
do not

 $I \downarrow$ give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying.

Signed ..

FRONTISPIECE

 A three-dimensional view of the wave-like travelling ionospheric disturbances observed during the present investigations. More of these disturbances are presented in Chapter 7 (Section 7.7) of this thesis.

TRAVELLING IONOSPHERIC DISTURBANCES

by

MUBASHAR AHMED M.Sc. (Sind)

A Thesis

presented for the degree of

DOCTOR OF PHILOSOPHY

at the

UNIVERSITY OF ADELAIDE

(Physics Department)

APRIL 1977

Dedicated to my Father.

"But this is an old tale you tell - they say. But surely this is a new tale you tell - some say. Tell it once again - they say; Or, do not tell it yet again - others say. But I have heard all this before - say some; Or, but this is not how it was told before - say the rest. And these, these are our people, Dervish Baba, this is Man."

> (Naqshbandi Recital) from "THE WAY OF THE SUFI" by Idries Shah.

CONTENTS

SUMMARY

STATEMENT

ACKNOWLEDGEMENTS

CHAPTER ONE

IRREGULARITIES, WINDS AND WAVES IN THE LOWER					
IONOSPH		1			
1.1 Hi	storical Introduction	1			
1.	.1. Production Mechanisms for Irregularities	3			
1.	.2. Observational Techniques	5			
1.2 Gi	wity Waves in Upper Atmosphere	7			
1.	.1. Theoretical Background	7			
· 1.	.2. Gravity Waves. Phase Properties	13			
1.	.3. Dissipation Mechanisms	16			
1.	.4. Reflection and Ducting	19			
1.	.5. Effect of Background Winds	20			

CHAPTER TWO

	PMENT ANI E-PATH RI			DETAILS	FOR	AMPLITUDE	AND	22
2.1	Buckland	d Parl	k					22
	2.1.1.	Trans	smission					22
	2.1.2.	Rece	ption					23
		(a)	Amplitude	Recordi	ng			24
		(b)	Frequency	Synthes	sizer			24
		(c)	Phase Pat	h Record	ling			25

Page

	2.2	Remote Stations	27
СН	APTER	THREE	
	METH	IODS OF ANALYSIS AND PHASE PATH RESULTS	29
	3.1	Full Correlation Analysis	29
		3.1.1. Method of Calculation	32
1	3.2	Dispersion Analysis	37
	а	3.2.1. Method of Calculation	39
	3.3	Spectrum Analysis	43
		3.3.1. Truncation Effect	45
		3.3.2. Power Spectrum Estimates	47
	3.4	Buckland Park Data	47
		3.4.1. Nature of Data	47
		3.4.2. Spectrum Analysis	49
		3.4.3. Full Correlation Analysis	50
		3.4.4. Dispersion Analysis	51
	3.5	Buckland Park Results	52
		3.5.1. Presentation of Results	52
		3.5.2. Amplitude and Phase Path	54
	3.6	Remote Stations Results	55
		3.6.1. Raw Data	55
		3.6.2. Comparison between Stations	55
	3.7	Ray Tracing Analysis	56
×		3.7.1. Wind Profiles	57
	£	3.7.2. The Ray Tracing Program	58
		3.7.3. Results	59

Page

CHAPTER FOUR

		UMMARY OF PHASE PATH RESULTS, DISCUSSION AND		
	4.1	Summary of Phase Path Results	61	
	2	4.1.1. FCA Results	62	
0		4.1.2. Power Spectrum Analysis Results	62	
		4.1.3. Dispersion Analysis Results	62	
		4.1.4. Amplitude and Phase Path	63	
		4.1.5. Remote Stations	63	
		4.1.6. Ray Tracing	64	
	4.2	Discussion and Conclusions	64	

CHAPTER FIVE

OBSEF	RVATIONS OF WAVES AND DISTURBANCES IN THE F-REGION	70		
5.1	Early Records	70		
5.2	Virtual Height vs. Time Records (h', t)	71		
5.3	Ionosonde Observations	72		
5.4	4 Ground Backscatter Observations			
5.5	HF Doppler and Phase Path Measurements			
5.6	5 Total Electron Content Observations			
5.7	7 Incoherent Scatter Observations			
5.8	Theoretical Considerations	77		
	5.8.1. TIDs due to Gravity Waves	81		
	5.8.2. Phase Velocity Dispersion of Gravity Waves	85		
.(*)	5.8.3. Ducted Modes	86		
5.9	Sources of Atmospheric Gravity Waves	90		
	5.9.1. Artificial Sources	90		
	5.9.2. Natural Sources	93		

