"MICROCOMPUTER CONTROL OF A BLAST FURNACE
STOVE MODEL"

PETER BUDIMIR, B.Sc., B.E.(Hon)

BEING A THESIS SUBMITTED
AS PARTIAL FULFILMENT FOR THE
DEGREE OF MASTER OF ENGINEERING SCIENCE
IN THE
DEPARTMENT OF ELECTRICAL ENGINEERING

THE UNIVERSITY OF ADELAIDE

APRIL 1983

This thesis embodies the results of supervised
project work making up 2/3 of the work for the

degree.

[l

DECLARATION

This thesis contains no material which has been accepted for the award
of any other degree or diploma in any University, and to the best of
my knowledge it contains no material previously published or written

by another person, except where due reference is made in the text of

the thesis.

P. BUDIMIR

ACKNOWLEDGEMENT *

Many have been an encouragement and help in the work relating to this
thesis. In particular I am grateful to my project supervisors, Dr.
D.A. Pucknell and Dr. Cre IP', Jeffreson for assistance of both

technical and non-technical nature.

Thanks go to Telecom Australia for the leave granted to enable me to

complete the thesis writing.

There are also a number of other individuals who were of particular
help or encouragement; Dr. C.W. Nettle, Mr. N.M. Martin, and Mr.

R.W. Korbel who produced the DAC/ADC board and developed stage 2 of
the SDK-86 software.

Finally, but most importantly, I would thank my wife, Alison, for

invaluable support throughout the project.

SUMMARY

Because of the 1large fuel requirements of blast furnace stoves,
methods of increasing their operating efficiency are of real practical

concern.

This has motivated research into the feasibility of implementing a
microprocessor system to control these stoves so as to achieve maximum
thermal efficiency. The first phase of this study is the subject
matter of this thesis. It involves the initial development of a
system to be used for verifying/developing control strategies on an

experimental stove model in the Department of Chemical Engineering,

University of Adelaide.

The thesis describes,

(1) basic stove structure,

(2) operation and control requirements,

(3) system specifications,

(4) followed by a description of the microcomputer control
system: consisting of an 'upper level' PDP-11/03 microcomputer (DEC)

and a 'lower level' SDK-86 microcomputer kit (INTEL).

Hardware design, construction and testing has been completed. A
pre-written 'package' has been chosen for the 'upper level' software
and 'lower level' software has been developed in two stages. The

first stage only involved a single feedback loop for initial hardware
tests whereas stage two 1incorporates the multi-loop system as

specified.

CONTENTS

INTRODUCTION

BLAST FURNACE STOVE OPERATION

3.

2.1 INTRODUCTION
2.2 BLAST FURNACE STOVES

2.2.1 Introduction

2.2.2 Stove Description

2.2.3 Stove Operation

2.2.4 Stove Configuration

2.3 EXPERIMENTAL STOVE MODEL

2.3.1 Introduction

2.3.2 Description

2.4 MATHEMATICAL DESCRIPTION

2.4,1 Introduction

2.4.2 Analysis

2.4.3 By-Pass Main Operation

2.4.4 Thermal Efficiency

2.4.5 Conclusion

BLAST FURNACE STOVE CONTROL

3.1 INTRODUCTION
3.2 CONTROL REQUIREMENTS

3.2.1 Introduction

3.2.2 Switching Period

3.2.3 Hot Blow Flowrate and Inlet Gas Temperature

3.2.4 Zero Changeover Time

3.2.5 Non-Zero Changeover Time

3.3 CONCLUSION

O VW O EFEWW W W

NN A @ a —a a2 a
QO W N = W W -

21
21
21
21
22
22
2
25

27

CONTENTS

SYSTEM REQUIREMENTS

4,17 INTRODUCTION
4.2 REQUIREMENTS

4,2.1 Overall Objectives

4.,2.2 Computational Requirements (Original Concepts)

4.2.3 Computational Requirements (Later Developments)

4.3 PROCESS DESIGN

4.3.1 Introduction

4,3.2 Thermal Design

4,3.3 Flow Control

4.4 OPERATOR/MACHINE INTERFACE

4.4.1 General Requirements

4.,4,2 Processor to Processor Interface

4.4,3 "Analogue" Transfers

4y.4.4 Digital Transfers

4. 4.5 Priorities and Interrupt Considerations

4.5 SUMMARY
PROCESSOR SYSTEM

5.1 INTRODUCTION
5.2 HARDWARE SYSTEM STRUCTURE

5.2.1 Introduction

.2.2 PDP-11/03 Microcomputer

5
5.2.3 SDK-86 Microcomputer
5

.2.4 Inter-Processor Interface

5.2.5 Up Transfer

5.2.6 Down Transfer

5.2.7 A/D and D/A Convertors

29
29
29
29
30

32
32
32
34
35
35
35
37
37
38
39
10
40
41
41
41
uy
45
45
n8
48

CONTENTS

5.3 SOFTWARE

5.3.1 Introduction

5.3.2 PDP-11/03 Software (DDACS)

5.3.3 SDK-86 Software

5.4 OPERATION - STAGE 1

5.4.1 Introduction

5.4,2 Auto/Manual Transfer

5.5 OPERATION - STAGE 2

5.5.1 Introduction

5.5.2 Operation

5.6 SYSTEM PERFORMANCE

6. CONCLUSION

REFERENCES

APPENDIX A - HARDWARE DESCRIPTION

A.1 INTRODUCTION

A.2 INTER-PROCESSOR INTERFACE BOARD

A.

A

A.
A.

2'

.2'

2.
2.

1 BOARD LAYOUT

2 EDGE CONNECTIONS

.3 ADDRESS DECODING AND BUS INTERFACE

.4 UP TRANSFER (CSR AND DBR HARDWARE)

5 DOWN TRANSFER HARDWARE

6 SDK-86 ADDRESSING

7 PDP-11/03 ADDRESSING AND INTERRUPTS

8 IPI REGISTER DESCRIPTIONS (CSR AND DBR)

A.3 DAC/ADC BOARD

A.3.171 BOARD LAYOUT

49
k9
49
51
52
52
53
55
55
57
59

60

62

k=3
w w w w w
[L] L[] L] »

~N O U,

A
A.
A-3-

CONTENTS

EDGE CONNECTIONS

ADC SECTION HARDWARE

4 DAC AND DECODE SECTION HARDWARE

A.3.8

ADDRESSING

A/D CONVERSION

D/A CONVERSION

ADC RANGE SELECTION

A.3.9 DAC RANGE SELECTION

A.3.10 ADC SAMPLING MODE

A.4 DATA SHEETS (AD363 and DAC80)

APPENDIX B - SOFTWARE DESCRIPTION

B.1 DDACS DESCRIPTION

B.2 SDK-86 SOFTWARE LISTING - STAGE 1

B.3 KEYBOARD PARSER -~ STAGE 1

B.4 SDK-86 SOFTWARE DESCRIPTION - STAGE 2

B.5 SDK-86 SOFTWARE LISTING -~ STAGE 2

1. INTRODUCTION

Operation of blast furnaces for iron ‘production requires large
'blasts' of hot air for extended periods of time. Typically, air
blast flowrates of 80 to 100 kg/s are necessary, at temperatures of

about 1200 T.

This 'blast' is produced by so called Cowper stoves. Because of the
huge 1load requirements of the furnace, it 1is clear that large
quantities of fuel are needed to satisfy the energy demand. It 1is,
therefore, desirable to operate the stove systems as efficiently as
possible. Even small increases in stove efficiency can result in

large savings in fuel costs.

This has motivated studies into means of improving the thermal
efficiency of Cowper stove operation [eg. 5, 61. However, this
problem is a complex one and until the advent of cheap microprocessing
and computing elements, no cost effective means existed to implement

algorithms to achieve this maximum efficiency.

This project was initiated as a joint effort between the Chemical and
Electrical Engineering Departments of the University of Adelaide, to
develop a control system for an experimental stove system in the
Chemical Engineering Department. This computer based system was
required to;

(1) provide a tool for verifying and/or developing control
strategies already proposed [eg. 1, 2, 6] and enable testing of the

validity of assumptions made in modelling the stove operation and

configurations,

PAGE 2

(2) possibly form a base for development of an industrial
controller. Since the natural response times in the industrial
installation are much longer than those of{the experimental rig, any
scheme that can meet the speed requirements in the laboratory will be

adequate for industry.

Note that, as a research tool, it is required that the system be as
flexible as possible. It is, therefore, particularly important that
the hardware (processors and interface) does not place restrictions on
the types of control strategies to be examined. This has led to the
choice of a 16 bit low level microprocessor with a parallel interface

to the 'high level function' processor,

This thesis is primarily concerned with the ‘'by-pass main' stove
configuration but the control scheme proposed, being computer based,
is flexible enough to be 1later used for studies of 'staggered

parallel' operation.

An overview of this work can be found in the author's joint paper

presented at the IE Aust Conference on Microprocessors 1979 (31.

2.1

PAGE 3

2. BLAST FURNACE STOVE OPERATION

INTRODUCTION]
There were two considerations in designing the control system;

(1) firstly, and most importantly, a useful tool was
required by the Chemical Engineering Department to enable research
into control mechanisms to be carried out using experimental stove
models,

and (2) of lesser importance, a scheme that could be adapted

to actual blast furnace stove control was desirable.

To understand both the nature and complexity of the required
system it is necessary to examine stove structure and operation in
some detail. This chapter describes both the industrial and
experimental stoves and gives a basic mathematical description of

the control problem,

BLAST FURNACE STOVES

2.2.1 Introduction

The first regenerative blast furnace stove was developed 1in
1860 by E. A. Cowper of Scotland. Although much has been
done since to improve the effectiveness of these Cowper
stoves (as they are commonly known), the essential operating
scheme and stove structure have remained unchanged since

they were first introduced.

Stove description and operation is well covered 1in the

literature [eg. 4, 51].

2.2.2

PAGE 4

Stove Description

2.2.3

Today's Cowper stoves typically produce air blast flow rates
of 80 to 100 kg/s at temperatures of about 1200°C. A
cross-sectional diagram of a stove is shown in figure 2.1.
From this the stove can be seen to consist essentially of:

(1) a chequerwork - This is a 1large mass of solid
material containing many flues through which air can be
forced. It performs the heat storage function of the stove
and is wusually a type of refractory brick. Typically the
chequerwork is about 20 m to 30 m high and about 8 m in
diameter, weighing of the order of 1 million kg. The
efficiency and thermal capacity of the stove are governed by
the surface area of the brick chequers and their mass
respectively.

(2) a combustion chamber - Blast furnace gas (fuel) is
burnt with air at the base of this chamber. The hot gas can

then be forced up the chamber and down through chequerwork.

Stove Operation

The operation of a Cowper stove involves two distinct
phases:

(1) the heating period - During this phase hot gas is
forced up through the combustion chamber and down through
the chequerwork. Heat is thus transferred from the gas to
the chequerwork. This process is often referred to as the
'on gas' phase of the cycle or, 1in academic circles, the
'hot blow' period.

(2) the cooling period - This is the phase in which the

Q

o
>

(9]

58

[
(o]
‘cold blow__] = @ ohequerwork//
= n a 4
outlet — 3 =
(to furnace) | § /
(&)
‘hot blow__ /% ‘cold blow inlet
INLELs o === ‘hot blow’ outlet

% R

Stove Cross Section

FIGURE 241

PAGE 6

stove actually supplies the hot air blast to the furnace
(i.e. the 'on blast' part of the cycle). Cold air 1is
forced up through the chequegwork and is thus heated and
exits the stove as a hot blast. This is often referred to

as the 'cold blow' part of the cycle.

Stove Configuration

It is clear from the above description that one stove is not
sufficient if a continuous hot blast is required, since the
chequerwork will c¢ool during the 'cold blow! cycle.
Eventually the outlet blast temperature will no longer be

sufficient to supply the blast furnace requirement.

Thus two or more stoves are necessary. While one (or more)
is 'on blast' the others are in their heating phases. By
'switching' the stoves at appropriate times the required

continuous blast is maintained.

Since the outlet temperature of the 'cold blow' stove will
drop in time, some mechanism must exist to provide a fixed
blast temperature at a given flow rate. At present two main
stove configurations exist to meet this requirement:

(1) the 'staggered parallel' system - This is the more
efficient [5] but typically requires four stoves (a minimum
of three). Operation is described in [5] and Dbasically
involves two stoves 'on blast' at any one time. These two
stoves are 'staggered' in that one is further into its cycle
than the other. Thus the outlet temperatures will be

different. By controlling the percentage of air passing

PAGE 7

through each of the two stoves the outlet temperature can be
held at the required value. Eventually the 'coldest' of the
'on blast' stoves is switched with the 'hottest' of the 'hot
blow' stoves. This process continues cyclically.

(2) the 'by-pass main' system - This is the older of
the two configurations and for economic reasons is still
preferred by the majority of users, in Australia at least.
Typically three stoves are used, with two being a minimum.
Also being the simpler system, initial control studies will
deal with this configuration. Hence it is described in more
detail here than the 'staggered parallel' system (unless
otherwise stated, further references fo stove configuration

will assume a 'by-pass main' system).

The 'by-pass main' system is well described in [6] and this
description 1is outlined here. Consider first the two stove
system of figure 2.2. From the diagram it is seen that one
stove 1is ‘'on blast' at any one time. The required blast
flow rate is determined by the flow rate of the cool air
input. The temperature is controlled by allowing some of
the air to by-pass the stove and then mix with the heated
air at the stove outlet. At the start of the 'cold blow'
cycle, stove outlet temperature and hence the amount air
by-passing the stove will be at a maximum. As the
chequerwork cools, the exit temperature will drop and a
greater portion of the air will pass through the stove. The
limit of this cycle occurs when the exit temperature equals

the required blast temperature. At this stage all the air

+ to furnace

Y s N, e

A

! |

cold blow hot blow
stove 1 stove 2
flowrate
(stove 1)
cold blow I hot blow \
0 P 2P time
flowrate
(stove 2)
f hot blow \ cold blow
0 ﬁ 2f° time

By- Pass Main Stove Configuration for
2 Stoves

FIGURE 2.2

PAGE 9§

flow would pass through the stove. In practice stove

switching must occur well before this stage is reached.

During this process the 'hot blod; stove is being heated in
preparation for an ‘'on blast' cycle. Because of finite
switching times this stove must be taken off its current
cycle in preparation for 'cold blow' before the 'on blast!

stove ends its cycle (see figure 2.2, 2.3).

The process is essentially the same for a three stove
'by-pass main' system as can be seen from figure 2.3.
Although further details of the 'by-pass main' configuration
will be discussed later, one concept that bears mentioning
at this stage is that of 'cyclic equilibrium'. This refers
to a dynamic equilibrium of stove operation. Once reached,
any one stove will have the same temperature profile (of the
chequerwork) at equivalent times 1in each complete cycle.
Note that the 'state' of the stove, at any time, is defined
by this temperature profile, providing the thermal

capacitance of the gas is zero.

One key factor in the control problem is determining under

which conditions 'cyclic equilibrium' can be established.

2.3 EXPERIMENTAL STOVE MODEL

2.3.1 Introduction

Because of the massive size of the actual Cowper stoves it
is not possible to have these available to test control

procedures and study stove operation. Although computer

by- pass

valve /"\ 7 N\ 77 N\

— | |

cold blow hot blow hot blow
stove 1 stove 2 stove 3
flowrate
(stove 1)
cold hot blow
blow r/
0 P 2P 3P time
flowrate
(stove 2} [t blow cold hot blow
: blow
0 I’D 2i3 3'P time
flowrate
(stove 3)
hot blow cold
blow
0 P 2P 3P time

By-Pass Main Stove Configuration for
3 Stoves |

FIGURE 2.3

2.3.2

PAGE 11

simulations have yielded some useful results [5, 6] a
laboratory test bed is necessary for further investigation.
The Chemical Engineering Department has developed such test

columns.

Using these, control strategies can be developed and tested.
Because the time constants relating to the models are much
shorter than those of actual Cowper stoves, any digital
control system which can handle the sampling rates required
for the model will certainly have adequate capacity for

controlling an industrial system.

Description

Figure 2.4 shows, diagramatically, the experimental stove

system, set up for 'by-pass main' operation.

The left hand stove is heating cold air drawn through the
packing by fan 1. As has been seen before, the exit air
temperature (measured by the temperature transmitter TT1) is
falling with time. Thus to obtain a constant 'blast!
temperature and flow rate the air leaving stove 1 needs to
be 'mixed' with a cooler 'by-pass' stream (as described in
sec 2.2.4). This mixing procedure is not carried out in the
experimental set up, but the 'by-pass' effect on the stove
can be reproduced using a local flow control loop. This 1is
to be achieved wusing a differential pressure transmitter,
software square root extraction, a Zener Electrics armature
current controller and variable speed DC motor. The set

point of this 1loop can be adjusted by the temperature

——— = - = - —

Q@

A—@)

—1 —

AC H Fan 2 idle driven Fan 2 AC
AC H Fant driven idle Fan1 AC
| —

VW\/\j_ =
|
TT1 | 1 | TT2 VAA'ATA'A
L) ' 1
|) |
i
b
® @
|
DPT packing packing DPT
TT3 TT4
Icold blow ihot blow
EY
TT: Resistance Bulb Temperature Transmitter
DPT: Differential Pressure Transmitter
TC : Temperature Control Algorithm
FC: Flow Control Algorithm
AC : Armature Current Speed Controller

-— e ——

- control Flow

Experimental Stove System

FIGURE 2.4

—— — — g = _ = _ps_ _ 9]

PAGE 13

control algorithm.

Experiments performed in the Chemical Engineering Department
indicate sample rates of the orde? of 50 Hz will beé required
if significant degradation in the performance of the flow

loops is to be avoided.

The second stove of figure 2.4 is on 'hot blow' wusing the
second blower to force air over a nichrome wire heater with
a phase-angle controlled SCR regulator. Experiments on a
similar loop indicate that a sample rate of 10 Hz should be

satisfactory for the associated temperature control loop.

Flow through the 'hot blow' stove will be initially
constant, using a similar fast 'local' flow loop to the

'cold blow' stove.

This system differs from the industrial installation, mainly
in the use of electric heating instead of a combustion
system. The design is also intended to eliminate parasitic
thermal capacitances (which are present in reality) to
simplify the control studies. This has 1largely been
achieved by avoiding the use of multiport control valves and
by using light, stainless steel, vacuum-jacketted stoves.
Fast temperature control 1loops should also ensure sharp

stepwise temperature changes.

2.4 MATHEMATICAL DESCRIPTION

2.4.1 Introduction

A comprehensive treatment of the principles in heat transfer

2.4.2

PAGE 14

has been developed by Jakob. Details of the operation and
analysis of regenerators (Cowper stoves fall into this
category) can be found in his book on heat transfer [7]. A
brief derivation of the equations relevant to stove
operation 1is given below. The nomenclature used has been

chosen to be consistent with that adopted by Jeffreson [6].

Analysis

To simplify stove analysis, a one dimensional model (in
space) 1is adopted. This results in distance (z) and time
(6) being the only independent variables in the differential

equations.

Figure 2.5 is drawn to reflect this model, and relating to

this the following symbols are defined.

u ..velocity of the fluid (m/s).

§ .-.density (kg/ma).

M ..total mass of the chequerwork (kg).

C ..specific heat/unit mass for solid (J/ °C-kg).
S ..specific heat/unit mass for fluid (J/C°-kg).
k ..thermal conductivity (J/m-s-C°).

h ..heat transfer coefficient between solid and fluid
(J/s-m*-C°).

a ..cross-sectional area (m*).
L ..length of chequerwork (or packing) (m).

1 ..total contact length (cross-section) (m).
A ..total perimeter of flues (solid surface area, m*).
Z ..distance independant variable (m).

© ..time, independant variable (s).

LI,

»
I
I
I
|
I
[
[
|
|

= fluid

dZ

= heat flow

Heat Transfer Diagram
FIGURE 2.5

Ny

PAGE 16

T ..temperature of the solid, variable (°c).

t ..temperature of the fluid, variable (°C).

f,s.subscripts refer to fluid. and solid respectively.
The functions T = T(6,Z) and t = t(e,Z) are to be
determined, subject to forcing functions and the initial
solid temperature distribution. Referring to figure 2.5,
and applying the principle of heat balance, the net heat
flow into region R is equal to the heat accumulation 1in R
plus the heat transferred to the solid. Thus the heat

balance equation for the fluid can be written,

a;.dZ.k; .2°t/92" = ap.ps.S5.dZ.dt/d6 + h.1.(t-T).dZ.
¢ ¢ (2.1

Similarly for the solid,

a,.dZ.ks. D T/02" = ag.Ps.C.dZ.dT/dO + h.1.(T-t).dZ.

.. (2.2)
Now we define,
z = Z/L normalised length ...(2.3)
and W =p¢ .ag.u fluid flow rate (kg/s) ...(2.4)

and using d/dé= 3/96+ u.8/3Z for the fluid, and
d/de = 3/96 for the solid (since the solid is stationary),
equations (2.1) and (2.2) become,
3t/dz = h.A.(T-t)/(w.S) + (kg.ap/(w.L.S)).0°t/3z" -
(L/u) .2t/080 :
...(2.5)
and M.C.DT/36 = h.A.(t-T) + k,.as.L.9"T/d2". ...(2.6)

Since the thermal capacity of the fluid is insignificant,

2.4.3

PAGE 17

the 9t/26 term in equation (2.5) can be removed. Also,
taking typical values of stove paramaters (eg. [5]1 pp 35,

36) the 2nd order terms become insignificant, giving,

2t/3z = h.A.(T-t)/(w.S) ...(2.7)

and M.C.9T/9©@ = h.A.(t-T). ... (2.8)

By solving these equations, subject to the relevant boundary
conditions, the temperature functions can be determined.
The paramaters h, A, M, C and S are characteristics of the
stove material and gas. Hence they are not directly
controllable by the operator. The inlet gas temperature and
flow rate w are the variables that can be altered by the

operator to influence stove operation.

By-pass Main Operation

Consider now a two stove 'by-pass main' system. Equations
(2.7) and (2.8) must be applied separately to the 'hot blow'
and 'cold blow' stoves. Using the subscripts 1 and 2 to

denote 'cold blow' and 'hot blow' respectively, we have,

for 'hot blow'
ot,/0z = hy A (T-t,)/(w,.S;) ..(2.9)

and M.C.0T/2@ = h,.A.(t,-T), ...(2.10)

for 'cold blow'
2t,/0z = -h, .A.(T-t,)/(w,.S,) .. (2.11)
and M.C.9T/96 = h, .A.(t,-T). ... (2.12)

The minus sign in equation (2.11) is necessary since

PAGE 18

flow is in the reverse direction for the 'cold blow'.

In addition to these equations, the 'by-pass' control during

'cold blow' results in a flow rate variation as follows

(taking t, = 0, as the reference temperature),
) .
W, = w.pb/tm «..(2.13)
where,
A

W is the required blast furnace flow rate,
t,x 1is the stove exit air temperature,

L, is the required blast temperature.

This equation assumes that the specific heats of air
at ¢, and tbrespectively are equal, and results from a heat

balance over the mixing point.

This leaves three operator adjustable variables; the 'hot
blow' inlet temperature (t,;,), flow rate (w,) and the
period P of the operation cycle. Having selected these,
equations (2.9) and (2.10) can be solved to give a
temperature profile (T) at the end of the 'hot blow'. This
then becomes the initial profile in equations (2.11) and
(2.12). These can be solved to give the temperature profile
at the end of the 'cold blow', thus providing the initial
profile for solving the 'hot blow' equations again. By
repeating this procedure a 'cyclic equilibrium' is reached
where the temperature profile - is the same (for a given

stove) at the beginning of any given hot or cold blow.

2.4,

m

PAGE 19

'Cyclic equilibrium' is the normal operating state of stove
system and it 1is important that the operator selects w,,
t,,, and P so that equilibrium is‘possible. If, for example,

2in

t,iw is too small, the 'hot blow' stove will not store as
much heat as is required. When switched to 'cold blow' it
will not be able to meet the blast furnace temperature
requirement for the full period P and so the stoves must be
'switched' earlier than desired. Because of this the other
stove has had less time on 'hot blow' and thus aquires even
less heat than stove 1. Thus the 'switching' period P must
be decreased further. This self destructive mechanism will

eventually lead to a failure referred to as 'collapse’

(reference [8]).

Thermal Efficiency

It has been seen that the operator has three controllable
variables (t,;,, , W,, and P) and providing these are chosen
carefully a 'cyclic equilibrium' situation can be reached.
It is clearly desirable, however, to choose these in such a
way as to maximise the thermal efficiency of +the stove
system, while satisfying the 'demand' for hot blast air. 1In
fact it would be preferable to be able to develop and
implement control algorithms which would automatically

achieve this result.

What effect do these variables have on thermal efficiency?
Jeffreson [6] shows that the most efficient operation occurs

by allowing P to 'float' (i.e. the stoves are switched only

2.4.5

PAGE 20

when the 'cold blow' stove can no longer meet the blast
furnace requirements) and selecting w,.t,,, as small as

possible, consistent With"cyclig,equilibrium',

In the case of zero changeover . time this condition 1is

- equivalent to minimising the switching period (P).

Conclusion

Solving the stove equations is not possible analytically and
S0 numerical methods are needed. Thus some digital
computing elements will be necessary to predict andi cdntrdl

the above variables to achieve maximum thermal efficiency.

PAGE 21

3. BLAST FURNACE STOVE CONTROL

3.1 INTRODUCTION e
Having considered the basic structure and operation of stove
systems, the control problem can be now be examined in more
detail. Because of the non-linear characteristics of stove system

operation, and the nature of the heat transfer equations, any

efficiency controls will necessarily involve numerical analysis.

This immediately establishes the need for some form of
'intelligent!' digital control system. With the increasing
availability and decreasing prices of a wide range of processors
(mini and micro) and peripheral equipment, the digital control

concept becomes an extremely attractive one.

3.2 CONTROL REQUIREMENTS

3.2.1 Introduction

Operation of a 'by-pass main' stove configuration involves a
number of ‘'standard' feedback 1loops. In the case of the
experimental stove system these loops can be seen in figuré
2.4. They comprise a 'temperature' and a 'flow' feedback

loop for both the 'cold blow' and 'hot blow' stoves.

Except for the 'square root' extraction in the flow 1loops,
conventional PID (Proportional Integral Derivative) control

is adequate to obtain the desired 'by-pass main' operation.

As has been described in the previous chapter, there remain

three variables available for operator adjustment; the

3.2.2

PAGE 22

switching period (P), the 'hot blow' input gas temperature
and flowrate (t,;, , W,). It is our concern here to examine
in more detail the selection of these variables so as to
obtain the maximum thermal efficiency; this can be defined
as the ratio of the total heat removed during 'cold blow' to

that supplied during 'hot blow'.

Switching Period

3.2.3

Two distinct approaches exist in determining P. The first
involves the selection of some predetermined value. The
second, and more efficient, approach is to allow the period
to 'float'. Switching only occurs: when the 'cold blow'

stove can no longer meet the blast furnace requirements.

In practice, of course, switching must occur Dbefore this
limit point 1is reached. A convenient means to cater for
this safety margin is to adopt the ratio described in

reference [6],
K = w,(P)/W, \ .. (3.1)

that is, the fraction of air passing through the 'cold blow’
stove at the end of its cycle. The limiting value 1is
clearly one (no safety margin). Thus for a given K value
the switching period P is defined; switching is initiated

when the 'cold blow' flowrate W reaches K.%.

Hot Blow Flowrate and Inlet Gas Temperature

For a two stove system the thermal efficiency during 'cyclic

equilibrium' can be written [6],

PAGE 23

A

£ = w.tﬁ/(wzw3 oin) ...(3.2)
where wmvs is the flowrate of the hot gas averaged over the
whole cycle. This equation also assumes that all relevant

specific heats are equal.

t

It is clear from this that the product 2in Must be

W2avg °
minimised. Additional to this, a very useful result has
been derived by Kwakernaak in [9]. Here it 1is shown that
thermal efficiency during the 'hot blow' is optimised if,

(1) the inlet temperature (t,;.) is set to its maximum
value (this is a physical limitation) and,

(2) the flowrate (wz) is held constant during this

phase.

At present Jeffreson does not believe condition (2) to be
important when the heat transfer coefficient is
approximately proportional to the flowrate [13]. In any
case, by developing a flexible control system, this and

other considerations can be evaluated with the stove model.

In the context of overall operation (heating and cooling) it
is not rigorously proved that thermal efficiency is maximum
under these conditions. However, Kwakernaak feels from

physical considerations that the above criteria should

apply.

Thus, summarising these results, the conditions for maximum
thermal efficiency can be stated,

(1) set the inlet temperature during 'hot blow' to the

3.2.4

PAGE 24

maximum value, consistent with imposed physical limitations
and,

(2) set the 'hot blow' flow rate to its minimum
constant value so that ‘'cyclic equilibrium' can still be

maintained.

The objective, therefore, of maximum efficiency control 1is
to determine (beforehand) this minimum value of w, , for a
given blast furnace loading. Note that finite changeover
time means that the actual manipulated hot gas flowrate
w, will be greater than the average value w,aﬁ which defines

the overall thermal efficiency.

Zero Changeover Time

For the situation where stove changeover takes zero time,
the minimum W, can readily be determined as shown in
reference [6]. Although the assumption of =zero changeover
is clearly not valid it is useful in yielding a lower limit

value for w,.

The approach taken to determine this value is based on the
observation that the period (P) approaches zero as w,is
decreased. Thus the minimum (most efficient) w,occurs in
the 1imit as P approaches zero. Applying this criterion to
equations (2.7) and (2.8) a solution becomes possible. For
the case of a two stove 'by-pass main' system this takes the

form (for t,,, = 0, as the reference temperature) [6],

t.o= t. .(1-e*)y/(1-x.e?) ... (3.3)

B Z1n

where,

3-2-5

PAGE 25

X = W.S, /(W,.S,) ce (3.0)
B = (x=1).A/(1+ h,/h,) ...(3.5)

and N, the 'reduced length' is defined as
A= h, A/(R.S,). | e (3.6)

Here h, and h, are reference values of the heat transfer
coefficient during 'cold blow' and 'hot Dblow' cycles

respectively.

The above equation can then be solved for w once the

amin

A . .
values W and tbare specified.

Non-Zero Changeover Time

Under realistic conditions, of non-zero changeover time, the
problem of determining w,,.,1s considerably more difficult.
A number of approaches have been investigated (to some

degree) but all have their difficulties.

One approach [6] 1is to assume that the heat transfer
coefficient is proportional to flowrate. Under such
conditions, the effect of the 'hot blow' 1is determined by
the area under the 'w, vs time' graph. Thus if the period is

to be halved, the flowrate qlneed only be doubled to

maintain equilibrium. Hence, we can write for a 1-N stove
system,

W, = W, N.P/(N.P-P.) R 3 5] - i)
where,

W, 1s the actual 'hot blow' flowrate,

W is the flowrate for P. = 0O,
20 C

PAGE 26

and P 1is the changeover time.

However, not knowing the value of P beforehand means that

W cannot be determined frod‘ equation (3.7) alone. To

2min
overcome this, Jeffreson [6] has used an iterative approach
in his stove simulations. This involves adjusting the value

of w,in each new cycle as follows,

1 (x)
w_z("H) = ng) Wy, /w"“"ﬁ ...(3.8)

where,
w;:Qi is the integrated flow of the kth cycle,

and W,, = Wygmin -N.P/(N.P-P.). «..(3.9)

Note that'ﬁzo is just the minimum zero changeover value from

equation (3.3), adjusted for the new period.

Such an approach, however may exhibit convergence problems.
A possible refinement, not yet tried, may be to determine a
close starting value for %_before applying equation (3.8).

Consider first W, as a linear function of P,

W = W .(1+c.P) ...(3.10)

20 20mMin

This is a good approximation over the normal operating

range. The value w

omin 1S that determined in section 3.2.4

(the zero changeover case). The constant value 'c¢c' could

possibly be determined by simulation.

