡-1can be determined
by substituting â;,¿-1 in the right hand side of Equation [5.13].

5.10.6.2 Multiple Step Forecasts

Equations similar to [5.1a] can be developed for multiple step forecasts of y;,r.
For the two step case we obtain -

Pt+tPtot+t r - P?+re¿¡+t\

(5.1e)

U;,t+t: U+t* U¿,t-t - Ur-t) I or+t{pt+t r - P?e¿¡+ct-L

and for the (m) step case -

Ui,t+¡n: At+t * Pt+*Pt+^-r * "' * ptot¡rn
(Yr,r-t - yt-t)

ot-t

*ot+^{P+^Pt+^-t * "' * pr+t l-P?e;,r+"'

*Pt+^Pt+",r-t L - P7+r--rf,i,t+^-z1 Pt+^ I - P7+*-t€i,t+^-t* | - P?+rne¿,r+*\
(5.20)

From Equation [S.ZO]:

E[u;,,+^ly¿,ú-1]:yt+,n*ry(y¿,,_,_v,_t)(5.2I)

Yarfy;,¡¡*la;,r-r] : o7+^{p7+^p?+,--r. - . p?+r(r - p?) + - . -

* p?+^p?+-_r(l - p?+,,_r) * p?+^(L - p?+,,_r) + (1 - p?+^)j (5.22)

Therefore -

u!,rly ¿,r-t : Efy ;,t+^lu;,r-t] + o (p) Yarfy¿¡¡*lûr¡-tl (5.23)

where values of O(p) are given in Table [5.8].
To find values of x!,r*^lî;,¿-1, us€ of the following is made -

o Find (y;,r-t) by substituting (â;,¿-1) into the RHS of Equation [b.13]

o Find (y!,r+,*la;,r-r) using Equations [5.21] k 15.22]1and a specified value

"r 
(p)

o Find (r!,r*^lâr,r-r) using the inverse transformation of equation [b.18]

From examination of Equations [5.21] and 15.221 it can be seen that as pt+* 1 r
and (m) becomes large -

Ely!,r+,*lar,r-tl ---+ ar+* : E[y;,r+^] (5.24)
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and the conditional distribution of Ui,t+,o approaches the unconditional distri-
bution.

Values of the conditional forecasts x!,r+,,,lâ¿,r-1 calculated using the above pro-
cedure compared well with those using Monte Carlo simulation of Equations

[5.13] and [5.la] with (100) replicates, as shown in Figure [5.8].

5.11 Forecasting

Four models were used for comparison, these being -

o Multisite model with Zero Skew Transformation

o Multisite model with Moment Transformation

o Single site model with Zero Skew Transformation

o Single site model with Moment Transformation

The control used for model comparison was the unconditional median of an
historical series. That is, for each site and month the unconditional median
value of the series was used throughout as the forecast value and the perfor-
mance parameters calculated accordingly. The historical median was found to
perform better than the historical mean for this purpose.

A comparison of models used was undertaken to identify which model pro-
duces the highest performance and the differences between model performance.

A set of forecasts was made starting at some point in the historical record.
The historical value was used to initiate the model and forecast the next twelve
months of data. Two forecast values were chosen for comparison, namely the
n'¿eo,n and rnedian forecast of some (N) replicates. The above procedure was
completed over a period of historical record, usually 1940 to L979 (i.e. 40 yrs)
as this is the concurrent data record for all sites that the program used can
complete the forecasting procedure over.

It was found that the median forecast is superior to the mean forecast in
almost all cases. Tables [5.S] to [5.13] show for each site the overall monthly
performance parameters for a Lag 1 forecast. Only Lag t has been shown as

this will obviously show the best forecast. As shown in Figure [5.9] the differ-
ence between using a forecasting model as opposed to using an unconditional
value throughout rapidly converges at a lag of approximately three periods
after initialization.
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The two parameters chosen to best illustrate the general results of each fore-
casting model,

o Mean Percentage Difference between forecast & historical value for Lag
1.

o Mean Absolute Difference between forecast & historical value for Lag 1

in (Ml).

We can conclude from observation of Tables [5.9[ to [5.13] that the multisite
zero skew model generally provides the best forecast, followed by the single
site, zero skew model. There is little to choose between the multisite and sin-
glesite Matalas models but both are inferior to the zero skew models.

The tables in fact show that even the best model does not do any better
than using the unconditional median for approximately 30To of the months,
with these months generally being January to March.

The multisite model using Matalas moment transformation equations may
be rejected as an operational tool as it is inferior to using the unconditional
median for more than 50% of the months.

5.L2 Application to Operational Hydrology

On the basis of the performance parameters used in making a comparison
between the multivariate and univariate models developed, it was decided to
adopt a univariate model for streamflow yield generation. The performance of
the multivariate model was only slightly better than the univariate model and
required more time and effort to produce results.

On the above basis, a univariate monthly Thomas & Fiering model was chosen
to forecast streamflows at individual sites. The model is given as Equations

[5.13] and [5.14]. The procedure outlined in Section [5.11.1.1] was used to
forecast streamflows with specified probabilities of exceedance.

The resultant forecast streamflows were used as the streamflow input to an
optimization model used for minimizing operational costs to the Adelaide
metropolitan water supply system.

The optimization model (called HOMA) is described by Dandy & Crawley,

[15]

HOMA is an optimisation model of the Adelaide Headworks system. It uses

forecast streamflow yields for the metropolitan water supply catchments to aid
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Table 5.11: Gumeracha - Forecasting Model Statistic Comparison
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Table 5.12: onkaparinga - Forecasting Model statistic Comparison
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Table 5.13: Millbrook - Forecasting Model statistic comparison
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in identifying optimum pumping decisions, which minimize costs and increase
water quality to the city of Adelaide.

The forecast inflows currently used in the optimizationmodel follow the method
employed by the Pumping Engineer (E.&\M.S.). This method uses a fixed ex-
ceedance value for a particular month for any given year. This value is derived
from taking the 90% exceedance "year" and distributing this annual value to
each month in proportion to the monthly yield in an average year. The method
is only modified in very dry years, when the minimum recorded yield for the
particular month is used.

Previous experience with the optimization model has shown that potential
savings of up to 20% of total pumping costs can be achieved if perfect fore-
casts of monthly yields were available (Crawley & Dandy, [15]). The model
uses a fixed twelve month window and bases its pumping policy on the inputs
during that twelve month period (i.e. a water year), by stepping from one
month to the next in the year and using forecast inputs for future months and
actual values for past periods.

A more realistic approach is to continuously update the forecasts on a monthly
basis using the most recent data as the optimization model steps through each
period. In order to do this some of the source codes for the optimization pro-
gram was revised to continuously update the forecasts using values from the
univariate model developed in this study.

Chapter [4] outlines the two systems that metropolitan Adelaide is divided
into. A separate optimization model is used for each system. Each model was
run using the following cases for streamflow input forecasts.

o Monthly values based on a 90% exceedance year.

o Perfect values (i.e. the actual streamflow yields)

o Use of constant monthly 90% exceedance value

o Use of constant monthly 70% exceedance value.

o Continuously updated monthly 90% exceedance values

o Continuously updated monthly 70To exceedance values

The inputs for the constant exceedance value forecasts for the above runs are
shown in Tables [5.15] to [5.17], and the results of the optimization runs are
shown in Tables [5.1S] & [5.19].

In Tables [5.18] & [5.19] "historical" refers to the estimated costs actually
incurred by the E.&W.S. during the period. The results indicate that using
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Table 5.14: Northern System Annual 90% Exceedance Yields

70To monlhly exceedance values is very similar to using 90% annual exceedance
values. Unfortunately the use of the updated forecasts does not show marked
improvements compared with the use of constant values. The reason for this
is difficult to determine. The forecasting model does give improved forecasts
for one or two months lead times in low flow months (except for January
to March) and three to four months in high flow months. The operational
decisions, particularly pumping from the River Murray, depend more on the
low flow periods than the high. Thus during the critical times (October to
March) the forecasting model gives a limited improvement over the use of
unconditional exceedance values.

This is undoubtedly due to the high variability and low monthly serial corre-
lation during these periods.

On the positive side, the models developed can be used for the following pur-
poses

o to give monthly exceedance values at all sites for various probabilities of
exceedance.

o to synthetically generate long streamflow sequences which can be used
in the study of system reliability over a reasonable time horizon.
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Table 5.15: Southern System Yields
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a ve u¡as trunca

Table 5.16: Northern System Monthly 90% Exceedance Yields

a negative value was trunca
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Table 5.17: Northern System Monthly 70To Exceedance Yields
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Table 5.19: Northern System- Annual Pumping Costs for Optimizationresults
$m
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Chapter 6

Summary

6.1- Introduction

This study examined the use of single and multisite time series models for
short term forecasting of streamflows. Such forecasts are useful to assist in the
operations of water supply systems. Forecasting models were developed for
the Adelaide metropolitan water supply system using data from seven Ade-
laide Hills catchments.

These models were then used, in conjunction with an existing optimizatron
model of the Adelaide headworks system, to determine if improved opera-
tional efficiency could be achieved.

The conclusions reached in the report are summarized below -

6.2 Data

The quality of data to be used in such studies is most important, and cannot
be over emphasized. For this study it was found that the streamflow data suf-
fered from large errors ari a result of the procedures used to compile the data
leading to inconsistent results, in terms of both mathematical and physical
properties.

The above problems are mainly the result of the natural streamflows having
been estimated using a water balance procedure which makes adjustments for
pumping and reservoir operations. The additive effect of errors in each com-
ponent in the respective water balance equation used becomes excessive for
two of the data sets (Warren and South Para) and the truncation of negative
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calculated values is too severe for the above two sites to provide meaningful
results.

In addition, the Little Para River data is of limited use due to its short length.
Data lengths should ideally be in excess of 30 years.

The streamflow data can only be described as generally poor, with only the
Myponga River streamflow data behaving reasonably. In general, the data
is highly variable between months and exhibits high skew throughout the
monthly data sets.

No trend in any of the data series was found based on analysis of the annual
moments of each series.

6.3 Transforrnations

In general, the data was found to conform to a 3-parameter log-normal dis-
tribution.

Two methods were employed to estimate the location parameter of the three
parameter log-normal data. These \¡¡ere -

o Parametric Transformation 
-

For this case the location parameter of the distribution was estimated so

as to produce zero skewness in the transformed data. A test for normal-
ity was subsequently made. The technique used was a systematic search,
although the approximate equation given by Loucks et al [35] produced
comparable values for the location parameter.

o Moment Transformation Equations -
For this method the moment transformation equations derived by Mata-
las [37] were used to estimate all three parameters of a three parameter
Iog-normal distribution.

The parametric transformation provided a more realistic or physically relevant
solution to the problem of data transformation, as the method reproduces the
tails of the distribution more realistically than the moment transformation.
Since the low flow months are of most concern operationally, it is the lower
end of the distribution that requires to have the best fit.
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6.4 Tests for Norrnality

The following tests were all found to be useful in testing for normality. They
are listed in order of priority -

o Quantile-Quantile Plots
This test is used if time and resources are available-

o Shapiro-Wilk Test
This test can be used if the samplesize is less than (100), or for more
precise results with a sample of less than (50).

o Test of Skewness
This test should be used as an adjunct to the above tests.

6.5 Modelling

Both univariate and multivariate models were evaluated for flow forecasting.
In both cases the models were based on a periodic autoregressive model of the
first order.

6.5.1 Univariate Model

For this study a monthly Thomas anf Fiering [51] model was developed. The
model was found to be straightforward in application and use. Such models
may be developed quickly and easily with considerably less effort than for the
multivariate case.

It was found that the efficiency with regard to forecasting of streamflows using
this model was at least directly comparable to that of the multivariate model.

6.5.2 Multivariate Model

The Autoregressive Multivariate, Multiperiod model is open to failure both by
the nature of the model and by use of the poor data used by this study. The
need to estimate a number of periodic matrices requires only one matrix to be
undefined for model failure.

Two problems are frequently cited as developing problems with such a model
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and were found to occur for the model adopted by this study. These

o The covariance matrix [M6] used for the definition of the model [A]
matrix may be singular or close to singularity, and thus not allowing
the [A] matrix to be defined since the inverse of this covariance matrix is
used. This is generally the result of high spatial correlation values within
the [Ms] matrix. This was encountered in the study for two catchment
systems which each have two gauging stations used in the operational
model. Obviously the gauging stations sharing the same catchment will
be highly correlated.

If the above problem arises, the model size will need to be reduced until
matrix definition is attained. A key station approach may then be used
to produce data at the sites excluded from the multivariate model.

o The method used to define the elements of the model [B] matrix does

not always lead to real solutions. Since the [B] matrix is not unique, the
method of Cholesky decomposition as adopted by this study does not
guarantee a successful result for all cases. Another method, based on
principal components has been outlined by Rodriguez & Bras [7] which
may overcome difficulties with the definition of elements in the [B] ma-
trix, and is further extended to an approximate solution if all the above
fails using a method developed by Mejia & Millan and shown by Ro-
driguez & Bras [7].

It was found for the complete seven site model, (six streamflow & one
rainfall site), that matrix definition frequently did not occur, and was
further exaggerated if moment transformation equations were used for
parameter estimation. By using a five site model with concurrent data
sets so as to reduce the effect of high station correlation and the like-
lihood of matrix singularity, the model was found to behave well, with
all model matrices being defined, and subsequently producing generated
data comparable in distribution and type to the historical series.

6.6 Generation

Summary statistics for the generation of data derived by the adopted models
may be described as good. The univariate model statistics compare with the
historical statistics on a site by site basis very well and are within two standard
errors of estimate for each parameter evaluated.

The multivariate model produces good summary statistics, but benefits from
a large averaging effect of high numbers of years or replicates used.
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Moment transformation techniques used for model parameter estimation re-
sulted in slightly superior summary statistics for the moments of mean, stan-
dard deviation etc. It was found although, that the percentage zero value
produced was excessively high for the low flow periods of November to Febru-
ary and significantly higher in general than found in the historical data. By
using a parametric transformation, the generated moments still compared well
with the observed values, yet the occurrence of zero flows (or less, for the case
study) fitted the observed data as well as for any moment statistic.

6.7 Forecasting

The ability of a model to forecast data given a good generation model does not
always follow. A comparison of forecast data with historical values over some
forty year period resulted in an overall increase in forecasting quality for only
the first one to three months lead time during the high flow months reducing
to only one to two months for the low flow periods of November to March.

Such time series models have a large attraction toward the average value of a
series and thus find it difficult to follow historic sequences to any significant
accuracy.

The models were evaluated in terms of performance by compiling the average
percentage and average absolute differences between the forecast and associ-
ated historical value for a given site and month. The models may be ordered
from best to worst as follows -

o Multisite model based upon a Parametric Transformation,

o Singlesite model based upon a Parametric Transformation

o Muliisite model based upon a Moment Transformation.

o Singlesite model based upon a Moment Transformation

6.8 Application to Operational Hydrology

For the operational component of the study the periodic univariate model was
chosen to forecast data, with the random component of the model set to a
fixed exceedance value for an ¡f(0,1) distribution. This results in explicitly
derived forecast values of a known exceedance level.
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Forecast data was used as input to an optimization model of the Adelaide
Headworks system. The use of a continuously updated forecast, based on the
adopted monthly model, provided no significant increase in system efficiency
compared to the results using a fixed forecast based on historical data. Simi-
lar results were gained for the Northern and Southern Headworks systems for
inflows with various exceedance levels, thus indicating that the optimization
model is relatively insensitive to streamflow forecasts.

Use of the forecasting model does not significantly improve the performance
of the optimization model. This is most likely due to the high variability and
low monthly serial correlation embodied in the data.

By virtue of the type of general model used (i.e an ARMA type model) any
generated value will have a tendency to gravitate toward the mean of the series.
This means that during forecasting the values will only be slightly influenced
by the initialization value, and for lead periods of, at most, three periods.
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Recommendations for F\rrther
Work

7.L General Recornrnendations

7.L.L Estimation of Parameters

It is believed that superior estimation of distribution parameters will be pro-
vided by the use of Robust stati,stical methoils.

This field is relatively embryonic for useful analysis and has not been ex-
tensively researched with respect to the field of hydrology. A suggested course
of action is to review relevant literature and apply some of the methods to
the data used for this study. Such methods may also be used to overcome the
problems outlined above with respect to outliers evident within sampled data.

7.I.2 Modelling

Further investigation is required into the point at which a multi-site model,
as developed by this study, breaks down. Quantitative methods are required
to outline when a multisite model may effectively be used.

A further modelling procedure that may be investigated to overcome this prob-
lem is a two-tier type approach to analysis, where a full multisite model is used
if the [A] and [B] matrices are well defined, or a smaller multisite model to-
gether with key station approach used if it is found that the problem of ill
conditioning is present.
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7.L.3 Model Verification

More work needs to be carried out into the verification of stochastic time se-

ries models in hydrology. In many studies using synthetic data generation a
probability distribution and model form is assumed, with little or no model
verification. In cases where a transformation to normality is used, standard
tests of normality such as the Quantile-Quantile plots or the Shapiro-Wilk
test should be carried out.

7.2 Specific Recommendations

7.2.L Data

There is definite need to reconsider the procedure for data compilation and
streamflow gauging. It is clear that severe errors/inconsistencies exist within
all data sets used in this study. These will only be remedied by an extensive
re-evaluation of all data in toto.

This work would involve estimating the errors associated with parameters in
the water balance equations used as well as physical checking of the gauging
stations.

