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SUMMARY

The aim of this thesis was to provide a rigourous justification for certain aspects of a

perturbation method used to calculate an approximation of transient electromagnetic
field. This method used the quasi-static approximation to the solution of the vector

wave equations ’

in a region of two half-spaces of differing conductivities.

In the case in which neither of the half-spaces was insulating, it was shown, via a
variational approach, that a unique solution of the time-domain problem exists. If one
of the spaces was insulating it was only possible to establish existence in the scalar case.
The solution to the scalar diffusion equation was shown to exist in a weighted Sobolev
space.

It was shown that the elements of the fundamental matrix of the Laplace transformed
( with respect to t) vector wave equation, tended spatially pointwise to their value at
€ =0, as ¢ = 0. Formulae for the fundamental matrix obtained previously were verified.
It was shown that the perturbation method gave a solution to the problem in the half-
space of non-zero conductivity if the current source was considered to reside in this
half-space. Further restrictions on the source were shown to be necessary if it was
considered to reside in the insulating half-space. The spatial asymptotic behaviour of
the field was determined.
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Chapter 1
Outline and Introduction

The transient electromagnetic (TEM ) method is an important technique of geo-
physical surveying. The method, essentially, consists of placing two conducting loops on
the surface of the Earth and passing an alternating current through one of the loops.
This current creates induction currents in the other loop and the induced E.M.F., which
depends upon the electrical properties of the Earth in the region of the loops, is mea-
sured in this receiving loop. The data gathered from the receiving loop is then compared
with the data expected from various models of the substrate. This thesis investigates
certain aspects of a method for calculating this model data.

Firstly, we recall that electromagnetic fields are governed by Maxwell’s equations:
VXE=- 6tB

VxH:@tD—I—J

V-B=0
V.-D=p
J =0E + K.

where E and H are the electric and magnetic field intensities, p is the density of electrical
charge, J is the total current density, oE is the conduction current density, B is the
magnetic induction field , D is the displacement current, K is a known current density
maintained by an external energy source and ¢ is the conductivity.

If we assume that the following conditions hold:

(1) D = ¢E, B = pH where, y is the permeability and € the permittivity,

(2) p and € are independent of the time variable,
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(3) that K is switched on at t=0,
(4) for t < 0, E(-,t) =0, H(-,t) =0, p(-,t) =0,

then E is determined by the solution to the equation
ped’E + podE+V x V x E = —udK 1-1)

( Carey and O’Brien [1]).

Now, formally, (1- 1) can be Laplace transformed to

(pes® + pos +V x Vx)e = —usk 1 -2)

( where L(E) = ¢,L(K) = k, and s is the Laplace transform variable ) or Fourier
transformed to

(—pew? — poiw + V x Vx)é = piwk (1 -3)

( where F(E) = & F(K) = k, and w is the Fourier transform variable ). Note that
the fundamental matrices of the above transformed equations are determined by the

fundamental matrix of the vector Helmholtz equation:
(VxVx—k)u=f (1 -4)

with k2 = —pes? — uos or pew? + poiw. The fundamental matrix or Green’s tensor
of (1- 4) can be calculated explicitly for certain o(z). However, even in these cases the
form of the fundamental matrix is particularly inimical to both numerical calculation
and inversion of the integral transforms.

A particularly useful simplification of the forms occurs when the quasi-static approx-

imation is used, i.e. € is taken to be zero. This asymptotic approximation corresponds
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to the physical situation when the electromagnetic wave-fronts are a large distance away
from the observation point or when the source is of low-frequency. These two viewpoints
are equivalent to asserting that the terms —pew? and pes? are negligible, and that the
solution to (1- 2) is approximated in some sense by the inverse transforms of the solutions

to

(pos +V x Vx)e = —pusk (1-5)

or

(—poiw + V x Vx)é = piwk. (1 -6)

Carey and O’Brien [1] have shown that this is indeed the case for the Laplace
transformed version of (1- 2) with certain conditions on o, u, & €. They required that u
be constant on R3, while € and o were merely required to be constant, bounded functions
on open sets £;,i =1,...,n, Q; = R?, with smooth boundary, i.e.

e(z) = €,0(z) = oi,z € Q; and at least one of € and o is required to be non-
vanishing.

It was proved in Carey and O’Brien [1] that the solution to (1- 3) has a bound:

1

lle]l < 2
|s]

(e«Rs + a4 )7 IK], (1-7)
where

o, = inf o(z),e. = inf e(z),Rs = real part of s( and Fs = imaginary part of s)
z€RS3 z€R3

and |[-|| is the norm of L?(R?). This bound is well-behaved, for a model in which o, > 0,

as € — 0 and it is therefore possible to take the quasi-static limit. It was also shown by
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Carey and O’Brien, via replacing € by Ae and considering the limit as A vanished while

€ is held fixed, that

IEX®) ~ Ba(tll < 2Ae%0?u [ Jexp(st)lslk(s)lds (-9

and assuming that K € C*°(R?) this proved that Ey — Eq as A — 0 i.e. the quasi-static
limit is a good L?(R?) approximation of the solution for small €, if o never vanishes.

It was also shown that for o, > 0 :

(1) away from interfaces, all fields are smooth if the source K is smooth

(2) the transverse component, et lies in H? and is therefore continuous

(3) the longitudinal component, er,, lies in L2, but cannot lie inH?,

(4) n x e and n - e are continuous across any any interface I' in the sense of
distributions in H~2(T").

( Note that result (4) corresponds to the classical boundary conditions that the
tangential components of e and the normal components of oe should be continuous
across any interface between two regions with different constitutive parameters. )

However, in the geophysical applications of interest to us the approximation o(z) =
0 in a halfspace of R® is made. Thus most of Carey and O’Brien’s results are inapplicable,
though (1) and (4) are still true for the half-space in which o(z) > 0 at interfaces between
volumes of differing, non-zero, conductivities.

Nonetheless, the lack of a rigorous proof is not a true obstacle in numerical cal-
culations, as it is always the case that intuition precedes rigour. Hohmann [1,2] has

considered the case of an infinite flat-earth with an insulating upper half-space, i.e.

0, z2<0
@) = alen) = { e

Oground,
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where 0ground > 0. From the vector diffusion equation,which is obtained from (1-1) by

making the quasi-static approximation, viz.:
podE+V x VX E=—uK (1.9

Hohmann derives an integral equation which is asserted to be equivalent to the vector

diffusion equation:

E=G*K+G*(Uva)E

where an asterisk denotes convolution, oy is the difference between the conductivities of
the ambient material and the ore-body, xv is the characteristic volume of the ore-body
and G is the pointwise limit, as e vanishes, of the kernel of the Greens’ operator for the
transmission problem with a source in the Earth in the presence of an insulating upper
half-space with € non-zero. Hohmann did not give a proof in either [1] or [2] that G is
in fact a fundamental solution to the transmission problem with € taken to be 0 and
the conductivity of the air to be 0. The advantage of this integral equation approach is
that it allows the electric field to be calculated as a perturbation of the field induced in
the absence of the volume of differing conductivity. A finite element scheme is used to
calculate this perturbation.

In this thesis, certain aspects of Hohmann’s method are investigated. In
chapter 2 :

(1) The existence and uniqueness of solutions to the vector and scalar diffusion
equations are investigated using a modification of the proof in Treves(1, pp. 397-405] for
the equation @ + A(t,z,0;)u = g where A is an elliptic operator.

(2) It is shown that in the scalar case, the solution lies in a weighted L2 space.
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In chapter 3 we:

(1) Outline Johnson et al.’s [1] derivation of the correction term for the spectral
expansion of the vector Helmholtz equation’s Green’s dyadic for a flat Earth given in
Tai [1].

(2) Reduce Tai’s formulae to a more compact form.

(3) Take the quasi-static limit ( € — 0 ) in Tai's formulae after assuming that
04ir 7 0. We then show that as 04ir — 0, for 2z and 2’ non-zero, the terms of the
Green’s dyadic tend, pointwise, to the form obtained by Hohmann [1], even though we
have taken the limits in the opposite order.

(4) Verify Hohmann’s [2] inverse Fourier transforms of the scattering terms.

In chapter 4 we:

(1) Show that Hohmann’s integral equation [2] and the weak form of the vector
diffusion equation are equivalent.

(2) Show that the kernel used in Hohmann’s integral equation is a bounded operator
on L?2(R2 x [0,7T]) and that therefore there is,
under certain conditions, a solution to the integral equation.

(3) As a check on the validity of the solution, we show that the field obtained in
the air by allowing the current source to approach the air/ground interface from below
is the same as that obtained by allowing the current source to descend from the air, if
the source 1s transverse.

(4) We examine the large negative z behaviour (i.e. in the air ) of the electric field
generated by a source in the ground.

(5) Finally, we examine the existence of surface charges and the boundary conditions

at interfaces.



The notation is standard: W7(Q) = W#%(Q) is the Sobolev space of functions in
L%(2), $2 C R3, with distributional derivatives of order less than or equal to j in L2(Q).
An asterisk denotes convolution, 0; denotes partial differentiation with respect to I,
< +,- >g is the inner product in the Hilbert space H, where H may be LZ(Q2), (L%(2))?,

etc., depending upon the context.



Chapter 2

Existence and Uniqueness of the Solution of
the Generalised Diffusion Equation

2.1 Introduction

In this chapter the existence and uniqueness of solutions to the vector and scalar
diffusion equations are investigated. We will denote by O, depending on context, either
the distributional ~V?2 ( vector and scalar ) or the distributional V x V x . That is,
we study the equation ot + Ou = g. Note that ¢ must be bounded below by a positive
constant in the case O = V x Vx since the method we use to prove the existence and
uniqueness of the solution fails when o vanishes in a half-space. When O = —V? (scalar
or vector) it is possible to allow ¢ to vanish in a half-space.

The proof of the existence and uniqueness of the solution is a modification of the
proof in Treves[l, pp. 397-405] for the equation @ + A(t,z,8;)u = g where A is an
elliptic operator. The essence of the proof is , after the definition of the spaces we seek
the solution in ( analogues of the Sobolev spaces used in, for example, Dirichlet problems
on bounded domains), to

(1) Show that the bi-linear form corresponding to the generalised diffusion equation
gives rise to a coercive , continuous map between certain spaces, which arise naturally
from the variational approach to the problem using Lions’ generalisation of the Lax -
Milgram lemma.

(2) Show that this variational method gives a solution of the weak form of the

generalised diffusion equation, which fulfills the initial conditions and is unique.
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2.2 The Generalised Diffusion Equation

The vector/scalar generalised diffusion equation is
ou(z,t) + Ou(z, t) = g(z,1) 2-1)
with initial condition u(z,0) = 0,Vz € R® where
g € L*(R® x [0,T];R"),
Oair, S Ri
o(r) =
( ) {Uground, zeR’
where 0,4, is a non-negative constant, o4round is an arbitrary positive, bounded function
of z with lower bound o4 > 0, the integer n denotes 1 when O is scalar and 3 otherwise,
z = (z,y,2) and T is a finite, non-negative real number. Note that all functions are
real-valued and that all spaces are over the reals. Firstly, we replace u by exp(—7t)u,
where 7 is a positive real number. We will eventually restrict 7 to be greater than some
7o 2 0, to ensure that an inequality of the form ||hllm < |A(r,0)(h, k)| holds, where
A(r,0) is defined below, M is a Banach space, which will be defined later, and A € M. In

the case 04ir # 0 this substitution ensures that we obtain a contraction semi-group.

Thus, upon making the above substitution, (2- 1) becomes
ot + tou+ Ou = exp(—7t)g =T. (2 -2)

We define

Bo(u,v) =< C’)%u,o%v >L2(R3) -

where < -, >12(rs) indicates the inner product in (L?(R?®))". Note that O% exists since

the operators we are dealing with are positive, self-adjoint and closed ( For —V? this is
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a standard result. For V x Vx see Carey and O’Brien [1].) For the cases of interest to

us @

3
B=V2(’u.,’v) = Z < Bx,.u,@z,.v >L2(R3)

=1

(z1 = 2,22 = y,z3 = z ) and

3
Bvyxvx(u,v) = Z < 0:;;,(1-Q)u,0.,(1 — Q) >L2(R3)

=1

where Q is a pseudo- differential operator defined by (Carey and O’Brien [1])
V xVx =-V31-Q).

That is,

9.,0,,
Qij = vz

We now define the spaces ®¢ and Ep in which we seek the solution to (2-1).
® o is the completion of (C°(R?))"™ with respect to the topology induced by the

norm corresponding to the following inner product:

(u,v)8, =< ou,v >r2(rs) +Bo(u,v). (2 -3)

This norm is
llulle, = \/< ou,u >r2mrs) +Bo(u,u). (2 -4)
This is a standard construction. It is easily seen that < .- >g, satisfies the

Cauchy-Schwarz inequality since for u,v € ®p

1 1
|Bo(u,v)| < |O7u|lL2ms)||O?||L2rs)

10



< ulleolvlleo

and

1 1
| <ou,v >p2me) | < lo2ullzme)llo?v||Lz(rs)
% 1
=< ou,u >L2(R3)< ou,v >22(R3) i

Thus, < -, >3, is an inner product, since it is clearly bi-linear.
Note that when O = V x Vx and 04 = 0 a function v which has its support in Ri
and is longitudinal must satisfy ||u||¢¢,v, = 0, i.e. the inner product merely induces a

semi-norm. We exclude this case from our consideration.