Further, by taking typical values of P and ¢ (as can be

derived from simulation results, eg. reference [6]) it is

PAGE 27

found that,

P <K 1/c¢ ceo(3.11)
From equations (3.7) and (3.10) the flowrate can be

expressed as,

W, = W +(1+c.P).N.P/(N.P=P.) i..(3.12)

Z 20 min

Using the inequality (3.11) this can be minimized with

respect to P to give,

= N.P.w, /P, . ..(3.13)

w,z,min

where w,, is the flowrate defined in equation (3.10), and

P = /Pc/(N.c) + P./N el (3.10)

The value of w

amin from equation (3.13) can then be wused as

the starting value in equation (3.8).

Another approach is to define thermal efficiency as the heat
stored as a fraction of total heat input during any hot
blow. Such a definition enables efficiency to be written as
a function of the 'hot blow' exit temperature. Thus it
becomes feasible that the value of w could be determined by

appropriate feedback of this temperature (reference [12]).

3.3 CONCLUSION
Because of the complexity of the control problem, suitable schemes
(algorithms) are still under investigation and development. Thus

the control system needs to be flexible enough to incorporate the

PAGE 28

changing control algorithms, and in fact, is to be used in the

development and verification of these algorithms.

It is clear that a computer based systéﬁ is the only means whereby
such flexibility can be introduced, as well as providing the means

to cope with the problem complexity.

To meet the requirements of speed and flexibility a two level
system was designed (described in chapter 5). The 'upper' level
microcomputer is to handle higher 1level functions (such as
determining W,.;,) and the required loop control. The 'lower'!
level microcomputer handles basic 1I/0 control and operator
interaction. In fact, during manual cohﬁrol mode, the 'lower'
level processor becomes a stand alone system (independent of
the'upper' 1level processor) by which the operator can manually

vary the controlled outputs.

4.1

PAGE 29

4. SYSTEM REQUIREMENTS

INTRODUCTION _
The following chapter defines the specific requirements of the
control system as requested by the Chemical Engineering

Department. Key decisions relating to system implementation are

included together with their justifications.

The section is summarized with a brief description of the overall

system structure chosen to meet the above requirements.

REQUIREMENTS

4,2.1 Overall Objectives

The experimental work in blast furnace stove modelling in

the Chemical Engineering Department required the following:

(1) Equipment to yield clear and unambiguous
experimental verification of theoretical mathematical models
of thermal regenerator system dynamics, particularly under
the variable flow conditions which prevail in industrial
installations. This part of the work requires only one

experimental stove.

(2) Once the experimental difficulties associated with
one stove had been isolated and overcome, a further two or
three stoves would be added. At this stage, the focus of
the work would transfer from identification and modelling of
system dynamics to the longer term objective of testing and

extending control strategies for the optimal operation of

4.2.2

PAGE 30

stove systems under conditions of variable heat demand.

Computational Requirements (Original Concepts)

4.2.3

As can be seen from chapters 2 aﬁd‘3, the various aspects of
stove operation combine to present a complex control
problem. This, together with flexibility requirements,
suggested some form of real time digital control. The
original concept (1979) included a multi-processor system
based on the 1Intel 8080 (as development facilities were
available for this series of processor). One processor
would be assigned to each stove, with communication

proceeding via a common bus and memory area.

This arrangement had the attraction of providing adequate
computing power by sharing computation, and also introduces
a means of including a degree of fault tolerance (necessary
in an industrial system). Each processor could be made
capable of taking over the basic functions of another

'failed' processor.

Computational Requirements (Later Developments)

In the 1later half of 1979 the Chemical Engineering
Department secured an LSI-11/03 (DEC) computer system
together with DDACS (a real time operating system tailored
to control applications). Calculation of the expected loop
rates and estimation of the desired number of 1loops to bhe
controlled indicated that the LSI-11/03 processor running
DDACS would be sufficient for control of the initial stove

system.

PAGE 31

This processor and DDACS software was presented to the
author virtually as an 'engineering' constraint, in that now
it was necessary to tailor the system around these items. A
microprocessor interface could now be used for the following

purposes:

(1) Provision of the required number of A/D and D/A
channels, allowing for expansion necessary for multiple

stoves.

(2) Provision of bumpless auto/manual and manual/auto

transfers with 'loop select! facilities.

Also, changes to DDACS software were to be avoided, since it

was originally available only in 'executable image' form.

Although an 8 bit microprocessor could handle standard A/D,
D/A and other 1I/0 (input/output) control it was also
desirable to be able to perform scaling and perhaps other
pre-processing of data. Considering also expansion to
multiple stoves, a single 8 bit processor was thought to Be

inadequate.

At this time INTEL released their 8086, 16 bit
microprocessor. This is four to ten times more powerful
than the 8080 (throughput varies according to application).
In addition it provided hardware multiply/divide facilities
and so seemed ideal to handle the low level I/0 tasks. Its,
more than adequate, processing power meant that the

flexibility existed for assigning more complex tasks to this

PAGE 32

level, as required.

Thus a system configuration was chosen consisting of the
LSI-11/03 microcomputer as aﬁl upper level controller,
responsible for high level control and optimising tasks,
with the SDK-86 (an 8086 based development kit from INTEL)
as a low level I/0 processor responsible for A/D and D/A

control together with appropriate scaling and 'loop select’

and auto/manual control.

4,3 PROCESS DESIGN

4.3.1 Introduction

y,

3.2

This section briefly describes the design of the
experimental stove system insofar as it effects the design

of the computer system.

Thermal Design

The overall "Process Instrumentation Flow" (PI) diagram has
been shown in figure 2.4. 1In essence the packing is first
heated by a stream of hot air (shown flowing down through
the stove on the right of the diagram) and then cooled by a
flow of cold air which "extracts" the heat from the previous

"hot blow".

On an industrial scale, the flow reversals are applied by
means of a system of three-way valves on the inlet and
outlet. Experience in the Chemical Engineering Departmeht
on measurements of "single blow", unidirectional, packed bed

dynamics [PhD Thesis, C.P. Jeffreson] showed that, for

PAGE 33

small scale equipment, the thermal capacity of three-way
valves and even fine wire heating elements prevents the
application of the sharp, squqre—wave temperature "waves"
assumed by the theoretical model. The slow, 1long time
constant, release or absorption of heat, following the
initial step is also a problem. This process (called
"tailing") can be overcome, to a large extent, Dby
incorporating a temperature control loop around the heater
and three-way valves, thus eliminating long term temperature
drift. Nevertheless, oscillation and overshoot become
significant on the time scale of the thermal time constant
of the packing, unless the thermal capacitances of the
elements inside the inlet temperature control 1loop are
reduced to a minimum. Furthermore, mechanical problems
associated with sealing under high stress conditions would
be expected with such solenoid or air-actuated three-way

valves.

These considerations and others led to the design of figure
2.4 with two variable speed blowers per stove and an inlet
temperature control loop for the hot blow part of the cycle
which is closed around a fine wire heater. Because of the
speed of response required for this inlet temperature
control 1loop, a sampling interval of about 320 ms was
chosen. Degradation in performance occured when the
sampling interval was 1increased significantly above this

value.

y,

3.3

PAGE 34

At first it was thought that <c¢lose control over room
temperature and the absence of large thermal capacitances on
the inlet during the "cold blow" would eliminate the need
for feedback control over inlet temperature during this part
of the cycle. It has been found in practise :that for the
temperature rise chosen at the heater power available (2 kW)
long term variations in room temperature do cause
significant drift. The most recent design (1982) adds a
further inlet temperature controller to control the cold

blow inlet temperature.

This change serves to illustrate the need for sufficient
flexibility and capacity in the control system if it is to
be useful as a research tool. This approach differs
somewhat when designing for a fixed application (eg. an
industrial system) where the control system requirements can

be specified more exactly.

Flow Control

Since the system involves variable flow control of the
cooling air according to the optimal strategies to be
devised, variable flow is best achieved by closing the 1loop
around each fan. The differential pressure across the
packing becomes the measured variable and the armature
current, the manipulated variable. This loop is also "fast"
by process control standards; a sampling interval of 80ms
has been found necessary to avoid undesirable oscillation

and overshoot.

PAGE 35

4.4 OPERATOR/MACHINE INTERFACE

4.4.1 General Requirements

4.

b,

2

The considerations in the specif}cations for the Operator
interface are as follows:

(1) Because of the time taken for each regenerator to
reach equilibrium, the system must be capable of unattended
operation for long periods of time.

(2) It must be possible to start the system with any
desired combination of loops on "manual". In this case, it
should be possible to independently raise or 1lower outputs
to the final control element of any "manual" loop. Note
that the term "loop" in this context iS used to refer to any
control path (with or without feedback).

(3) Because of requirement (2) above, automatic,
bumpless transfer from manual to automatic operation, and
back again is essential,

(4) Because of the flexibility required of the system
in configuring various combinations of feedforward,
feedback, cascade and sequencing control, some methdd is
required to associate any given D/A output and/or A/D input
channel(s) with any specified control 1loop or control

strategy.

Processor to Processor Interface

Given the processor arrangement as discussed in 4.2.3 it 1is
necessary to provide an interface between the LSI-11/03 and
the SDK-86. Clearly the simplest means of doing this would

be to use a serial communication's link (such as RS232).

PAGE 36

This was not acceptable for two main reasons:

(1) Without abandoning the simplicities inherent in a
serial interface such as RS232 the data transfer rate is
limited to about 9600 baud. With synchronous operation this
is equivalent to 1200 bytes/sec. For a four stove system
this would be currently acceptable. However, the system
flexibility becomes severely limited, since higher sampling
rates and more complex control strategies may be precluded.
As such, the system would not be very wuseful as an
investigative, research tool.

(2) The DDACS control software (for the LSI-11/03) has
been designed to work with the standard DEC D/A and A/D
boards (AAV11-A and ADV11-A). This involves, essentially,
parallel communication. Thus, to use a serial interface,

DDACS software changes would be required.

With the above considerations, it was decided that the best
approach would be to use an interface that made the SDK-86
look like the standard DEC D/A (communication from LSI-11/03
to SDK-86) and A/D (communication from SDK-86 to LSI-11/03)
boards. This involved interfacing the SDK-86 directly onto

the LSI processor bus.

Such an approach means that no changes need be made to the
DDACS control software and the data transfer speed will be
more than adequate. In addition, there is the convenience
of being able to treat the SDK-86 as just another (albeit

intelligent) DEC peripheral.

u-uo3

PAGE 37

Aside from the increase in complexity the approach chosen
has one ofher disadvantage compared to a serial interface.
It means that the two processorg, must be close to each
other. This could prove unsatisfactory in an industrial,
distributed system :where a number of "low level" processors

need to be located remotely from each other.

As well as the main interface described above (the IPI) a
"status" interface 1is required to enable the LSI-11/03 to

get necessary "loop" status data (see section 4.4.14).

"Analogue" Transfers through the Inter-Processor Interface

4.y,

m

For a four stove system a minimum requirement is:

(1) Three analogue inputs per stove (two "temperature
transducers" and one "differential pressure transducer").
That is 12 analogue inputs.

(2) Three analogue outputs per stove (one SCR for
temperature control, and two armature current controllers).

That is 12 analogue outputs.

Digital Transfers through the Inter-Processor Interface

As well as providing the appropriate control and feedback
values, the SDK-86 needs to communicate with the LSI-11/03
regarding the operating status of each "loop". This can be
done by using the PPI (programmable peripheral interface) of
the SDK-86 directly interfaced with the DEC digital 1I/0
unit. The information required by the LSI-11/03 can be
encoded into 3 bits as follows:

(1) "Loop" status, auto or manual, using 1 bit.

4.4.5

PAGE 38

(2) Two bits to inform the DDACS software of the

"change state"

00 "Hold™" f
10 "Raise"
0 1 "Lower'",.

This information would be used by the DDACS system to alter
setpoint values and manual control settings, as well as

initialising the PI or PID controllers.

Priorities and Interrupt Considerations

The clock scheduler of the DDACS operating system is
required to ensure that each SCHEME or task runs strictly at
the desired sample rate. If delays were to occur, say in
performing the A/D or D/A conversions, a "timeout" would
follow, resulting in a system halt. Clearly this must be

avoided.

It follows that A/D and D/A requests through the IPI to the
SDK-86 must be given a high priority through interrupt
control. The interrupt control circuitry uses a standard
INTEL controller chip. This has been implemented by Mr.
R.W. Korbel, together with a software "ring buffer" to

stack interrupts when necessary.

Auto/Manual or Raise/Lower requests from the operator may be
given a much lower priority. Hence no provision need be
made for the SDK-86 to interrupt the DDACS system. Instead,
regular polling of the auto/manual and raise/lower status

bits by an appropriate DDACS SCHEME will be adequate.

PAGE 39

4.5 SUMMARY
Summarizing the system, as defined so far, two processor levels
can be defined: P ‘

(1) The higher level LSI-11/03 running the DDACS operating
control software. This 1level supervises the various "loops"
controlling such things as sampling rates, feedback values
auto/manual and manual/auto transitions.

(2) The 1lower 1level SDK-86 which provides the operator
interface (via keypad and LED display) and controls the A/D and
D/A functions, as well as scaling and any pre-processing (or
post-processing) of data. The operator must control the

designation of "loops" as well as auto/manual transitions,

setpoint values and output to manual "loops".

The interface between the two levels will be functionally divided
into two areas:

(1) The IPI (Inter-Processor Interface) which will provide
the high speed parallel communication path for D/A and A/D data
and channel select control. This must provide for direct
interfacing to the LSI bus so that the SDK-86 "looks" like
standard DEC A/D and D/A modules. Thus the DDACS software will be
directly compatible with the interface. The SDK-86 must be
interruptable by DDACS.

(2) The "digital" interface which enables the LSI-11/03 to
obtain required status information from the SDK-86 (and therefore,
from the operator). This involves a direct interface between the
SDK-86 PPI (peripheral processor interface) and the DEC digital

interface.

PAGE 40

5. PROCESSOR SYSTEM

5.1 INTRODUCTION
The two level processor system chosen for the control of the
experimental stoves is described in this chapter.: Essentially it
consists of an 'upper level' PDP-11/03 interfacing with a " 'lower
level' INTEL SDK-86 microcomputer. The higher 1level control
functions are handled by the PDP-11/03 under control of a software
operating system <called DDACS (Direct Digital Automatic Control
System), developed by the Central Electricity Board, NE Region
Scientific Services Department [10]. The lower level functions,
including the house keeping of the D/A and A/D conversions, are

handled by the SDK-86.

Note that the SDK-86 software was developed 1in two stages.
Firstly, a simple, single loop control program was written with a
view to testing the hardware and interface functions. In this
stage the 'bumpless’ auto/manual transfer facility was
incorporated at the SDK-86 level. Secondly, as a result of a
review of the system specifications (section 4) the SDK-86
software was reviewed. This later work was largely done by Mr.
R. Korbel. In the stage two system, the auto/manual transfer

facility was incorporated at the PDP-11/03 level.

The choice of the PDP-11/03 followed the decision to use the DDACS

software since it was available (at the time) only in DEC MACRO-11
assembly language. This choice of software followed by processor

is a curious turnabout and well illustrates the growing trend to

PAGE 41

avoid or minimise software effort. This reflects the increase 1in

software development costs and the relative decrease in hardware

costs.

5.2 HARDWARE SYSTEM STRUCTURE

5.2.1 Introduction

A diagram of the hardware system structure 1is shown in
figure 5.1. From this it can be seen that the structure is
hierarchical with the PDP-11/03 acting as a flexible higher
level processor. It can handle slower PID control loops,
stove sequencing and also supply to the 8086 set points for

flow control.

Control over the 16 ADC (analogue to digital convertor) and
12 DAC (digital to analogue convertor) channels is exercised
by the 8086, as well as auto/manual and local/remote

transfers, and set point ramping and display.

Note that the structure of figure 5.1 is readily expandable

to a multi-processor system where the PDP-11/03 oversights

several 8086 processors (see figure 5.2). The IPI
(inter-processor interface) is designed so that each
processor can readily be addressed as Jjust another

peripheral.

Details of all relevant circuits and diagrams have been

included in appendix A.

5.2.2 PDP-11/03 Microcomputer

This microcomputer is based on DEC's (Digital Equipment)

PDP -11/03

vdu

Pl

display

SDK-86

keyboard

ade dac 1

dac 2| = =, =

= |

1 16
stove paramaters

|

to transducers

Control system Configuration

FIGURE 5.1

dac 12

|

PDP-11/03

1 n
1Pl Pl
SDK-86 SDK-86
stove 1 stove n

Multi-Processor Configuration

FIGURE 5.2

5.2.3

PAGE 44

LSI-11 16 bit microprocessor. The maximum direct address

space is 32K words.

A dual floppy disk drive provideglthe 'mass' storage area
and operator interaction occurs via a standard RS-232 serial

interface.

Because the assembly language is equivalent to that used in
the standard PDP minicomputer series, the system software
support is extensive. This will prove useful for further
software development at this level. At present the DDACS
control software system is to provide the higher level
control facilities required. In particular this will
include the 'feedforward' control of 'hot blow' flow rate to

achieve maximum thermal efficiency.

SDK-86 Microcomputer

The SDK-86 is a small design board incorporating the INTEL
16 bit 8086 microprocessor. It has a direct address space
of 1 Mbyte and provides sufficient computing power to handle
the required 'low level' control of the DACs, ADCs and the
setpoint ramping and display. As the system develops
further this processor could take more load from the PDP by
handling PID loops and also incorporating some degree of

digital filtering of the A/D inputs.

A real time control application of the 8086 has already been
reported by Newell and Bartlett [11]. Their system involves

the use of the 8086 to provide an intelligent interfacing

5.

2.4

PAGE 45

terminal which can be connected to any multi-user system.
To achieve this flexibility a serial line 1is wused between

the 'host' computer and their 'intelligent' terminal.

This configuration was not possible in our system because of
the real time responsibilities of the ‘'upper' level
processor. To provide the necessary speed of communication

a parallel inter-processor interface (IPI) was designed.

Inter-Processor Interface

Sk

5

The hardware interface has been built to provide a parallel,
high speed communications path between the two processors.
This inter-processor interface (IPI) enables the PDP-11/03
to control the activities of the 8086, as it would any other
device. The difference, of course, is that the 8086 can

behave as a highly intelligent peripheral.

Although the data can be transmitted in both directions the

mode of operation differs in each case and is controlled by

two distinct sections of the IPI. This is described below

with reference to figure 5.3.

The development of the IPI was the most time consuming part
of the project, although conceptually simple. Because it is
functionally simple the description that follows 1is short.
The hardware details of the functional blocks can be found

in appendix A.2.

Up Transfer

Data transfer from the 8086 to the PDP-11/03 is in the form

PDP-11/03

A
16
up transfer ! down transfer
|16 13 16 16
1; A 9 Y
CSR DBR Reg1 == ==} "Reg 15
A 1
6 12 16 16
16
b
SDK -86

Inter-Processor Interface (IPD)

FIGURE 5.3

PAGE 47

of 12 bit words and is handled by two intermediate IPI
registers; the command status register (CSR) and the data
buffer register (DBR). Both fungtion in the same way as the
CSR and DBR registers in the standard DEC analogue to
digital convertor module (ADV11-A). This 1is a welcome
convenience since it means that a programmer familiar with
PDP systems is already equipped to write the interface

control software.

When the PDP requires data from the 8086, it sets bit O
(least significant bit) of the CSR and éends a channel
address (bits 11, 10, 9, 8). This cén specify one of 16
channels. The 8086 detects bit O set (either on a scan
basis, or as an interrupt) and so knows that data is
required from the specified channel. This data is written
to the DBR (a 12 bit word). When this is received in the
DBR bit 7 of the CSR is set and the 'start bit' (bit 0) is

cleared.

The PDP can determine that data is available in two ways;
(1) firstly, it can scan the CSR and test bit 7 or,
(2) it can 'condition' the transfer to operate on an
interrupt basis by previously setting bit 6. 1In this case

bit 7 will generate an interrupt when set.

There is also facility for setting an error flag (bit 15 of
the CSR) when the PDP;
(1) attempts to request data before a previous request

is honoured or,

5.2.6

PAGE 48

(2) fails to read requested data before further data

arrives.

Bit 15 can also be made to interrupt the PDP by setting bit

14 (i.e. interrupt on error).

Down Transfer

D a2l

Figure 5.3 illustrates the 'down transfer' section of the
IPI. This enables 16 bit words of data to be transferred
from the PDP-11/03 to the 8086, along one of 15 separate

parallel channels through intermediate registers.

The PDP-11/03 simply writes to each register as a separate
memory location whenever it is necessary to send data.
There is no direct facility to inform the 8086 when data has
been sent, although bits in the CSR could be used for this

purpose.

However, this added complexity was not considered necessary.
The 8086 need only treat these registers as the source of
predefined (by software) parameters and data which it reads
as necessary (eg. flowrate value). The PDP-11/03 is left

responsible for updating these registers.

A/D and D/A Convertors

For a full four stove system 12 A/D and 12 D/A channels
would be required. To meet these requirements Analogue
Device's AD363 data acquisition system was chosen to perform
the A/D conversions and Burr-Brown DAC80 D/A convertors were

chosen to perform the D/A function (see appendix A.4 for the

PAGE 49

relevant data sheets).

Both devices are 12 bit convertors and have been
incorporated on one SBC-80 board (INTEL standard). The
hardware details, including addressing information etc. has

been included in appendix A.

The AD363 includes a 16 channel multiplexer and control
logic to provide 16 single-ended or 8 differential inputs.
Its throughput is typically 30kHz, thus meeting the

necessary speed requirements.

5.3 SOFTWARE

5.3.1

Introduction

5.3.2

From the hardware structure described, it can be seen that
two software ‘'packages' are required. For the PDP-11/03 a
software operating system called DDACS (Direct Digital
Automatic Control System) was employed. As has Dbeen
mentioned, this has been developed by the Central
Electricity Board, NE Region Scientific Services Department
as a general purpose operating system for control

applications.

PDP-11/03 Software (DDACS)

A detailed description of DDACS, including operating
instructions, can be found in the manual written by the
software authors [10]. A summary of DDACS operation and
facilities has been incorporated in appendix B.1.

Essentially it is a self-contained operating system designed

PAGE 50

to wutilise a 'building block' concept to implement general

purpose control systems in a fairly straight forward manner.

The operating system includes a ‘}eal time executive with
clock scheduler, an editor and the DDACS compiler. Using
the editor the building 'blocks’ {(in the main these are
simply calls to subroutines from a standard library) can be
linked together to form a 'loop' which runs at a specified
time rate. Any number of these control 'loops' can be
brought together in a 'scheme'. While selected 'schemes'!
are running the operator can be constructing/altering other

'schemes' as a background function.

There are 70 'blocks' available for building the control
loops and include the usual arithmetic and logic operators,
an integrator, a first order 1lag and an absolute PID
controller block, input/output blocks and functions such as

SQRT, SIN, COS, EXP etc.

As well as the facility to reconfigure 'schemes' while
on-line, DDACS provides a number of other useful features;
full propagation of data errors in a fail safe manner,
automatic sequencing of 'loops' of different period and the
capability to prevent reset or integral wind-up and to

ensure bumpless manual/auto transfer.

Although a machine independent version of DDACS 1is under
development (in CORAL 66) the current version was written in

DEC MACRO-11 assembly language. Hence the choice of 'high

5.3;3

PAGE 51

level' processor.

SDK-86 Software

The first version of the SDK-86 software (stage 1) was
written to handle one control loop only, to enable simple
testing of the hardware and processor interaction. The
auto/manual transfer facility was incorporated at this level
during stage 1. The software was written in PLM-86 (a high
level block structured language developed by INTEL) and was
designed using a 'state machine' approach. Each keyboard
entry 1is assigned a number which acts as a pointer in the
current 'state' of the 'parser table'. The entry in this
table determines the next 'state' to enter and the required
action to be taken (if any). A listing of the software and
a description of the ‘'parser table' are included in

appendices B.2 and B.3.

By appropriate keyboard selections the Qperator can;
(1) examine the setpoint value (or transducer input if
in manual) as a percentage of full span,

(2) change the above values in selected increments or

decrements,

(3) perform auto/manual transfers.

The software was written to incorporate the algorithms as

describe in section 5.4.

Stage two of the SDK-86 involved a total revision of the

software to more accurately reflect the newly defined

PAGE 52

specifications (chapter 4). Again it was developed wusing
PLM-86 (largely by Mr. R. Korbel) . Because of the
existing comprehensive facilitiqs provided by DDACS the
auto/manual transfer facility was incorporated at the higher
level .in stage two. Software description and 1listings are

included in appendices B.4 and B.5.

5.4 OPERATION - STAGE 1

5.4.1 Introduction

The operator, under normal conditions, interacts with the
control process via the keyboard and 8 digit display of the
SDK-86. The keyboard will be used ﬁo select control 1loops,
to display and, if necessary, alter set points (when in auto
mode) or loop outputs (when in manual mode). The actual
keyboard operation required to accomplish the above
functions, under the current software, 1is detailed in

appendix B.

The selection of auto or manual modes (described below) is

also accomplished via this keyboard.

When the 'feedforward' control procedure 1is incorporated
(thermal efficiency control) the operator will also be able
to use the keyboard to select 'local' or 'remote' operating
schemes for 'hot blow' auto loops. Under 'local' mode, the
'hot blow' flowrate set point is set by the operator. Under
'remote' mode it will be provided by the PDP-11/03 in

accordance with its 'feedforward' calculations.

5.4.2

PAGE 53

The 8 digit display on the SDK-86 board is used to indicate
the operating mode and the set point or regulator output

value.

Auto/Manual Transfer

The existence of the auto/manual option serves two
functions. It provides a convenient facility for 'start up'
of the control system by enabling the operator to manually
bring the stoves into an acceptable operating region before
switching to auto control. Secondly, once auto operation is
achieved, individual 1loops can be singledlout for manual
control when desired; this manual back-up is essential in
an industrial system in case of failure of the higher level

control functions.

In order to understand operation in each of the modes,
consider figure 5.4. During auto operation a set point
value (SP) is taken from reg 1. This becomes the input of a

single feedback control loop.

During manual operation the input (taken from reg 2)

directly controls the output to the 'final control element'.

There is no feedback as in the auto case.

The problem then presents itself as to how switching between
the two modes is to be accomplished. The essential of such
a transfer is that there be no 'jump' in the plant output.
In some analogue controllers this 'bumpless' transfer is

dependent upon the operator properly adjusting set points

Initial Condition

lac
PID,
reg1 |+ Ya I gac plant A
SPN\~ scale
FB; 1
&
scale - adc
‘ Auto
Ym o/P
reg 2 > dac plant -
'
adc
Manual
scale
JFBm

Auto/Manual Operation

FIGURE 5.4

PAGE 55

before switching. It 1is <clearly more desirable to make

smooth transition independent of what the operator may do.

The simple, yet effective, séheme of figure 5.5 was
developed to deal with this. Essential to this scheme is
the method adopted to change set points (reg 1 and 2
contents). Rather than loading a set point value directly
into the registers (reg), a value (entered via the ‘SDK-86

keyboard) 1is used to increment or decrement their contents.

When in auto mode (figures 5.4 and 5.5) Y,is continually
used to update reg 2. Thus when a switch is made to manual,
reg 2 contains the last PID output whiéh then becomes the
plant input. This means that the plant input is unchanged

during transfer.

During manual operation Y;is used to update the PID block IC
(initial condition) and FB is used to update reg 1. This
ensures that, when transfer back to auto is made, the output
of the plant 1is wunchanged and the error input to the PID
block 1is zero. Thus again 'bumpless’ transfer is

accomplished.

5.5 OPERATION - STAGE 2

5.5.1 Introduction

This software was developed largely by Mr. R. Korbell. It
is relevant to this thesis, however, in that it forms part
of the overall system as originally conceived. Also, it has

made it possible to confirm the feasibility of the system

A

keyboard +
value + reg 1 X

—_— redg 2

Auto

A

reg 2 >

EEEL—» reg 1

Manual

Auto/Manual Transfer
FIGURE 5.5

5.5.2

PAGE 57

for use as a 'control research tool'.

Again the operator interacts via the keypad, as in stage 1.
This stage of software, howeve?, enables multiple loops to
be controlled. Basically the operator assigns a 'loop
number' to a DAC and ADC channel (not necessarily the same
channel numbers). In this way a given control loop can be
identified by such a 'loop number'. Having done this, set
points can be examined and changed and auto/manual transfer

can be initiated.

The DDACS 'loops' must of course be configured in manner

consistent with the SDK-86 'loop' assignments.

All loop processing (i.e. determination of DAC output

values in a feedback 1loop, auto/manual transfer and any

higher order processing) is still, of course, done by DDACS.

Operation

The low level process control is done using the keypad on

the SDK-86. Three levels (or modes) of operation exist:

(1) The Select Mode. This is the 'highest' level mode.
Basically, it provides the operator the means to enter
either of the other modes (channel or 1loop). This 1is
accomplished as follows;

- press "," to toggle between the 'channel' select

state and the 'loop' select state (not mode),

- press a digit to define the 'channel' or 'loop'

number of interest,

PAGE 58

- press "." to enter the mode as defined above.

(2) The Channel Mode. This mode is always associated
with a particular channel numbér as defined in the 'Select
Mode'. From here the operator can examine the percentage
span or hexadecimal value of the specified DAC (output
value) or ADC (input value). This is done as followsj;;

- press ":" to toggle between percentage span and

hexadecimal display,

- press "," to toggle between ADC and DAC display.

In addition the following commands are available;
- press "+" to examine the next channel,
- press "-" to examine the previous channel,

- press "." to return to the 'Select Mode'.

In each case the variables being displayed (including the
channel number) are identified on the display.

(3) The Loop Mode. This mode is always associated with
a particular loop number as specified in the 'Select Mode'.
From here the operator can assign any ADC and DAC channel to
the current 1loop. In addition auto/manual transfer and

setpoint changes can be effected. The commands are as

follows;

press "+" to raise the setpoint (ramp),

press "-" to lower the setpoint (ramp),

press ":" to cancel the raise or lower functions,
- press "“REG" to initiate the 'loop assignment'

procedure; this is followed by "DAC channel number",

PAGE 59

wonw_ M"ADC channel number", "." to complete the
assignment,

- press "," to togglegbetweqn 'auto' and 'manual' 1loop
status,

- press "." to return to the 'Select Mode'.

In each case the variables being displayed are identified on

the LED display.:

5.6 SYSTEM PERFORMANCE
Although exhaustive tests have not been performed on the system
the criteria specified in chapter 4 have all been met. In
particular, the throughput of the IPI is sufficiently high to cope

with the maximum input/output capability of the PDP-11/03.

PAGE 60

6. CONCLUSION

A basic system structure for control of a laboratory model of a blast
furnace stove has been designed and developed. The hardware has been
built and tested. The IPI is sufficiently fast so as not to 1limit

PDP-11/03 input/output speed.

Stage 2 of the software is complete and has enabled initial loop tests

to be tried, demonstrating the feasibility of the system.

The result has been that sufficient processing power and interface
speed 1is available to produce a flexible research tool that can

readily handle more demanding control applications.

The system configuration chosen is such that it can readily be adapted
to a multiprocessor system of one low level microcomputer per stove;
this would be the recommended approach for an industrial installation.
In addition, the processing power of the 8086 lends itself to the
possibility of further processing of data at the low level.
Facilities that could be added include;

(1) handling some local PID loops,

(2) noise filtering of A/D input data,

(3) testing for validity of input data,

(4) limiting inputs and performing other functional mapping.

In retrospect, a number of observations can be made with regard to the
project. Firstly, because of the time extent of the work,
technological progress in the electronics industry makes some of the

choices seem 1inappropriate. For example, the 8086 processor was the

PAGE 61

only 16 bit microprocessor on the market at the time of decision.
Since then, new developments have made other processors available
which may have proved more appropriatq? (eg. the MC68000, see

reference [14]).

However, this problem is characteristic of any longer term development

in this field.

Secondly, a need exists for a rebuilding of the hardware (IPI and the
D/A, A/D boards). The prototypes have proven the validity of the
design (in light of the specifications) but are a definite maintenance
liability. The preferred approach would be to develop printed circuit

board assemblies.