7.2.2 Forecasting

Alternative univariate methods for flow forecasting could be applied to the
Adelaide Hills data. For example, a general ARMA model (Box & Jenkins [6])
could be used instead of the first order autoregressive model used in this study.
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Appendix A

Historical Statistics

This appendix contains the historical statistics of the original streamflow yield
data files, as supplied by the E.&W.S. Dept.
The statistics for the Clarendon rainfall gauging station are also given here for
a typical comparison with streamflow characteristics. The stations are -

o Warren River

o South Para River

o Myponga River

o Onkaparinga River at Clarendon Weir

o Torrens River at Gorge Weir

o Torrens River at Gumeracha Weir

o Little Para River

o Clarendon P.O. rainfall station.

Streamflow data is expressed in (Ml) and rainfall in (1/l0th mm).
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Table 4.1: Warren River & South Para River - Historical Statistics
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Februaly

19.0

590.0

0.293

3.817

366.3

118.0

240.3

2862
0

March

21.0

1465.0

0.181

6.597

1987.0

392.0
804.9

16984

0

April

170.0

8506.0

0.505

3.045

5109.8

1570.0

3273.0

26617

34

May

994.0

27724.0

0.436

2.004
13503.2

5289.0

10950.2

64207

97

June

2224.0

37256.0

0.587

1.591

t6r62.2
11463.0

1677r.r
81059

779
July

3526.0

38824.0

0.531

1.201

15793.0

17035.5

20181.7

80446

962
August

2379.0

36122.0

0.267

1.469

14279.0

9798.0

15278,2

66429

564

September

1252.0

18610.0

0.248

r.734
7212.6

4198.0

7029,t
31054

201

October

592.0

5523.0

0.373

2.389

247t.r
1283.0

2247.4

14061

0

November

75.0

1810.0

0.480

1.181

655.8

597.0

72r.8
2844

0

December

Table 4.2: Myponga River & Onkaparinga River - Historical Statistics



9070 exc
1070 exc.

Lag 1 S.C.

Coef. Skew
St. Dev.
Median
Mean
Max
Min

Catchment : Torrens at Gorge Weir Start Year : 1884 Period : 100grs

0.0

782.0

0.263

1.978

382.3

248.5

342.7

1895

0

January

0.0

484.0
0.065
4.799
540.7

128.0

263.3
3735

0

February

0.0
482.0
0.361

r.942
235.9

r28.5
188.1

1179

0

March

0.0

1104.0

0.009
8.702
3384.0
307.0

848.4

33031

0

April

208.0
4855.0
0.248

3.242
3079.9

719.0

1818.4

18740

0

May

454.0
19056.0

0.495

2.162
8714.8

2784.5

6237.3

47532
151

June

882.0

20456.0

0.637

r.782
10074.3

5750.0

927r.9
51015

0

July

r631.0
28692.0

0.508

0.904

10600.3

10161.5

12385.8

47181

0

August

975.0

22200.0

0.281

1,126
8754.6

7099.5

9617.5

35571

203
September

574.0

10621.0

0.313

2.590
5624.5

2928.0

4578.3

32588

119

October

323.0

3119.0

0.424
2.279
1462.7

915.0

1454.0

8148

0

November

68.0

1432.0

0.590

2.264
601.6

425.5

626.5

3842
0

December tË
*u
tiz
U
X
Þ

ø
H

F
tr
Câ
r-¡
s
r-l)
c/J
¡-ì

o
c/)

Ctl

90% exc
IjYo exc

Lag 1 S.C

Coef. Skew

St. Dev
Median
Mean
Max
Min

Catchment : Torrens at Gumeracha Start Year : 1918 Period : 66yrs

27.0

355.0

0.272

2.685

205.3

7r.5
150.4

1007

0

January

16.0

380.0
0.070
4.295
285.4
48.0

150.8

1921

0

February

18.0

288.0

0.300

2.437
156.9

52.0

115.0

8t2
0

March

23.0

346.0

0.146

5.532

385.6

65.0

176.2

2898

0

April

52.0

t247.0
0.202
3.864

1959.5

193.5

870.7
10733

32

May

66.0

5417.0

0.569

4.538

5859.7

651.5

2712.3

40896

0

June

244.0

11517.0

0.706

1.791

5132.5

1769.0

4232.4

24092
39

July

72S.0

13055.0

0.542
1.339

5824.7

4658.5

6065.9

25203
r28

August

469,0

10404.0

0,220

2.432
4908.7

2356.0

4326.8
29900

110

September

276.0

4899.0

0.369

2.389

2914.7

1090.0

2122.9

13739

69

October

110.0

1470.0

0.402
2.37r
627.3

354.5

567.2

352r
0

November

21.0

514.0

0.602

3.r77
375.1

137.0

244.0

2t28
0

December

Table 4.3: Gorge & Gumeracha Weirs - Historical Statistics



90% exc.

10% exc
Lag I S.C.

Coef. Skew

St, Dev.
Median
Mean
Max
Min

Catchment : Little Para Start Year : 1969 Period : I1yrs

18.0

272.0
0.628

0.183

106.1

148.0

13r.2
300

0

January

5.0

255.0
0.645
0.631

93.0

100.0

108.6

310

1

February

18.0

216.0
0.656

0.814

74.4
59.0

84.7

232
2

March

43.0

258.0
0.053

2.4r7
180.6

83.0

146.0

748
6

April

78.0

324.0

0.935

3.097
905.9

140.0

378.5

3642
9

May

103.0

4462.0

0.634

r.877
1543.9

288.0

903.1

4863

100

June

122.0

3153.0

0.541

0.957

t4L2.l
1475.0

1528.1

5126

27

July

158.0

3144.0
0.768

1.403

1526.9

1134.0

1650.1

5995

98

August

117.0

4195.0
0.382

0.610

1511.7

1200.0

1629.5

4230

8

September

I42.0
2800.0

0.400

1.495

100.5

462,0

856.2

3434

I

October

69.0

515.0

0.6r9
0.744
243.r
209.0

293.3

863

6

November

27.0

318.0

0.846

0.135

1,16.2

188.0

165.1

367

2

December t*É
t¡:2

X
Þ
ts
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o
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Cârìs
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cn

o)90% exc.

10% exc.

Lag 1 S.C

Coef. Skeiv

St. Dev.
Median
Mean
Max
Min

Rainfall G.S. : Clarendon P.O Start Year : 1875 Period : Il|yrs

2S.0

586,0

0.020

,10,
248.1

198.5

258.8

i586
0

January

5.0

683.0

-0.035
1.428

282.3

r47,0
256.4

1380

0

February

33.0

730.0

0.005

1.464

330.8

262.5

354.7

1750

0

March

150.0

1427.0

-0.070
1.514

528.4
624.5

723.3

2905

1 5

April

376.0

17 44.0

0.019

0.634

ðJO. I

947,0

1024.8

2652
69

May

398.0

2i61.0
0.169

0.502

620.0

1072.5

1168.2

2927

r47
June

506.0

1708.0

0.1 14

0.503

465.8

1074.0

1125.3

2900

199

July

550.0

1559.0

0.230

1.351

46r,4
980.5

1054,6

3109

64

August

366.0

1391.0

0.035

0.645

397.4

755.5

833.3

1899

r60
September

223.0

r 160.0

-0.074
0.832

361.8

622.0

661.6

1952

38

October

99.0

780.0

0.103

0.883

277.4

377.5

420.1

1382

11

November

49.0

676.0

0.026

1.703

282.7

314.5

362.0

1834

0

December

Table 4.4: Little Para & Cla¡endon rainfall - Historical Statistics
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Appendix B

Revised k Transformed
Statistics

This appendix tabulates the historical and transformed statistics of the final
streamflow data sets adopted for analysis. The Clarendon rainfall station
values are also given for comparison with streamflow data.
Streamflow data is expressed in (Ml), and rainfall in (1/10th mm). The stations
are -

o Warren River

o South Para River

o Myponga River

o Onkaparinga River at the Clarendon Weir

o Torrens River at the Gorge Weir

o Torrens River at the Gumeracha Weir

o Little Para River

o Clarendon P.O. rainfall station.

r
r17



a- - -<<=

Lag 1

Skew

Loc. Par
St. Dev.

lvlean

TRANSFORMED STATISTICS

90To exc
I0To exc,

Lag 1

Skew

St. Dev
Median
Mean
Max
Min

HISTORICAL STATISTICS

Catchment : Warren Start Year : 1939 Period : 46yrs

0.488

-0.046
-425
0.19

6.05

-59.0 -57.0 -50.0
83.0

0.338

1.653

87.0

1.0

8.2

387

-2t0
January

0.296

-0.038
304

0.28

5.75

69.0

0.206
2.597
104.8

7.0

2r.9
504

-198
February

0.397

-0.025
-10
1.97

2.31

98.0

0.265

-0.483
86.7

7.0

14.0

273

-327

March

0.434
0.262

normal
69.25
46.61

t22.0
0.307
0.262
69.3

42.5

46.6

218

-101
April

0.464

-0.583

-67

1.37

5.15

-14.0
752,0

0,2r2
4.519
889.0

97.0

357.7

5544

-67

May

0.753

-0.072
-62

1.91

5.86

-5.0
4983.0

0.205

1.948

294L5
183.0

1594.0

10872

-62
June

0.752
-0.049
-184
1.40

7.35

42.0

9876.0

0.713

1.636

431I,2
1963.5

3320.4

15901

0

July

0.760

-0.050
-1094
0.90

8.31

107.0

10656.0

0.729
1.129

4848.5

3753.0

4760.0

20708

-2
August

0.726

-0.050
453

1.06

7.70

72.0

8591.0

0.448

0.948

3347.2

1983.0

3168.0

rt432
-30

September

0.516

-0.036

-77
1.49

6.35

5.0

3617.0

0.334

2.749
2517.7

478.0

1465.8

12916

-63
October

0.534

-0.047
-97

1.09

5.26

-44.0
911.0

0.420
2.138

424.1

70.0

246.0

1966

89

November

0.559

-0.050
-140
0.46

5.06

-54.0
147.0

0.439

0.804

79.7

13.5

33.5

237

-87
December
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Table 8.1: Warren River statistics



Lag 1

Skew

Loc. Par
St. Dev.

Mean

TRANTSFO RMED STATISTICS

90To exc.

10% exc.

Lag 1

Skew

St. Dev
Median
Mean
Max
Min

HISTORICAL STATISTICS

Catchment : South Para Start Year : 1939 Period : 42grs

0.470

-0.047

-400
0.45

6.05

- 1 16.0

451.0
0.446

1.946

239.4

2.5

67.7

979

-278
January

0.452
-0.042

-342
0.57

5.97

-75.0
535.0

0.398

1.538

288.6

10.5

118.6

999

-266
February

0.487

-t.294
normal
158.34

40.81

-119.0
2r2.0
0.393

0.0r4
158.3

23.5

40.8

462

-447
March

0.057

-0.029
-26

1.87

4.62

-25.0
605.0

0.209

1.563

27t.3
159.5

216.8
t244
- 160

April

0.183

-0.045
-33
r.44
6.08

32.0

3437.0

0.299

3.307

2012.6

365.5

11r0.4
11 111

-19
M.y

0.710

-0.050

-có
r.74
6.90

71.0

13512.0

0.352

r.745
5841.4

678.0

3548.7

20407

-44
June

0.681

-0.050
429

1.08

8.24

348.0

13299.0

0.722

1.893

7130.0

4096.5
6024.0

29532
75

July

0.775

-0.050
-712
1.06

8.57

514.0

18881.0

0.613

i.137
8233.8

4987.5

7937.6

293r2
136

August

0.764

-0.049

-647

1.04

8.27

347.0

12574.0

0.617

1.386

5876.8

3476.5

5633.9

27248

-37

September

0.531

-0.040

-44
1..44

7.13

144.0

8838.0

0.254
2.086

3905.0

1621.5

2912.2

18694

15

October

0.597

-0.049

-234
0.98

6.38

-27.0
1715.0

0.322
2.76r
1136.6

258.5

716.2

5991

202
November

0.505

-0.049

-325
0.48

6.03

-83.0
494.0

0.349

1.339

238.9

70.0

r42.9
901

-216
December
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Lag 1

Skew
Loc. Par
St. Dev.

Mean

TRANSFO RMED STATISTICS

9070 conf.

I0To conf..

Lag 1

Skew

St. Dev
Median
Mean
Max
Min

HISTORICAL STATISTICS

Catchment : Myponga Start Year : 1934 Period : 57yrs

0.458

-0.006
-64

0.59

5.68

54.0

384.0

0.r24
4.583
303.2

264.0

208.3
2138

0

January

0.743
0.029

-18
0.70

5.40

92.0 79.0 T4 5

330.0

0,4r7
6.145

46r.7
211.0
282.3

3419

1

February

0.619

-0.005
-265
0.27

6.2r

409.0
0.466

0.523

140.4

252.0

252.3

607

27

March

0.413

-0.003
-95
0.46

6.10

700.0

0.402
1.680

242.8

356.0
398.6

t425
59

April

0.333

-0.011
166

1.04

6.07

1808.0

0.290

2.590
968.7
560.0
908.0

4527

195

M.y

0.521

-0.006
-34

0.99

7.32

401.0

5346.0

0.436

2.088

2619.9

1191.0

2387.3

12169

85

June

0.601

-0.004
-323
0.76

8.12

682.0

10071.0

0.442
1.359

3470.8

2960.0

4100.9

14638

360

July

0.641

-0.005
2503

0.44

8.75

872.0

7556.0

0.567

0.938

3079.6

3920.0

442t.7
15509

462
August

0.601

0.115

-50
0.88

7.61

568.0

702r.0
u.öðb

1.981

2868.4

2059.0

2906.1

14122
290

September

0.506

-0.006
23

0.88

6.83

290.0

2844.0

0.499

1.988

1312.1

898.0

1361.8

6032

119

October

0.700

-0.004
-16
0.59

6.15

182.0

844.0

0.496

r.434
343.0

448.0

54r.4
1702
119

November

0.638

0.061

normal
156.3

308.7

87.0

528.0

0,563

0.061

156.3

286.0

308.7

594

0

December
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Table B.3: Myponga River statistics



Lag 1

Skew

Loc. Par
St. Dev.

Mean

TR ANTSFORMED STATISTICS

9070 exc.

10% exc.

Lag I
Skew

St. Dev.
Median
Mean
Max
Min

HISTORICAL STAIISTICS

Catchment : Onkaparinga Start Year : 1898 Period : BT yrs

0.375

- 1.160

0

1.94

4.78

10.0

695.0

0.248

1.897

526.7

205.0

300.4

2859

-1381
January

0.244
-0.019

436

0.64

6.40

-45.0
554.0

-0.091
4.77t
840.5

74.0

333.0

5927

-405
February

0.458

-0.774
0

1.80

4.41

19.0

590.0

0.300

3.472
377.3

118.0

230.1

2682

-490
March

0.411

-0.004
-84
I.I7
6.03

21.0

1465.0

0.182
6.594

1987.4

392.0

804.0
16984

-78
April

0.401

-0.048
-61

r.22
7.38

170.0

8506,0

0.505

3.045

5109.8

1570.0

3273.0

26617

34

May

0.516

-0.050
-322
t.2l
8.68

994.0

27724,0

0.436

2.004
13503.2

5289.0

10950.2

64207

97

June

0.645

-0.050
-1367
0.90

9.43

2224.0

37256.0

0.587

1.591

r6t62.2
11463.0

1677r.r
81059

779
July

0.652

-0.050
-4815
0.64

9.93

3526.0

38824.0

0.531

1.201

15793.0

17035.0

20181.7

80446

962

August

0.478

-0.050
-1095
0.88

9.34

2379.0

36122.0

0.267

1.469

14279.0

9798.0

15278.2

66429

564

September

0.489

-0.050

-140
0.94

8.46

t252.0
18610.0

0.248

r.734
72).2.6

4198.0

7029.r
31054

201
October

0.616

-0.047

-292
0.80

7.51

592.0

5523.0

0.374
2.383

2473.6

1283.0

2244.8

14061

-180
November

0.507

-0.049
-762
0.44

7.20

75.0

1810.0

0.480

1.088

667.7

597.0

712.9

2844

-443
December
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Table 8.4: Onkaparinga River statistics



1

Skew

c. Pal
St. Dev.

exc

10 exc.

L 1

ean

Max
ln

t. Dev

0.415

49

-784
0.35

6.94

0

9

1.490

4t2.9
t)

316.9

1

-461

January

0

0.048

0.39

6.99

-181.0
484.0

0.153

3.095

581.8

128.0

2 4.

3735

-727

0.521

0

-3

482

0.331

327.7

113.2

1179

arch

0.420

-0 I
-475

0

6.69

1

11

8.669
33

07.0
825.2

1

-460
A

-0.047

0.94

7.18

208.0

4855.0

0.282
2.753

b

719.0

I
r3782
-357

0.611

-0
100

1.49

454.0

19056

0.589

136

872r.2
2784.5

4

47532
1 1

une

0.

