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“Whilst this planet has gone cycling on according to the fixed law of 

gravity, from so simple a beginning endless forms most beautiful and 

most wonderful have been, and are being, evolved.”  

- Charles Darwin, On the Origin of Species 
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Summary 
 

Today, lizards of the family Agamidae are widespread across the continent of Australia, where 

they are commonly referred to as dragon lizards. Since their arrival from Southeast Asia 

approximately 30 million years ago, they have radiated to occupy every environment that the 

continent has to offer, and have been particularly successful in the arid habitats as they arose 7-

15 million years ago. The monophyly of the Australian agamids is well established, and they are 

currently regarded as a subfamily, Amphibolurinae, with relatively well understood taxonomy 

and phylogeny. By contrast, the morphological diversity among the group is yet to be 

quantitatively and systematically explored. Here, I use quantitative approaches to explore the 

morphological variation in the skulls of Australia’s agamid lizard radiation. I used a combination 

of linear measurements, tooth counts, and two-dimensional and three-dimensional geometric 

morphometrics to characterise and explore patterns of morphological variation in the Australian 

dragon lizards. 

The cranial morphology of the 67 Australian agamid species used in this dissertation is 

more morphologically diverse than all other members of the agamid family combined. This 

disparity is achieved by modification of growth patterns, size, and dental characters. All 

Australian dragons tend to have a similar juvenile phenotype but become more disparate in 

shape as they approach adulthood. Despite their relatively recent invasion of Australia, the 

amphibolurine lineage of lizards has evolved a wide variety of different skull shapes, and 

provides examples of divergence and convergence, as well as the evolution of some extreme 

skull shapes (e.g. Gowidon, Moloch) that are associated with particular ecological life habits. A 

phylogenetically informed comparison of skull shapes seen in adult amphibolurines reveals that 

life habit accounts for differences to a greater degree than phylogenetic constraint. The extent to 

which this is true for other members of the Australian herpetofauna (e.g. snakes, geckos and 

skinks) is unclear and requires further work, but this thesis provides a foundation to do so. As 

well as revealing macroevolutionary patterns among the extant species, all chapters of this thesis 

advance our knowledge of their skull anatomy, enhance the resources available for interpretation 

of fossil agamid material, and unlock the potential for deep-time studies of palaeoecological 

changes.  
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CHAPTER 1 ─ Introduction 
The skul l  

The skull. It houses the brain, the major sensory organs, and the feeding apparatus. It is an 

intriguing element because it represents the epicentre of the anatomy where sensory responses, 

feeding, locomotion, and various other factors interplay. There is no doubt that the resulting 

complex structure serves a vital functional role in vertebrates. For evolutionary biologists, it 

offers a means of addressing important evolutionary questions. It provides a suite of 

homologous and quantifiable traits that frequently show significant variation, even among closely 

related taxa, and thus a platform to examine hypotheses relating to mechanisms, modes, and 

constraints concerning adaptation (Hanken and Hall, 1993). Furthermore, skull elements are well 

represented in the fossil record. Studies that compare morphology across different skulls of both 

extinct and extant animals are often motivated by an overarching interest in the reconstruction 

of past evolutionary history. Understanding the evolutionary consequences of morphological 

form at various taxonomic levels enhances interpretations of morphology, and ultimately reveals 

important pieces in the puzzle of vertebrate evolution. 

Today, researchers have an extensive toolkit of techniques to use for characterising 

morphology (Adams et al., 2004). This toolkit is the result of many years of continued 

development of geometric morphometric techniques that have improved and advanced the ways 

we characterise morphological form (see Bookstein, 1991; Dryden and Mardia, 1998; Adams, 

1999; Mittroecker and Bookstein, 2011; Klingenberg and Marugán-Lobón, 2013). These 

developments include software for collecting landmarks in three-dimensional space and 

increasingly sophisticated ways to view shape differences and depict morphological variation in a 

multivariate shape space (Bookstein, 1989; Adams and Collyer, 2009). But researchers do not 

stop at just characterising shape: they can also explore and statistically describe morphospace 

occupation through the lens of phylogenetic, ecological, or functional hypotheses (Friedman, 