10.

1.

12.

13.
14,

PAGE 62

REFERENCES

J. Beets, H. Elshout and G. deJong, "Computer Control of a Hot
Blast Stove System," Journal A (Beygium), vol. 18, no. 1, pp
31-37, 1976.

C.P. Jeffreson, "A Computer Control System for Blast Furnace
Stoves," Seventh Australian Conference on Chemical Engineering, pp
22-24, Aug. 1979.

P. Budimir and C.P. Jeffreson, "Microprocessor Control of an
Experimental Stove System," Conference on Microprocessor Systems,
pp 107-110, Nov. 1979.

J.C. Buker and N.F. Simecic, "Blast Furnace Stove Analysis and
Control," ISA Trans., vol. 2, pp 160-167, 1963.

H. Kwakernaak, P. Tijssen and R.C.W. Strijbos, "Optimal
Operation of Blast Furnace Stoves," Automatica, vol. 6, pp 33-40,
1972.

C.P. Jeffreson, "Feedforward Control of Blast Furnace Stoves,"
Automatica, vol. 15, pp 149-159, 1979.

M. Jakob, "Heat Transfer," vol. 2. New York: John Wiley, 1957.

P. Zuidema, "Non-stationary Operation of a Staggered Parallel
System of Blast Furnace Stoves," Int. J. Heat Mass Transfer,
vol. 15, pp 433-442, 1972.

H. Kwakernaak, R.C.W. Strijbos and P. Tijssen, "Optimal
Operation of Thermal Regenerators," IEEE Trans. Automatic
Control, vol. 14, pp 728-731, 1969.

L.R. Johnstone, C.R. Marsland and S.T. Pringle, "A Distributed
Computer Control System for a 120 MW Boiler," Proc. Intern.
Conf. on Distributed Computer Control (Inst. Elec. Engrs.
London), pp 114-119, 1977.

R.B. Newell and E.G. Bartlett, "A Computer Independent Real-Time
Process Interface Unit for Multi-User Computers," Aust. Jl.
Inst. Control, pp 56-60, June 1979.

C.P. Jeffreson, "Dynamic Simulation of Thermal Regenerator
Systems under Variable Flow Conditions," accepted for publication
subject to revision, The Chem. Eng. Jl., 1981.

Personal Communication.

R.D Grappel and J.E. Hemenway, "A Tale of Four MPU's: Benchmarks
Quantify Performance," EDN Magazine, April 1, 1981.

APPENDIX A

HARDWARE DESCRIPTION

APPENDIX A

A.1 INTRODUCTION

The 'lower level!' processor and associated hardware reside on
three bogrds; e
(1) the SDK-86 comes on a single board,
(2) the ADC, -DACs and ‘decoding hardware resides on .a
standard SBC-80 board, -

(3) the IPI resides on a standard SBC-80 board.

These all fit into a four slot carriage with a common back

plane which shares the SDK-86 signals (described in A.2.2).

The power supplies are separate units.

APPENDIX A

A.2 INTER-PROCESSOR INTERFACE BOARD

APPENDIX A

A.2.1 BOARD LAYOUT

000000

o
+ ER " SO

B17

B16

B15

B14| |A20

B13

B12

B11

—R1
B5

B4

B6

B7

B3

B8

B10

B9

B2

B1

A5

A6

2R3

A18

A19

A3

A4

0000000

—cR2

A1

A2

‘A16| |A17

Al1

A12

A13

A14

AS

A10

A7

A8

C2

C4

C6

C8

CS

C1

C3

C5

c7

c10

Cc17

C15

C13

C11

C18

C16

C14

c12

PDP signals

SDK-86 signals

APPENDIX A

A.2.2 EDGE CONNECTIONS

PDP SIGNALS

PIN NUMBER SIGNAL PIN NUMBER SIGNAL
1 BDALO L 3 BDAL1 L
5 BDAL2 L 7 BDAL3 L
9 BDALY L 11 BDALS5 L
13 BDAL6 L 15 BDALT L
17 BDAL8 L 19 BDAL9 L
21 BDAL10 L 23 BDAL11 L
25 BDAL12 L 27 BDAL13 L
29 BDAL14 L 31 BDAL15 L
33 BWTBT L 35 BDOUT L
37 BRPLY L 39 BDIN L
41 BSYNC L 43 BIRQ L
45 BIAKI L 47 BINIT L
49 BIAKO L EVEN PINS EARTH

SDK-86 SIGNALS

PIN NUMBER SIGNAL PIN NUMBER SIGNAL
1 EARTH 2 EARTH
3 + 5V L + 5V
5 + bV 6 + 5V

11 EARTH 12 EARTH
13 + 15V 14 + 15V
15 EARTH 16 EARTH
17 - 15V 18 - 15V
34 INTR 35 SELDO/
36 SELD1/ 37 SELD2/
38 SELD3/ 39 BM/IO
40 BRD/ 41 BWR/
43 AD15 by AD14
45 AD13 46 AD12
y7 AD11 48 AD10
49 AD9 50 AD8
51 AD7 52 AD6
53 AD5S 54 ADL
55 AD3 56 AD2
57 AD1 58 ADO
59 BD15 60 BD14
61 BD13 62 BD12
63 BD11 64 BD10
65 BD9 66 BD8
67 BD7 68 BD6
69 BD5 70 BDY
71 BD3 72 BD2
73 BD1 74 BDO
75 EARTH 76 EARTH
81 + 5V 82 + 5V
83 + 5V 84 + 5V

85 EARTH 86 EARTH

APPENDIX A

A.2.3 ADDRESS DECODING AND BUS INTERFACE

‘BDALO L to ‘BDALIS L’

5 BIAKO L —AKO
1 3 o
o> - +DAOQ '
; 5 220
> N +»DAO1
> i D2 8T38
> 8T38 2 »DAO2
15 13 <03
> 5 ~DAO3
7
<D4
— ~DAO4
<D5
Co— A2 +DAOS
D6
— 8T38 ~DAOG
D7
> ~DAO7 741_31101 _y
106 8o 0 flo———SELY
A2 9 ~IVEC/
41&{13 8(A1 10
C> *DAOS 9
D9 DIN/-.————§o<]5—-DlN
> A3 ‘D;@DAOGJ A2 74L.504
> 4011[):\011 DOUT/ J@}DOUT
13
74L.S00
- D12
DAOTZ l:BWTBTL WTBT
> A4 = | DAgi BIAKI L YIAKI
4014 D_— AB >
> 8T38 DAO14 BIRQ L = <IRQ
058115? = 6738
> ’ BINIT L INIT
o :
A2
3

1
13
o
2L S00 -
4 P 1_2 74510
5| al IVEC/
>
741504 A2 2}2K
BSYNC L e o— 3 82
=1 3 . 2 6 18 1 .0
BDOUT L 4 5 SYNC 4 Al8 8 ISELD2/ 2 i
L a5 6 . 5 1 3
BDIN L 11 DOUT .3} 74L509 BM/I0 4
D_JZ 12 o 3 10] 5 %
8738 N — A4 [0
14 [[IDIN ©_12 6_ =
BRPLY L 45 S5 > o
7 o 74154 |9 S
1 % 10 .3
m— A9 13,5
% = 20 {14 .o
1 741509 ﬁggg 21 %;
— AD2[>—2< 16 .
_— AD1>—23 17 .15
\ 15—
x10K 3 |13
132 b e magped 2 —23) o
14 3 T 3 4 8
DAO15 6 9
si—X8l a5 228 5], Ao |8 WTBI—=% A9
ol I 37 [l M R e 741500
—~ 314 15, © 4
7 316| 810 [17.:, 12 3
[19,0 4 o BN
“R2t 18 IS B =
1.2K 20 23 5
22 134 = ==
ol p —
z - N\
I
.o
2 1 74154 o
DAO3 L 2 - 3
DAO2~ o As | I
DAQT— 745375 —
5 4 1 £
smc-—@4 12 13 | —*
2 .15

741.502

APPENDIX A

A.2.4 UP TRANSFER (CSR AND DBR HARDWARE)

8 10 .4 1 JBWR/

7ases |\ OB op g,
2|B14 2 |49 ” = ~WRIO
74502 |' 2NN
LBO/ & DAQ@ ||o I5 <JINTR
s B3 Bl [E | 2 89 S oo
—r T 4 1 | 4 B9 B
seLe/| — DA03 || 3| 74Ls74 B g 7 e
11 8 12 g 0
13 12] 74Ls365l11 oo
B——D5
. = °1-5——r-'GEL0/
DAO6 > <DIN/
’ = 4—~ 6 | |INT7
74574 [5/B14 e
Ly
] Bt 1SFbs
’ <IBD1
5 DAOS 7415365 0383
2)Big o B | _ BD4
HBO/ DAOQ | [} 74LS74 [| 111 i <§|]-'0/
- | 1180
—q b———}
- | | | oen [109
pAo1R | || —/ | | ——D9
> ‘. B4 T ; - ~D10
— . - o— 1= 74L.S365 . ;8}11
DAO11 | |[™] 74LS74 1T — =
' ' o
—q S O
paola | || [RGN ‘.1373__1._2>°+'|Nﬂ5/
. B 74LS00
DAOIS | |[{ 7aLs74 | W71 [] BS | B 10
1 Ny S R et
. En T |
Rl sv °
1.2K3 ~RX

o

‘DO’ to ‘D5

I <
@D_—i Ny g B16 7L__.
Y VR 10 g
@ B 9 127415365011
o . B
S DD 13 2 14 3
14]74LS373})5 L (.
T 5 " 5]
o L>g] o~ o
i -
2 nl 1 RS
] B14 - te) 6X10K R
. I P
741500 e 6 3= | B17 .
o = -
| . P I .
S 5 |74LS365 -
; . : Iz .
D= s
L - E—
e AL |
oy 27T E | -
Q N> Jrarsars| 7 1 5 o) Bl
| . - L 5| B8 & |
WRIg—{= — Hrasies Il
A i 13]
| . RQ 1AKI
INT15 /12 N P
INT 77— 255 3 B [°
| | [12]74Ls74 [9] |
— 1y B | |
~DIN~- . . 74LS00
— 12, 8L N -

741502
o)

@

APPENDIX A

A.2.5 DOWN TRANSFER HARDWARE

i 3 2
o 4 5
- 7 6
- gl I |9
i 13 12
- 14]741.5373[15
_ 17 16
DOUT/ de 2% S 18 19
2 11
Q 1
SELX/ o
)
O
<< o
S
i i
i 7418373
15>
. SELIX/ b 2%
e
~3
BRD/
KEY X a b c d e
1 ¢ 21 3 ¢l 32
2 (5 546 € 635
3 ¢C5 211 ¢nwr
4 C5 91 8 ¢l 8 9
5 6 2 1 3 €2 3 2
6 C6 54 6 C2 6 5
7 C6 121311 €21 12
8 C6 91 8 C2 8 9
9 €7 2 % 3 €3 32
1 ¢7 910 8 C3 8 9
11 CZ 1213 11 C3 11 12
2 ¢c8 5 4 6 C4 65
B3 ¢c8 2 1 3 ¢4 32
4 C8 910 8 C4 8 9
15 €8 1213 11 C4 1112

)

—_ =2

o—-0Ww

WO —-hrW

O
(.OI-_'

(@]
—
—

o
p §
o
FNN]

(@)
—
Ul

(@]
—
~J

A[ATAJATATATATA

AOBAAAN

—
($]

OO0
— | b
10)]

S

‘BDO’ to ‘BD1S

O
2 =

Q)
—
(00

APPENDIX A

A.2.6 SDK-86 ADDRESSING

The I/0 addressing of the IPI registers, by the SDK-86 1is as
follows (addresses in hexadecimal);f
(1) read CSR register FFUYo0,
(2) write to DBR register FF40,
(3) read from 'down transfer' registers,
register 1 FF42

register 2 FF4Yy

register 15 FF5E.

A.2.7 PDP-11/03 ADDRESSING AND INTERRUPTS
The I/0 addressing of the IPI registers by the PDP-11/03
depends upon the switch settings of switch S1. The address

word (binary) is;

1111sssssssaaaaa
7654321
switches
The bits sssssss are set by the switches S1 as indicated to
choose the required address range. The bits aaaaa are used to
specify the IPI options as follows (low byte, high byte);
(1) write to CSR register 00000, 00001
(2) read CSR register 00000, 00001
(3) read DBR register 00010, 00011
(4) write to 'down transfer' registers,

register 1 00010, 00011

A.2.8

APPENDIX A

register 2~ 00100, 00101

’T

register 15 11110, 11111

The interrupt vector word from the IPI depends on the settings

on switch S2 as follows;

0000000sssssst00
654321
switches

The bit 't' specifies the type of interrupt;

(1) t = 0 when a 'DONE' interrupt ‘(fesulting from the
SDK-86 writing to the DBR),

(2) t = 1 when an 'ERR' interrupt (resulting from an
error condition as described in section 5.2.5).

Note that interrupt (1) has highest priority.

IPI REGISTER DESCRIPTIONS (CSR AND DBR)

The DBR (Data Buffer Register) bits are defined as follows

(bit 0 is the least significant bit);

bits 0 to 11, data transferred from SDK-86 to PDP-11/03,

bit 12, reflects the state of bit 3 of the CSR.
The CSR (Command Status Register) bits are defined as follows;

bit 0, informs the SDK-86 that data is required (cleared
when the SDK-86 writes data to the DBR),
bit 3, if set then bit 12 of the DBR will also be set,

bit 6, when set, an interrupt will be generated when the
SDK-86 writes to the DBR,

APPENDIX A

bit 7, set when the SDK-86 writes to the DBR,
bits 8 to 11, channel address (bit 8 is the LSB),

‘bit 14, when set, an interrupt will be generated on
error condition (as defined in section 5.2:.5), ‘

" bit 15, set on an error condition (section 5.2.5).

an

APPENDIX A

A.3 DAC/ADC BOARD

APPENDIX A

A.3.1 BOARD LAYOUT

DAC
adjustment

offset
gain

w N

~N O g

10

"

*DAC out’ and “ADC in’ signals

S6 gain
links R7
4 4 19 1
DAC g AIS ADC S4
1 4
[RE
Zero
1 11
G4 G5 G6
4
G1 G2 G3 S5
L1 LO L3 L2 LS L4 L7 L6 LS| L8} L1 L19 !
X
F1 F2
H1 HO H3 H2 HS H4| |H7 HE H9 H8 H11 H10 F3

SDK-86 signals

A.3.2 EDGE CONNECTIONS

APPENDIX A

The SDK-86 connections are the same as for the IPI board

they both share the same back plang.

The other signals come out of the top edge of the board

follows;

PIN NUMBER

EVEN PINS
2 to 32
78 to 100

SIGNAL

+A/DO

+A/D2

+A/DY

+A/D6
+A/D8,~A/DO
+A/D10,-A/D2
+A/D12,-1/D4
+A/D14,-A/D6

D/A11

D/A9

D/AT

D/A5

D/A3

D/A1

EARTH
EARTH

PIN NUMBER

SIGNAL

+A/D1
+A/D3
+A/D5
+A/D7
+A/D9,-A/D1
+A/D11,-A/D3
+A/D13,-A/D5
+A/D15,-A/DT7
D/A10
D/A8
D/A6
D/AY
D/A2
D/AQ

as

as

APPENDIX A

A.3.3 ADC SECTION HARDWARE

5 2 8
62 ——<j3 ADO 13 ‘ %GECSBWR/
SELD@/
74LS74 L1 45y 61 :
a1 74,502
1 32 1 28 4Py
"

S S s -2 1w
7 29 S & E
B BSe 5o gl
F O apse3s [H8@. o Tl AD3s3 |23 sS4
o 2 55 I8 § 8 22 4]
= O Er<2S S & -

s B3 A Rixz.y § Y A 3omiTv
e e 23 Aoy P <12 R r$20K
F o>l 22 AC o U pero adjustlisy
H8 57 COTlea 27 $ 1000
131\ 21 . T "y OV 14 18 gain adjust
16 Ty 1-|"FIE;[1E.2, B &
= 2X1uF =
+5v 7
20— 6 5 — <13
56K .| 63 [15382K [~ — 2 B4
2 14 T6.8nF ~— s —Y D &
10 1 N S 14 | EDa
- 9 = S 1%2' | S
+5v 5 .1. ‘g ‘ 8
(& a
G4 . 66 _<]:]
, - <1BD@
coo——]"H-S3L gy coTi 74LS3651 _ —gp13
CD1— _<)BD2 D1 <8012
SELDO/[>—— %
BRD/ > 9

APPENDIX A

A.3.4 DAC AND DECODE SECTION HARDWARE

Xx=0 to1

H5V gai
33M gain
23 LJ\»—%’I@@K adjus
GD__:S L ?Ig ﬁ 13 l'-'_?%l\",[: -15v
=1 10 12 22 5y
3| 7ALS174|2 g 14__ 1 -:gs\{ -
5 T T T, 3X
- = g 7 7 X 24 ¥ F
;O B souptSron
< 20 : adjus
o DAC 80 }WK
o -15v
c 21
S > Hx : T % s6
s g 4 19 o \blue
= 7415174 3 18 —911 yellow
> {] |
1>— 1 15 D/AX
\ A
SDx/
8X2.2K83 BWR/ 18 12 o
+5y =22 19 =
15> 2+ BB/ ; ey
. 2 i = =
Ts) 5 F2 6 DJ_Q F1 P
EDE 7 8 5[: 3] E3 — |6 v
e 0F | I LS, — 2
2 8130 fla3 | AP>6 [74Ls155(6 y 8 . .
5 B T 5 oDV |uLsisalo L S
2 =74 T+ »S 6. S
=18 18§ ~1 4 —ISELD3/ o _, 2
25521 20 1 1 i
+5y—a3) 22 35y 5 13 .19
,_—011 13 AD4D§?- '
& AD3L__>§§
ADZL__>"2—:3
AD1C><2

A.3.5

A.3.6

APPENDIX A

ADDRESSING
This board contains the major decoding hardware (for signals
SELDO to SELD3) as well as the lgcal decoding hardware. The

address word is as follows;

ssssssssOaabbbbb

87654321

switches
The switch values are set by switch S3 (s = 0 when off, s =1
when on). Bits aa are used to select the device as follows;

(1) 00 selects the ADC (SELDO),

(2) 01 selects the DAC (SELD1),

(3) 10 selects the IPI (SELD2),

(4) 11 not used.

The bits bbbbb are used for further decoding as described in

sections A.3.6 and A.3.7.

A/D CONVERSION

An A/D conversion consists of two steps. Firstly, the SDK-86
must initiate the conversion by addressing the ADC as
specified in A.3.5. The bits bbbbb are used to specify the
channel number (high order 4 bits) and the conversion mode
(the LSB is set to O for single ended mode and 1 for

differential mode).

Secondly, the SDK-86 reads from the ADC (bits Dbbbbb can be
chosen arbitrarily). Bit 0 (LSB) is 0 if the conversion is

complete. When complete, bits 12 to 1 contain the converted

value.

A.3.7 D/A CONVERSION

APPENDIX A

To perform a D/A conversion, the spk-86 simply writes the data

to be converted

to the address as specified in A.3.5 above.

The four high order bits of bbbbb are used to select the

required convertor (15 channels).

A.3.8 ADC RANGE SELECTION

The ADC range is selected by switches S4 as follows;

range

0 to

0 to
-2.5 to
-5 to
-10 to

A.3.9 DAC RANGE SELECTION

S5v
10v
2.5v
5v
10v

on
off
on

off
off

switches

3 2 1
off on off
off on off
on on off
on on off
on off on

The range selection for the DACs is made using two wire straps

taken to 4

follows;

sockets

range

-10 to
-5 to
-2.5 to
0 to

0 to

A.3.10 ADC SAMPLING

Two sampling

10v
5v
2.5v
10v
5v

MODE

(labelled S6 on the circuit diagram) as

wire straps
blue

yel
2

— ot —)

low

3
3
3
m
i

(also bridge 2 and 3)

(also bridge 2 and 3)

modes are selectable;

(1) continual sampling for slow signals,

APPENDIX A

(2) sample and hold for fast signals.

The selection is made using the switches S5 as follows;
switches
4 3 2 1

continual sampling off on off on
sample and hold on off on off

APPENDIX A

A.4 DATA SHEETS (AD363 and DAC80)

ANALOG

FEATURES
Versatility
Complete System in Reliable IC Form
Small Size: Two 32 Pin Metal DIP’s
16 Single-Ended or 8 Differential Channels with
Switchable Mode Control
Military/Aerospace Temperature Range: -55°C to
+125°C (AD363S) MIL-STD-883B Processing
Available
Versatile Input/Output/Control Format
Short-Cycle Capability
Performance
True 12 Bit Operation: Nonlinearlty <t0.012%
Guaranteed No Missing Codes Over Temperature Range
High Throughput Rate: 30kHz
Low Power: 1.7W
Hermetically-Sealed, Electrostatically-Shielded
Metal DIP’s
Value
Complete: No Additional Parts Required
Reliable: Hybrid IC Construction, Hermetically Sealed
by Welding. All Inputs Fully Protected.
Precision +10.0 +0.005 Volt Reference for External
Application 7
Fast Precision Buffer Amplifier for External Application
Low Cost

PRODUCT DESCRIPTION

The AD363 is a complete 16 channel, 12 bit data acquisition
system in integrated circuit form. By applying large-scale linear
and digital integrated circuitry, thick and thin film hybrid tech:
nology and active laser trimming, the AD 363 equals or exceeds
the performance and versatility of previous modular designs.

The AD363 consists of two separate functional blocks, each
hermetically-sealed in an electrostatically-shiclded 32 pin metal
dual-in-line package. The analog input section contains two
cight-channel multiplexers, a differential amplifier, a sample-
and-hold, a channel address register and control logic. The
multiplexers may be connected to the differential amplifier in
cither an 8-channel differential or 16-channel single-ended con-
figuration. A unique feature of the AD363 is an internal user-
controllable analog switch that connects the multiplexers in
cither a single-ended or differential mode. This allows a single
device to perform in cither mode without hard-wire program-
ming and permits a mixture of single-cnded and differential
sources to be interfaced to an AD363 by dynamically switching
the input mode conrrol.

Complete 16-Channel
12-Bit Integrated Circuit
Data Acquisition System

s R,

The Analog-to-Digital Converter Section contains a complete
12-bit successive approximation analog-to-digital converter,
including internal clock, precision 10 volt reference, compara-
tor, buffer amplifier and a proprictary-design 12 bit D/A con-
verter. Active laser trimming of the reference and D/A conver-
ter results in maximum linearity errors of 0.012% while per-
forming a 12 bit conversion in 25 microseconds.

Analog input voltage ranges of 2.5, +5.0,110, 0 to +5 and

0 to +10 volts are user-selectable. Adding flexibility and value
arc the precision 10 volt reference (active-trimmed to a toler-
ance of £5mV) and the internal buffer amplifier, both of which
may be used for external applications. All digital signals are
TTL/DTL compatible and output data is positive-true in paral-
lel and serial form.

System throughput rate is as high as 30kHz at full rated ac-
curacy. The AD363K is specified for operation over a 0 to
+70°C temperature range while the AD 363S operates to speci-
fication from ~55°C to +125°C. Processing to MIL-STD-883B
is available for the AD363S. Both device grades are guarantced
to have no missing codes over their specified temperature
ranges.

DATA ACQUISITION SUBSYSTEMS 317§

SPECIFICATIONS (typical @ +25°C, 15V and +5V with 2000pF hold capacitor as provided unless otherwise not

MODEL AD363K AD363S
ANALOG INPUTS
Number of Inputs 16 Single-Ended or 8 Differential
(Electronically Selectable) *
Input Voltage Ranges
Bipolar 12.5v, 5.0V, 110.0V "'
Unipolar 0to +5V,0 to +10V *
Input (Bias) Current, Per Channel +50nA max *
Input Impedance
On Channel 10'°Q, 100pF B
Off Channel 10'°Q, 10pF .
Input Fault Current (Power Off or On) 20mA, max, Internally Limited
Common Mode Rejection
Differential Mode 70dB min (80dB typ) ® 1kHz, 20V p-p *
Mux Crosstalk (Interchannel,

Any Off Channel to Any On Channel) -80dB max (-90dB typ) @ 1kHz, 20V p-p *
RESOLUTION 12 BITS e
ACCURACY

Gain Error! +0.05% FSR (Adj. to Zero) .
Unipolar Offset Error +10mV (Adj to Zero) *
Bipolar Offset Error 120mV (Adj to Zero) *
Linearity Error FLSB max »
Differential Linearity Error +1LSB max (+%LSB typ) ¥
Relative Accuracy $0.025% FSR .

Noise Error

1mV p-p, 0 to 1IMHz

TEMPERATURE COEFFICIENTS
Gain
Offset, 10V Range
Differential Linearity

+30ppm/°C max (+10ppm/°C typ)

+10ppm/°C max (x5ppm/°C typ)

No Missing Codes Over Temperature
Range

+25ppm/°C max (£15ppm/°C typ)
+8ppm/°C max (+5ppm/°C typ)

»

SIGNAL DYNAMICS
Conversion Time?
Throughput Rate, Full Rated Accuracy
Sample and Hold
Aperture Delay
Aperture Uncertainty
Acquisition Time
To +0.01% of Final Value
for Full Scale Step
Feedthrough
Droop Rate

25us max (22us typ)
25kHz min (30kHz typ)

100ns max (50ns typ)
500ps max (100ps typ)

18us max (10us, typ) .

-70dB max (-80dB typ) @ 1kHz
2mV/ms max (1mV/ms typ)

DIGITAL INPUT SIGNALS?

Convert Command (to ADC Section,
Pin 21)

Input Channel Select (To Analog
Input Section, Pins 28-31)

Channel Select Latch (To Analog
Input Section, Pin 32)

Positive Pulse, 200ns min Width. Leading
Edge (“0” to “1") Resets Register,
Trailing Edge (“1” to *°0") Starts Con-
version.
1TTL Load

4 Bit Binary, Channel Address.
1LS TTL Load

“1" Latch Transparent
“0" Latched
4LS TTL Loads

3185 DATA ACQUISITION SUBSYSTEMS

MODEL

AD363K

AD363S

DIGITAL INPUT SIGNALS, cont.
Sample-Hold Command (To Analog
Input Section Pin 13 Normally
Connected To ADC *‘Status’’,
Pin 20)

“0™ Sample Mode
“1" Hold Mode
2LS TTL Loads

L

Short Cycle (To ADC Section Pin 14) Connect to +5V for 12 Bits Resolution, o
Connect to Qutput Bit n + 1 For n Bits *
Resolution. *
1TTL Load ’
Single Ended/Differential Mode Select
(To Analog Input Section, Pin 1) “0": Single-Ended Mode b
“1": Differential Mode *
3TTL Loads i
DIGITAL OUTPUT SIGNALS*
(All Codes Positive True)
Parallel Data
Unipolar Code Binary *
Bipolar Code . Offset Binary/Two's Complement "'
Output Drive 2TTL Loads *
Serial Data (NRZ Format)
Unipolar Code Binary *
Bipolar Code Offset Binary N
Output Drive 2TTL Loads *
Status (Status) Logic ‘1" (*“0"") During Conversion *
Output Drive 2TTL Loads *
Internal Clock
Output Drive 2TTL Loads *
Frequency 500kHz o
INTERNAL REFERENCE VOLTAGE +10.00V, £5mV .
Max External Current t4mA N
Voltage Temp. Coefficient +20ppm/°C, max +10ppm/°C, max

POWER REQUIREMENTS
Supply Voltages/Currents

Total Power Dissipation

+15V, 5% @ +45mA max (+38mA typ)
~-15V,$5% @ 45mA max (-38mA typ)
+5V, 5% @ +136mA max (+113mA typ)
2 watts max (1.7 watts typ)

a 4 & @

TEMPERATURE RANGE
Specification
Storage

0to +70°C
-55°C to +85°C3

-55°Cto +125°C
-55°C to +150°C

NOTES:

'With 508, 1% fixed resistor in place of Gain Adjust pot; see Figures 7 and 8.

2 Conversion time of ADC Section.

>AD363K External Hold Capacitor is limited to +85°C; Analog Input Section and ADC Section may be stored at up to +150°C.

*One TTL Load is defined as Iy, = -1.6mA max @ Vi, = 0.4V, Igq = 40uA max @ ViH = 2.4V,
One LS TTL Load is defined as Ijp, = <0.36mA max @ Vyq, = 0.4V, Ijjq = 20puA max @ Vg = 2.7V.

Specifications subject to change without notice.

+V, Digital Supply
+V, Analog Supply
-V, Digital Supply
VIN, Signal |

Vin, Digital

AGND to DGND

ABSOLUTE MAXIMUM RATINGS

(ALL MODELS)

+55V

+16V

-16V

V., Analog Supply

0 to +V, Digital Supply
HYV

DATA ACQUISITION SUBSYSTEMS 3198

PIN FUNCTION DESCRIPTION

ANALOG INPUT SECTION

ANALOG TO DIGITAL CONVERTER SECTION

Pin Pin
Number Function Number Function
1 Single-End/Differential Mode Select 1 Data Bit 12 (Least Significant Bit) Out
“0"": Single-Ended Mode 2 Data Bit 11 Out
“1": Differential Mode 3 Data Bit 10 Out
2 Digital Ground 4 Data Bit 9 Out
3 Positive Digital Power Supply, +5V 5 Data Bit 8 Out
4 “High” Analog Input, Channel 7 6 Data Bit 7 Out
5 “High" Analog Input, Channel 6 7 Data Bit 6 Out
6 “High"" Analog Input, Channel 5 8 Data Bit 5 Out
7 “High” Analog Input, Channel 4 9 Data Bit 4 Out
8 “High"" Analog Input, Channel 3 10 Data Bit 3 Out
9 “High" Analog Input, Channel 2 11 Data Bit 2 Out
10 “High’* Analog Input, Channel 1 12 Data Bit 1 (Most Significant Bit) Out
11 “High”" Analog Input, Channel 0 13 Data Bit 1 (MSB) Out
12 Hold Capacitor (Provided, See Figure 1) 14 Short Cycle Control
13 Sample-Hold Command Connect to +5V for 12 Bits
“0"": Sample Mode Connect to Bit (n+1) Out for n Bits
“1": Hold Mode 15 Digital Ground
Normally Connected to ADC Pin 20 16 Positive Digital Power Supply, +5V
14 Offset Adjust (See Figure 6) 17 Status Out
15 Offset Adjust (See Figure 6) “Q": Conversion in Progress
16 Analog Output (Parallel Data Not Valid)
Normally Connected to ADC *1"": Conversion Complete
“Analog In” (See Figure 1) (Parallel Data Valid)
17 Analog Ground ' 18 +10Volt Reference Out (See Figures 3,7, 8,11)
18 “High” (*‘Low”) Analog Input, Channel 15 (7) 19 Clock Out (Runs During Conversion)
19 “High” (“Low"’) Analog Input, Channel 14 (6) 20 Status Out i
20 Negative Analog Power Supply, -15V “Q": Conversion Complete
21 Positive Analog Power Supply, +15V. (Parallel Data Valid)
22 “High" (*‘Low"”) Analog Input, Channel 13 (5) “1”. Conversion in Progress
23 “High” (“Low”") Analog Input, Channel 12 (4) (Parallel Data Not Valid)
24 “High" (*Low"") Analog Input, Channel 11 (3) 21 Convert Start In
25 “High" (“Low") Analog Input, Channel 10 (2) Reset Logic : &
26 “High” (*'Low") Analog Input, Channel 9 (1) Start Convert : W
27 “High” (“Low") Analog Input, Channel 8 (0) 22 Comparator In (See Figures 3,7, 8)
28 Input Channel Select, Address Bit AE 23 'Bipolar Offset
29 Input Channel Select, Address Bit AO Open for Unipolar Inputs
30 Input Channel Select, Address Bit Al Connect to ADC Pin 22 for
31 Input Channel Select, Address Bit A2 Bipolar Inputs
32 Input Channel Select Latch (See Figure 8)
“0": Latched 24 10V Span R In (See Figure 7)
“1”: Latch “Transparent”’ 25 20V Span R In (See Figure 8)
26 Analog Ground
27 Gain Adjust (See Figures 7 and 8)
28 Positive Analog Power Supply, +15V
29 Buffer Out (For External Use)
30 Buffer In (For External Use)
31 Negative Analog Power Supply, -15V
32 Serial Data Out

Each Bit Valid On Trailing (T W__)
Edge Clock Out, ADC Pin 19

320S DATA ACQUISITION SUBSYSTEMS

AD363 DESIGN

Concept
The AD363 consists of two separate functional blocks as

shown in Figure 1; each is packaged in a hermetically-sealed
32 pin metal DIP.