Eo is defined as the completion of L2([0, T]; (C*(R?))?) in the norm

T
du
lulleo = | [ 113, +llo 515, at. (2 -5)
0

( If H is a Banach space ,H' denotes its dual )
That is
d
Bo = {u € L*([0,T}; ®o)| 0= € L*([0,T}; %)) (2 -6)

We now define the bi-linear form on Ep x Ep corresponding to the weak form of
(2-1):

T T T
A, 0)(u,v) = /— < u,ov > dt+ / < TOU,v >p2(Rs) dt +/Bo(u,v)dt 2.7
0 0 0

where the notation < -, > without a subscript denotes the bracket of duality.

The following result Carey [1] shows that ®¢ is a space of functions
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Theorem
Let W be the space of functions u with
u?
eeflw = /R Tt < . @ -8)
( 0 is the Heaviside function.)Then, if 04ir # 0 or in the case where 0,4 =0, O = —V?
(scalar), 8o C W
Proof
Note that if 04ir # 0 then ®p C Lz(Rs) C W, so we need only consider the case

Oair = 0,0 = —V? (scalar). Let u € CP(R?) then

5 u? _ —~6(z)u? 0;u?
T(146(2)2)  (1+6(2)2)2 T (1+6(2)2)

® f(z)u? [ 0.u? 5
./-m (1 +6(2)z) b= -/—oo (1+ 9(3)3)d

is of compact support. Now
6(z)u? / 0, u?
——2 — —dr dy dz = —————dz d
/Rs 4o YT S Tr o T Y

u? i 2 1
< 2( Ro (Tq_e(z_)zydl‘ dy dz) (/RS(Ozu) dz dy dz)

therefore

as u and thus u?

that is,
2
u
dz dy dz < 2||u||lw||VullL2rs). 2 .9
/Ri (1 + 6(2)2)z lullw || VullL2(re) 2 -9)
( Since [pou® > fRi u?))
Let
: Y kd
= f s
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B2 =/ u?dz dy dz
R2
¥ = ”Vu“Lz(RS)

then (2- 9) implies
o? < 2(a? + )7 (2 -10)

which implies
a4 < 4(012 +ﬂ2)"/2

and, considering the above equation as a quadratic in a? it is seen that:

o® < 2931+ /% + 4?) (2 -11)

<29 +24/8% 4 26%9% 4+ 44
— 472 + 2ﬂ2

and thus
o® + B2 < 4(B% +4%). (2 -12)

Now, we define o, as irg3 o(z). Thus, if 0. < 1 then
zE

1
B*+4% < —(0.8” +7%)

andifo, > 1

B2+ 7% < 0uf% + 4%

Noting that || - ||¢, is equivalent, when o4 = 0, to

\/G*H ’ Il]z_‘z(Ri) + BO(',')

13



it can be seen that there is a constant K, such that
lullw < Kollullso, (2 -13)

that is, @ C W.

We now discuss the dual of ®p.

For O = —V? and 0,4ir # 0 we have that ®¢ is just the Sobolev space
(W12(R3))™ and therefore the dual of ®¢ is merely (W~1%(R?))". However, if 04i, = 0,
the situation is more cor;xplicated. In this case, o0 has support only in the lower half-
space and therefore we are interested in the duality between ®¢o and @}, only for the
subspace of ®¢ consisting of functions with support in R3. However, this subspace is
(WH2(R%))™ and hence its dual is (W~12(R2))™. Thus, the space Ep is the space of
functions v such that

(1) v € L¥([0,T]; ®0)

(2) o0 € L([0, T[; (W~1*(R2))").

For O = V x Vx the situation is slightly more complicated. Since ®o € (L%(R3?))?
if 04ir # 0 we can resolve u € @0 into its transverse and longitudinal components which

we will denote by us and u, respectively. Note that
”uTH?QO =< our,ur >L2(R3) + <V x UT,V Xur >L2(R3)
(2 -14)

Hu[»”éo = < 0uUL,uUs >L2(RS) -

Now for o4ir # 0, (2- 14) implies that

ur € (W1,2(R3))3

14



and

ue € (LE(R3?))%.

That is, dvxvx = (WF3(R?))}®(L%(R?))® ( 7, ¢ indicate the transverse and longi-

tudinal subspaces respectively ) and therefore ®%, v, = (W7*(R?))®) @ ((LZ(R3))*)".

It is also of interest to consider in exactly which space the solution to (2-1) lies.

Now when O =V x Vx, (2-1) is

ou(z,t) + V x Vxu(z,t) = g(z,t)

where g € L2(R? x [0, T]). ( We ignore initial conditions for the moment and consider

the case O =V X VX, 04ir = 0, even though we have no existence proof in this case.)

Now, for (2-1) to be meaningful it is necessary that V x u &V X V x u be elements of

(L2(R3))3. That is,

(WA(R))2,
v e { (atre)y,

which implies that
Vxqufr:——VzuTE{

This,in view of (2-1), implies that

iy e { WTIRR)R,
vir & { {rosa(ra)y,

We also have from (2:1) that

oie € {HED

(WL2(R?))Y,
(W2(RE)),

Tair 7é 0

Oair = 0

Oair 36 0

Oair = 0.

Oair =/é 0

Oair = 0

Oair # 0

(Lz(Ra.))sa Oair = 0.

15



That is
ue (WrH()° @ (LL()® & au € (Wr*())%) & (LZ(2))*)

where = R?® (R3?) when o4;r = 0 (# 0).

By a similar argument it can be seen that for O = —V? the solution u € (W12(Q))"
and that ou € (W~12(Q))".

2.3 Existence of Solution

We now prove the existence of a solution to the generalised diffusion equation. To
do this we consider a space of the form G x Z where Ep C G and 7 contains the function
corresponding to our choice of initial condition. A subset of G x Z is chosen so that:

(1) the pair (v,vg) corresponds to a choice of a function v € Ep with
lim [lv — wollz = 0

(2) l(v,v0)llgxz < |A(r,0)(v, ).

Lions’ generalisation of the Lax-Milgram lemma is then used to prove that there
exists a unique solution to the weak differential equation which satisfies the initial con-
ditions.

Firstly we define Z to be the completion of (C°(R3))" with respect to the norm
induced by the inner product < cu,v >p2gsy . We take G = L?([0,T]; @) and thus
G x I =M= L%([0,T); ®0) x T with norm

T
H(U,UO)HM = /I|u||§,odt+ < OUg,Up >L2(RS)-
0

We choose as the subset of M, A C M as
{(v,v0) € Mlv € Eo,}%||v||1 = 0&}11;% llv = vz = 0}.

16



If 04i» = 0 we make the additional restriction upon 7 that that its elements have support

in R?, i.e. it is the completion of (CZ°(R%))" with respect to < o, >12(rs) . Now ,

T
2/ < ou,u>dt (2 -15)
0

Td
= /(; p < ou,u >12(rs)dt
= < ouT,uT >L2(R3) — < OUp, Uo >L2(RS)

& thus

2A(.,.,o)(u, u) + < ocur,urt >L2(R3)
T
= < oUg, %o >L2(R3) + 2(/[< Tou,u >12Rs) +Bo(u,u)dt]).
0

Assume without loss of generality that

thus we have the energy inequality :

2A(T,o)(u,u)+ < oup,ur >12(Rs) 2 < OUg, Uy >L2(RS)

T
+2/ < ou,u > +Bo(u,u)dt.
0

Hence for h € iz,

IRl < [A¢r,0) (R, ).

Note that A(; )(w,h) is clearly a continuous linear functional on M for every fixed
(k,ho) € h. We now use Lions’ generalisation of the Lax-Milgram Lemma (Treves [1],p.
403).
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Lemma

Let E be a Hilbert space, k a linear subspace of E , U(w, h) a sesquilinear functional

on Ex% having the following properties :
(a) for each fixed h € h,w — U(w, h) is a continuous linear functional on E.

(b) there is a ¢o > 0 such that , for every h € & |

collh|lg < [U(h,R)|

Conclusion:

There is a bounded linear map G of the antidual E of Einto E , with norm < ¢;*

, such that for every continuous linear functional A on E ,
U(GM, h) = A(h),Vh € k.

So let our continuous functional A be

T

v / <I,v >L2(RS) dt,
0

choose our A to be k and E to be M. The energy inequality for A, ¢) on h and the fact
that (w,wo) — A(r,0)(w, k) is continuous on M for fixed (h, ho) € h, (w,wq) € M, shows

that we can take U(u,v)=A(;,0)(u,v) and apply the lemma to obtain:

T
3A(V,Vp) € M such that A(,.,o)(V, h) = / <I,h >1.2(R3) dtvh € h
0

18



Choose
h € C2([0,T}; 0)(C b C M)

SO

T
/[< —UV,il >p2re) + < oTV,h >L2(R3) +Bo(V,h)]dt =
0

and therefore,

oV +(reV +0OV) =T

in sense of ®¢, valued distributions on[0, T.
2.4 Initial Conditions
First we prove a technical result.
Lemma

The natural injection
C*=([0,T]; 20) — C([0, T); T)
can be extended to a continuous map
Eo — C°([0,T}; )
( We equip C°([0,T]; 7) with the natural norm

sup ||u¢l|z
o<tLT

where uy, = u(z,t)|t=1,-)

Proof
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-/ <I,h >L2(RS8) dt
0

(2 -16)



Let u € Ep. We define @ on (—T,T) by

L) Uy, t>0
U U—¢ t(O.

It is clear that the map u — @ is a continuous injection , with norm 2 , from Eo

Eo([0,T]) to Eo((—T,T)).Consider now

0, t<-T

aecm(R),a,={1 t> 0.

Let u € C*=([0,T)); ®0).
Note that when o4, = 0 we are really dealing with a truncation of u,

z2<0
otherwise

Trunc(u)(z) = { g(z)

since we require the elements of Z to have support in R% . However, since
< ou,u >12Rs) = < oTrunc(u), Trunc(u) >y2(gsy this is not a problem.

We now consider < o(ail),(ail) >12(rs)

t .
= 2/ < (oit)s,o(atl)s > ds
-7

T -
Su/quaﬁLHéo-+Ib(aﬂLHébds

T
<Ca [ N, + oI, ds
-T
< 2Ca||uf|eo-
Since at restricted to [0,T] equals u , we see that the natural injection
C>([0,T]; 20) — C°([0, T} )
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is continuous and thus has a unique continuous extension to all of Eg,
since C*°([0,T}; o) is, clearly, dense in Ep. ( The density can be proved by using an
approximate identity argument.)
Now (2- 16) implies
oV € L*([0,T]; )
i.e. V € Eo , hence we can consider V as a continuous function on [0,T] , valued in 7.

Now ,
T T
/ < —dV, h >12(R3) dt =< aV,h >L2(R3) le=0 + -/ < G’V, h >L2(R3) dt
0 0

So by (2- 16)
< O'V, h >L2(R3) |t=0 = O0Vh S il

1.e.

oVo =0 ae. in R?

& therefore so doesV}, since if o has support only in R® we have chosen 7 to ensure
that the initial data V} is zero in Ri.
2.5 Uniqueness of the Solution
If we have two solutions u,v € Ep to the above problem then W = u — v is an

element of Ep which satisfies

oW+ (ra + O)W =0 (2 -17)

Wy = 0in R®. (2 -18)
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We now show, using the the bilinear form AE r,0) defined on Eo x Eo by

T
Al oy(u,v) = /0. < o, v >+ < Tou,v > +Bo(u,v)dt (2

that W = 0 in L2([0, T); ®0).

Firstly, by a similar argument to that for A(; 0y above we have:

ZA,(T’O)(VV, W)+ < UW(),W() >L2(R3)Z< O'WT,WT >L2(R3) +2||W“12_’2([0’T];¢0).

(2
Now
T .
2.,.’0)(1/V,W)=/ <UW+(‘TU+O)W,W>dt=0 (2
0
by (2: 17) and
< oWy, Wy >L2(R3)= 0 (2
by (2 18). Therefore
0 2< oWr, Wr >12re) +2IW llL20,17;00) 2 0 (2

and hence W = 0 in L2([0, T); ®0).
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Chapter 3
Calculation of the Green’s Dyadic
for the Vector Helmholtz Equation.

3.1 Introduction

In this chapter we:

(1) Outline Johnson et al.’s [1] derivation of the correction term for the spectral
expansion of the vector Helmholtz equation’s Green’s dyadic for a flat Earth given in
Tai [1].

(2) Reduce Tai’s formulae to a more compact form.

(3) Take the quasi-static limit ( ¢ — 0 ) in Tai’s formulae after assuming that
oair # 0. (This is justified by the results of Carey and O’Brien[1].) We then show that
as 04ir — 0, for 2z and z' non-zero, the terms of the Green’s dyadic tend, pointwise, to
the form obtained by Hohmann [1], even though we have taken the limits in the opposite
order.

(4) Verify Hohmann’s [2] inverse Fourier transforms of the scattering terms.

3.2 Derivation of the Correction Term

In Tai[l] it was wrongly assumed that the eigenfunctions corresponding to the TE
(Transverse Electric) and TM (Transverse Magnetic) modes formed a complete set.
Johnson et al. [1] remark that this was probably inspired by Morse and Feshbach’s [1,p.