050

588

1.05

8.70

0

6

t.782
1007

5750.0
9271.9

51 15

0

J

t7
-0.050

0.72

9.40

1631.0

28692.0

0.508

0.904

1 600.3

10161.5

1

47181

0

t

0.508

-1570

9.01

97

0

1.126

8754.6
5

9617.5

35 1

203
ber

b

-0.050

1.06

7.9r

574.0

10621.0

0.313

2.590

.b

2928.0

4578.3

32508

119

o er
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Appendix C

Myponga River, Serial
Correlation Plots

This Appendix contains the Monthly Lag One serial correlation plots for -

o Raw Data

o Transformed Data (transformation of each month based on Table [5.4])
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Figure C.3: Raw Data - February/March
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Figure C.4: Transformed Data - February/March
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0246810

Transformed Values

Figure C.20: Transformed Data - October/November

o

o

cct

(o

$

C\t

o

t *.( *

t



APPENDIX C. MYPONGA RIVER, SERIAL CORRELA?ION PLOTSTST

o
0 1000

November Yields
Observed Values

1500 2000

Figure C.21: Raw Data - November/December
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Figure C.22: Transformed Data - November/December
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Appendix D

Myponga River, a-a plots

This Appendix comprises a typical set of Q-Q plots, using the Myponga
streamflow data as an example. For each monthly data set the following plots
are produced.

o Raw Data

¡ Transformed Data (transformations based on data given in Table [5.a])
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Figure D.l: Q-Q plot, January Raw data

0.005 0.100 0.500 0.900 0.995
@

E
(D

E
(l)
E<o
o
U'c
(ú
L
l--

f-

|r)

-3 -2 -1 0 1 2

**

*

*

*

*

- tt

*f

***t*

*

* t
*
*

i

*

**
.i|

Figure D.2: Q-Q plot, January Transformed data

3



*

*

t ***

***

APPENDTX D. MYPONGA RTVER, Q-g ?LOTS t4t

ooro
(f)

ooo
(f)

o()
ro
(\¡

E
=o.Yc'
oô¡
(I)

Xoöro_oro ooo

oo
rr)

o

0.005 0.100 0.500 0.900 0.995

-2-1 0123
Figure D.3: Q-Q plot, February Raw data

0.005 0.100 0.500 0.900 0.995

-2-1 0123
Figure D.a: Q-Q plot, February Transformed data

o)

@

cf)

-3

l-
E
(l)

E(o
(l)
E
LoE¡f)c
(ú
LF

.û

* **

*

*

i

* *

t

*

t*

ôI

-3



*
**

* * *

rr¡

Jt**

#
*

**

* *

*t
* **

ffi

**

ff

t

*

APPENDIX D. MYPONGA RTVER, Q_Q PLOTS r42

oo
N

oo(o

ooro
E
.9o
E rir
(¡)

¿<u:<3Ho
oo
C\T

oo
r

o

0.005 0.100 0.500 0.900 0.995

-3-2-10123
Figure D.5: Q-Q plot, March Raw data

0.005 0.100 0.500 0.900 0.995

-3-2-1012
Figure D.6: Q-Q plot, March Transformed data

@(;

q
(o

ÞA
õ(o
Þ
9Âr
=<;.P
U'cEo

Lt(o

@
rt

q
l.c)

3

**l

**

t
*

*

$
*

r*

*

*

t*
t

f

**t
ii

**

**
ffi

t
*r'*

ü
t



t t t

*^r'F
t"ræ

*
* *

*

t ***

*
**

i**

*

t

*

APPENDIX D. MYPONGA RTVER, 8_Q PLOTS

0.005 0.100 0.500 0.900 0.995

-3-2-10123
Figure D.7: Q-Q plot, April R¿w data

0.005 0.100 0.500 0.900 0.995

-2-10123
Figure D.8: Q-Q plot, April Transformed data

143

oo(o

oo.û
r

oo
S
oÞoõo

Þo
Ë8
(¡)

8oo8
oo
$

oo
$l

o

rO
ñ

o
ñ

o
gu?
-(oo
(¡)

E
Lo
U'OF('
Ll-

lO
lr'

o
lr'

**

**

* *

t

**

*

t *

t

*#
.rf**

***

t*

-3



r,l.

APPENDIX D. MYPONGA RIVER, 8-Q PLOTS t44

oooro

ooos

0.005 0.100 0.500 0.900 0.995

-3-2-10123
Figure D.9: Q-Q plot, May Raw data
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Figure D.ll: Q-Q plot, June R¿w data
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Figure D.18: Q-Q plot, September Transformed data
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APPENDIX D. MYPONGA RTVER, Q_Q PLOTS
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-3-2-10123
Figure D.19: Q-Q plot, October Raw data
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-3-2-10123
Figure D.20: Q-Q plot, October Transformed data
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Figure D.2l: Q-Q plot, November Raw data
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Figure D.22: Q-Q plot, November Transformed data
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Figure D.23: Q-Q plot, December Raw data
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Figure D.24: Q-Q plot, December Transformed data
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Appendix E

Streamflow Data Sets

This appendix contains the streamflow data used for parameter estimation for
the data generation models. The values represent reconstructed data for each
station, where truncated values have been replaced with the negative yields
calculated from the water balance equations.
Thus, the data sets as supplied from the E.&W.S. department are as shown,
except that the negative values were zero.

Values are given in (Ml's)

r52



APPENDIX E. STREAMFLOW DATA SETS

'Warren River

Jan Feb Mar Ap, Moy Jun Jul Arg S"p Oct Nou Dec

153

-170

I
-2
19

0

T4

387

-4t
-28
-13
-43

5

-38
-46

69

-56
3
.I

-t

69
15

5

504

46
2

I
-57_4I
_22

2

-5
33
L4

-44
2T

34

96

-25
-14
-72

31

-198
-32
-81

20
137

I4
_40

-32
_29

-8
37

49

8

6

10

-50
-36
-I4
-4r
-12

49

-50
I4

-11
3

-15
-8

-327
-105
-r03

-6
-t2

62
105

3

94
11

-2
-16

0

bb
L43

-36
-47

22

16

I4
82
30
82

83
113

-8
593

2

46
30

65

0

137

49
410
450

1080
49

24

793
752

-26
350

-67
5544

15

230
t72

7

-34
-14
-46

1652
22

70

4983

82

-38
47

416

229
394

770
4095

4539
1516

99
10265
7548

-5
1560

-62
398

90

466

10872
67

4

56
20

3643
360
934

9876
L22
33
22

3907
4069
L427

63
1018

14159

3602
7027

365
2888

13304

3250
2440

20

4426

643

999

15901

4615

159
2r77

74

13319
276

l24L
t02L2
24t4

-2
107

1749
5401
5632

82
1840

9898

4380
4838

2LT
15025
r26t2
4659
8070

83

6596

846

135

11020
2970
1585
1832

17r

2021
187

5306

L0257
1559

-30
242

259
1945
1026

55

370
940

3934
4923

165

2264
8468
3101
5185

-26
9081

1401

410

4602
4557

564
3854

L25

279
93

L203
385
352

5

r45
58

1050

753
1886

165

1507

1413

423

61

713
1313
I434
523I

-10
508

24

3412

-7
5820

-63
955

30

1017

-44
33

7L

12

24
205

10

430
1966

548
39

62

1146

105

0

r20
105

24L
2T

-56
92

25

-89
-53
186

-61
-7

-25

23

-2
-28

36

-69
-47
-34

81

43
119

-29
20

36

183

42

7

I

33

33

-15
-10
-52
-48
-55
-87
_29

-63
237

-54

-9
11

-2
7T

-35
8

-59
-38
-35

3

-99
-2r0
-115
-89
_47

46

-35
93

99

-26
187

-2L
-61
-46

-101

-15

continued over



APPENDIX E. STREAMFLOW DATA SETS

'Warren River (cont.)

Jan Feb Mar Apr Moy Jun Jul Aug S"p Oct Nou Dec

r54

227
98 357
4t -26

-31 -58r09 55
20 r54

200 78

0 -52
-23 28

18 t2
60

38 37
523
83 25

131 13

200
34 51

31

89
33

-31
22

53
29

0

16

73

1

46

153

t20
98

273
188

85

113

13

r22
0

108

80

0

39

5

78

99

r57
64

73

218

L52

1655
205
126

2053

0

L20
4t2

0

67
72

111

65
r23
L2L

51

254
222

6855
98

168

4188

0

391

2r7
0

-11
124
136

40

982
9472

100

228
198

5194
2388
1236

1758

191

2t69
L0262

0

42
209

4645

82
5069

15224
58

2353

335

10379

639
6499

10656

3161

4345
10239

4758
108

167

6033

1320

1664

20708

44

5520

5517

L25r
L234
4668

LL432
482

8219
8591
3168

72

93
5115

8805
579

308r
0

9975

22L8

6175
L2

585
1196

111

1289
12916

L467
L54
L32
3r2

8281
36r7
1238

I
448
357

911

-39
39

345
27

69
1118
254

78

78

36

576
1082
273

28

319

0

124

-28
t2
62
15

63

0

7

54
187

r47
136

r29
0

209
0

\47



APPENDIX E. STREAMFLOW DATA SE"S

South Para River

Jan Feb Mar Ap, Moy Jun Jul Aug S"p Oct

155

30
34

702

-30
-5

-35
-46

2

-66
-74
-18
-19
-23

119

-75
47

3

81

15

5

901

3r

-16
747

-48
-54
-42I
_27

44

-29
-266

116

r60
424

-30
-48

-209
-31

-207
31

0

103

r37
161

-32
-39
_40

-11
75

72

-9
-8

-11
-69
-64
-76
-53
-2
39

_28
40

106

55

-28
6

-447
_2LT

-226
229

-119

166

218
43

172
45

2

-18
-25
305

349
109

-43
63

86

45

303
256
94

1399
45

184

30

214
40

402
167

900
3437
3609

166

243
1466

1505

-19
1085

36

11111

-6
1046

740
L24
832
325
32

2727
2LT
244

L4952
275

19

223
982
690

1r50
L25

2039
10795
1 1456

3254
615

20407
17693

-44
3466

27

3408
848

1405

L9770

666
106

523
7L

3902
1148

2009
20501

1 120

348

75

6505

8394

3488
310

2028
274L4

4843
r2345

1322
8167

22720
5883

429L

354
6651

2018

205r
29532

8039
7237

5179

363

29208
901

2150
293L2

5523
136

402
4360

13080

15000

382
2015

L5452
4796

8463
683

26168
16044

7753
L267L

850
10952
L732
635

2230r
5287
3446
3482

690

6956
514

LL779
27248
2269

-37
663

830
12055

4432
347

555
1595

7282
9898

54L
5998

13227

5502
8764
359

r5391
252t
819

11013

6865
1289

6564
285

1196
208

5364
2831

567
15

403

182

5300
2049
4077

310
2017
3113
207L
288

L226
2088
2844
8838

198

1061

r32
4991

r30
9806

263
2252

L62

143

2L

75

3

I

64

-13
l8

58

-60

-48
37

-7r
-278
-263

-7
-220

23

230
8

2r0
33

442

769
_TL7

594

368
159

-160
_13

Nou Dec

1658 52
16 77

183 -4253 84
L2 -8324 -52330 -424 104

L7L5 42

5991 213
856 -5154 16

244 47
3384 901

237 225
108 59
357 56
492 96
698 139
107 17

-65 310
505 -136
151 -56
-69 -18
-27 -L45654 -26433 333
156 690

-202 -2L6

continued ouer



APPENDIX E. STREAMFLOW DATA SETS

South Para River (cont.)

Jan Feb Mør Ayr May Jun Jul Aug S"p Oct Nou Dec

156

-8 202
149 319
108 322

361 1244
371 605

58 408
138 605
462 160
16 96

202 5

31 l2l
64 L?L

2L2 640

-116 -75
r88 999
459 -49
45r 425

979 650

54 498

555 535
142 0

0 260
81 12

68
224 37
52 30

4440

647
407

55L2
373
377

1009
2367

245
490

324
358
323

13512
484
752

9567
386

1328
618
476
L34
533

632
L79

2343

8906
5770
3205

3537
L434
4811

13299
4900

361

7L7

6625
277

6927

17795
L523

t20r4
18881

6638
5179

10573
3490

550
514

7881

2587
1879

2210
2356
6773

16562
r204

10295

8324
2393

302
459

6801

12574
845

9065
t44
416

2866

358
2028

18694
ot(t

579
272

656

12060
44t5

L487

196

555
I255

27
159

1873

25L8
263
328
2t3

r482
r464

592
zLL
494
682

15

402
63

158

103

54
187

27r
136



APPENDIX E. STREAMFLOW DATA SETS

Jan Feb Mar Apr Moy Jun Jul Aug S"p Oct Nou

r57

225
238
290
304
277

304
317

2138

106

356
238
198

963

409

383
383
r32
277

264
264
290
250
462
264
T7L

331

52
27

1

268

133

ztl
225
209
277
277
2LL
409

92

356
238
zLT

3419

304
330
448
17l
290
264
238
264
264
264
225
L7L

171

198

I
92

r36

369
2877

752
1821

1373

3128

396
673

6863
1003

567

435

3537

3498
3167

554
22L7

5346
2442

2811

277r
12169

8328

739

1940

448
2613

567

1141

11343

568
3656
2296
1821

2996

3379
2864
4105

5346
3960
1056

646
8658

138r9
4686

964
1848

14638

4052

10229
1400
2838

10453

1756

10071

594
2548
1756

1705

9601

r425
5913
2r77
3485

3075
6731
1017

L479

7L67
8288

462

3920
4329

4421

5240
831

3696
9688

6507

8381
739

6916
15509

2098

10123

752

3511
1861

2782
5744

2L65
3629

739

3431

871
1504
290

8209

8169
2996

396
2059

5508

702r
2257

462
2085

727
3642
3524

725
1504

11680

r386
14122

568

7075
937
773

t32r

2204
Lzl4

502
567

369
62r
119

22L7

1188

898
673
898
871

3788
1571

1386

819
t20t
1043

805

515
1940

2429
739

6032

290
898
238

1746
r106

911

410

317

317

304
819
119

515

554
423
290
727
554
844

1202
686
448

250
t702

541

330
844
727

435

806
2TT

54r
146
386
400

Dec

356
277

317

369
264
330

92
435

290
304
225
594
594
594
423
238
377
343

528
502
317
554
475
277

448
238
225

13

159

255

158 330 330
r32 250 792
250 330 4r0
225 330 647

290 725 489

396 369 554
250 423 489
462 475 489

92 146 1043

356 4L9 554
263 343 937
238 264 396
607 646 1135

594 687 752
396 L425 1056

409 290 608
277 356 964
356 488 1808
290 423 1109

264 383 488
317 779 198

264 369 2323
409 700 1267

396 554 646
343 383 2t52
158 331 343
105 475 4527
40 369 409
79 66 409

27 223 905

cont'i,nued, oaer



APPENDIX E. STREAMFLOW DATA SETS

Myponga River (cont.)

Jan Feb Mar Ap, MoA Jun JuI Aug S"p Oct Nou Dec

158

204
t77
82

241
286
409

384
196

334
176

266

3r2
268
153

70

0

22r
188

338
54

160

TL7

118

150

204
250
700

206
254
237
158

290
227
286
195

74

L7

279
175
94

L24
142

L4l
168

150

L64
55

29L
260
469

92
290
Lt7
341

191

158

82
111

252
515
293

78

205

313
196

59
268

496
245
249
843
r97
479

584
267
278
173
92

424

449
147

190

867
161

491

682
391

195

4087

427

642
4297

340
584

1140

1076

277
389
297
738

295
347
289

560
533

1059
850

1191

205
4896

Lt32
1682

5867
401

2828
1155

988
566

TT26
4000

978

1333

3592
1187

742
85

8360
2573
3928

682
3464
3726
3377
2439
2960
4269

10130

2703
360

1364
6536
1947

2649
6037

756
4597

1980

3491
2737
3528
L437
7319
1289

5647

6424
5275
5581
1312

5641
989
909

7060
5816

1543
7556

872
5536
7276

2409
1619

3450
1187
1082

2168
2993
3306
1378

3201
1961

1881

897
rr88
3769
6160

701

1262
433

4280

3113

3969
368
827
286

2844
624
416
738

685
1033

5844
2429
1789

492
613

3811

1304

531
L92

1029

740

1595
359
54L
L82
570

555
405

819
22L
703

644
L205
400
26L
22r
804

378
459

167

t7L
190

532
268
473
286
427

408

526
423
IL4

79

286
226
L67

87
0

280
102
244

75

I44
242



APPENDIX E. STREAMFLOW DATA SETS

Onkaparinga River at Cla¡endon 'Weir

Jøn Feb Mar Ap, Moy Jun JuI Aug S.p Oct Nou Dec

159

533
185

r44
154
933

1035

31

400

984
149

246
768

1813
282

1828
236
89

L74
1926
1381

196

92
r081
1256
769

1955

513
20r
42L

1025
24

74

74

r63
74

74
131

1740
254
136

319
245

74

358
335
417

r92
r20
31

37
205
332
35
19

1364
47L

529
845

56
19

r58
22

67
67
67

67

58
318

30

28
28

r28
30

154

19

67

69

r937

74

74

74

74
45

31

31

31

31

31

31

74

2682
74

74
55r

19

2l
24

598
73

r20
19

r9
l9
l9

r204
135

19

38

160

72

72

750
72

55

1650

30
1363

30

30

30

2035
729
301

72

799

240
2l
18

1340

350
2T

r8
209
493

18

1252
204
111

55

205

8506
1007

2602
74

r23
1926
T2I2
2158

813

935
4257

15422
4144
2984

r08
505

Ll24
1854

105

25767
1371

767
r570
1345

1703

9678

3840
2344
9070
2580

20L2

43946

9278
19435
16056

5663
L0274
5301

20624
12503

3766
24708
31289
10974
14660

1167

363
782

28744
24777
41209

5345
1499

L9475
4249

7764
64207

15946

4240
6936

5732
7966

30967
1783

5468
6397

2224
2L832
32032
31413
30695

8590
8110

42L08
36578

8789

6245
997

1763
19404
27705
81059
16873

3183
24862

3779
32516

54987

2579
4520

9713
14802

L4062

27840
8336

60691
6269
4374

11719
14519
14015

38687
27678
20150

80446
21384

9742
4470
4972
962

35211
33011
43448
18195

7502
33097

9953
26895

30012
14480

2869

39672
31367

10876

3053
2016

10690

7965
4L07

36274
8411

22103
41593

4156
29690
20280
20600

9798
2957L
4959

564
41911

6868
64386

6505
16591

T7713

24475
6048

50522
21305

30259
14409

5826

1973

3330
1252
3388
5237
2338
2972
3376

20793
12893

1822
13831

29286
9574
4194
3386
4603

201
3828
6501
8206
4198

5r77
4432
7950

6859

17889

10229
3878

23356
2922

t9925

L407

LL23
682

1664

757

L0t2
1133

3832
4051

1265
1026

4687
2253

643
2320
1169

L32
999

6478
2819

1396

592
1369

2039
r353
2209
262r
1055

1218

2850

545

1

11

L7

28
27

35

90
67
r8
22

54

25

97
734

T7

107

352

continued ouer



APPENDIX E. STREAMFLOW DATA SETS

Onkaparinga River (cont.)