[CET)
A\ D=0 10 et ke
i TR 3
wan-]
el
anaro0
-t

DiGiTaL
> DATA
out

o

LU

sl o 1}
Mutes wn-lnlm Comewinl 11ART

ot ok, AT
e

Figure 1. AD363 Functional Block Diagram

The Analog Input Section contains multiplexers, a differential
amplifier, a sample-and-hold,’a channel address register and
control logic. Analog-to-digital conversion is provided by a

12 bit, 25 microsecond “ADC'" which is also available separate-
ly as the AD572. Sl .

By dividing the data acquisition task into two sections, several
important advantages are realized. Performance of each design
is optimized for its specific functlon Production yields are
increased thus dccrcasmg costs: Furthermore, the standard
confngunmon 32 pin packages plug into standard sockets and
are casier to handle than larger packages with higher pin
counts.

Analog Input Section Design
Figure 2 isablock diagram of the AD363 Analog Input Section
(AIS).

HOLD.
CAPACITON B EROVDIEFERENTIAL
OFMY et RGN ANALOD INFPUTS Wy MOOE TELECT weuT
ANALOG ADART LD - OI0ITAL
OUTPUT Ay COMMAND 8 CHI CHT €M) DM O Ol CHT OROUNG
L% LY MY LY L) RTY Y ML T M MY A) |

Lo

W'MID
=
===l

BCHANNEL CHANNLL LLLCY
LYIPLENER CONTROL LOGKC
¥

1 [
ul w " ni u' nf 0l n a' n! n! a‘ n|. n!
AMALOG CHIS GHM v oMY CHW Wl cen . o e M AL A A

|\|. 7]

—_ J INPUT CHANMIL
CHANNLL
wct LATEH

L
LOW" ANALOG WPUTS

Figure 2. AD363 Analog Input Section Functional Block
Diagram and Pinout

The AIS consists of two 8-channel multiplexers, a differential
amplifier, a sample-and-hold, channel address latches and con-
trol logic. The multiplexers can be connected to the differen-
tial amplifier in either an 8-channel differential or 16-channel
single-ended configuration. A unique feature of the AD363 is
an internal analog switch controlled by a digital input that
performs switching between single-ended and differential
modes. This feature allows a single product to perform in
either mode without external hard-wire interconnections. Of
more significance is the ability to serve a mixture of both
single-ended and differential sources with a single AD363 by
dynamically switching the input mode control.

Multiplexer channel address inputs are interfaced through a
level-triggered (“‘transparent”) input register. With a Logic *1”
at the Channel Select Latch input, the address signals feed
through the register to directly select the appropriate input
channel. This address information can be held in the register
by placing a Logic ‘0" on the Channel Select Latch input. In-
ternal logic monitors the status of the Single-Ended/Differential
Mode input and addresses the multiplexers accordingly.

A differential amplifier buffers the multiplexer outputs while
providing high input impedance in both differential and-single-
ended modes. Amplifier gain and common mode rejection are
actively laser-trimmed.

The sample-and-hold is a high speed monolithic device that can
also function as a gated operational amplifier. Its uncommitted
differential inputs allow it to serve a second role as the output
subtractor in the differential amplifier. This climinates one
amplifier and decreases drift, settling time and power consump-
tion. A Logic ‘1" on the Sample-and-Hold Command input
will cause the sample-and-hold to “freeze’ the analog signal
while the ADC performs the conversion, Normally the Sample-
and-Hold Command is connected to the ADC Status output
which is at Logic ““1" during conversion and Logic 0" be-
tween conversions. For slowly-changing inputs, throughput
speed may be increased by grounding the Sample-and-Hold
Command input instead of connecting it to the ADC status.

A Polystyrene hold capacitor is provided with each commer-
cial temperature range system (AD363K) while a Teflon capaci-
tor is provided thh units intended for operation at tempera-
tures up to 125°C (AD363S). Usc of an external capacitor
allows the user to make his own speed/accuracy tradeoff; a
smaller capacitor will allow faster sample-and-hold response
but will decrease accuracy while a larger capacitor will in-
crease accuracy at slower conversion rates.

The Analog Input Section is constructed on a substrate that
includes thick-film resistors for non-critical applications such
as input protection and biasing. A separately-mounted laser-
trimmed thin-film resistor network is used to establish accurate
gain and high common-mode rejection. The metal package
affords electromagnetc and electrostatic shielding and is
hermetically welded at low temperatures. Welding eliminates
the possibility of contamination from solder particles or flux
while low temperature scaling maintains the accuracy of the
laser-trimmed thin-film resistors.

DATA ACQUISITION SUBSYSTEMS 321§

Analog-to-Digital Converter Design

Figure 3 is a block diagram of the Analog-to-Digital Converter
Section (ADC) of the AD363.

812 (LS8}

IO DD

EAn

11017 JUCCERRIVE - AMFADXIMATION
ARGINTEN

ADIAY DAC FETDAALK
WEHGHING HETWORE

BUFFIR
FOLLOWER

NEIFER

Figure 3. AD363 ADC Section (AD572) Funct/onal
Diagram and Pinout

2
2
v

Available separately as the AD572, the ADC is a 12 bit, 25
microsecond device that includes an internal clock, reference,
comparator and buffer amplifier.

The +10V reference is derived from a low T.C. zener reference
diode which has its zener voltage amplified and buffered by an
op amp. The reference voltage is calibrated to +10V, £5mV by
active laser-trimming of the thin-film resistors which determine

- the closed-loop gain of the op amp. 4mA of current is available
for external use. The reference circuit is constructed on its
own thin-film substrate which is; in turn, mounted onthe
thick-film ADC main substrate.

The DAC feedback weighting network is comprised of a pro-
prietary 12 bit analog current switch chip and silicon-chromi-
um thin-film ladder network. (Packaged separately, this DAC
is available as the AD562.) This ladder network is active laser-
trimmed to calibrate all bit ratio scale factors to a precision of
0.005% of FSR (full-scale range) to guarantee no missing
codes over the operating temperature range. The design.of the
ADC includes scaling resistors that provide user-selectable
analog input signal ranges of $2.5, 5, £10; 0 to +5, 0or 0 to
+10 volts.

Other useful features include true binary output for unipolar
inputs, offset binary and two’s complement output for bipolar
inputs, serial output, short-cycle capability for lower resolu-
tion, higher speed measurements, and an available high input im-
pedance buffer amplifier which may be used elsewhere in

the system.

As in the Analog Input Section, the ADC main substrate in-
cludes thick-film resistors in non-critical areas. Thin-film sub-
strates are separately mounted to assure accurate and stable

322S DATA ACQUISITION SUBSYSTEMS

reference and DAC performance. Packaging considerations are
the same as for the AIS.

THEORY OF OPERATION

System Timing
Figure 4 is a timing diagram for the AD363 connected as shown
shown in Figure 1 and operating at maximum conversion rate.

ADDRESS MAY BE CHANGED

/’.”W

ADDRESS
—— |=—23/H ACQUISITION
ADDRESS LATCH _] m
. OmMIN
.'l____ TN STATE DOESN'T MATTER
CONVERT COMMAND === [=—200m MIN : —L
STATUS [SAMPLE-HOLD) s H N e
SAMPLE-HOLD
Thys MAX N+ ACQUISITION
aaTeD cLock AV LVEY VR EVTVNV0

Figure 4. AD363 Timing Diagram

The normal sequence of events is as follows:

1. The appropriate Channel Select Address is latched into the
address register. Time is allowed for the multiplexers to
settle,

2. A Convert Start command is issued to the ADC which
indicates that it is “‘busy”’ by placing a Logic “1” on its

_ Status line.

3. The ADC Status controls the sample-and-hold. When the
ADC is “busy” the sample-and-hold is in the hold mode.

4. The ADC goes into its 25 microsecond conversion routine.
Since the sample-and-hold is holding the proper analog
value, the address may. be updated during conversion. Thus
multiplexer settling time can coincide with conversion and
need not effect throughput rate.

5. The ADC indicates completion of its conversion by return-
ing Status to Logic 0. The sample-and-hold returns to
the sample mode.

6. If the input signal has changed full-scale (different channels
may have widely-varying data) the sample-and-hold will
typically require 10 microseconds to *“acquire” the next in-
put to sufficientaccuracy for 12 bit conversion.

After allowing a suitable interval for the sample-and-hold to
stabilize at its new value, another Convert Start command may
be issued to the ADC.

ADC Operation

On receipt of a Convert Start command, the analog-to-digital
converter converts the voltage at its analog input into an
equivalent 12-bit binary number. This conversion is accom-
plished as follows:

The 12-bit successive-approximation register (SAR) has its
12-bit outputs connected both to the respective device bit
output pins and to the corresponding bit inputs of the
feedback DAC.

The analog input is successively compared to the feedback
DAC output, one bit at a time (MSB first, LSB last). The de-
cision to keep or reject each bit is then made at the comple-
tion of each bit comparison period, dcpcndmg on the state of
the comparator at that time.

—u—”-—200m min
| e | I
mﬁ-.|
GATED
CLOCK
K “ o o N % ot YooY B Loty N t ——

CONVERSION IN
PARALLEL DATA VALID

BTATUS

e S
S\

e WL

v N L
o N L
nnnf N
o Y 1 e
e B |

SRS N\ i P8 9 1 P s N

Figure 5. ADC Tlmmg Diagram (Binary Code 11010101 7001)

The timing dmgram is shown in anurc 5. Rccclpt ofa Convcrt
Start signal sets the Status flag, mdxcaung conversion in prog-
ress. This, in turn, removes the inhibit apphcd to the gated
clock, permitting it to run through 13 cycles. All SAR parallel
bit and Status flip-flops are initialized on the leading edge, and
the gated clock inhibit signal removed on the trailing edge of
the Convert Start sxgnal At time t0, B1 is reset and B2-B12 -
are set uncondmonally At tl the Bit 1 decision i is made (kecp)
and Bit 2 is unconditionally reset. At t2, the Bit 2 decision is
made (keep) and Bit 3 is reset unconditionally. This_sqqucnce
continues until the Bit 12 (LSB) decision (keep) is made at’
t12, After 400ns delay pcnod the Status flag is reset, indi-
cating that the conversion is complete and that the parallel
output data is valid. Resctting the Status flag restores the gated
clock inhibit sngnal forcing the clock output to the Logic

“0" state.

Hﬁﬂrt

Corrcspondmg serial and parallel data bits become valid on the
same positive-going clock edge. Serial data does not change and
is guaranteed valid on negative-going clock edges, however;
serial data can be transferred quite simply by clocking it into

a receiving shift register on these edges.

Incorporation of this 400ns delay period guarantees that the
parallel (and serial) data are valid at the Logic ‘1" to ‘0"
transition of the Status flag, permitting parallel data transfer
to be initiated by the trailing edge of the Status signal.

The versatility and completeness of the AD363 concept results
in a large number of user-selectable configurations. This allows
optimization of most systems applications.

Single-Ended/Differential Mode Control

The 363 features an internal analog switch that configures the
Analog Input Section in either a 16channel single-ended or 8-
channel differential mode. This switch is controlled by a TTL
logic input applied to pin 1 of the Analog Input Section:

“0": Smglc-Endcd (16 channels)
“1": Differential (8 channels)

When in the differential mode, a differential source may be
apphcd between corrcspondmg “Hngh" and “Low" analog
input channels.

It is possible to mix SE and DIFF inputs by usmg the modc
control to command the appropriate mode. Figure 11 illus-
trates an example of a “‘mixed” application. In this casc, four
microseconds must be:allowed for the output of the Analog-
Input Section to settle to within £0.01% of-its final value, but
if the mode is switched concurrent with changing the channel
address, no significant additional delay is introduced. The
effcct-of this delay may be eliminated by changing modes -
while a conversion is in progress (with the sample-and-hold in
the-“hold mode"). When SE and DIFF signals are being -
processed concurrently, the DIFF signals must be apphcd
between corresponding “High” and “Low analog input chan-
nels. Another application of this feature is the capabdlty of
measuring 16 sources individually and/or mea.surmg d:ffcrenccs
between pairs of those sources, L AR

Input Channel Addrcssing

Table 1 is the truth table for input channel addressing in both
the single-ended and differential modes. The 16 single-ended
channels may be addressed by applying the corresponding
digital number to the four Input Chanuel Select address bits,
AE, AO, A1, A2 (Analog Input Section, pins 28—31). In the

" differential mode, the eight channels are addressed by applying

the appropriate digital code to A0, Al and A2; AE must be
enabled with a Logic “1". Internal logic monitors the status
of the SE/DIFF Mode input and addresses the multiplexes
singly or in pairs as required.

ADDRESS ON CHANNEL (Pin Number)
Differendal
AE A2 A1 A0 Single Ended CHI “'Lo”
o 0 0 o0 0 (11) " None
] 0 0 1 1 (10) None
0 0 1 o 2 _ None
0 0 1 1 3 (8) None
0 1 L] o 4 (7) " None
1] 1 [1] 1 s (6) None
0 1 1 0 6 (5 None
0 1 1 1 7 (® None
1 o /] V] 8 (27) 0(11) 0 (27)
1 0o 0o 1 9 (26) 1(10) 1 (26)
1 0 1 0 10 (25) 2(" 2 (25)
1 Q 1 1 11 (24) 3 (8) 3 (24)
1 1 0 0 12 (23) 4 (7) 5 (23)
1 1 0 1 13 22) 5 (6) 5 (22)
1 1 1 4] 14 (19) 6 (5) 6 (19)
1 1 1 1 15 (18) 7 (4) 7 (18)

Table 1. Input Channel Addressing Truth Table

DATA ACQUISITION SUBSYSTEMS 323S

When the channel address is changed, six microseconds must
be allowed for the Analog Input Section to settle to within
10.01% of its final output (including settling times of all
elements in the signal path). The effect of this delay may be
eliminated by performing the address change while a conver-
sion is in progress (with the sample-and-hold in the “hold”
mode).

"+ Input Channel Address Latch

The AD363 is equipped with a latch for the Input Channel
Sclect address bits. If the Latch Control pin (pin 32 of the
Analog Input Section) is at ‘Logic *1", input channel select
address information is passcd through to the multiplexers. A
LOglC “0"™ “freezes” the input channel address present at the
inputs at the time of the ““1" to “0" tnnsmon

This feature is useful when mput chaninel addrcss information
is provided from an address, data or control bus that may be
required to service many devices. The ability to latch an
address is helpful whenever the user has no control of when
address information may change.- s

Sample-and-Hold Mode Control

The Samplc-and -Hold Mode Control i mput (Analog lnput
Section, pin 13) is normally:connected to the Status output
(pin 20) from the ADC section. When a conversion is initiated
by applying a Convert Start command to:the ADC (pin 21),
Status goes to Logic ‘1", putting the sample-and-hold into the
“hold"”” mode. This."freczes" the information to:be digitized:
for the period.of conversion. When the coriversion is complete,
Status returns to Logic 0" and the sample-and-hold returns
to the sample mode. Elghtcen microseconds must be allowed for
the sample-and-hold to acquire (“catch up'’ to) the analog in-
put to within £0,01% of the final value before a new Convert
Start command is issued. v

The purpose of a sample-and-hold is to “stop” fast changing
input signals long enough to be converted. In this-application,
it also allows the user to change channels and/or SE/ DIFF
mode while a conversion is in progress thus eliminating the
effects of multiplexer, analog switch and differential amplifier
settling times. If maximum throughput rate is required for
slowly changing signals, the Sample-and-Hold Mode Control
may be wired to ground (Logic “0") rather.than to ADC
Status thus leaving the sample-and-hold in a continuous
sample mode.

Hold Capacitor

A 2000pF capacitor is provided with each AD363. One side
of this capacitor is wired to the Analog Input Section pin 12,
the other to analog ground as close to pin 17 as possible. The
capacitor provndcd with the AD363K is Polystyrene while the
~ wider opcratmg temperature range of the AD363S demands a
Teflon capacitor (supplied).

Larger capacitors may be substituted to minimize noise, but
acquisition time of the sample-and-hold will be extended. If
less than 12 bits of accuracy is required, a smaller capacitor
may be used. This will shorten the S/H acquisition time, In all
cases, the proper capacitor diclectric must be used; i.e., Poly-
styrene (AD363K only) or Teflon (AD363K or S). Other types
of capacitors may have higher dielectric absorption (memory)
and will cause errors. CAUTION: Polystyrene capacitors will
be destroyed if subjected to temperatures above +85°C. No
capacitor is required if the sample-and-hold is not used.

Short Cycle Control

A Short Cycle Control (ADC Section, pin 14) pérmits the

324S DATA ACQUISITION SUBSYSTEMS

timing cycle shown in Figure 5 to be terminated after any
number of desired bits has been converted, permitting some-
what shorter conversion times in applications not requiring full
12-bit resolution. When 12-bit resolution is required, pin 14 is
connected to +5V (ADC Section, pin 10). When 10-bit resolu-
tion is desired, pin 14 is connected to Bit 11 output pin 2. The
conversion cycle then terminates, and the Status flag resets
after the Bit 10 decision (t10 + 400ns in timing diagram of Fig-
ure 2). Short Cycle pin connections and associated maximum
12, 10 and 8-bit conversion times are summarized in Table 2.

Connect Short Maximum | Status Flag
Cycle Pin 14 to Resolution | Conversion | Reset at:
Pin: Bits (% FSR) ' | Time (us) | (Figure 5)
16 12 0024 | 25 ti2 +400ns
2 10 0.10 21 tio +400ns
8 0.39 17 ta +400ns

Table 2. Short Cycle Connections

One should note that the calibration voltages listed in Table

4 are for 12-bit resolution only, and are not those correspond-
ing to the center of each discrete quantization interval at
reduced bit resolution.

Digital Output Data Format

Both parallel and serial data are in positive-true. form and out-
putted from TTL storage registers. Parallel data output coding
is binary for unipolar ranges and either offset binary or two's
complement binary, depending on whether Bit 1 (ADC Section
pin 12) or itslogical invérse Bit 1 (pin 13) is used as the MSB.
Paralle] data becomes valid approximately 200ns before the
Status flag returns to Logic 0", permitting parallel data trans-
fer to be clocked on the “1!" to 0" transition of ‘thc-;;S,ta'tus ﬂag.

Serial data coding is binary for unipolar input ranges and off-
set binary for bipolar i input ranges. Serial output is by bit
(MSB first, LSB last) in NRZ (non-return-to-zero) format.
Serial and parallel data outputs change state on positive-going
clock edges. Serial data is guaranteed valid on all negativegoing
clock edges, permitting serial data to be clocked: direétly into a
receiving register on these edges. There are 13 ‘negative-going
clock edges in the complete 12-bit conversion cycle, as shown’
in Figure 5. The first edge shifts an invalid bit into the register,
which is shifted out on the 13th negative-going clock edge.-

All serial data bits will have been correctly transferred at the
completion of the convcysnon penod

Analog Input Voltazc Range Format .

The AD363 may be configured for any of 3 blpolar or 2 uni--
polar input voltage ranges as shown in Table 3. :

Connect - Connect
Analog Input | Connect ADC | Bipolar ADC
Range To ADC Pin: Span Pin: Pin 23 To:
Oto +5V 24 25 to 22
0 to +10V 24 =
-2.5V to +2.5V 24 25 to 22
-5V to +5V 24 —_— 22
-10V to +10V 25 ——

Table 3. Analog Input Voltage Range Pin Connections

Analog Input - Volts Input Normalized :)l;lg[":‘_ly(;z:p;;fpzf; Ranges
ization | FSR '
(Center of Quantization nterval) to Offset Binary for Bipolar Ranges)
0 to +10V -5V to +5V =10V to +10V Unipolar Bipolar B1 B12
Range Range Range Ranges Ranges (MSB) (LSB)
+9.9976 +4.9976 +9.9951 +FSR-1 LSB +%FSR-1 LSB 111111111111
+9.9952 +4.9952 +9.9902 +FSR-2 LSB +%FSR-2 LSB 111111111110
+5.0024 +0.0024 +0.0049 +%FSR+1 LSB +1 LSB 100000000001
+5.0000 +0.0000 +0.0000 +%FSR ZERO 100000000000
+0.0024 -4.9976 -9.9951 +1 LSB -%FSR+1 LSB 000000000001
+0.0000 -5.0000 -10.0000 ZERO -%FSR 000000000000

Table 4. Digital Output Codes vs Analog Input For Unipolar and Bipolar Ranges

The resulting input-output transfer functions are given by
Table 4. '

Analog Input Section Offset Adjust Circuit

The offset voltage of the AD363 may be adjusted at cither the
Analog Input Section or the ADC Section. Normally the ad-
justment is performed at the ADC but in some special appli-
cations, it may be helpful to adjust the offset of the Analog
Input Section. An example of such a case would be if the in-
put signals were small (<10mV) relative to Analog Input Section
voltage offset and gain was inserted between the Analog Input
Section and the ADC. To adjust the offset of the Analog Input
Section, the circuit shown in Figure 6 is recommended.

D383
. ANALOG
‘] INPUT
SECTION
16 SAMPLE
OUTPUT —— AND
\\ HOLD
—
16 i) 21
00ke §
OFFSET VOLTAGE 7O V+ ANALOG (+16V)
ADJUST :

Figure 6. Analog Input Section Offset Voltage Adjustment

Under normal conditions, all calibration is performed at the
ADC Section. g

ADC Offset Adjust Circuit

Analog and power connections for 0 to +10V unipolar and
-10V to +10V bipolar input ranges are shown in Figures 7 and
8, respectively. The Bipolar Offset, ADC pin 23 is open-cit-
cuited for all unipolar input ranges, and connected to Compar-
ator input (ADC pin 22) for all bipolar input ranges. The zero
adjust circuit consists of a potentiometer connected across
+Vg with its slider connected through a 3.9M{Q resistor to
Comparator input (ADC pin 22) for &ll ranges. The tolerance
of this fixed resistor is not critical, and a carbon composition
type is generally adequate. Using a carbon composition resistor
having a -1200ppm/°C tempco contributes a worst-case offset
tempco of 8 x 244 x 107 x 1200ppm/°C = 2.3ppm/°C of
FSR, if the OFFSET AD] potentiometer is sct at cither end
of its adjustment range. Since the maximum offset adjustment
required is typically no more than £4LSB, use of a carbon
composition offset summing resistor normally contributes no
more than 1ppm/°C of FSR offsct tempco.

AAALLAL LAl

w ADC
- Ane VI8IT BUCCERSIVE- KEEFMRMCT
L oo APFROXIMATION REQIITER
= t REF
100,207 % D/A BIT BRITCHES
1.2
G 1hoe A
1410 LW = ™ -
COMTROL 070 Bma " ¥ v
o

Bl g " Ar r COMRFARATON

-

hi U surrEn
bty ui-dl I - W FOLLOWEN

3
___'Im 3 %’ 1 |
-8y - o bol

b g P D
-y
= #Y, 4

10m PFAOM ANALOG
L = vnnu“““
v ok 3 e
awd e

NOTE! ANALOQ {7} AND DIQITAL { ¥) ONOS ARE
NOT TIED INTEANALLY AND MUST BIL CONNECTED
EXTERNALLY,

Figdra 7. ADC Analog and Power Connections for
Unipolar 0 to +10V Input Range

LAAA LR)

W ADBI ADC
e | 10000
= ner
100,207
n
j =
GAIN AD)
(110 LE8W
CONTROL 010 <3mA
"
nov 8 5 ot COMPARATON
pd 1N FPAR
-3 W »
» 4 . - FoLLOWER
T o
eF A
N
awv | e = ‘N*
W ek 73,
"
T" b 1M T FROM ANALOD
e FNPUT BECTION
‘7 = B ey o e svav
avd e

ld“: ANALOG () AND DIGITAL | ¥) GNOS ARS
NOT TIH0 INTERNALLY AND MUST M CONNICTED
EXTERNALLY,

Figure 8. ADC Analog and Power Connections for Bipolar
-10V to +10V Input Range :

An alternate offsct adjust circuit, which contributes negli--
gible offset tempco if metal film resistors (tempco <100
ppm/°C) are used, is shown in Figure 9. ' :

18V

ADY3

OFFSET ADJ ADC

(+BLSB"Y)
11k, M.F.

Figure 9. Low Tempco Zero Adj Circuit
DATA ACQUISITION SUBSYSTEMS 3255

C =

In either zero adjust circuit, the fixed resistor connécted to
ADC pin 22 should be located close to this pin to keep the
connection runs short, since the Comparator input (ADC pin
22) is quite sensitive to external noise pick-up.

Gain Adjust
The gain adjust circuit consists of a 10052 potentiometer con-

- nected between +10V Reference OQutput pin 18 and Gain Ad-

just Input (ADC pin 27) for all ranges. Both GAIN and ZERO
AD] potentiometers should be multi-turn, low tempco types;
20T cermet (tempco =" 100ppm/ C max) types are recom- -

" mended. If the 10082 GAIN AD]J potentiometer is replaced by

a fixed 508 resistor, absolute gain cahbratlon t0 0.1% of
FSR is guaranteed. -

Calibration

Calibration of the AD363 consists of ad]ustmg offset and gain.
Relative accuracy (linearity) is-riot affected by these ad)ust- -
ments, so if absolute zero.and gain error is not important in a
gwcn application, or if system intelligence can correct for such
errors, calibration may be unnecessary.

 External ZERO AD]J and GAIN ADJ potentiometers, con-

nected as shown in Figures 7, 8, and 9, are used fordevice cali-
bration. To prevent interaction of these two adjustments, Zero
is always adjusted first and then Gain. Zero is adjusted with

the analog input near the most negative end of the analog range

(0 for unipolar.and -%FSR for bipolar input ranges). Gain is
adjusted with the analog input near the most positive end of -
the analog range.

0 to +10V Range: Set analog input to +1LSB = +0.0024V.
Adjust Zero for digital output = 000000000001; Zero is now
calibrated. Set analog input to +FSR -2LSB = +9.9952V. Ad-
just Gain for 111111111110 digital output code; full-scale
(Gain) is'now calibrated. Half-scale calibration check: ‘set’ana-
log input to +5.0000V; digital output code should be
100000000000,

-10V to +10V Range: Set analog input to -9.9951V; adjust
Zero for 000000000001 digital output (offset binary) code.
Set analog input to +9.9902V; adjust Gain for 111111111110
digital output (offset binary) code. Half-scale calibration check:
set analog input to 0.0000V; digital output (offsct bmary)
code-should be 100000000000,

Other Ranges: Representative digital coding for 0 to +10V,
-5V to +5V, and -10V to +10V ranges is shown in Table 4.
Coding relationships are calibration points for 0 to +5V and
-2.5V to +2.5V ranges can be found by halving the corre-
sponding code equivalents listed for the O to +10V and -5V
to +5V ranges, respectively.

- Zero and full-scale calibration can be accomplished to a preci-

sion of approximately +%4LSB using the static adjustment pro-
“cedure described above. By summing a small sine or triangular-
, wave voltage with the signal applied to the analog input, the

~output can be cycled through each of the calibration codes
. of interest to more accurately determine the center (or end

points) of each discrete quantization level. A detailed descrip-

_tion of this dynamic calibration technique is presented in
“A/D Conversion Notes”, D. Sheingold, Analog Devices, Inc.,
1977, Part 11, Chapter 114.

; Other Considerations
[}

Grounding: Analog and digital signal grounds should be kept

326S DATA ACQUISITION SUBSYSTEMS

separate where possible to prevent digital signals from flowing
in the analog ground circuit and inducing spurious analog sig-
nal noise. Analog Ground (Analog Input Section pin 17, ADC
Secction pin 26) and Digital Ground (Analog Input Section pin
2 and ADC Section pin 15) are not connected internally; these
pins must be connected externally for the system to operate
properly. Preferably, this connection is made at only one point,
as close to the system as possible. The cases are connected in-
ternally to Digital Ground to provide good electrostatic shield-
ing. If the grounds are not tied common on the same card with
both system packages, the digital and analog grounds should
be connected locally with back-to-back general-purpose diodes
as shown in Figure 10, This will protect the AD363 from pos-
sible damage caused by voltages in excess of 1 volt between
the ground systems which could occur if the key grounding
card should be removed from the overall system. The system
will operate properly with as much as £200mV between
grounds, however this difference will be reflected dlrcctly as
an input offset voltage.

AD363 AD383
AlS ADC
DGND AGND DGND AGND
10 R IN914
CARD F 3 OR
CONNECTOR EQUIVALENT

Figure 10, Grbﬁﬁd-Faul{ Protectlon bede; ‘_

Power Supply Bypassing: The +15V and +5V power leads

‘should be capacitively bypassed to Analog Ground and Digital

Ground respectively for optimum device performance. 1uF
tantalum types are recommended; these capacitors should be
located close to the system. It is not necessary to shunt these
capacitors with disc capacitors to provide additional high
frequency power supply decoupling since each power lead is
bypassed internally with a 0.039uF ceramic capacitor.

Applications

The AD363 contains several unique features that contribute
to its application versatility. The more significant features
include a precision +10V reference, an uncommitted buffer
amplifier, the dynamic smglc-cndcd/dlffcrentnal mode switch
and simple, uncommitted digital interfaces. .

Transducer Interfacihg

The precision +10V-reference, buffer amplifier and mode
switch can simplify transducer interfacing. Figure 11 illus-
trates how these features may be used to advantage.

Aoy e
MR R

porran| nee
W |our

1o
] nr

ADISY
ADE METHON '

it
7 oty

Figure 11. AD363 Transducer Interface Application

The AD590 is a temperature transducer that can be considered
an ideal two-terminal current source with an output of one
microamp per degree Kelvin (1uA/°K). With an offsetting cur-
rent of 273uA sourced from the +5.46 volt buffered reference
through 20k2 resistors (R1-R12) each of the 12 AD590 cir-
cuits develop -20mV/°C. The outputs are monitored with the
AD363 front-end in the single-ended mode (Logic *‘0" on the
Mode Control input). The +5.46 volt reference is derived from
the ADC +10 volt precision reference and voltage divider R13,
R14. Low output impedance for this +5.46 volt reference is
provided by the ADC internal buffer amplifier. (The 10uV/°C
offset voltage drift of the buffer amplifier contributes negli-
gible errors.) At 0°C, each temperature transducer circuit de-
livers a O volt output. At 125°C, the output is ~2.5V; at -55°C,
the output is +1.10V. By using the two's complement ADC
output (complemented MSB or sign bit), the negative voltage
versus temperature function is inverted and digital reading
proportional to temperature in degrees centigrade is provided.
Resolution is 0.061° C per least significant bit.

The precision +10 volt reference is also used to power several
bridge circuits that require differential read-out. When address-
ing these bridge transducers, a Logic *“1” at the mode control
input will switch the AD363 to the differential mode. In many
cases, this feature will eliminate the requirement for a differen-
tial amplifier for each bridge transducer.

Microprocessor Interfacing

Digital interfacing to the AD363 has been deliberately left
uncommitted; every processor system and application has
different interface requirements and designing for one specific
processor could complicate other applications.

aATUS
SAMPLE AND HOLD
COMMAND
(— TIATA
i e, (ves) 8,
v
I .
: n
»
T, AD3ey | Ao awmod -
h ANALOG INPUT
weuts o | Pt
e " $ECTION 031
3 SECTION
' CHANNEL .
: e 3
- L)
' n
—"" By
~ AgAoarar] sy n,
SEDIFF e
Moot ICORVERT
K 2 £> b TRISTATE
FFEN
Steeer - - ?"‘.\) AT, | A oo "I'l:_'.‘":ll
WPTE
1j===-

l]. - .i _I
1or.1specooan |9y
teg: “184)

f

A A Ay A Our
1o o
»C WHITE READ |(>

L.

