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SUMMARY
The aim of this thesis was to provide a rigourous justification for certain aspects of a
perturbation method used to calculate an approximation of transient electromagnetic
field. This method used the quasi-static approximation to the solution of the vector
\,\¡ave equations ' in a region of two half-spaces of differing conductivities.
In the case in which neither of the half-spaces \¡/as insulating, it was shown, via a

variational approach, that a unique solution of the time-domain problem exists. If one

of the spaces was insulating it was only possible to establish existence in the scalar case.

The solution to the scalar diffusion equation was shown to exist in a weighted Sobolev
space.

It was shown that the elements of the fundamental matrix of the Laplace transformed
( with respect to t) vector wave equation, tended spatially pointwise to their value at
e : 0, as € -+ 0. Formulae for the fundamental matrix obtained previously were verified.
It was shown that the perturbation method gave a solution to the problem in the half-
space of non-zero conductivity if the current source was considered to reside in this
half-space. Further restrictions on the source were shown to be necessary if it was

considered to reside in the insulating half-space. The spatial asymptotic behaviour of
the field was determined.
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Chapter 1

Outline and Introduction
The transient electromagnetic (TEM ) method is an important technique of geo-

physical surveying. The method, essentially, consists of placing two conducting loops on

the surface of the Earth and passing an alternating current through one of the loops.

This current creates induction currents in the other loop and the induced E.M.F., which

depends upon the electrical properties of the Earth in the region of the loops, is mea-

sured in this receiving loop. The data gathered from the receiving loop is then compared

with the data expected from various models of the substrate. This thesis investigates

certain aspects of a method for calculating this model data.

Firstly, we recall that electromagnetic fields are governed by Maxwell's equations:

VxE:-ôtB

VxH:A¿D+J

V'B :0

V.D:p

J:øE*K.

where E and H are the electric and magnetic field intensities, p is the density of electrical

charge, J is the total current density, oE is the conduction current density, B is the

magnetic induction field , D is the displacement current, K is a known current density

maintained by an external energy source and ø is the conductivity.

If we assume that the following conditions hold:

(1) D - €E, B : FH where, ¡.r is the permeability and e the permittivit¡

(Z) tt and e are independent of the time variable,
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(3) ihat K is switched on at t:0,

( ) for ú ( 0, E(',ú):0, H(',Í):0, p(',f) :0,
then E is determined by the solution to the equation

¡teÎlB* p,o1¡E*V x V x E: -p,î¡K

( Carey and O'Brien [1]).

Now, formally, (1. 1) can be Laplace transformed to

jtr"' I ¡tos* V x Vx)e - -þLsk

(1 .1)

( where L(E) : e, L(K) : k, and s is the Laplace transform variable ) or Fourier

transformed to

(-prr'-¡loia*VxVx)é:¡tiui. (1 .3)

( where F(E) : é,f(K) : ñ, and t¿ is the Fourier transform variable ). Note that

the fundamental matrices of the above transformed equations are determined by the

fundamental matrix of the vector Helmholtz equation:

(VxVx-rc2)u:f

(1 .2)

(1 .4)

with rc2 - -p"es2 - l.ros or p,eu2 I ¡toia. The fundamental matrix or Green's tensor

of (1' 4) can be calculated explicitly for certain a(u). However, even in these cases the

form of the fundamental matrix is particularly inimical to both numerical calculation

and inversion of the integral transforms.

A particularly useful simplification of the forms occurs when the quasi-static approx-

imation is used, i.e. e is taken to be zero. This asymptotic approximation corresponds
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to the physical situation when the electromagnetic wave-fronts are a large distance away

from the observation point or when the source is of low-frequency. These two viewpoints

are equivalent to asserting that the terms -peu2 and ¡tesz are negligible, and that the

solution to (1. 2) is approximated in some sense by the inverse transforms of the solutions

to

1to"+VxVx)e--frsk

or

(1 .5)

(1 .6)

Carey and O'Brien [1] have shown that this is indeed the case for the Laplace

transformed version of (1. 2) with certain conditions on d, F, k e. They required that ¡t

be constant on R3, while e and o were merely required to be constant, bounded functions

on open sets O¡, i : I,...,n,,U?:r,Õ¡ : R3, with smooth boundary, i.e.

e(o) : e;,o(x) - ci;ø € f)¿ and at least one of e and ø is required to be non-

vanishing.

It was proved in Carey and O'Brien [1] that the solution to (1. 3) has a bound:

(- ¡.toiu* V x Vx)ê : pi.,i..

ll"ll s zfr{..æ, + ø.)-1llkll, (1 .7)

where

o* : in{- ø(ø), e* : in_f- e(c), Ws : real part of s( and Ss : imaginary part of s)
¡€Rs ø€Rg

and ll.ll is the norm of L2(R3). This bound is well-behaved, for a model in which ø1 ) 0,

as € -) 0 and it is therefore possible to take the quasi-static limit. It was also shown by
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Carey and O'Brien, via replacing e by Àe a¡rd considering the limit as À vanished while

e is held fixed, that

llE¡(¿) - Eo(¿)l l. ?^r*or', 
l.lexp(sú)llslllk(s)llds

(1.8)

and assumingthat K e C-(Rs) this provedthat Er -- Eo as ) -r 0 i.e. the quasi-static

limit is a good L'(Rt) approximation of the solution for small e, if ø never vanishes.

It was also shown that for o* ) 0 :

(1) away from interfaces, all fields are smooth if the source K is smooth

(2) the transverse component, e1 lies in H2 and is therefore continuous

(3) the longitudinal component, e¡, lies in L2, but cannot lie inHl,

Ø) " x e and n . oe are continuous across any any interface I in the sense of

distributions in H- â (f).

( Note that resuli (4) corresponds to the classical boundary conditions that the

tangential components of e and the normal components of øe should be continuous

across any interface between two regions with different constitutive parameters. )

However, in the geophysical applications of interest to us the approximation o(x) :

0 in a halfspace of R3 is made. Thus most of Carey and O'Brien's results are inapplicable,

though (1) and (4) are still true for the half-space in which o(x) > 0 at interfaces between

volumes of differing, non-zero, conductivities.

Nonetheless, the lack of a rigorous proof is not a true obstacle in numerical cal-

culations, as it is always the case that intuition precedes rigour. Hohmann [1,2] has

considered the case of an infrnite flat-earth with an insulating upper half-space, i.e.

o(s) - o(x,y.,z) : 0,2
Agrotnds Z

0

0
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where osrounit ) 0. From the vector diffusion equation,which is obtained from (1.1) by

making the quasi-static approximation, viz.:

(1 .e)

Hohmann derives an integral equation which is asserted to be equivalent to the vector

diffusion equation:

E:G*K+G+(oyyy)E

where an asterisk denotes convolutiorr, ov is the difference between the conductivities of

the ambient material and the ore-body, Xy is the characteristic volume of the ore-body

and G is the pointwise limit, as e vanishes, of the kernel of the Greenst operator for the

transmission problem with a source in the Earth in the presence of an insulating upper

half-space with e non-zero. Hohmann did not give a proof in either [1] or [2] that G is

in fact a fundamental solution to the transmission problem with e taken to be 0 and

the conductivity of the air to be 0. The advantage of this integral equation approach is

that it allows the electric field to be calculated as a perturbation of the field induced in

the absence of the volume of differing conductivity. A finite element scheme is used to

calculate this perturbation.

In this thesis, certain aspects of Hohmann's method are investigated. In

chapter 2 :

(1) The existence and uniqueness of solutions to the vector and scalar diffusion

equations are investigated using a modifrcation of the proof in Treves[l, pp. 397-405] for

the equation u * A(t,n,A")u g where ,4. is an elliptic operator.

(2) It is shown that in the scalar case, the solution lies in a weighted L2 space.
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In chapter 3 we:

(1) Outline Johnson et al.'s [1] derivation of the correction term for the spectral

expansion of the vector Helmholtz equation's Green's dyadic for a flat Earth given in

Tai [1].

(2) Reduce Tai's formulae to a more compact form.

(3) Take the quasi-static limit ( e -r 0 ) in Tai's formulae after assuming that

oo¡, * 0. 'We then show that as oøir + 0, for z and z' tton-zeto, the terms of the

Green's dyadic tend, pointwise, to the form obtained by Hohmann [1], even though we

have taken the limits in the opposite order.

(4) Verify Hohmann's [2] inverse Fourier transforms of the scattering terms.

In chapter 4 we:

(1) Show that Hohmann's integral equation [2] and the weak form of the vector

diffusion equation are equivalent.

(2) Show that the kernel used in Hohmann's integral equation is a bounded operator

on L2(R1 x [0,"]) and that therefore there is,

under certain conditions, a solution to the integral equation.

(3) As a check on the validity of the solution, we show that the field obtained in

the air by allowing the current source to approach the air/ground interface from below

is the same as that obtained by allowing the current source to descend from the air, if

the source is transverse.

( ) We examine the large negative z behaviour (i.e. in the air ) of the electric field

generated by a source in the ground.

(5) Finally, we examine the existence of surface charges and the boundary conditions

at interfaces.

6



The notation is standard: Wi(O) - \Mi'2(O) is the Sobolev space of functions in

L'(O), O c R3, with distributional derivatives of order less than or equal to j in L'(O).

An asterisk denotes convolution, ô¡ denotes partial differentiation with respect to l,

( .,. )n is the inner product in the Hilbert space H, where H may be L2(O), (L'(O))t,

etc., depending upon the context.
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Chapter 2

Existence and tlniqueness of the Solution of
the Generalised Diffusion Equation

2.1 Introduction

In this chapter the existence and uniqueness of solutions to the vector and scalar

diffusion equations are investigated. We will denote by O,, depending on context, either

thedistributional-V'(vectorandscalar)orthedistributionalVxVx.Thatis,

we study the equation où I Ou - g. Note that o must be bounded below by a positive

constant in the case O : V x V x since the method we use to prove the existence and

uniqueness of the solution fails when ø vanishes in a half-space. When O : -Y2 (scalar

or vector) it is possible to allow a to vanish in a half-space.

The proof of the existence and uniqueness of the solution is a modification of the

proof in Treves[l, pp. 397-405] for the equation ù + A(t,r,,O,)u - 9 where A is an

elliptic operator. The essence of the proof is , after the definition of the spaces we seek

the solution in ( analogues of the Sobolev spaces used in, for example, Dirichlet problems

on bounded domains), to

(1) Show that the bi-linear form corresponding to the generalised diffusion equation

gives rise to a coercive , continuous map between certain spaces, which arise naturally

from the variational approach to the problem using Lions' generalisation of the Lax -

Milgram lemma.

(2) Show that this variational method gives a solution of the weak form of the

generalised diffusion equation, which fulfills the initial conditions and is unique.
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2.2 The Generalised Diffusion Equation

The vector/scalar genêralised diffusion equation is

,t (g,t) + Ou(x, ú) : g(a,t)

with initial condition u(2, 0) : 0, Vø € R3 where

eeL2(R3x[0,?];R"),

(2 .1)

o(x): oøir¡
o grounil,t

where oo¡, is a non-negative consta;tt!,,, osrou,r¿ is an arbitrary positive, bounded function

of ø with lower bound ø* ) 0, the integer n denotes 1 when (? is scalar and 3 otherwise,

L: (r,y,z) and ? is a finite, non-negative real number. Note that all functions are

real-valued and that all spaces are over the reals. Firstly, we replace u by exp( -rt)u,
where r is a positive real number. 'We will eventually restrict r to be greater than some

ro ) 0, to ensure that an inequality of the form llällr < lAç,s¡(h,å,)l holds, where

A(,,o) is defined below, M is a Banach space, which will be defined later, and h € M. In

the case oai, * 0 this substitution ensures that we obtain a contraction semi-group.

Thus, upon making the above substitution, (2. 1) becomes

où * rou * Ou: exp(-7ú)g : l. (2.2)

We deflne

Bo(u,,u) :( OÈ u, Oi u >a"1s"¡ .

where ( .,. )¡21¡s¡ indicates the inner product in (L2(R3))". Note fhat Oi exists since

the operators v¡e are dealing with are positive, self-adjoint and closed ( For -V2 this is

RqT
R1

a€
x€

I



us

a standardresult. For V x Vx see Carey and O'Brien [1].) For the cases of interest to

3

B -vr(u,r): D q ô,,u, 0.;u )121¡s¡
d:1

(tt: trt2:U,trg: z ) and

3

Bv'v,.(u, u) : t I 0,;(1 - Q)", 0,,(1- Q), )¡z1ns¡
i:1

where Q is a pseudo- differential operator defined by (Carey and O'Brien [1])

VxVx:-V'(1 -e).

That is,

ô.. - 
-,)ri\ú¡, - v2

We now define the spaces Õe and Eo in which we seek the solution to (2.1).

rÞe is the completion of (Cf;(Rs))" with respect to the topology induced by the

norm corresponding to the following inner product:

(u,uløo :1 c'tt,tu )1z1as¡ lBs(u,u). (2 .3)

This norm is

ll"ll"" : 1 o1.r,,u )121¡s¡ lBs(u,u)

This is a standard construction. It is easily seen that (

Cauchy-Schwarz inequality since for u, u € Qo

lBo(u,u)I S ll?È ull¡,1¡"¡ llOi ull1,1¡"¡

(2 .4)

)¡Þo satisfies the

10



and

I < ou,u )121¡s; | < lloi ullp,1¡,¡ ¡oÈ ull¡,1¡,¡

:1 cItr¡, >fr1¡"¡ 1our, tjrl*r¡ .

Thus, ( .,. )Õo is an inner product, since it is clearly bi-linear.