2010; Klingenberg, 2010; Klingenberg and Marugán-Lobón, 2013; Adams, 2014). Morphological 

comparisons placed in the context of phylogeny provide a framework for reconstructing 

evolutionary history and understanding how a diversity of a particular clade has been assembled.
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Recurr ing evolut ionary  themes 

Al lom etr y  
Organisms will change shape when they change in size, either ontogenetically or evolutionarily. 

This is expected purely on biomechanical grounds. If organisms were to increase their size 

without changing shape, geometric scaling and physical properties dictate that this would 

decrease their ability to perform functions vital to their survival, including respiration, 

locomotion, and feeding (Schmidt-Nielsen, 1984). One of the most important approaches for 

assessing variation in skull shape is allometry: the study of changes in shape that are associated 

with changes in size (Klingenberg, 2016).  

There are three different kinds of allometry (see Fig. 1.1). Static allometry concerns 

patterns of variation among individuals of the same population within a particular ontogenetic 

stage. Ontogenetic allometry concerns variation among individuals from the same population, at 

different ontogenetic stages. Evolutionary allometry concerns variation among individuals within a 

single ontogenetic stage, from multiple evolutionary lineages that share a common ancestor 

(Cock, 1966). Although we recognise three different levels of allometric variation, they are all 

closely interconnected (e.g. Rieppel, 1990). Any changes in evolutionary allometry are  

Figure 1.1 – Illustration of the scheme used to characterise the three kinds of allometry. 
Skulls representing three successive instars are aligned from left to right, and two species 
are depicted, one beneath the other. Boxes indicate how species and instars are pooled 
to obtain estimates of each allometric pattern. 
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accompanied by corresponding changes in ontogenetic allometry, and heritable static variation of 

morphological traits dictates the possibilities for evolutionary change. Shape changes that are 

associated with size are an important, and often complex, concept in evolutionary biology and 

related disciplines. Our ability to measure and interpret them has advanced greatly in the last 50 

years, thanks to the developments in multivariate methods for characterising shape, as well as 

advancements in quantitative concepts and methods for analysing allometric variation (Huxley 

and Teissier, 1936; Gould, 1966; Klingenberg, 1998; Collyer et al., 2015; Klingenberg, 2016).  

Dispar i ty  
“Disparity” is the measure of morphological spread among individuals in a given sample 

(Runnegar, 1987; Gould, 1989; Foote, 1991). The introduction of the concept of disparity 

clarified a distinction between two notions of diversity that were often confounded: phenotypic 

variety (disparity), and taxonomic richness (diversity) (Foote, 1990, 1993a, 1993b). Although 

diversity and disparity are often correlated, the fossil record tells us that evolutionary change is 

not always evenly distributed over time (Foote, 1991). Measures of taxonomic diversity help us 

grasp the number of biological units present in a given place at a given time. However, if we 

want to understand the nature of these units and how they evolved, then measurement of 

phenotypic disparity is also necessary. Although there is no accepted standard for measuring 

disparity, questions regarding it are best tackled using a morphospace framework, which places 

all individuals in the same context. This allows disparity, variability between and within clades, 

and convergence to be quantified (Foote, 1997). Documenting and comparing temporal patterns 

of disparity and investigating the dispersion of this disparity among clades and at different 

taxonomic levels can yield valuable information about morphological diversification throughout 

evolutionary history. 
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The study group:  Austra l ian agamid l izards 
It is worth noting, although numbers of species stated here are based on the current state of iguanian phylogeny 

(from http://reptile-database.reptarium.cz/ on the 14th of July, 2018), the number of recognised species 

continually rises as researchers continue to improve the resolution of our understanding of phylogenetic relationships. 

Iguanian lizards (see Fig. 1.2) make up an astonishing 18% of all extant reptile species. 