Gy

]
ot oteootn I&_]

Figure 12. AD363 Microprocessor Interface Application

The addition of a small amount of hardware will satisfy most
interface requirements; an example based on 8080-type archi-
tecture is shown in Figure 12,

In this system the data bus is used to transmit multiplexer chan-
nel selection and convert and read commands to the AD363.
It is also possible to address the AD363 as memory using the
address bus to perform channel selection, convert and read
operations.

The address lines can be decoded to provide channel selection,
ADC convert start, status and ADC data (2 bytes) locations.
These are accessed with I/0 read/write instructions.

The ADC outputs are buffered with tri-state drivers. Figure 12
shows the 4 most significant ADC data bits and status as one
byte

FFy: | STATUS | e | — | — | Bl B2 B3 B4
(MSB)

D7 . DO
and the 8 least significant ADC data bits as the second byte.

FEy: BS B6 B7 B8 B9 B10 B11 B12
(LSB)
D7 DO

‘Internal tri-state buffering is not provided because in many
applications it would be better to have the first byte contain
the 8 most significant bits. To accomodate both left and right
justified formats would require. more package pins and increase
complexity.

The operating sequence for this system is as follows: _

1| MVI 80y puts the address for channel 0
(including SE/DIFF mode) into

accumulator
puts 80y on data bus and FFy on address -
bus. Pulses 170 WRITE. OUT FFy is
decoded as a “LOAD ADDRESS" com-
mand to the channel select latches.

2| OUT | FFy

3|OUT | FOy | puts FOy on address bus and pulses /O
WRITE. This is decoded to issue a ““CON-
VERSION START"' to the ADC.

Accumulator contents are of no significance,

FFy puts FFy on address bus and pulses 1/0
READ. This is decoded to enable the
appropriate tri-states, thus putting status
and the 4 most significant bits on the

data bus.

o P -~ -~

The status may be examined for *‘0" (conversion complete).
In that case, the 4 MSB’s would be read.

5/IN . | FEg |. puts FEH on address bus and pulses 1/0
READ. This is decoded to enable the
appropriate tri-states, thus putting the 8

least significant bits on the data bus.

At this point, the multiplexer channel selection may be
changed and another channel processed with the same instruc-
tion set (steps 2 through 5).

DATA ACQUISITION SUBSYSTEMS 3278

OUTLINE DIMENSIONS
PACKAGE SPECIFICATIONS

Dimensions shown in inches and (mm).

ANALOG INPUT SECTION

AND
ANALOG-TO-DIGITAL CONVERTER HOLD CAPACITOR
uAnaea i MODEL TION (KD OR §0) : 100(25.4) | 080 U7S) | 0% (09
; s aNALOG INPUT SECTION
LT (‘wc-gunod-roqmrrn CONVEIATER I_l
DATE CODE
O /IL ') ""H’I:‘I"IMEN"ON L] FOI POLVS‘IVRENE CAPACITOR
pa 1ED WITH K GRAD
* 008 WITN?ODNVA‘I')!!NI(:‘“ OF TEFLON CAPACITOR SUPPLIED
0.0
021831 L { 0018 1002 [| K i
§] czoimn omrve > s —r
PN 3 % "‘47;’ I L.
anEen
OLASS DEAD ©000000000000000
‘ METAL 32 PIN DUALINLINE PACKAGE
e ® | &Y
l mACKml KOVAR WITH 1000 IN. MIN., NICKEL PLATE
OLASS BEAD 2}PINS: KOVAR WITH BOuIN, MIN 245 GOLD PLATE
STANDOFFE /{000 0000000000000 3} PACKAGE AND FINS MEET ALL NEQUIREMENTS OF MIL-STD-383
ﬂﬂl.I_N 4) YQLEHMESoU:iL‘;ﬂ- OTHERWISE NOTED:
= |""'“°° g 8 3%k $ods s
1 ¥ MAYING SOCKET: SET OF TWO 16 PIN BOCKET STRIPS {ORDER PN
ACIH72) T.ONE SET 15 REQUIRED
FOR EACH PACKAGE, §
PROCESSING FOR HIGH RELIABILITY
STANDARD PROCESSING * PROCESSING TO MIL-STD-883
' As part of the standard manufacturing procedure, all models of the All models of AD363 ordered to the requirements of MIL-STD-883B,
. AD363 receive the following processings - . .. 5 Method 5008 are identificd with a /883B suffix and receive the
following processing:
PROCESS CONDITIONS PROCESS CONDITIONS
1) 100% pre-cap Visual In-house Criteria 1) 100% pre-cap Visual 2017.1
Inspection Inspection .
2) Stnblhzatlon Bake 24 hours @ +150°C 2) Stabilization Bake 1008, 24 hours @ +150°C
3) Seal Test, Gross Leak Method 1014 Test Condition C 3) Temperature Cycle 1010, Test Conditgon C, 10 cycles, -
4) Operating Burn-In 48 hours @ +125°C : ! 65 COSEIS0E
r] 4) Constant Acceleration 2001, Y1 Plane, 1000G
5) Visual Inspection Visible Damage
6) Operating Burn-In 1015, Test Condition B 160 hours @
+125°C
"7) Scal Test: Fine Leak 1014, Test Condition A, 5 x 1077 std cc/sec
Gross Leak 1014, Condition C
8) Final Electrical Test Per Data Sheet
9) External Visual Inspection 2009
AD363 ORDERING GUIDE
Specification Max Max Guaranteed Temp Range
Model Temp Range Gain T.C. Reference T.C. No Missing Codes
AD363KD 010 +70°C +30ppm/°C " +20ppm/°C 0 to +70°C
AD363SD -55°Cto +125°C +25ppm/°C +10ppm/°C -55°C to +125°C
AD363SD/ Mecets all AD363SD specifications after processing to
883B the requirements of MIL-STD-883B, Method 5008.

NOTE: D Suffix = Dual-In-Line package designator.

3285 DATA ACQUISITION SUBSYSTEMS

Rils=il

Specifications typical at 259C and rated supply voltage

unless otherwise noted.

DIGITAL-to-ANALOG CONVERTERS

- Y

MODEL UNITS DAC80 DACB5C] DAC85
LOW COST IC ECONOMY IC GENERAL PURPOSE IC

RESOLUTION

Binary Bits 12 12 12

Decimal Digits 3 3 3
INPUT '
INPUT CODES(V) (2)

Binary CBI CBI CBI

Decimal v cCp ' cCcD CCD
TRANSFER CHARACTERISTICS | 2 & ' AR
ACCURACY

Linearity Error, max @ 25°C

Binary Models % of FSR 10.012 +0.012 10.012
Decimal Models % of 'SR +0.05 +0.05 +0.05

Gain Error (Adj. to zero) % of FSR 40,1 10,1 +0.1

Unipolar Offset Error (Adj. to zero) %% of FSR +0.05 +0.05 10.05
ACCURACY DRIFT

Gain Drift, max ppm/°C 130 120 20

Offset Drift, — Unipolar ppm of FSROC t1 11 *1

Combined Gain & Offset Drift, max ppm of FSR/C — - -

Linearity Error Over Temperature % of FSR +0.0127 +0.0121 +0.057 +0.012% +0.057

Specified Operating Temperature oc 0 to +70 0to +70 -25 to +85
CONVERSION SPEED

Settling Time to t1/2 LSB(Unipolar) usec 3 (Vout) 0.3 Ugyp) 3(Vout) 0.3(I,,¢) 3 (Voui) 0-3 oud)

Slew Rate V/usec 20 20 20
OUTPUT
VOLTAGE RANGE

Unipolar Volts 0to +5, 0to +10 "

Bipolar Volts 2.5, 5, +10

Current, min mA t5

Output Impedance 2 0.05
CURRENT RANGE

Unipolar mA L 0 to -2

Bipolar mA t1

Compliance (Unipolar/Bipolar) Volts 12.5

Impedance (Unipolar/Bipolar) Q 15k / 4.4k
POWER SUPPLY

Voltages (rated) Volts £15, +5(5)

Current Drain 115V Supply, +5V Supply mA 125, +20

Sensitivity % of FSR/% +0.002(3), £0.02(4)
PACKAGE DRAWING (See pages 92 - 101 0.8" x 1.4" x 0.25" | 0.8" x 1.4" x 0.22"

() €A % JRAmic @) A METAL

PRICE (1-9) $26.50 l $26.50 $69.00 $69.00 | $89.00 $89.00

(2) lnput codes are designated:
CBl - Complementary Binary
BIN - Straight Binary
BOB - Bipolar Offset Binary
tMaximum; monotonicity guaranteed over operating temperature range.

(1) All input codes are TTL compatible.

Prices and specifications are subject to
change without notice.

BTC - Bipolar Two’s Complement
CCD - Complementary BCD
BCD - Binary Coded Decimal

ORDERING INFORMATION

S5 10.+1269C
T =0.2% -56 to +12! oc

B DAC70 TOP VIEW ADC82AM TOP VIEW
(MsSB)

_@1 +6.3V KO t@
Bit1 (1 24) Ref. Out Cloek Ou
_ i Dig. Com.®1 8 Bit .
Bit2 (2 —I = Ref ®+15 v = Successive ’ Com.
Approx.
Control Status(3 "1 Register @Clock in

git 3 (3 }— I @GalnAdj. Bits =
git4 (4 }— 21) lout (Ls8) —{21) Serial Out
Bit7(5 i W2
Common — 3 @—15V

git5 (5 r
oo = Biti6{ & I +1sv

Bit 6 (6 || Ladder @-15v /\
Resistor Comp.
Bit 5(7
Bit7 (7 Ne;work :13>+5\/ ! @ Input
:‘:“ 5 |63k e Ana.
sita(8] cU | L—amv—{17)Re” Bit 4{8 21\ LN com.
Switches Q =
—
Bit9 (o H i ?'“6 Bit 3@— B & [YVWNIG)BrPO
LsB) oo: R2 = Ra
git 10 (101 l——<@3it 15 Bit 2'— 3 [k (20 V Range)
| i R
| 1
Bit 11 11—l Jysit 14 Bit 1(11 (1ov Range)

i *Rp = 5k (CSB) 5k
F (MSB) Gain
" 10k (COB) - | !
Bit 12(12 13)8Bit13 8k (CCD) Bit 1@— m Adj.

28 A DACS0 TOP VIEW B ADCB2AG c 4127
(VOLTAGE MODELS) TOP VIEW L
M Ref OUtPU
(el —('91 6.3 V Ref, clocka Clock 2 I Input
Bit 1\ 1 24 Out Out oc ®+5 v Ref
f Conv 4 +| Input
Bit 2@ Ref. Gain Dig. Com.@j_ 8 Bit . 5 Current Inverter Output
| - Supply] Adjust = iuCcesswe Com. 7 Current Inverter Input
3 Status(3 3 R;’;;;’;‘ Clock in 9 Op Amp +Input
Bit 3(3 @Hs vbc Bit8 r 10 Op Amp -Input
4 i 11 Op Amp Output
c (LSB) Serial
Bit4l 4 }— ,J,__ ommon v 21 out 13 Make No Connection
= 5 i Bit 7(5 o E 14 Nagative Supply
Bit 5@- 12 Bit . umming =8 -15 v 18 Log Output
L dd'er ’éskn Junction sicele p U 19 Galn Adjust
i . it 21 Common
Bit 6(6 J Resistor AMA—19)20 V Range \ ”5 Y 22 Positive Supply
Network Note 2 pits(7 |B Comp. 23 1ggq¢ Bias
Bit 7(7 j— and 18)10 V Range N Input
Current 6.3k . . g 6.3k Ana.
it 8(8 }H Switches AA—17 g'f‘;:;‘:r Bit4(8 Y = ey *No Pin on 3,6,8,12,15,16,
= =
e 17,20,24
gito(9}— 16) Ref. Input Bit 3@—~) ‘W\r]:'ﬁ)apo
Voltage © <] R2 R2
i - 15
3it 10(10) (9 output Bit 2 -I 2 %5 (20 V Range)
R1
f 14
3it 11@—I ,\l“fm"gc Bit 1 (11 LA (10 V Range)
=) —— (MSB) 13) Gain
3ie 12012 @ +5vDC 'Bit"{@l— -—'| Adi.
'LS8B)
tor: 245M
te 1: Amplifier not included In currént output CGongector: , 243MS
modaels. 36.6mm - 20.3mm
te 2: 3k for CCD models (1.40") (0.80") l
5k §2 for CBl models A
te 3: +5 V supply input may be connected to - 2.54mm (0.107) =] [=—
+5 V supply if +5 V supply is not available —
i T)
is will increase internal powar dissipation by 200 mW, ” U “ (; OloixyiL 4 ‘--Y
dﬁrﬂn G.a4mm
aHHAT (0.25") 15.2mm
/|’ --~*_“f'- (0.60")
I S [051n\]n 24 1
5.1mm (0.020" Yy QAo !
(0.20")

8O0TTOM VIEW

Case: Black Ceranvic

APPENDIX B

SOFTWARE DESCRIPTION

APPENDIX B

B.1 DDACS DESCRIPTION

The following description of DDACS has been extracted from a
user's guide compiled by Dr. C.P. Jeffreson as part of a
course on "Digital Process Control" given by the Chemical

Engineering Department, University of Adelaide.

APPENDIX 1

UNIVERSITY OF ADELAIDE
CHEMICAL ENGINEERING DEPARTMENT

DDACS USERS GUIDE

1. INTRODUCTION

DDACS (Direct Digital Automatic Control
System) is a self contained special purpose
operating system developed by the Central
Electricity Generating Board (N.E. Region
Scientific Services Department [1]) design-
ed to run on PDPll series computers. Al-
though intended originally for steam gener-
ating plant, it is also useful controlling
more general processes and for teaching.
This manual describes the facilities avail-
able in the 32K version as configured for
the Chemical Engineering Department PDPL11l/
03 computer and will be updated as the sys-
tem is changed. The detailed summary on
page 128 quotes extensively from A.G. Pink's
User Guide Issue 3, an internal publication
of the C.E.G.B. Introductory notes are by
C.P. Jeffreson.

A number of facilities provided on the
original C.E.G.B. systems are not available
on this reduced version because appropriate
hardware is not installed. They may be
conditionally assembled into the system
later. These include the INCS, DRIVE,
DRIVEH and PULSE blocks {(used with incre-
mental actuators) the WDOG or watchdog
timer block and the TTY block which allows
terminal output to be directed to a second
terminal. The facility to store schemes
on a separate disc and graphics capability
is available on other versions.

2. GENERAL FACILITIES AND PHILOSOPHY
2.1 "SECURITY' AND “FAULT TOLERANCE"

An over-riding requirement of process
plant operation is safety. The student
will already be aware that control valves
and other actuators must fail safe in the
event of an air failure; a computer system
is complex and must also fail safe and en-
sure that the hardware associated with it
does the same. The system must hence be
both "secure" and "fault tolerant”.

Software security implies that the funct-
=t :

joning existing "real time" control and
logging programmes may not be disrupted by
new programme development oxr by the uncon-
trolled expansion of data storage arrays.
The student will be aware how easily his
FORTRAN programmes "crash". The conse-
quences of this are much more serious in a
computer control language.

Flexibility, i.e. the ability to re-con-
figure contrel loop programmes and
"schemes" is also important but such recon-
figuration must not affect the security of
existing programmes. In a wider context,
security includes control hardware and is

concerned with the overall plant. The over-
all system (2] must "ensure that control
will continue uninterrupted in the event of
equipment failure". Some of these consid-
erations arise in the lecture course.

The provision of "fault tolerance" extends
to hardware as well as software; here we

are concerned with the ways in which the
computer software may be made to respond to
(say) the failure of a measurement trans-
mitter or to unacceptable data. This should
be illustrated by control laboratory experi-
ments. We consider how to handle computer
malfunction in the lecture course.

The following particular requirements of -
process control are reflected in the rules
of the DDACS language, in the "modes" of
operation allowed and in the word structure
and type provided.

1. Timing

The system must "keep time", initiating
sampling operations on a strict "real time"
scale. This is necessary also to ensure
that integral and derivative times are those
required by the control engineer. Fast and
slow loops must be sampled at the rates
specified, for example, sampling a super-
visory concentration contrel loop every 10
seconds and a flow loop every 50 msec.

TIME statements allow LOOP timing in DDACS.

2. Control and Filter Functions

The usual three term, (proportional integral
derivative or PID) controller is required
for feedback control but sufficient arith-
metic facilities need to be provided to
allow the engineer to configure his own
control algorithms easily. Since PID is
used frequently, a 'standard' form is pro-
vided as a function or "BLOCK" as well as
integrator and differentiator blocks which
could be linked in different ways if a non-
standard controller algorithm is required.

In addition filters may be required, €.9.
a first order lag (to reduce the effects of
noise) or to provide a lead/lag transfer
function for a feedforward system.

3. Flexibility in Configuring Loops

It should be possible to change control
schemes readily on site without interrupt-
ing existing schemes. For this reason, the
operating system can compile, copy and edit
new schemes in the time left over from
servicing " foreground" tasks requested by
the scheduler. This flexibility is not
usually available in conventional analogue
control systems. This implies a consider-
able change in the way a process control
system may be specified and commissioned,
since the computer control system vendor
need only be given the specification of the
number and type of analogue and digital in-
puts and outputs rather than a detailed
specification of the loops. Changes in the
configuration of loops may often be made
after startup by software rather than by
complex re-wiring operations.

4. Fault Tolerance and Alarm Signalling

If an attempt is made to extract the square
root of a negative number in a conventional
system an error is flagged and the system
halts or "crashes". The control engineer
requires the system to continue operation
so far as it can but to signal the fault.
For this reason, a further data type "bad"
is defined in addition to the usual ones of
real, integer and logical. For example,
the variable Y representing the result of
the assignment statement

Y :=SQRT (X)

will be assigned the value "bad"” if X is
negative, but the system will continue
operating. Obviously, facilities need also
to be provided to signal the condition of Y
to an operator. The system should respond
appropriately to (say) an open circuit in

a measuring element. The "bad data" flag
is also useful in detecting whether a meas-
ured variable is outside the range specif-
ied. Digital I/O allows greater flexibil-
ity in signalling fault conditions to an
operator control panel.

5. Software Security

In a conventional multiiser real time system,
a number of FORTRAN programmes may execute
apparently simultaneously. Each programme
will provide with a separate copy of such
commonly used functions as SQRT and their
location in core may vary from job to job.
In the DDACS system, each block remains in
the same location and is accessed by each
SCHEME in turn. Some commercial system
vendors call this "softwiring" of blocks, as
distinct from the "hardwiring" necessary
for conventional analogue systems.

The function of each block is clearly de-
fined and TABLES and parameters used by the
schemes are also strictly defined and local-
ised. Hence the structure of the operating
sytem helps provide software and ultimately
system security. Checks are also built in-
to the system to prevent accidental inter-
ference with existing control schemes dur-
ing programme development. For example, it
is not possible to DELETE any scheme which
is running or to delete any table used by
any scheme whether running or not. "Tables"
are used to convert measured quantities to
problem units such as degC and lb/min. The
ability to linearise thermocouple readings
or control valves is also assisted by the
use of such interpolation tables. Tables
may also be written into and read by
schemes. However unlike conventional
FORTRAN arrays, such data storage areas
cannot expand beyond the defined areas in
memory.

For obvious reasons, a real time SCHEME
cannot be allowed to become "hung up" in a
repeated locp. Hence branching by IF and
GOTO statements is allowed only in the for-
ward direction. This allows simpler line
by line compilations or translation since
earlier labels are not referenced by later
programme branching statements. Such line
by line translation is usually only avail-
able with much slower "interpretive" lang-
uages such as BASIC or FOCAL.

Because of the need to reconfigure the sys-
tem without disturbing existing schemes,
variables are not accessible between schemes,
i.e., are not "global". However parameters
may be passed between schemes through com-
mon tables. Improper modification of the
data in these tables is not allowed; for
example a WRITA block cannot change the data
stored in a TABLE used for interpolating
A/D and D/A conversions.

6. "Background" Computations

The control engineer may also expect a com-
puter control system to periodically comp-
pute, for example, the thermal efficiency
of a fired heater as a "background" scheme
or to carry out a material or energy balance
over the plant. Such a facility would only
be available with great difficulty in a
conventional analogue system but would
reasonably be expected from a digital sys-
tem. DDACS does allow one "background"
scheme to run while the system is not
attending to real time loops but extensive
and complex background tasks are not poss-
ible with the present version of DDACS. A
separate "higher level" computer would be
more appropriate if extensive offline com-
putations are required. The reader will
note that a branch back to an earlier seg-
ment of programme is allowed in background
schemes since the consequence of a repeated
loop is not serious. However nesting of
GOTO's is not allowed in the present ver-
sion of DDACS.

It should be noted that for on-line control
the computer must always respond to the
clock; it must always provide an output and
sample a loop variable at the time required
All control functions are hence in the fore-
ground. Elaborate graphic display and log-
ging facilities are given low priority in a
computer system designed for on line con-
trol. There is a case for providing such
facilities in a separate computer and dis-
play station. The present system was de-
signed to interact with an existing
operator's panel with computer auto/local
manual switching and would be used by an
engineer for background development rather
than for on line control.

7. Sequencing Functions

In starting up the burner system of a fired
heater, a complex set of operations involv-
ing logic and timing is necessary. For ex-
ample, the combustion chamber must be purg-
ed for a set time and then a pilot burner
lit. The next stage of the operation can
only be proceeded with IF the flame detect-
or "proves" the pilot, otherwise a "flame
failure" indicator must come on and the
purging operation repeated IF the operator
manually "resets" the sequence. A similar
combination of logic and timing is requir-
ed for BATCH processes involved in filling
and heating up a batch chemical reactor.
Such operations could be carried out by
real time or foreground DDACS schemes, pro-
vided IF statements are used to branch to
the appropriate stage in the sequence every
time the scheme is entered. However, pro-
gramming is complex; what is really reqir-
ed is the facility to start a suitable

background scheme once automatically from
another SCHEME. Timing then becomes diffi-
cult since, by definition, a background
scheme only runs when the computer "clock
scheduler" sees that time is available not
required to service real time operations.
The present (Adelaide) version of DDACS de-
scribed in this manual is hence not really
suitable for such batch sequencing operat-
ions.

8. Auto/Manual and Remote/Local Transfer

The control engineer requires a smooth
transition between manual (or direct op-
erator manipulation of the process) and
automatic operation. This involves inter-
action with hardware and may be achieved
in a number of ways by using mode (i.e.
"initialise" or "normal") control via,
example, the AMS block. See laboratory
notes for examples. A similar requirement
arises when changing over from single loop
or "local" operation of a cascade system

to two loop operation when the set point of
the inner, or secondary loop must be adjust-
ed by an outer or primary controller.

for

Modes:

There are three "modes" of operation in
DDACS and the BLOCKS (described from page
129 onwards) respond to these modes in diff-
erent ways:

START mode is not usually visible to the
operator. It is a transient state applic-
able on the first cycle through a SCHEME
immediately after entering a START command.

INITIALISE mode is used by a number of
special purpose blocks such as PID, INT
and FIRST to set up an initial condition.
For example, if the auto manual block AMS
indicates that a scheme is in 'MANUAL'

then that SCHEME will be set to INITIALISED
and PID, INT and FIRST block outputs will
simply track their initial condition.

If the SCHEME is on AUTO, then integrators
will function in NORMAL mode, see below,
until a CONSTRAINT occurs, at which stage
the loop in which the constraint has
occurred will alternate between initial-
ise and normal modes.

NORMAL mode allows all functions to pro-
ceed normally. For example an INT block
will simply integrate its input subject to
its initial condition which was set last
time the integrator was in initialise mode.

In summary, a Loop which is part.of a
Scheme on Auto can function in "initialise"
or "Normal" mode depending on the exist-
ence of a CONSTRAINT whilst a all loops
of a SCHEME on Manual will be in Initial-
ise Mode. The use of mode control to pre-
vent "Reset Windup" and ensure "bumpless"
transfer is most easily understood after
performing the laboratory experiments.

9 Operator Communication and Display

In addition to alarm indication, conven-
tional analogue instruments usually pro-
vide analogue displays in the form of chart
recorders and so on. This assists the

operator to visualise trends and hence to
take appropriate action. Although DDACS is
able to drive a graphics terminal, the ver-
sion used in the department does not have
this capability and all communication
(except from panel-mounted switches etc.)
is through the V.D.U. at present for hist-
orical reasons already mentioned under 6.
above.

2.2 REFERENCES AND FURTHER READING

{1] Johnstone, L.R., Marsland, C.R. and
Pringle, S.T. "A Distributed Computer Con-
trol System for a 120 MW Boiler", I.E.E.
Conf. Pub., 153, 1977, pp 114-119.

2] Marks, H., "An Evolutionary look at
Centralized Operation/2". Honeywell,
Process Control Division, Washington, 1977.

{3] Smith, C.L., "Digital Computer Process
Control" Intext, 1972.

[4] Bartlett, L.A., Marsland, C.R. and
Smith, C.D. "A Guide to the Use of DDACS-
MCS (Modulating Control System) C.E.G.B.
(N.E. Region, U.K.) Report SSD/NE/N138,
November, 1976.

3. DETAILED INSTRUCTIONS

The following sections give detailed des-
criptions of procedures and monitor com-
mands .

3.1 TQ START AND END A DDACS SESSION

Load system floppy disc in left hand drive
(DX0) , close cover, turn all three switches
off- (down), turn on "ENABLE/HALT" and "DC
ON/OFF" switches in that order repeating if
necessary until a REV1l prompt ($) appears
on the VDU. Enter DXO followed by a car-
riage return. There will be some considexr-
able delay (about 45 seconds) as disc is
read in. When fully read, the system will
respond with:-

ADEL DDACS VER 80:4
>

This is the Monitor "prompt" and indicates
that the system monitor is available.

Turn the real-time clock ON (RH switch up)

At the End of a Session -

Preserve memory images on the floppy DXO
including any SCHEMES entered during the
session by typing:

DUMPD<CNTRL/X>

followed by a carriage return. When the
entire system has been written on the disc
(40-60 seconds) the DDACS monitor prompt
above will occur. Power may then be turned
off.

3.2 CONVENTIONS USED IN THIS GUIDE

Underlined characters represent user re-
sponses to computer prompts,

Computer outputs not underlined.
0O is a letter, O is a numeral

Control characters entered by the user are
enclosed in angled brackets

e.g. <CNTRL/U> denotes press control key
and U down simultaneously (first CNTRL
then U).

Spaces and their absence are significant
and should not be inserted unless shown.

3.3 SPECIAL CONTROL KEYS AND COMPUTER
PROMPTS

Once the "return" key has been pressed, a
line of keyboard input will be read by the
computer. Until return is pressed there
are two error correction facilities:-

(1) The Delete key deletes the last charac-
ter on the screen, the correct character
may then be entered.

(2) <CNTRL/D> deletes any line, and re-
sponds with a "new line" prompt:>

MONITOR LEVEL MAY ALWAYS BE RE-ENTERED AT
ANY STAGE BY TYPING <CNTRL/U>.

Other Special Keys include:

<CNTRL/P> Stops real time clock and re
turns to Monitor.
<CNTRL/B> Gives time and date.

*#**The above do not require return key
for execution***

NOTE The compiler (scanner) will not rec-
ognise a leading decimal point or zero i.e.
.5 or 0.5 must be entered as 5E-1. Simil-
arly, large numbers with more digits than
the capacity of the 16-bit mantissa should
be entered in exponent form. For example,
to set the integral time TI to a large
number (to remove integral action) enter
1E5 or 1lE10 instead of 100000. Trailing
decimal points and zeros e.g. 1, or 1.0
will not be recognised.

Prompts

At most stages of DDACS when a prompt has
been issued, the possible options will be
listed in a ? is entered in reply. For
example, in LIST, a ? will result in a
listing of all the user's scheme names
before continuing with a detailed listing.
In monitor mode indicated by:

the list of all monitor facilit-
ies shown below will results e.g.

TIME Enter time and date

START Start all ENABLED foreground or
real time schemes

STOP Stop all enabled foreground
schemes

EDITOR Display and/or modify scheme

parameters

LIBRARY List available library of block
names

SCHEME Create new scheme

TABLE Create new table

LIST List user-created schemes and
tables

COPYED Copy existing scheme or table line
by line allowing Editorial addit-
ions and deletions.

DELETE Delete existing schemes and tables
not in active use

ENABLE Allows any real time scheme to be
started or executed

DISABLE Allows any real time scheme to be
prevented from execution

EXECUTE Starts one background (non real
time) scheme

ABORT Stops execution of background
schemes, provided the SCHEME is
running

RESUME Continue execution of background
scheme

DEVICES Displays locations of device reg-

isters, for example the floppy
disc control-status register is
at 177170

TESTWD also KILL, RUN EDIT: used in detail-
ed software debugging

TABSWP Used to change table references
SEE PAGE

DUMPD<CTR/X> Dumps DDACS system to disc
See page

4. MONITOR FACILITIES AND COMMANDS

4.1 TIME

At any level of DDACS if a <CTRL/B> command
is entered the terminal will printout the
current time and date. Following that
printout, the reader handler acts as if a
<CTRL/D> command (i.e. delete current line
entry) and causes the prompt to be output
again.

To set the correct time and date, enter
TIME and correct entry if necessary.
Otherwise enter a carriage return e.gq.
!> TIME

1:2:3 1/2/78

SECS 3>0

MINS 2>30

HRS >11 Sets new time and date, 11:30:00
7/6/80

DATE >7
MNTH 2>6
YEAR 78>80

New data can be entered in reply to the
prompt, or if no new data is entered, the
previous value is retained. The real time
clock schedulaer for schemes is started by
a START command and stopped by a STOP com-
mand or <CNTRL/P>.

Enter library to display all blocks avail-
able on this system. At present, these
cannot be held on the screen (use printing
terminal) .

4.3 TABLE

Before creating a new control scheme, all
tables to be referenced must he set up.
For example, the analogue to digital con-
verter block AAV at present is hardware
configured to convert an internal variable
(say OP, ranging from -10 to 340) to an
output veltage ranging from a minimum of

-5.12 volts to +5.12 volts. Hence the
table:
-10 0 (min voltage, -5.12)
340 1 (max voltage, +5.12)

will produce a (linearly interpolated vol-
tage of 2.56 volts

when OP is 257.5 (Figure 1)

2l
52 ,_/é,

25% |- — —a— —f

(o) 257.5 340
Figure 1
4
£ 612 b s e 3 e s
B |
N
> |
o
Y
| .
-0 3uo
Figure 2

Further break points for table pairs may
be entered (Figure 2) if, for example, it
is desired to linearise a final control
element. However L.H. entries must be in
ascending order, they must be monotonic
increasing or decreasing. As in figure 2, the
full range of the output (or input) need
not be used, but variables outside that
range will be flagged as "bad", see RAV
and ADV blocks for further details (see
plg also). The monitor will ask for the
block which is to use the table. In the
example below, an ADV block (i.e. analogue
to digital converter) is to reference a
table called ADV2 which converts a 0 to
+5.12 volt input to internal (perhaps
engineering) units ranging from 35.2 down

to 22.3:
!>TABLE
NAME?>ADV2 ; Name can be any length
BLOCK?>ADV ; ADVI1l will be used
>5E-1 36.2 3 The user enters succes-

ive coordinate pairs
until the TABLE is

S

>1 22.3 ; terminated by

L ; two asterisks

Spaces between entries may be used
for clarity and the table terminated with
two asterisks. Trailing zeroes and deci-
mals will generate a compiler error.
TABLES can also be typed in with all the
elements of the TABLE on the same line,
still separated from each other by a
space. The terminating asterisks must be
on another 1line.

TABLE can also be used to prepare
arrays for subsequent use by blocks WRITA
and READA See page 22
1> TABLE

NAME?>TABLE 1

BLOCK> SIZE ; Provide space for 2x3
array called TABLE 1

COLS> 2

ROWS3

.53 ; Terminate TABLE

The value of individual elements of
the array will be set (and read) by blocks
WRITA and READA respectively on execution.

