
Computational Visual Media

DOI 10.1007/s41095-015-0017-1 Vol. 1, No. 2, June 2015, 91–103

Research Article

Cross-depiction problem: Recognition and synthesis of
photographs and artwork

Peter Hall1 (�), Hongping Cai1, Qi Wu2, and Tadeo Corradi1

c© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract Cross-depiction is the recognition—and

synthesis—of objects whether they are photographed,

painted, drawn, etc. It is a significant yet under-

researched problem. Emulating the remarkable human

ability to recognise and depict objects in an

astonishingly wide variety of depictive forms is likely

to advance both the foundations and the applications

of computer vision. In this paper we motivate the

cross-depiction problem, explain why it is difficult, and

discuss some current approaches. Our main conclusions

are (i) appearance-based recognition systems tend to be

over-fitted to one depiction, (ii) models that explicitly

encode spatial relations between parts are more robust,

and (iii) recognition and non-photorealistic synthesis

are related tasks.

Keywords cross-depiction; classification; synthesis;

feature; spatial layout; connectivity;

representation

1 Introduction

Many years ago, I took my young children to the zoo.

I showed them a simple drawing of a giraffe: bright

coloured areas, black lines. When the children got to

the zoo, they had no problem at all identifying the

giraffe, or the camel, the lion, etc. What is more, they

could make recognisable depictions of these animals.

The children were exhibiting (at least) two

abilities. One is to generalise from a specific

instance to a class, and the other is to generalise
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from a depiction (in that case, a particular style

of artwork) to real life. Children generalise equally

well across depictions; they would have recognised

photographs of the animals equally well. Humans are

able to recognise objects in an astonishing variety

of forms. Whether photographed, drawn, painted,

carved in wood, people can recognise horses, bicycles,

people, etc. Furthermore, the ability to draw and

paint—even from memory— is a strong indicator

that in humans at least, recognition and synthesis

are related.

The ability of humans to recognise regardless

of depiction is such an everyday occurrence that

it can often pass without being noticed. Yet it

is an astonishing ability that cannot be matched

by any current algorithm. Even the very best

recognition algorithms— including deep learning—

fail to cope with the cross-depiction problem. Indeed,

all algorithms we have empirically tested exhibit the

same general behaviour: all show a significant drop in

performance when presented with an inhomogeneous

data set, and fall further still when trying to

recognise a drawn object after being trained only on

photographic examples. Some algorithms are more

pronounced than others in this trend—those that

explicitly encode spatial relations tend to be more

robust.

The inability of all contemporary approaches to

cope with the cross-depiction problem is a significant

literature gap. Cross-depiction forces one to consider

which visual attributes are necessary for recognition,

and which are merely sufficient. That is, one may

sensibly ask: which properties of an object class are

invariant (or close to invariant) given over variations

in depictive style? The specific appearance among

different depictive styles varies to a much greater

degree than that due to lighting changes, but still
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people can recognise them. Children’s drawings, as in

Fig. 1, are both highly abstract and highly variable,

yet contain sufficient information for objects to be

recognised by humans, but not computers. Equally

overlooked is the fact that no computer is yet able

to draw as a child.

Learning the specifics of each depiction seems at

best unappealing, not least because the gamut of

possible depictions is potentially unlimited. Rather,

the question is: what abstraction do these classes

have in common that allow them to be recognised

regardless of depiction? It is an unavoidable question

that pushs at the foundations of computer vision.

A machine that is able to recognise regardless of

depiction would provide a significant boost to current

applications, such as image search and rendering.

For example, given a photograph of the Queen of

England, a search should return all portraits of her,

including postage stamps that capture her likeness

in bas-relief. Searching heterogeneous data sets is a

real problem for the creative industries, because they

archive vast quantities of material in a huge variety

of depictions—a problem that requires visual class

models to span depictive styles. Non-photorealistic

rendering from images and video would be boosted

too, not least because highly aesthetic renderings

depend critically on the level of abstraction available

to algorithms. Picture making is nothing like tracing

over photographs: humans draw what they know of

an object, not what they see—computers should do

like wise.

Fig. 1 Children’s drawings.