Moy Jun Jul Aug S"p Oct Nou Dec

160

Jan' Feb Mar Ap,

19 17 19 18

429 20 22 2r
31 20 22 27

40 34 36 1465

73 58 37 483

r01 28 31 L46
429 33 20 285
53 49 20r 66

420 118 58 36

191 526 143 7220
272 351 577 Lr23
789 263 636 L775

242t 430 154 392
270 283 -94 -78

-233 74 391 559
10 128 255 193

107 356 4 zlr
-43 5927 911 489
246 164 598 700
506 165 L25 1416
456 530 509 605
308 318 135 206
313 550 118 107
355 -39 92 236
554 r27 236 165

468 429 793 2307
292 56 232 622
648 257 283 2966
464 -45 4 800

34

53

492
716

L2209
170

1368
106

1353

1917
2624
2676
304

4527

959
228r
776

2436
862

1967

946
1920
6364
2480
1073

2254
5762
4985
1490

5002
r83

16106
34809

8744
140

8182
1283
2470
4897

11570

L230
931

27724

3135
994
669

9033
2992
3380
1385

4595
10710
9175

19824

4452
48939

62725
L632

8296
4910

37256
33662
5332

983
19088

5500
2940

1t237
13711

11463

7805

39865
t0432
7974

779
27t89
25492
8499
2391

4512
69879
13690

42947

6790

L4273
32342
5167

6304
20346
22044
37587
17933

3794
37050

7057
17035
19309
38812

5525
344r

42731
26378

174L
8938

16145

31064
23909
2834

13296

38824
L2507

2L753
5060

66025

17280
5117

8244
11863
45763
11661

66429
4776

37279
2609

23647
4737

r1237
2786

23668

36L22
12801

953

9740
8323

L7799
5092
2254
4287

4998

9664

18294
3907

5274

16943

5270

2777

5879
3252
5658

5356

3761
284L
2092
2666
1173

2059
1064

8829

3533
4400
1058

4898

2279
18610

7292
TT267

3506
8845
3527

5193

2L76
4592
6914
2050

605
t239
7437
1431

708

9358
1086

1143
301

564
632r
1063

650
1283

1435

TL26

2970
909

4186
14061

7703
1170
1906

8975
1395

1337

4192
2254
1040

2318

725
668
186

263
662
75

749
911

-54
792
tr2
365
457

392
280

626
27L0
1119
r920

970
475

r057
2844

988

779
1334

1155
17

continued, ouer



APPENDIX E. STREAMFLOW DATA SETS

Onkaparinga River (cont.)

Jan Feb Mar Ap, Moy Jun Jul Aug S.p Oct Nou Dec

161

L72
465
238

-282
t7

582
628
722

-793
7l

-65
-1381

940
380

2859
365

703

695
52

646
65

T7

101

-259
205

-273
376

240
252
554

-405
-198

460

871

309

-223
133

-248
4315

47

395
893
760

520
552
280

-85
-31_I7I
-68

48

-82
524

4L

25r

-39
-35

-135
178
43

620
474
136

r92
455

231
590
516
230
513
946
L7L
336

-100
250

-490
385
228
583
428

466
476
823

673

96

143

64
191

16

72

790

1503

lr22
16984

800
1090

1785

t204
418
438

397

604
408

36

608
1013

531

5394
565

22958
805

264r
1687
305
961

925
II4

L3424
3925
L740

266L7
L24L
2248
3652
9090

634
1386

652
557

619

570
1285

2450
r293

L52T
4t7

18104
2957

6416
22999

1852
1808

2389

97
22093

3437
4753

20748
L420
8343

2310

3013
r623
3676
2265
L295
5289

30216
4184

2398

1257

16353

991

13305
92L2
4375

45540
428L2
3243

16038
t544

18874

r3764
L5494
5870

10461

20L54
2643L
r3481

1590
4244

L5325
6044

15678

55622
2669

13035

6498

27474
2683

13191

8053
13918

35304
16571
8695

12277

3403
46033

4726
26329
37133
20924
20425
18082
17933

3526
4110

L5824
15925

54r2
51089

2436
20993

40659

27964
961

28863

5243
34r4

r5544
20004
4389

11660
2072
6817

7606
r2996
29311

7409
31419
20159

6974
2379
3715

12587

39687
3282
8589

906
22042
L2L7I

22354
857

4873
1281

9359

3965
27817

866
4610

840
256t2
t7t4
2999
7487
2747

7429
31054
16416

9336
15r6
2039

23263
8914
29r9
32r

3022
2546

2557
408

2094
682

1285
968

9938
79

LT26

-50
6052
1035

9r4
3347
895

1936

3077
6596
1208
1066

891

t784
5523
1242

-180
1334

943

1013

967
II4
597

-443
478

2249
561

1810

-95
1073

647

1206
1506
247

LI44
914
730

259
686
L94
229
252
140

-181
609

-2

2079



APPENDIX E. STREAMFLOW DATA SETS

Torrens at Gorge Weir

Jo,n Feb Mar Ap, Moy Jun Jul Aug S"p Oct Nou Dec

162

345 241 314
186 73 96

295 150 178

250 55 77

809 173 237

1229 68 r23
208 64 r28
402 229 221
146 91 100

206 70 61

286 130 23I
303 107 138

L7L 95 104

97 94 94
0 70 150

65 70 r29
29061

150 51 42
r23 38 246
84 80 239

1068 109 151

18410
169 0 190

238 163 2r3
106 0 182

276 185 333
287 334 1023

2900
7000

185 3318 465

268
159

2r8
455
282

33031
172
303
161

253
311

588
1605

97
1156

352
45r
259
Lr7
588
158

585

273
268
259

532
350

8072
240
292
25r

3978

345
415
431

479

6230

526
481

203
t92
496

330

1506

103

363

5460
13078

1045

0

341

213

t2047
290
29r

20257

836
29493

5754
368

816
26278
5799
2588
2273

708
25098

2985

3849
7373
3740
3169
4472

19056

4330

1060

19959

16913

3991
4636

454

362

882
6533
1030

202L2
20135

1520
22804
2457

r299
13688
1 1751

12529
362L
2132

12893

659
r447
3164

877
8469

20060

31228
14633

44L4
13859
25280
20372

4333
2263

551

13747
29r46
8696

9001
r3197
22258
34329
2r79

13146

648
14391

14051

900
10463
13307

1305

27494
1750
1937

8590
7355

5932
29368

12302
13265

47181

t7r25
3258
4996

L72L

14052
249L

18425
I2743
3550
7188
7931
1081

7087
23548
9233

10002
739

8769
2243
561

6028
3631

975
13378
4019

15151

22897

2055
25333

r2783
13700

3287
28498

2585

3587
873

2668
4473
672

2705
8813
1137

LL428
3243
7V26

710

324
t495

478

365
1659

3346

601

1411

r234
TT42I

7379
1634

10125

T3L74
8299
1876

1831

42t5

464

518
987

1373

323
542

3599
634

1130

1222

675
380
100

L97

434
270
427

875
232
706

44r
3734
2873
1244
T62L
2673
3027

338
L44T

478

350
496

L209
777
r47
349
73L
326
634
416

413
254

72

53
222

84
175

176

434
352
92

362
1511

390

287

75r
1615

324
1865

75

r47
554
225

2It6
60

0

170

313

continued ouer



APPENDIX E. STREAMFLOW DATA SE?S

Torrens at Gorge'Weir (cont.)

Jan Feb Mar Ap, Moy Jun Jul Aug S"p Oct Noo Dec

163

88

55
119

336
336

339

-292
593

L297

7LL
775
180

-L92
140

37

55

336

77

-27
1827
349

513
264
754
378

367

52r
1895

173
267

22
15

64
256
256
706

-438
-504

234
327
648

61

-135
4T

484

-r27
239
160

109

273
254
2L2
252
250
264
250
272

126
170

22r

0

64
143

184

184

252

-263
-359
-34
-93
536

-r52
-327
-433
-24

-2t2
-2L0

2t9
2r9

-357
165

482
102

-344
160

225
46

375

-242
701

L4

2L6
10

832
832
2IT
2t0

-163
-246
-191

531

-L2
150

-29r
126
105

-276
72

r487
718
566

414
414

393
8025

421

1338

239
828
724

3t4
1828

208
1783

1783

1087

1116

8

2r9
r3782
2749
2L9

5317
1460
1508

335

-357
528
646

7980
496

817
474

1063

1357

1345

1288

364
2127

532

256
r3444
16464

6115
6115

957
9085

498
893

47532
8415

732
3265
1397

5249
2967

151

6012
165r5
36t2

670

3396
937

1415
259L
5783

535

754
15416

1368

468

9600
t3024
9090
9090
1119

9995
1301

10461

51015
1900

1431

5798

5886
5086
2653

1710

r9737
18020

1892
935

8000
2800
1483

5702
8155

4600

4238

æ0r8
4325

302
20274
26625
L2263
13446
3736

27130
4751

r3407
23225
5395
255r

26689
28692
I445
2344

t2400
15156
21832
8235
2556

2067r
3132

r0786
8160

33463

2578
2501

30403
10165

203
28336

5074
9522
5563

9511
L7t92
16001
2884

35571
r522t
16365

7787
3108
1617

3451

5622
35470
1L284
35562

2758
11563

1351

14856

3924
5737

1453

15201

279r5
4412

119

4059

3865
4533

3293
2273

3636
3778
1539

22IL6
8425
3t12

32588
L206

10621

914

1804

2253
3084
2856
2056
22L5
1035
1836

1115

t672
714

53t7
3040
2509

138

5L7

5568
I440
1316

4r7
L729
1893

1L02
2604
1846

7L2
1791

1034

675
709

780
1165
1587
1019

3778

950
448
819
647

2403
5t4
856

659
679

84
170

L244
620
193

238
1375

802
718

1765
434
58

428
636

-378

.'I
[r

:

2782
298

677

543
508
487

349
397

1078
422

725
68

302

320
369

{

continued, oaer



APPENDIX E. STREAMFLOW DATA SETS

Torrens at Gorge'Weir (cont.)

Jan Feb Mar Ap, Moy 'Jun JuI Aug S"p Oct Nov Dec

164

248

-54
L74
319
552
782
97

23r
295
249
346
4L7

235
751
369
344

-216
-24r
-266
-19

-327
-79

-461
-267
-29
267

t42L
165

1346

226

82
40

3735
226
24L
239
r42
L25
113

r44
IT7
279
484
2L7
225
438

98

-181
-589
-54r
-151
-429
-727
-153
-327
1905

-326
266
492

917

-163
97

525

-549
-3r2

L25
89

78

L29

6

r82
531

159

410

-119
432

-328
-2r5
-69

-856
-110
-440
-429
-159
-256

382

-95
259
376

171

185

-L24
673
886
905
L79
105

432
248
3t2
398
406

1855

740

-263
327

73

591

29

413

146

-183
-460
-91
-23
542
2L2

4201

590

311

858
285

L270
1015
r053
752

1896

2772
2288

642
969

3L74
3L25

769

2162
357

11793
172

2300
1555

594
744
54

-40
7658
1358

563

10953

409

1003

601

329
3303
1935
2602

588
3502
8057

9358
8908
2045

28343

33107
835
920
299

10449

1089
4179

22183
1555

734
849
345

16439

1242
1401

13834

694

3112

2405
561

18606
16578

4329

1615
3832

43923
8268

24987

3641

9631
39396

3150
9205
356

8976
4286

3295
34240
20456
2004

IT272
371

13653

8031

5875

4t07
4205

8r74

1004
2849
422L

I824L
17877

1930
7421

26138

8r77
14990

2354
36522
26L79
2670

r542
9906

3429
t6454
25536

8488

5875
7053
1687

32882
3425

L8327

29087

r2709
10789

532
4043
1491

9894
2924
1266
3795
5808
7997

r4199
2233
7IL2

2r245
2862

20009
4L7

22327

3355
1863

15555

10943

3499
8450

579
4457

5048

rr572
2146r

3096

19167

626
L822
1260

7r22
5529
7364
1754
4676
3150

3332
1370

3728
5066
1511

16935
496

3359
287

6944
2009

16595
460

3907
156

140r9
u35
3000

6025
1391

4366

596
L052
75L

2259
7712
8148
82t

1581

4273
r437
763

1791

22L8
756

2226
57

1636

L75
491

566

3080
r42
780

-153
3843
1525
1084

2350
880

1550

223
347

965
1535
3842
639
280

501

1603

940
298

1105

1017

435
605
307

401

-334
-58

- 111

806

51

1616

-219
1432
L20r
591

t440
457

974

332r0

t
I

,

I

continued oaer



APPENDIX E. STREAMFLOW DATA SETS

Torrens at Gorge'Weir (cont.)

Jan Feb Mar Apr Moy Jun Jul Aug s"p oa Nou Dec

165

896 1326 692 1134

839 522 762 735

302 509 148 282
462 47 405 294

-111 -304 -348 265

496 L62 226 364

225 337 333 608

695 406 1179 534

552 10 538 734
357 256 986 1104

2327
4855

524
696
403

742
598

655
951

1114

1183

161?

702
1530

1164
462

2987

23469
1561

1140

19017
0

484
Lt29
9309
1341

9989

30517
1203
7146

L4012
0

668
1631

10158
497r
2772

35222
1685

11325

15075
4074
293
581

12852
22200

T2L9

8587
736

20458

26168

9794
1661

170

1257

20578
4323

3684
574

3141

3557
5017

627

408

665
1957

3119
1719

341

696

1107

979
381

-20
383

523
910
904

394
423

I

I

J



APPENDIX E. STREAMFLOW DATA SETS

Torrens at Gumeracha'Weir

Jan Feb Mar Ap, Moy Jun Jul Aug S"p Oct Nou Dec

166

51

150

39
150

r50
150

73L
589

35

10

86
39

39

150

35
150

150

150

426

54L
54

9

35
380

35

35

35

30

70

16

47

56
74

61

64
16

47

57

47
49

47
r92l

113

49

94

115

39

115

115

115

472
639

2L

10

39
40

39
39
39

39
2l
18

52

52
39
63

73

18

t23
55

52

52

52

88
75

52
66

177

38
177

177

177
456

573
55
23

38
38

38
38
38

38
198

t7
73

51

34
2898

7L

110

51

553

51

51

46

7T

56
t62
63

868
39

868
868
868

10008
10733

r92
1373

L74
189

44

39
TL2

t32
2225

32
2L3
52
95

527

476
L22
73

1143

52

52

52
287

333
100

70

2698

38
2698
2698

2698
40896

1739
488
944
556
753
559

62
1630

4323
1176

7t
782
2L8
3t2
904

3114
l7

199

t277t
928
230
54

r058
620
677
66

4218
39

42L8
4218
4139

24092
L027
712

2450
r331
1224
891

482
6454
6399

314
170

3805
1305

379
2629
3178
1481

1406

13354

1066

810
137

9893
r02L5
r758
782

11864
387

6061
6061

12857
9227
3061
1757

8361
13055

430

1175

3523
5427

7796
4403
728

9580
1451

4626
2026

t7329
801

1037

15661

5247
426
758

2298
8361

9583

777

1307
2564
4323
4323

2082
29900

7703
6408
1035

469

756

1311

2083
12109

5587
10140

678
2969

692
4804
1028

2404
452

6800

12950

264r
110

L502
364

4343

808
409

727
680

2r2L
2T2L

1742
10205

3033
733

13739

454
1780

276

1313

539
1180

793

619

581

348

69

360
2r3
r57

1538

904

1143

109

466

280

4135

1618

2857

50

46
567
bbl
tõ(

1882

320
131

438

269

366
133

336

366

428

39
39

244
244

1725
747
106

15

2I
106

39
905

72

69

2l
73

94
183

66
165

r52
208

64

70

35

52

52
78

t45
210

2128
253

40

25

1007

73

75

207

L72
173

108

18

991

63

52

52
52

52
66

83
160

L57

1506

356
170

158

t52
778
55

110

278
2r3
130

273
116

687

352L
1615

continued oaer



APPENDIX E. STREAMFLOW DATA SETS

Torrens at Gumeracha'Weir (cont.)