ALL TABLES MAY BE ACCESSED BY MORE
THAN ONE SCHEME if desired.

4.4 Scheme

SCHEME is used to create a new SCHEME
which will be subsequently ENABLED and
STARTED (real time, foreground SCHEMES) or
EXECUTED (background scheme) .

For example, the following schene
called EXAMPLE 1 will read a thermocouple
transmitter output connected to channel 1
of the ADV1l analogue to digital converter
converting, through TABLE ADVMV, the value
to deg C by linear interpolation. Set-
point, SP and Regulator Output RG are also
read from voltage regulators and.an error
ER calculated. (NOTE that variable names
in DDACS may only be a maximum of two
characters in length) .The output, OP of
this single loop scheme is obtained from
the PID (Controller] block, see page 25.
Output is then sent to channel 0 of the
AAV11 Digital to Analogue Converter.

NAME?>EXAMPLE1 ;These Comments are not allowed in DDACS
>TIME (4) ;Real time SCHEME to run every (2**4)*10=160mSec
>BREAD(O,ST) ;Read State, ST, of SCHEME from DRV11 Digital I/0
~>AMS (ST) :Uses ST to set state to Auto or Manual
. >ADV ($ADVMV, 1,MV) :Read Measured variable (Thermocouple TX)
>ADV ($ADVSP,0,SP,2,IC) ;Also Setpoint and PID Initial Condition

;Arithmetic Assignment statement calculates error
>OP:=PID(ER,IC,K,TI,TD) ;PID controller block with usual parameters

>AAV ($SDACOP,0P,0,0) ;Output to (Analogue) Final Control Element
>MONITOR (ST, SP,MV,IC,ER,K,TI,TD,0P); Gathers SCHEME variables

>ER:=SP-MV

>TIME(0)

A SCHEME must start with a TIME(n)
statement, and end with a TIME(O) state-
ment, where TIME(l) refers to a loop
rate of 20mS, TIME(2) refers to a loop
rate of 40mS, TIME(3) refers to a loop
rate of 80mS etc. TIME statements may
not appear successively and no two TIME
statements within the same SCHEME may be
the same. Although there is only one
LOOP in SCHEME EXAMPLE 1 above, a Cascade
loop would probably use two with the
faster, inner loop set by the outer.

TIME statements define LOOP boundaries.
All labels specified after a TIME state-
ment must be satisfied before the next
TIME statement i.e. no referencing of
labels in other LOOPS is permitted. TIME
statements must be entered in order of
decreasing period. A background SCHEME
may be created by starting with a TIME(@)
and ending with TIME(0). Such a back-
ground scheme will be EXECUTED when time
is available (not required for real-time
SCHEMES). COMPILER (scanner or parser)
errors are listed on pages 29 and 30.

4.5 Copyed

COPYED 1s used to copy or modify an exist-
ing SCHEME or TABLE. For example, in the
following dialogue, we use COPYED to
modify EXAMPLE 1, adding an IF Block to
branch to the Label L2: when MV becomes

"Bad" (perhaps because of a broken thermo-
couple lead):
NAME ?> EXAMPLE 1 ;01d name
NAME?>EXAMPLE 2 ;New Name
TIME (4) ;Accept this Statement?
*>A ;Yes
BREAD (O, ST)
*>A
- ;And so on
*>A"
ER:=(SP-MV) ;This one too?
*>1 ;Maybe, insert a few lines

first though
>IF(MV,L1: ,L2:) ;Branch to L2: if MV "Bad"
>L1:ER:=SP-MV
> ; "Return” Key Terminates
Insertion
;Don't need this now so
;Enter R for "Reject".

5 ;and so on until last
' statement

ER:=(SP-MV)
R

TIME(0)
>n

The reply A causes the line previ-
ously printed out to be accepted, whilst
R causes it to be rejected. I is used
to insert one or more lines. The reply
E causes the input to be accepted to the
end of the SCHEME.

;Terminates Loop and SCHEME

4.6 List

LIST is used to create a print out of
SCHEMES or TABLES. As noted before, a ?
will result in a listing of all schemes
and tables:

NAME?> ?
! EXAMPLEL ;Indicates a SCHEME
(Not ENABLED)
$ ADVSP : Indicates a TARLE
$ DACOP
@ RESET ;Indicates a BACKGROUND
Scheamne
$ ADVMV
! EXAMPLE2 ;Indicates an Enabled
SCHEME
NAME?> EXAMPLE 2
TIME(4)
BREAD(0,ST)
AMS (ST)

ADV (SADVMV, 1,MV)

ADV (SADVSP,0,SP,2,IC)
IF (MV,L10: ,L11:) ;Compiler Changed these
fran L1: and L2:

L10 :=) SP-MV)

etc.
NAME?>DACOP ;Can Also List Tables:
0.0000E+00 1.0000E+00

1.0000E+02 6.3700E-01

ok

Real time SCHEMES will only be exe-
cuted if they are enabled andaSTART command
has been given e.g.

!> ENABLE

NAME?> EXAMPLE?2 ;Enable EXAMPLE2

NAME 2> < CNTRL/U> ;That's all so
return to Monitor
!> START ;Starts all schemes

currently enabled
>

A real time SCHEME can be disabled
using the DISABLE command so that it will
not be executed. The START command begins
execution of all enabled SCHEMES. The STOP
command stops execution of all enabled
SCHEMES.

The EXECUTE command is used to start
the execution of one background SCHEME.
Background SCHEMES are executed once only
unless they include a backward branch, in
which case the part of the program between

the branch point and the label to which it
refers will be executed repeatedly until
the program is halted at its current
position and the computer is returned to
the monitor level via a <CTRL/U> command.
(N.B. Backward branching is not permitted
in real time SCHEMES). If RESUME is then
entered, the background program begins
execution at the position it had previously
reached. If ABORT is entered, the position
which the background program had reached is
disgarded, and using EXECUTE to start the
program again will cause execution' to comm-
ence at the start of the progran.

For both background and real time
SCHEMES, the command DELETE results in the
deletion of the name SCHEME e.g.

! DELETE
NAME? FRED

NAME? CTRL/U

DELETE may only be used when a STOP
command has been entered (i.e. no SCHEMES
are being executed). Any attempt to DELETE
a TABLE being used by a SCHEME, enabled or
disabled, the same error message Is pro-
duced.

4.8 Editor

EDITOR is used to list and modify the
values of variables and control parameters
within a block. The variables of a new
SCHEME created using the SCHEME command or
the COPYED scheme will be flagged and dis-
played as "bad" (i.e. will not have a
value) even if the scheme has been enabled
and started unless the user sets that varia-
ble in EDITOR. This applies particularly
to the parameters of block such as FIRST
(i.e. the time constant, TC) or to the PID
controller block (gain, K, integral time TI
and derivative time TD). DDACS will, how-
ever, assign values to variables which it
can so that it will be unnecessary to ini-
tialize or preset these variables prior to
START. For example, if a scheme with the
code listed on pages 10 and 11 is ENABLED
and STARTED then the PID block called by
the assignment statement:

op:=PID{ER,IC,K,TI,TD}

will assign a value of "bad" to OP
even though ER and IC have 'good" or valid
values until K,TI and TD have been assigned
values using EDITOR.)

EDITOR has four levels: SCHEME, LOOP,
BLOCK and PARAMETER. At?each level, EDITOR
prints the appropriate prompt, e.g.

!>EDITOR. .
NAME?> EXAMPLE1

LOOP?> 4
BLOCK?> MONITOR ;See listing pagell
PAR?> 10 User requests

display of current

value

ST= 0.0000E+00

SP= 3.6380E+01

:K —kkkkRkkkk® ;K IS "BAD" (has
not been assigned
yet)

PT=kNkkkk Rk k* ;S0 is TI

TD=Wkkkkkk kK

OD=kkhkkkk Ak X ;And, as a result,

so is OP.
;Enter to CHANGE
allowable parameters

PAR?> DV CNTRL/A>

K=**********
VAL?> 1 ;:User changes K to
1.0

TI=*t********

VAL?> 2

. TD=Fkkkkkkkkk

VAL?> 0

PAR?> Entering 10 will verify that K,TI,TD
and OP now have values,:Typing
<CNTRL/1> will return to monitor level,

BLOCK?>< RTN> ;Return key returns

+o monitor through

various

;Levels of EDITOR

;and so on

LOOP 2> < RTI>
NAME?>< RTN>
> ;Back to Monitor
: level

In summary, the reply 10 causes the
present value of all Inputs and Outputs to
the previously specified BLOCK to be
printed. In the case where more than one
BLOCK of the same type is included in a
LOOP, successive BLOCKS of that type can be
accessed by entering + in reply to the
PAR?> prompt. If a variable has not been
allocated a value it is printed out as a
series of asterisks. A variable may be
assigned a value by means of the DV<CTRL/A>
command.

Some BLOCKS such as the PID BLOCK, have
special control parameters such as GAIN, TI
and TD and these may also be modified by
entering the parameter name followed by

< CTRL/B> .

If the user is in doubt as to what replies
are permitted to the PAR?. prompt az will
cause all permitted replies to be listed.

4.9 Devices

This command allows the user to dis-
cover the addresses which are allocated in
the range 000000-177776. Since it uses
the hardware trap facility, the command is
only available when the machine is in a
STOPped state.

4.10 TABSWP

This command allows the user to
change all references to a particular
Table to another Table. Hence if two
tables exist $A and $B then the effect is

as follows

> TABSWP

NAME> A ;User enters TABLES to be
- interchanged.

NAME> B

>

If the block previously referencing $A is
now listed it will read: '

AAV(SB,....)

4.11 Less Frequently Used Commands

Students are not allowed to use these
commands under any circumstances.

4,11.1 TESTWD

This command has the effect of an implicit
background job which tests a particular
word in store for a change in value. It is
used for testing DDACS software and should
not normally be needed by the DDACS user.

In addition to the above mentioned monitor
levél commands, there are three others
available.

4.11.2 KILL

This isolates the terminal from the com-
puter. Re-entry to the monitor level is
via <CTRL/U > .

4.11.3 RUN

157600 program at address 157600 is
executed

4.11.4 EDIT

This allows the examination and modification
of the contents of any location in the com-
puter memory. It is used for finding and
correcting faults in the DDACS software

and should not normally be needed by the
DDACS user €.g.:

!> EDIT

>042432 displays contents at location
042432 which may be changed
in response to the prompt >
or left unchanged by a <RETN>.

DESCRIPTION OF BLOCKS

5.1 General Remarks

The following description of the DDACS
BLOCKS should be used in conjunction with
the examples provided in the introductory
section and the notes to accompany third
and forth year practical experiments.

Conventions:

The abbreviation var means a variable of
any type real, bad, integer or logical.
The abbreviation varnum means that either
a literal (actual number) or a variable
may be substituted.

Variables may be of one oxr, at most, two
alphanumeric characters, the first of
which must be alphabetically [A,B,C,...,2].
A variable is flagged 'bad' and will be

printed as ******** if it has not been
assigned a value (e.g. on the first pass
through the block after START if not
previously assigned a value) or if it would
be outside the range of TABLE's scope.

Arithmetic Assignment statements use the
compound symbol := e.g.:

A:=A+1

Logical assignment statements are written
thus:

L==(OP >100) ! (OP< 0)

where L is assigned true if the logical
statement on the RHS is true. Variables
may be used in arithmetic or logical state-
ments interchangeably however:

A variable is considered true if it is
greater than 0 and false if equal to or less
than 0.

5.2 Arithmetic and Logical Operator Blocks

The usual operations are provided i.e.:
+ -/ %

and parenthesis may be freely used. The
compiler (parser) will accept the usual
FORTRAN-like expressions but will insert
additional parenthesis when LISTed back e.g.

IC:=RG-ER* (K+T/TI)
becomes IC:=RG-(ER* (K+(T/TI))))

nonetheless the first statement will be
accepted as unambiguous. The usual FORTRAN
rules- of precedence apply i.e. *and / are
evaluated first and + and - next and left
to right for equal status operators.

In addition, logical operators are provided |
viz.: |
|

> (Greater than}

< (Less than) [
(NOT operator, negation}

. (Logical AND)

. (INCLUSIVE OR)

Logical and arithmetic operators and |
functions (see 5.3 below) may be used in |
logical statements e.g.: ‘

A==(B>C) ! (D> (ABS(X)*SQORT(Y)))

although care should obviously be exercised.

Non permissible arithmetic expressions

such as A/B or SQRT(A) where A is negative
and B zero are assigned as "bad" and execu-
tion will continue although such conditions
may be detected in Editor.

|
1.
|

5.3 Arithmetic Function Blocks

The present 32KW version provides SQRT,
FINT, ABS, FINT and a selection of trig-
onometric and exponential functions. They
have the form:

FUNCTION (varnum)

e.g.,
A:=SQRT (X) *ABS (Y)

FINT truncates a floating point number to
an integer

e.g. X:FINT(Y)
If Y=1.23, then X = 1.
SQRT calculates square roots

e.g. X :SQRT(Y)

If Y is negative, then X is bad
ABS calculates the absolute value of the
varnum input.

* SIGN outputs +1 if the varnum is positive,
0 if the varnum is zero, and -1 if the
varnum is negative.

Trignometric Blocks are SIN, COS, TAN, ASIN,
ACOS, ATAN.

EXP and LOG (natural) and LOG:10 and
LOG 2 are also provided.
Further special purpose arithmetic functions
are listed on page 24.

5.4 Timing Function Blocks

TIME (num)where num is an integer, sets
the period at which a LOOP will be executed,

e.g.:

TIME(3)
requires the clock handler or scheduler to
execute all statements down to the next
TIME statement every (2**3)*10 or 80 msec.
values of num of 1,2,3, 4, ... hence result
in periods of 20, 40, 80, 160, ... msec up
to a maximum of 327680 msec (or 9.10 hours)
i.e. the maximum value of num is 15.

All schemes must start with a time statement
and end with TIME(0). TIME(@) denotes
a background scheme.

READTIME enables a real-time program
to read the time rate of the LOOP
which the block is running in:-

READTIME (A)

Will only be accepted in a real time
program - otherwise compiler errxor

207 is generated.

Set bad data on a START in A,
otherwise A is a floating point number

: representing the LOOP rate,
i.e. 5.120 etc.

RTIM

Format:-
var :=RTIM (num)
where num can be:-
0-seconds
l-minutes
2-hours
3-day
4-month
5-year
This BLOCK allows the user to access

of range of the table.

the current time and refer to it as a
floating point number e.q.
X:=RTIM(3)

In this example, X is the day of the month.
STIM

Format:- B
STIM (num,var)
where num can be as in RTIM.
The STIM BLOCK, which can only be used
in a background SCHEME, allows the
user to set the current time e.g.
STIM(2,Y)
In this example, the hour is set by
the value of the variable Y.

PAUSE

Format:-
PAUSE (varnum)

e.g. PAUSE(N)
The PAUSE BLOCK causes a delay in the exe-
cution of a background scheme. The argument,
N, is considered to be unsigned hence neg-
ative numbers give long delays. The delay
length is approximately N*1mS (time taken
to execute real time SCHEMES). The PAUSE(0)
is the DDACS "no-operation" instruction.

5.5 Input-Output

AAV (Digital/Analogue Converter)

Format:-
AAV (tablename, var, channel
number, constraint enable)

e.g.
AAV(STIK A<O0,1)

. This block outputs analogue values via the

aAV11 digital to- analogue converter acces-
sing channels 0 to 4 [via buffers at the
following locations:

channel 0 : 170440
1 : 170442
2 : 170444
3 : 170446]

Hence the channel number must be in
the range 0 to 3.

Table name is the name of a table which
converts the value in the buffer to the
required range for the analogue output, e.g.
the value of the variable A above is to be
converted via table Tl and output through
channel O. N

The Constraint enable varnum (which must be
integer) indicates whether or not a con-
straint condftion is to be imposed on the
loop when the input variable is bad or out
If true, the con-
straint is set (true®0), if false (<0} no
constraint is set.

Note that whether the constraint varnum is
set or not, a bad or out of range value
will not be written to the converter, i.e.
the effect is to 'freeze' the analogue out-
put voltage at its last value. Values of
input A which would cause the converted
value to exceed the maximum voltage or fall

below the minimum voltage (e.g. if an in-
correct table is used) will result in a
voltage of +5.12 or -5.12 respectively.

READBACK

It is remotely possible that because data
is held in two words the result of a cal-
culation could be half formed when

another program interrupts it to read the
data. This is automatically protected when
a result is written out by raising or
dropping the priority. However, if a slower
loop is reading data from a faster loop
then potentially the faster loop itself
could interrupt causing a change of its own
data. If the system is heavily loaded it
is recommended that the READBACK block be
used. This enables protected feedback of
variables which are derived from faster
loops.

READBACK (input variable, output
variable, input variable, output
variable ... etc.)

READBACK (A,Al, B,Bl C,Cl...)

causes the value of A to be put in Al
A would have been calculated

in a faster loop. All the output
variables are filled with bad data on
a START.

etc.

ADV (Analogue/Digital Converter)

This BLOCK reads any number of the 16
analogue inputs channels to the ADV1l
analogue to digital converter.

Format:-
ADV(tablenane,

variable namne,
variable name,

channel no.,
channel no,
etc.)

Example:
apv($Tl1,0,A,1,B,E)

reads channels 0, 1 and 3 of the ADV con-
verting the voltages through tab Tl and
assigning the values to variables A, B and
E.

Channel numbers must be between 0 and 15
and must be integers (not variables).

There may be, up to the length of the line,
any number of channel number variable pairs
and the block will read the next channel
immediately it has read the present one.

The outputs will be bad if the input volt-
age is out of range of the table and also
in start mode.

BREAD ("Bits READ", 16 bit digital 1/0)

This BLOCK reads any number of the 16 in-
dividual bits (numbered 0 to 15) of the
DRV11l parallel interface.

Format:-

BREAD (bit no.,var,bit no.,var, cte)

e.g.BREAD(0,A,3,B,14,C)

where bit number must be an integer (not a
variable) and a bit number/ variable pairs
may be listed to the end of the line. Each
digital input state is assigned to the
logical variable named. If the input bit
is set then the variable is made true, if
clear it is false corresponding to 1.0 and
0.respectively.

In 'start' mode all output variables are
set bad.

BWRITE ("Bits WRITE"; 16 bit digital
1/0

This BLOCK converts a logical variable to a
set or clear (or alternating set and clear)
at the DRV11 16 bit digital parallel 1/0
terminals.

Format:

BWRITE (channel no.,var,inuml,inum2,inum3,
inum4)

e.g. BWRITE(3,X,-1,1,0,-1)

where the inum are four integer numbers or
'output state flags" used as described
below, the channel number represents the
bit position to be set as output (0 to 15)
and is an integer not a variable,

and var is the name of the variable (X in
the example) which is to determine the
state of the output in conjunction with the
output state flags.

If variable is NEGATIVE (<0) the first out-
put state flag controls the value of the
digital output as below i.e. if

inuml = 1 : set digital output
0 : clear digital output
-1 : set and clear (i.e. flash if
connected to an LED) at the loop
rate

if var is ZERO (=0) inum2 controls as
the output state,

if var is POSITIVE (>0) inum3 controls
if var is BAD, inum4 controls the
state of the output.

and

In the example, when X is negative or bad a
light connected to channel 3 will flash,
when X is zero the output will be set
(steady light)

and
when X is positive the output will be clear.

The greatest use of BWRITE is in signalling
alarm and fault conditions to an operator
panel.

WRITNO

Format:-

WRITNO (format number, varnum)

where the format number is coded as follows:-
0 free format integer

1 fixed format integer

2 fixed format floating point

free format floating point

WRITNO is only used in background SCHEMES.
It causes the varnum to be printed on the
terminal e.qg.

WRITNO (3,X) causes the value of X to
be printed e.g. 15.4

TEXT

Format:-

TEXT (string)

where string is a non-zero sequence of

characters surrounded by double quotes
) ;

e.g.

TEXT (" THIS MESSAGE IS PRINTED")
TEXT is only used in background
SCHEMES and causes the string to be
printed on the terminal.

READNO

Format:-

READNO (string,var)

e.g.

READNO ("ENTER VALUE OF A :-",A)

READNO is only used in background SCHEMES
and causes the string to be output to the
terminal and assign the value of the typed
reply to the variable.

is

PRINTCH

Format: -

PRINTCH (varnum,varnum.)

PRINTCH is only used in background.
SCHEMES. It causes one or more chara-
cters to be printed on the terminal.
The value of the variable or number

is converted to octal and truncated to
a byte which is treated as ASCll by
the terminal e.qg.

PRINTCH(13,10) causes a <CR> <LF >
to be printed.

READA (Foreground or background schemnes)

Format:- :

READA (table name, rows,columns,var, flag)
e.g.READ($FRED,24,X,FL) ’

The element of the second row of the
fourth column is read and given the
name X. If X is true FL is 1, if X is
bad FL is bad.

WRITA (Foreground or background)

Format: .
WRITA(tEblename,rows,columns,varnum,flag)
e.qg. WRITA(FRED,2,4,Y,FL) :
The element of the second row of the
fourth column of the array FRED is
assigned to the value of Y. If Y is
true, FL is 1, if Y is false, FL

0 and if Y is bad FL is bad.
MONITOR

Format:-
MONITOR(var,var,var......)

e.g. MONITOR(A,B,C......)

The purpose of this block is to allow the
user to access (from the console through
EDITOR) several different variables
without having to specify the BLOCK in
which each of the occurs. In the example
A,B,C,.... may occur in different blocks
scattered through a scheme. They are all
conveniently gathered for access in the
MONITOR block.

5.6 MODE AND PROGRAM FLOW CONTROL
AMS
Format:-
AMS (varnum)

This BLOCK indicates to the SCHEME contain-
ing a PID, INT or FIRST block that the
block should be in "auto" if the varnum is
true, and in "manual" if it is false. If
there is no AMS block in a SCHEME, the
SCHEME will function in normal mode i.e.
"auto" (P.5) unless a constraint occurs.
such a Constraint can be set from the
CONSTRAINT block (see below) or from and
AAV block with "Constraint Enable" flag
set. A scheme which is in "manual" sets
PID,INT and DELTA blocks to initialise
mode such that their outputs are contin-—
ually equal to their initial condition in-
put. In "auto", the normal functions of
these blocks occurs although they may be
forced to initialise mode by a CONSTRAINT
block in the loop.

CONSTRAINT

Format:-

_ CONSTRAINT (varnum)
This BLOCK sets a constraint in the LOOP
in which it appears if the varnum is true.
Its effect is to set the LOOP to INITIALISE
mode then to NORMAL, continuing this until
the constraint condition has been removed
(see p).

GETMODE

Format:-

GETMODE (var)

e.g. GETMODE (A)
This BLOCK assigns a value to the variable
depending on what mode the LOOP in which
it occurs is. If the LOOP is in start
mode, the variable becomes ~1. 1If it is
in initialise mode, the variable becomes
0, and if it is in normal mode, the vari-
able becomes 1l.

SETMODE

SETMODE (varnum)
SETMODE is only used in background SCHEMES.
Its purpose is to tell the background
SCHEME what mode it is in. If the varnum
is negative the SCHEME runs in start mode.
If the varnum is 0 the SCHEME runs in ini-
tialise mode, and if the varnum is posit-
ive the SCHEME runs in normal mode.

Goro

Format:-
GOTO(label)

e.g. GOTO(X1:)
This causes an unconditional branch to the
line of the program which starts with the
label name. In realtime SCHEMES, only
branching forward 1is allowed. When the
SCHEME is compiled, the actual name used
(or the label is not remembered). When the
SCHEME is printed out by a LIST command,
the first label to appear is referred to as
L10:, the second one Lll: etc.

TIMESET

Format:-

TIMESET (n)

Where n=1 to 15

TIMESET is only used in background
SCHEMES. Its purpose is to enable
BLOCKS which utilise the loop rate in
their calculations to have a "pseudo
loop rate" given to them.

SWITCH

FORMAT: -
SWITCH (VAR, LABEL-LABEL)
E.G. SWITCH(A,Ll:L2:)

If A is true, go to Ll:
If A is false, carry on
If A is bad, go to L2:

The SWITCH BLOCK maintains within it a flag
to indicate to itself which branch it took
on the previous operation. If there is no
change in the branch then it operates
normally. However, upon any change the
SWITCH BLOCK causes the remaining BLOCKS in
that LOOP to initialise, and then on the
next timestep initialises all the BLOCKS in
the LOOP. '

IF
Format:-
IF (var,label,label)

The IF BLOCK is identical to the
SWITCH BLOCK, except that when a new
branch is taken it does not cause
initjalisations.

LOOP

Label:

LOOP (var,label:)

e.g. L:A=A+1

LOOP (X, L:)

LOOP is only used in background SCHEMES.
It executes the part of the SCHEME starting
at L: a given number of times X. It should
be noted that the loop is executed onece
even if the variable X is bad, negative or
zero.

INT (Integrator Block)

Format:-
var:=INT(var,var)
e.g. Y:=INT(X.IC)

In NORMAL mode this BLOCK produces an out-
put approximating to an integrator:-
Y(t) = T*X(t) + Y(t-1)
where t is the sampling instant,
where t is the last sample instant
and T is the sampling interval
(reciprocal of loop rate).
In INITIALISE mode, the output is set

equal to the initial condition.

DELTA (Differentiator Block)

Format:-

var :=DELTA (var)

e.g. Y:=DELTA({X)
In NORMAL mode, this BLOCK. produces a Euler
approximation to a differeritiator

Y(t) = [X(t)-X(t-1)1/T
In "initialise" mode, the "history", X(t-1)
of the Input is set to the present input,
X(t) and thus the output is zero.

[Note: by comblnlng INT, DELTA and the
arithmetic blocks in various ways special
purpose PID controllers may be designed if
the PID controller provided is not satis-
factoryl.

FIRST (First Order Lag Block)

Format:-

var:=FIRST{(var,varnum)

e.g. Y:=FIRST(X,TC)

In NORMAL mode the BLOCK produces an
approximation to a continuous first
order lag or filter:-

Y(t) = (l.-T/TC) * Y(t-1) + T*X(t)/TC
In INITIALISE mode, the output ¥Y(t) equals
the input X(t). -If the time constant TC is
less than the loop rate the BLOCK functions
in initialise mode.

AHYS (Antihysteresis)

FORMAT: -
var:=AHYS (var,varnum)
E.G. Y:=AHYS (X, H)
-In normal mode the BLOCK provides an
output which is designed to eliminate
hystereSLS by detecting changes in
sign of the rate of change input.
Y(t)=X(t) if sign[X{t)-X(t-1)]*sign
[X(t-1)-X(t-2)]
Y(t)=X(t)+H if sign[X(t)-X(t-1)] is not
equal to sign[X(t-1)-X{t-2)]
and sign of[x(t) -X(t-1) lis p051t1ve,
Y(t)=X(t)-H if sign X(t)-X(T-1) is not
equal to
sign [X(t-1)-X(t-2)]

and sign of [X(t)-X(t-1)] is negative.
In initialise mode:
Y(t)=X(t).
STIC (Stiction)
Format:-
var:-STIC(var,varnum)
e.g. Y:=STIC(X,DB) .
In normal mode the BLOCK's output
follows a stalrcase function in
response to variations in the input,
the step size being equal to the
stiction DB.
Y(t)=X(t) if X(t)-X(tr) is greater than or
equal to DB
Y(t)=Y(tr) if X(t)-X{(tr)is less than DB

where tr is the time of the previous
successful output

In initialise mode it sets its output
Y(t)=inputX(t) and sets its stored value
of the previous successful input

X (tr)=X(t)

DBAND

This BLOCK allows introduction of a dead-
band into the output to an actuator to
eliminate hunting.

Format:-
var :=DBAND (var,varnum)
e.g. Y:=DBAND(X,DB)

The BLOCK functions is the same in all
modes.

¥Y(t)=0 if modulus of X(t) is less than
DB

Y(t)=X(t)-DB if modulus of X(t) is
greater than or equal to DB and X(t)
is positive

Y (£)=X(t)+DB if modulus of X(t) is
greater than or equal to DB and X(t)
is negative.

RAMP

Format:=

VAR:=RAMP (var,var,varnum)
e.g. Y:=RAMP (X, IC,RT)

The building BLOCK limits the rate of
change of the output variable in response
to changes in the input variable. In
normal mode the BLOCK outputs

Y(t)=X(t) if (X(t)-X(t-1))/T is less
or equal to RT

Y(t) =X(t-1)+RT if (X(t)-X(t-1)}/T is
greater than RT.

In initialise mode Y (t)=IC(%)

5.8 SPECIAL PURPOSE ARITHMETIC AND
LOGICAL FUNCTIONS

TRACK
This block provides an output which tracks

an input or holds it last yalue depending
on the value of a switch.

Format:-

var : =TRACK (var,var)

e.g. A:=TRACK(B,C) :

A=B if C is true (greater than zero)

A=A if C is false (less than or equal
to zerol

A is bad if C is bad or C is true

and B is bad.

AVE

This BLOCK provides an instantaneous aver-
age of a number of input variables, for
example when averaging a number of trans-
ducer outputs ignoring Bad inputs.

Format:-

var :=AVE(var,var,var......)

e.g. A:=AVE (B<C<D)

A becomes equal to the average of all
the good variables. Thus if B, C and D are
all good, A=(B+C+D)/3. However if say C is
bad then A=(B+D)/2

EAVE

As for AVE Block except that all imputs
must be good.

Format:-—.

var:=EAVE (var,var,var......}
The LHS becomes equal to the average of all
good variables. If any are bad, then the
LHS {s bad.

MIN

Format:-

var:=MIN(var,var,var......)

e.g. A:=MIN(B,C,D)

A becomes equal to the minimum of all
the good variables. Thus if B=2,C is Bad :
and D=-2, then A=2.

AMIN

Format:-

var:=PMIN far,var,var......)

e.g. A:=AMIN(B,C,D)

A becomes equal to the minimum of the
absolute values of all the good variables.
Thus if B=2, C=1 and D=2, then A=1.

EMIN

Format:- .

var:=EMIN(var,var,var......)

The LHS becomes equal to the minimum of
the variables. If any variable is bad then
the LHS is bad.

EAMIN

Format:-

var:=EAMIN (var,var,var.....)

The LHS becomes equal to the minimum
of the absolute values of the variables.
I1f any variable is bad, then the LHS is bad.

MAX

Format:-

var:=MAX(var,var,var......)

The LHS becomes equal to the maximum
of all the good variables. Thus if B=2,
¢c=1 and D=-3, A=2.

AMAX

Format:-

var:=AMAX(var,var,var......)

e.g. A=AMAX(B,C,D,)

A becomes equal to the maximum of the
absolute values of -all the good variables.
Thus if B=2, C=1 and D=3, A=-3.

EMAX

Format:-

var:=EMAX (var,var,var......)

The LHS becomes equal to the maximum
of the variables. If any variable is bad.

6. DDACS COMPILER ERROR CODES

If the rules of the language are violated
then the computer outputs an error message.
The input typed by the user passes through
two phases. Scanning and parsing. The
scanner checks that the input is composed
of legal characters and forms in the DDACS
control language. Errors coded with the
letter 'S' indicate that the scanner has
rejected the input and hence it is likely
to be an obvious error.

S 000002 argument string not terminated by
a bracket

S 000003 illegal argument in an argument
string number when it should be)

S 000005 1illegal character

S 000401 Table named which doesn't exist

S 000404 Not a library word(i.e., building
BLOCK not a system)

S 000405 Integer too large

S 000406 Incorrect number format

If an error code has the letter 'P' in
front then this indicates a syntatically
correct statement of DDACS -MCS has been
typed which the parser has decided is
meaningless or ambiguous.

P 000002 Extra characters following a
statement

P 000003 1Illegal character string

P 000005 Not a statement following a TIME
statement

P 000007 Not a statement

P 000010 Not on assignment (i.e.:=)

P 000011 Not a valid arithmetic expression

P 000020 Mismatched brackets

P 000200 Not a variable when expected in
BLOCK arguments.