1781]comments which implied that away from the source the transverse and longitudinal
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components of the unit delta dyadic ( I6(z)) vanish identically. This error was further

compounded by the use of a form for

:h(z~z ) e—\/z\"'—k$|z-—z'|
/ hZ + A2 — kz =R M k2 3-1)

which obscured the generation of a delta-function term by an application of 8,0, to

the above term. The existence of such a singular term reveals the incompleteness of
the eigenfunctions corresponding to the TE and TM modes. The correction term, viz.
;—5225@ — z') is not the total contribution of the longitudinal eigenfunctions. (This is
obvious since V x §(z — z')2Z # 0.) Rather, it is what remains of the contribution from
the longitudinal eigenfunctions after partially integrating the spectral expansion with
respect to one of the wave-numbers and a cancellation with part of the contribution
from the eigenfunctions corresponding to the TM mode.
We now outline Johnson et al.’s [1] calculation of the correction term.

Firstly, the eigenfunctions of the vector Helmholtz equation in Cartesian

co-ordinates are

L(z) =Vy

M(z) =V x (29)

N(z) = V x M(z)
T (B4R 42
P(z) =e"*Z k = k& 4 ky§+ k.2

(3 -2)

Z =((IJ, Y, Z)

and kg, ky, k. are the wave numbers in the z,y, z directions respectively.

The free space Green’s dyadic satisfies:
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V xV x G(zle') — k3 G(zle") = 16(z — z') (3 -3)
and the radiation condition at infinity:
Jim R[V x G(zlz') - kR x G(z)z')] =0 (3 -4)

where R = |z — z'| and R is the unit vector in the R direction in spherical co-ordinates.

The longitudinal component of the free space Green’s dyadic is given by

© L z)L*(z’

< VV'y(z)y* (')

(* denotes complex conjugation and V', etc. indicates differentiation with respect to the

primed co-ordinates.) We now integrate with respect to k., using (3- -1)

-1 ,e—tk 2(z—1") g—iky (y=y') g—ke|2—7'|
k2 (271')2/ / A\VAY/ ST, dkzdk,.

Differentiating, the following is obtained:

k2 koky,  —ikskes
2 .
T2 / / k —tkykes
’“ (2”)2 —zk s —ikykes  —k2

e—ik,(z—z')e—ik,(y—y')e—kc|z—z'| 1
dkodk, — —326(z — ')
2k, Yk?

where

ko= /kZ+ kg, kes = kcSign(z — 2')
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and we take, for convergence, the branch of the square root function with $z!/2 > 0.

The transverse component of the free space Green’s dyadic is given by:

e [ L[ (e remg e

V x V x ((2)8)V' x V' x (¥*(z')2)
(k2 + k2 + k2)(KZ + k2 + k2 — k)

(3 -6)

> dk dkydk.

The second term equals

(27r)3 / / / ( (k2 + k2 + k2)k2 + k2(kZ + k§1+ e kg)) (3 -7)

00,10 Oy 8,0,18,0, — (82 + 82,)0.0,
8,0, 8,0, 8,0, 8,0y —(82 + 8%)8.8,

—(02 4 0})0.1 0y —(02 +0)0,0y (07 + 02)(82, + 82)

eike(2=2") iky (v=9") o th: =) g dk dk,

Integrating with respect to k. again, we obtain from the above expression

ol 3 -8)

0,81 0,0y 0,010, 0y — (B2, + 82,).9,
8,01 0,0y 0,0, 8,0y —(82 +82,)8.0,
—(02 + 05)0:1 0y —(02 + 05)0: 0y (0 + 07)(02 + 02)

e~ tkz(z—2") —iky =9 g=kelz=="l gk dk, dk,
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6261’61621 6262’6263/’ (6zl I 63/:)6:61;

1
kiik,

0,81 8,0, 8,821 8,0y — (82 + 82,)0.9,

~(07 + 03)0:10x  —(0% +8;)0::0, (07 + 8})(87 + 8)

e~k (2= =ik (=) iholz=+ |35 gk dk, d:,

where kg = 1/k2 — k2.
Differentiating the above expression (3- 8) we obtain some singular terms which

cancel out with each other, leaving

| e geo [ K koky  —ikgkes
kok B —ikyk
2/ / zlhy v yRes
@) JoooJooo \ _ikykey —ikyhes  —k2
e_ik-‘t(x—zl)e_ikv(y_y’)e_kclz_z‘|

Y57
21.2 2 k
1 /oo /00 zlvg ¥g g
+ kokyk2 K2R hykokeoky
(2?1’2) —o0 J —o0 (kzkckc\ﬁc_q k kykcsk 3

e—ik,(I—II)e—ikv(y—y’)e—kc|Z—ZI|

2kZkZk?

dk,dk, (3 -9)

dk,dk,.

Note that the first term of (3- 9) cancels out all but the delta-function term of the
longitudinal contribution. Thus, this delta-function term is the correction term for the
form obtained by Tai[l,p. 103 ].

3.3 Cylindrical Vector Wave Functions in Cartesian Co-ordinates
Tai’s spectral expansion of the Green’s dyadic is in terms of the transverse cylindrical

vector wave functions. These functions, Mgn \(h) & Ng wx(h), are eigenfunctions of the
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vector Helmholtz equation and are related symmetrically:
VX MgnA(h) = KNgn)\(h)
¥ x Ne,.y(h) = KM, (h)

The notation FS indicates a choice of even or odd function of ¢. For exam-
ple, Mc na(h) = V X Jo(Ap)cos(ng)exp(ihz)2. The dyad %nk(h)'%nx(h) is defined
as ‘e nA(h)-L aa(R) + 6 na(h)-) ,a(h) where - may be replaced by M or N.

We present these functions in a form slightly different from that used by Tai, in

that rather than expressing them in terms of a cylindrical co-ordinate system, we use

Cartesian co-ordinates. We now list the cylindrical vector wave functions:

Mgn)‘(h) =V X (¥n2)

(3 -10)
= y"pn‘i‘ - a:cd’nﬁ
[ Where r =4/z2 4 y2
¢ =arctan .4
z (3 -11)
Yn =Jn(Ar)S2 (nd) exp(ihz)
and V3¢, + k%9, = 0]
1 .
Ngn)‘(h) =;V X V x (¢¥n2)
1 . . :
=;(6za::¢nm + azay"/)ny - (ag + 8:)1,an)
1
=—(0:0zthnd + 0:0yPny + (02 + £%)¢n )
K (3 -12)

1
=;(V(6z¢n) + n2¢ﬂ2)
1
==(:0:%n + 0:0,%n + \n?)

where k2 = A% + A2
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3.4 Green’s Dyadic for the Vector Helmholtz Equation

Our model in this section is of an upper half-space (i.e. z > 0) with parameters
k2, ha, corresponding to the ground and a lower half-space (i.e. z < 0) with parameters
ki, hy, corresponding to the air. There is no need to substantially alter Tai’s [1] form
for the Green’s dyadic for a flat earth, as the expression for the free-space dyadic is
easily corrected by the addition of the delta-function term derived previously and an
appropriate (in fact naive ) substitution for the derivatives with respect to z and 2'.
Also, Tai’s reasoning about the form of the scattering terms remains valid. The anterior
elements must still be eigenfunctions of the vector wave equation in their respective
media, i.e. MSnA(hl)’NgnA(hl) in the ground and Mgnz\(_hz)’Ngn)‘(—’h) in the air (
hy and h, are defined below.) These choices also ensure that the radiation condition is
satisfied at z — oo and z — —oo respectively. The posterior elements of the scattering
terms in both media must be the same as that for the free-space Green’s dyadic to
ensure that the boundary conditions at the interface can be satisfied. These boundary
conditions, which follow from the classical boundary conditions for an electromagnetic
field, are that at 2 = 0 the components of the Green’s dyadic and the curl of the Green'’s
dyadic which are tangential to the plane z = 0 are continuous across this plane.

From Tai[l], the Green’s dyadic for the source in ground, receiver in ground, after

the addition of the correction term is :

G(z|z') =

z’ oo

—_— I —_ 1 _ ! .
=), ;(2 60)Mg 0 (h2) M\ (—h2) + @M (k)] (3 -13)
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Ng (k)N (—ha) + BN, (ha)]dX

i [o <]

e , Mg ;(2 - 50)[Mgn,\(—h2) + aMgn,\(h2)]M%n,\(h2) (3 -1¢4)

+[NgnA(—h2) + bNgn,\(h2)]N’8nA(h2)d>‘

1.,
—Ezzé(g:_— z')

2>2>0

where the primes denote dependence on z', § is the Kronecker symbol with respect to

n:
5=40 n#0
711, n=0,
L _h—h
" hy+hy’

_ k3hy — k3R
" kZhg + k2hy
k? =X% + R, (i = 1,2),

k1 =v/—po.irs (takinge = 0),
and k2 =1/—0grounds.
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Note that for A # 0:

0.;1.'irr2*0 kl =0’
hm 0 k2 =a/ —HOgrounds = k2a
T Wil
oair—0
limohg llmoz\f)\Z—kz—z\/)\z—kz 1K,
I _zK —1A
et K+ K+)\’
lim b=-1.
Oair—0

It can be seen from the formulae for the Green’s dyadic that the form of the dyadic
for z > 2' is merely the form for z < 2’ with z and 2’ interchanged. Thus, we need only
use the form for z > 2/ in our calculations, though the discontinuity at z = 2’ must still
be taken into account.

Now, the dyadic operator MgnA(h2)Mle (Zh2) in matrix form is
o

0yOyYathy,  —0y0zPnip, 0
—0;0yYnt, 00,9y, 0 |. (3 +13)
0 0 0
and, similarly, the dyadic operator Ngn,\(hz)N’gnA(:}:hg)
in matrix form is

6zaz’axaz'¢n¢:1 azaz'azay’@bnlp;; /\2azaa:¢n¢£1

1

7 0,0:1 8,0y !, 8,02 8,8,1bnth,  A28,0,¥ntl. | . (3 -16)
)\zaz' 6::‘ ¢n 1/’:1 )\Zaz’ ay’ 'ﬂbn"/’;; ’\4¢n'~/)£;
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( Here we have interpreted the derivatives with respect to z and z' naively, for

reasons explained in section 3.2.) Now ,
Yt = Jn(Ar)In(Ar') exp(ihe(2z £ 2'))(cos né cosnd’ + sinngsinng')
= Ja(Ar)Jn(Ar') exp(iha(z % 2")) cos(n(¢ — ¢')).

Noting that

S 3a(r)Ta(Ar") cos(n(4 — ¢))(2 — o) = Jo(Ap)

( Graff’s addition formula, Erdelyi, et. al [1])

where

p=(rt+r?—2r cos(¢ — d)'))%

so interchanging summation and differentiation in (1.4), and defining

Y = Jo(Ap) exp(ihy(z £ 2'))

gives
G(zlz') =
8,0, (b= +ay)  —8,0m (Yo +apy) 0
) 1
o [52| -00u e b)) Buv-taps) o
0

0 0 0

aza:z’ axax'(¢— + bl/’-{-) azaz’ azay'(¢— + b"/’+) )\26261(1/)_ + b¢+)
1

+35 | 9:0x ayaz’('»b— + b‘/’+) 3,0,/6y6y1(1,b_ + b¢’+) /\23,6y(¢_ + b¢+)

k3

X200 (b +bpy)  MBuBy(ho+bps) Ao +biy)
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0 0 0
1 !
—z6(z—-2)|0 0 0
k2

0 01

Note that here we interpret the derivatives of ¥ _ with respect to z and 2’ naively, i.e.
8.0, = —h3y_.
3.5 Convergence of the Green’s Dyadic
In this section it will be shown in what sense the Green’s dyadic evaluated at
oqir 7 0 tends to the dyadic evaluated at o,;, = 0. Firstly, note that the free-space

Green’s dyadic, which from Tai[l,p. 55] is :

1
k3

exp(—ikz R)

I+ R

vV)

does not change as 0,ir — 0. We now show that for z,2' # 0, the integrands of the
scattering terms are dominated by a A-integrable function and thus prove that pointwise
the scattering terms tend to the expressions obtained by Hohmann[1]. We now calculate

some elementary estimates, needed here and in the next chapter.

First, we calculate a bound for RK = R4/A? + su0ground

= §R\//\2 + (a + ¢B)poground. For convergence we pick the branch of \/z with ®/z > 0
for Rz > 0. Since we wish only to take an inverse Laplace transform it suffices to consider
s in the right half plane. Consider a vertical line in the & — § plane: a = ¢,¢ > 0. This

corresponds to the set of s with Rs = c i.e.
|s| cos(arg s) = c.

This implies that
|52 |2 cos(2 args%) = (3 -22)
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However,
cos(26) = cos?(8) — sin®(6)
and thus (3- 22) is
|s% [*(cos?(arg s%) — sin®(arg s%)) =c
l.e.
(Rs?)? — (Ss7)2 =c.
Thus, if we let s = z+ 1y, the point corresponding to s% in the z — y plane moves along

a hyperbola with vertex (v#s,0) and asymptotes y = Fz as the point corresponding to

s = a+tf in the a — # plane moves along a = ¢. We have immediately from this that:

%‘\/()\2 + Sﬂo'ground) > \/()\2 + éRS,UUground) > \/ gRS,UUground (3 23)

Note also that |\ + K| > |[R(A+ K)| > X and |K| > A\
We now consider the transmission coeflicients a and b. First, note that since ®s > 0,

hy = \//\2 + SpOground and hy = /A% + suo,ir must lie in the same quadrant of the

complex plane. Thus, by considering a parallelogram with sides h; and h; in the complex

plane, it can be seen that |hy — k2| < |hy + hg|. Thus,

hy — hs
hy + by

<1l

Similarly, assuming w.o.l.g. s # 0,
kihi — k2hy
k2hy + k2h,

_lsn]
|sp]

b =

O'graundhl — Oairha
Oairhy + Ugroundhl

<1
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since Ogroundh1 and o4i-hy must also lie in the same quadrant. We now derive some
bounds for the derivatives of Bessel functions which will be used throughout both this
chapter and the next.