One of our guiding principles has been that the

cross-depiction problem acts to unite the synthesis

and analysis of images. The rationale is that people

find it at best very difficult to draw objects they

cannot recognise; more exactly, people tend to draw

objects they can see in a manner that if highly

influenced by what they know of them. This is most

obvious in children, who draw the sky at the top

of their pictures and eyes at the top of heads, and

often they will draw cars with four wheels, and

so on. But it is evident in the artwork of adults

too. Indeed, students at western art schools are

given extensive life-drawing classes with the exact

purpose of teaching them to draw what is seen

rather than what is known. For example, early

students often draw the hands, feet, and faces in

proportion to direct measures rather than as seen

when foreshortened: the students’ knowledge allows

them to compensate for perspective effects.

The key for computational emulation of the human

ability is, we argue, representation. It is reasonable

to seek a single representation that supports both

the recognition and the synthesis of objects. Even so,

from an “engineering” point of view, the problems of

recognition and synthesis seem sufficiently far apart

that different representations are needed. Therefore,

we will consider representations that are suitable

for each, and then conjecture as to what a single

representation might look like.

In summary then, there are two important reasons

to study the cross-depiction:

1) The “foundational” problem: we are forced to

think very carefully about how to model object

classes.

2) The “practical” consequences: solving the

cross-depiction problem will open many robust

applications in web search, computer graphics,

and other areas.

This paper establishes there is a literature gap;

it shows that feature based approaches alone are

not sufficient for cross-depiction, and representations

that take connectivity and spatial layout into

account perform better. It suggests future avenues

in terms of object class representation. As a note:

in this paper, we use the term photograph as a short

hand for “natural image”, and the term artwork as

all other images.
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2 Related literature

The computer vision literature distinguishes between

classification (does this image contain an object of

class X or not?) and detection (an object of class X is

at this place in this image). Yet lay language makes

no sharp distinction; we use the term recognition

to mean both classification and detection, which is

closer to lay usage.

There is a vast literature in computer vision

to address recognition. Yet almost no prior art

addresses the cross-depiction, which is surprising

given its genuine potential for advancing computer

vision both in its foundations and in its applications.

Of the many approaches to visual object

classification, the bag-of-words (BoW) family [1–

3] is amongst the most widespread. It models

visual object classes as histograms of visual words;

these words are being clusters in feature space.

Although the BoW methods address many difficult

issues, they tend to generalise poorly across depictive

styles (see Section 3). Alternative low-level features

such as edgelets [4, 5] may be considered, or mid-

level features such as region shapes [6, 7]. These

features offer a little more robustness, but only if

the silhouette shape is constrained—and only if the

picture offers discernible edges, which is not the case

for many artistic pictures (Turner’s paintings, for

example).

Deformable models of various types are widely

used to model object classes for detection tasks,

including several kinds of deformable template

models [8, 9] and a variety of part-based models [10–

16]. In the constellation models from Ref. [14],

parts are constrained to be in a sparse set

of locations, and their geometric arrangement is

captured by a Gaussian distribution. In contrast,

pictorial structure models [12, 13, 15] define a

matching problem where parts have an individual

match cost in a dense set of locations, and their

geometric arrangement is captured by a set of

spring connecting pairs of parts. In those methods,

the deformable part-based model (DPM) [12] is

widely used. It describes an object detection system

based on mixtures of multi-scale deformable part

models plus a root model. By modelling objects from

different views with distinct models, it is able to cope

with large variations in pose. None of these directly

address the cross-depiction problem.

Shape has also been considered. Leordeanu et

al. [17] encode relations between all pairs of edgels

of shape to go beyond individual edgels. Similarly,

Elidan et al. [18] use pairwise spatial relations

between landmark points. Ferrari et al. [19] propose

a family of scale invariant local shape features

formed by short chains of connected contour

segments. Shape skeletons are the dual of shape

boundary, and also have been used as a descriptor.

For example, Rom and Medioni [20] suggest

a hierarchical approach for shape description,

combining local and global information to obtain

skeleton of shape. Sundar et al. [21] use skeletal

graph to represent shape and use graph matching

techniques to match and compare skeletons. Shock

graph [22] is derived from skeleton models of shapes,

and focuses on the properties of the surrounding

shape. Shock graphs are obtained as a combination

of singularities that arise during the evolution of a

grassfire transform on any given shape. In particular,

the set of singularities consists of corners, lines,

bridges, and other similar features. Shock graphs

are then organised into shock trees to provide a rich

description of the shape.