P 000202 Not a number or variable when
expected in BLOCK argunents

P 000203 Not an integer when expected in

BLOCK arguments

PARSER TABLE CREATION ERRORS

P 000300 Co-ordinates not terminated
correctly

P 000301 Not a number where X co-ordinate
expected

P 000302 Not a number when a Y co-ordinate
expected

P 000401 TIME BLOCK SPECIFICATION ERRORS

a) No closing bracket
b) Not a +ve argument
c) Not an integer

d) Not a legal LOOP period
e) Greater than or equal to previous
TIME statement

P 000402 LABEL ERROR

a) Unsatisfied label when TIME(0)

statement reached.
b) Attempt to take a backwards label

Attempt to write to a variable in

P 000403
a slower LOOP

P 000404 Attempt to insert a label before
a reference is made to it

P 000405 Multiple label

P 000406 Floating point typed where
integer expected

P 000500 Table Creation Error:

Successive X values the same

OTHER "SYSTEM" ERROR CODES:

E 077777 No room left in DIRECTORY for
new SCHEME or TABLE

F 177775 No room left for Compilation

7. FORMATTING DDACS FLOPPY DISCS

This section describes the procedure for
formatting DDACS floppy discs, such that
they can be used with the DUMPDX command.

1. Load a floppy disc which is already
formatted. :

2. Make the following alterations by
typing EDIT followed by the address
e.g. for a 16 KW memory where the boot-
strap loader is located at 077600 (at
top of core - 200): :

!>EDIT

>077636
077636
<CTRL/D>

000002>000000< RET >

Continue with the other locations, re-
entering EDIT each time:

077746 005007>000000
077776 XXXX007>000400

For a 32 KW machine the first three digits
of each address will be 157 instead of 077.

3. Run the dump read program at 077600.
(N.B Short execution time - finishes
successfully at 077750 this reads the

dump program from the formatted disk.

4. Load the floppy disk which requires
the formatting information into DXO.

5. Run the dump write program at 077606.
(N.B, Also short run-time, same finish
address). Note that the ODT instruc-
tion 0776066 will be used since 3.
results in program leaving DDACS.

6. Process complete, the disk may now be
used to DUMP the DDACS system at the
end of a session.

APPENDIX B

B.2 SDK-86 SOFTWARE LISTING - STAGE 1

PL/i-86 COMPILER FLOWLOOP

ISIS-1I PL/M-86 V1,2 COMPILATION OF NODULE FLOWLOOF
Q0BJECT MODULE PLACED IN $F1:FLOW.0BJ
COMPILER INVOKED BY: (F2iPLMBS F1:FLOW.SRC SHALL

JRedeaditidtiittaisitesiseiistitiisaisitittiss
% FLOW CONTROL LODP PROGRAM. RUN . |
¥ ON THE SDK-B4 UNDER KEYBOARD CONTROL %
Peotaiotiaitiotedttiiinditidpittesidtinitoty
1 FLOWLOOP: DO’

/% INTER-PROCESSOR PARAMATERS ¥/
2 1 DECLARE $
(STATUSySETPOINTyFANSPEEDsFLOW,
INITIALSCONDITION) WORDi

/% KEYBOARD AND DISPLAY DECLARATIONS ¥/

31 DECLARE KB$DIGIT$BUFFER(4) BYTE}

4 1 DECLARE KB$BSPTR BYTES

5 1 DECLARE
KB$STATUS$PORT LITERALLY ‘OFFEAH’»
KB$DATASPORT LITERALLY ‘OFFEBH’

6 1 DECLARE ,
KBSPERIOD LITERALLY ‘10Hy
KBSCOMMA LITERALLY ‘11H’,
KBSHINUS _LITERALLY ‘12H'»

\ KBS$PLUS LITERALLY “13H'»

KB$COLON ,LITERALLY ‘14H';

7- 4 DECLARE
DISPLAY$DIGIT(10) BYTE DATA
(3FHr06Hs5BHs AFHy 66H 8DH» 7DHs 07Hy /% 10107 8/
TFHI6FH) s » R ITUR Y .
DISPLAY$A LITERALLY ‘ODFH’y /% AUTO ¥/
DISPLAYSH - LITERALLY ‘ODSH'y /% MANUAL %/

k DISPLAY$S LITERALLY ‘OEDH’s /% SETPOINT ¥/
~ DISPLAYSR LITERALLY ‘ODOH‘y /8% REG INPUT ¥/

DISPLAYSC LITERALLY ‘OD8H’$ /% CHANGE %/

/% ADC AND DAC DECLARATIONS %/
g 1 DECLARE .
ADC$$PORTSO LITERALLY ‘OFFOOH’y /X A/D BASE ¥/
DACSPORT$0 LITERALLY ‘OFF20H‘i /% D/ BASE ¥/

/% TP1 (INTER-PROCESSOR INTERFACE) DECLARATIONS %/

? 1 DECLARE -
CSR$ADDR LITERALLY ‘OFF40H’»
DBR$ADDR LITERALLY ‘OFFAOHy

DOWNSTRSCHO LITERALLY ‘OFF42H’§

/% KEYBOARD PARSER DECLARATIONS %/
10 1 DECLARE
PARSER$TABLE(S) STRUCTURE (ACTION(6)
BYTE/NEXT$STATE(S) BYTE,FUNCTION(S)
BYTE) DATA
(1y0:0+0+0+0y 14040+0+0:0»
3105010:0¢0¢ . /% STATE O ¥/

PL/4-86 COMPILER

i1

12

13

14
15

16
17
18
19

20

A

22
3
24

23

~y

[2 I S o

FLOWLOOF

012y3:75090r 09192+14040y
21613101040, /4 STATE 1 &/
0L drSebr7y Orlsdrdy a2y
21314191140y /% STATE 2 ¥/
01455560310y 0y414939240s
21455115010y /% STATE 3 &/
014951310005 024941290+0»
2141510+050) s /% STATE 4 &/

(ACTION,STATEsFUNCTION,NUMBER) BYTE)

/% UTILITY DECLARATIONS &/
DECLARE
(CHARyNOMATCH, I+ HANSAUTOS$SWITCHED) BYTE,
FOREVER LITERALLY ‘OFFH’j

hiiitetiitesiittistatotidecsietsdist
% BASIC 1/0 PROCEDURES FOR ADC, ¥
% KEVBOARD AND DISPLAY, .
3iic0bsasteaeailtitetatenitittitisiiyg

ADC: :
/% THIS PROCEDURE PERFORMS AN A/D CONVERSION AND RETURNS
THIS VALUE;
DIFF = 0
DIFF = 1

SINGLE ENDED INPUT
DIFFERENTIAL INPUT. ¥/

\ PROCEDURE (CHANNELSNO,DIFF) WORDj
DECLARE (CHANNELS$NO,DIFF) BYTEj

/% START CONVERSION OF CHOSEN CHANNEL ¥/
CHANNELSNO = SHL(CHANNELSNO:1) OR DIFF$
OUTPUT(ADCSPORT$0 + CHANNELSNOD) = 03

/% FETCH CONVERTED VALUE %/

DO WHILE INWORD(ADCSPORT$0)s

END§ :

RETURN SHR(INWORD(ADC$PORT$0)s1) AND OFFFH}
END ADC? :

DACS :
/% THIS PROCEDURE SENDS A WORD TO 4 SPECIFIED D/A CHANNEL ¥/

PROCEDURE (CHANNEL$NOsVALUE) i
DECLARE CHANNELSNO BYTEs VALUE WORDi

CHANNELSNG = SHL(CHANNELSND11)}

OUTHORD(DACSPORT$0 + CHANNELSNO) = -1-VALUE}
END DACi : :

KBGETCHAR? _
/% THIS PROCEDURE RETURNS THE NEXT KEYBOARD CHARACTER %/

PROCEDURE BYTE:

PL/M-86 COMPILER FLOWLOOP

26
27
28

29
30

k)|

2

33

34

35
36
37
38

39

40

Al
2
43
M
45
%

47

Lo I oS B G R N

NN NN

/% WAIT TILL CHARACTER IS PRESENT %/
DO WHILE
(INPUT(KB$STATUSSPORT) AND OFH) = 0i
END}

/¥FETCH CHARACTER %/
OUTPUT(KBSSTATUSSPORT) = 40H;
RETURN INPUT(KBS$DATASPORT)i

END KB$GETSCHARS

DISPLAY$CHAR?
/% THIS PROCEDURE DISPLAYS A CHARACTER ON A SPECIFIED
7 SEGMENT LED ¥/

PROCEDURE (CODE,POSITION)}
DECLARE (CODE,POSITION) BYTE:

/% WAIT TILL DISPLAY IS AVAILABLE ¥/
DO WHILE
(INPUT(KB$STATUSSPORT) AND 80H) <> 0i
END§

/% DISPLAY CHARACTER %/
OUTPUT(KB$STATUS$PORT) = POSITION OR 80Hi
OUTPUT(KBSDATASPORT) = CODE#

RETURNi

END DISPLAYSCHAR;

DISPLAYSNUM:

/% THIS PROCEDURE DISPLAYS A 4 BYTE BCD LIST AS A
4 DIGIT DECIMAL NUMBER (XX.XX) ON THE RIGHT
HALF OF THE DISPLAY &/

PROCEDURE (PTR)$
DECLARE PTR POINTERy.
LIST BASED PTR(1) BYTEj

CALL DISPLAY$CHAR(DISPLAYSDIGIT(LIST(0))s0)j

CALL DISPLAY$CHAR(DISPLAY$DIGIT(LIST(1))s1)}

CALL DISPLAY$CHAR(DISPLAY$DIGIT(LIST(2)) OR 80H»2)i /% DEC PT &/
CALL DISPLAYSCHAR(DISPLAYSDIGIT(LIST(S))!3)1

RETURN}

END DISPLAY$NUNi-

PRosiiitstietetstittittdititasiitetdttssiitl
t PROCEDURES TO PERFORN ACTIONS 0 TO X
% 6 REFERENCED BY THE KEYBOARD PARSER %
82300840301800340038008k008t00edtabsisatttyy

ACTION$O:
/¥ THIS PROCEDURE BLANKS THE SDK-86 DISPLAY X/

PROCEDURE #

FL/M-86 COMPILER FLOWLOOP

8 2 DECLARE I BYTE)

/% WAIT TILL DISPLAY READY ¥/
49 12 DO WHILE

(INPUT(KB$STATUSSPORT) AND BOH) <> 03

S0 3 END}

/% BLANK ¥/
1 2 - I=0T07i
2 3 CALL DISPLAY$CHAR(OsI)#
a3 3 ENDj
4 2 RETURN;
W 2 END ACTION$O;

a6 1 PRCNT?
/% THIS PROCEDURE IS WRITTEM IN ASSEMBLY LANGUAGE. IT MULTIPLIES
THE INPUT VALUE BY 2.71H &/
PROCEDURE (VALUE) WORD EXTERNALi
37 2 DECLARE VALUE WORDi
8 2 END PRCNT§

5 1 SPANS
/% THIS PROCEDURE 1S WRITTEN IN ASSEMBLY LANGUAGE. IT DIVIDES
THE INPUT VALUE BY 2,71H &/
"PROCEDURE (VALUE) WORD EXTERNAL3
60 2 DECLARE VALUE WORD -'
61 2 END SPANi

62 1 ACTIONS1? :
/% THIS PROCEDURE RESPONDS TO THE VALUE OF STATUS.
IF AUTO..., THE SETPOINT IS DISPLAYED AS
A PERCENTAGE OF SPAN,
IF MANUAL..» THE FAN SPEED IS DISPLAYED AS
" A PERCENTAGE OF SPAN,

IN EACH:CASE THE MODE IS DISPLAYED. . %/

PROCEDURE} - .
63 2 -~ DECLARE VALUE WORD,BCD(A) BYTE}

/% DETERNINE IF AUTO OR MANUAL AND DISPLAY MODE %/

6 2 IF STATUS THEN :
65 2 DO} /% AUTO ¥/
6 3 CALL DISPLAY$CHAR(DISPLAY$As7)§
&7 3 CALL DISPLAYS$CHAR(DISPLAY$S:4)i
68 3 VALUE = SETPOINT '
67 3 END}
ELSE
70 2 DOi /% NANUAL %/ -
3 CALL DISPLAY$CHAR(DISPLAYS$H:7)i
72 3 CALL DISPLAY$CHAR(DISFLAY$Rr4)j
73 3 VALUE = FAN$SPEED;
74 3 ENDj

PL/M-86 COMPILER FLOBLOOP

73

76
n
78
79
80
81

82
83
84

85

86

87

89
90

71
92
29
74
5
96
97

99
100

101

102

103

PN R G B Gl B Gl G Gl Gad B

PN NN M

N

e 0 N

/% SCALE VALUE TO GIVE PERCENTAGE SPAN ¥/
VALUE = PRCNT(VALUE)3

/% PERFORM BCD CONVERSION ¥/
BCDI) = VALUE/1000i
VALUE = VALUE HOD 1000i
BCD(2) = VALUE/100%
UALUE = VALUE MOD 100i
BCD(1) = VALUE/103
BCD(0) = VALUE MOD 10j

/% OUTPUT TO DISPLAY ¥/
CALL DISPLAY$NUM(@BCD)i
RETURN3

END ACTIONS1i

ACTION$2!
/% THIS PROCEDURE CHANGES THE AUTO/MANUAL STATUS AND
DISPLAYS AS IN ACTION 1, BUMPLESS TRANSFER IS ACHEIVED.

PROCEDURE §
IF STATUS THEN

A% AUTO-TO MANUAL TRANSFER &/
Dos
STATUS = 0}
CALL ACTION$1+ /% DISPLAY ¥/
ENDi

/% HANUAL TO'AUTO TRANSFER %/
| ELSE :
D0; .
DISABLE; ,
INITIALSCONDITION = FANSSPEED;
SETSPOINT = ADC(0+0);
STATUS = OFFFFHi
NANSAUTOSSNITCHED = 1}
ENABLE
CALL ACTIONS1; - /% DISPLAY &/
END}
RETURN;
END ACTIONS2i

ACTION$3! T |
/% THIS PROCEDURE DISPLAYS THE KEYBOARD DIGIT
BUFFER (BCD) AND RESETS THE BUFFER POINTER %/

PROCEDURE -

/% RESET BUFFER POINTER &/
KE$BSPTR = 3j

4

PL/H-B6 COMPILER FLOWLOOFP

104

105
106
107

108

109

110

111

112
113

114

115

116

117
118
119
120
121
122

N RIS

ol Gl Cd L BB

/% DISPLAY BUFFER CONTENTS ¥/
CALL DISPLAY$NUM(@KBSDIGIT$BUFFER)}

/% INDICATE DISPLAY HODE x/
CALL DISPLAYSCHAR(DISPLAY$Cy4)i
RETURN3

END ACTIONS$3i

SCALEDSBCDSBING

/% THIS PROCEDURE CONVERTS THE CONTENTS OF A 4 BYTE
BCD LIST INTO A BINARY WORD, THIS IS SCALED SO
THAT PERCENTAGE SPAN BECOMES ACTUAL SPAN, ¥/

PROCEDURE (PTR) WORD:
DECLARE PTR POINTER,
LIST BASED PTR(1) BYTE,
VALUE WORD:

/% CONVERSION &/
VALUE = 1000%LIST(3) + 100%LIST(2)
t 108LIST(1) + LIST(O)4

/% SCALE &/
VALUE = SPAN(VALUE)j

RETURN VALUE}
END SCALED$BCDSBIN:

ACTION$4?
/% THIS PROCEDURE CONVERTS THE KEYBOARD DIGIT BUFFER
TO A BINARYs SCALED WORD., THIS IS THEN SUBTRACTED FROM»
1. SETPOINT IF AUTO STATUS,
2. FANSSPEED IF HANUAL STATUS.

IN EITHER CASE THE MININUN SETPOINT/FANSSPEED = 0.
THE RESULT IS DISPLAYED AS IN ACTION 1 AND UNDER
NANUAL STATUS THE NEW FANSSPEED IS SENT TO

D/A CHANNEL 0. y/ ;

PROCEDURE j
DECLARE ALTER WORDi

/% CONVERT TO SCALED BINARY &/
ALTER = SCALEDBCDBIN(@KBSDIGITSBUFFER)}

/% AUTO STATUS %/
IF STATUS THEN
DOj
IF ALTER < SETPOINT THEN
SETPOINT = SETPOINT - ALTER;
ELSE SETPOINT = 05
END;

PL/8-86 COMPILER FLOWLOOP

123
124
123
126
127
128

129
130
131

132

133

134

135
136
137
138
13
140

141
142
143
144
‘145
146

147
148
149

150

Tl Gl Gl N

tal G B O PO

NN

€ G T & P PO

NN

/% HANUAL STATUS %/

ELSE

DO}
IF ALTER < FANSSPEED THEN
FANSSPEED = FANSSPEED - ALTER§
ELSE FANSSPEED = 0}
CALL DAC(OsFANSSPEED)j

ENDi

/% DISPLAY NEW SETPOINT/FAN$SPEED ¥/
CALL ACTIONS1j
RETURN:

END ACTION$4i

ACTIONSS!

/% THIS PROCEDURE IS THE SAME AS ACTION 4 EXCEPT THAT
ADDITION IS PERFORMED RATHER THAN SUBTRACTION.
THE MAXINUM SETPOINT/FANSSPEED = OFFFH, %/

PROCEDURE #
DECLARE ALTER WORD#

/% CONVERT TO SCALED BINARY %/
ALTER = SCALEDBCDBIN(@KBSDIGIT$BUFFER)j

»l AUTD STATUS ¥/
IF STATUS THEN
DOi
IF. (OFFFH - SETPOINT) > ALTER THEN
SETPOINT = SETPOINT + ALTER:
ELSE SETPOINT = OFFFHi
ENDi .

/% HANUAL STATUS &/

ELSE

DO}
IF (OFFFH - FANSSPEED) > ALTER THEN
FANSSPEED = FANSSPEED + ALTER:

. ELSE FANSSPEED = OFFFHi
CALL DAC(QsFANSSPEED)}
ENDi

/% DISPLAY NEW SETPOINT/FANSSPEED &/
CALL ACTIONS1#
RETURN}

END ACTION$S:

ACTIONS$G?

/% THIS PROCEDURE SAVES A DIGIT IN THE KEYBOARD
DIGIT BUFFER AND DISPLAYS THIS BUFFER. THE BUFFER
POINTER IS MOVED READY FOR THE NEXT DIGIT, X/

PROCEDURE s

PL/M-84 COMPILER FLOWLOOP

151
152
133

154
135

156

157

158
159
160

161

162

163
164

165

167

148

169
170

171
172

173
174
175

176

177

178
179

o G N M

NN

o o

I e

o

rJ

DECLARE I BYTEj

IF KB$BSPTR = 3 THEN /% TF RESET %/
DOI=0T7T03s

KB$DIGIT$BUFFER(I) = 0i /% CLEAR ¥/°
ENDj

/% SAVE NEXT KEYBOARD DIGIT %/
KB$DIGIT$BUFFER(KBSBSPTR) = NUMBER;

/% DISPLAY BUFFER ¥/
CALL DISPLAY$NUN(@KB$DIGIT$BUFFER)#

/% NHOVE POINTER ¥/
KBSBSPTR = (KBSR$PTR ~ 1) AND 3i
RETURN3

END ACTION$&i

/% SCANS INTER-PROCESSOR INTERFACE AND ACTS
UPON COMMANDS RECEIVED BY THE PDP %/

PDPSINT?

PROCEDURE
y DECLARE CSR BYTE;

/% DETERMINE CHANNEL NUMBER OF UP TRANSFER %/
CSR = INPUT(CSR$ADDR)
CSR = SHR(CSR+1) AND OFH3

/% ENSURE THAT CHANNEL NUMBER IS WITHIN RANGE %/
IF CSR > 2 THEN RETURNj :

D0 CASE CSRi

/% CSR = 0.,.FLOW REQUIRED ¥/
DOj
FLOW = ADC(0+10)i
OUTWORD(DBR$ADDR) = FLON;

/% ALSO UPDATE FANSSPEED &/
IF MANSAUTOSSWITCHED THEM
HANSAUTOSSWITCHED = 0i
ELSE FAN$SPEED = INWORD(DOWN$TRSCHO)i
CALL DAC(OsFANSSPEED)s
ENDi :

/% CSR = 1,.,STATUS REQUIRED ¢/
OUTKORD/(DBR$ADDR) = STATUS:

/% CSR = 2,, INITIAL CONDITION REQUIRED %/
OUTWORD(DBR$ARDR) = INITIAL$CONDITION;

END}
RETURN}

PL/N-86 COMPILER FLOWLOOP

180

181
182
183
184
185
1846
187

188
189
190

191
192
193

194
195

196

197
198
199

200
201
202
203
204
205
206

2

R BN = [N Tl

(70~

o s B N a2

END PDP$INT:

PRI eI TIR A i Resiettinatnsititetiitsst)
% NAIN PROGRAM LOOP, INITIALISATION &
% PARSER CONTROL. X
0188 000800100stoteaRinsetiitstttiititsityy

/% INITIALISE INTER-PROCESSOR PARAKATERS AND D/A OUTPUTS ¥/

DISABLE}

STATUS = 04

SETPOINT = 04

FLOW = 0%
INITIAL$CONDITION = 0f
FANSSPEED = 0j

CALL DAC(0sFANSSPEED)}

/% INITIALISE KEYBOARD/DISPLAY. THE KEYBOARD MODE IS
ENCODE 2-KEY LOCKOUT, DISPLAY HODE IS 8 - 8 BIT
LEFT ENTRY. %/

OUTPUT(KB$STATUSSPORT) = 05
OUTPUT (KB$STATUSSPORT) = 39Hi
CALL ACTION$Oi /% BLNK DISP ¥/

/% INITIALISE KEYBOARD DIGIT BUFFER %/
\ pp1=0703i i
KB$DIGITSBUFFER(I) = 0}
END}

/% INITIALISE PARSER PARAHATERS ¥/
STATE = 0}
ENABLES

PReodisttitiisiisid

% PARSER LOOP X

iteietitisiedtesdy
DO WHILE FOREVER:

/% TEST KEYBOARD STATUS...SCAN IPI IF NO KEY INPUT %/
D0 WHILE: (INPUT(KBSSTATUSSPORT) AND OFH) <> 03
CALL PDPSINT} ‘
END;

/% FETCH KEYBOARD CHARACTER AND DETERMINE THE

CORRESPONDING VALUES OF FUNCTION AND NUMBER ¥/
CHAR = KBSGETSCHAR$

IF CHAR <= 9 THEN

g

FUNCTION = 13

NUNBER = CHAR}

END}

ELSE IF CHAR = KBSPERIOD

THEN FUNCTION = 2i

ELSE IF CHAR = KRSCONMA

* PL/H-86 COMPILER FLOWLOOF

THEN FUNCTION = 35

20 2 ELSE IF CHAR = KBSMINUS
THEN FUNCTION = 4j
212 2 ELSE IF CHAR = KBSPLUS
THEN FUNCTION = 5i
A4 2 ELSE IF CHAR = KBSCOLON
THEN FUNCTION = 6}
A6 2 ELSE FUNCTION = 0f
/% FIND CORRECT PARSER TABLE ENTERY ¥/
27 2 = 0
28 2 NONATCH = 15
a9 2 DO WHILE NOMATCH;
20 3 IF (PARSERSTABLE(STATE) FUNCTION(I) = 0) OR
(PARSERS TABLE (STATE) ,FUNCTION(I) = FUNCTION)
THEN
21 3 D0;
22 4 ACTION = PARSERSTABLE(STATE) ,ACTIONCI)}
23 4 STATE = PARSERSTABLE(STATE) {NEXTSSTATE(I)}
24 4 NOMATCH = 03
25 4 END;
26 3 ELSEI=1+1i
27 3 END]
/% INITIATE REQUIRED ACTION 3/
28 2 DO CASE ACTIONS
229 3, CALL ACTIONSO;
20 3 CALL ACTIONS13
33 CALL ACTION$2i
@ 3 CALL ACTIONS3
233 3 CALL ACTIONS4
2 3 CALL ACTION$S:
235 3 CALL ACTIONSS}
2% 3 i
237 3 END
238 2 ENDi /% END PARSER LOOP ¥/
239 1 END FLOWLOOP}

PRI R AR ARTRIN0380000838883033388 a8 kbRt it ittt it tits vy

. HODULE INFORMATION?

CODE AREA SIZE = 05B&H 14620
CONSTANT AREA.SIZE = 0044H 100D
VARTABLE AREA SIZE = 0026H 38D
HAXIHUM STACK SIZE = 0016H 220
949 LINES READ

0 PROGRAM ERROR(S)

END OF PL/M-86 COMPILATION

MCS~-86 MACRO

ASSEMELER

UtIt

ISIS-II MCS-86 MACRO ASSEMELER V2.0 ASSEMBLY OF MODULE UTIL

QRJECT MODULE PLACED
ASSEMELER INVOKED

.ocC

0000
0002
0004

0000
0000
0001

0003
0006
0009
000FR
000E
00190
0012
0014
0016
0017
oois

001R
001K
001C

001E
0021
0024
Q026
0029
Q02K
Q02N
H02F

OERJ

55

8REC

8B44604
R97102
F7E1
E90001
F7F1
03D2
2RCA
7401
40

o

£20200

93

8REC

8RB4404
E90001
F7EtL
E97102
F7F1
0302
2BCA
7401

\

LINE

AN G

26

tF1IUTIL.ORJ

{F21ASMB6 (FL1IUTIL.ASM DERUG FRINT(ILF)

SO0URCE

nSA - 8TRUC
OLDEF DwW [
RETURN ItW 7
VALUE oW [
IsaA ENDS

: :
CGROUF GROUF COIDE
ASSUME CS:CGROUF
i
CODE SEGMEMT FURLIC ‘CODE’

FUERLIC FRCNT»SPAN

y
; THESE ROUTINES INTERFACE TO FL MBS FLO!

yDECLARATIONS.

FRCNT- - PROC

FUSH

MOV

i

yMULTIFLY BY
MOV
MOV
MUL
MoV
oIy
ADD
SUR
JE
INC

FR1: FOF
RET

»

4
PRCNT ENDF

s a8 a8
srYFFYIRYIRYY?

SFAN FROC
FUSH

Mov

a
?
.
¥

MOV
MOV
MUL
MOV
nIv
AL
SUK
JF

DIVIDE RY 2

MNEAR

BF
BFySF

+71H.,

AXyCRFPI.VALUE
CXr271H
CX -
CX+100H
(9.4

OXs DX
CX»DX
FR1

AX

EF

2H

RF ¢SSP

71H.

aXyLRFI.VALUE
CX»100H

cX

CX»271H

CX

Xy OX

CXs DX

Skl

MLS-86 MACRO AESEMEBLER UTIL

LOC ORrJ LINE SOQURCE
0031 40 50 INC AX
0032 5D Sl SP1: FOF EF
0033 C€20200 92 RET 2H
93 ’
54 SFAN ENDF
S99 R i RRIRRIRIFIIIRIRINIRIFINIIIIFIIGG
b o Sé CODE ENDS
57 END

ASSEMELY COMFLETEs NO ERRORS FOUND

APPENDIX B

B.3 KEYBOARD PARSER - STAGE 1

The program 'FLOWLOOP' (B.1) is designed wusing a 'state
machine' approach. The keyboarqf inputs control the state
transitions and actions to be initiated, with operator
feedback being provided by eight T7-segment LEDs (light
emitting diodes). These display information as follows (LEDs
are numbered from left to right);

(1) LED 2 is the auto/manual indicator ('a' for auto, 'm'
for manual),

(2) LED U4 describes the type of value being displayed in
the following field ('s' for setpoint when in auto, 'r' for
manual output, 'c' for decrement/increment value),

(3) LEDS 5 to 8 display the percentage span value as

defined in (2) above (two decimal places).
The above are defined as fields 1, 2 and 3 respectively.

The table below describes the operation of the keyboard parser
(note that the input '*' refers to any input excluding those

already defined in the current state);

APPENDIX B

STATE INPUT NEXT STATE ACTION
0 , 1 1
* 0 0
1 . 0 "0
: 1 2
y 2 3
* 1 NIL
2 3 0 0
, 1 1
w 4 4
+ y 5
DIGIT 3 6
* 2 NIL
3 0 0
- 4)
+ y 5
DIGIT 3 6
* 2 3
4 . 0 0
- ly y
+ Yy 5
* 2 3

The 'action' numbers refer to the following actions:

(1) Action 0. The LED display is cleared.

(2) Action 1. If in auto mode the setpoint is displayed
as percentage of span. If in manual mode the controlling
output is displayed as percentage of span.

(3) Action 2. The mode is toggled between auto and
manual. The display is effected as in 'action 1'.

(4) Action 3. Displays the current 'ramp number’'.

(5) Action 4. If in auto mode the 'ramp number' is
subtracted from the setpoint. If in manual mode it is
subtracted from the controlling output value (essentially this

is a ramp down function). The display is effected as in

'action 1°'.

APPENDIX B

(6) Action 5. As in ‘'action U4', except addition is
performed instead of subtraction (ramp up function).
(7) Action 6. Displays additional digits as the 'ramp

number' is entered.

As an example, consider that the system is in manual mode (on
initialisation) and in state 0. Then if "," is pressed the
state table shows that state 1 will be entered and 'action 1'
performed (i.e. controller output is displayed as percentage
of span). If this is followed by "." then state 0 is
re-entered and ‘'action O0' performed (i.e. the display is

cleared).

APPENDIX B

B.4 SDK-86 SOFTWARE DESCRIPTION - STAGE 2

Stage 2 development was not done by the author, and as the
software descriptions were minimal., the following description

is brief.

The software tasks fall into two categories; foreground and
background. The background software is essentially the main
program loop, which implements the channel and 1loop :mode

features.

The foreground tasks (interrupt procedures 64; 65 and 66)
handle the real time data transfer. The ADC requests from the
LSI-11/03 are queued on an 8 word circular buffer by interrupt
procedure 65, whenever an A/D conversion 1is already in
progress, This prevents the loss of multiple requests. If no
A/D conversion 1is in progress, interrupt procedure 65 will
immediately process the request. Pending ADC requests on the

queue are serviced by interrupt procedure_éu.

The DAC requests by the LSI-11/03 are serviced by interrupt
procedure 66. Whenever data is 'written' to a DAC register by
the LSI-11/03, this procedure transfers the data in each DAC
register to the corresponding D/A convertor. This approach
was adopted since there is no way of identifying the DAC

register that has just received data.

APPENDIX B

B.5 SDK-86 SOFTWARE LISTING - STAGE 2

i

FL/M-86 COMFILER

FLO

1515-11 PL/K-86 V2.1 COMFILATION OF MODULE FLO
ORJECT MODULE PLACED IN IF1IFLO.ORJ

COMPILER INVOKED

BY! {F1iPLMBS IF1iFLO.FLM ROM COMPACT OPTIMIZE(Z) DATE(16-MAY-B2) &
NOINTVECTOR PRINT(:F1:FLO.LST) PAGELENGTH(4S)

1 PLOY D03 /% Ver 1,2 %/

2 1
3 1
4 1

PR30 et es et ees bt ot eiteiveser i st ot tat e st tot sttt e i sttty el

AVUE Consulants) Corgright Jen 1982
fnother MAGENTA Froduction
Written by R.W. Korbel

This rrogram allowsbthe SIK-84 to simulate LEC AIW-11's znd
Apv-11/s.