They are a remarkably successful lizard radiation that is distributed worldwide and exhibits a 

surprising amount of morphological and ecological diversity. The clade Iguania is made up of 

1889 extant species of lizards from 14 families (Townsend  et al., 2011). Extant iguanians are 

split into two major clades, the Pleurodonta and the Acrodonta (Frost et al., 2001). These clades 

are characterised by their tooth implantation, with Pleurodonta exhibiting pleurodont tooth 

implantation, and Acrodonta exhibiting acrodont tooth implantation (Cooper et al., 1970; Frost 

and Etheridge, 1989; Zaher and Rieppel, 1999). The Acrodonta is comprised of two families: the 

Agamidae, made up of 489 extant species; and the Chamaeleonidae, made up of 210 extant 

species. The family Agamidae, also known as “dragon lizards”, are diurnal omnivores with well-

developed limbs, and they commonly have keeled scales, crests, throat flaps, and frills. This 

charismatic family has independent radiations in Africa, Asia, and Australia, and several 

monophyletic clades of dragons are currently recognised (Honda et al., 2000; Hugall et al., 2008).  

The focus of this thesis is on the agamid clade containing the Australian and New 

Guinean agamids, the Amphibolurinae. With 108 currently recognised extant species, they make 

up approximately 18% of the agamid family. The amphibolurines occupy a separated 

Gondwanan continental plate, and are likely to be the result of a single dispersal event from 

Southeast Asia, around 30 million years ago (Ma) (Oliver and Hugall, 2017). This dispersal just 

preceded global climate change during the Miocene, when Australia’s increasing aridity led to 

shifts in vegetation distributions and dramatic changes in habitat (Fujioka and Chappell, 2010). 

Mesic rainforest environments were widespread up until approximately 20 Ma, but beginning 

from around 15 Ma, aridification resulted in their contraction (McGowran et al., 2004). Open 

woodlands expanded, large parts of Australia had become desert by 10–7 Ma, and intensive 

desertification continued until about 4–2 Ma (Fujioka et al., 2005; Martin, 2006). Today, habitats 

vary dramatically across the Australian continent, from wet rainforests, to open woodlands, arid 

deserts, and temperate scrublands (Mackey et al., 2008). The marked changes in climate 

experienced by the continent, and the resulting new habitats, probably played a major role in the 

evolutionary success of the Australian agamids. 

http://reptile-database.reptarium.cz/
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Figure 1.2 – Evolutionary tree of Squamata from Simões et al., (2018), edited to highlight 
the position of Iguania (in orange). 

The most recent phylogeny of the Australian agamids (Hugall et al., 2008, see Fig. 1.3) 

indicates that the Asian water dragon, Physignathus cocincinus, is the sister group to all Australian 

and New Guinean taxa (see also Macey et al., 2000; Schulte et al., 2003). Within the 

Amphibolurinae, Chelosania, Lophosaurus, Hypsilurus, and Moloch form the least nested 

monophyletic group (herein referred to as the “LN group”, cf. Sereno, 1999). Within the LN 

group, the rainforest dragon clade is made up of Lophosaurus and Hypsilurus (Manthey and 

Denzer, 2006). Chelosania lives in tropical woodlands, rather than rainforests, and has been 

suggested to be a possible remnant of early diversification out of mesic rainforest habitats 

(Hugall et al., 2008). Moloch represents the only arid adapted species in the LN group, and is an 

extremely isolated lineage, estimated to have split from its nearest living relative around 18 Ma. 