Jan Feb Mar Ap, Moy Jun JuI Aug S"p Oct Nou

167

54
35
35

85
LI4
39

2r8
450

27

33

35

28
74

50
137

70

-L67
L2

179

56
r30
l1

209
279
34
51

70

t29
466

93

355
277

48

357

24

32
33

32
32

24
118

45
27

229
40

250

-145
25

r29
29

-102
24

39
rt27
_47

L4

32
508
442

19

35

55
272
260
TI7
2r3
384
301

245
583

1159

49
780

1130

823
423

652
96

6571
r32

L022
679

79

158

188

104

245r
195

61

3691
185

L22
983

1247

134

155

79

242

2r9
33

2L6
172

1089

2770
4538
3193

855

13587
13416

391

464
96

54r7
287

1802
10547

340
278
309

53

9288
300
259

4416

17r
626
415
491

216
522

2698

2r9
1598

11990

392

-95

1506
L7441

1780
12896

1146

3495
14796

1378
5093

302
6312

1686

1350

11517
12t24

531

5471
244

9037

3161

1546

1684

1292
2928

10987

3332
140

514
4218

117

5235

18510

229
2763

4815
14873
7015
7013

I t,5

2287r
L27L5

1887

5815
7L6

4546
t424
7090

t2678
44t8
2709
3056

786
20940

t407
6909

t6294
6374
5059

7864
3381

L28
676

6029
r628
L474

25203
960

469r

865
2308
3724
8759

827

3038
8062
L269
6405

319
10371

1827

871
10404
6t42
1369

5016
250

1762
1861

$r1
12881

919
10768

8540
22t0
r277
604

5636
11097

556

3630

648
10990

608
2066

3502
r204
486

1136

1738
450

4922
195

1196

284
4213

697
7640
555

1565

85

6991
3r2
815

2949
416

2939

12477
4899
r044
488

749
10100

3136
1260

891

1268

337
392

1658

422
245
555
782
277
784
100

545
L27

334
209
959

-42
331

-20
t470
353
t72
699
228
995

1049
2527

T2T

143

404
739

1568

581

833

567

178
35 34
35 34
35 34
36 45

36 r34
246 532
45 346
27 27

288 LL4
222 14

115 rzL
64 64
62 106

-160 t2
54 66

-7 -l
36 32
40 270

103 94
75 86
L7 953
24 52

111 20
410 266
48 116

49 54
252 85

432 769

268 113

327 115

-r03 31

44I 110

8r2 136

Dec

56
35

273
205
28

150

292

196

t42
r32

-31
-47

43
260

-ðt
992

0

355
172

70

253
r82
131

r29
514

45

37r
264
4I7
590

r47
L027

244

cont'inued ouer



APPENDIX E. STREAMFLOW DATA SETS

Little Para River

Jan Feb Mar Ap, MoV Jun Jul Aug S.p Oct Nou Dec

168

43

bb

34

190

2t
300

148

37

18

0

184

26r
23r
272

189

18

19

100

60

L45
t20
30

b

1

84
255
131

L62
310

83
53

748
TLz
59

IL4
128

54
43

6

136

246
78

258

72

179
100

3642
151

L24
324
130

78

90

I
89

22r

288
293

4462
t24
76r
196

130

100

187

637
103

645

2895
1650
1337

659
L475
3153

130

L22
232

1856

27
2099

5126
389

t77r

597

3744
1699
1000

1586
2296
1134

158

98
2503

981

631

5995
371

2558

767
1835
4195

480

2508
r200

544
LT7

8

2258
3948

332
1807
214

4230

193

4L2
1079

183

462
2800
1383

159

I

398
3434
837
788

L42
566

99

130

455
89

151

510
5r4
69

6

209
515
863
458
TI2
2t9

75

77

225
34

72

2L2
250
27

2

r02
367
318
282
188

245

68
2t
24
81

40
40

LT4
44
18

2

59
188

t74

232
216
r23

140 4863
r82 556
2I9 20r



Appendix F

Monthty Cross Correlation
Matrices

This appendix documents the monthly, lag zero and one, cross correlation
matrices for the Reuised, data sets, followed by the multisite [A] , [B] & tC]
matrices for each month.
Each data set has the following computations for cross correlations undertaken

o The raw data

o The transformed data, computed using the 3-parameter shifting param-
eters given in Table [5.4].

The values are represented by matrices, where each column (i) and row (j) of
the matrix represents the correlation between stations (i) & (j).
The order of stations is as follows -

o Warren

o South Para

o Myponga

o Onkaparinga

o Gorge

o Gumeracha

o Little Para

169
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Revised Data

Raw Data Lag 0 cross correlations.

January

1.000 0.745 0.629 0.382 0.721 0.586 0.695
0.745 1.000 0.401 0.613 0.744 0.353 0.405
0.629 0.401 1.000 0.477 0.583 0.615 0.064
0.382 0.613 0.477 1.000 0.590 0.339 0.r44
0.721 0.744 0.583 0.590 1.000 0.603 0.349
0.586 0.353 0.615 0.339 0.603 1.000 -0.044
0.695 0.405 0.064 0.144 0.349 -0.044 1.000

February

1.000 0.763 0.763 0.849 0.863 0.877 0.2rr
0.763 1.000 0.535 0.747 0.736 0.677 0.324
0.763 0.535 1.000 0.832 0.832 0.826 0.207
0.849 0.747 0.832 1.000 0.824 0.869 0.158
0.863 0.736 0.832 0.8241.000 0.849 0.339
0.877 0.677 0.826 0.869 0.849 1.000 0.371
0.zrL 0.324 0.207 0.158 0.339 0.371 1.000

March

1.000 0.661 0.142 0.136 0.565 0.512 0.565
0.661 1.000 0.233 0.320 0.546 0.229 0.402
0.142 0.233 1.000 0.385 0.283 -0.261 0.402
0.136 0.320 0.385 1.000 0.445 0.175 -0.101
0.565 0.546 0.283 0.445 1.000 0.302 0.666
0.5r2 0.229 -0.261 0.175 0.302 1.000 0.068
0.565 0.402 0.402 -0.101 0.666 0.068 1.000

April
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1.000 0.636 0.396 0.252 0.445 0.318 0.259
0.636 1.000 0.320 0.641 0.646 0.415 0.858
0.396 0.320 1.000 0.428 0.419 0.256 0.539
0.252 0.641 0.428 1.000 0.725 0.575 0.914
0.445 0.646 0.419 0.725 1.000 0.880 0.926
0.318 0.415 0.256 0.575 0.880 1.000 0.622
0.259 0.858 0.539 0.914 0.926 0.6221.000

M.y

1.000 0.957 0.827 0.829 0.873 0.960 0.987
0.957 1.000 0.863 0.881 0.922 0.956 0.928
0.827 0.863 1.000 0.919 0.933 0.864 0.968
0.829 0.881 0.919 1.000 0.785 0.561 0.948
0.873 0.922 0.933 0.785 1.000 0.733 0.919
0.960 0.956 0.864 0.561 0.733 1.000 0.940
0.987 0.928 0.968 0.948 0.919 0.940 1.000

June

1.000 0.983 0.863 0.833 0.934 0.921 0.933
0.983 1.000 0.909 0.855 0.940 0.940 0.989
0.863 0.909 1.000 0.827 0.862 0.846 0.799
0.833 0.855 0.827 1.000 0.927 0.857 0.974
0.934 0.940 0.862 0.927 1.000 0.926 0.967
0.92L 0.940 0.846 0.857 0.926 1.000 0.893
0.933 0.989 0.799 0.974 0.967 0.893 1.000

July

1.000 0.976 0.712 0.879 0.941 0.905 0.914
0.976 1.000 0.734 0.879 0.941 0.881 0.832
0.712 0.734 1.000 0.811 0.831 0.811 0.711
0.879 0.879 0.811 1.000 0.829 0.911 0.884
0.941 0.941 0.831 0.829 1.000 0.955 0.951
0.905 0.881 0.811 0.911 0.955 1.000 0.888
0.914 0.832 0.711 0.884 0.951 0.888 1.000
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August

1.000 0.932 0.672 0.844 0.902 0.922 0.916
0.932 1.000 0.609 0.878 0.927 0.906 0.733
0.672 0.609 1.000 0.669 0.710 0.655 0.656
0.844 0.878 0.669 1.000 0.918 0.887 0.859
0.902 0.927 0.710 0.918 1.000 0.915 0.827
0.922 0.906 0.655 0.887 0.915 1.000 0.848
0.916 0.733 0.656 0.859 0.827 0.848 1.000

September

1.000 0.891 0.581 0.887 0.950 0.956 0.903
0.891 1.000 0.652 0.867 0.926 0.906 0.961
0.581 0.652 1.000 0.664 0.720 0.566 0.864
0.887 0.867 0.664 1.000 0.862 0.798 0.q62
0.950 0.926 0.720 0.862 1.000 0.886 0.944
0.956 0.906 0.566 0.798 0.886 1.000 0.923
0.903 0.961 0.864 0.862 0.944 0.923 1.000

October

1.000 0.959 0.816 0.875 0.948 0.951 0.894
0.959 1.000 0.877 0.928 0.969 0.965 0.922
0.816 0.877 1.000 0.906 0.895 0.824 0.868
0.875 0.928 0.906 1.000 0.890 0.878 0.904
0.948 0.969 0.895 0.890 1.000 0.966 0.958
0.951 0.965 0.824 0.878 0.966 1.000 0.952
0.894 0.922 0.868 0.904 0.958 0.9521.000

November

1.000 0.899 0.522 0.793 0.752 0.792 0.841
0.899 1.000 0.653 0.830 0.773 0.880 0.806
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0.522 0.653
0.793 0.830
0.752 0.773

0.792 0.880
0.841 0.806

1.000 0.799 0.673 0.660 0.459
0.799 1.000 0.864 0.827 0.772
0.673 0.864 1.000 0.879 0.762
0.660 0.827 0.879 1.000 0.678
0.459 0.772 0.762 0.678 1.000

December

1.000 0.683 0.006 0.359 0.502 0.425 0.426
0.683 1.000 0.252 0.528 0.485 0.288 0.174
0.006 0.252 1.000 0.646 0.468 0.053 0.119
0.359 0.528 0.646 1.000 0.724 0.352 -0.160
0.502 0.485 0.468 0.7241.000 0.672 0.358
0.425 0.288 0.053 0.352 0.672 1.000 0.381
0.426 0.174 0.119 -0.160 0.358 0.381 1.000



APPENDIX F. MONTHLY CROSS CORRELATION MATRICES 174

Raw Data Lag 1 cross correlations.

January

0.338 0.229 -0.285 -0.132 0.102 0.029 0.196
0.197 0.446 -0.153 -0.009 0.12t -0.086 0.033
-0.044 -0.021 0.724 -0.005 0.042 -0.048 0.318
-0.031 0.103 0.079 0.248 0.193 0.030 -0.073
0.253 0.185 0.001 0.120 0.290 0.158 0.122
0.058 -0.082 -0.262 -0.082 0.022 0.280 0.049
0.779 0.456 -0.177 -0.085 0.347 0.167 0.628

February

0.206 0.135 0.259 -0.262 0.034 -0.016 -0.150
0.291 0.398 0.172 -0.072 0.172 -0.070 0.019
0.077 0.012 0.417 -0.087 0.029 -0.030 -0.166
0.156 0.149 0.322 -0.091 0.057 -0.065 -0.111
0.265 0.191 0.320 -0.085 0.153 0.032 0.096
0.171 0.032 0.252 -0.216 0.015 0.086 -0.010
0.381 0.041 0.021 -0.304 -0.044 0.212 0.645

March

0.265 0.332 0.059 0.052 0.288 0.238 0.816
0.198 0.393 0.084 0.122 0.274 0.085 0.219
0.299 0.228 0.466 0.302 0.448 0.284 -0.068
0.235 0.353 0.377 0.300 0.313 0.357 -0.001
0.292 0.383 0.188 0.225 0.431 0.291 0.624
0.068 0.143 -0.056 0.036 0.114 0.294 0.517
-0.095 -0.041 -0.086 -0.222 -0.018 0.040 0.656

April
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0.307 0.022 -0.119 -0.043 0.038 0.455 0.2r9
-0.049 0.209 -0.073 -0.008 -0.065 0.129 0.L42
0.129 0.045 0.402 0.176 0.071 0.166 -0.106
-0.008 0.379 0.262 0.182 0.128 -0.009 -0.263
0.151 0.368 0.202 0.065 0.052 0.031 -0.102
-0.037 0.199 0.040 0.016 0.032 0.t52 -0.391
-0.237 0.488 0.500 0.123 0.009 -0.154 0.053

M*y

0.2t2 0.298 0.166 0.297 0.t74 0.190 0.893
0.222 0.299 0.153 0.342 0.218 0.203 0.899
0.197 0.364 0.290 0.450 0.124 0.100 0.886
0.236 0.479 0.264 0.505 0.260 0.183 0.874
0.246 0.418 0.243 0.354 0.282 0.181 0.863
0.220 0.365 0.178 0.175 0.023 0.202 0.889
0.229 0.816 0.587 0.995 0.974 0.736 0.935

June

0.205 0.278 0.380 0.245 0.294 0.2t6 0.338
0.305 0.352 0.480 0.346 0.395 0.324 0.977
0.242 0.250 0.436 0.322 0.346 0.284 0.696
0.337 0.329 0.423 0.436 0.513 0.470 0.486

0.347 0.379 0.448 0.332 0.589 0.513 0.438
0.342 0.367 0.419 0.306 0.599 0.569 0.240
0.623 0.883 0.562 0.540 0.528 0.520 0.634

July

0.713 0.679 0.633 0.614 0.687 0.688 0.554
0.690 0.722 0.714 0.598 0.662 0.664 0.002
0.323 0.331 0.442 0.318 0.323 0.283 0.135
0.549 0.498 0.516 0.587 0.514 0.544 0.545
0.636 0.624 0.624 0.641 0.636 0.709 0.549
0.567 0.524 0.524 0.661 0.703 0.706 0.560
0.676 0.101 0.351 0.609 0.632 0.692 0.541
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August

0.729 0.662 0.472 0.608 0.638 0.657 0.758
0.594 0.613 0.420 0.488 0.523 0.515 0.310
0.518 0.550 0.567 0.536 0.622 0.558 0.198
0.487 0.499 0.399 0.531 0.444 0.490 0.555
0.626 0.579 0.466 0.518 0.508 0.538 0.649
0.632 0.565 0.396 0.553 0.527 0.542 0.689
0.777 0.455 0.606 0.868 0.816 0.791 0.768

September

0.448 0.448 0.436 0.290 0.356 0.284 0.337
0.560 0.617 0.449 0.437 0.506 0.437 0.520
0.237 0.281 0.555 0.164 0.247 0.1r2 0.165
0.307 0.375 0.413 0.267 0.239 0.114 0.169
0.472 0.505 0.545 0.261 0.281 0.217 0.371
0.429 0.475 0.455 0.278 0.312 0.220 0.294
0.350 0.599 0.666 0.531 0.488 0.362 0.382

October

0.334 0.153 0.154 0.357 0.279 0.270 0.163
0.410 0.254 0.244 0.431 0.349 0.340 0.2r9
0.332 0.275 0.499 0.389 0.363 0.307 0.090
0.286 0.189 0.275 0.248 0.247 0.260 0.135
0.407 0.255 0.312 0.295 0.313 0.369 0.268
0.375 0.2t4 0.186 0.278 0.267 0.369 0.240
0.553 0.526 0.519 0.630 0.531 0.517 0.400

November

0.420
0.250

0.322
0.270
0.352

0.418 0.297 0.368 0.383 0.425 0.684
0.322 0.247 0.298 0.306 0.349 0.712
0.420 0.496 0.494 0.461 0.472 0.570
0.323 0.356 0.374 0.260 0.257 0.374
0.418 0.397 0.468 0.425 0.392 0.575
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0.297 0.382 0.347 0.397 0.357 A.402 0.376
0.559 0.601 0.461 0.554 0.536 0.570 0.619

December

0.439

0.286
0.161

0.353

0.718
0.602
0.663

0.409
0.349

0.208

0.416
0.802

0.763
0.814

0.338
0.253
0.105
0.379
0.634
0.604
0.571

0.330
0.067
0.r06
0.000
0.516
0.220
0.846

0.186 0.2L5 0.2Lt
0.336 0.199 0.186
0.563 0.316 0.230

0.660 0.480 0.442
0.591 0.545 0.590
0.303 0.392 0.406
0.377 0.493 0.546
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Tfansformed Data Lag 0 cross correlations.