Note that when (9 : Y x Vx ar'd oo;r: 0 a function z which has its support in Rf

and is longitudinal must satisfy llullo"xvx :0 , i.e. the inner product merely induces a

semi-norm. 'We exclude this case from our consideration.

Ee is defrned as the completion of L2([0,"];(Ci(Rt))t) i" the norm

S ll"llo" ll,llo"

T

0

I

| , P," + r"#r|*, dt.ll"llB" : (2 .5)

( If H is a Banach space ,H' denotes its dual )

That is

Eo : {u eL2([0,"]; øòl "# € L2([0,rh ob)] (2 '6)

We now define the bi-linear form on E9 x E9 corresponding to the weak form of

(2.1):

TT T

IAç,o¡(u,u): -1u,oú>dt+ l rouru )p1¡¡s¡ dt I Bs(u,u)dt (2 .7)I
0 0

where the notation ( .,. ) without a subscript denotes the bracket of duality.

The following result Carey [1] shows that Qo is a space of functions

11



Theorem

Let W be the space of functions u with

(2 .8)

( d is the Heaviside function.)Then, if oo;, f 0 or in the case where aair : 0, O : -V2
(scalar), Õo Ç W

Proof

Note that if. oo¿,1 0 then Õo C L'(Rt) C W, so we need only consider the case

oair :0,O - -V2 (scalar). Let z € Ci(R3) then

u2 -0(z)uz

ll'll* : l*"#d'rdvd'z( oo'

a,
(7 + 0(z)z) (1 ¡ 0(z)z)2

therefore

as u and thus u2 is of compact support. Now

that is,

f"#ftrydx dv o, : ["#Ðd,r d,v d,z

.r(l*,#õryd* d,y aòîtl^"t0,u)2d,æ dy deï

tu2'l*îQ+eQ)+dxdydz<2||u||1ar||Vu||1,1¡'¡.

( Since ï*"u'2 I*\"t.)
Let

o': I*"*&d'x dY d'z

(2 .e)
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g': uzdæ dy dzl-I

7 : llVulla,ls"¡

then (2. 9) implies

a2 <2ço2 + þ')it

which implies

o4<4ça2+þ2)12

and, considering the above equation as a quadratic in o2 it is seen that:

o2 < 272çr ¡ þ2 * t2)

< 212 +2 0n +zB'r2 +14

- 4.y" + 2p2

and thus

ot+þt<4(p'+l\.

Now, we define ø* as 
"¿Lf" 

"(e). Thus, if ø* ( 1 then

1P'+f < (o*þ'+1")
o*

and if ø,* ) 1

P' + l' 1 o*þ2 *'l'.

Noting that ll.llo" is equivalent, when d¿dr:0r to

".11. lll,ro:t + Bo(.,-)

(2 .11)

(2 .12)

13



it can be seen that there is a constant Ko such that

ll"llrv 1Koll"llo", (2 .13)

that is, Acr Ç !V.

We now discuss the dual of tÞe.

For O : -V2 a,nd oo;,1 0 we have that Õe is just the Sobolev space

(Wt''(Rt))" and therefore the dual of Õe is merely (W-t,z(Pts))". However, if oair :0¡

the situation is more complicated. In this case, øó has support only in the lower half-

space and therefore we are interested in the duality between Õe and Õ'e only for the

subspace of Qcr consisting of functions with support in Rl. However, this subspace is

(W1'2(Rl))' and hence its dual is (W-t,z(R1))". Thus, the space Ee is the space of

functions u such that

(1) u e L'([0,7];ao)

(2) où € L2([0, Tl;(W-','(Rl))").

For O: V x Vx the situation is slightly more complicated. Since Õo € (L'(Rt))t

if oo¿, f 0 we can resolve u € tÞe into its transverse and longitudinal components which

we will denote by ur ar'd u¿ respectively. Note that

ll"rlllr" : 1 o'uTtu7 )¡"21¡¡s¡ * < Y x u7,Y x u7 )¡21¡s¡
(2 .r4)

ll"rll|" : 1otl,¿,u¿ )121¡s¡ .

Now for ooi, # 0, (2' 14) implies that

ur e (wr''(Rt))t

T4



and

u¿ € (L2(R3))3.

That is, (Þv*v* : (WÞ2(Ptt))te(l,Z(Rt))t (r, c indicate the transverse and longi-

tudinal subspaces respectively ) and therefore Õ'vrv * - (WÞ'(Rt))t)'O ((LZ(Rt))t)'.

It is also of interest to consider in exactly which space the solution to (2.1) lies.

Now when O:Y x Vx, (2.1) is

où(x,f) + V x Vxu(ø, t) : g(a,t)

where g € L2(R3 x [0, 
"]). 

( We ignore initial conditions for the moment and consider

the case (9 :V x Vx ¡ooir:0, even though we have no existence proof in this case.)

Now, for (2.1) to be meaningful it is necessary that V x u kY x V x u be elements of

(L'(Rt))t. That is,

which implies that

ur€ (wt,'(Rt))t,
(w1,2(Rl))3,

oo¿, # 0

ooi, :0

VxVxuT:-Y'ure (w-t''(Rt))t,
(w-1,2 (Pt1))t,

oo;, # 0

ooir :0

This,in view of (2-I), implies that

ouT €

We also have from (2.1) that

(w-t''(Rt))t,
(w-t'z(Rl))r,

oo;, * 0

ooir :0

oo¡, # 0

Coir :0
t))t,

1))'oùc e
R
R

(L,
(Lt

(
(

15



That is

u e (wþ2(o))' o (LL(CI))' 8r, où e ((w+,2(çt))')'o ((LZ(o)).),

where Q : R1 (R3) when ooir:0 (l 0).

By a similar argument it can be seen that for O : -Y2 the solution u € (Wt,'(Q))"

and that où e (W-t''(f)))".

2.3 Existence of Solution

We now prove the existence of a solution to the generalised diffusion equation. To

do this we consider a space of the form Ç x Z where Eo Ç Ç a¡dZ contains the function

corresponding to our choice of initial condition. A subset of. Ç x Z is chosen so that:

(1) the pair (u,u6) corresponds to a choice of a function u € E9 with

]13 ll, - uollz : o

(2) ll(r,t,'0)lls xz 1 lA1,,o¡@,u)1.

Lions' generalisation of the Lax-Milgram lemma is then used to prove that there

exists a unique solution to the weak differential equation which satisfies the initial con-

ditions.

Firstly we define I to be the completion of (Ci(R3))" with respect to the norm

induced by the inner product 1 ou,u )121¡s¡ . \Me take Ç : L2(10,7);Aò and thus

Ç x I:M: L'([0, Tl Ao) x I with norm

T

I
0

We choose as the subset of M, å. C M ut

{(r,ro) € Mlu €Ðo,rtgillrllz:0&}g3 ll, - oollz:0}

Il(","o)Ih'¡: ll"llå" dt+ < ous,'tts )121¡¡s¡ '

16



If oo¡r: 0 we make the additional restriction upon I that that its elements have support

in R1, i.e. it is the completion of (Cf;(Rl))" with respect !,o 1o.,. )¡z1as¡ . Now ,

T
2 1où,u ) dt (2 . 15)

: 1 CltT¡uy )¡,z1¡s) - < o?Jgr'us )121¡s¡

& thus

2Aç,s¡(u,u) + < ouT)'u,r.)¡z1as¡

T

I,

: 
lo' !,'ou,u )az1ss¡d't

I: 1 otlo, ?¿o >L2(R") + 2( f< rou,z )¡21¡a¡ *Bo(u,u)dtl)
0

Assume without loss of generality that

thus we have the energy inequality :

2A1r,ct¡(uru)+< oltT)uT' )¡21¡s¡ ) louo¡u6 )¡21¡s¡

+2 [1ou,u>*Bs(u,u)dt.
{

Henceforh€fi,,

llälli{ < lAç,q(h,h)1.

Note that Aç,o¡(w,h,) is clearly a continuous linear functional on M for every fixed

(h,ho) e t¿. \Me nov/ use Lions' generalisation of the Lax-Milgram Lemma (Tieves [1],p.

403).

77
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Lemma

Let E be aHilbert space, ñ aünear subspaceof E, U(r,lz) asesquilinearfunctional

on E x ã having the following properties :

(a) for each fixed h e h,w -+ lJ(w, lz) is a continuous linear functional on E.

(b) there is a c6 ) 0 such that , for every h ei ,

"ollhllS S lu(ä, t¿)l

Conclusion

There is a bounded linear map G of the antidual E' of E into E , with norm ( 
"o 

t

, such that for every continuous linear functional ) on E ,

u(GÀ, ä) : À(t ), vh e i.

So let our continuous functional À be

T

uj+ I ( l, u )¡¡zl¡¿s¡ dt,

0

choose ont ñ to be å and E to be M. The energy inequality for A1r,o¡ on Â and the fact

that (tr.', ro) - Aç,o¡(w,h) is continuous on M for fixed (h,ho) e h,(w,too) e M, shows

that we can take U(u,u):!G,o)(u,u) and apply the lemma to obtain:

I
0

1(V,,Vo) € M such that A1,,o'¡(V,n) - ( l, ä )¡213s¡ dtVh e h

T

18



so

Choose

tr. e Ci([O, 
"];ÕoXc 

tr c M)

l< -oV,ä )pz1¡"¡ ¡ < orV,lz )121¡"¡ +Bo(V,h)]dt: ( l, ä )¡,z1¡'s¡ d,t

T

I
T

0 0

and therefore,

oV * (roV * 0V) :Y

in sense of. Aþ valued distributions on[0, ?].

2.4 Initial Conditions

First we prove a technical result.

Lemma

The natural injection

C-([0, T];Ao) -- Co([o, r];r)

can be extended to a continuous map

Eo - Co([O, T];r)

( We equip C0([0, T];I) with the natural norm

(2 .16)

where ltto : u(x,t)lt:to.)

Proof

sup ll"llt
0<ú<?

19



Let u € Eo. We define û on (-T,T) by

Ut¡
'l,I _1

0 € C-(R), ar : 0

1

û:{ ¿>0
ú<0

It is clear that the map u r+ û is a continuous injection , with norm 2 , from Eo :

Eo([0, 
"]) 

to Eo((-?, 7)).Consider no,,r/

Tt
0.t

Let u € C-([0,7]);Oo).

Note that when ooir:0 we are really dealingwith atruncation of z,

Trunc(u)(ø) : u(r), z 10
otherwise0

since we require the elements of Z to have support in R1. However, since

I ouru )¡z1n.s¡ : ( øTrunc(u), Trunc(u) )121¡s¡ this is not a problem,

\Me now consider < o(oú),(oû) >1r1¡"¡

_,
t_, a (oû)", o(aú,)" > ds

Ë I I (o")" I lå" + llo (attt) 
"ll|r,"a"

Ë llû"lle" * þír"llT,oa'1Co

12Coll"llr"

Since oû restricted to [0, ?] equals z , we see that the natural injection

C-([0, T];ao) -, Co([o,T];I)

20



is continuous and thus has a unique continuous extension to all of E9,

since C-([0,"];Qe) is, clearly, dense in Eo. ( The density can be proved by using an

approximate identity argument. )

Now (2. 16) implies

ov e L'([0, Tl;a'o)

i.e. V € Eo , hence we can consider V as a continuous function on [0, 7] , valued in Z.

Now ,

TT

I 1 -oV,h. )¡r1¡"¡ dt :1 oV,h )121¡s¡ lr=o * 1 oV,h )azl¡¡a¡ dt

0 0

l.e

So by (2. 16)

1 oVrh. )1r1¡"; lt=o : }Yh e h

oVs:0 a.e. in R3

& therefore so doesV¡, since if ø has support only in Rl we have chosen I to ensure

that ihe initial data V¡ is zero in Rf .

2.5 Uniqueness of the Solution

If we have two solutions u,u €. Eo to the above problem then W : 1r, - u is an

element of Eo which satisfies

oW * (ro t 0)W :0 (2 .r7)

Wo-0inR3 (2 .18)
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'We now show, using the the bilinear form At",o, defined on Ee x Ee by

¡T
A'1,,o¡(u,ù: 

Jo 1où,u ) * 1rou,u > *Bo(u,u)dt (2 '19)

that W : 0 in L'([0, 
"]; 

Oo).

Firstly, by a similar argument to that for 41",o¡ above we have:

2 A'1,,o,¡(W, W) + 1 oWs,Wo ) rz (ns¡ ) ( oW7, W7 ) ¡,2 1¡t"¡ +ZllW ll?, qo,r1,, o¡.

(2 .20)

Now

L'1r,g,¡(Wrn: l,
T

bv Q. 17) and

bV (2. 18). Therefore

and hence W =0 in L2([0,"];Oe).

< oW * (ro + O)W,W > d,t : 0 (2 .21) 
I

< oWo,I,7'6 >¡r1¡r¡: 0 (2.22)

0 >< oWy,Wy )ç1¡.'¡ +2llWlll,(s,q;oo) ) 0 (2 .23)
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Chapter 3
Calculation of the Green's Dyadic

for the Vector Helmholtz Equation.

3.1 Introduction

In this chapter we:

(1) Outline Johnson et al.'s [1] derivation of the correction term for the spectral

expansion of the vector Helmholtz equation's Green's dyadic for a flat Earth given in

Tai [1].

(2) Reduce Tai's formulae to a more compact form.

(3) Take the quasi-static limit ( e -' 0 ) in Tai's formulae after assuming that

ooi, * 0. (This is justified by the results of Carey and O'Brien[l].) We then show that

as oair- -> 0, for z and z' rtoÍt-zero, the terms of the Green's dyadic tend, pointwise, to

the form obtained by Hohmann [1], even though we have taken the limits in the opposite

order.

(4) Verify Hohmann's [2] inverse Fourier transforms of the scattering terms.