Note first that:

05,0:. Jo(Ap) =6i; y2 01 (AApp) _( = 20)(z5 — 2)T0(000)
_py23100) (zi— x,)(:c, —2') (3 -24)
Ap p?

where i, j are either 1 or 2, r; = z,z, = y and §;; is the Kronecker delta function.

Now the recurrence relation
J
2% = Jo(l‘) + Jz(m)

implies that

|J1()\P) I
Ap T
Thus,
z; — ||z — zh
8;,-3,;;- Jo(Ap) | < (14 6:5)XN° +2)° | - L':J B (3 -25)
|zi — zil|lz; — 2}
< 2X% +2)° s
p
= F(z))\%

We can now estimate the scattering terms of the dyadic. We have that

|ha| = |K| = 4/|A\?2 — k2| > \/poRs, (3 -26)

la] <1 and that RK > A. Thus, recalling (3 25), we see that

1 1
3;,.3,;_ at/)+)‘—hz = 31,.0_.5;, aJo(Ap) exp(—K(z + zl))W
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is dominated by

1
Vo Rs

There are similar bounds for terms involving 3,3,/6x,.32;_,826,'.,b1,b+ etc. since the

F(z)Xexp(—=A(z + 2')).

derivatives with respect to z and 2’ only multiply terms by —K or K2, and

|K| = [\/A? = k3| < A+ |k2|

and |b| < 1. Since F' is a bounded, continuous function of z we need only consider the

following integral:

1= [rem(=2G + i (3 -21)
~ (D52, [ (-2 + )

1d 1
B (_I)Eﬂ(z +2')’

Thus, for z and 2’ non-zero we have that the scattering terms of the dyadic tend,
as 0air — 0, to the elements of the dyadic evaluated at o, = 0 pointwise in space.
3.6 Calculation of the Terms of the Dyadic.
We now consider the elements of the dyadic, putting o4ir = 0 but not expressing
a and b in terms of their limits until this is needed. Note that part of the following
is merely a reversal of Tai’s[1] spectral expansion of the free-space Green’s dyadic. We
include this as a check on the rest of our calculation. By the symmetry of the expression

for G in section 3.4 we need only consider four elements: Gi3,G21,G11, Ga3.
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Consider, firstly Gi3, viz.

1. dx |,
k—gT/W 20,0, (t— + biby ). (3 -28)
0

Noting that as 0,4, tends to 0, k2 tends to iK, where K? = \? — k2

11 A ,
_Ek_g /(; dA 3,81———.]0()\,0) exp(—K(z — 2'))
- %% d) 8,0, Jo(Ap) exp(—K(z + 2'))

41 k123 O / dA —Jo()\p) exp(—K(z — 2')) — Jo(Mp) exp(=K(z + 2'))

il 16 8 (exp( ik R)  exp(—ik2Rs)

Tir k2 R Rs )
11 exp(—tkaR)  exp(—ik2Rs)
4 k2 7207 0= (= R B Rs )

where R = (p® + (z — 2/)3)%,Rs = (p* + (¢ + 2')?)% since from Ward][1] :

exp(—1ikyr) _/°° A 2 _ 12y} '
— =/ —ﬁ(/\ o exp((A? — k2)72)To(Ap) dA (3 -29)
where
r=+/(p? + 22).
Consider secondly, Go1,
) d/\
i 0 ( 8,8 (1h— +a1/)+)+ a Opth— + 2a,,,azbm). (3 -30)
k3

Since 0y 0,/ Jo(Ap) = 0:0yJo(Ap) equation (3- 30) becomes

17 A
E/ 8o (=1 + = k2 e SIS (-a+kzaz,a)¢+m. (3 -31)
0
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Now,

and

4—17;7(( 1+ 5 Yo ) i

= [1- sz—g)ao(xp) exp(~K(z — )5z

0

_1

& [EEE000) expl-K(e - ) 5

0

=k§47r/EJo(x\p) exp(—K(z — 2'))d\

=1 exp(—ik2R)

- k§47r R

2

1

1 2

{ hatd
 haid

NN PN S

_a,8, (K2 dA

K2
47 FES k2 IR \K
0

1 ) dA
kgh/—aya (=X + 20K )y 32
0

AK

1
T k24

A
~8,0./(2 = Z)b4dA

3
0\8
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Consider, now, G11

oo

1
47r

(a Oy (Y- + apy) + 26,8,:6,621(¢_ + b¢+)) %
2

17 5 K2 b
=Ir 0yOyrtp— + —5—0:0 9 + (aBy Oy + k23 6,'3 Oz W4
0
We now look at the first term, viz.:
1T K? d)
ar /(611634' - ‘Eaxaz’)lb—m-
0

Noting that

and

0:0::J0(Ap) = NJo(Ap) (_p—” Jl(Ap)A¥+J O =) pyV

we see that (3- 35) is

A

1 ) d
dr >0, 0 )¢_

1,bd)\

4 k2K

_1
T Ar

1

K M Jo(Mp) exp(—K(z — 2'))d)

a
{o 70,0y +0:0, )y — 0,0, —
!

1 6 Oy /szJo(/\p) exp( K(z —2"))d)

_ 1 exp(— Zsz) exp(—iky R)

39

—')2 2 _#a
8,00 To(%0) = XTo(rp) pzy) S NPV a0l psy) + oo E=E psx)

(3

(3

(3

(3
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The second term is

/(aaa +kza,,aaa VWt 17 ok

1 o B=A d\
47 (K+,\a”a 66 )¢+)\K
°. = (3 -39)
1 [K-2) d 1 [ K-\ K? d)
Tar };+)\(66 + 0200 )1 3 — E/(K+A k2)aa YR
0 0

o0 [e ]
1l K—-)_\ 1 : A
=1r f(m)l—{%hd/\ = 7340202 /(2 ~ }{—)¢+d/\.
0

2
0

We now consider Gs3 :

e / M- +bi) 5 — éle—2) (3 -40)

11 00)\ '
_Z___g/T{-¢ +bipy )dA — %5@—;:_)
0

oo

11 [ A 1
Ty E(’“% + K*) (- + bipy )dA — k—§5(£ —z')
0
1 [ A
_ 4_/ (b= =)+ gz 000 (- =)+ 3 AJO(,\p) 26(z — 2')dA — 25(£_£').
0
Note that
6(r—1') =/°° AT w(Ar)T w(Ar" A
0
(Tai[1], p. 9)

56— 8) = 5= 3 cos(n(4 — $))(2 — &)
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( Fourier series for the delta-function) and
Y Ia(Ar)Ta(Ar') cos(n(¢ ~ ¢"))(2 = &) = Jo(Ap)
n=0

( Graft’s addition formula). Thus,

76125(2_;) (%fo AJ1(Mp) dA) =E1§ =756 — g1y6(z -+

1
k2

—8(z — 2')( in cylindrical co-ordinates)

and therefore (3- 40)

_ i(exp(—isz) _exp(—ik2R,) i@ 5 exp(—ik2R) l@ 5 exp(—iksR;) )
T 4n R R, K20 R k227" TR, '
Thus in matrix form, G(z|z') =
0’1 0 0
0 011 0
—;6 611011 —fg@,@y:al —Flgazaz:al

1 1
6 6,;/0!1 anay:al —anazlal

—78 a;,;lal f;@zaynal —'klrazlazal
2 2
(3 -41)
—;6 6,;:0{4 fgaza,ﬂm —fga,a,,az

-——3 Orray rlgayay:a4 —,j—gayazl olp
1 1
_76 Oz 0y fg’azay’oﬂ _Eaz’azow
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where,
1 exp(—ik2 R)

T4 R

. 1 exp(—szR )
_1 [ K=A A , (3 -42)
- ](K+ D)2 o(Ae) exp(~K (= + 2'))d

ay =4—17—r-/(2 - %)Jg(/\p) exp(—K(z + 2'))dA.

0

We now perform an integration by parts on the second and third matrices above

using [, VG dV = [ G dS, obtaining:

1 1 1
_'gazal —;gaxal _Eazzal
1 1 1
—-i;§i9yc11 —_-iifé?ycxl — ;§§é9ycxl
1 1 1
—320:00 —350:00 —450.n
k2 k2 k2

(z—2")Yoy (z—2")1 (z—2")y

1 da
=—mar | V-V G-vim -y

(z—=2" (z—2)a1 (z2—2")

(where

day . exp(—tk2 R)

= _ 1)=2 20

dR = R+ )= )

and

—-1%5515614 —-7éfé35614 —-1%5622(12

—Loay —-LO0,a4 —L0,a
K2y k2 Yy 4 Fg y&2

-%0,00 —H0,ay —58,a
k2 z k2 z k, z 2
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(z — 2 %%‘1 (z — 2 %%‘1 (z—f—z’)d—"‘z

—1 @ a o
=% (y-v)i%s (y-y)ide (o +2)%%
(z—{—z’)d—"‘z (z+z')d—‘°‘z (z+z')"l—°‘z
(where
da
d—: = /(2 — =)J1(Ap) exp(—K(z + 2'))d\
and

das exp(—ikz R)
1R = —(tkoR+ 1) A RS Dl

Now the formula for the Green’s tensor appearing in Hohmann(1] is Tk% times
the formula obtained above after replacing the Fourier variable jw in Hohmann’s formula
by the Laplace transform variable. Note that while our original dyadic and Hohmann'’s

[1] original dyadic both satisfy the same boundary conditions, Hohmann’s dyadic which

we shall denote by G, satisfies
(V x V x =k*)G = —uébsI
while our dyadic satisfies
(VxV x—k*G =4I

Thus,

G =—usG = k—G

in the ground, where o(z) does not vanish. This relationship will hold in the pointwise

limit as 04 — 0 and thus our results agree with those obtained by Hohmann.
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3.7 Inverse Laplace Transform of the Green’s Dyadic

First we note that ( Oberhettinger and Badii [1] )

_ (exp(—f(sua)Rs)>
R,

VHO oR?
= 5 exp(—521)
2\/mt2 4t

where 0 = 0ground. Secondly,

£t (s_% exp(—\/s,u_aRs)> (3 -44)

1 ( po R? )
3 exX —_— .
vt = 4t

We now verify Hohmann’s (2] time domain expressions, using our notation. We first

consider:
P /m 95— 2 ) exp(=K(z + 2)) J1(0p) Ad)
drop Jo K P AP
1 oo
—r-1 — / .
= (24170',0 -/0 exp (—K(z+ 2")) J1(A\p) /\d/\) (3 -45)
-£! = /°° —);exp (—K(z+2")J1(Mp) dA
drop Jo K
Now,
1 e o]
-1 _ ! .
L (247rap /0 exp (—K(z+ 2"))J1(\p) Ad)\) (3 -46)
becomes using the substitution s = s’ — z‘—;,

ll N/ po(z + 2')? A2t
2 / (z 4 000) AV ooy (D exp(~ =y

wnor (3 -47)
\/ po(z + 2')? A2t
) xp(— T)/o J1(Ap) /\exp(—#—a)d)\

=27r3/2ap(
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We now define as in Hohmann|[2]:

exp(—62R?) A

- JH2 — =2 = :
6= 4t1W(Ra)_ t aﬂ_ 05 ep (3 48)
so (3- 45) becomes
27r3'1/20 (z’:z ow(z + 2 )/ ﬂeeXp( =i )Jl(ﬂr)edﬂ (3 -49)
)\
- (Mlo_p /0 = exp (=K (z +2)) 31 (M) dA)
2 ZI 2
= 27r31/2 (z+ )93 W(z+2' )/ ﬂexp( i ) J1(Br)dp (3 -50)
a1 =g ,

We now assume that z; — z; # 0 for at least one (= 1,2, 3), then
£ (e = 2y, /°° 23,000 exp(=K(z + ')A
dro ' il K !

_ 1 - exp(—tkaR,)
=L (——(x,- — ) 1o, —
dro ! i

R,
s (. vET ;sz
__47m(:v, z;)” 16 EWTE xp(———2)

_ 1 —(po)*? poR?

" d4rmo 2\/7?41&% exp(—T)

= — s P W(R,).
That is (3- 45) is
27r31/2 A )93W(Z+2 ) f B exp( o ) J1(Br)dB — S7=6°W(Rs) (3 -52)
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which agrees with Hohmann [2].