The Australian water dragon, Intellagama lesueurii, is the sister taxa to the core Australian radiation, 

and together they make up an exclusively endemic Australian radiation (Hugall et al., 2008). 
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The core of the Australian radiation is made up of two large and diverse clades, the 

Amphibolurus group and the Ctenophorus group, which are estimated to have diverged from one 

another around 19 Ma (Hugall et al., 2008). The Ctenophorus group is made up of a single genus, 

comprised of 29 species. They are mostly arid adapted and largely small, ground dwelling lizards, 

with convergent ecomorphs (Melville et al., 2001). The Amphibolurus group is made up of 10 

genera of varying numbers of species, and are diverse in body form, size, and ecology. Several 

ecologically and morphologically similar forms in the core of the Australian radiation are 

estimated to be distantly related in phylogenetic analyses (Melville et al., 2006), implying that 

substantial homoplasy exists in their morphological characters. 

Today, amphibolurines exhibit a variety of life history strategies (Griffiths and Christian, 

1996; Stuart-Smith et al., 2005; Radder et al., 2007; Pianka and Goodyear, 2012). There are 

dragons that dwell in tropical forests, woodlands, terrestrial environments, and deserts (Pianka, 

1971, 2013b, 2014a). They also vary greatly in their structural habitat use. Some are restricted to 

arboreal or rock-dwelling lifestyles, while others dig burrows, some semiaquatic forms use water 

as a refuge, and many species make use of different types of habitats as they see fit (e.g. semi-

arboreal species) (Pianka, 2013c, 2013a, 2014b). There are some very specialised dragons, such as 

the Lake Eyre dragon (Ctenophorus maculosus), a small dragon that lives on the edge of a salt lake, 

and the thorny devil (Moloch horridus), a spiny desert-dweller with a very striking appearance and a 

diet consisting entirely of ants (Pianka and Pianka, 1970). They also vary greatly in body size, 

from the very small Shark Bay heath dragon (Ctenophorus butleri), with a snout-vent length of 43 

mm, to the large frill-neck lizard (Chlamydosaurus kingii), with a snout-vent length of up to 258 

mm (Wilson and Swan, 2013). Many members of the Amphibolurinae exhibit examples of 

extreme morphological elaboration, such as the throat of the bearded dragon (Pogona vitticeps), the 

frill of the frill necked lizard (Chlamydosaurus kingii), the spines of the thorny devil (Moloch 

horridus), and the impressive crest of Boyd’s forest dragon (Lophosaurus boydii).  

Ecological and taxonomic diversification has certainly occurred in amphibolurine 

lineages, but we do not have many insights about the morphological features and variation that 

might accompany this diversification. We now have a relatively sound understanding of the 

phylogenetic relationships among the Australian agamids. This understanding, along with their 

extensive ecological diversity, and the broad range of forms and functions observed in this clade, 

make them an ideal model group with which to explore morphological diversity.  
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Figure 1.3 – Evolutionary tree of Amphibolurinae genera and monophyletic clades. Dates 
and branches are based on those in Hugall et al., (2008), and numbers of species are 
based on current taxonomy (on 14th July 2018) at http://reptile-database.reptarium.cz/. 

  

http://reptile-database.reptarium.cz/
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Austral ian agamid skeleta l  morphology:  what  we know 
When it comes to skeletal morphology of major lizard families, Agamidae is one of the most 

poorly understood. Much of the work on the osteology of agamids has been carried out as part 

of broader systematic analysis of Squamata, the clade containing all lizards and snakes (Estes et 

al., 1988; Caldwell, 1999; Conrad, 2008; Evans, 2008; Smith, 2011; Gauthier et al., 2012). Some 

of the first systematic studies of the skeletons of the agamid family as a single entity remain the 

most detailed available compilations of their morphological characteristics (Siebenrock, 1895; 

Moody, 1980; Evans, 2008). There have been some subsequent reviews and observations of 

agamid skulls (Camp, 1923; El Toubi, 1945; Jollie, 1960; Herrel et al., 1999; Evans, 2008), and 

the whole skeleton (Badham, 1976; Greer, 1989; Smirina and Ananjeva, 2007). In some cases, 

skeletons of particular species have been described in some detail (Harris, 1963; Badham, 1976; 

Pethiyagoda and Manamendra-Arachchi, 1998; Smirina and Ananjeva, 2007; Bell et al., 2009). 