1t 3lso =2llows the setting of ‘switches® for loor control
and z2llows "loor® monitoring,

(222 eSS0 et EEse eI oCER IO IERIRI ORI ICIREILEL TSI IS S ICICIE SRS I

KK EXX harduare change section $Xkkk/

Declare
NOOFDACS " literally 7047, /¥ no of DAC's &/
NO$0OF$LOOPS literally 708'; /% o of loors %/

J3%k¥k% A/D section kkkky/

BECLARE , .
#DC$ADIDR literally 'OFFOOH’s /% adc base address ¥/
ANC(14) WORDy /% store of last value %/
ADCSFTR EYTE, /% rtr to zbove store ¥/
ADC$QUELE(E) BYTE, /% aueue for conversion %/
ADCERSIN BYTEy
ADCSQs0UT BYTEs
ALNC$RUSY RYTES

JXRKKK D/A section ¥¥EkE/
DECLARE

16-HAY~82

FAGE

1

FL/H-86 COMFILER FLO

literallw

16-MAY-82 FAGE

/% dac base address ¥/

/% AIC csr address ¥/
/% AIC dbr 2ddress %/
/% DAC aﬁdress X/

/% FB25%A

red 0 %/

/% see srpecs sheets %/
/% for more info %/

/% IRO F/F
/% IR F/F
/% IRD E/F

section EXREXX/

/% 8 B-bit
/% 10 mSec

oy,

reset %/
reset %/
reset %/

left entry %/
scan rate %/

PUHs07Hs /% 0447 ¥/

7FHs &FH» 77H9 7CHs 39Hy SEHy 79H, 78HY s /% 800 F %/

DAC$ADLR ‘OFF20H’
DACCL2) WORD
J¥5%%% IPI section kkkk/
3 1 DECLARE
 ADV$CSK literally ‘OFF40H’y
-ADVSDER literglly ‘OFF40H’,
AAVSADDR literally ‘OFF42H'3
/XR%kk% Interrurt section ¥dki¥i/
5 1 DECLARE
INTREG0 literally ‘OFF&0H' s
INTREG1 literally ‘OFF42H'
ICWisI literally ‘1FH’»
Icwz2 . literally “40H’y
ICW4s$D literally ‘01iH’»
0CW1 literzlly ‘OF3H’s
OCW24E literally 720H'y
ALNC$EQCSFF literally ‘OFF44H,
ALC$SOCEFF literally 'OFF&BH’
DACSREQUESTSFF literallw ‘OFF4CH'y
SHOW$INTERRUFTS RYTE#
/¥5¥x%% keu-board and disrlay
7 1 DECLARE
KE$STATUSSHPT literally 'OFFEAH’,
KE$DATASFT literally ‘OFFEBH’,
KE$HOLDE literally ‘00H’,
KB$SCANSRATE literally “39H'»
KB$INTRIDY . literally "07H’s
© DIGITGH)Y BYTE DATA
(IFHy 06H SEH Y AFHy 66H 6TiH
DISsa literally “077H',
[IS$H literally "034H’,
DI5%S literally “OEDH’ s
DIS$R literalls ‘050H/,
nIssc literally 7039H’y
[ISs$h _ literally ‘0SEH’s
IIS$H literally ‘075H‘

g

FL/M-8& COMFILER PLO

DIISsF
DIS$L
DISsU
LIS%Y
NISsE
1540
- DIS$T
NISS$F
BLAMK
IIASH
noT

AVUE (k)
inENr(x)

LODF (%)

CHAN (%)
SELECT$DAC(X)
SELECT$ADNC(X)
LFS(%)

CLEAR (%)

FSCF (%)
HALF$ELANK (%)
DOTS (%)
KE$COMMA
KE$FERIOD
KESMINUS
KE$PLUS

KE$COLON
KR$REG

literelly
literalle
literally
literally
literslle
literally
literally
literally
literally
literally
literally

BYTE DATA

16-HAaY-82

073H" s
*0IBH 'y
"O3EH
"01CH" s
O79H s
*0IFH"
'O78H’
O71H
*ODOH 4
"D40H" y
‘0BOH 5

(8sI0Ts0OT, 00T, DOTH» DISSESDISEUS DISEVSIISSA) y
BYTE DATA

- (ByDI540,DI84L, DISEF yBLANK s ELANK SEHy 86HYBLANR) »

RYTE DATA

(85 00T s BLANK s BLANK » ELANK IIS$Fy DIS$0, HI5$0,DISSL) »
BYTE DATA

(8y[I0T y ELANK » BLANK » BLANK s DIS$Ms BIS$A DIS$Hs DISEC) 5.
BYTE DATA

{4, BLANKyBLANKsDIS$A,DISED

BYTE DATA _

(4yBLANKsBLANK DIS$DIHDIS$A) s

EYTE DATA ‘

(65 BLANK s BLANK s ELANK y BLANKy DIS4F»DISSL) 5

RYTE DATA

(8,00Hs00H s O0Hs O0OH, DOHy OOHs OOHs O0HY »

BYTE D&TA

(B3 7FHs 06Hy IFH B4H DISEF, DISSC, DISES,ISER)y

BYTE DATA

(43 BLANK s RLANK » BLANK » BLANK) »

RYTE DATA

(4;00T,DOTDOT»1OT) »

literally
literally
literally
literally
literally
literally

/¥xk%k% loor section ¥¥kkk/

“11HYy
"10H s
12H7
"13H7y
71447y

713H"3

FAGE

=
iw)

FL/H-84 COMPILER

g 1
2 1
16 1

PLO

DECLARE
STATUS
INDEX

PROCESSING$LOOF
LOOP$STATUS(8)
LOCP$DAC(8)
LOOF$ADC(D)
CNTRL$PTSHI
CNTRL$FTSLO
STATUSSPT
CNTRL$RYTE

AUTD
RAISE
L.OWER
HOLD
TOGGLE

/XY main Frodram

DECLARE
FOREVER
URTIL
FRESENT

TRUE
FALSE

NUM
HEX

WORLD
WORDs
BYTE>
BYTES
BYTE,
RYTE
literslly
literallyw
literally
literally

literzlly
literallu
literally
literally
literally

varishles

literalls
literally
literally

literally
1iter3113

literallu
literally

(VALUE s STARTUPFLAG)

(16451651166)

(SHOW$ADC, DISFLAY$TYPE)
(SNEEK$CHARySTATE s UP$D0OWN)

(CHANNEL yACTIVE)
(COLDsSIGN$TIME)

DECLARE
VECTOR$FTR
VECTOR

FOINTER
RASED VECTORSFTR

/% status given to LSI %/

‘OFFFEH » /% 8255

TOFFFFH s /% 8255 cntrl #t %/
‘OFFFEH’s /% 16 lines to LSI %/

"O8RH’ y /% PA outruts PRePC input &/

entrl st %/

25
25

‘O0H"
‘O1H y
O2H
O3H
TGOH’ 5

ks /

WHILE OFFH’»
‘WHILE CHARNOTPRESENT

Il’

‘OFFR’ y
“OOH y

‘TRUE' s
‘FALSE’ s

WORD s s

BYTEy /% interrurt counters ¥/
BYTEs /% disrlaw ortions %/

RYTE» /% loor rosition merkers ¥/

-~ BYTE,

RYTES

ZREERERkdix interrurt error variables Xkkkrkdikk/

16-HAY-82

PAGE

eL/H-86 COMFPILER FLO 14-MAY-82 FPAGE 5

(255) STRUCTURE (OFF WORDs SEG WORD)»
JUNK$ERROR WORDy
FIC$ERROR WORDy
JUNK$WORT WORLH?

FL/K-86 COMPILER

11

w b

NS RN

~ e

ra ra

r P33

rJ

Fa 3

28]

[y

ra

ra ra

FLO
HAIN SUPPORT ROUTINES

$ SURTITLE(’'Main surrort routines’)

7% RRRkRokioRkoek MAIN SUFFORT ROUTINES Rk Rckoikek %/

JResecetess s ¥

READ$KERIFROCEDIURE BYTE: /% Xkk¥¥x READSKE k¥kkk %/

/% WAIT TIIL CHAR PRESENT ¥/

[0 WHILE (INPUT(KE$STATUS$FT) AND KBSINTRDY)=0§ ENDj
OUTPUT(KR$STATUS$PT) = 040Hi /% ENABLE INPUT DATA X/
RETURN INPUT(KE$DATA$FT)

ENDI' READ$KBj

7¥akxkkkxekk/

DISPLAY!PROCEDNURE (CHAR,FOSITION) REENTRANTS /¥ ¥kkk¥ DISFLAY
DECLARE (CHAR,FOSITION) EBYTES

/% WAIT TILL DISPLAY READY %/

DO WHILE (INPUT(KB$STATUS$FT) ANDI 80H) <> 0§ ENDj
OUTPUT(KBR$STATUS$FT)=POSITION OR 80H3 /% ENAERLE OUTPUT DATA %/
OUTPUT(KB$DATASPT)=CHAR}

END DISFLAYS

jptetesess ¥

DISFLAY$DIGIT:PROCEDURE (CHARsPOSITION) REENTRANT;
DECLARE (CHARsFOSITION) BYTE;

CALL DISFLAY(DIGIT(CHAR)FOSITION):
ENLs

ygrsecsesse vy

DISFLAY$MESSAGE: PROCEDURE (MESS$FTR)§

kkx ¥/

14-MAY-B2 PAGE

b

FL/M-84 COMFILER

30
31
32

35

39

49
41

3
P

43

44
45
4%
47
48
49

%] W Gl ra

[ra ra [% Bl

ra

3 rd

[ST O i OO N T i O g O |

%]

rJ

FLO
MAIN SUPPORT ROUTINES

MESSAGE RASED MESS$FTR (1) ERYTE,
I BYTES
D0 I=0 TO LENGTH - 13
CALL DISPFLAY(MESSAGE(I+1)s1)i
END3

END DISPLAY$MESSAGES

Jpetesesses ¥4

DELAY: PROCEDURE (I}
DECLARE (JsI) BYTES

DO J =1 TO I%25% CALL TIME(250) i END
END' DELAYS

JRkkrknock/

DISPLAY$NUM! FROCEDURE (VALUE) S
DECLARE VALUE WORL,
BCO(S) BYTE;

RCD(O) =45
VALUE = (VALUEX12)/35 /% scale OFFFH == 100000 %/
RCD(4) = DIGIT(VALUE/1000)5 /% extract msb X/

VALUE = VALUE MOD 10003

BCI(3) = DIGIT(VALUE/100) OR DOT; /% extract next digit &/
VALUE = VALUE MOL 1003

BCD(2) = DIGIT(VALUE/10); /% extract next digit ¥/
BCI{1) = DIGIT(VALUE MOD 10); /% extract lsh ¥/
CALL DISPLAY$MESSAGE (GRCI) /% disrlay the BCD equivalent X/

ENDII DISFLAY$NUM»

Jpstsestets ¥4

16-MAY-82 PAGE

7

FL/K-84 COMPILER FLO

16-MAY-82 PAGE &
MAIN SUPPORT ROUTINES

54 2 D0 I=0 TO 3j

55 3 CALL DISFLAY$DIGIT((SHR(VALUE,4%I) AND OFH) » D)3
G603 ENDj

57z END DISPLAY$REXS

FL/M-86 COMPILER PLO 146-MAY-82 PAGE 9
INTERRUPT AND "CHANGE" FLOW ROUTINES

% SUBTITLE(’Interrurt and °change" flow routines’)

Jpeeaeses s i

38 1 DOPE: PROCEDURE INTERRUPT 2 REENTRANTS
3¢ 2 DECLARE CAL(%) BYTE DATA

(OEAHs 1CH» OOH» OCOHs OFFH) »
HON(x) BYTE DATA

(OEAH» OOH; OOHy O0H, OFEH) »
CODE POINTER:

&0 2 ENABLE?
81 2 CALL DISPLAY$MESSAGE (HALF$ELANK)
62 2 CALL DISPLAY(DIS$K:0)}
63 2 IF READ$KE=KB$PERIODI THEN [0 CODE=CMON5 CALL CODES ENIi
&8 2 CALL DISPLAY(DIS$C,0)i
&9 2 IF READ$KB=KE$FERIDD THEN D0$# CODE=RPCAL; CALL CODE: END;
74 2 END DOPES
JERkxkekkkek/
7301 JUNK? FROCEDURE INTERRUPT 03
75 2 JUNK$ERROR=(JUNK$ERROR+1) AND OFFHj
7702 END JUNK3
FRiessestss ¥4
78 1 PIC: PROCEDURE INTERRUFT 673
79 2 FIC$ERROR=(PIC$ERROR+1) AND OFFH;
g0 2 END FICS

FL/M-86 COMFILER FLO 16-MAY-82 FAGE

o
P

[maliy s R us]
[N - N |

0 0 0 @ o
05 P = O 0 M~ o~

~O O S0 N

~Q
~0

100
101

102
103

104
105
106
107

108
109
110
111

[y

[S I o6 | gl

ISR N I % [PN N T P 5 B O ra

ra

rJ

rJ ra

[N I N B oA I O]

R A

INTERRUPT AND "CHANGE" FLOW ROUTIMNES

ADC$EDC: PROCEDURE INTERRUFT 644} /% 2 ADC reauest has been rrocessed X/
DECLARE CHANMEL BYTEj

DUTPUT (ALCSEOCSFF) =035

ADC(ADCS$PTR) » OUTWORD(ADV4DBR) = SHR(INWORD(ADC$ADDIR)s1) AND OFFFH;
IF ADC$0G40UT=ADC$A$IN

THEN
ADC$BUSY=FALSE}
ELSE
0oy
ANCA0UT=(ADCSQ$0UT+1) AND O7Hj /% increment queue rointer %/
CHANNEL=ALC$QUEUE (ADC$Q$0UT) } /% extract channel no. X/
QUTPUT (ALIC$ADDIR+CHANNEL Y=01 /¥ start 2 conversion x/
ANCEPTR=SHL (CHANNEL 1)} /% genrate buffer rointer X/
END3

IF SHOW$INTERRUFTS THEN

D05 144=(I6441) AND OFH$# CALL DISFLAY$DIGIT((I&4)»2)3 ENDG
OUTPUT (INTREG0)=0CU2%$E

END' ADC$EOCS

fptestssses ¥

ADC$S0C: FROCEDURE INTERRUPT 653 /% Start an AIC on rrescribed chanhel ¥/
DECLARE CHANNEL BYTEs

QUTPUT(DACSREQUESTSFF)=03 /% clear DAC interrust denerzted %/

QUTPUT (ADC$SOCSFF)=07

IF INFUT(ADV$CSR) THEN /% ie, if "Go bit*® sets continue ¥/
Dnos -

CHANNEL = INFUT(ADVS$CSR) AND 1ER; /% read CSR Just written bw LSI %/
IF ADC$BUSY
THEN
bos
ADCHA$IN=(ADCEQASIN + 1) AND O7H;
ADC$QUEUECADC$Q$IN) =CHANNEL ;
END
ELSE

10

FL/M~86& COMPILER FLD 16-MAY-82 PAGE 11
INTERRUPT AND °"CHANGE®' FLOW ROUTIHES

114 4 DUTFUT (ADC$ADDR + CHANNEL) = OHi. /% start an conversion ¥/
115 4 AICSFTR = SHR(CHANNEL 1)
116 4 ENDj
117 3 END
118 2 OUTFUT (INTREG0)=0CW2%E}
119 2 IF SHOWSINTERRUPTS THEN
120 2 D05 I&5=(165+1) AND OFH; CALL DISPLAY$DIGIT((I&5)y 1)§ END}
124 2 END ADC$SOC;
Fpatestssse g
125 1 DAC$REQUEST: FROCEDIURE INTERRUPT 663
26 2 DECLARE VALUE WORDs
(I»J) BYTEs

127 2 ODUTPUT (DAC$REQUEST$FF)=03
128 2 ENARLES$
129 2 DO I=0 TO NOOFDACS-1§
130 3 J=SHL(I,1)3
131 3 VALUE » DAC(I) = INWORD(AAV$ALDR + J) AND OFFFH 3§
132 3 OQUTWORD(DAC$ADDRYJ)= NOT VALUE;
133 3 ENDj

2 IF SHOW$INTERRUPTS THEN
138 2 N0y I66=(166+1) AND OFH; CALL DISPLAY$DIGIT((I146)s0)5 END}
139 2 QUTPUT (INTREG0)=0CUW2$E} .
140 2 END DAC$REQUESTS

Skkkkkkkkix/

141 1 CHAR$NOT¢PRESENT tPROCEDURE (CHAR) RYTEj
142 2 DECLARE (CHARsFLAG) BYTES
143 2 FLAG » SNEEK$CHAR = TRUE:

FL/M-86 COMPILER

144
147
148
150
151

P G 3 G

rJ

FLO
INTERRUPT AND "CHANGE®' FLOW ROUTINES

- OUTPUT(KB$STATUS$FT) =-40H; /% enable inrut data X/

SNEEK$CHAR = INPUT(KB$DATASFT) /% read char %/
IF CHAR = SNEEK$CHAR THEN FLAG=FALSES
END#
RETURN FLAGS /¥ ie, "true® if ‘char’ not rresent %/
/X *false® if ‘char’ rresent %/

END CHARNOTPRESENT:

16-MAY-82 PAGE

12

PL/M-86 COMPILER PLO 16-KAY-82 PAGE 13
LOOP PROCESS ROUTINES

$ SURTITLE('Loor rprocess routines’)

F

JXkkkkkkk/
i CURRENT$STATUS :PROCEDURE (CMMD} BYTES
2 DECLARE CMMD BYTEj

155 2 RETURN SHR(LDOF$STATUS(CHANNEL)sCHHI)
136 2 END CURRENT$STATUSS

JEXEXRRERAK/

7 1 SET$LODP$DEVICE: PROCEDURE (MESS$PTR) DEUICE%PTR):
138 2 DECLARE (DEVICE$FTR,MESS$PTR) POINTER.
DEVICE BASED DEVICE$FTR RYTE:
I BYTEs

15¢ 2 CALL DISPLAY$MESSAGE (MESS$FTR) S
160 2 I=DEVICES
161 2 DO WHILE I <> KB$PERIOD;
162 3 DEVICE=I AND OFH: /¥ gererate new device rointer ¥/
163 3 CALL DISPLAY(DIGIT(DEVICE) OR DOT:0); /% displaw it %/
164 3 I=REAL$KE+ /¥ see if new one sresent %/
163 3 ENDy
166 2 END SET$LOOP$DEVICE;

JERRRkkkkk/)
167 1 LOOP$DEVICES: PROCEDURE? 3
148 2 CALL SET4LOOF$DEVICE(RPSELECT$DAC,@PLOOF$DAC(CHANNEL)) S /¥ IAC ro. X/
169 2 CALL SET4LOOF$DEVICE (RSELECT$ALC,RLOOP$ADC (CHANNEL))} /¥ AIC no. %/
170 2 CALL DISPLAY$MESSAGE(RLFS);
171 2 CALL DISPLAY$HEX{INDEX OR LOOF$STATUS(CHANNEL))?
172 2 CALL DELAY(2)j

FL/K-B6 COMFILER

174

177

178
180

181
182
183
184
185
184
187
188
189
190

191
192

193

194
195

195

[ony

(%] rJ

ra

(]

S Db Y

Fo -]

ol

RSN

rJ

[y

g8]

Pa

FLO
LOOF PROCESS ROUTINES

Jpoteteeess ¥y

SET$STATUS{PROCEDURE (CMMI3
DECLARE CHMD BYTEs STATUS BYTE:

STATUS = LOOP$STATUS(CHANNEL))

DO CASE CHMDj

/% tosgle auto/manual (cmmd=0) if 'auto® clear LSEy if ‘manuzl' set LSE ¥/

IF STATUS THEN STATUS
ELSE STATUS

STATUS AND 11114$1110Bs
STATUS OF 0000%0001R;

I0s /% raise (cmmd=1) raise=1ly lower=0 %/
STATUS = STATUS OR 0000%$0010R} /% ie., set bit 1 %/
STATUS = STATUS AND 111141011Rs /% ie. clear oit 2 %/
END$

DOs /% lower {cmmd=2) raise=0y lower=1 X%/

STATUS = STATUS AND 11114$1101Rs /¥ ie., clear bit 1 %/
STATUS = STATUS OR 0000%0100B; /% ie., set bit 2 %/
ENL;

/% hold (cmmd=3) raise=0s lower=0 %/
STATUS = STATUS AND 111141001Rj /% ie. clear bits 182 X/

ENDs /%X end case ¥/

LOOP$STATUS (CHANNEL Y=STATUS§
OUTWORD(STATUS$PT) = INDEX OR STATUSi /% shuve status out to LSI %/

-t

ENDN SET$STATUSS

fRssteietse s

ACTIVITY: FROCEDURE}?
DECLARE I BYTES

I={I+1) AND OFH;

16-MAY-82

FAGE

14

FL/M-86 COMPILER FLO 16-MAY-82 PAGE 15
LOOF FROCESS ROUTINES

199 3 ACTIVE=NOT ACTIVE;

200 3 IF ACTIVE THEN CALL DISPLAY(DOTs4)3
202 3 ELSE CALL DISPLAY(BLANK,&)$
203 3 ENDs

204 2 END ACTIVITYS

FL/M-86 COMPILER FLO

ra
rJ3
<

[N S
< ~ooun

|2 I G R O
—

[S0 T 6 T O A e [Y 8

O A S A L

rd © O O~ B d FD

oy

[26 I % T 6 T NG I D6 B N

28]

[2¥]

Ll W 25} [N P A

b b bbb

ol b

KEY FORCESSING ROUTINES
$SUBTITLE(‘Kew rorcessing routines’)

Jpereesede s ¥g
PROCESS$LOOF: FROCEDURES

INDEX=15

INDEX=SHL (INDEX» CHANNEL+8) 3 /% denerzte rtr for stztus word %/
STATUS = INDEX OR LOOP$STATUS(CHANNEL)}S

DUTWORD{STATUSS$FT) = STATUS:

CALL DISPLAY$HEX(STATUS);

CALL DELAY(2)5

00 UNTIL (KE$FERIOD) PRESENTS /¥¥X main rrocessing loor ¥¥%/
CALL ACTIVITY;

UFP$DOWN=ELANK;
IF CURRENT$STATUS(RAISE) THEN UP$DOWN=DIS$Ri

ELSE IF CURRENT$STATUS(LOWER) THEN UF$DOWMN=DIS$L:
CALL DISPLAY{UP$DOWN,4)3

IF CURRENT$STATUS(AUTD)
THEN DO# UP$DOWN=LIS$A; VALUE=ALC(LOOF$ADC(CHANNEL))3 ENDj
ELSE DO7 UPSDOWN=DIS$M; VALUE=DAC(LOOF$DAC(CHANNEL)); ENDj
CALL DISPLAY(UF$DOWN»S)
CALL DISPLAY$NUM(VALUE)

IF SNEEK$CHAR <> TRUE THEN
Doy /% 3 kew has been rressed ¥/ .
STATE = TRUE; B
IF SNEEK$CHAR = KR$COMMA THEN STATE=TOGGLE}
ELSE IF SNEEK$CHAR = KB$FLUS THEN STATE = RAISES
ELSE IF SNEEK$CHAR = KB$MINUS THEN STATE = LOWER;
ELSE IF SNEEK$CHAR = KB$COLON THEN STATE = HOLDj
ELSE IF SNEEK$CHAR = KB$REG THEN CALL LOOF$DEVICESS

IF STATE <> TRUE THEN CALL SET$STATUS(STATE);:
ENDy /% set state %/

END? /¥¥x until(reriod) X¥%/

16-MAY-82

FAGE

16

FL/M-86 COMPILER PLD

o

r3 Ry b B
A

L oy =

ry PP FOBD
o~ O~ L1 N oan
r = 00N

%]

1D

rJ

[PSPV R TN I PN S | e M N

[O I O |

18]

k2 rJ

rJ

rJ

*

KEY PORCESSING ROUTINES

END PROCESS$LOOPS

Jgttectse et vy

DNISPLAY$CHANNEL: PROCEDURE s
DECLARE VALUES$OK BYTEj

VALUE$OK=TRUE 7
IF SHOWSADC
THEN
0os /% 2 ALC value has been requested X/
UP$DOWN=DIS$As
VALUE=ADC(CHANNEL) 3
ENDs
ELSE
Dnos /¥ 3 DAC value has been asked for %/
UP$DOWN=DIS$Dj
IF CHANNEL<NOOFDACS THEN VALUE=DAC{(CHANNEL)j
ELSE VALUE$OK=FALSEj
END3

CALL DISPLAY(UP$LOWNsS) 3
IF VALUES$OK
THEN
IF DISPLAY$TYPE=NUM THEN CALL DISPLAY$NUM(VALUE)S /% D$TYPE
ELSE CALL DISPLAY$HEX(VALUE)F /% D3TYPE

NUM %/
HEX %/

ELSE
CALL DISFLAY$MESSAGE(BDDTS) i

END DRISPLAY$CHANNEL }

-7

Jprtesedrs ¥y
PROCESS$CHANNEL ? PROCEDURE S

00 UNTIL (KE$FERIOD) FRESENTS
CALL ACTIVITY;

IF SNEEK$CHAR = KB$COLON THEN DISFLAY$TYPE = NOT DISFLAY$TYPES

16-MAY-82

FAGE

17

FL/¥-86 COMPILER PLO 16-MAY-B2 FAGE 18
KEY FORCESSING ROUTIMES

279 3 ELSE IF SNEEK$CHAR = KB$COMMA THEN SHOW$ADC = NOT SHOW$ADC:
. CHANNEL = CHANNEL AND OFHj§

282 3 CALL DISPLAY$DIGIT((CHANNEL):7)%

283 3 CALL DISPLAY$CHANNEL?

284 3 END$ /% do until(reriod) ¥/

283 2 END! PROCESS$CHANNEL §
ZERRERRKRRK K/

2864 i PRE$FPROCESS: PROCEDURE BYTEs

287 2 DECLARE (STATE,I) RYTE:

288 2 I=05 /% intizlize states X/

289 2 STATE=FALSE}

290 2 D0 WHILE (I<PKB$PERIOLDD AND (I<>KB$CDMMA)? /X loor till reriod or comma %/

291 3 I=READ$KE;

292 3 IF I=KE$COLON THEN SHOW$INTERRUPTS=NOT SHOW$INTERRUPTS:

294 3 IF I=KB$REG THEN

295 3 DOy

296 4 JUNK$WORD=SHL (JUNK$ERROR»8) DR FIC$ERROR?

297 4 CALL DISPLAY$HEX(JUNK$WORD) s

298 4 END?

299 3 IF I < 10H THEN

300 3 jtel

301 4 IF PROCESSING$LOOP THEN I=I AND O7Hs

303 4 CHANNEL=Ij

304 4 CALL DISPLAY(DIGIT(CHANNEL) OR DOTs0)5$

305 4 END3

306 3 IF I = KB$PERIOD THEN STATE = TRUE#

308 3 ENDj

09 2 CALL DISFLAY$MESSAGE (BCLEAR) S

10 2 CALL DISPLAY$DIGIT((CHANNEL)»?)}

311 2 RETURN STATE:

FL/H-84 COMPILER PLO 16-MAY-82 PAGE 19
KEY PORCESSING ROUTINES

FL/M-B6 COMPILER FLOD

216
317
318
319

[
M
<

Gl (o O G O
r P3NP R
N b P -

Ced Ll Ced
(VR SR S |

SN0 O

[N Y
d
[I

333
334
335
336

337
338
339
340
141

[y

[I o6

d R rJ

LIS 6 B 8

[FNR 75 G 5 0 o] k3 A

[% B ORI 6 B O I o |

16-MAY-82
MAIN CONTROL PROGRAM

$SUBTITLE(/'Main control Frodram’)

ZRRXERRERRORORKRRRRRRoi MAIN PROGRAN fkkikiikkkkibkkkkiiix/

DISABLE:

OUTPUT (KB$STATUSS$PT)=KB$MODE /% Set mode X/
OUTPUT(KB$STATUSSFT)=KB$SCANSRATE /% Set scan rate ¥/

IF STARTUPFLAG <> S555SH THEN
Dos FkkkK COLD START ONLY STUFF dckikk/
STARTUFSFLAG=3505H)
COLD=TRUE?

SIGN$TIME=6)

INDEX=0% /¥ initialize "loor® conditions ¥/
DO CHANNEL=0 TO 7;

LOOP$STATUS(CHANNEL)=03
LOOP$DAC(CHANNEL) s LOOP$ADC(CHANNEL) = CHANNEL:
ENDj

D0 CHANNEL=0 TD 133 ADC(CHANNEL)=0000H; END}

ADC$RUSY=FALSE /% initislize the ADC values ¥/
ADCQIN » ADCEQSOUT = 05

SHOW$ADC=FALSES
DISFLAY$TYPE=HEX)

D0 CHANNEL=0 TD NO$OF4$DACS-13 /% initialize the DAC values %/
DAC(CHANNEL) =0000H
OUTWORD(DAC$ADDR + SHL(CHANNELs1))= OFFFHi

ENDy

SHOWS INTERRUPTS=FALSE$
QUTPUT(ADC$EOCS$FF)=03
OUTPUT (ADC$SOCS$FF =03
OUTPUT(DAC$REQUESTS$FF)=0j
JUNK$ERROR » PIC$ERROR =03

/% clear the interrurt F/F's ¥/

PAGE

L)
“

0

FL/K-86 COMPILER

358
359
360
361
3462

363
364
263
364

387
148
359

370

371
372
373
374

-k b et bk el el acil oot Fr P3P

fury

. ek

PLO
MAIN CONTROL PROGRAM

7XXXXX WARM START okkkk/

IF COLD=FALSE THEN SIGN$TIME=2j
COLD=FALSES

CALL DISPLAY$MESSAGE(RAVUE)3; CALL DELAY(SIGN$TIME)S
CALL DISPLAY$MESSAGE(@IDENT)F CALL DELAY(SIGNSTIME/2):
CALL DISPLAY$MESSAGE(@PSCF)3 CALL DELAY{(SIGN$TIME/2)$

CALL SET$INTERRUPT(0yJUNK)$

VECTOR$PTR=03

DO CHANNEL=1 TO 235
VECTOR(CHANNEL) . OFF=VECTOR(0) . OFF 5
VECTOR(CHANNEL) .SEG=VECTOR(0) .SEG}
ENDY

CALL SET$INTERRUPT(&7,FIC)$
CALL SET$INTERRUPT(468,PIC)3
CALL SET$INTERRUPT(49+PIC)}
CALL SET$INTERRUFT(70sFIC)s
CALL SET$INTERRUPT(71,PIC);

CALL SET$INTERRUPT(54:ADNC$EQC) S /% set interrurt vectors ¥/
CALL SET$INTERRUPT(45,ADC$S0C) 3

CALL SET$INTERRUPT(446DACSREQUEST) S

CALL SET$INTERRUPT(2,DOPE);

164,165:166 =03 /% initiali;e interrurt counters %/
OUTPUT(CNTRLEPT$HI) = CNTRL$RYTE: /% set us 8255's ¥/
OUTPUT(CNTRLFTL0) = CNTRLS$BYTE:

OUTWORD(STATUS$PT)Y= INDEX OR LOOP$STATUS(CHANNEL)}

DUTPUT(INTSREG$0) = ICW1%Is /¥ set ur PIC (ie. PB259A) %/
QUTPUT (INTREG1) = ICW2; /% see srec sheets for detsile %/
DUTPUT(INTREG1) = ICWA%D;

OUTPUT(INTREG1) = OCWis

16-MAY-82 PAGE 21

FL/K-86 COMPILER PLO 16-#AY-82 PAGE 22
MAIN CONTROL PROGRAM

377 1 ENABLE

378 1 ’ DO FOREVERj ZxkeEdkikkk MAIN LOOP dxikidkixs/
379 2 CALL DISPLAY$MESSAGE(RLOOP);

380 2 PROCESSING$LOOP=TRUE s

381 2 IF PRE$PROCESS THEN CALL PROCESS$LOOP3

18z 2 CALL DISPLAY$MESSAGE (RCHAN)$

384 2 PROCESSING$LOOP=FALSE;

383 2 IF FRE$PROCESS THEN CALL FROCESS$CHANNEL$

387 2 ENDF /XXX FOREVER Xk¥/

388 1 END PLO;

MODULE INFORMATION:

CODE AREA SIZE OAF4H 2804l

CONSTANT AREA SIZE = 0000H 0D
VARIABLE AREA SIZE = 0091H 145D
HAXIMUM STACK SIZE = 0032H S0D

702 LINES READ
0 PROGRAM ERROR(S)

END OF PL/M-86 COMPILATION