We next consider

40 | K+ A K
0

£t ( K KA iJo()\p) exp(—K(z + z'))dA) (3 -53)
( Recall that K? = \2 — k2 )
=L (L/-—(/\ - K)z%.]o(/\p) exp(—K(z +z'))d)\)
0

ke /O ” %3 exp(—K (z + 2')Jo(Ap) d)\)
/0 T _AK exp(—K(z + 2))To(\p) d)\)
+£71 (_or -/:O 2)% exp(—K(z + 2'))Jo(Dp) dA)

Now, put s = ¢’ —u_ s0 kg = \/—spc = \/A? + s'puo and K = /A2 — k2 =

Thus the first term above becomes

1 I~ \a g1 exp (—\/s’ua(z+z’)) A2¢ I (0 di 2
Tno Jy Ve o (=57 ) W0 i 65

1 po(z+2')? 2%
" 4mo / \/W o ( 7 exp o Jo(Ap) dX

Sy 31/2 “W(z+2')6" / A3 exp( (%)2) Jo(Ap) dA

—W(z +2) / 536 exp (ﬁﬂ—) Jo(Br)dB

2 3/2
2

- ﬁslmZW(z + z’)93 : '33 exp (—%) Jo(Br)dB.
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Also, the third term becomes

Jo(Ap) dA (3 -55)

el R e R A

)
=L/0 ,\2(z+z')%ex( ”"(Z“I)z ( )Jo(Ap) d)

2mo

i 31/2 W(z+2")(z + z')Gt/ B26% exp (—ﬂ—) Jo(Br)6dps
2

— g W+ e+ 0t [ e (<50 autamas.

The second term is

L£! (i /0 ” ~AK exp(—K(z + 2'))Jo(Xp) d)\)

dro

_o% 0 (_1_ / ” % exp(— K (z + 2'))To(Ap) dA)

4ro J,
1 po s ;sz)
"4 2 /mtd

_ 1 Juo po2R, po R? (3 -56)
= 47r02\/—t%< R4t )3z'2(z+z)exp(— v —)

——=—6%0, (2 + 2') exp(—

02
z

poR;
4t

27r3/2
1

_ poR;
T orx 3/2

4t)

01+ (= (= + ) exp(-

=or 3/2 ——— P W(R,)(1 —2(z + 2')%6%)

That is, (3- 53) equals
1 1. ng3 /°° 3 B
271_3/20, 4 (Z + z )0 . IB exp - 4 Jo(ﬂT‘)dﬂ

+ *W(R,)(1 —2(z+ 2')%6%) (3 -57)

213 /2¢
1 oo 2
+ mw(z -+ z’)(z + z’)04/0 ﬂz exp (—%) Jo(ﬁf‘)dﬂ
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which agrees with Hohmann [2].

. ( k2 exp(— zsz))

We now consider

4ro R,
o pe1 [ —Hoo exp(—ikaR,)
=0.L ( dra R,
___f_"_a Vl"'a ( ﬂaRS)
£75(xt)t
== 3/2 ———=0,0W(R,)

which agrees with Hohmann’s [2] result.

Finally, we consider

! (M%(ikgRs + 1)———exP(_’k2R’)>

RS

assume xz; — z; # 0 for at least one i(= 1,2, 3), then

(o — 210, L ( 1 exp(—ikaRy) )

dno R,

- 1 Ho poR,
= (g —g\1p. 1 _Holis
=~ (s =) Ous gy ()
_ 1 6_—po ;wR,
__27r3/2a22 z o=
=g 3/2 93W(R)

(3 -58)

(3 -59)

which does not agree with Hohmann’s [2] results. This difference is due to a misprint in

Hohmann [2], where the 3/2 power of 7 in the last line does not appear.
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Chapter 4
Equivalence of the Weak Form of the
Vector Diffusion Equation
and Hohmann’s Integral Equation.
4.1 Introduction

In this chapter we investigate the validity of Hohmann’s [2] method of approximating
the electric field in the case of an insulating upper half-space. The main problem in this
case is that there is no Green’s tensor since the operator V x V x +0(z)d; has a non-zero
kernel. Specifically, if u is a transverse infinitely differentiable function with compact
support in the upper half-space then (V x V X 4+¢(z)0;)u = 0. Thus, the inverse of
the operator cannot exist without further restrictions. Hohmann'’s [2] method implicitly
places a restriction on the solution, viz. that it is the limit as ¢ — 0 in some sense of
the solutions to (V x V x +uc(z)d; + €82)u = f, 04ir = 0, which satisfy a radiation
condition at infinity. However, we can derive a fairly weak result for a transverse source.

We recall the definition of the space in which we sought solutions,
M = L¥([0,T}; ®0) x I

( where 7 was the space of initial conditions ) with norm

T
1y o) g = / 4], dt+ < ouo, uo SLaas).
0

Our first result shows that the solutions to the vector diffusion equation with o, # 0
are bounded in L%([0,T];(L?*(R3))*) independently of the conductivity of the upper

half-space, if the source can be written as
I(t,2) =V x Y(t,2)
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where

Y(t,z) € L*([0, T); (L*(R%))*), V x Y (t,z) € L2([0, T); (L*(R®))®).

We note that
<V x Y(t), h(t) >Le@ms)= — < Y(t),V X h(t) >L2(RS8)

Jfor
h(t,z) € C2([0, T); C°(R%)?).
Thus ||J]|[gr < 1Y |l2((o,175L2(R3))2). Now , our map, G, from the antidual M' to M has
norm less than or equal to 1 for fixed o , by our previous estimates , so
NGV x Y)llw < Y (lLzqo,m2me))9)-

We now note that

Y Lo, sz ey 2 GV X Y)lim 2 0grounallG(V x Y)||L2(po,17,L2(R2 y)9)

i.e. the solution is bounded in the ground independently of the conductivity in the air.

If the source has support entirely in the ground , then since J acts on
h € C=([0, T} C(RY)?).

via the inner product in L2([0, T]; (L?(R2.))?) we have 1 llgz < 1 1lL2qo, 1y, 2(r ))®) and
as before this leads to a bound for the L2([0, T]; (L?(R%.))®) norm of the solution,G(J),
independent of gg;y,.

Thus, there is a subsequence of the sequence of solutions, ordered by the value of the

conductivity of the upper half-space, which converges weakly in L2([0, T); (L%(R2))?).
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However, it is unclear as to how to prove that this limit satisfies the weak differential
equation.

In view of these difficulties, we propose in this chapter to

(1) Show that Hohmann’s integral equation and the weak form of the vector diffusion
equation are equivalent.

(2) Show that the kernel used in Hohmann’s integral equation is a bounded operator
on L2([0,T]; (L2(R%))?) and that therefore there is a solution, under certain conditions,
to the integral equation.

(8) As a check on the validity of the solution, we show that the field obtained in the
air by allowing the current source to approach the air/ground interface from the ground
is the same as that obtained by allowing the current source to approach the interface
from the air, if the source i1s transverse.

(4) We examine the large negative z behaviour ( i.e. in the air) of the electric field
generated by a source in the ground.

(5) Finally, we examine the existence of surface charges and the boundary conditions
at interfaces.

4.2 Equivalence of the Weak Form of the Vector Diffusion Equation

and Hohmann’s Integral Equation

In this section we show that the weak form of the vector diffusion equation
(VX V x +uo(z)ds)u = —pbed (4 -1)

is equivalent to an integral equation involving the field E'(z,t) generated by the source
J in the absence of an ore body, the fundamental solution G to the above equation and

the conductivity contrast of the ore-body ov = (0p0ay — UHoat)Xbody where X3,4y is the
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characteristic function of the ore-body. We first consider the case in which the o is
non-vanishing.

Consider E'(z,t) € L? ([0, T]; D(V x Vx)) such that for
J(z,t) € {S € CZ(R’ x [0, T])|V - S(z,t) = 0,V € [0, T}

the equation

V x V x E'(z,t) + pon,st6:E'(z,t) = —pudiJ(z,1) 4 -2)

with initial condition

E'(z,t) =0Vt <0 and Vzr € R?

holds weakly, where

oy, z€R3
JH"’t(x)z{ai xeRg

with o4,0_ both positive constants. (That is, E'(z,t) is the solution to the vector
diffusion equation in the absence of an ore-body.)

Let G(z,z’',t) be the solution of, in the sense of distributions

V xV x G(z,z',t) + poH0st0:G(z,2', 1) = —pd I6(x,t) (4 -3)

G(z,z',1)=0,t <0 (4 -4)
( I is the identity tensor.) G is a distribution on the set D4 of C°(R x R3) functions
é(t,z) with support in ¢ > 0, valued in the space of linear maps from
L%([0,T); (L3(R3))3) to D(V x Vx), i.e.
G € D (L(L([0, T]; (L*(R*))*); D(V x Vx))
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i.e. G is the causal solution to (4- 3) ( Lions and Magnes [1]). Hohmann[2] uses
this Green’s dyadic, though this is not immediately apparent because of a misprint in
lthe paper.

Let E € L%([0,T}; (L2(R3))3) be the solution of

E(z,t) = E'(z,t) + G * ovE(z, 1) (4 -5)
with
E(z,t) =0,t <0, (4 -6)

where ov = (0Body — OHost)XBody a0d XBody is the characteristic function of the body.

The convolution G * ovE is well defined since by the results of chapter 2 we have that
G is a bounded operator on L%([0, T; (L?(R3))3).
Now if,
E(z,t) = E'(z,t) + (G * ovE)(z, 1) (4-7)

holds then

PO FostOE(Z,1) = o HostOE (2,1) + 10 H05t0tG * ovE(z, 1) (4 -8)
weakly, i.e. in D'(R3). Noting that,

6t/O°oG*E dt'=/0°°(8tG)*Edt'+G*E(0).

( Since G(z,z',t) = 0,t < 0.) we see that (4- 8) equals
-V xV x E'(z,t) — ub:J(z,1)

+/ot /V(—v xV xG(z,z',t —t') — pé(z — z',t —t'))ovE(z', ¢ )dv'dt’
-HMHNt/v G(z,z',0)ovE(z',t)dv’ 4 -9)
=—VxVx(Et)+ /0 t /V G(z,z',t,t")ovE(z', ')dv'dt')

— pbl(z,t) — ovOE(z, 1)
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Therefore,
V x V x E(z,t) + p(cHost + ov)OE(z,t) = —pbI(z,t) (4 -10)

but og,st + ov = o, thus
V x V x E(z,t) + podE(z,t) = —udJ(z,t) (4 -11)

in the weak sense. That is E'(z, t) satisfies the weak form of the vector diffusion equation.

Conversely, if E(z,t) satisfies the weak form of the vector diffusion equation,
V xV x E(z,t) + po6:E(z,t) = —udJ(z,t) (4 -12)
then
V x V x E(z,t) + poHostOE(z,t) = —povE(z,t) — pbJ(z,1) (4 -13)

i.e. E(z,t) is response to source oy E(z,t) + J(z,t) i.e
B(z,8) =G * (ovE + I)(z, )
=G *J(z,t) + G * ovE(z,1) (4 -14)
=E'(z,t) + G * ovE(z, 1).
That is, E(z,t) satisfies the integral equation.

The case o4 = 0 is similar. Although we cannot show a priori that E'(z,t) €
L%([0, T); (L?(R%.))?) or that there is a fundamental solution of the vector diffusion equa-
tion which is a bounded integral operator on L?([0, T]; (LZ(R3))3), we show explicitly
in the following section that this is the case. Thus, considering the weak form of the

vector diffusion equation in the ground ( in D'(R%)) the argument above from equation

(4:10) onwards holds in this sense. Thus, in the case of an insulating upper half-space,
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the integral equation and the weak form of the vector diffusion equation are equivalent

in the ground.

4.3 Existence of the Solution to Hohmann’s Integral Equation.

In this section we show that the operator L(f) = G * oy f, where G is defined as
in the previous section, with o4 = 0, is a continuous operator on L2([0, T); (L2(R%))3).
We then show that for an appropriate source in the ground that the field E'(z,t) in the
absence of an ore body is in L%([0, T]; (L*(R2.))?) and that therefore, for |00y — CHost]
sufficiently small there is a solution to E(z,t) = E'(z,t) + L(E) in L%([0, T]; (L2(R3))3).

We first note that the free-space Green’s function is a bounded operator on
L?([0, T); (L?(R?®))?) and therefore also on L2([0, T}; (L2(R%))?) , a priori, by the theory
of parabolic partial differential equations with constant coefficients. Thus we need only
show that the part of L(f) involving the scattering component of the Green’s function
is a continuous operator on L2([0, T]; (L2(R3))3).

Note that throughout this section, unlike the previous, we follow the geophysical
convention of the ground being in the region z > 0. Thus, to prove our contention it
suffices to show that the elements of the scattering term of Hohmann’s [2] tensor define
bounded operators on L? (R3 x [0,T]). We first need a few lemmas.

Lemma 1.

(<exp(—1)m))"‘, m > 0;

a

maxz™ exp(—az) = {
, : m = 0.

Proof

55



I m = 0, then the maximum of exp(—axz) occurs at z = 0. If m > 0,

d:2™ exp(—az) = 2™ exp(—az)(m — az).

Thus, for z # 0, the above has a root at z = 2

— and, by inspection of the sign of the

derivative near this point, the maximum value of z™ exp(—axz) is

((exp(—l)m))""

z1=1infx T2 =supz
ZEV zZ€EV

Let

= inf =su
Y1 EEVy Y2 geey

z1 =inf z 29 =supz
z€V ZEV

where V is the volume modelling the ore body in the ground. Also, let

C=lz1—era+e X[y1—€y2+¢€ X [21 — €20 + €

where € > 0 is such that C is entirely below ground.

Lemma 2
If F(z,t) € L? ([0, T]) x L? (R?) x L? (R4) with compact support in C and

Z+Zl m z+2, 2
_ g(ﬁazlat) = %exp <_(W_)_) gl(:t’xI)y,y’,t)

and

K )
”/R? gl(xax’)yay,’t)f(x’7yl)l|L2(R2) < t—k”f(xlvyl)HLz(Rz)

for some constant K independent of f(z,y) and 2(! + k) — m > 3. Then,

r gy gt 1 gt ! '
I, oteseht = 0P 0 sy S HIF lhaguy
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where H is independent of F and ¢t —¢' > 0.