January

1.000 0.800 0.341 0.052 0.672 0.415 0-645

0.800 1.000 0.202 0.t77 0.652 0.193 0.456

0.341 0.202 1.000 0.288 0.545 0.273 0.041

0.052 0.r77 0.288 1.000 0.431 0.257 -0-085

0.672 0.652 0.545 0.431 1.000 0.561 0.492

0.415 0.193 0.273 0.257 0.561 1.000 -0.063

0.645 0.456 0.041 -0.085 0.492 -0.063 1.000

February

1.000 0.706 0.466 0.448 0.646 0.574 0.284

0.706 1.000 0.414 0.516 0.594 0.467 0-361

0.466 0.414 1.000 0.694 0.549 0.260 0.153

0.448 0.516 0.694 1.000 0.612 0.430 0.055

0.646 0.594 0.549 0.612 1.000 0.655 0.509

0.574 0.467 0.260 0.430 0.655 1.000 0.469

0.284 0.361 0.153 0.055 0.509 0.469 1.000

March

1.000 0.485 0.t47 0.25t 0.329 0.383 0.527

0.485 1.000 0.248 0.180 0.463 0.269 0.431

0.r47 0.2481.000 0.399 0.358 -0.205 0.334

0.251 0.180 0.399 1.000 0.380 -0.029 0.170

0.329 0.463 0.358 0.380 1.000 0.217 0.686

0.383 0.269 -0.205 -0.029 0.2r7 1.000 -0.112

0.527 0.431 0.334 0.170 0.686 -0.1r21.000

April
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1.000 0.651 0.348
0.651 1.000 0.353
0.348 0.353 1.000

0.326 0.402 0.585

0.479 0.502 0.540
0.435 0.440 0.309
0.229 0.634 0.560

0.326 0.479 0.435 0.229
0.402 0.502 0.440 0.634
0.585 0.540 0.309 0.560

1.000 0.5L2 0.394 0.530
0.5121.000 0.605 0.736

0.394 0.605 1.000 0.133
0.530 0.736 0.133 1.000

1.000 0.766

0.766 1.000

0.645 0.640

0.721 0.776
0.761 0.823

0.570 0.710

0.629 0.695

June

1.000 0.911

0.911 1.000

0.775 0.830

0.850 0.855

0.897 0.889

0.766 0.849

0.862 0.909

May

July

0.645 0.7210.761 0.570 0.629

0.640 0.776 0.823 0.710 0.695
1.000 0.743 0.796 0.549 0.650

0.743 1.000 0.788 0.776 0.673

0.796 0.788 1.000 0.684 0.708

0.549 0.776 0.684 1.000 0.565

0.650 0.673 0.708 0.565 1.000

0.775 0.850 0.897 0.766 0.862
0.830 0.855 0.889 0.849 0.909
1.000 0.859 0.884 0.827 0.830
0.859 1.000 0.937 0.849 0.867

0.884 0.937 1.000 0.829 0.869
0.827 0.849 0.829 1.000 0.583
0.830 0.867 0.869 0.583 1.000

1.000 0.937

0.937 1.000

0.802 0.830

0.837 0.884
0.928 0.866

0.897 0.939

0.954 0.834

0.802 0.837 0.928

0.830 0.884 0.866
1.000 0.900 0.867

0.900 1.000 0.912

0.867 0.912 1.000

0.871 0.901 0.896

0.765 0.795 0.946

0.897 0.954
0.939 0.834
0.871 0.765
0.901 0.795
0.896 0.946

1.000 0.850
0.850 1.000
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August

1.000 0.973 0.789 0.867 0.847 0.910 0.932
0.973 1.000 0.768 0.879 0.869 0.904 0.912
0.789 0.768 1.000 0.843 0.779 0.815 0.759
0.867 0.879 0.843 1.000 0.916 0.895 0.883
0.847 0.869 0.779 0.916 1.000 0.925 0.820
0.910 0.904 0.815 0.895 0.925 1.000 0.898
0.932 0.912 0.759 0.883 0.820 0.898 1.000

September

1.000 0.957 0.739 0.900 0.948 0.944 0.929
0.957 1.000 0.761 0.893 0.933 0.924 0.969
0.739 0.761 1.000 0.840 0.781 0.724 0.840
0.900 0.893 0.840 1.000 0.933 0.887 0.895
0.948 0.933 0.781 0.933 1.000 0.942 0.965
0.944 0.924 0.724 0.887 0.942 1.000 0.931
0.929 0.969 0.840 0.895 0.965 0.931 1.000

October

1.000 0.924 0.755 0.849 0.879 0.844 0.879
0.9241.000 0.786 0.864 0.879 0.895 0.902
0.755 0.786 1.000 0.900 0.843 0.754 0.702
0.849 0.864 0.900 1.000 0.914 0.845 0.769
0.879 0.879 0.843 0.914 1.000 0.864 0.965
0.844 0.895 0.754 0.845 0.864 1.000 0.871
0.879 0.902 0.702 0.769 0.965 0.871 1.000

November

1.000 0.829 0.526 0.680 0.724 0.714 0.803
0.829 1.000 0.673 0.792 0.830 0.751 0.813
0.526 0.673 1.000 0.754 0.760 0.645 0.508
0.680 0.792 0.754 1.000 0.850 0.726 0.586
0.724 0.830 0.760 0.850 1.000 0.846 0.811
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0.714 0.751 0.645 0.726 0.846 1.000 0.783
0.803 0.813 0.508 0.586 0.811 0.783 1.000

December

1.000 0.708 0.049 0.358 0.607 0.603 0.422
0.708 1.000 0.213 0.491 0.594 0.362 0.252
0.049 0.213 1.000 0.619 0.532 0.139 0.136
0.358 0.491 0.619 1.000 0.696 0.446 -0.155
0.607 0.594 0.532 0.696 1.000 0.681 0.458
0.603 0.362 0.139 0.446 0.681 1.000 0.464
0.422 0.252 0.136 -0.155 0.458 0.464 1.000
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Transformed Data Lug 1 cross correlations.

January

0.488 0.320 -0.25r -0.058 0.212 0.22L 0.218
0.325 0.470 -0.196 -0.027 0.174 0.010 0.044
0.100 0.089 0.458 0.158 0.327 0.069 0.317
0.146 0.232 0.207 0.375 0.344 0.182 -0.318
0.446 0.255 0.067 0.168 0.415 0.364 0.252
0.205 -0.120 -0.179 -0.062 0.110 0.446 0.014
0.719 0.515 -0.127 -0.152 0.458 0.245 0.688

February

0.296 0.330 0.224 -0.345 0.146 0.077 -0.106
0.346 0.452 0.167 -0.180 0.159 -0.091 0.041
0.204 0.152 0.743 0.023 0.298 0.059 -0.123
0.L24 0.r77 0.495 0.244 0.245 0.047 -0.165
0.390 0.316 0.438 0.035 0.430 0.261 0.204
0.2r7 0.050 0.275 -0.r42 0.224 0.311 0.102
0.5L2 0.159 0.076 -0.446 0.164 0.084 0.768

March

0.397 0.406 0.158 0.187 0.371 0.384 0.593
0.265 0.487 0.183 0.106 0.324 0.038 0.255
0.223 0.182 0.619 0.353 0,.479 0.201 0.018
0.07L 0.240 0.4t2 0.458 0.326 0.219 0.112
0.324 0.345 0.324 0.274 0.521 0.281 0.640
0.rr2 0.182 -0.099 -0.013 0.155 0.376 0.236
0.039 0.157 0.061 -0.170 0.309 0.178 0.835

April
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0.434 0.022 -0.155 -0.060 0.088 0.394 0.239
0.169 0.057 -0.093 0.023 -0.010 0.111 0.330
0.076 0.020 0.413 0.232 0.222 0.145 0.090
0.313 0.432 0.296 0.411 0.330 0.250 -0.334
0.175 0.127 0.239 0.140 0.420 0.138 0.117
0.064 0.101 0.002 -0.071 0.131 0.457 -0.447
-0.220 0.585 0.478 0.320 0.556 -0.146 0.487

M.y

0.464 0.207 0.200 0.156 0.206 0.171 0.396
0.293 0.183 0.021 0.102 0.058 0.083 0.630
0.194 0.181 0.333 0.172 0.t21 0.172 0.497
0.331 0.207 0.279 0.401 0.236 0.318 0.494
0.334 0.24r 0.327 0.27L 0.389 0.289 0.619
0.256 0.167 0.232 0.265 0.091 0.419 0.592
0.283 0.618 0.702 0.666 0.826 0.120 0.890

June

0.753 0.599 0.487 0.469 0.537 0.402 0.443
0.725 0.710 0.534 0.570 0.612 0.575 0.616
0.534 0.565 0.52t 0.524 0.581 0.490 0.094
0.659 0.616 0.520 0.516 0.529 0.551 0.458
0.688 0.643 0.525 0.462 0.611 0.506 0.456
0.534 0.612 0.435 0.439 0.479 0.526 0.015
0.534 0.4r7 0.170 0.2510.265 -0.163 0.291

July

0.752 0.676 0.719 0.695 0.733 0.620 0.668
0.713 0.681 0.764 0.7r9 0.755 0.724 0.649
0.568 0.537 0.601 0.508 0.514 0.414 0.425
0.638 0.616 0.632 0.645 0.623 0.563 0.485
0.712 0.663 0.703 0.652 0.618 0.609 0.616
0.647 0.643 0.674 0.653 0.641 0.631 0.587
0.665 0.496 0.480 0.518 0.544 0.276 0.695
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August

0.760

0.738

0.520
0.578
0.723
0.726
0.671

0.802

0.775

0.568

0.635
0.655
0.735
0.594

0.516 0.435

0.560 0.531

0.449 0.425
0.449 0.402
0.581 0.527

0.524 0.481
0.737 0.660

September

0.726 0.691 0.611 0.563

0.753 0.764 0.603 0.602
0.487 0.513 0.606 0.424
0.606 0.611 0.615 0.478
0.704 0.685 0.663 0.498
0.672 0.655 0.627 0.493

0.664 0.72r 0.761 0.743

October

0.693

0.678

0.567
0.619
0.617
0.662
0.675

0.737
0.683
0.557
0.606
0.610
0.679
0.697

0.631

0.475
0.175
0.425
0.671
0.633
0.671

0.550 0.577 0.756
0.623 0.629 0.794
0.401 0.389 0.510
0.481 0.430 0.606
0.508 0.514 0.760

0.487 0.483 0.682
0.694 0.651 0.754

0.444
0.490

0.433
0.466

0.575

0.397
0.655

0.438

0.512

0.430
0.42L
0.508
0.458
0.642

0.447
0.379

0.189

0.280

0.563
0.373
0.624

0.445 0.745
0.597 0.77r
0.586 0.623

0.498 0.557
0.640 0.789

0.702
0.703

0.641

0.627
0.648
0.674
0.798

0.7r2
0.677

0.590

0.652
0.643
0.646
0.802

0.320

0.393

0.510

0.394

0.438

0.328
0.472

0.463

0.511

0.472
0.489

0.549

0.369
0.632

November

0.530 0.4t7 0.455 0.461
0.597 0.461 0.514 0.557
0.633 0.700 0.652 0.681

0.607 0.635 0.616 0.567
0.665 0.647 0.677 0.734

0.534
0.519

0.546

0.634
0.684

!

¡
iti

'1r



APPENDIX F. MONTHLY CROSS CORRELATION MATRICES 185

0.691 0.692 0.581 0.557 0.625 0.655 0.669
0.803 0.851 0.525 0.621 0.809 0.767 0.897

December

0.559 0.491 0.187 0.300 0.381 0.478 0.408
0.275 0.505 0.311 0.245 0.349 0.303 0.234
0.222 0.238 0.638 0.361 0.342 0.143 0.183
0.436 0.444 0.564 0.507 0.486 0.346 0.049
0.628 0.687 0.658 0.524 0.674 0.577 0.655
0.614 0.554 0.334 0.323 0.479 0.633 0.246
0.747 0.854 0.322 0.303 0.584 0.754 0.896

I

{rl
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Matrices for January

[A] Matrix

I
2

3

4

b

6

I

1

0.469
0.025
0.720
0.015
0.408
0.298
0.636

2

0.053
0.590

-0.157
0.2L2

-0.154
-0.242

0.042

3

-0.225
-0.168

0.415

0.381
0.043
0.269

-0.201

4

-0.436
-0.733
-0.102
-1.115
-0.408
-1.108
-0.567

5

0.467
0.720
0.257
1.116
0.592
0.518
0.804

6

-0.076
-0.140
-0.238

0.379
0.064
0.876

-0.524

I

-0.209
-0.470

0.226

-1.289
-0.252
-0.903

0.223

[C] Matrix

1

2

3

4

5

6

I

1

0.6361
0.4953

0.3800

-0.0312
0.4244
0.2438
0.1340

2

0.4953
0.5583
0.2633

-0.0243
0.4967
0.1732
0.0297

3

0.3800
0.2633

0.6890
0.2861
0.4439
0.3719

-0.L425

4

-0.0312
-0.0243

0.2861
0.426t
0.2561
0.0045

-0.0434

5

0.4244
0.4967
0.4439
0.2561
0.7L76
0.3512
0.1075

6

0.2438
0.1732
0.3719
0.0045
0.3512
0.4543

-0.Lr74

ù
I

0.1340
0.0297

-0.1425
-0.0434

0.1075

-0.rr74
0.0153

[B] Matrix

1

2

3

4

5

6

7

1

0.7976
0.6210
0.4764

-0.0391
0.532L
0.3056

0.1680

2

0.0000
0.4155

-0.0784
-0.0002

0.4000

-0.0398
-0.1796

3

0.0000

0.0000

0.6752
0.4513
0.3285

0.3305

-0.3505

4

0.0000

0.0000

0.0000
0.4700
0.2738

-0.2824
0.2582

l)

0.0000
0.0000
0.0000
0.0000
0.3027
0.5723
0.4439

6

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

I

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
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Matrices for February.

[A] Matrix

1

2

3

4

5

6

I

1

r.557
1.367
1.085

0.891

-0.094
-0.331
-L.256

2

-0.757
-0.454
-0.749
-0.515

0.218
0.176
1.016

3

-0.433
-0.377

0.318

0.079

0.392

0.401
0.900

4

-0.692
-0.392
-0.322

0.017

-0.171
-0.277
-0.207

5

t.552
1.167
1.105

0.857
0.060

-0.233
-1.835

6

-1.101
-1.104
-0.942
-0.792

0.169
0.529
1.376

I

-1.638
-r.294
-t.L25
-0.978

0.115

0.343
2.050

[C] Matrix

1

2

3

4

5

6

I

1

0.3313
0.1777
0.0015

0.L742
0.4460
0.4578
0.4278

2

0.r777
0.4915
0.0505
0.2615
0.4329
0.4564
0.4824

3

0.0015
0.0505

0.2506

0.2014
0.2342
0.0896
0.3105

3

0.000

0.000

0.494
0.363

0.420
0.123

0.560

4
0.r742
0.2615
0.2014
0.6036

0.4291
0.3979
0.3586

5

0.4460

0.4329
0.2342
0.429L
0.7083
0.4545
0.3038

5

0.000

0.000

0.000

0.000

0.000

0.000

0.000

6

0.4578
0.4564
0.0896
0.3979

0.4545
0.7657
0.1865

6

0.000

0.000

0.000

0.000

0.000

0.063

-9.498

7

0.4278
0.4824
0.3105
0.3586

0.3038
0.1865

-0.0678

[B] Matrix

I
2

3

4

5

6

I

1

0.576
0.309
0.003
0.303

0.775
0.795
0.743

2

0.000
0.629
0.079
0.267
0.308
0.335

0.402

4

0.000

0.000

0.000

0.556

-0.073
0.041

-0.318

I

0.000

0.000

0.000

0.000

0.000
0.000

0.000
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Matrices for March.

[A] Matrix

1

2

3

4

5

6

I

I
0.3008

-0.1476
-0.3367
-0.4596

0.1281

-0.r982
-0.2024

1

0.5620
0.2954
0.1698
0.r743

-0.0809
0.2266
0.1090

2

0.0477
0.6263
0.0396
0.1914

-0.0832
0.2320
0.0522

3

-0.1269
0.0602
0.7547
0.2817
0.0120

-0.1016
0.1585

4

0.2264

-0.2923
-0.4853

0.2318
0.2116

-0.L7r4
-0.3045

5

-0.2227
0.3955
0.6672
0.1249
0.2104

-0.0213
0.1759

6

-0.0205
-0.3348

0.1357
0.1451

-0.2895
0.4884

-0.1532

ù
I

0.6200
0.0335

-0.3931
-0.0139

0.6485

0.0150
0.8483

[C] Matrix

1

2

3

4

5

6
,a
I

2

0.2954
0.6302
0.1 100

0.0895
0.22L6
0.2296
0.1947

3

0.1698
0.1100

0.432r
0.L22r
0.2081

-0.1679
0.3103

4

0.1743
0.0895
0.L22r
0.6934
0.2109

-0.0525
0.1269

b

-0.0809
0.2216
0.2081
0.2109
0.4823
0.1456
0.1750

6

0.2266
0.2296

-0.1679
-0.0525

0.1456
0.7836

-0.2562

È
I

0.1090
0.1947
0.3103
0.1269
0.1750

-0.2562
0.2030

[B] Matrix

1

2

3

4

5

6

I

I
0.7496
0.3941

0.2265
0.2325

-0.1079
0.3023

0.1454

2

0.0000

0.6891

0.0300

-0.0031
0.3833

0.1602

0.1994

3

0.0000

0.0000

0.6164
0.1128
0.3586

-0.3913
0.4403

4

0.0000
0.0000
0.0000
0.7916
0.2485

-0.0988
0.0556

t)

0.0000

0.0000
0.0000

0.0000

0.3651

0.7716

-0.r574

6

0.0000
0.0000
0.0000

0.0000
0.0000
0.0000

0.0000

7

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
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Matrices for April.