Algorithms usually assume that the training and

test data are drawn from the same distribution.

This assumption may be breached in real-world

applications, leading to domain-adaptation methods

such as transfer component analysis (TCA) [23],

which transfer components from one domain to

another. Both sampling geodesic flow (SGF) [24]

and geodesic flow kernel (GFK) [4] use intermediate

subspaces on the geodesic flow connecting the source

and target domain. GFK represents state-of-the-art

performance on the standard cross-domain dataset

[25]; it has been used to classify photographs

acquired under different environmental conditions,

at different times, or from different viewpoints.

Cross-depiction problems are comparatively less

well explored. Some work is very specific—Crowley

and Zisserman take a weakly supervised approach,

using a DPM to learn figurative art on Greek vases

[26]. Others develop the problem of searching a

database of photographs based on a sketch query;

edge-based HOG was explored in Ref. [27] and by

Li et al. [28]. Others have investigated sketch based

retrieval of video [29, 30].

Approaches to the more general cross-depiction
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problem are rare. Matching visually similar images

has been addressed using self similarity descriptors

[31]. It relies on a spatial map built from correlations

of small patches; it therefore encodes a spatial

distribution, but tends to be limited to small rigid

objects. Crowley and Zisserman [32] provide the

only example of domain adaptation we know of

specifically designed for the cross-depiction problem;

they train on photographs and then use midlevel

patches to learn spatial consistencies (scale and

translation) that allow matching from photographs

into artwork. Their method performs well in retrieval

tasks for 11 object classes in databases of paintings.

Classification, rather than matching, has also been

studied. Shrivista et al. [33] show that an exemplar

SVM trained on a huge database is capable of

classification of both photographs and artwork. A

less computationally intensive approach has been

proposed [34] using a hierarchical graph model to

obtain a coarse-to-fine arrangement of parts with

nodes labelled by qualitative shape [35]. Wu et

al. [36] address the cross-depiction problem using a

deformable model; they use a fully connected graph

with learned weights on nodes (the importance of

nodes to discriminative classification), on edges (by

analogy, the stiffness of a spring connecting parts),

and multiple node labels (to account to different

depictions); a method tested on 50 categories.

Others use no labels at all, but rely on connection

structure alone [37] or distances between low-level

parts [17].

Deep learning has recently emerged as a truly

significant development in computer vision. It has

been successful on conventional databases, and over

a wide range of tasks, with recognition rates in

excess of 90%. Deep learning has been used for the

cross-depiction problem, but its success is less clear

cut. Crowley and Zisserman [38] are able to retrieve

paintings in 10 classes at a success rate that does not

rise above 55%; their classes do not include people.

Ginosar et al. [39] use deep learning for detecting

people in Picasso paintings, achieving rates of about

10%.

Other than this paper, we know of only two

studies assessing the performance of well established

methods on the cross-depiction problem. Crowley

and Zisserman [32] use a subset of the “Your

Paintings” dataset [40], the subset decided by those

that have been tagged with VOC categories [41].

Using 11 classes, and objects that can only scale

and translate, they report an overall drop in per

class Prec@k (at k = 5) from 0.98 when trained

and tested on paintings alone, to 0.66 when trained

on photographs and tested on paintings. Hu and

Collomosse [27] use 33 shape categories in Flickr

to compare a range of descriptors SIFT, multi-

resolution HOG, Self Similarity, Shape Context,

Structure Tensor, and (their contribution) Gradient

Field HOG. They test a collection of 8 distance

measures, reporting low mean average precision rates

in all cases.

Regarding synthesis, non-photorealistic rendering

from photographs is germane to our paper. Almost

all of the non-photorealistic rendering (NPR) from

photographs literature concerns the development

of image filtering of one kind or another (see for

example Ref. [42] for a review). However, such

algorithms fail to emulate the process of human

produced arts, which is inevitably about abstraction

of some kind, meaning a summary of the object or

scene being drawn. Moreover, humans can and do

draw (and paint) from memory.