3.2 Derivation of the Correction Term

In Tai[1] it was wrongly assumed that the eigenfunctions corresponding to the TE

(Transverse Electric) and TM (Transverse Magnetic) modes formed a complete set.

Johnson et al. [1] remark that this was probably inspired by Morse and Feshbach's [1,p.

1781]comments which implied that away from the source the transverse and longitudinal
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components of the unit delta dyadic ( ¡¡(q)) vanish identically. This error was further

compounded by the use of a form for

(3.1)

which obscured the generation of a delta-function term by an application of 0,0,, ts

the above term. The existence of such a singular term reveals the incompleteness of

the eigenfunctions corresponding to the TE and TM modes. The correction term, viz.

frZZ|(a- r') is not the total contribution of the longitudinal eigenfunctions. (This is

obvious since V " 
6(g. - r')22 + 0.) Rather, it is what remains of the contribution from

the longitudinal eigenfunctions after partially integrating the spectral expansion with

respect to one of the wave-numbers and a cancellation with part of the contribution

from the eigenfunctions corresponding to the TM mode.

We now outline Johnson et al.'s [1] calculation of the correction term.

Firstly, the eigenfunctions of the vector Helmholtz equation in Cartesian

co-ordinates are

L(q):v'þ

M(q) :v x (2tþ)

,?,, VxM(q)t\I/-ì __-'\=/ 
&? + xl + tc2¡i

,þ(r) :"-ik'!,k : lrrâ + kuû + tc,2

t :(arY, z)

and fr" ,lcyrk, are the wave numbers in the ø, yrz dftections respectively.

The free space Green's dyadic satisfies:

24
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VxvxG(sl-)-kïG(sls.'):16(x-C) (3.3)

and the radiation condition at infinity:

-lim ^R[V x G(qlq') - ifrgR x G(øl¿')] : Q (3 .4)

where R:lx -ø'l and R it th" unit vector in the -R direction in spherical co-ord.inates.

The longitudinal component of the free space Green's dyadic is given by

: r.f#l:l:Ë
t:Lt: (s'L(q)

YY'tþ(s)tþ.(x')

11 *L )
k8 QiT)s

dk"dle sdlc, (3 .5)
k?+k3+ k?

dle 
"dle sdlc ".k?+ k +2

v
k?

(* denotes complex conjugation and V', etc. indicates differentiation with respect to the

primed co-ordinates.) \Me now integrate with respect lo lcr, using (3. -1)

11

Differentiating, the following is obtained:

where

k! (2tr)2 t: t: . 
"- 

ik, (x - x') .- ik u (v - u' ) 
"- 

k 
"lz - z' 

1vv' dk,dlcv

å&t:t:(
lcrky

k3

-ilcalc""

"-ik"(x,-x') "-it 
r(a-u') 

"-k"\t-r'1 
1

2k" dlc'dlcY - *zz0çz- !)

k?

lc,ky

-ile ,le 
""

-ilc rlc""

-ilcylc ",
-k?

k": k? + k?, Ic"" : k"Sign(z - zt)
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and we take, for convergence, the branch of the square root function with 3zrl2 > 0.

The transverse component of the free space Green's dyadic is given by:

(3 .6)

dle 
"dle udle ,

The second term equals

1 [* [* [* (_ 1 _ 1 \
(2n)' J _* J _*/_." \ (k? + kl + kz,)kfi ' kT(k? + kza + k? - kÐ / (3.7)

0rÔr, Qr?r, ôrÔr,0r0r, -(A?, + A3,)A,A"

0r0r,Ôr8", 0r0r,ôr1u' -@?,+ Al')ArAy

-(a? + al)a",a,, -@? + q)a,,ay, (a3 + a|)(a?, + a3,)

"ik 
n (r - x' ) 

"ik 
o fu - s' ) 

"ik, 
( z - zt ) ¿le, dlc y dlc,

Integrating with respect to Ic, again, we obtain from the above expression

1 r- f* -1
@J_*J_*w

Ôrôr,QrQ", ôr0r,0r8u, -@3, + A?,)A,A"

ôrôr,0r8r, 0r0r,000u, -(A2,+ A|)ArAy

-@? + a|)a,,a,, -(a? + al,)a,,ac, (a? + aÐ@?, + a3,)

"-ik"(o-ø') "-;t 
o(v-a') 

"-k"lr-t'I 
dlcrd,le ydle ,

26
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LI:
Ô"ðr,Qr7", Ôr0r'0r0u, -(A?,+ Al,)ArA"

0rôr,0r0r, ô'0',1uQr, -(A?,+ A1,)A'A,

-(a? + A|)a,,a,, -(a? + ôl)0,,ôv, @? + A,)@?, + 1ru,)

1

Etk,

"-ik"(x-r') "-;t 
,(u-v') 

"it 
nl,-r'| 22d,lc,d,le yd,le ,

where lro: 1ffi".
Differentiating the above expression (3. 8) we obtain some singular terms which

cancel out with each other, leaving

&/-/-(
k?

lc,ky

-ilc rk ""

k"

le 

""

k
k3

lev

v -ilcrlc""
-ilcylc""

-k?

"-ik, 
(x - xt \ 

"-;t, 
(a -U' ) 

"- 
k "1t- z' 

1

2 lc"

L

lealc"le""lcs

dk"dk,v (3 .e)

/-/- (
Ie ,k 

"lc ""

le ,le 
"lc ""k s

lcslc.l{ 
""k s

kt

krksk?
k3k3"

k?k?
Ie ,le yle

,,

I
lcs

. "- 
ik, (¡ - ¡' ) 

"- 
ik o (y - gt ) 

"- 
k 

"l 
z - z' I

Wdlc"dlt,y.
Note that the first term of (3. 9) cancels out all but the delta-function term of the

longitudinal contribution. Thus, this delta-function term is the correction term for the

form obtained by Tai[1,p. 103 ].

3.3 Cylindrical Vector'Wave Functions in Cartesian Co-ordinates

Tai's spectral expansion of the Green's dyadic is in terms of the transverse cylindrical

vector rrvave functions. These functions, Mer¡(ä) & Ne,r^(ä), are eigenfunctions of the
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vector Helmholtz equation and are related symmetrically:

VxMg,l(å):rcNe"^(h.)

V x Ng,r(å): rcMe"^(h)

The notation Fe indicates a choice of even or odd function of ó. For exam-

ple, M" 
".r(å) 

: V x J"(Àp)cos(n,/)exp(ihz)2. The dyad .g^x(h).'6,^(h) ir defined

as ." ,,¡(h).'" 
"^(h) 

*., "r(ä).', ",*(ä) 
where . may be replaced by M or N.

'We present these functions in a form slightly different from that used by Tai, in

that rather than expressing them in terms of a cylindrical co-ordinate system, r,¡/e use

Cartesian co-ordinates. We now list the cylindrical vector wave functions:

Ó : arctanT

1þ " 
:J .(Àt)Sri ("d) exP(ihz)

ar.d Y2rþn * n2ún :0)
1

N3"r(h) :;VxVx(rþ"2)
'l

-:(a,a,ú^î + a,ayú"û - @? + aïú"2)
1: 1(a,a,1þnâ + a,aylþ"û + (a? + n2)ç.2¡

1::(v(a"ú,) + o2r¡r^2¡

1: 1(A,A,?þnû + A,Ayrþ^v + À2 r¡^z¡

where n2 : À2 + h2

Mg"r(lr) :v x (rþ"2)

:0y1þnî - 0"rþ"û

['Where r : 12 *U2

(3 .11)

(3 .10)

(3 .12)
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3.4 Green's Dyadic for the Vector Helmholtz Equation

Our model in this section is of an upper half-space (i.e. " > 0) with parameters

lrz,hz, corresponding to the ground and a lower half-space (i.e. z < 0) with parameters

lq,ht, corresponding to the air. There is no need to substantially alter Tai's [1] form

for the Green's dyadic for a flat earth, as the expression for the free-space dyadic is

easily corrected by the addition of the delta-function term derived previously and an

appropriate (in fact naive ) substitution for the derivatives with respect to z and z'.

Also, Tai's reasoning about the form of the scattering terms remains valid. The anterior

elements must stil be eigenfunctions of the vector rü¡ave equation in their respective

media, i.e. Mg,l(hr),Ng,.r(å1) in the ground and }l/,g,"xGhz),N6,¡(-åz) in the air (

h1 and h2 a:re defrned below.) These choices also ensure that the radiation condition is

satisfied aL z ---+ oo and z + -æ respectively. The posterior elements of the scattering

terms in both media must be the same as that for the free-space Green's dyadic to

ensure that the boundary conditions at the interface can be satisfied. These boundary

conditions, which follow from the classical boundary conditions for an electromagnetic

field, are that at z -- 0 the components of the Green's dyadic and the curl of the Green's

dyadic which are tangential to the plane z :0 are continuous across this plane.

From Tai[1], the Green's dyadic for the source in ground, receiver in ground, after

the addition of the correction term is :

G(sl¿'):

hl,*
oo

1

^h,
It, - ós)Mg,r çtr2)[Ml.x?hr) + aML,^(h2)]
n:0

(3 .13)
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*Ne,¡(å.2 )[N'8"À(-t 2 ) + óNb,"¡(lrz )]dÀ

-þtztço- d)

oå,2 - ós)[Me ,x?ht) + oM"o,x(h2)lMb.^(h2)

z)zt)0

hl,* (3 .14)

¡ [Ng"r(- hr) * óNe,¡(äz )JNþ"^(lr, )ar

1

kz
226(a - d)

where the primes denote dependence on q', 6o is the Kronecker symbol with respect to

0qt

n

0":{11
n
n

+o

hz-htñ --*-hr*ht'

k? :\' + h?,(i: t,2),

lq: - Faoir9 (takinge - 0),

and k2 - - pO grotnilS.
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Note that for À f 0:

in matrix form is

frr :0,

0u0r,tþ"rþ'*

- 0"0s,rþ"rþ',

0

-0y0",rþ"rþ'" 0

ÔrÔr,rþ"rþ'" 0

00

lim
ooi¡+0

lim lez:
doir +0 -Pagrounils : le2,

Iim hr:i),,
d oi¡ +O

lim hz : lim i
coi¡+O toi¡+O

\2-k3:i
^2-k3-iK,iK-i^ K-^

o"ttaoa-iK+i^: K*^'
lim b: - L.

ooir+0

It can be seen from the formulae for the Green's dyadic that the form of the dyadic

for z ) z' is merely the form for z S z' with z and zt interchanged. Thus, we need only

use the form for z ) zt in our calculations, though the discontinuity at z : z' must still

be taken into account.

Now, the dyadic operator Mg,x(hr)M'"n^(*'h2) in matrix form is

and, similarly, the dyadic operator Ngrr(âz)N'"o.^(+hr¡

^2 
ArArlþ^tþ'.

^2 

A,AyIþ"1þ'n

^4'þ"'þ',

(3 .15)

(3 .16)1

F,

0r0r, 0rflr, rþ"rþ'"

ô,Ô¿ ôy0',rþ"rþ'"

À2 0¿ 0",tþntþ'n

ôrôr,ôtôn, rþ"rþL

0'ôr, 0r0u, rþ"rþ'"

)2 ôr, ôo,rþ"rþ',
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( Here we have interpreted the derivatives with respect to z and z' naively, for

reasons explained in section 3.2.) Now ,

,þ.rþ'": J'()r)J'(Àr') exp(ih2(z * z'))(cos nþcosnö' + sinn$sinn/')
(3 .1i)

: J"()r)J,()r') exp(ih2(z t 
"'))cos(rz(/ - ö')).

Noting that

æ

! l"{f")J,"()r') cos(n(/ - ó'))(2 - óo) : Jo(Àp) (3 .18)

( Graff's addition formula, Erdelyi, et. al [1] )

where

p : (r2 + r'2 - 2rrt cos(S - ö'))u

so interchanging summàtion and differentiation in (1.4), and defining

,þ+: Jo(lp) exp(ih2(z L r'))

(3 .1e)

(3 .20)

grves

G(sls') :

0u0r,(rþ- +- 
"rþ+)

-0,0r,(rþ- + arþ+)

0

-ôy1,,(rþ- + øtþ+) 0

ô,0,,(rþ- + atþ+) 0

00

(3 .21)

+
1

E

0rõr,8r8r'(rlr- + tç*¡

ô,ô,,80Q,,(rþ- + tç*¡

\20,'A",(þ- + btþ+)

0,0"'0,ô0,(Þ- + tr¡*¡

0,ôr,000r,(rÞ- + tç*¡

À2 ô,,ôu, (rlt- + Ur¡*¡

^2a"A"1þ- 
+ brþ+)

^2A"Ay(þ- 
+ b'þ+)

^n(rþ- 
+ brþ+)

d^
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-ä,."- '')

000

000

001
Note that here we interpret the derivatives of /- wiih respect to z and z' naively, i.e.

0,ô,,tþ- - -h|rþ-.
3.5 Convergence of the Greents Dyadic

In this section it will be shown in what sense the Green's dyadic evaluated at

ooi, I 0 tends to the dyadic evaluated at oo¿, : Q. Firstly, note that the free-space

Green's dyadic, which from Tai[1,p. 55] is :

ø+þvv)ryçþÐ
does not change as ooir --+ 0. 'We now show that for zrz' * 0, the integrands of the

scattering terms are dominated by a )-integrable function and thus prove that pointwise

the scattering terms tend to the expressions obtained by Hohmann[l]. \Me now calculate

some elementary estimates, needed here and in the next chapter.