[A] Matrix

1

2

3

4

b

6

I

1

0.201

-0.565
-0.107

1.260

0.487
0.761

-r.227

2

-0.286
-0.023
-0.200

0.348

-0.133
0.023
0.695

3

-0.090
-0.LLz

0.480
0.153

0.166
0.159
0.198

4
0.015
0.389
0.098

-0.275
-0.265
-0.521

0.394

5

-0.306
-1.031
-0.001

1.640

0.963
1.247

-0.324

6

0.504
0.701
0.352

-0.924
-0.283
-0.285

0.367

7

0.550
1.395

0.095

-2.382
-0.786
-1.710

0.964

[C] Matrix

[B] Matrix

1

2

3

4

5

6

I

1

0.603

0.385

0.318

0.566
0.495
0.507
0.455

2

0.385

0.529
0.355
1.094

0.749
0.945
0.450

3

0.318
0.355

0.732
0.467
0.397
0.224
0.398

4

0.566
1.094

0.467

-0.584
-0.033
-0.599

0.731

5

0.495

0.749
0.397

-0.033
0.656
0.2r9
0.732

6

0.507
0.945
0.224

-0.599
0.2r9
0.114
0.476

I

0.455

0.450

0.398
0.731
0.732
0.476

-0.133

I
2

3

4

5

6

I

1

0.777

0.495

0.410
0.728
0.637
0.653

0.586

2

0.000

0.533

0.285
1.375

0.814
1.165

0.299

3

0.000
0.000
0.695

-0.321
-0.138
-0.541

0.105

4

0.000

0.000
0.000
0.000

0.000

0.000
0.000

5

0.000

0.000
0.000
0.000

0.000
0.000

0.000

6

0.000
0.000

0.000
0.000
0.000

0.000
0.000

I

0.000

0.000
0.000
0.000

0.000

0.000

0.000
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Matrices for Muy.

[A] Matrix

1

)
3

4

5

6

7

1

8.28
14.35

8.90

9.20
8.59

15.62

-4.27

2

-Lt.74
-20.99
-13.16
-13.51
-r2.64
-23.22

6.39

oJ

-2.36
-4.5t
-2.39
-2.75
-2.50
-4.66

t.45

4

-2.34
-4.r7
-2.74
-2.39
-2.53
-4.56

1.45

5

-74.32
-26.08
-16.57
- 16.69

-15.34
-29.09

8.16

6

9.68
17.58
rI.22
IL.4L
10.59
19.93

-5.58

7

17.76

32.25
20.30
20.53
19.29

35.53

-9.03

[C] Matrix

1

2

3

4

ô

6

7

1

-5.30
-10.39
-6.39
-6.46
-6.00

-11.70
3.62

2

-10.39
-19.11
-11.99
-12.07
-LL.22
-2I.4L

6.28

3

-6.39
-11.99
-7.07
-7.40
-6.85

-13.48
4.04

4

-6.46
-72.07
-7.40
-7.35
-7.00

-13.48
4.09

5

-6.00
-7r.22
-6.85
-7.00
-6.36

-12.63
3.76

6

- 11.70

-21.41
-13.48
-13.48
-12.63
-23.59

6.82

t

3.62
6.28
4.04
4.09
3.76
6.82

-r.76

[B] Matrix
r234567
00000001

2

3

4

5

6

I

0000000
0000000
0000000
0000000
0000000
0000000
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Matrices for June.

[A].Matrix

I
2

3

4

5

6

7

1

0.807
0.497
0.207
0.532
0.542
0.334
0.586

1

0.3968
0.3376
0.3535
0.3164
0.3348
0.2967
0.4476

2

0.255
0.367
0.415

0.326
0.339
0.837
0.638

3

0.193
0.138
0.344
0.339
0.261
0.470

-0.298

4

-0.305
-0.310

0.030

-0.341
-0.570
-0.321

0.456

b

-0.205
-0.247

0.290

-0.368
0.028

-0.169
-0.139

6

0.061
0.25L
0.153

0.369
0.285
0.397

-1.091

6

0.2967
0.4181

0.0942
0.3500

0.3069
0.1331
0.4480

I

-0.051
0.201

-0.860
-0.042
-0.088
-0.971

0.079

[C] Matrix

[B] Matrix

1

2

3

4

ð

6

I

2

0.3376
0.3655

0.4501
0.2902
0.3134
0.4181
0.5924

3

0.3535

0.4501

0.2976
0.4294
0.4181
0.0942
0.6790

4
0.3164
0.2902
0.4294
0.4585
0.3976
0.3500
0.6451

Ð

0.3348
0.3134
0.4181

0.3976
0.4136
0.3069
0.6006

I

0.4476
0.5924
0.6790
0.6451

0.6006
0.4480
0.1926

1

2

3

4

5

6

I

I
0.6299
0.5359
0.5612
0.5023
0.5316
0.47LL
0.7106

2

0.0000

0.2799
0.5336

0.0749

0.1020
0.5917
0.7559

3

0.0000

0.0000

0.0000

0.0000

0.0000
0.0000

0.0000

4

0.0000
0.0000
0.0000
0.4479
0.2745
0.1542
0.5168

,)

0.0000
0.0000
0.0000
0.0000
0.2126

-0.2t74
0.0180

6

0.0000

0.0000

0.0000

0.0000

0.0000
0.0000

0.0000

7

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
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Matrices for July.

[A] Matrix

1

2

3

4
b

6

I

1

0.759
0.422
0.805

0.570
1.017
0.439
1.194

2

-0.460
-0.040
-1.709
-1.338
-0.614
-0.239
-0_168

3

0.445
0.604
0.2Lr

-0.095
0.635
0.388
0.496

4

-0.089
0.129

-1.067
-0.499

0.073
0.100
0.490

ð

0.035
0.r42

-0.335
-0.t62
-1.039
-0.352
-0.400

6

0.066

-0.076
1.364
r.232
0.408
0.296

-0.909

t

0.070

-0.371
1.530
t.L44
0.370
0.150

-0.r42

[C] Matrix

1

2

3

4

5

6

7

1

0.3682
0.3129

0.3194
0.3189
0.3320
0.3548
0.4230

2

0.3129
0.3605

0.2989
0.3087
0.2699
0.3744
0.4174

3

0.3194
0.2989

0.8333
0.6926
0.4079
0.46L2
0.2714

4

0.3190
0.3087
0.6926
0.6955
0.4307
0.4385
0.3369

Ð

0.3320
0.2699
0.4079
0.4307
0.3532
0.3483
0.4259

6

0.3548

0.3744
0.4612
0.4385
0.3483
0.4942
0.4442

t

0.4230
0.4L74
0.27L4
0.3369
0.4259
0.4442
0.3634

[B] Matrix

1

2

3

4

5

6

7

1

0.6068

0.5157
0.5263

0.5256

0.5471
0.5847
0.6971

2

0.0000

0.3075

0.0893

0.t224

-0.0399
0.2370
0.1881

3

0.0000
0.0000
0.7405
0.5470
0.1667
0.1786

-0.1517

4

0.0000
0.0000
0.0000
0.324r
0.L752
0.0139
0.0938

5

0.0000

0.0000
0.0000

0.0000
0.0000
0.0000
0.0000

6

0.0000

0.0000

0.0000

0.0000

0.0000
0.2532
0.0706

t

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
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Matrices for August.

tA] Matrix

1

2

3

4
b

6

I

1

1.38

5.05

8.31
2.48
r.97
1.08
2.75

1

0.294
0.108

-0.070
0.2r7
0.297
0.27r
0.432

I
0.5419
0.1999

-0.1290
0.3995

0.5477
0.5009
0.7963

2

0.14

-r.52
-3.91
-0.72
-1.03

0.16

-3.06

3

0.16
0.04

-0.18
-0.08

0.53
0.36
0.67

4

-0.14
-1.09
-r.73
-0.50

1.25

-0.22
2.5r

b

0.44
3.26
6.09
2.58

-2.25
0.17

-3.37

6

0.02
0.48
1.66

0.33

-0.31
-0.12

0.67

7

-r.24
-5.73

-10.15
-3.60

0.65

-0.69
0.7r

[C] Matrix

[B] Matrix

1

2

3

4

Ð

6

I

1

2

3

4

5

6

I

2

0.108

-0.655
-1.483
-0.262

0.432
0.174
0.577

3

-0.070
-1.483
-2.560
-0.702

0.603
0.154
0.572

4

0.2r7

-0.262
-0.702

0.135
0.592

0.349
0.557

5

0.297
0.432
0.603
0.592
0.252
0.380

-0.013

6

0.27L
0.L74
0.154
0.349

0.380
0.404
0.400

6

0.0000
0.0000
0.0000
0.0000
0.0000

0.3912
0.0023

I

0.432
0.577
0.572
0.557

-0.013
0.400

-0.249

I

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

2

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

3

0.0000
0.0000
0.0000
0.0000

0.0000
0.0000
0.0000

4

0.0000

0.0000
0.0000
0.0000

0.0000
0.0000

0.0000

5

0.0000
0.0000
0.0000
0.0000

0.0000
0.0000
0.0000
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Matrices for September

[A] Matrix

1

2

3

4

5

6

t

1

0.29L

-0.571
-1.137
-0.337
-0.457
-0.048
-1.808

2

0.098
0.935
1.311

0.899
0.740
0.633
r.4tt

3

0.567
0.504
1.159

1.025
1.135

0.948
0.822

4

-1.093
-r.274
-1.195
-1.399
-2.018
-7.487
-0.498

4
0.1485
0.1 108

0.1165
0.1523

-0.0455
0.0225
0.1707

5

0.736
0.890
0.639
1.148

t.247
0.980

0.636

6

-1.202
- 1.170

-r.294
-1.939
-1.949
-r.747
-0.999

I

1.405
1.536
1.188

1.357
2.161
1.509

1.343

[C] Matrix

1

0.2179
0.1604
0.1228
0.1485
0.0202
0.1301
0.2566

[B] Matrix

2

0.1604
0.1403

0.1092
0.1108

-0.0234
0.0912

0.2207

3

0.1228
0.1092

0.3267

0.1165

-0.0513
-0.0037

0.1575

5

0.0202

-0.0234
-0.0513
-0.0455
-0.2052
-0.0915

0.r44L

6

0.1301
0.0912

-0.0037
0.0225

-0.0915
0.0939
0.2084

1

2

3

4

b

6

I

I

0.2566
0.2207
0.1575
0.1707
0.1441

0.2084
0.1213

1

2

3

4

l)

6

I

1

0.4668
0.3437
0.2632
0.3182
0.0432
0.2788
0.5497

2

0.0000
0.1491
0.1256

0.0095

-0.2566
-0.0310

0.2131

3

0.0000

0.0000
0.4916
0.0643

-0.0619
-0.1489
-0.0283

4

0.0000
0.0000
0.0000
0.2165

-0.2442
-0.2601
-0.0201

ö

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

6

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

I

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000



APPENDIX F. MONTHLY CROSS CORRELATION MATRICES 195

Matrices for October.

[A] Matrix

1

2

3

4

5

6

7

1

-30.9
54.4

136.4

7r.0

-19.6
27.6

-6.2

2

61.6

-103.1
-262.0
-136.4

39.1

-50.4
14.5

3

25.r

-42.0
-105.9

-55.2
16.0

-20.4
5.9

4

-33.4
56.4

t42.4
74.4

-2r.3
27.L

-7.9

5

62.7

-105.3
-266.0
-r37.7

40.6

-52.r
14.8

6

Lt.7

-19.8
-50.2
-26.3

7.0

-9.6
2.5

I

-93.2
154.5

392.2

203.7

-59.2
75.6

-22.2

[C] Matrix

[B] Matrix

1

2

3

4
5

6

I

1

6.3

-8.7
-23.L
-rt.7

4.r

-4.0
1.8

2

-8.7
16.1

39.8
21.0

-5.4
8.1

-1.8

3

-23.I
39.8

100.3

52.4

-r4.4
19.7

-5.3

4
_LT.7

21.0

52.4
27.6

-7.2
10.6

-2.5

5

4.t

-5.4
-L4.4
-7.2

2.9
_2.3

r.4

6

-4.0
8.1

19.7
10.6

-2.3
4.3

-0.6

7

1.8

-1.8
-5.3
-2.5

L.4

-0.6
0.7

1

2

3

4

5

6

I

1

2.507

-3.478
-9.23I
-4.667

L.644

-1.601
0.7L2

2

0.000
2.004
3.817
2.37r
0.181
1.280

0.362

3

0.000

0.000

0.695

0.333
0.065

0.069

-0.089

4

0.000
0.000

0.000

0.255
0.135
0.403

-0.013

5

0.000
0.000
0.000
0.000
0.349
0.119
0.394

6

0.000

0.000

0.000

0.000
0.000
0.000

0.000

7

0.000
0.000
0.000

0.000
0.000
0.000
0.000
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Matrices for November.

[A] Matrix

1

2

3

4
Ð

6

I

I
0.314

-0.346
-0.52r

0.529
0.2r3
0.468

-0.006

2

2.246
1.759

0.453
0.586
0.485

0.202
0.514

3

-0.4L4
-0.368

0.503
0.361
0.017
0.449

-0.233

4

-3.725
-2.552
-0.060
-0.683
-1.193
-0.619
-0.009

4
0.601
0.662

0.316
0.564
0.478
0.273
0.102

5

6.075
4.304
0.312
t.047
2.365

-0.150
-0.266

6

0.403
0.664

-0.140
-0.197

0.145
0.259

-0.r2r

7

-4.617
-3.025

0.187

-1.004
-1.341

0.155
0.971

[C] Matrix

[B] Matrix

1

2

3

4

b

6

7

1

1.967
L.367

0.160

0.601
0.732

0.289
0.087

2

1.367
1.149

0.238

0.662
0.665

0.309
0.093

3

0.160
0.238

0.438
0.316
0.244
0.205

0.001

5

0.732
0.665

0.244
0.478
0.557

0.342
0.137

6

0.289

0.309
0.205
0.273
0.342
0.44r
0.168

7

0.087
0.093

0.001
0.102
0.137
0.168
0.132

1

2

3

4

5

6

I

1

1.403

0.975

0.114

0.428
0.522
0.206

0.062

2

0.000
0.446
0.284
0.547
0.351
0.24L
0.072

3

0.000

0.000

0.587

0.190
0.r44
0.192

-0.045

4

0.000

0.000

0.000

0.213
0.164
0.076

0.2t1

5

0.000

0.000

0.000
0.000
0.338

0.324
0.150

6

0.000
0.000
0.000
0.000
0.000
0.439
0.186

7

0.000
0.000
0.000
0.000
0.000
0.000
0.141
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Matrices for December.

[A] Matrix

1

2

3

4

5

6
,
I

1

0.617

-0.088
0.2L7

0.968
0.224
1.163

-0.062

2

0.567
1.504

-0.531
0.588
0.278
1.191

L.324

3

-0.314
-0.070

r.024
0.145
0.476

-0.341
-0.123

4

-0.576
-1.016

0.115

-0.915
-0.455
-1.816
-0.986

5

0.375
0.797
0.000
t.620
0.327
L.622

-0.270

6

0.499
0.195

-0.624
0.063

-0.137
1.115

0.662

I

-0.746
-1.084

0.341

-2.r05
0.117

-2.605
0.2L2

[C] Matrix

I
2

3

4

5

6

I

1

0.5310
0.3829

0.L2t4

-0.0129
0.2858

-0.1110
-0.1738

2

0.3829
0.4518
0.1838
0.0142
0.2550

-0.3037
-0.2760

3

0.r2r4
0.1838

0.4105
0.3232
0.1628
0.2323
0.2279

4

-0.0129
0.0142
0.3232

-0.0076
0.3200

-0.5240
-0.2551

5

0.2858
0.2550
0.1628
0.3200
0.3753
0.2786

-0.1545

6

-0.1110
-0.3037

0.2323

-0.5240
0.2786

-0.5144
-0.2142

7

-0.1738
-0.2760

0.2279

-0.2551
-0.1545
-0.2142
-0.2769

[B] Matrix

I
2

3

4

5

6

I

1

0.7287
0.5255

0.1666

-0.0177
0.3922

-0.1523
-0.2385

,
0.0000
0.4191

0.2298
0.0560
0.1167

-0.5337
-0.3595

3

0.0000
0.0000
0.5744
0.5453
0.1230
0.6620
0.6097

4

0.0000

0.0000

0.0000

0.0000

0.0000
0.0000

0.0000

Ð

0.0000
0.0000
0.0000
0.0000
0.4390
0.7269

-0.2L41

6

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

I

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000



Appendix G

Five Station Model Matrices

This appendix documents the monthlv, [Mo] & [Mr] Covariance matrices, to-
gether with their associated [At] & [B¿] matrices for a five station multivariate
model with parameters evaluated using a Parametric Transformation.

The order of stations is as follows -

¡ South Para

o Myponga

o Torrens at the Gumeracha Weir

o Onkaparinga River at the Clarendon Weir

o Millbrook Rainfall Station

198
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Matrices for January.