Proof

Since
F(z,t) € L*([0,T]) x L? (R?) x L? (R+),
F(z,t) = Fi(z,y)F2(2)F3(t) where

Fi(z,y) €L? (R?),
FZ(Z) €L2 (R’+)’
Fy(t) eL? ([0, T)).

Therefore,

”As g(£7£1>t —t’)F(Qlatl)HLz(Ri)
+

b ||/2gl(x,z',y,y',t - t,)Fl(xI’y,)dx'dyI”Lz(Rz)
R

+ 2')™ (z+2')° Ndz'
<UL, Fomr e (e B
X |F3(t')|
S(t ,)kIIFl(«'v',y')||L2(R2)
x II/ z+ztf): P( E:(:z)))F?(Z’)dz'lle(Rn
x |F3(t")]
= K||F1(',y")||L2r2)
+ 2™ + 2 ' '

x |F3(t")]
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Now,

/R+ (’f% P (‘%) Fy(2')dz'

——(Z il ex __(z +#) z')|dz".
a /[21—6,zz+e] (t - t')(l+k) P ( é(f )) IF ( )Id

( Since F' has compact support in C.) Now, by lemma 1, placing ¢ = ﬁ,-, o =

(z4+2')2
@

and m = [+ k, we have
) (R
(t — ¢)(+k) exPp ¢(t — )
z+z
S(z(+ z1)2()l+k) (exp(—=1)(1 + k)q’))H'k

:_,—-(z 4+ z ) 2(l+k)+mJ

S.](Z + (Zl - e))-2(1+k)+m
( where J = (exp(—1)(I + k)¢)"** ) since 2z’ € [21 — €, 22 + €]. Thus,

(2 2)" (42 b
/[zl—e,z2+;] (t —t)(+H exp (—m) |F2(2")|dz

O O Fa(2")|d2’

[z1—¢€,22+¢]

< J(Z+(Zl _ 6))-2(l+k)+m\// 12dZ'I|F2”L2(R+)-
[z1—€,z2+¢€]

Letting L = \/ f[zl_e -y 12dz'J, the last inequality implies that

H/ (t—1) (t —a+m © ¢(t t') Fy(z")d='lLaqmy)
< Llj(z + (21 — €)) 2™ g S 1P| |2 wy)
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and therefore,

{ ! ! 4t !
Il‘/Rig(g,g,t t)F(_:E,t)dQHLz(Ri)
<SKL||(z+ (21 — €))7 2HHR+™ | 2 1y
X ||F2 |2 ) [F () |1 F1 (2", y") L2 o)

=H||F(z, )l 2(rs)

where

H=KL||(z + (21 — )47 Lo

Corollary 1

Let F, g be as in Lemma 2, then

t
”/0 /RS g(z,z',t —t’)F(y,t’)”Lz(Rix[o,T]) < C”F“Lz(Rix[o,T])'
+

Proof

Note that

t
0[], oteest =P Ollaqus)
0 JRY +
t
< ) 1y !
_/0 II/Rig(z,z,t ) (2, 1) lLa(rs ) dt
t
< [y !
<H [ 1IPE ) llyaqu

T
< ! [ !
<H [ I lla(r ot

T
[y
<H /0 lat' [|F(z,t )”L?(Bix[O,T])

=HVT||F(z',t')| |L2(Ri x[0,T])*
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Also,

1
2
i/ , 982t =P Oy o)

T t
— 2
_A ”/(; /R-l g(£’£17t —tl)F(glatl)HLz(Ri)dt

T
2 ] ! 2
S/; H TIIF(g,t)”Lz(Rix[o,T])dt

_ 2m2 1 4l 2
= H*T*||F(z',t )“Lz(Rﬁ_x[o,T])'

Now, since the tensor space is dense in L2 (C x [0,T]) we see that the operation
t
F(z,t) — / / g(z,z',t —t")F(z',t")dz'dt!
0 JR3
+

defines a bounded linear operator from L2 (C x [0, T]) to L? (R% x [0,T]). It is easy to
see that

F(z,t) = xv(z)F(z,1)
( where xv is the characteristic function of the body V) is a bounded linear operator
from L? (R% x [0,T]) to L2 (C x [0,T)). Thus,

t
F(z,t) — / / g(z, '\t —t")xv(z)F(',t")dz' dt'
0 JRS3
+

is a bounded linear operator on L% (R3 x [0,T]). We now estimate some operator norms.
Lemma 3

As convolution operators on L? (R?),t > 0

1005, [ 33:000) em(-x il < e (5) @
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(1:2 +y2)K "

exp(- 2y L ®

192, exp(- EHVE ) < fesp(—1) L @

Ie® + y?)exp(— Ty < 0
102.0c, exp (=7 %) I <2exp(-1) ©)

Proof
We prove the inequalities by showing that corresponding inequalities are true for the
L*° norms of the Fourier transforms. Recalling that for a radially symmetric function

of two variables,

F(f(2,y)iu,v) = Ho(f(r); p)
where F (f) denotes the Fourier transform:
1 oo} (oo} )
5—/ / f(z,y) exp(—i(zu + yv))de
m™Jo Jo

and H,(f) is the Hankel transform of order u:

| rauenseyar
with r? = 22 + y2, p? = u? 4 v?, we see that
F (82,0, / A" Jo(Ap) exp(—X25)dN)(u, v)
0

= —iu(—iu)a"' (—iv)1‘6"" Vu? 4+ 0?2 - exp(—(u? + vz)%).
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Changing to radial co-ordinates in transform space,
u = pcos(d),v = psin(6)
and the absolute value of the above transform is

| — i(p cos(8))(—i(p cos(8)))% (—i(psin(6)))' ~% p" ! exp(—p? %)I
< () F exp(—pz%)
nt1

<Cpres-1)F ()

by lemma 1. A similar argument gives the corresponding bound for the other Hankel

transform. Noting that

(o (LAY L1 (L)

o () 5

and thus

giving inequality (3).

Similarly,

(2+y )K\Y _ . 11t 2, 2y ¢
f(axexp( " = =iy 7> exp (u +v)4K
and thus

(o () ()
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giving inequality (4) (By symmetry, the argument also holds for §y). Inequality (6) is
proved in a similar manner, by an application of Lemma 1, with z = p?, m = 1.

Noting that
2 4,2
7 (@ + e (05|
1 [% [ 2 (z* +y*)K -
— (z° +y°)exp | ————— | exp(—i(uz + vy)) dzdy
2r Jo Jo t
1 oo oo (.’EZ +y2)K
< = a2 e ryn)a
_27r/0 /0 (z +y)eXP( "
1 [ [, r?K
= — ——— | rdrdf
27r/(; /0 T exp( " ) rdr
oo 2
r3 exp (—T K) dr
0 t
/ T exp (— TA) dr
0 ' t
t2

1/t z
T2\ K
T 9K?

giving inequality (5). We now turn to Hohmann’s form of the scattering terms

dzdy

S~

DN | =

of the tensor and show that the elements of this part of the tensor satisfy the condi-

tions of lemma 2 and thus by corollary 1 are bounded operators from L2 (C x [0, T]) to

L2 (R3 x [0,TY).
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In Hohmann [2] the scattering component of the tensor is written in terms of

o=/ (=)

R=ye—aV+ -y +(—2)

Ri=\/(z—2'2+({y—y')?+ (2 +2)?

_exp (—6%z?)
W) ==——3—"
1
9(z, A t) =47r3/2 W (R)
P =G TP G 7P

p =6r

A

g =7

Hohmann’s [2] form of the scattering component of the tensor is:

3::'(1/ - y')a1 3y'(y - y')al + az az'(y - y’)aa

O (z — z')ay + a2 Oy (z — ')y Oy (z — z')ay
Oz (z + 2")as Oy (z + 2')as Oy (24 2)as + ay
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where ,
o = ! {(ztz)G:"W(z-i-z')

8
2m> Oground

o ﬂ2
pexp (~5) 91(60)d8
0

— CW(Ry)}
as =—3L{0(z +2"YW(z +2)

2wz Oground

oo 2
< [ 8% exp(=p)30(8) s

oo 2
_ iw(z + z’)/o i exp(—%)Jo(ﬂp) dp

+ (1 - 26%(z + 2')?) W(RI)}
oy =6 W(R)

27"'50'_(]7'ound
0y = — Hatg(RIat)
4.3.1 Boundedness of terms involving «a,
Expanding the expression for the first term of a; we have

; 1 {(Z +z’) (/J’O'g;:und)% %.ex (_ Z + z'))/_o 7 exp(—024)J0(/\T‘) dﬂ}

27rzaground \ 4

Noting that

ap _1
d)
and therefore
1
dg = Ed)\

we have that the first term of a; 1s

1 ) roun 7 _0 (z+z)
(Z +Z) (ﬂag d) 2 exp( ) / ,\exp(—g‘z )Jo(/\'f’) dA

3
2n2 Oground r 4t
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The second term of «; is

3 ; 2 #a!round
_ /f*oground) 2 (_ N2 Naground) €Xp ( )
( at exp (~(z+2)"—4 :

Consider, the terms of the tensor of the form
O (z — Yoy = —0,(z — 2')a.

Noting that

34;/ Jo(Ar) exp <~—)\2;) d\
HOground
I
= 9 Gl )/ AJ(Ar)exp( R )d)\
,ufo'yround

it can be seen that the first term of —0;(z — 2')a is

(s + ) (B2oum0) oy (2622 + )

3
27r§0'ground 4t

83/ Jo(Ar) exp (—)\2——t——) dA
0 HOground

1 VPOground (2 + 2') exp (—02(z + z’)2)

3 3
27rio'yround 2 iz

& / Jo(Ar) exp (—/\Z—t—) dx.
0 ,u'a'ground

2 * 32 t < __1_ 4#0ground
||3z/0 Jo(Ar) exp( A ——uagrwnd dA\|| £ ‘/ 26"‘/—t

from inequality (1) in Lemma 3 and thus by Corollary 1 with

Now,

m =1
3
=3
1
k=3
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we have that the first term of —0,(z — z')ay is a bounded operator from L2 (C x [0,T))
to L2 (R} x [0,TY)).

Now, consider the second term of —0;(z — z')a; i.e.

2 BOgroun
— O0:(z —2') (M) exp (—(z + ) uaground) exp (—r _'u—d)

41 41 4
=1@*( gt (<4 #2250 ) 3, (121t
g ro ﬂ 1 T TOou
A WOgravnd 9 - 3 exp (—(z + z')2 ——#094:""‘{) 32 exp (—r2 ____,uag4t "d)

Now, by Lemma 3, inequality (6)

2
62 (_ 2ﬂaground) <z
02 exp (—r?Eoromnd ) | < 2
and we apply Lemma 2 and Corollary 1 with

k=0

0
e
2

Thus —8;(z — z')a; defines a bounded operator from L? (C x [0, T]) to L? (R x [0,T]).

l =

The symmetry of a; respect to ¢ and y means that a similar argument holds for all
other terms of the tensor involving a;’s derivatives.
4.3.2 Boundedness of terms involving a3

We now consider the terms involving ag

1

a3 = —5—— 6 W(R)
2m>2 Oground
= 1 fuaground) 2 e ( (Z i ZI)#U ”‘md) exp (—-7‘2 /"Uground)
27r%0graund 4t 3 4t
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Thus,

0. (z — z')as
_ 1 /‘Uground 7 exp (_ 2= m‘"d) — 2')8, exp (—(z + z')—_#agmund)
4
27!'2 Oground 4t

o
%exp (_ 2 BOground

41 )(a:—a:')

1 ,uo'ground

27!' 20ground

)
)

(_2(2 i )#O'gmund exp ( ;Lagr,,um;))
)

44
1 (Paground % Z+ ’) exp(
2W20ground
KO ground ( 2#Uground))
—9(g — g')ground [ ground
( T 4t

1 uayround> (2 + zl) 2 H0ground
27r%0_qround ( 4t 41 A " 4t

(z+ 2 )—uaymund)

41

Now, by inequality (4) of Lemma 3,

Qo d t
|0z exp (—Tz%) | < TS
4

and thus by Corollary 1 with
m =

l=

Ny -

1
k=—=
2
this is a bounded operator from L? (C x [0,T]) to L? (R} x [0,T]). ( By the symmetry

of a3 with respect to z and y, a similar argument holds for the 9,/(y — y')as term.)