3 Representations for recognition

Here we will consider representations for recognition

of object classes, regardless of how they are

depicted. We describe representations we have used,

and benchmark some of them against datasets we

have created.

3.1 Feature based representations

As already mentioned in Section 2, bag-of-words

(BoW) models for object classes are widespread.

BoW models are premised on the assumption that

object classes can be distinguished from the relative

proportion of discriminative image patches in an un-

ordered collection. Since “words” in the context of

images means an image patch, the consequence of the

this assumption is that words in patch must exhibit

low variation—they must be similar.

Intuitively, this “BoW assumption” is violated

when the datasets contain both photographs and

artwork; our intuition is confirmed by experiments.

In order to see how the local features affect the

performance in cross-depiction classification, we
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test a range of different features, e.g., SIFT [43],

Geometric Blur (GB) [44], Self-similarity Desciptors

(SSD) [45], Histogram of Oriented Gradient (HOG)

[46], and Edge-based HOG (eHOG) [50].

The BoW we use is the spatial pyramid [2], as

it is well known and widely used. Given a set

of labelled training images, local descriptors are

computed on a regular grid with multiple-sized

regions. A vocabulary of words is constructed by

vector quantisation of local descriptors with k-

means clustering (k = 1000). To construct a visual

class model (VCM), each image is partitioned into

L levels of increasingly fine cells (L = 2 in our

experiments). A histogram of word occurrences is

built for each cell; concatenating these histograms

encodes the image with a 5000 dimensional vector.

A one-versus-all linear SVM classifier is trained on

a χ2-homogeneous kernel map [47] of all training

histograms. Given a test image, the local features

are extracted in the same way as in the training

stage, mapped onto the codebook to build a multi-

resolution histogram, which is then classified with

the trained SVM.

We evaluate the algorithms on Photo-Art-50

dataset [36] which contains 50 distinct object classes

(see Fig. 2), with between 90 and 138 images

for each class. Each class is approximately half

photographs and half artwork. All 50 classes appear

in Caltech-256; a few also appear in PASCAL VOC

Challenge [41] and ETH-Shape dataset [48].

As can be seen in Table 1, none of the

BoW methods perform well in recognition over

a heterogeneous database as ours. We also used

Fisher Vectors (FV) [49], which instead describe the

distribution of statistics of local features inside each

cluster. Consistent with the observation in Ref. [49],

it outperforms BoW-SIFT by 2%– 3% in all “train–

test” settings. In spite of such an improvement, FV

still suffers from significant performance drop in the

condition of different training and test depiction

domains.

In summary, all methods exhibit comparably

Fig. 2 Photo-Art-50 dataset [36] containing 50 object categories. Each category is displayed with one art image and one photo

image.

Table 1 Classification using feature based representations. Each row is a train/test pattern: Art, Photo, Mixed. Each column is an

algorithm with feature, divided into groups: BoW [31, 43, 44, 46, 49, 50], Fisher Vectors [49]. Domain Adaption using GFK [4] has

two variants (PCA and LDA), also Subspace Alignment (SA) [25]. Each cell shows the mean of 5 randomized trials. The standard

deviation on any column never rises above 2%. Domain-Adaptation methods were tested only on cross-domain train/text patterns

Model BoW FV GFK PCA GFK LDA SA

Train Test SIFT GB SSD HOG eHOG SIFT SIFT SIFT SIFT

P P 84 77 66 72 70 87 — — —

M P 80 72 58 65 63 84 — — —

A P 64 60 39 42 50 66 48 50 45

A A 74 72 49 55 60 77 — — —

M A 69 67 45 50 56 73 — — —

P A 44 50 31 29 40 47 31 32 29
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high performance with homogeneous data comply

with the “low variation” assumption (good for

photographs) but show a fall when faced with

heterogeneous data (photographs and artwork).

The fall is most distinct when BoW and Fischer

Vectors are trained on photographs and tested

on artwork—suggesting the representation is over-

fitted to photographic data. Due to the very different

distribution of photo and art domains, it is natural to

resort to the domain adaptation techniques. In the

following, we will investigate how well the domain

adaptation could bridge the gap.