Some representatives of the agamid family, including some Australian species, have been 

included in morphometric analyses as part of broader explorations of lizard skull shape (Metzger 

and Herrel, 2005; Stayton, 2005, 2006). For the Australian taxa, there has been some work 

comparing particular components of osteology (Greer, 1989; Hocknull, 2000, 2002), and the 

osteology of particular taxa (Cooper et al., 1970; Bell et al., 2009; Stilson et al., 2017). Most of the 

previous work describes the skeletons of species or groups based on small numbers of adult 

specimens, and information regarding inter- and intraspecific variation is scarce. This deficit in 

knowledge of osteological variation within and among extant Australian agamid species has 

hampered our understanding of fossil agamids recovered from Australian deposits.  

The dentition of agamids has been described in some works, and this information has 

been used in the interpretation of fossil material (Cooper et al., 1970; Cooper and Poole, 1973; 

Robinson, 1976; Hocknull, 2002; Berkovitz, 2007). From published descriptions, we know that 

the agamid family has unique dentition: they are heterodonts, exhibiting pleurodont tooth 

implantation in their anterior teeth, and acrodont implantation in their posterior teeth. The 

anterior pleurodont teeth undergo replacement and are typically caniniform (Hocknull, 2002), 

although there are some exceptions (Cooper and Poole, 1973; Bell et al., 2009). The acrodont 

teeth are not replaced, are typically triangular in lateral view (sometimes with cusps, see Evans, 

2008), and increase in size at more posterior tooth positions (Cooper et al., 1970). Throughout 

growth, new teeth are added to the posterior of the acrodont tooth row. This distinctive 

dentition is unique among vertebrates and fossil jaw bones belonging to agamids are therefore 

readily identified to family level (Moriarty et al., 2000). 



C H A P T E R  1  –  I n t r o d u c t i o n  
 

24 
 

Jaw bones of agamids are commonly recovered from fossil deposits, but their 

identification beyond family level is difficult. Some studies state the resemblance of a fossil 

compared with extant species, without details about characters or criteria used to achieve 

affiliations (Smith, 1976; Archer et al., 2006; Hocknull et al., 2007). The relative prevalence of 

agamid jaw bones in deposits compared to other bones has led to some comparative work on 

these elements. There have been two documented systematic attempts to identify useful 

characters for the identification of agamid fossils (both teeth and jaw bones), one documenting 

characters in extant comparative material (Hocknull, 2002), and one documenting the characters 

observed in Riversleigh fossil agamids (Covacevich et al., 1990). The latter names the first and 

only new fossil agamid species from Australian fossil deposits, Sulcatidens quadratus.  

It is evident from preliminary observations (see Fig. 1.4) and previous works on skeletal 

morphology, that extensive variation exists both among and within agamid species. Furthermore, 

dramatic morphological changes accompany increases in size throughout a dragon’s life. 

Quantitatively and systematically investigating this variation will contribute to an overall greater 

understanding of the evolutionary history of Australian agamids. It will also enhance the 

resolution of information used in agamid fossil identification, contributing to analyses of the 

faunal components in Australian fossil deposits. 
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Figure 1.4 – Lateral views of computed tomography reconstructions showing examples 
of the range of morphology in Australian agamid skulls. Includes hatchlings (a – e) and 
adults (d – j) of Amphibolurus muricatus (a: AMS R152446 and f: AMS R154972), 
Ctenophorus nuchalis (b: SAMA R57174 and g: SAMA R7296), Gowidon longirostris (c: 
SAMA R60498 and h: SAMA R18053), Moloch horridus (d: SAMA R10703 and i: SAMA 
R63565), and Pogona vitticeps (e: SAMA R58978 and j: SAMA R18545). Scale bars are 10 
mm in length. 
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Main a ims and overv iew 
It was through a year-long honours project involving Australian agamids in the fossil record that 

I came to a realisation: the skulls of this clade of lizards remained underexplored, so much so, 

that it greatly hindered their interpretation in the fossil record. Hence, the Australian agamids are 

an ideal group with which to explore skull shape in an evolutionary context. This dissertation 

investigates the evolutionary patterns in the skull and teeth of this ecologically and taxonomically 

diverse lizard radiation. I intend to address the knowledge gap in morphological variation of skull 

shape among and within amphibolurine clades and species, and investigate the factors that 

determine it. To achieve this goal, I address four main aims.  