First, we calculate a bound for ftK : W { s¡logrounit

:ft.@,Forconvergencewepickthebranch"f'Fwithftf>0

for ftz ) 0. Since we wish only to take an inverse Laplace transform it sufÊces to consider

s in the right half plane. Consider a vertical line in the c - B plane: ot: c,c) 0. This

corresponds to the set of s with Ws : c i.e.

ls I cos(arg 
") 

: 
".

This implies that

lså12 cos(2.rg"å): 
".

(3 .22)
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However

and thus (3. 22) is

l.e.

cos(2á) : 
"ot2(d) - sin2(A)

¡så l2(cos2(urg rå) - sin2(arg 
"å ¡¡ 

: 
"

6qroundht - aoirhz

(ftså¡z-(s"T)':".

Thus, if we let 
"T 

: ,f iy, the point corresponding to 
" 

å in the ø - y plane moves along

a hyperbola with vertex (\Æ;,0) and asymptotes y : +r as the point corresponding to

s: d *iB in the a -B planemoves along o¿: c. 'We have immediatelyfrom this that:

m ()' + s¡tosround) 2 ()' + fr,s¡tosrou,"a) ) S ll0 grounil (3 .23)

Note also that lÀ +Kl > In(À +¡f)l > À and l¡fl > À.

We now consider the transmission coefficients ø and ó. First, note that since fts ) 0,

hz: I s¡lo,roun¿ and ht : I s¡too¡, must lie in the same quadrant of the

complex plane. Thus, by considering a parallelogram with sides ä1 and h2 in the complex

plane, it can be seen that lh,1 - hzl < lht ¡ hzl. Thus,

ht-hz <1.hzlht

Similarly, assuming w.o.l.g. s * 0,

lól : klhL - k?h2

kZtu + k?hz

<1
ooirhz * ogTorrnd.ht
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since dero u",dht and oo¿rh2 must also lie in the sarne quadrant. 'We now derive some

bounds for the derivatives of Bessel functions which will be used throughout both this

chapter and the next.

Note first that:

0,,0,!Jo(Àp) :6;i\2Y + frø, - 
*';)(r¡ - a'¡)Jo(\p)

,,,z Jr(Àp) (r; - ,';)(*¡ - *'i) G '24)_.^ 
^p 

_7_
where i, j are either l or 2, rr: t¡ixz: A and 6¡¡ is the Kronecker delta function.

Now the recurrence relation

2@-: Jo(ø) * J2(r)

implies that

,Jr()p) I < 1.'\p

Thus,

lu",u,,Jo()p) | s rt * ói¡)À2 + 2^2L'''l:¡ -''¡l

<2^2 +2^2v="lol.îj - ''jl

: F(r)À2.

Ôr,Ô4atþ¡
\hz

0,,0,!aJs},p) exp(-K(z + t'))#

(3 .25)

\Me can now estimate the scattering terms of the dyadic. We have that

lhrl: lKl: l^'- k?l> \ffi,
lol < 1 and that mK > À. Thus, recalling (3' 25), we see that

1

(3 .26)

35



is dominated by

F(q)À exp(-À(z * r')).

There are similar bounds for terms involving 0rôr'0",0r,rr0rô",rbtþ¡ etc. since the

derivatives with respect to z and z' only multiply terms by -K or I{2, and

lrr¡ : ¡

^2-k|l 
<À+lkzl

and lól ( 1. Since .F is a bounded, continuous function of z we need only consider the

following integral:

1i
a"J

0

exp(-À(z * z'))d\
0

7d 1_ í 1\- t-') 4tr d" (t + /)'

Thus, for z and z' rton-zero we have that the scattering terms of the dyadic tend,

as oøit --+ 0, to the elements of the dyadic evaluated al, oo;r: 0 pointwise in space.

3.6 Calculation of the Terms of the Dyadic.
'We now consider the elements of the dyadic, putting oair :0 but not expressing

o and ó in terms of their limits until this is needed. Note that part of the following

is merely a reversal of Tai's[l] spectral expansion of the free-space Green's dyadic. We

include this as a check on the rest of our calculation. By the symmetry of the expression
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Noting that as øo;" tends lo 0,, h2 tends to iK , where K2 : 
^' 

- kZ

Consider, firstly Gs, viz.

11
ar kl

1

kl ar
d^

^h, ^2 

A"a,(þ- + brþ+).
1

exp(-ik2R) 
"*p(- ikzRs)

11
u"u, 

lo

(3 .28)

(3 .2e)

(3 .30)

(3 .31)

I
0

L

an kl I,*
1

Ir* 
o^ a,a,þto(Àp) exp(- K(z - z'))

d,^ A,A")lr{ro) exp(-K(z + z'))

- 
a.l f .lo(Àp) exp(- K(" - "')) - Jo(Àp) exp(-K(z * ,'))atr k|

:*þu'u', )R .Rs

11:--
ar kl

where R: (p' * (" - "')')+, Ãs : (p, + (z * z,)2)å .ir"" from Ward[l] :

r

where

(p' + ,')

Consider secondly, G21,

0"'0r(

r)le2Lexp(

Since 0,s0,'Jo(Àp) :0"Ôy,Jo(\p) equation (3. 30) becomes

(- unu", (,þ - + atþ+) * -# ur, 0,ú - * huu, 
u,u,l*)

aya,,(-l * -#W- * ôsl,,(-o * 
þa,, Ð,þ*#

ooi rd^t_
a" J \hz

0

*t
0
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Now,

and

- klazr

I
0

?

Jr
0

o?

Jr
0

1

4"

1

4¡r

1

(,-'*-#>r )#
-1 - fflrrf^o) 

exp(-K (, -,\#

æ

-1 /À,_-klan J K
0

4r

-1 exp(-ik2B)

Jo(Àp) exp(-K(z - z'))dÀ

d^

-^K

(3 .32)

(3 .33)

R

*t
0

-T:*J
0

oo:r I
4tr J

0

_1t- klan J
0

oo
1f t-wt

0

b-"*e0uô''( )arar,rþ.#

a,yô,,(-o + h*'rf-#

-oyô,,(ffi *#W.#

- 0u0,, (- \' + zXx¡r¡.,. #

-oyo,,{z - })++ax.
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Consider, now, G11

4r

I
0

ï
0

1

4n

1

(unun,@- + aú+) + 
þa,a,,ô,0,,(rþ- 

+ b',þÐ) #

(unun',þ- + -ffu"u'',þ- + (aðolu' * 
þa,a,'ô,ô,'),/.) #

'We now look at the first term, viz.:

Noting that

l* lr,u,, -
0

:*Ï 
rf,''r'ro{rP) exP(-rr (z - zt))d'\

0

- *u,u,' I

Kz
k3

ôrôr,)rþ-#.

+ Jr()p)À

(3 .34)

(3 .35) 
i

(3 ,36)oyoy,Js(Àp) : )'Jo( 
^r) 

A#f- J1()p)À

and

0,0,,J0(Àp) : 
^2Jo(\p) 

(" -:'Y-- J1(rp)À #+ J1()p)À

vve see that (3. 35) is

@ - a')' (3 .37)
p"

1

4"

1
0s0y, I 0"ô,,)rþ- - ô,ô,, 

ä*f

^, 
- kZ)

Ôrô",)rþ-
kz

d^
N{

d^
4n

(3 .38) 
I

þ|trf^r) 
exp(-K (z - z'))d,À

1

0

exp(-ik2R)
R k3

1

4r
(
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The second term is

We now consider Gss :

(Tai[l], p. e)

#u,u,,),þ.#

),þ.# - * l,#,*ff)u.u.,,Þ*
0

Ï ^'w- 
+b,þ+)# - äur"- d)

1

4r

1
:- r{

4r

1:- +d4¡r
a,a,; Irr - 

L*W.
0

: 
Io* 

ÀJ"(Àr)J"(Àr')d)

-ætç
2T Z--t

n=0

0r,0rfi"8r,)rþ.#* Iru'a,'* ht-

(3 3e)

a"a,
d^
AK

À

1 1 f )3t_- anklJ K
0

11 t^,-4,'4JX
0

d^.

11
ar kl

(3 .40)

0

- 1 [L,,,, -7 
)

4n J K"- þ+)+ N*Z
0

Note that

(,þ- +kþ+)d^ - r|rurt-,'),2

(tr', + N')(,þ- * btþ+)dÀ - äur"- 
,')

)J¡(Àp) 26(z - zt)d,), - hur"- 
*').

1

k3
0,ô', (-1þ- - rþ+) +

T

6(ö - ó'): cos(n(/ -ó'))(2-60)

r'r6( )
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( Fourier series for the delta-function) and

I l"{r")J"(Àr') cos(n(/ - ó'))(2 - óo) : Jo()p)
oo

n:0

+

+

j)

( Graff's addition formula). Thus,

hor"-Ð(
1

B

6(g-- !¿'X i" cylindrical co-ordinates)
1

E

ÀJ1(Àp) dÀ 0(0-þ')6(z-z')

and therefore (3. 40)

_ I,exp(-ikzB) _exp(-i,tzR") _I oo.exp(-ik2B) 1oo exp(-ifr2.R,) ,: 4rr' Ã - Â, - T3o'ol R - kgo'o'' n- )

Thus in matrix form, G(xlr'):

0

dy
0

-þô'Ô"'o'

-þana''ot

- þ0,0,, a1

d3

0

0

0

A3

0 -ot2

- þo'o'' oa

-þôoô",at

-þ0,ô,,o,

-þa'ar'o'

-þauau' o'

-þo'ou'a'

-þa'Ô'' ot

-þa'a''ot

-þa,, a,at

+

(3 .41)

0

0

-þa,ao,a+ -þa,a,,a,

-þAnao'a+ -*3ôoô,,o,

- þô,au' o, - þð,, ô,o2
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where,
1

d1 :-- 4¡r
1

dt:--4r

1ot:4n fi exp(-K(z *

1on: 4o exp(-K(z I ,')

)d,^z'

)d^

)
(3.42)

'We now perform an integration by parts on the second and third matrices above

using luYG dV : IsG dS, obtaining:

-þo"ot

-tÔuo'

- Iô,o,
^2

- þ"0'o'

-ùouot

-þo'ot'

þô,ot

ùôoo'

#ô,o,,
^2

dat
dR

1

B

(where

and

H:-ukzR*t)#)

-üô"on

-þÔn"n

-þô,o,

- þÔ"on

-þoooo

-þô'o,

-#"0"o'

-þôuo'

-ùô"o,

i

I

I

I

I

i

I

I

i

I

I

I
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-1
B

@-ÐI ,,
@ -Ðiff
Q+")H

(r - t'\Ld?n\ lp ap

@ -Ð1ff
(z + z')ffi

(z + z')ffi

(z + z')ffi

(z + z')ffi
(where

#: -* lo- *,t,(Àp) exp(- K(z * z'))Ð,
0

and

#:-(ik2r*t)#)
Now the formula for the Green's tensor appearing in Hohmann[1] is # times

the formula obtained above after replacing the Fourier variable iø in Hohmann's formula

by the Laplace transform variable. Note that while our original dyadic and Hohmann's

[1] original dyadic both satisfy the same boundary conditions, Hohmann's dyadic which

we shall denote by Ç, satisfies

(VxVx-k2)Ç--p6sl

while our dyadic satisfies

(VxVx-k2)G:61.

Thus,

Ç - -p,sG:
t'Z c
o

in the ground, where ø(ø) does not vanish. This relationship will hold in the pointwise

limit as cøir + 0 and thus our results agree with those obtained by Hohmann.
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3.7 Inverse Laplace Tlansform of the Greents Dyadic

First we note that ( Oberhettinger and Badii [1] )

.-, (.*p(-tk2.R") \L' 
\ .% /

- ¡-t /"*p(-.fGp")n")\
\R,)

: @ - exol- þofu? I
2tfr¡t "^"t 4t /

(3 .43)

(3 .45)

(3 .46)

(3 .47)

where o : osroun¿. Secondly,

.-' (" å exp e@Rò) (3 .44)

1: -; exp
t/ rt

We now verify Hohmann's [2] time domain expressions, using our notation. 'We first

consider

-L-L (h I,* +exp 
(-K(z * ,')) Jl()p) d))

4t
R?po

¿-' ( - +) exp(-K(z * ,')) r'(Àp) )il)
:¿-' ( P GK(" r "')) J,(Àp) Àil)

Now,

t-' Qh.{- "*o GK(" * ,')) J,(Àp) ÀdÀ)

becomes using the substitution s : s' - #,

2l
4rop

1

lo*r"* 
z')rteo) 

^#exp(- ry)"*p(- roY)o^

e+ ")4 exp(- *#) 
l,* r,(Àp) Àexp(- 

*&)o^- 2tr3/2op
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We now define as in Hohmann[2]

so (3. 45) becomes

7 (z*zt)
2tr3 /2 o r

1 (" l- "')
2tr3 /2 o r

L-r

1

o : \f #,w(R") : Yþ, p : ì,r : op (3 .48)

-L-'\ (h l,* + exp(-K(z * "')) r1(Àp) dÀ)

l,*

(r, - a'¡)-r ô,,,

I -(¡to)}12
4ro 2UÇ4¿

1

_p2
(0W(z * zt) B0 exp J{þr)0dþ (3 .4e)

4

o,w(z * ") Io þ"xp (+) r,@,)dþ (3 .50)

We now assume that ø¡ - *'¿* 0 for at least one i(:1,2,3), then

-L-'\ (;- I,- 
Lo exp (-K(z 1- 

"',)) 
J,()p) d))

(-*o; -,';)-'u,,, Io f t'{ro) exp(-K(z + Ðd^)

: L-t (-*O, -,';)-'r"' q;3Ð 
)

(3 . 51)

4tro

03w(R,)
2r3/2o

That is (3.a5) is

t (zlz')
2tr3l2 o r eswe *,) Io þ"*p (+) r{Br)dp - #r6t,w(nò (s .52)
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( Recall that K2 : 
^2 

- kZ )

which agrees with Hohmann [2].