Domain adaptation is a process by which a

representation built initially for one domain is

allowed to somehow adapt to cover a second. Some

may say that photographs and artwork belong to

different domains, so that domain adaptation may

overcome the problems we see with BoW and Fischer

Vectors.

Excellent domain adaptive methods include, but

are not limited to Refs. [4, 24, 25, 51, 52]. They

show clear benefits for photographs captured under

different conditions. We tested some of these (details

below) using photographs as a source domain for

the initial model, which we adapted to the target

domain of artwork. Table 1 shows this case to be

the most difficult for BoW and Fischer Vectors. We

also tested adaptation in the reverse direction (from

art to photographs, still difficult for BoW and FV).

Specifically, we implemented and tested two

variants of Geodesic Flow Kernel (GFK) [4]:

GFK PCA projects original features in both domains

(source photogrpah and target artwork) onto a 49

dimensional subspace via with PCA; GFK LDA

uses supervised dimensionality reduction via linear

discriminant analysis—on the source domain only.

Subspace Alignment (SA) [25] project S and T to

respective subspaces. Then, a linear transformation

function is learned to align the two domains.

The results for these three methods are shown in

Table 1. They suggest that domain adaptation using

feature representations are not effective.

3.2 Models with spatial and structural

information

As Table 1 shows, feature based representations are

poorly suited to the task of recognition in the cross-

domain problem; even domain adaptation proves

ineffective. This section describes representations

that take spatial and structural relations into

account.

We have used structure alone as a representation

[37]. Each class representation was a spatially

weighted graph built by hierarchical agglomeration,

filtered by Laplacian graph energy [53]. Tests using

thirteen different classes in a heterogeneous database

showed an accuracy (the diagonal of a confusion

matrix) of above 85%. This suggests structural and

spatial relations are important to cross-depiction;

but the experiments are too limited to be conclusive

and later tests on a larger dataset in Ref. [34]

yields accuracies of around 20% (see Table 2). This

suggests space and structure are important, but are

insufficiently rich.

Given that proposition that features should not

be limited by the statistics of any one domain (e.g.,

Table 2 Classification using shape and structure. (a) Single domain task, (b) single cross-depiction task, (c) single to mixture

depiction task, and (d) mixture cross-depiction task. The character “p” is “photos”, “a” is “art”, and “m” is “mixture”. Dense

SIFT was computed using Ref. [5], and structure only followed Ref. [37]

(a) (b)

Case 1: training 5p 5a

Case 1: testing 15p 15a

Dense SIFT 70% 59%

Structure only 16% 19%

Proposed method 61% 62%

Case 2: training 8p 10p 8a 10a

Case 2 : testing 15a 15a 15p 15p

Dense SIFT 43% 47% 49% 51%

Structure only 19% 23% 22% 25%

Proposed method 63% 64% 64% 67%

(c) (d)

Case 3: training 3a 5a 3p 5p

Case 3: testing 30m 30m 30m 30m

Dense SIFT 46% 50% 50% 54%

Structure only 13% 16% 14% 16%

Proposed method 58% 61% 56% 61%

Case 4: training 6m 10m

Case 4: testing 30m 30m

Dense SIFT 60% 61%

Structure only 21% 24%

Proposed method 62% 65%
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photograph, pencil drawing), we next considered

simple shapes as features to label a graph. Using

shapes are features was inspired by observing

the great artists such as Picasso, who construct

recognisable objects from circles, squares, and such

like.

We first learnt shapes from image segmentation

[54] using a fully unsupervised approach, because

we wanted to find out whether simple shapes exist

in image segmentation independently of human

bias. Our algorithm discovered simple shapes that

can be named—circle, square, etc. These are

seen in Fig. 3. The same figure shows a scale-

based hierarchical decomposition of an image with

segments classified using these shapes, plus a

“noise” category for segments that did not classify

into any shape. A mean graph was used to connect

shapes in each layer of the hierarchy, also in

Fig. 3. Edges also connect corresponding nodes

between layers.