Page

C	HAPTER	R SIX		
	EQUI	PMENT AN	ID EXPERIMENTAL DETAILS FOR F-REGION STUDIES	97
	6.1	The Pla	n	97
	6.2	Equipme	ent	98
		6.2.1.	Transmission	98
E.		6.2.2.	Reception	99
	6.3	Data Di	gitization	101
C	HAPTER	SEVEN		
	TIDS	, OBSERV	ATIONS, ANALYSIS AND RESULTS	103
	7.1	Nature	of Data	103
	7.2	The Tri	angles	104
	7.3	Data An	alysis	103
		7.3.1.	Full Correlation Analysis	109
		7.3.2.	Spectrum Analysis	113
		7.3.3.	Dispersion Analysis	115
		7.3.4.	Log Value, Coherency and Errors	118
		7.3.5.	Dispersion Plots	120
	7.4	Present	ation of Results	121
		7.4.1.	Height Plots	121
		7.4.2.	Power Spectrum Plots	122
		7.4.3.	Dispersion Plots	122
		7.4.4.	Comments and Interpretation	123
10	7.5	Band-Pa	ss Dispersion Analysis	127
		7.5.1.	Band-Pass Filtering	127
		7.5.2.	Results	128
		7.5.3.	Results of SDA	132

	Page
7.6 Skewness and Dispersion	134
7.7 Real Height Data and Analysis	140
7.7.1. Interpolation	140
7.7.2. Presentation	142
7.8 TIDs and Sporadic-E	145
7.9 Solitary Waves	153
7.10 A Search for Sources	157
7.10.1. Speeds and Amplitudes	157
7.10.2. Correlation with Magnetic	e Activity 161
7.10.3. Other Sources	. 164
7.10.4. Sources and Observed Disp	persion 165
7.11 Summary and Conclusions	177
CHAPTER EIGHT	
ELECTRON CONTENT OBSERVATIONS	+ 2
8.1 Introduction	183
8.2 Observations using Faraday Rotati	183
8.3 Experimental Details	
8.4 Analysis	188
8.4.1. Spectral Analysis	191
1	191
8.4.2. Frequency Spectrum-Diurnal 8.5 Fractional Fluctuations	I Variation 196
	198
	200
	ns 204
8.7.1. Summary of Results	204
8.7.2. Discussion and Conclusions	206

÷.

CHAPTER NINE

FINAL CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK 210

APPENDIX A

APPENDIX B

BIBLIOGRAPHY

218

SUMMARY

This Thesis consists of three parts. The first part deals with the observations of waves and irregularities in the lower ionosphere, a theoretical background of atmospheric gravity waves and their characteristics, various methods of analysis and description and results of experiments using Phase-Path techniques.

The second part of this thesis forms the major part and represents the main project undertaken by the author. It includes an extensive literature survey, a description of the experimental arrangement, analysis, and results of observations of travelling ionospheric disturbances in the F-region.

The third part consists of the observations using Faraday rotation technique and the spectral analysis results. The effects of geomagnetic storms on the total electron content are also discussed using selected samples.

STATEMENT

To the best of the author's knowledge this thesis contains no material previously published or written by another person, except where due reference is made in the text. It contains no material which has been submitted or accepted for the award of any other degree or diploma in any university.

(M. Ahmed)

ACKNOWLEDGEMENTS

The work described in this thesis was undertaken in the Department of Physics at the University of Adelaide, under the supervision of Dr. B.H. Briggs. The author is very much indebted to Dr. Briggs for suggesting the project and for his help and encouragement throughout the course of this work.

Many thanks are due to Dr. R.A. Vincent for introducing the author to the phase path technique and for his help in this project as well as in many helpful discussions relating to atmospheric gravity waves. The author would also like to thank the following for providing selected samples of Faraday rotation data: Prof. K.C. Yeh (University of Illinois), Dr. P.E. Schmid (NASA, Greenbelt), Rev. Prof. J.R. Koster (University of Ghana), and Dr. D.H. Smith (University of Sydney). Thanks are also due to Mr. P. George (W.R.E., Salisbury) for providing the real height data for some of the selected dates.

The help by Mr. J.W. Smith in designing the transmitter circuits is greatly appreciated as well as his advice on many problems in electronics which arose from time to time. Thanks are also due to Mr. N. Wild, Mr. L. Thomas, Mr. A.W. Robertson, Mr. L.A. Hettner, and Mr. D.W. Fearnside who gave help of a general nature, and Mr. J.D. Schache for building the cameras.

For their help in computer programming and other relevant matters, the following deserve special thanks: Dr. B.D. Ward, Dr. T.J. Stubbs, Dr. N. Holmes, Mr. R. Craig and Mr. K. Neukerke. The author would like to thank Ms. S. Ball for allowing me to use her ray tracing results.

Thanks are also due to: Mrs. Patricia Coe and Mrs. Dawn Darwent for typing this thesis, Dr. and Mrs. Munir for their support during the final stages of this thesis, and my wife Sandy for her help and encouragement.

The author is greatly indebted to the University of Adelaide for the award of a University Research Grant scholarship.