'We next consider

L-t

æ

I

+L-r l,*

(* [ n]r,{rr) exp(-K(z t z'))dÀ (3 .53)

J¡()p) dl (3 .54)

o

1

4r

1

)1 -(^ - K)' Jo(Àp) exp(-K(z * /))ù,K

1

0

lr* + exp(-r((z* z,))J6(Àrl ,^)
4no

1

4ro -^K exp(-I{(z * z'))JsQ,fi dÀ

2À2 exp(- It(" + zt))Js(Àp) dÀ

(à)') Is(Àp) dÀ

+L-r

-^3 L-L

Now, put s : s'- #, to lc2 : 1f s¡to : À + s'llo and K : \W2: \ß w.
Thus the first term above becomes

\M
exp s'lto zlz'(

exp

1f* t- - 4rr" l"
r3

t,

I,

W(z * z'¡e-r À

¡,to(z * zt)2
(- exp J6(Àp) dl

11 3

4¡rs12 o 2

11
ffi4 W(z i z'¡e-r

p'

Jo(9r)d0

Jo(0r)dþ

oo

B30a exp

: - #r;T'u + '')o' lo* u'*o (- 4
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Also, the third term becomes

lo* ^"-' ("*pç-.rffi(z * z'))
\2t

:* 
lo* ^'r"*/)#exp(-

) ""'(
, * z')2

(-+)

ç+)lo* 
,,t.*o

Jo(Àp)
)

(

y,o

exp

J

Jo(

d^ (3 .55)

l-to (
) J¡(Àp) dÀ

4t

: fi6*e * z')(" ¡ zt)ot f o* 
gr,,, 

"*v

dp

0d,p

1: nqrw(z * z')(z + 
"')on

The second term is

t-' (* I,* -^o exp(-K(z* z'))Jo()ol o^)

=02,:-t (* l,* 
-+exp(-K(zf z,))J6() o¡ o^)

a\'*#exp(-fft
: - *# ç#) a'''{"r z') exP(- fft
'¡j¡ret a,, (" +z') exp(- +,

:fi6t'(r + e#A +,')r)exp(- +,
:#øt,wçn"¡çt -2(" * z')202)

That is, (3' 53) equals

- #I*u + "')o' l,* u'".0 (- l) r,ru¡ou

eswln"¡çr -2(z * z')202)

(þ,0 )

Br )

(3 .56)

(3 . 57)

W(z -r z')(z * ,')tn Io þ'"*p Jo(0r)d0
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which agrees with Hohmann [2].

'We now consider

L-1
kA exp(-ffr2.R,)

4¡ro R"

:ôtL-L -þoo exp(-ilc2iÎ")
4ro R" )

:-f,a,#exp(-ff:
---#a$w(R')

which agrees with Hohmann's [2] result.

(3 .58)

(3 .5e)

Finally, we consider

¿-t (*ror,o"*tl%e)
assume a¿- æ'¿ l0 for at least one i(:1,2,3), then

: - (r; - r'¿)-' ôr,t-' (**P )
: - (r; - r'¿)-'ô,,*ffiexp(- ffl
:- #7';i'#exP(- fft
:#t'w(n")

which does not agree with Hohmann's [2] results. This difference is due to a misprint in

Hohmann [2], where fhe 312 pov¡er of zr in the last line does not appear.
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Chapter 4
Equivalence of the Weak Form of the

Vector Diffusion Equation
and Hohmann's Integral Equation.

4.1 Introduction

In this chapter we investigate the validity of Hohmann's [2] method of approximating

the electric field in the case of an insulating upper half-space. The main problem in this

case is that there is no Greents tensor since the operator V x V x +o(x)fu has a non-zero

kernel. Specifically, if. u is a transverse infinitely differentiable function with compact

support in the upper half-space then (V x V x *o(n)ô¿)u : 0. Thus, the inverse of

the operator cannot exist without further restrictions. Hohmann's [2] method implicitly

places a restriction on the solution,, viz. that it is the limit as e -+ 0'in some sense of

the solutions to (V x V x jp,o(r)0t * eîl)u : f , ooi, : 0, which satisfy a radiation

condition at infinity. However, we can derive a fairly weak result for a transverse source.

'We recall the definition of the space in which we sought solutions,

M:L2([0,T];Qo)*I

( where I was the space of initial conditions ) with norm

T

I
0

ll(u, us)llÀ{ : ll"ll'r"dt+ < orrs,us )¡z1ss¡.

Our frrst result shows that the solutions to the vector diffusion equation with oo¿, f 0

are bounded in L'([0,"];(L2(R1))3) independently of the conductivity of the upper

half-space, if the source can be written as

J(t,r): V x Y(t,q)
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where

Y(t,s) € L2([0, r]; (1,2(R3))t), v x y(t,q) e L2([0, r]; (L2(nt))t).

We note that

< V x Y(t),å(r) >1,1n"): - < y(¿),V x h(ú) )121¡s¡

,for

h(t,r) € Cf ([0, ?];Ci(R3)3).

Thus ll"f llU' < llylft",1¡0,4,1r,r(Rs))"). Now , our map, G, from the antidual I¿t-'to M has

norm less than or equal to 1 for fixed ø , by our previous estimates , so

llC(V t y)llr"r f llYll¡,1¡0,4;(12(Rs))B)

We now note that

llYll1,1¡0,4;(L,(R'))") > llG(V x y)llv-) os,ou"dllG(V x f)11",1¡0,4,1",(R"_))")

i.e. the solution is bounded in the ground independently of the conductivity in the air

If the source has support entirely in the ground , then since ,/ acts on

ä e ci([0, r];ci(R3)3)

via the inner product in L2([0, 
"];(L2(R1))t) 

*" have ll"lllm, S lUlll,l¡0,4,1r,,(Rs ))s) and

as before this leads to a bound for the L'([0, 
"];(L'z(Rl))3) 

norm of the solution,G(J),

independenl of oo;r.

Thus, there is a subsequence of the sequence of solutions, ordered by the value of the

conductivity of the upper half-space, which converges weakly in L2([0,"];(L2(R1))3).
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However, it is unclear as to how to prove that this limit satisfies the weak differential

equation.

In view of these difficulties, we propose in this chapter to

(1) Show that Hohmann's integral equation and the weak form of the vector diffusion

equation are equivalent.

(2) Show that the kernel used in Hohmann's integral equation is a bounded operator

on L2([0, 
"];(L'z(Rl))3) 

and that therefore there is a solution, under certain conditions,

to the integral equation.

(3) As a check on the validity of the solution, we show that the field obtained in the

air by allowing the current source to approach the air/ground interface from the ground

is the same as that obtained by allowing the current source to approach the interface

from the air, if the source is transverse.

(a) 'We examine the large negative z behaviour ( i.e. in the air) of the electric field

generated by a source in the ground.

(5) Finally, we examine the existence of surface charges and the boundary conditions

at interfaces.

4.2 Equivalence of the 'Weak Form of the Vector Diffusion Equation

and Hohmannts fntegral Equation

In this section we show that the weak form of the vector diffusion equation

(V x V x *p,o(x)ô1)u : -p,ô¿J (4 .1)

is equivalent to an integral equation involving the field E'(",ú) generated by the source

"I in the absence of an ore body, the fundamental solution G to the above equation and

the conductivity contrast of the ore-body ov : (oaoa, - ouost)Xäode where Xbody is the
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characteristic function of the ore-body. We first consider the case in which the o is

non-vanishing.

Consider E'(s, t) e L2 ([0, T]; D(V x V 
" )) 

such that for

J(r,ú) e {^9 e Cf(Rt x [0,"])lV . S(!¿,ú) : 0,Vú e [0,"]]

the equation

V x V t E'(g, t) * ¡-to¡¡o,¡ô¿E' (x.,t) : - p,01J(q, t)

with initial condition

holds weakly, where

E'(q,ú):0 V¿ < 0 and Vr € R3

(4 .2)

(4 .3)

(4 .4)

ono"t(x): øeRf
oeRl

c+,
o_)

with ø1,ø- both positive constants. (That is, E'(ø,f) is the solution to the vector

diffusion equation in the absence of an ore-body.)

Let G(r, xt,t) be the solution of, in the sense of distributions

V x V x G(ø, ¿,t) + H,o¡7ss¡ô¡G(r,r',t) : -p,0¿16(x,t)

G(x,r',ú) :0,, < 0

( / is the identity tensor.) G is a distribution on the sel D4 of Ci(R x Rt) functions

ö(t,r) with support in ú ) 0, valued in the space of linear maps from

L'([0, 
"];(L2(R3))') 

t" D(V x Vx), i.e.

G e D'*(r,(L'([0, r]; (r,2(n3))t); D(v x vx))
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i.e. G is the causal solution to (4. 3) ( Lions and Magnes [1]). Hohmann[2] uses

this Green's dyadic, though this is not immediately apparent because of a misprint in

the paper.

Let E € L2([0, 
"]; 

(L2(Rs))t) b" the solution of

E(ø,ú): E'(¿,¿) + G * ovE(ø,f) (4 '5)

with

E(q'r):0,t(0, (4'6)

where ov : (oBo¿, - onost)XBod.s arrd XBody is the characteristic function of the body.

The convolution G * øyE is well defined since by the results of chapter 2 we have that

G is a bounded operator on L2([0, 
"];(L2(R3))s).

Now if,

E(ø, t) : E'(ø, ¿) + (G * øvE)(ø,¿) (4 .7)

holds then

pos6¡0¡Ð(x,t) : p,o¡¡6s¡0¿E'(*rt) * F,ono"tôtG * øyE(r, ú) (4 . 8)

weakly, i.e. in 2'(Rt). Noting that,

a, [* G*E d,tt: [*@r")*Edtt*G*E(o).Jo Jo

( Since G(x,r',ú):0,ú < 0.) *" see that (4.8) equals

- V x V x E'(ø, t) - p,1¡J(x,t)

* lr' lrno x v x G(x,r' ,t - t') - tt6(s-- d ,t- Ít))øyE (t' ,t')du'dt'

r
*po7o"t I C(",ø',O)ayE( rt ,t)du' (4 . g)

Jv

- - v x V x (E'(", r). l: Iu"@,æ',t,t')oyl(r',t')du' 
dt')

- ¡tô¡J(x,t) - ovôtE(æ,t)
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Therefore

V x V x E(ø,t)+ ¡t(o¡7o,t*ov)ôtE(q,r):-¡rô¡J(r,t) (4 .10)

but ø¡7or1 * øv : ø, thus

V x V x E(s., t) * p,oô¡E(x,t) : -¡t1¡J(x,t) (4 .11)

in the weak sense. That is E'(g,t) satisfies the weak form of the vector diffusion equation

Conversely, if E(r,ú) satisfies the weak form of the vector diffusion equation,

V x V x E(ø, t) + ¡-toôtB(a,t) : -p,1¿J(n,t) (4 .r2)

then

V x V x E(q,t)* ¡lo¡¡,"¡ô¡E(x,t): -¡toyô¡E(r,t)- ¡t1¿J(r,t) (4 .13)

i.e. E(c,ú) is response to source oyE,(r,f) * J(ø,ú) i.e

E(q, ú) :G * (o,rE + J)(r, ú)

:G * J(q, ¿) * G * øyE(ø, t) (4 .I4)

:E'(¿,¿)+G *oyB(r,t).

That is, E(ø,ú) satisfies the integral equation.

The case o+ : 0 is similar. Although we cannot show a, priori that E'(¿,t) €

L'( [0, 
"]; 

(L2 (R1))t ) "r 
that there is a fundamental solution of the vector diffusion equa-

tion which is a bounded integral operator on L2([0,"];(L'?(R|))t), *" show explicitly

in the following section that this is the case. Thus, considering the weak form of the

vector diffusion equation in the ground ( in 2'(Rl)) the argument above from equation

(4.10) onwards holds in this sense. Thus, in the case of an insulating upper half-space,
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the integral equation and the weak form of the vector diffusion equation are equivalent

in the ground.

4.3 Existence of the Solution to Hohmann's Integral Equation.

In this section we show that the operator L(f) : G * øyl, where G is defined as

in the previous section, with ø.. :0, is a continuous operator on L2([0,?];(L2(R|))t).

We then show that for an appropriate source in the ground that the field E'(ø, f ) in the

absence of an ore body is in L2([0, 
"];(L2(Rl))t) 

and that therefore, for lo6o¿o - oHostl

sufficiently small there is a solution to E(¿, ú) : E'(r, ú) + ¿(E) in L2([0, Th(L' (R1))t).

We first note that the free-space Green's function is a bounded operator on

L'([0, 
"]; 

(L2(Rs))s) and therefore also on L'([0, T];(L' (R1))t ) , a priori, by the theory

of parabolic partial differential equations with constant coefficients. Thus we need only

show that the part of I(/) involving the scattering component of the Green's function

is a continuous operator on L'([0, T];(L'(Rl))t).

Note that throughout this section, unlike the previous, we follow the geophysical

convention of the ground being in the region z ) 0. Thus, to prove our contention it

suffices to show that the elements of the scattering term of Hohmann's [2] tensor define

bounded operators onL2 (ni " [0,"]). 'We first need a few lemmas,

Lemma 1.

( (Gxp(-t\-)\-
maxt^exp(-oø):{ \ o / '

[1,
m)0;
m:0.