Similarly,
O (z + 2" )as
1 No'ground)—si II’U round ,'I’U d
_ 8,/ (_ ' 9_) (_ ZM)
27T%0'ground 4t P (z i ) 4t P ' 4
1 (ﬂaground)% (2 + Z’) ( \HTground HOground
= exp|—(z+ 2 ——)0/ex (—rz—g—)
27"%0'ground 4 t% : ( ) 4t ‘ & 41
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and as before

3
Il

l

Ndjor =

1
k=-3

and thus defines a bounded operator from L?(C x [0,T]) to L% (R} x [0,T]). ( The

symmetry of az with respect to z and y means that a similar arguments hold for the
Oy (z + 2z')as term.)
We now consider

0. (2 + 2" )as

=a3+(z+2')0 a3
1

8
1672 Oground

4t 4t
t

s rexp (—(z + z')£%eround _p2B%ground
(auo'ground)g ( P( ( ) )exp( )

e

X _r2 KOground roun
+(z+z')e P( _ 41 )3z:exp (_(z+z/)li09 d))
tz 41
1 2 1 HOground KO ground
e — 3 [ —_ _ ' 9 (_ 2 g )
167r%0'yround (/‘oyround) (t% . ( (z+2) 41 ) **p " 41

+ (z n z,)exp (—(Z + Z’)!"”g;;und ) €xp (.._TZ #Ug;iund) (_z(z n Z,)'uolground))

t3 4t
1 s 1 HOground HOground
e P ! o () (et
167T%0'ground (ﬂayround) t% €xp (z + z ) 4¢ exp T 4
2 1 7 (z+ 2')? o o
= 2—16”%0 ; (o ground)? ( . )_ exp (—7-2# gizund) exp (_(z + ZI),“ gizund>
groun

Now, by inequality (3) of Lemma 3,

KO ground i
”exp <_T2 ) Il S BOgroun
at 9E%irsund

and thus by Corollary 1 with
k

-1

l

=Nl on

m



for the first term and

for the second term, this term of the tensor is also a bounded operator from

L2 (C x [0,T)) to L% (R% x [0,TY).

4.3.3 Boundedness of terms involving a4

(271
1 1 240 ground
== /Jfat 3 \/f-w'groundt_gexp (_RI - 4"t"' )
2

472
'"RIZ HOground

1 3 1
=—Hu ) {_"\/#ag'round 3 eXp ( )
2 t2 41

472
1 s 1 KO ground
+ Z (,l.luO'_qround)2 t_%R.%exp (_RIz%)}

_ 1 {
B 'u47r%
3 1 a Toumn g roun
— = \/iGground— €XP (_(Hzf)?u___e)exp (_7.2# i d)
2 gt 4t 4t
1 s 1 2 H0gr d (o4 d
T2 (KOground)? " (z + 2')%exp (—(z +2') /‘{%)exp (_rz © gizun )
3

1 g 1
e 2 (lio'gmund)g t—’f'zexp (—(Z + z')2 W) exp (—7”2 /*“U;:und) }

Now,
lexp (—r2E0emond ) <t
4
and
I exp (—r*E2gmn ) ) < (ﬁ
4
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Thus, in the first term, k¥ = 1,1 = %,m = 0, in the second term, k = —1,] =
%, m = 2, and in the third term, k = -2,] = %, m = 0, and by Corollary 1, these terms
and thus a4 determine a bounded operator from L? (C x [0, T]) to L? (R x [0, T)).
4.3.4 Boundedness of terms involving as
Turning to the remaining element of the scattering component of the tensor,

as
= 03 z ZI ! ~ ¢ €x —ﬂ_2
- 27rgo'ground {9( o )W(z tz )A p P( 4 )Jo(,@p)dﬂ

1 e 2
- ZW(z + z')/ 33 exp(—%)Jo(ﬁp)dﬂ
0
+(1-26%(z + 2')?) W(RI)}
Now, the first term of this is

93

2m2 Oground

6 + Wi+ 2) [ 8 expl= ) 00(Bp)a0

and since f = %, the expression becomes

93 oo 2
2§—9(z + 2" YW (z + z')/ 52 exp(—'B-—)Jo(ﬁp)dﬁ
T20ground
93
et et WG +) [ G exp(— o) o

2m>2 Oground

= 2;O(z + 2 YW (z + z')/0 A2 exp(——z)Jo(Ar)d)\

_ il (,uagmu,,d)% (4 z,)exp (—(z + ') 1Cezenns)
27r%0'ground 4 1

/00 A% exp( ——i).] (Ar)dA
0 P HOground 0 '
Now, by Lemma 3, inequality (2)
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||/ )\2.]0()\7') exp(— )\2

Oground

t

Thus, by Corollary 1 with

NN =

m =

this term is a bounded operator from L? (C x [0, T]) to L% (R3 x [0, T7).

The second term of a9 is

3 ©o 2
T WG+ ) [ 8 exp(- (08

27" 20ground 4

1 1 1
=—c—a—"W(+~7
4 27r50'ground 6 ( )

* A%t
/ A% exp(— ———)Jo(Ar)dA
0

—)a)]| < (5 exp(~1))} (LZareund

Oground
11 (/wgmnd) F exp (—(z + 7')#luzeund)
4 27T%Jground 41 t
A3 exp(— ———)Jo(\r
/ p( /J'o'ground) 0( )
Now, by Lemma 3 inequality (2),
”/ )‘3']0()‘7') exp(— /\2 ——)d\|| L exp(— 1)—Hagr°""d
Oground t .

Thus, by Corollary 1 with

~ =
I Il
S N =

3
I

)§



this term is a bounded operator from L? (C x [0, T]) to L? (R3 x [0,T]).
The third term of a3 is
93

3
27?2 Oground

W (Ry)

3
HOground \ 2 |
— ( 5 4 ) — exp (_(2 + Z/)#Uground) exp (—7‘2 »u'o'ground) )
2720 ground 12 4t 4t

Now by Lemma 3, inequality 3,

HOground t
lexp (—r?E2e22nd ) || < s
4 2 (Fepees)

and thus by Corollary 1, with

k=—1
5

=3

m =0

this term also defines a bounded operator from L? (C x [0,T]) to L? (R} x [0, 7).
The fourth term of a5 is

03
—2——0%(2 +2') W (Ry)
27r50'ground
_ 1 (ﬂo'ground)% l
W%Ugraund 4 3
d

5
2

HOgroun
(Z + 2,)2 €xp (—(Z + zl)_ﬂu_) exp (—7‘2 ,uo'ground)
t 4t
_ 1 (;ufo'ground)% l
ﬂ'%o'ground 4 t%

12 _ ! /‘tag'r‘ound) (_ 2ﬂ0'ground)
(z+2') exp( (z+z)———4t exp |~ —

and again by Lemma 3, inequality 3 we have

HOground t
llexp (—r?Eorommd )y ot
4 2 (Freipent)
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and so by Corollary 1, with

1=1

2
this term also defines a bounded operator from L? (C x [0, T]) to L% (R3 x [0,T}).

Since each of the terms of the tensor are bounded operators from L2 (C x [0,T]) to
L2 (Ri x [0, T]), it can be seen from the discussion following the proof of Corollary 1

that the map
F(z,t) € L*([0, T|; L*(R}))’)  —  GrovF(z,t)

defines a bounded linear operator on L2([0, T; (L*(R3))3).

Recall that in the geophysical situation, the source is typically a current loop on
the ground surface, thus the initial field is in L*([0, T]; (L?(R3))?®) and by a Picard
type argument, it can be seen that a solution for Hohmann’s integral equation exists in
L2([0,T); (L%(R3.))?), for |osody — OHost| sufficiently small.

4.4 Recipocrity of Solution

In this section we wish to check the consistency of Hohmann’s method by investi-
gating whether the Green’s tensor (and hence solution) we obtain by allowing a specific
type of source to approach the ground/air interface from the ground is the same as that
obtained by allowing the source to approach the interface from the air. Our model is
that of an upper half-space ( the air ) with parameters k1, h; and a lower half-space
(the ground ) with parameters k2, hy. Since we are only interested in the case where the
source eventually lies on the air/ground interface, we shall consider only sources with

support in a plane parallel to the plane z = 0. We will observe below that except for
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special sources, the convolution G * J diverges as 04y — 0. We investigate the reasons
for this in more detail later. We now give the corrected forms of the Green’s tensors for

the cases and regions of interest.

The corrected form of the Green’s tensor for the source in air, response in air case
from Tai[l] is :

GU(gle') =

OyOy (- +apy) —8y0: (Y- +apy) 0
L[5 | ot ) Bdu(p- +avs) 0 (4 -15)
0

0 0 0

8,0 0,00 (Y— + bby) 0.0.8,0, (Yo +bpy) N20,0,(bo + bioy)
17 | 00000 (b +b0s) 0.0:8,8 (- + i) NOD,(6- +b) | (A
N0, 0p (Y= + by) A28y Oy (- + bipy) M- + bpy)
1 I oa
——6(R— R')zz
k1
where
=04 hlis1,2

ki = \/—posirs (takinge = 0)
ky = A/ “HOground$

_hi=h
T hat
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_ kihi — kXh,
- k2hgy +k§h1

Y = Jo(Ar) exp(thi(z F 2'))
and z > 2’ > 0.( We interpret the derivatives with respect to z and 2’ naively, ignoring
the discontinuity at z = 2’ for the reasons given in chapter 3.) For the case 2/ > 2z > 0

we merely interchange z and 2’ in the above formulae. The corrected form of the Green’s

tensor for the source in ground, response in air case in Tai[l] is :

G(12)(£|£I) .

ay ay’ (¢) _61/33’ (‘/’) 0

i 71
- / o te| —aanw) sauw) o (4 -16)
0
0 0 0
0,0,0, 05 (V) 0:0,040, () 70,8, ()
+% 8.0,0.10,(p) 8,0,0:0, (%) N28,0,() | § dx
2h]

A0y 0 (P)  X20:04(3) M%)
where ¢ = h%th’d = % and 9 = exp(¢(—hzz' + h12))Jo(Ar) .
Now (4- 15) solves
V XV x G (z,t) + poposd G (2,t) = —pdeIé(z,1), ,22>2'>0 (4 -17)

GV will clearly also solve the above equation for 0 > 2z’ > 2, if 2 and 2’ are interchanged.

We note that as 04, — 0, the terms of the tensor G(!1) become singular if 2’ # 0, that
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is the source does not have support contained in the air/ground interface, for a general
source due to a factor of # We also note that even if the source resides on the

2

. 4 . . » *
interface |, i‘—z&i‘—z — 00, so to take the limit as o4 vanishes we need to restrict our
1 1

source functions to those which have zero z-component. Note also that since ¥— # ¥4
unless z' = 0, and k_bf — oo as € — 0 , we need to allow the source current to reside on
the air/earth interface and then allow 04, to vanish, but this is precisely the type of
source we are concerned with and so is not really a restriction. These restrictions are
somewhat unphysical in as much as they indicate that a source cannot be approximated,
in general, by that part of it on the air/ground interface. It will be shown in a later
section that the requirement that the source lie on the interface in order for the limit as

oqir — 0 to exist 1s unnecessary for a transverse source.

In order to investigate the continuity of the field we first note that

az’ ¢— |z’=0 — _6z‘¢+|z’=0

and therefore

1
7202 (¥— + by =0
1

b—-1
=az'( = ¢+) oimis

Now
b—1 1 —2kh
K~ B KZh, + K2R, (4 -18)
and
_ b—1 2K
AT TRo (4'19)
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where K = 1/A% — k3. Note that

hi—hy  —id+iK

ot T e D (4 -20)
lim ¢= lim 2h 2K co (4 -21)

Oair—0 Oair—0 hl + h2 - A + K -

. d .1 2kkeh, 26K
lim -2 = . .
o e~ e ks Why  BiRy ke (422
and
Yilrr=0 = Y-|z=0 = P|z=o0. (4 -23)

We denote the non-diverging part of (4- 17), after taking the pointwise limit o4 — 0,
by
GU(g|2") =

- OyOy v+ —0y0ptpy 0
ﬁ/% (1+a0) | —0:8,v; 8:0u%4 O 4 -24)
0 0 0 0
0:0:10:05h4 0,010,094+ O

+bo | 8.0.0,00; 0,0.0,8,%4 0| }dx

A28, 0ty 228,814 0
and the corresponding part of (4- 19)

é(12)(£|£l) —
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8,0y%0 —8,0u1p O

Co —6;8,,.« 1}'0 6z61'1,b0 0 (4 g 25)

0 0 0

a:aa:az"aa:"(p{l azaza:‘ay"',bﬁ )‘28:6:':!"0

-+ _bﬂ 6;6y6;"3;"¢’0 azayaz'ay*ip(] A2636y¢0 dA
N0y 0zpo  N?0;0x%0 Mo

where 1y = liI’I(l)I/) = expi(tKz' — tAz)Jo(Ar) and atz’ = 0,9 = exp(Az)Jo(Ar) = ¢4
Note that 1'*'—,\“‘1 =2 = A-{—LK’ 0:%0|z1=0 = 0:1¥+|2=0 and —%8217,1)0 =S %61'1/4. Thus, for
a general source residing on the air/ground interface the fields obtained by the limiting

process we have used are the same.

4.5 Behaviour of the Solution with Source in Ground as z - —o0

In this section our model is of a conductive upper half-space ( the ground) and
an insulating lower half-space (the air). The behaviour of the solution in this case for
large negative z ( in the air) depends upon the behaviour of the Green’s tensor for
large negative z. Here we prove that for large negative z, the Laplace transform of the
Green’s tensor behaves like z~2. First, however, at this point it is of interest to note that
the pointwise limit of the electric field in the case of a flat earth satisfies the radiation
condition. The radiation condition which is used in the case of a flat earth is that the
following pointwise relation holds (Tai [1]):

zli.I:;I:looz[V x E(z,t) ¥ s2E(z,t)] = 0.
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However, E(z,t) = E'(z,t)+ G*ovE(z,t) and E'(z,t) = G * J. Thus, it is sufficient
to prove that the anterior elements of G ( which contain its z dependence ) satisfy the
radiation condition, which they do since they were constructed to do so (Tai [1, p. 104]).