This was tested on a smaller image data base than

in Section 3.1, and compared with dense SIFT [5] and

structure only [37]. This representation maintains

performance across domains— that is, it does not

exhibit a fall-off when trained on one domain and

tested on another, and all others do so far. Even so,

a classification rate hovering around 60% cannot be

Fig. 3 Top left: simple shapes learnt from segmentation

without supervision. Top right: a hierarchy of shapes derived

from an input image. Bottom: a mean graph learnt at head

level in the hierarchy, with simple shapes labelling nodes. Edges

also connect between layers.

regarded as satisfactory: we must turn to stronger

models.

3.3 DPM, ADPM, and multi-label graph

Deformable parts model (DPM) [55] is a well known

object representation that takes spatial layout into

account. It models an object with a star graph, i.e.,

a root filter plus a set of parts. Given the location of

the root and the relative location of n parts, n = 8 in

our experiments. The score of the star model is the

sum of responses of the root filter and parts filters,

subtracting the displacement cost. Each node in a

DPM is labelled with an HOG feature, learned from

examples.

By analogy with domain adaptation, we

considered the possibility of query expansion

for DPM to obtain adapted DPM (ADPM). We

first train a standard DPM model for each object

category in the training set (i.e., source domain) S.
We then apply the models on the test set (i.e., target

domain) T . A confidence set C ⊂ T is constructed

from the test set for training expansion by picking

images that match a particular VCM especially well:

C = {x ∈ T |s1(x) > θ1 ∧ s1(x)− s2(x) > θ2} (1)

with s1(x) the highest DPM score, and s2(x) the

second highest score, and θ1 � θ2 are user-specified

parameters to threshold the best score and margin

respectively. We found θ1 = −0.8 and θ2 = 0.1 to be

a good trade-off between minimising false positives

(5%) and including appropriate number of expanded

data (around 580 images in C).
The fully connected multi-labelled graph (MG)

model [36] is designed for the cross-depiction

problem. It attempts to separate appearance features

(contingent on the details of a particular depiction)

from the information that characterises an object

class without reference to any depiction. Unlike

DPM, it comprises a fully connected weighted graph,

and has multiple labels per node. Each graph has

eight nodes. Weights on nodes can be interpreted

as denoting the importance of a node to object

class characterisation in a way that is independent

of depiction. Weights on arcs are high if the

distance between the connected pairs of parts varies

little. These weights are learnt using a structural

support vector machine [56]. In addition to the

weights, each node carries 2 features labels. These
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are designed to characterise the appearance of parts

in both photographs and artwork (see Section 4 for

a justification).

Table 3 compares the classification performance

of DPM, ADPM, and MG with the non-structure

baseline FV. We can clearly see the benefit when

considering the spacial information. Even so, the

performance of standard DPM in “train on photo,

test on art” pattern significantly drops. However,

this performance gap is shortened when the DPM

model is re-learned on the expanded set, i.e.,

ADPM. It demonstrates that the expanded set does

capture new information in the target domain and

helps to refine the models according to the target

domain. The MG alone maintains performance

over all train/test patterns. The results suggest

that structure and spatial layout is an essential

information for recognising an object.

3.4 Deep learning

Convolutional neural networks (CNN) [57] have

yielded a significant performance boost on image

classification. For classification, we follow Crowley

and Zisserman [38], encoding images with CNN

features, which are then used as input to learn a one-

vs-all linear SVM classifier. The CNN parameters are

pre-trained from the large ILSVR2013 dataset. We

have included results from CNN in Table 2 because

they compare so well with the space/structure

aware methods. The pre-trained CNN achieved high

Table 3 Classification using space and structure. Each row

is a train (30 image)/test (rest) pattern: Art, Photo, Mixed.

Each column is an algorithm. Fisher Vectors [49], the best

feature-only classifier, is repeated from Table 1. DPM [55] used

a strong spatial layout model, and ADPM is our domain adapted

version. Multi-labelled graphs (MG) [36] has a stronger spatial

model than DPM, and also has two labels at each node. We have

include a deep learning CNN [38] too. Each cell shows the mean

of 5 randomised trials. The standard deviation on any column

never rises above 2%

Model FV DPM ADPM MG CNN

Train Test SIFT HOG HOG 2×HOG Learnt

P P 87 88 — 85 97

M P 84 85 — 90 96

A P 66 78 79 83 91

A A 77 83 — 89 89

M A 73 80 — 89 87

P A 47 68 72 83 73

performance when tested on photos. Even so, CNNs

exhibit the same fall in performance over the train-

on-photo, test-on-art pattern that is seen in the

feature based methods.