Proof
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Thus, for c f 0, the above has a root at x : * and, by inspection of the sign of the

derivative near this point, the maximum value of. x* exp(-aø) is

/(exp(-1)*)\ -
\"/

If rn :0, then the maximum of exp(-ac) occurs at a :0. If m > 0,

ô,î^ exp(-oø) : sm-L exp(-aø) (m - 6,x)

Let
cr:infc

ø€V
t2:supt

x€Y

vr: iïly Y2:súPY
ø€V

"': ¿2{'z 
22:;Ël'

where V is the volume modelling the ore body in the ground. Also, let

C : lxt - ê,r2* e] x fyt - r,Uz I e] x lr, - e,zz * ef

where e ) 0 is such lhat C is entirely below ground.

Lemma 2

If F(x,t) eL2 ([0,"]) x L2 (R2) x L2(R+) with compact support inC and

(t+"'
ót )

9t(ærrt ,UrA' ,t)

and

ll l*"n{r, t',u,v',t)f(r',v')ll¡,1¡,¡ 
= #tlÍ*',y')J11,1¡,¡

for some constant K independent of l@,V) and 2(l + k) - m > l. Then,

I
ll /_f 

g(a,/,t - tt)F(¿,t')dL' llr.,(ni) s ¡¡llr(q,r')llr,(ni)

DO



where ff is independent of F and t - t' > 0.

Proof

Since

F(x,t) € L2 ([0, 
"]) " 

L' (R') x L2 (Ra),

F(s,t) : Ft(x, v)F2(z)Fs(t) where

Ft(*,v) eL'(n'),

Fz(") €L2 (R+),

rr(r) e 1,2 (¡0, 11;.

Therefore,

f l ,[f s(t,x' ,t - tt)F@', t')ll1,1ni)

:rI*
xll (z + z')*

(t-¿'

gr(r,x' ,u,u'rt - {)FL(r' ,y')dx'dy' ll¡,1¡,¡
2

exp

x llt(¿'

F2(zt)dz'lþ,,1n*¡

F2(zt)dztllr,ln*¡

s éf1l lF' ('', Y')l l¡'6'¡
z*z'

".0 (
fn

xll (t-t'
x l¡.r(t')l

- KllF (*',y')ll¡,1¡,¡

" ll,[- ffi"*n (- ffi) F2e')d,ztltr,1n*¡

x lFs(ú')l
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Now,

t Q+z')^ I
/** P=PO "*P \

(r+"'
ö(t - t,)

F2(z')dz'
2

lF2(z')ldzt.

( Since F has compact support in C.) Now, by lemma 1, placing ,: fi, o: +
and rn - I +,b, we have

" I "')2
ó(t - t,)

(" * ,')^
(z ¡ 2t)z(t+x¡

(z ¡ 2'¡-z{t+*

<J(" * ("t - e))-z(r+t¡"""

( where 7: (exp(-lx¿ + k)ó)'+r ) since z' elzl - ê,22 * e]. Thus,

< J(" * (", - ))-z(t+tc¡¡*

(exp(-1)(I + k)S)I+k

)*m t

L2 dz'llFr llr,ln*¡
-e,22! ef

Letting .t : Ï¡,r-r,,"¡rr 72dztJ, the last inequality implies that

F2(z')dz'llr,1n*¡

S LllQ * Q, - e))-z(t+t)+mllr,1n*¡ llFrlh,rn*l
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and therefore,

lI*

where

" 
9(s,,¿,t - t')F(s' ,t')d.dlh,,1n1)

* 
' 

KLll(z i (,r- e))-z(r+o)*-llr,(**)

x llF, l[,,1n*¡ lf'r(ú')l llFt(t', y')ll¡,1¡'¡

_HllF(s,r,) ll¡z(n|)

H - I( Lll(z * (zy - e))-z(t+t)+mll",1**¡

Corollary 1

Let F,g be as in Lemma 2, then

,, l: l-rg 
(a, C,t - tt ) F (n', r' ) | llzqn1 x ro,rl) < c I lFl lr,(Rî xro,rl).

,l l, l^rs(",a' ,t - tt)F(x', ú')111,(ni)

s Ir' lf [+ 
g(s, x' ,t - t\F(æ', ú')111,1¡, 

¡ 
dt'

s, 
Io' I lF(q', r')l 11,1¡, ¡dr'

=, lr' l lr'(d, ú') l lp,1p1¡dr'

lo' 
rot I l.F,(!L', ú') | l¡z(ni x[0,4)<H

: H \fTllr(!¿', ú,) | lpzini * [0,4 ).
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Also

H' TllF (r"¿' ) I ll, (*i *to,')dt

: H2 T2 I lF("', ¿')l li"(*i x[0,4)

Now, since the tensor space is dense inL2 (C x [0,"]) we see that the operation

l, l, Lrs(,, 
a' ,t - t')F(x', ¿')lll,(nî xro,rl)

- Io' ,, l: Irs(,,,' ,t - 
t)F(r', r')lll,,*, 

,ar

F(s,t) - lo' l*" n@,r' ,t - t')F(r' ,t')ds-'dt'

= l,'

defines a bounded linear operator from L2 (C x [0,"]) to L'(Rl x [0,"]). It is easy to

see that

F(s,t) v+ yy(x)F(x,t)

( where Xv is the characteristic function of the body V) is a bounded linear operator

from L2 (nl " [0,"]) toL2 (C x [0,?]). Thus,

F(æ,t) -> t:
is a bounded linear operator on L2 (nl t [0, 

"]). 
We now estimate some operator norms

Lemma 3

As convolution operators on L' (R'),ú ) 0

I g@,r',,t - t')xr(s')F(r',t')ds:dt'
Jnl+

exp(_1))# (i)
¡41t

llô,,0"¡/-.l".lo{)p) exp(- 
^'z +)d^ll s( (1)
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llô',"*p(-g#,

exp(_l))* (f)- (2)

(3)

exp(-1)

-1

t
2K (4)

(5)

(6)

Proof

We prove the inequalities by showing that corresponding inequalities are true for the

L- norms of the Fourier transforms. Recalling that for a radially symmetric function

of two variables,

f (f (r,y);u,u) -- HoUT); p)

where F (f) denotes the Fourier transform:

+ Ir* lo* 
t{,,v)exp(-i( xurvu))d'r

and 71¡"(f) is the Hankel transform of order ¡.r:

t,
oo

rJ r(pr)f(r)dr

with 12 : 12 * u2, p2 : u2 * u2, wesee that

F(a,,u,, lo )'J6(Àp) exp(-À2 þ)as){r,r)
: - iu(- iu)6 ; i ç- ¿u¡t - a ; i u2+u2 exp(-(u2 + r\+)
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by lemma 1. A similar argument gives the corresponding bound for the other Hankel

transform. Noting that

Changing to radial co-ordinates in transform space,

u:pcos(á),u:psin(d)

and the absolute value of the above transform is

and thus

giving inequality (3).

Similarly,

.lt- -rurK "*P

and thus

| - ¿(pcos(9))(-i(p cos(A))) a;i 
Çi(esin(d)))r- 

6;¡ 
on-t "*pep'z +)l

< (p')# .*p(-p'+)

s(+exp(_l))a# (f)*

r ("*e (-þ'+-v')tc )) : T*."r(-r"' -oh)

l'(*' (-(" 
+-v'z)x))l 

= *

(-r"'*,\h)

l, (u" ""e (-@ + 
!')K)) I 

:å,, \r *.", (- n *)
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and by Lemma 1, with t : p2,TrL:

7t
-2 K

1¿
-2 K

1\ã l+
"*p(-1);) ,l o

:("*o,-t,å)t tl|

l, (o' + a\"'.0 (

l,* ,* + a\",.o (

I,* I,* lrs 
* o'>

ry).))l
1f-

2" J,
1

-2r

1
o

(

(

)

I
2

giving inequality (¿) (gV symmetry, the argument also holds for ôo). Inequality (6) is

proved in a similar manner, by an application of Lemma 1, with x : p2 rm : I.

Noting that

exp(-i(uø * uy)) dxdy

:* 
I,* l,'" '2exp(-+) rd'rd'o

: 
lo* 

rsexp (-+) -
:t 

l,* rexp (-+) -
:;(+)'

¡2

2K2

giving inequality (5). 'We now turn to Hohmann's form of the scattering terms

of the tensor and show that the elements of this part of the tensor satisfy the condi-

tions of lemma 2 and thus by corollary 1 are bounded operators from L' (C x [0, ?]) to

L' (RI x [0, ?]).
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In Hohmann [2] the scattering component of the tensor is written in terms of

e- / l.l,Ogrotnd\
\4úl

fl- fr-c' + _ U,)2 * (z _ z,)2

Rt: (x - x,¡z l- (v - v, + z * z')2

w(r) : exp -02 n2

t

s(æ,/,Ð:#ow@)

ô,,(x - æ')a1l a2
ô,,(a - a')at
0r,(z * z')as

(r-r' + a - a')2

ôu,(x - r')ot
ôu'(y-v')qtraz

ôr,(z ! r')os

Ar'þ - r')ot
ô¿fu - y')os

0¿(z*"')ae*q+

P:0r

p:à

Hohmann's [2] form of the scattering component of the tensor is:
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where

X l,*

1
A3

we have that the first term of dt is

7 (z*zt)

(þ "*p
r{þ p) d0

03w(Rr)

p'
4

- e,wçnr)\
03(

az ::{-10(z + z')W(z + z')
ZIf 2 Ogrotnil \

, 
Io* 

þ, .*p(-Çlt,ro ol oo

-T*u *,) lo É'"*p(- Ç)r,roo)oo

+ (1 - 202(z + "')',)W(nr)\

2rÈ oground

o¿4: - ¡t}¡g(R¡,t)

4.3.L Boundedness of terms involving o1

Expanding the expression for the first term of a1 we have

FO grounil

4t

Noting that
dp1
d^0

and therefore

r lQ*zt) ¡
-'--t-
2nZogror,,al r \ )

1

t
exp(- reP, l;,à "*o,- fi)r,{^,) rp}

3
1

ao : jax

2tr8 o ground

I,Lt grovnil
4tr ( )

åexp(-W¡
L* ^exp(- fi)r,{^,) o^t

oÐ



The second term of o1 is

ItrO grounil

4t

u, 
lo*

)* -(z + z')2
p'Agrounil

)
exp (-r2 ry)( exp

l,*

( 4t t

Consider, the terms of the tensor of the form

0r'(a - r')ot : -ïr(x - r')or.

Noting that

J6(Àr) exp t2 t
pO grounil

( )
d^

_ _(, - r')
r

l,* ll,C grounìl

4pograund

t

)1J1(Àr) exp t2 t

l-l,6ground
( d^

it can be seen that the first term of. -ô,(x - ø')a1 is

Now,

,-=Q * z') (ry) * 
"*o 

(-e"Q +,'))
2tf î ogrounil

u: 
1,* 

J6(Àr) 
"*n (-.1' #) r^

_ 1 \@ (" + z') exp (-02 (" + "')2)
2nl osround. 2 ú

a? l,* Js(Àr) "*r (-.1' ffi¡ r^

p3 Js(Àr) exp
^2L )'^', = rl-*(

from inequality (1) in Lemma 3 and thus by Corollary 1 with

m:t
3

I
2

k-1
2

I
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v/e have that the first term of. -0,(r - ,')ot is a bounded operator from L' (C x [0, 
"])

to L2 (nI * [0, 
"]).

Now, consider the second term of -A"(î - o')a1 i.e.

-a"@-Ð(@!)

-#""p(
""p(-1, +z')2ry)
-(, i /¡2 Pog!9und) a" 

"*o

exp(-r2n
t

l1,O grounil
-r2 )ir"i ( ( 4t

å ""o (-f" * ,r¡z Pos;i""a) a3.*p (-rz Pog'o"n¿
)

2ri ogrounit

1å exp (-(, + zt)tet::ttt \l#"*n(-"ryt)

Now, by Lemma 3, inequality (6)

llâl exp (-,2 
pon;r"a) 

f f s ?

and we apply Lemma 2 and Corollary 1 with

fr:0

m:0
, _3

Thus -A,(* - *')o, defines a bounded operator from L2 (C x [0, 
"]) 

to L' (RI x [0, 
"]).

The symmetry of a1 respect to ø and y means that a similar argument holds for all

other terms of the tensor involving o1's derivatives.

4.3,2 Boundedness of terms involving ca

We now consider the terms involving o3

1
d3 : ^T- 03W(Rò

2Tî aground,

1
( ll0 grounil

4t
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Thus,

ôr,(, - r')o"
1

2rÈ csrounil
(

8 ""p (-r'_%4) (r _ r,)ô,, 
"*p (_1, + Ðryr!)

2trÈ o grou,"d
(

(

(-r"*/)ry)
))

1

-2(x - x,')

1

1

ll0 grounil

4t

ll0 grounil

4t

)

)

(

)

(* - r')

)
*(z*z'

expt
l.LO grounil

4t
exp 2 Po ground

4t(

27-9, o grornd

Now, by inequality ( ) of Lemma 3,

llô,"*p (-r't'"0;î""¿) ff s

)r 
(' !*'>ô" exp ( )( l,trO ground

4t
2 ltrO ground

4t

and thus by Corollary 1 with

t- 5

2

Ir: -l2

this is a bounded operator from L2 (C x [0, 
"]) 

to L' (RI x [0, 
"]). 

( Bv the symmetry

of a3 with respect to ø and y, a similar argument holds for the ïr,(y - A')os term.)

Similarly,

0r,(z * z')oe

1 l-t,O grounil

1rn

2¡rl o crou,.d.
) -(" * "')'"0;í""0) *o ( -2 Foground

-l )(

FCgrounil
4

åa","*o 
(

8(z*z')
5

tz

4t 4t

218 o sround ) "*p (-1, + ÐW) a","*n (-u"';ï"')(
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and as before
m:7

k: -72

and thus defines a bounded operator from L2(C x [0,"]) to L'(RI x [0,"]). ( The

symmetry of as with respect to r and y means that a similar arguments hold for the

00, (z * z')as term.)