From the previous section it can be seen for the case of a source in the ground (
z' > 0) that the terms of the Laplace transform of the Green’s tensor, denoted in this
section by G ,after taking the quasi-static limit and putting o,;r = 0 are of the form:

1 [ A

4r J, KA

8P Jo(Ar) exp(i(hez' — hyz))dX
where n is an integer and f is an appropriate mullti—index. Now,
|exp(i(hoz' — hy2))] (4 -26)
< exp(R(i(ho2' — h12)))
(taking the quasi-static limit and o,ir = 0), the above expression becomes
exp(R(i(1 Kz —i)z))
< exp(—Az' + )z2)

= exp(—A(z' +|2])) ('since 2 < 0 ).

We also have from 3 - 5 the inequalities:

|6:B.'62:j Jo(Ar) | < F(p))‘za (4 -27)

and
z;)

|02, J0(Ar) | = | = J1(Ar) /\(z%| <A, (4 -28)
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where F' is a continuous function. Also, note that applications of 8, and 8,/ to a term
only result in multiplication of the term by —K and A, and as we noted in chapter 3

|K| < A+]ko[, which ensures that these operations do not lower the powers of A occurring

in any term. Noting that |K| = 1/|\2 + spoground| = |\/SBCqround| since Rs > 0, we

have from the above that the terms of the tensor are bounded by terms of the form:

1L [ vy 1
/., ma Jo(Ar) exp(i(hgz' — hy12))dA

SFES(sl) [ Am90) exp(=2(a! + [el))ax
0
(where F' is a continuous function, f(z) is, depending upon the value of the multi-index
B, v/z or 1 and g(B) is, depending upon the value of 3 either zero,1 or 2)

dn—1+9(8) 1
dzn—1+9(8) (2! 4 |z|)

= F(p)f(lsh(-1)"*+2

Now, the smallest possible power of n+g(8) occurring in the original terms is 3. Thus, for
|z| sufficiently large the terms are dominated by a continuous function of p multiplied by
|s|, if ®s > 1 then | %] < ——\/ﬁ, multiplied by |z|72.( 2’ > 0 = (Jz]|+2')"2 < (|z])~2.)
Thus, as a matrix ||G(s,z,2')|| < |s|3F(p)(|z|~2).

Lemma

Let F(s,z,y,z) € L*(R%) with compact support then, pointwise,
G+ F(s,z,y,2) > 0 as 2 - —o0.

Proof

Note first that G x F is differentiable away from the plane z = 0 since G(s, z,y, 2)

is differentiable in this region.
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We have from above the estimate
|G(s, z,y,2,2',y, 2")]

< 8|s|F(p)(|2]7*)

so G is locally L? away from the ground/ air interface. Now

| 3G(.s,:z:,y,z,x',y',z')F(.s,a:',y',z')dV’I
R

= | G(s,z,y,2,2',y',2")F(s,z',y', 2" )dV'|

supp F

S/ |G(s,2,y,2,2',y',2")| |[F(s,a’,y',2")|dV’
supp F

< / 31s|F(p)(|=| ") |E (s, 2", ', )| dV"
supp F

Let
Cr=3 F
Fo el )
thus (4- 31)
=Crlil™ [ [FGs, g, 2)lav"
supp F
S CF|Z|—2 / 12dV’||F|IL2(R3 )
v supp F -
Now,

lim CF(IZI_Z) 12dV'||F||L2(Ra) =0
z—eo supp F -

and thus the lemma follows.

We have the following theorem from Treves [1] pp. 420-421:
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Theorem
Let h(p) denote a holomorphic function in the half-plane ®p > o¢, valued in the
Banach space E. The two following conditions are equivalent:
(1) 3T € D! (E) such that £(T) = h(p);
(2) 301 € R,09 < 07 < o0, a constant C > 0 and an integer k£ > 0 such that Vp,p
complex, Rp > o4,
Ih(p)lle < C(1+ |p))*.

In the proof this theorem it is shown that T= :t_’:riz f where f is a continuous, E

valued function of ¢, in fact f = £71(4zh(p)). The estimate we obtained in the proof

the above lemma allows us to apply Treves’ theorem with:
p=s,Rs>1
h=GxF
E = (C'(R*/{z < I}))’ = Ey

Thus, as | = oo , L71(G * F) — 0 in D/, (E)).
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4.6 Behaviour of the Quasi-static Limit as o,;, — 0
It was noted in section 4.3 that for a general source with ¢ = Othe Green’s tensor
for the source in air, response in air case becomes meaningless in the limit 04; — 0. In
this section it is shown why this is the case.

Firstly, consider the free-space Green'’s tensor:

1 exp(—ik1 R)

Gr(R)=(I - k—%VV) = (4 -33)

For a non-transverse source, we have that this ‘blows up ’ as k; — 0 since

klli—IEo VV_R— - R
as a distribution and this is not the zero distribution. Of course, for a transverse source
we have that the —-kl—fVV terms disappear and thus the solution does not ‘blow up’ as
ki — 0.

Now we turn to the case of a flat Earth. In this case a study of the behaviour of the
eigenfunctions in the limit as 04;» — 0 reveals the conditions the source must satisfy for
the a meaningful pointwise limit to exist.

Note that no problem arises in the eigenfunctions corresponding to the TE mode.
However a problem does arise in the eigenfunctions corresponding to the TM mode.

These functions are

1
Ngn)\(h) =;V XV x (¢n)

=i.(v<az¢n<h)) + K2n(h)3)

where k2 = )2 4+ 42
Yn(h) =Jn(Ar)sin (n@) exp(ihz).
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and thus as k — 0 we find that these expressions 'blow up’. However, if we consider an

expression of the form

> Nenur(h)Ne , (')(2 - 6o)
=" ~(V(@:n(h)) + K a2 (V@ () + K2}, (W)2)(2 = bo)

!
= V0.V, 4 (h, ) + 55V 8u b(h, ) + V0, 6(h, 12 + w8 (h, B
K

ICI

where
S bn(R)a(h)(2 = 60) = Jo(Ar) exp(i(ih — ih)) = ¢(k, K)

as in chapter 3.
For a transverse, infinitely differentiable source with compact support, the terms

containing V' vanish and only terms of the form
KI
—VO,¢(h,h'")2 + kr'22
K

contribute to the field. In the particular cases where h = hy,h' = Fhy, as k; — 0 the

above terms tend, as distributions, to
Va.4(h, k)2

which has both zero curl and divergence. These terms will give rise to a part of the
field which is not square-integrable in the air, since it will ‘inherit ’ the property of
having both zero-divergence and curl. This part of the field, which is in the kernel of
the distributional V x V x, is ‘invisible ’ to the semi-norm constructed in Chapter 2 and
reflects the difficulty in finding a variational proof of the existence of a solution to this

problem.
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Now, the TM contribution to the field in the ground is given by an integral with

respect to A of
1 o0
mdz Near(=ha)Ne ,, (h1)(2 = &),z < 0

n=0

where d = P—I;al%-thih—, From the previous discussion, it can be seen that the expression
2 1
for the TM contribution to the field in the ground, for a tranverse test function source

in the air, involves only terms of the form

1 kykohs
Ahy k2hy + k2hy

k
(k—:VquS(—hg, k1) + kykad(—ha, hl)éz“) .

Now, as 04ir vanishes, so does k7 and d. Thus for a transverse source in the air the
TM modes do not contribute and the field in the ground is parallel to the air/ground
interface, irrespective of the source ! Note that by switching &; with k,, etc. we obtain
an expression for the field in the air due to a source in the ground. In this case, the k;
in the expression for d cancels with the ﬁ in the expression for the TM contributions

and we obtain a term of the form

fA)VO,¢(—h1, ha)z.

Thus, if the source in the ground has a non-zero z component, so will the field in the air
. Note that this field cannot be in L2 (R3), for reasons noted earlier.

We now return to an investigation of the recipocrity of the solution. Recalling that
the TE modes are well behaved in the quasi-static limit as o4;, — 0 for any source, we
concentrate on the behaviour of the TM modes in the quasi-static limit as o, — 0 for
a transverse test function source. The above discussion shows that the restriction that
the source must be on the interface and then o,;, allowed to vanish is not required in

this case.
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The asymmetric behaviour of the field may reflect the fact that the eigenfunctions
of the vector Laplacian:

VV-F-VxVxF=0

are not the limit as k — 0 of eigenfunctions of the vector Helmholtz equation:
VV.-F-V xVxF+kF

( cf. Morse and Feschbach [1] pp. 1784-1789).
We now show that a general source cannot be approximated by that part of the it
in the ground by considering the scattering terms of GE;I),Z' = 1,2,3 which from Tai,

after taking the quasi-static limit and assuming ¢4 # 0 , are

[e o]

ay _ 1 1 A2
G13 - 47 ! —SlUCgir A //\2 +S;uf_—0'a2-r 6:61: (b1/)+)dA
an _ 1 1 A2 b d
Gap = - 0/ — ___Azﬂwﬂrazay( 1) dA
1 [ 1 X

GGV = 8.8, (b4 ) dA

T 4rn J —SHTair \\/A2 + spoeir

with

b= (Slio'ground) V A 4+ SUGqir — (Sﬂaair) \//\2 + SHOground
(SKOground) VA2 + su0air + (8p0air) /A2 + SUTground
__ Ogroundy/ A2 4+ SHOqir — aair’\/)\2 + SO ground
Ogroundy/ A? + SUGqir + a'air"\/)\2 + SUOground

Now, let GS;I)’ = —s;wa,-,.Ggl)

By the same argument as used in chapter 3 to prove the spatial pointwise conver-

gence of the tensor in the source in ground, receiver in ground case we obtain that, for
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J: € C°(R?), which is zero in a neighbourhood of the air/Earth interface, (z=0), and
£+-J, =9-J; =0in all R® and denoting the scattering part of our modified Green’s

tensor by ng)'

GO’ 7. S Ggil).’=o * J, pointwise as 04, — 0 (4 -34)

Sagir#0

i.e.ﬁGf:z'#O * J, diverges as 04 — 0.
4.7 Boundary Conditions
In the quasi-static limit there are no true total surface charges. Since we assume

that D = ¢E we have from Maxwell’s equations that if e = 0 then
V.-D=V_-.€eE=0.

However, Hohmann'’s integral equation contains a perturbation term corresponding to
the response to a scattering current j, which has associated with it a rate of change of
surface charge V- j, = V- oyE. Now, since the surface charge is always zero this implies
that

V.o(z)E=0

and writing o(z) = oy + 0gos: We have that
V.-oyE=-V. THostE,

which reflects the physically obvious fact that the field in the ground gains its longitudinal
component as a consequence of the presence and geometry of the ore-body.

We now turn to the behaviour of the field at interfaces. In Carey and O’Brien [1] it
was shown that for {2, a region spanning the boundary T’ between two regions _,

that
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Lemma
Suppose f € L?(©2) and V- f = 0in Q. Let n- fz denote the normal trace of n - f
on I' from €z then

n-f-=n-f4

in the sense of equality of distributions in H~%(T).

Now for a source in the ground, the field E in the absence of an ore-body is in L2(R%)
and when an ore-body is present, the field, as given by the solution to Hohmann’s integral
equation, is also in LZ(R® ). Thus, we have that,irrespective of the presence or absence
of an ore-body, ¢E = 0 in the air ( E is pointwise finite) , E € L?([0, T}; (L2(R® ))3) and
V.oE = 0. Thus, the conditions of Carey and O’Brien’s lemma are satisfied and we have
that the normal component of ¢E is continuous across all interfaces, both air/ground

and ore-body/host, in the sense of traces on the interfaces.
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Chapter 5
Conclusion

To summarise our results:

(1) We have proved the existence of the solution to a generalised diffusion equation
under certain conditions and shown that the non-existence of the solution in the case of
a vanishing conductivity is a purely vector phenomena.

(2) We have verified that Hohmann’s [1] & [2] integral equation method gives a
consistent solution for the case of an insulating upper half-space when we adopt the
simple geometry of an ore-body of finite size in a uniform conducting lower half-space.

(3) We have shown that, in general, the electric field, in the quasi-static approxi-
mation, ceases to be in L?(R?) in the presence of an insulating half-space and that this
behaviour is due to the nature of the eigenfunctions of the vector Laplacian.

It is apparently paradoxical that the large time ( that is, near T)behaviour of a
function valued in L?(R?) for ¢ € [0, T] should not be in L?(R?). This paradox suggests
that it is worthwhile recalling that the quasi-static limit is an asymptotic approximation
made by investigating the behaviour of the inverse Laplace transform of the Green’s
function for the scalar Helmholtz equation, i.e.

[+ otV
o R

—100

exp(st)ds

for large t.

Now, in an insulator ( & = 0 ) we have that the integrand reduces to

exp((t — /A€R)s)
2 .
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Now, ﬁ = c¢ where c is the speed of light in vacuoe, which is approximately 2 x 10°
km/s. Thus, since R in geophysical applications will be of order 102 km, we have that for
t of order 10~ seconds that the integral is well approximated by taking e = 0. However,
in the corresponding vector case, we are interested in

a+toco _
/ (I+ ! VV) 235l gﬁSR) exp(st)ds

pes?

—too
and therefore we are concerned with terms like:

atie® 1 exp(—,/eusR)
t)ds.
/a_ioo s R exp(st)ds

Again, we may ignore the ,/z€R term in the exponential, but this is clearly not equivalent

to assuming ¢ = 0. This suggests that the quasi-static limit does not give the correct
asymptotic behaviour in the air and that the above paradox may be resolved by an

explicit asymptotic analysis of the Green’s tensor in the air.
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