4 General discussion

Across all experiments we see the same trend: a fall

in performance in any case where art is included.

This fall is most marked whenever photographs are

used for training and artwork for testing, and is

seen in all cases other than the multi-labelled graph

(MG) [36].

These observations need an explanation. Intuition

suggests that the difference between the low-level

images statistics of photographs and artwork is a

cause. In particular, it is easy to imagine that the

variation in low-level statistics across the gamut of all

images is much wider than it is for any one depiction

alone (photographs). This intuition is not ours alone,

but is shared by others [38], and it remains untested.

A strong hypothesis is possible. Let X and Y

be object classes. Let xP ∈ X be a photographic

instance and xA is artwork instance of class X.

Similarly yP, yA ∈ Y are photograph and artwork

of class Y , respectively. Denote the set of all xP

by XP, meaning the “photo visual object class

X”, and likewise for XA, YP, and YA. Suppose

too there is a measure d(., .) between each pair

of elements in any set. The strong hypothesis is

this: the intra-class distance (same domain, different

class) is expected to be less than the inter-class

distance for (different domain, same class). That is

d(xP, xA) > d(xP, yP), photographs are drawings

of the same object are more different from each

other than photographs of two different objects.

Likewise, d(xP, xA) > d(xA, yA), etc. To test this

we used raw images Photo-Art-50 as raw input,

each scaled to a square image of pixel width 256.

We then mapped all the data into a 4 dimensional

space using PCA over all the data (which captured

most of the eigenenergy). We assumed a K-NN

classifier, so that XP is represented by the mean,

likewise XA. The measure, d(., .), is Euclidean

distance. We found a fraction 0.67 of all statements

of the form d(xP, xA) > d(xP, yP), etc. to be true,

which supports the stronger hypothesis. Figure 4
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Fig. 4 Above: each image in Photo-Art-50 plotted in an

eigenspace spanning raw images, art in red, photos in blue.

Below: The centre of each class in Photo-Art-50, red (art), blue

(photo). The images and the cluster centres tend to form two

groups: art/photo.

illustrates that for all classes the different domains

art/photograph tend to separate. This result explain

our results above: a density fitted to photographic

features alone is over-fitted because it fails to

generalise to art-like features, and vice versa. Wu

et al. [36] describe feature distributions using more

than one centre, and are the most consistent of all

descriptions over all recognition tasks on the Photo-

Art-50 dataset.

This wide variance in low-level statistics also helps

explain the value of spatial information regarding

object class identity. So far every method we

have experimented that uses some kind of spatial

information shows less fall away in the cross-

depiction problem; this is true also for Ref. [32]. In

this paper we see DPM outperforms BoW, and the

MG outperforms DPM. This result is in line with

(e.g.) Leordeanu et al. [17] who use the distance

between low-level parts (edgelets) as a feature to

characterise objects and achieve excellent detection

results on the PASCAL dataset [41] of photographs;

it may be effective too on Photo-Art-50, but this is

to be proven.

This empirical data has anecdotal evidence too.

The children’s drawings in Fig. 1 are clearly people,

but have little in common with photographs of

people, and not much in common with one another.

Consider too Fig. 5 in which the same parts form

a face, or not, depending only on the spatial

arrangement of the parts. Indeed, artwork from

prehistory to the present day, whether produced

by a professional or a child, no matter where in

the world: the greater majority of it relies on

spatial organisation for recognition. It is as if spatial

organisation provides a major class, which is refined

using features such as shape; but we have no direct

evidence for this conjecture.

5 Cross-depiction synthesis

Photorealistic image generation is common in

computer graphics. Here we focus only on non-

photorealisic rendering (NPR) from photographs.