We now consider
0,' (z * t')os

: ag * (z I z')0,'as
exp (-(z * z')ry*)exp (-r2 ry#)

t:I
2

: # .ç¡roo,",.o)u, (IÞ7f 2 O grounil
6tz

* (z * "'¡"*e 
(-'?T n*'*-) oz, exP _("*/)ry)

)

) "*n(-"'ry)
*("*z')

1

t exp

t
exp (-(z + z')PC g¡ ot¡d

-12 (-rr"*/)ry'!)))
¡ ot¡d

ll s

)

!6rl osround

27

Now, by inequality (3) of Lemma 3,

llexp(-r2ry)
and thus by Corollary 1 with

(¡tos,ouna)t å ""o (-f" * "'¡W) "*o (-* 
r"';i"".)

4 16rl o nrouna
(p,os,ouna)''" I{' "*n (-r' 

* n#).", (-(z * z')Ll,O ground

4t )

ft:-1

f:5
2

M:T
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for the first term and

for the second term, this term of the tensor is also a bounded operator from

L' (C x [0, 
"]) 

to L2 (ni >< [0, 
"]).

4.3.3 Boundedness of terms involving ca

d,4

:-pô, 1

-e+7t 2
ground, g eXP

t2
(-^"ry#)1

le--!

l:!
2

m:2

1
- 

_ tt _
l'g4rî

- 
_ tt_

lr34rz
3

{

(¡to sroun,I

-Rt2 ltrO ground

4t )

exp ( ^2 
pAgrotnil

-t

3 1

{ ¡.t'osro"nil$exP
2

0ro
1+4
1

grou0to

2
1+4
1+4

s,ound)È þ n7"*p (- or' ry) )

p'Ogrounil å"*o (-ç, +,'¡
t2 \

, iu I zt)zexp

4t

)
116 ground

4t )""n(-"ry)

Now,

and

,o)8 !r'"*p(-{, * ,t¡z 
pog;iun¿)"*n 

(-"' ry)\

ll"*p(-'2W)n=

llr2exp (-rzttosä".¿) ls &

t
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Thus, in the frrst term,lr: -1,1 : *,* - 0, in the second term, lc : -I,l:
I,* :2, and in the third term, le : -2,1 : Zr¡ffi :0, and by Corollary 1, these terms

and thus aa determine a bounded operator from L2 (C x [0,"]) to L' (RI x [0,"]).

4.3,4 Boundedness of terms involving o2

Turning to the remaining element of the scattering component of the tensor,

ot2

2rt o srounit {t{" 
* z')w(z *,) Io þ'.*p(-Ç)t,roùoo

- I*u * ") lo É, "*p(- Ç)t,tøo)oo

+ (1 - 202(z + ,')2)W@r)\

03

Now, the first te¡m of this is

1

+oe+z')w(z+z')
Z1f 2 A ground

þ, "*p(-Ç)t,fOoVO

and since P : à, the expression becomes

= ,ot oe * z')w(z t z')
ZT 2 A grounìl lo* u'exp(- Çlr,{oo)oo

l,* #exp(- fi),,t^'lrrax

") Io À2 exp(- fi)t"{^,)o^

==t-oe*z')w(z¡z')Z7l 2 o qround

: ^+ ge * z,)w(z t
Zîf 2 O grounil

2tr8 cgrounit
( ) (z + z')

exp (-(z * zt)ry-)

I,*

FAground
4t

1
2

t
fæt2t
I s'exp(- n' 

)Je()r)dÀJo 
À\ p,ogrounil

Now, by Lemma 3, inequality Q)

7T



Thus, by Corollary 1 with

this term is a bounded operator from L' (C x [Q, 
"]) 

to L2 (n| " [0, 
"]).

The second term of o2 is

os1
2TÊ o cround 4

w(z * "') lo É'"*p(- Ç)rrfOùoO
1 1 1_.

4 2nÈ o srou,'d, 
0'

[* 
^'exp(- 

" ^" )Js(Àr)dÀ
J o po srounil

k:;

Í-q
2

m--L

4 2Tt osroun¿ )
-(" * z') ItrA g¡ o u¡ d,11 I,l,O grounil

4t

-1z exP
( t )

t

/- 
^'exp(- -\ 

t 
)J6(Àr)dÀ.Jo 

¡\ 
ltogrounìì,

Now, by Lemma 3 inequality (2),

lllr*,l3lo(.lr¡ exp(-À2 #r¿rll s "*p(-ÐY
Thus, by Corollary 1 with

t- 1

2

m:0

1k
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this term is a bounded operator from L' (C x [0, 
"]) 

to L2 (nl * [0, 
"]).

The third term of o2 is

03
:__E-Il- ¡r?¡)
Zlt 2 C grounil

_(ry)Èr^_^(: ffiå "*o (-t'* "')'"0ä""0) ""0 (-"r"oi¡""')

Now by Lemma 3, inequality 3,

ll"xp(-,'zry)ttsfu
and thus by Corollary 1, with

k:-I
1- ù

2

m:0
this term also defines a bounded operator from L' (C x [0, 

"]) 
to L2 (nl " [0, 

"]).
The fourth term of o2 is

eg
-2 o2(z * z')2W (Ry)

2trÈo ground

1 pO grornil ET
3

7f 2 O ground 4 ú)

ç+r,y#"*n(-rrry)
I ¡ l.rosround\8 1:-ffi\ 4 )ß

(, * "')" ""P (-1, + z'¡Ek::""¿) 
""o (-'

and again by Lemma 3, inequality 3 we have

ll"*p(-,2ry)|sfu

2116grounil
4t )
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and so by Corollary 1, with
k:-1

rr¿:2

t-7
2

this term also defines a bounded operator from L' (C x [0, 
"]) 

to L2 (nl t [0, 
"]).

Since each of the terms of the tensor are bounded operators from L' (C x [0, ?]) to

L'(RI x [0,"]), it can be seen from the discussion following the proof of Corollary 1

that the map

F(s,t) € L2([0, 
"];(L'?(RI))s)

G * oy F(x,t)H

defines a bounded linear operator on L2([0, T);(L'(Ri))t).

Recall that in the geophysical situation, the source is typically a current loop on

the ground surface, thus the initial field is in L2([0,"];(L'?(Rf))3) and by a Picard

type argument, it can be seen that a solution for Hohmann's integral equation exists in

L'([0, 
"];(L'z(Rf 

))3), for loao¿n - oHostl sufficiently small.

4.4 Recipocrity of Solution

In this section we wish to check the consistency of Hohmann's method by investi-

gating whether the Green's tensor (and hence solution) we obtain by allowing a specific

type of source to approach the ground/air interface from the ground is the same as that

obtained by allowing the source to approach the interface from the air. Our model is

that of an upper half-space ( the air ) with parameters k1, Iz1 and a lower half-space

(the ground ) with parameters lc2,h2. Since \¡¡e are only interested in the case where the

source eventually lies on the air/ground interface, we shall consider only sources with

support in a plane parallel to the plane z : 0. We will observe below that except for
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special sources, the convolution G * .I diverges as ø¿ir -r 0. 'We investigate the reasons

for this in more detail later. 'We now give the corrected forms of the Green's tensors for

the cases and regions of interest.

The corrected form of the Green's tensor for the source in air, response in air case

from Tai[l] is :

6(rr)1ølø,) _

0r0r,(rþ- * arþ+)

-ô,0u,?þ- + atþ+)

0

-0y0,,(rþ- + arþ+) 0

ô,0,,(rþ- + atþ+) 0

00

(4 .15)

1

ô,0,' 8r8r,(rÞ- + Uç*¡

0"0 r, ôr0,, (rÞ - + Ur¡t*¡

À20,,Qr,(rÞ- + uç*¡

ôr0,,0,ð0,(þ- + Ur¡*¡

ô,ô,,0uô0, þþ- + brþ+)

\2 0,,ôu, @t- + tç*¡

1

qó(lf - R')22

k? : \2 + h?,i: L,2

kt: - lf,cøirs (takinge :0)

lez: - l.LOgrounilS

ht-hzñ--*- hz+h,

^2a"a,(þ- 
+ brþ+)

^2 

A,As(þ- + btþ+)

^o(.þ- 
+ kþ+)

k?

where

+

lÐ



b - 
kïh'' - k?h'

orôn'0þ)

-õ"ôn'(þ)

0

-0uô",(rþ) 0

4"4",þþ) 0

00

(4 .16)

k?h, + kïhl

tþ+: J6(Àr) exp(ih¡(z + "'))

and z 2 "' ) 0.( We interpret the derivatives with respect to z and z' naively, ignoring

the discontinuity a,t z : zì for the reasons given in chapter 3.) For the case zt 2 z ) 0

we merely interchange z and z' in the above formulae. The corrected form of the Green's

tensor for the source in ground, response in air case in Tai[l] is :

ç(rz)1c1y'):

ooi r 1,_
a" J )hz

0

c

d
I-
' I*rl*,

ôrôr0r, ô"'(rþ)

0r)y0r, A",(þ)

^2Ar, 
Ar,(þ)

ô,0.0,,0n,(þ) 
^2 

a,a"(þ)

0,ôy0,,0r,(rþ) 
^2A,As\þ)

^2a,a,,(þ) ^n(rþ)

d^

where":ffi,a:ffiand{:exP(i(_hzz,*hz))Jg(Àr),

Now (4. 15) solves

V x V " ç(tt)(z,t)* ¡,lo¡7",r4c(rt)(r,t): -¡.t0¡16(x,t), ,z) zt) 0 (4 .17)

6(tt)*;11 clearly also solve the above equation for 0 ) ,' 7- zt if z and z' aîeinterchanged.

We note that as ooir + 0, the terms of the tensor 6(tt) become singular if z' 10, that
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is the source does not have support contained in the air/ground interface, for a general

source due to a factor "f # We also note that even if the source resides on the

interface , ËOú -r oo, so to take the limit as øo¡, vanishes we need to restrict our

source functions to those which have zero z-component. Note also that since ry'- * ,þ+

unless z' : 0, and ft -) oo as € -) 0 , we need to allow the source current to reside on

the air/earth interface and then allow oo;, to vanish, but this is precisely the type of

source we are concerned with and so is not really a restriction. These restrictions are

somewhat unphysical in as much as they indicate that a source cannot be approximated,

in general, by that part of it on the air/ground interface. It will be shown in a later

section that the requirement that the source lie on the interface in order for the limit as

oøir + 0 to exist is unnecessary for a transverse source,

In order to investigate the continuity of the field we first note that

0 
", 

rþ -l z, =o : - 0 r, tþ¡l r, :o

and therefore

þra'' @- + b'þ+)l'':o

: ô", zt=0

Now

and

b-7 1 -2k?h2
k? - k? kTh + *Tni

b-1 -2K
".',tao T: k3 ir : oo

(4 .18)

(4 .1e)
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where K - lÑ2. Note that

lim a,:
dai¡ +0

and

ht-hz -i^+iK
""t¡t3o hr+ hr: ç¡7 : oo

lim c: lim ,'?', - ,'Ï== : 
"oo"î-io- o"íi-o/¡.r*hz À+K

,. d ,. 7 2lcú2h2 zil( t

".r,t"Ao krh: o"',llo krhffi: iÀfr. - -og

(4 .20)

(4 .22)

(4 .2t)

1þ+lr, :o : 1þ-lz' -s : rþlr, =o (4 .23)

(4.24)

Vy'e denote the non-diverging part of (4. I7), a,fter taking the pointwise limit øo¿" -r 0,

by

Õ(11)(rl0') :

1

)LhI
0

,

0r0n,rþ+

-ÔrÔy'rþ+

0

0rô¿ ôrùy,tþ¡ 0

0'ô¿ôs1s,$¡ 0

\20r0r,ç* o

Õ(12)(rlø,) _

d^*óo

and the corresponding part of (4. 19)

)Ì
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iT1
+* J ¿¡x"o

0

-0y0r,rþs 0

Ô"0r,tþs 0

00

(4 .25)

where rþo: ]1xú: expi(iKz'-iÀz)J6(Àr) andatz' :0,tþo: exp(Àz)Je(Àr) :tþ+

Note that * : 3: #t,0,1þ01,,,:o:0"tþ+1",=s and -*A,'ço: \O,,ry'".. Thus, for

a general source residing on the air/ground interface the fields obtained by the limiting

process we have used are the same.

4.5 Behaviour of the Solution with Source in Ground as z + -oo

In this section our model is of a conductive upper half-space ( the ground) and

an insulating lower half-space (the air). The behaviour of the solution in this case for

large negative z ( in the air) depends upon the behaviour of the Green's tensor for

large negative z. Here we prove that for large negative z, the Laplace transform of the

Green's tensor behaves like z-2. First, however, at this point it is of interest to note that

the pointwise limit of the electric field in the case of a flat earth satisfies the radiation

condition. The radiation condition which is used in the case of a flat earth is that the

following pointwise relation holds (Tai [1]):

79



However, E(ø,ú) :Ð'(x,t)+ G *oyÐ(æ,ú) and E'(c,f) : G *,.I. Thus, it is sufficient

to prove that the anterior elements of G ( which contain its z dependence ) satisfy the

radiation condition, which they do since they were constructed to do so (Tai [1, p. 10a]).

From the previous section it can be seen for the case of a source in the ground (

"' 
> 0) that the terms of the Laplace transform of the Green's tensor, denoted in this

section by G ,after taking the quasi-static limit and putting oair :0 a¡e of the form:

1 r-Àn
; J, 

:L-apJo(Àr) exp(i(hzz' - fuz))il'

where n is an integer and B is an appropriate multi-index. Now,

lexp(i(h2z' - ht z))l (4 .26)

< exp(ft(i (hr"' - ùr)))

(taking the quasi-static limit and oøir:0), the above expression becomes

exp(D(i(iK z' - iÀz))

< exp(-À zt ¡ Àz)

: exp(-À(z' + lzl)) ( since z < 0 ).