[Mo,t] Matrix

199

1

2

3

4

5

1

1.000

0.199
0.206

0.324
0.476

2

0.199
1.000
0.345

0.355
0.253

3

0.206
0.345
1.000

0.492
0.161

4
0.324
0.355
0.492
1.000

0.333

5

0.476
0.253
0.161

0.333
1.000

lM1,1] Matrix

[At] Matrix

[Bt] Matrix

1

2

3

4
,l)

1

2

3

4

5

1

0.4702
0.0905

-0.1105
0.0516
0.0307

1

0.6493
0.0265

-0.2258
-0.0041

0.1543

2

-0.1960
0.4466

-0.1325
0.0215

-0.3391

3

-0.0006
0.1389
0.3526
0.1016

-0.1994

4

-0.0446
0.1529

-0.0853
0.1087

-0.3410

5

0.1630
0.2100

-0.0835
-0.0185

0.1488

1

2

3

4

5

I
0.8048

0.3314
0.3429
0.4071

0.3741

4

0.0000
0.0000
0.0000
0.7875
0.2077

5

0.0000

0.0000
0.0000
0.0000

0.6981

2

-0.1853
0.5850

-0.0994
-0.0625
-0.2332

2

0.0000
0.7956
0.3006
0.2893
0.2816

3

-0.1110
0.1511

0.5570
0.0539

-0.0773

3

0.0000
0.0000
0.7379
0.3324

-0.0599

4

-0.2019
-0.3397
-0.2017

0.1391

-0.3183

Ð

0.0099
0.1161

0.0498

-0.0488
0.2619
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Matrices for February.

[Mo,r] Matrix

200

1

2

3

4

5

1

1.000

0.416
0.466
0.539
0.672

2

0.416
1.000

0.317
0.693
0.325

3

0.466
0.317
1.000

0.527
0.379

4

0.539
0.693
0.527
1.000

0.369

5

0.672
0.325
0.379
0.369
1.000

[Mt,r] Matrix

[Ar] Matrix

[Br] Matrix

1

2

3

4

b

1

0.4516

0.1529
0.0498
0.1808
0.0845

1

0.5143

0.0871

0.0577
0.0676
0.1482

2

0_1658

0.7678
0.3206
0.5040
0.0687

2

0.2094
0.8883

0.3687
0.5345
0.1929

2

0.0000

0.5161

-0.1700
0.3130
0.0266

3

-0.0987
0.0699
0.2L75
0.0506

-0.1684

4

-0.1352
0.0099

-0.1825
0.0892

-0.3400

5

0.229r
0.1631
0.0370
0.2531
0.0841

1

2

3

4

5

3

-0.1210
-0.1190

0.3190

-0.1147
-0.0534

4

-0.3375
-0.278r
-0.4995
-0.1134
-0.4739

.)

0.0629

0.0082
0.0312
0.1416
0.131 1

1

2

3

4

b

I
0.8131

0.2191
0.4123
0.4437
0.5832

3

0.0000
0.0000
0.7199
0.3072

-0.0081

4

0.0000
0.0000
0.0000
0.5561

-0.0144

5

0.0000

0.0000
0.0000

0.0000
0.6723
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Matrices for March.

[Mo,r] Matrix

20r

1

2

3

4
b

1

1.000

0.247
0.255
0.301
0.386

2

0.247
1.000

-0.I44
0.393
0.32L

3

0.255

-0.144
1.000

-0.160
0.155

4

0.301
0.393

-0.160
1.000
0.349

5

0.386
0.32L
0.155

0.349
1.000

[Mt,r] Matrix

[Ar] Matrix

1

2

3

4
t)

1

0.4868
0.1820
0.1914
0.2867
0.0655

2

0.1836
0.6600

-0.0808
0.4r76
0.2136

3

0.0377
0.2103
0.3156
0.2202
0.0335

3

-0.1299
0.1281
0.4247

-0.0327
-0.0178

4
0.1080
0.3675

-0.0408
0.4802
0.1246

4

-0.2848
-0.2115
-0.3226

0.3627

-0.0323

5

0.0641
0.0184
0.0767
0.1323
0.0120

5

-0.4768
-0.2710
-0.1368
-0.t244
-0.0768

1

2

3

4

5

1

0.9446
0.0764
0.2873
0.1208
0.0385

2

0.1844
0.8224

-0.0668
0.1666

0.2505

[Br] Matrix

1

2

3

4

t)

1

0.7567
0.t247
0.2042
0.2407
0.4359

2

0.0000

0.6953

-0.2106
0.1533

0.1594

3

0.0000
0.0000
0.8467

-0.1797
0.1446

4

0.0000
0.0000
0.0000
0.7947
0.2011

5

0.0000
0.0000

0.0000

0.0000

0.8202
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Matrices for April

[Mo,n] Matrix

202

1

2

3

4
b

1

1.000

0.4t2
0.408

0.517

0.711

2

0.4r2
1.000
0.211

0.598
0.567

3

0.408
0.2Lr
1.000

0.381
0.456

4

0.517
0.598
0.381

1.000

0.542

5

0.711
0.567
0.456
0.542
1.000

[Mt,n] Matrix

[An] Matrix

[Bn] Matrix

1

2

3

4

b

1

2

3

4

5

1

0.1 101

0.0231
0.1348
0.4595
0.0575

1

0.t724

-0.1588
0.0234
0.2654
0.0403

2

-0.0887
0.5738

-0.0202
0.3874
0.0686

3

0.1362
0.0228
0.4259
0.2301
0.0781

4

-0.0150
0.1817

-0.0357
0.4279
0.1015

5

-0.1808
0.0974
0.0509

0.2489

-0.1086

2

-0.0505
0.6547
0.042r
0.2642
0.0914

3

0.1397
0.1769
0.4382
0.2657
0.1418

4
0.0723
0.0322
0.0281

0.3183
0.1566

5

-0.2779
-0.0898
-0.0493
-0.0904
-0.2300

1

2

3

4

5

1

0.9531

0.4696
0.3577
0.4859
0.6881

2

0.0000
0.6375

0.0133
0.2460
0.2840

3

0.0000
0.0000
0.8285
0.0923
0.1928

4

0.0000
0.0000
0.0000
0.5439

0.0439

5

0.0000

0.0000
0.0000

0.0000

0.5884
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Matrices for Muy.

[Mo,u] Matrix

203

1

2

3

4

5

1

1.000

0.649
0.690

0.758

0.832

2

0.649
1.000

0.534

0.771
0.7L7

3

0.690
0.534
1.000

0.694
0.62r

3

0.0969
0.2032
0.2474
0.2773
0.0571

3

0.0000
0.0000
0.6884
0.1406
0.0696

4

0.758
0.77L
0.694
1.000

0.727

5

0.832

0.7L7
0.62r
0.727
1.000

[Mt,u] Matrix

[Ar] Matrix

1

2

3

4
5

I
0.2088
0.2456
0.2483
0.2646
0.0352

2

0.0243

0.3484
0.1805

0.2602

-0.0215

4

0.1348

0.2057
0.226r
0.4013

-0.0478

5

0.2034
0.2626
0.2802
0.3605

-0.0423

1

2

3

4
5

I
0.1141
0.1170

0.0597

-0.0795
-0.0110

2

-0.1777
0.3434

0.0137

-0.0401
0.0423

3

-0.0332
0.1299
0.1348
0.0971

0.tr24

4
0.0929

-0.0979
0.0629

0.3044

-0.0719

5

0.1878

-0.0215
0.1344
0.2304

-0.0708

[Br] Matrix

1

2

3

4

5

1

0.9659
0.6429
0.6501
0.7024
0.8760

2

0.0000
0.6616
0.0313

0.3t77
0.2296

4

0.0000
0.0000
0.0000
0.4305
0.1034

5

0.0000
0.0000
0.0000
0.0000
0.3899
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Matrices for June.

[Mo,u] Matrix

204

1

2

3

4

5

1

1.000

0.818
0.813

0.836
0.678

2

0.818
1.000

0.888
0.887
0.720

3

0.813
0.888
1.000

0.888
0.738

4

0.836
0.887
0.888

1.000

0.798

4

0.5626

0.5933
0.5502

0.6907
0.2320

5

0.678

0.720
0.738

0.798
1.000

lM1,6] Matrix

[Au] Matrix

[Bu] Matrix

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

0.7097

0.5693
0.5913

0.6158
0.1986

2

0.5411

0.5787
0.522r
0.5875
0.1813

3

0.5516
0.52t4
0.5846
0.5482
0.2011

Ð

0.6251

0.5648
0.5790

0.5817
0.1530

1

0.5716

0.r273
0.1685

0.1564

0.1015

2

0.1613

0.2455
0.1570

0.1027
0.0380

3

0.t232
0.t522
0.3042
0.0790
0.0736

4

-0.1057
0.1376

-0.0204
0.4222
0.1654

Ð

0.0345
0.0883
0.L522
0.0218

-0.L247

1

0.6906
0.5482

0.5162
0.5424
0.7674

2

0.0000
0.5235
0.3546

0.2624
0.294r

3

0.0000
0.0000
0.4140
0.1876
0.2323

4
0.0000
0.0000

0.0000
0.3122
0.3027

5

0.0000
0.0000
0.0000

0.0000

0.3434
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Matrices for July.

[Mo,r] Matrix

205

1

2

3

4

5

1

1.000
0.830
0.939
0.886
0.647

2

0.830
1.000

0.863
0.899
0.772

3

0.939
0.863
1.000

0.925
0.720

4

0.886
0.899
0.925
1.000
0.77L

5

0.647
0.772
0.720
0.77L
1.000

lML,7f Matrix

[Ar] Matrix

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

0.6811

0.5377
0.6442
0.6171
0.1263

2

0.7640
0.6265
0.6851

0.6535
0.2307

3

0.7292
0.4786
0.6268

0.5645
0.1367

4

0.7199
0.4908
0.6486
0.6157
0.1431

5

0.6786
0.4542
0.6012
0.5870
0.2169

I
0.1024
0.2554
0.2338
0.2633

-0.0866

2

0.4756
0.9667
0.4579
0.5311

0.6249

3

0.1304

-0.3625
-0.0833
-0.2910
-0.26L2

4

-0.1085
-0.3871
-0.0504
-0.0259
-0.3351

5

0.2568
0.1611
0.2145
0.2613
0.2858

[Br] Matrix

1

0.6129
0.5736

0.6220
0.5778

0.7611

2

0.0000

0.4672
0.1300

0.2709
0.322L

3

0.0000
0.0000
0.2963
0.1329
0.1422

4

0.0000

0.0000
0.0000
0.3038
0.1838

5

0.0000
0.0000
0.0000
0.0000
0.3892

I
I

I

!

i

I
;

I
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Matrices for August

[Mo,r] Matrix

206

1

2

3

4

5

1

1.000

0.770
0.904
0.878

0.735

2

0.770
1.000

0.804

0.839

0.704

3

0.904
0.804
1.000

0.929

0.790

4

0.878

0.839
0.929
1.000

0.848

5

0.735
0.704
0.790
0.848
1.000

lM1,8] Matrix

[Ar] Matrix

[Br] Matrix

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

0.9680

0.4717
0.7487

0.4098

0.5153

2

0.5312

0.8239

0.5831
0.5799

0.7618

3

-0.4961
-0.6299
-0.1966
-0.3399
-0.5159

3

0.0000

0.0000

0.3545

0.2390
0.275r

4

0.0153

0.3315

0.0155
0.4531

0.0112

4

0.0000

0.0000

0.0000

0.2828
0.2153

5

-0.2808
-0.4466
-0.5026
-0.5184
-0.5283

1

0.7753
0.5692
0.7369

0.6381
0.3317

2

0.7039
0.6252
0.6610

0.6339
0.3466

3

0.6830
0.5089
0.6617
0.5910

0.2550

4
0.6749
0.5630

0.6336
0.6234
0.2680

b

0.4103
0.2966
0.3025
0.2989
0.0304

5

0.0000
0.0000
0.0000
0.0000
0.3838

1

0.5650

0.3796
0.4310

0.5152
0.6386

2

0.0000

0.5820
0.1543

0.2045
0.1804

lr
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Matrices for September.

[Mo,n] Matrix

207

1

2

3

4

5

1

1.000

0.761
0.927
0.893
0.733

2

0.761
1.000

0.72r
0.834
0.686

3

0.927
0.72L
1.000

0.921
0.821

4

0.893
0.834
0.92L
1.000

0.809

4

0.6083
0.4317
0.5852

0.5774
0.1794

5

0.733
0.686
0.821

0.809
1.000

lM t,n] Matrix

[An] Matrix

[Bn] Matrix

I
2

3

4

b

1

2

3

4

5

I
0.764L
0.5165
0.6498

0.6149
0.2722

2

0.6073
0.6108
0.5991

0.6055
0.2940

3

0.6322
0.3952
0.5627
0.5076
0.1701

5

0.4823
0.3359
0.4573
0.4565
0.1797

1

1.059

0.734
0.681

0.692
0.616

2

0.224
0.808

0.314
0.387
0.454

3

-0.236
-0.663
-0.357
-0.727
-0.458

4

-0.225
-0.226

0.146

0.389

-0.432

5

-0.076
-0.057
-0.106
-0.080

0.134

1

2

3

4

5

1

0.6148

0.4781

0.6573
0.6362

0.7701

2

0.0000
0.5269

-0.0442
0.1555
0.0831

3

0.0000
0.0000
0.3157
0.1485

0.3010

4

0.0000

0.0000
0.0000
0.2651

0.1057

5

0.0000
0.0000

0.0000

0.0000
0.3579
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Matrices for October.

[Mo,to] Matrix

208

I
2

3

4

5

1

1.000

0.788
0.897
0.859

0.688

2
0.788
1.000

0.827
0.906
0.738

3

0.897
0.827
1.000

0.922
0.700

+

0.859

0.906
0.922
1.000
0.757

l)

0.688
0.738
0.700
0.757
1.000

[Mt,to] Matrix

1

2

3

4
5

1

0.5306

0.4244
0.4766
0.4202

-0.0063

2

0.3933
0.4733
0.377r
0.3698

-0.0197

3

0.5034

0.4483
0.5505
0.4961
0.0008

4

0.5119

0.4727
0.5195
0.5113
0.0276

5

0.4433

0.3392
0.4325
0.3734

-0.0626

[Aro] Matrix

[Bto] Matrix

1

2

3

4
,l)

1

0.5059

-0.2629
-0.2973
-0.4595
-0.1381

2

-0.1831
0.3604

-0.0506
-0.0612
-0.1215

3

-0.2618
0.4982

0.7206
0.5766
0.0143

4

0.3470

0.r4t4
0.2547
0.6263
0.4347

5

0.1321

-0.2389
-0.1130
-0.2283
-0.2417

I
2

3

4

5

1

0.8362

0.6797
0.7556

0.7386
0.8211

2

0.0000
0.5195
0.1120
0.2897
0.3189

3

0.0000

0.0000

0.3117

0.0963
0.0848

4

0.0000

0.0000
0.0000

0.2366
0.0575

5

0.0000
0.0000
0.0000
0.0000
0.4280
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Matrices for November.

[Mo,tt] Matrix

209

1

2

3

4

5

1

1.000

0.676
0.759

0.792
0.612

2

0.676

1.000

0.72r
0.749
0.399

3

0.759
0.72r
1.000

0.911
0.392

4
0.792

0.749
0.911
1.000

0.613

5

0.612
0.399
0.392
0.613
1.000

[Mr,tt] Matrix

[Att] Matrix

1

2

3

4

b

1

0.5966
0.6323
0.6955
0.6055
0.1593

2

0.4610

0.6897

0.627r
0.5704
0.0170

3

0.5931

0.6385
0.7072
0.6164
0.L202

4
0.5224
0.6418
0.7100
0.6592
0.0916

5

0.4657
0.5124
0.6775
0.6586
0.1851

1

2

3

4

5

I
0.3509

0.2109

0.2104
0.L22r
0.2753

2

-0.1038
0.6105

-0.1865
-0.2718
-0.4688

3

0.4923
0.1998

0.1878

-0.0507
0.0149

4

-0.2482
-0.2525

0.2740
0.547r
0.0361

,5

0.1440

-0.0318
0.3315
0.3965
0.3037

[Btt] Matrix

1

2

3

4

5

1

0.7805
0.3807
0.3975
0.5r77
0.6334

2

0.0000

0.5928

0.1678

0.237L
0.2010

3

0.0000

0.0000

0.4822
0.2680

-0.0680

4

0.0000
0.0000

0.0000
0.3073
0.4014

5

0.0000
0.0000
0.0000

0.0000
0.5436
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Matrices for December.

[Mo,tr] Matrix

2t0

1

2

3

4

,l)

1

1.000

0.213
0.387
0.501

0.440

2

0.213
1.000

0.227
0.627
0.300

3

0.387
0.227
1.000
0.495

0.110

3

0.3060

0.1853
0.7108
0.4008

-0.1266

4
0.501

0.627
0.495
1.000

0.323

5

0.440
0.300
0.110
0.323
1.000

lM t',t'l Matrix

1

2

3

4

5

1

0.5054
0.2379
0.5782
0.4388

-0.0840

2

0.3114
0.6195
0.4981
0.5769

-0.0920

4

0.2534
0.3062
0.6355
0.4843

-0.0969

5

0.3766

0.2097
0.3681
0.347L
0.1343

[Arr] Matrix

[Btr] Matrix

1

2

3

4

5

1

0.555

-0.131
0.031

0.059

-0.182

2

0.171
0.976

-0.012
0.510
0.028

3

0.7r7

-0.791
0.982

-0.335
0.200

4

-7.242
0.432

-0.408
0.342

-0.402

5

0.449

-0.055
0.2L9
0.029
0.403

1

2

3

4

5

1

0.7697

0.1665

0.1244
0.4L20
0.5363

2

0.0000
0.6514
0.1593
0.276L
0.3657

3

0.0000
0.0000
0.6544
0.1855
0.0635

4

0.0000
0.0000
0.0000
0.5982
0.0468

5

0.0000
0.0000
0.0000
0.0000
0.70L4