Structure, spatial layout, and shape are

all important characteristics in identifying

objects regardless of depiction. Equally, they

can be used to generate artwork directly from

photographs. Consider Fig. 6; it shows a photograph

Fig. 5 The presence of a face depends on spatial arrangement

of parts: above, no face; below, smiling face.
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Fig. 6 Shape abstraction for automated art.

of a bird feeding its young. The photograph has

been segmented, and the segments are classified

into one of a few qualitative shapes (square, circle,

triangle, · · · ). In the most extreme case just one

class (circle) is used. See Ref. [58] for details of the

computer graphics algorithm.

It is true that as the degree of abstraction grows

the original interpretation of the image becomes

harder to maintain; but given too the degree of

abstraction in children’s drawings, the conclusion is

that both the quality and quantity of abstraction are

important for recognition. In this case the aim was

only to produce a “pretty” image that bears some

resemble to the original. However, simple qualitative

shapes of the kind used here can be learned directly

from segmentation, as are sufficient to classify scene

type (indoor, outdoor, city, · · · ) at close to state-of-

the-art rates [35].

Shape is not the only form of abstraction useful

to the production of art, but structure can be used

too. Figure 7 shows examples of computer generated

art based on rendering structure. The analysis used

to obtain the structure is identical to that used by

Ref. [37] to classify objects based on weighted graphs

alone. In this case the arcs of a graph have been

visualised in a non-photorealistic manner, and the

shape of parts at nodes have been classified into a

qualitative shape; see Ref. [59] for details, which

specified the shapes learnt from segmentation by

Ref. [35].

6 Conclusions

It is clear that the same sorts of representations

that support abstract image synthesis also support

image classification. It seems that synthesis and

classification are indeed related, as intuition would

have us believe.

The cross-depiction problem pushes at the

foundations of computer vision, because it brings

in sharp focus the question of how to describe

object classes. Given the fact that the same kinds of

representations are used both for abstract rendering

and for recognition, the conclusion that there is a

strong relation between the two is hard to escape.

The relation between the cross-depiction problem

and image generation is given (strong) anecdotal

support by the observation that people draw a mix

of what they know and what they see. We can see

this in the art of children, and by the fact that when

draughting was considered important, by art schools,

the tutors had to train students to draw what they

see rather than what they know—that is one of the

main purposes of life-drawing classes.

Our experimental results show that recognition

algorithms premised directly on appearance suffer

a fall in performance within the cross-depiction

problem, probably because they tacitly assume

limited variance of low-level statistics. Rather, they

suggest that structure, spatial layout, and shape are

all important characteristics in identifying objects

regardless of depiction.

For example, DPM outperforms BoW-HOG, even

though both use the same low-level features; the

MG—with a stronger spatial model—outperforms

DPM. This is because, possibly, structure and

spatial layout capture the essential form of an

object class, with specific appearance relegated to

the level of detail. In other words, structure and

space are more salient to robust identification that

Fig. 7 Structure and shape combine to make art in the style of (left to right) petroglyphs, child art, and Joan Miro.
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appearance. Indeed all algorithms we have tested

show a significant fall compared to their own peak

in performance, when trained on photographs and

tested on art; this includes the deep learning

methods we have used. The single exception is

Ref. [36], which explicitly models a strong structure,

and explains appearance details using multiple labels

on each node (multiple labels to account for both art

and photographic appearance).

The relative importance and the interaction

between the descriptors we have identified as

important remain an open problem, and does

the possibility of other descriptive terms has not

been eliminated. A zebra and a horse look largely

identical, except for texture.

Deep learning performs very well on classification

over Photo-Art-50, but it does exhibit a fall in

performance when trained on photographs and

tested on art—only the multi-labelled graph [36]

and the (lesser performing) graph-with-shapes [34]

do not. Also, we have found that when presented

with the problem of people detection in a much

larger database CNN methods do not rise above a

detection rate of 40%. These results make it difficult

to conclude that deep learning is a solution to the

cross-depiction problem; quite possibly it too suffers

from lack of spatial awareness.

In summary, the cross-depiction problem pushes

the envelope of computer vision research. It offers

significant challenges, which if solved will support

new applications in computer graphics and other

areas. Modelling visual classes using structure and

spatial relations seems to offer a useful way forward;

the role of deep learning in the problem is yet to be

fully proven in comparison to its own performance

in other tasks and when compared to human ability

in this difficult challenge.
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