We also have from 3 . 5 the inequalities

lô,,0,¡Js(Àr) I < F(p)Àt, (4 .27)

and
(r; -lâ",Js(Àr) | : l- J1()r) À (À, (4 .28)
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where F is a continuous function. Also, note that applications of ô, and 0r, to a term

only result in multiplication of the term by -If and À, and as rrye noted in chapter 3

l¡f I S À+ llcsl, which ensures that these operations do not lower the powers of À occurring

in any term. Noting that lKl : I sl.togrovnd >_ l@l since fts I 0, we

have from the above that the terms of the tensor are bounded by terms of the form

* l,* fraolr{rr) exp(i(å 22' - h1z))dÀ

< ¡(p)/(l"l) I,* ¡n-r+o(0) exp(_À(2, + lzl))d,À

(where ,t' is a continuous function, f @) is, depending upon the value of the multi-index

þ, t/, or 1 and g(þ) i", depending upon the value of B either zero,\ or 2)

: F(p) Í| "lx-1)"- 
t+ s(þ) ¿n-L*oG) 1

¿rn-r*o@)

Now, the smallest possible po\ryer of n+g(0) occurring in the original terms is 3. Thus, for

lzl sufficiently large the terms are dominated by a continuous function of p multiplied by

|s|,iffts)1thenl*lsffi,multipliedby|z|_2.(",}0=+(|z|+zt)_23(l'D_,.)
Thus, as a matrix llG(s, *,r')ll ! lsl3r'(p)lrl-').

Lemma

Let F(s, r,A,z) € L'z(R1) with compact support then, pointwise,

G'* F(s, r,U,z) -r 0 as z + -æ.
Proof

Note first that G * F is differentiable away from the plane z :0 since G(s, n,A,z)

is differentiable in this region.
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We have from above the estimate

lG(s, ø, a, zrt' ,U' , z')l

I slslF(p)(l,l-')

so G is locally L2 away from the ground/air interface. Now

(4 .2e)

(4 .30)
I

| /*" "(", 
r¡u, z¡r',u',2')F(s, t',u', zt)dv' 

I

: | [ G(s,r, u,z,t',y', z')F(s,t',a',2')dv'l
Jsupp F

s t lG(s,ø, u,z,rt,y',r')l lF(s,c', y',2')ld.v'
Jsupp F

s I BlslF(p)(lzl-')lr'(r, r' ,a' , z')ld,v'
Jsupp F

(4 .31)

Let

thus (4'31)

: C el"l-' lF(s, ø' ,y' , z')ldV'

C¡ : 3lsl F(p)max
ø',y'€suppF

F

< Crl"l-' 12dVt llFllprnll
F

Now,

)\coç1'¡-,', 72dV' llFllytn"_) :0
F

and thus the lemma follows.

We have the following theorem from Treves [1] pp. 420-421:
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Theorem

Let h(p) denote a holomorphic function in the hatf-plane ftp ) o¡t valued in the

Banach space E. The two following conditions are equivalent:

(1) 3T e D\(E) such that ^C(T) - h(p);

(2) 1o1 € R,os ( or < oo, a constant C ) 0 and an integer & > 0 such that Vp,p

complex, Dp ) ø1,

lll'(p)llo S c(t+ lpl)e.

In the proof this theorem it is shown that T: #:*¡ where / is a continuous, E

valued function of ú, in fact / : L-L(#øtt(p)). The estimate we obtained in the proof

the above lemma allows us to apply Treves' theorem with:

P: lrfts > 1

h:G*F

E: (Cl(R'l{, < t}))n : Er

Thus, as I + oo , ,C-l(G * F) -r 0 in Di(E¡).
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4.6 Behaviour of the Quasi-static Limit âs ao¡" + Q

It was noted in section 4.3 that for a general source with e : Othe Green's tensor

for the source in air, response in air case becomes meaningless in the limii ø¿ir -+ 0. In

this section it is shown why this is the case.

Firstly, consider the free-space Green's tensor:

c¡(n):(/-å"",Y9 (4.83)

For a non-transverse source, we have that this 'blows up ' as k1 -+ 0 since

¡_ yyexp(-ikrrR) _ VVI&r*o ' R -""R

as a distribution and this is not the zero distribution. Of course, for a transverse source

we have that the -åVV terms disappear and thus the solution does not'blow up'as

k1 --+ 0.

Now we turn to the case of a flat Earth. In this case a study of the behaviour of the

eigenfunctions in the limit as oair -> 0 reveals the conditions the source must satisfy for

the a meaningful pointwise limit to exist.

Note that no problem arises in the eigenfunctions corresponding to the TE mode.

However a problem does arise in the eigenfunctions corresponding to the TM mode.

These functions are

1Ng"r(ä):;VxVx(r/")

:\(o (u,rþ,(rr)) + K2 ú,Ø)2)
K

where n2 -- \2 + hz

,þ "(h) 
:J" ()r)Sii @$) exp(ih z).
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and thus as ,c -t 0 we find that these expressions tblow up'. However, if we consider an

expression of the form

æ

D Ng,^{å)Nä,À(¡¿'X2 - óo)
¿=0

-1 ^1: t !(v (a,rþ,(¿)) + n2 ç^çrr¡z¡ ) {v' {a,, rþ'"(h' )) + K2' út^(h')2)(2 - óo )
¿=0

1:4v a,vt0,, þ(h, h') + fi zv, a", ö(h, h,) + lv a,ö(h, h,)2 + K,rt ö(h, h,)

where
oo

\'1"{D't',Ø')(2 - óo) : Jo(Àr) exp(i(ih - ih')) : Ó(h,h')
n:0

as in chapter 3.

For a transverse, infinitely differentiable source with compact support, the terms

containing V' vanish and only terms of the form

K'-
-VA,ó(h,h')2 + nn'22
K

contribute to the freld. In the particular cases where h: ht,,h' : {å1, as frr -+ 0 the

above terms tend, as distributions, to

v a,ö(h,ht)2

which has both zero curl and divergence. These terms will give rise to a part of the

field which is not square-integrable in the air, since it wilt 'inherit ' the property of

having both zero-divergence and curl. This part of the field, which is in the kernel of

the distributional V x Vx, is'invisible'to the semi-norm constructed in Chapter 2 and

reflects the difficulty in finding a variational proof of the existence of a solution to this

problem.
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Now, the TM contribution to the field in the ground is given by 
"rr 

integral with

respect to À of

^!hrdË, 

*r'^,-r'z)Nþ"r Ø)Q- óo), z 1 o

where a - 4ffi. From the previous discussion, it can be seen that the expression

for the TM contribution to the field in the ground, for a tranverse test function source

in the air, involves only terms of the form

7 lqlczht (kr.^^, L- A.\r, \

^hrqh, 
+tr¡" \t, J a'ø(-hz' ht)2 * ktkzÓ(-hz' nù2 2 )'

Now, as odir vanishes, so does lc1 anð, d. Thus for a transverse source in the air the

TM modes do not contribute and the field in the ground is parallel to the air/ground

interface, irrespective of the source ! Note that by switching ,t1 with k2, etc. we obtain

an expression for the field in the air due to a source in the ground. In this case, the k1

in the expression for d cancels with the * i" the expression for the TM contributions

and we obtain a term of the form

lQ)v a,óeh, h2)2

Thus, if the source in the ground has a non-zero z component, so will the field in the air

. Note that this field cannot be ir.L2 (Rt),for reasons noted earlier.
'We now return to an investigation of the recipocrity of the solution. Recalling that

the TE modes are well behaved in the quasi-static limit as oair --+ 0 for any source, we

concentrate on the behaviour of the TM modes in the quasi-static limit aß oøb -r 0 for

a transverse test function source. The above discussion shows that the restriction that

the source must be on the interface and then øo¡, allowed to vanish is not required in

this case.
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The asymmetric behaviour of the field may reflect the fact that the eigenfunctions

of the vector Laplacian:

VV.r'-VxVx^F'-0

are not the limit as rc -) 0 of eigenfunctions of the vector Helmholtz equation:

VV..F'-VxVx.F *rcF

( cf. Morse and Feschbach [t] pp. 1784-1789).

We now show that a general source cannot be approximated by that part of the it

in the ground by considering the scattering terms "f G[rtt), i : 1,2,8 which from Tai,

after taking the quasi-static limit and assumiîg ooi, f 0 , arc

clå') : - *ï
0

1

^2 A,A" (b1þ+) d^
-sltoair SrlX ¡ s4noir

^2-sþoair ), À2 ¡ s¡.r,oo¡,

)4

A,Ay Q1þ+) d^

G A,A, (brþ+) d^
-sþoair \ À2 ¡ s¡-too;,

with

b- (s ¡.to grou.,"a) À2¡s¡toot-(sp,oo¿r) I sl,togrornd

(s ¡.to srouna) À2 ¡ s ¡.roo;, * (s ¡.r,oo¿,) ! s¡.togrounil

nd \2¡s¡looir-ooir
Ogrornil À t sl.too;, * ooi, I s¡l,osrotnd

Now, l"t G(rtt)' : -sFr.oircÍåt)

By the same argument as used in chapter 3 to prove the spatial pointwise conver-

gence of the tensor in the source in ground, receiver in ground case we obtain that, for

1

1

: -i-Ï
0

co
lf:-4"J

(11)
23

(11)
33

G

0

ogro!
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J, e Cf;(Pt3), which is zero in a neighbourhood of the air/Earth interface, ( , :0), and

î'J": û'J": 0 in all R3 and denoting the scattering part of our modified Green's

tensor by G!11)'

c!::1, *o* J, -' c!::ì: =o+ J, pointwise â,s oo¡" -) Q (4 .g4)

i.e.frG|"',),!*o*.I, diverges as ooir --+ 0.

4.7 Boundary Conditions

In the quasi-static limit there are no true total surface charges. Since we assume 
',:

that D : eE we have from Maxwell's equations that if e : 0 then

V.D - V.eE: 0

However, Hohmann's integral equation contains a perturbation term correspond.ing to

the response to a scattering current j" which has associated with it a rate of change of

surface charge V'i" - V'øyE. Now, since the surface charge is always zero this implies

that

V.ø(ø)E - 0

and writing o(x) - ov * oHost we have that

Y .oyÈ - -V .oHostB¡

which reflects the physically obvious fact that the field in the ground gains its longitudinal

component as a consequence of the presence and geometry of the ore-body.
'We now turn to the behaviour of ihe field at interfaces. In Carey and O'Brien [1] it

was shown that for O, a region spanning the boundary I between two regions,fl-,O1

that
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Lemma

Suppose / e 1,21O¡ and V .Í :0 in 0. Let n.f+ denote the normal trace of n.f
on I from Oç then

n'f--n'Í+

in the sense of equality of distributions in tt-â1f¡.

Now for a source in the ground, the field E in the absence of an ore-body is in L2(.R1)

and when an ore-body is present, the field, as given by the solution to Hohmann's integral

equation, is also in L2(R1). Thus, we have that,irrespective of the presence or absence

of an ore-bod¡ oE :0 in the air ( E is pointwise finite) , E e L2([0, ?];(L2(R1))B) ana

V'aE : 0. Thus, the conditions of Carey and O'Brien's lemma are satisfied and we have

that the normal component of øE is continuous across all interfaces, both air/ground

and ore-body/host, in the sense of traces on the interfaces.
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Chapter 5

Conclusion
To summarise our results:

(1) We have proved the existence of the solution to a generalised diffusion equation

under certain conditions and shown that the non-existence of the solution in the case of

a vanishing conductivity is a purely vector phenomena.

(2) We have verified that Hohmann's [1] & [2] integral equation method gives a

consistent solution for the case of an insulating upper half-space when we adopt the

simple geometry of an ore-body of finite size in a uniform conducting lower half-space.

(3) We have shown that, in general, the electric field, in the quasi-static approxi-

mation, ceases to be in L2(R3) in the presence of an insulating half-space and that this

behaviour is due to the nature of the eigenfunctions of the vector Laplacian.

It is apparently paradoxical that the large time ( that is, near ?)behaviour of a

function valued in L2(R3) for ú € [0,?] should not be in L'(Rt). This paradox suggests

that it is worthwhile recalling that the quasi-static limit is an asymptotic approximation

made by investigating the behaviour of the inverse Laplace transform of the Green's

function for the scalar Helmholtz equation, i.e.

t,
o*iæ /' exp(- ep,s2 ¡ ¡.tos

R
exp(sú)ds

-tæ

for large t.

Now, in an insulator ( o :- 0 ) we have that the integrand reduces to

exp((ú - ,f¡teR)s)
R
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Now, h : c where c is the speed of light in uøcuo,, which is approximately 2 x 105

km/s' Thus, since .R in geophysical applications will be of order 102 km, we have that for

I of order 10-3 seconds that the integral is well approximated by taking e : 0. However,

in the corresponding vector case, \Ã/e are interested in

VV

and therefore \rye are concerned with terms like:

/:* ('.

[,:

1

ttu' ) R

exp(- p,e
"8) exp(sú)ds

1 exp(- ure¡ts¿) exp(sf)ds.
tFp,es Ã3

Again, we may ignore the t/-¡teÈ term in the exponential, but this is clearly not equivalent

to assuming e : 0. This suggests that the quasi-static limit does not give the correct

asymptotic behaviour in the air and that the above paradox may be resolved by an

explicit asymptotic analysis of the Green's tensor in the air.
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