AIM 1:  Exp lore  d ispar i ty  
To grasp the dynamics of morphological disparity of the amphibolurines, I draw comparisons 

between Amphibolurinae and other agamid subfamilies, and also with other iguanian families. I 

also probe further into amphibolurine disparity, by investigating how the disparity is distributed 

among amphibolurine clades and genera. At the finest level, I compare disparity of the smallest 

juvenile amphibolurines with that of adults, to indicate the extent to which ontogeny may play a 

role in the skull shape of amphibolurines. 

AIM 2:  Inv est igate  ontogenet ic  patter ns  
Because juvenile and adult skulls of the same species look dramatically different to one another, 

it is clear that ontogeny probably plays a major role in producing skull shape variation among 

amphibolurines. I characterise and compare ontogenetic patterns in skull morphology and tooth 

counts among amphibolurine species.  

AIM 3:  Character i se  sku l l  shape  and  ident i f y  what  inf luences  
v ar iat ion   

I intend to quantitatively characterise the skull shapes observed in amphibolurine lizards, and 

investigate to what extent skull shape is dictated by phylogeny and adaptation. Since 

amphibolurines exhibit a broad range of body sizes, I also investigate the role of evolutionary 

allometry in facilitating diversity in skull shapes. 

AIM 4:  Obtain  knowledge  that  w i l l  adv ance  foss i l  inter pretat ion 
Since all chapters aim to improve our understanding of amphibolurine skull morphology, they 

collectively contribute towards an improved interpretation of amphibolurine cranial elements in 

the Australian fossil record. To supplement this improved knowledge, I suggest methods for 

advancing our ability to estimate body size and taxonomic affiliation of fossil jaw bones.  
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Over the next seven chapters, I address these aims, using a combination of 

morphological measurements and two-dimensional and three-dimensional geometric 

morphometrics. I assemble a large amount of morphological data, at several taxonomic levels, 

and use a suite of statistical techniques to characterise cranial morphology in the amphibolurine 

radiation of lizards and to identify the factors driving inter- and intraspecific variation.  
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Chapter outline 
 

 

Exceptional disparity in 

Australian agamid l izards is 

a possible result of arrival 

into vacant niche 

I examine the major cranial proportions of 1144 

iguanian specimens using 2D morphometrics to 

explicitly quantify the morphological disparity of 

Australian agamid lizards and compare it to the disparity 

of agamid, acrodont, and iguanian clades from other 

parts of the world. 

Patterns in tooth number 

among Australian agamid 

l izards 

I examine tooth counts during growth in amphibolurine 

lizards, to detect allometric patterns within and among 

taxa and increase the capacity to understand their fossil 

record. I collect data from 578 specimens, representing 

63 species and 14 genera. 

Changes in ontogenetic 

patterns facil itate 

diversif icat ion in skull  shape 

of Austral ian agamid l izards 

I use 2D geometric morphometric methods to 

characterise the ontogenetic patterns of variation in 

shape of the crania of 18 species of amphibolurine 

lizards and investigate the associations between 

postnatal growth patterns, life habit, and phylogeny. 

Evolution of cranial shape in 

a continental-scale 

evolut ionary radiation of 

Australian l izards 

I use 3D geometric morphometrics to characterise skull 

shapes in Australian agamids and their Asian agamid 

relatives (52 species in total), and identify associations 

between skull shape, and phylogeny and ecological life 

habit. 

 

C H A P T E R  2  

C H A P T E R  3  

C H A P T E R  5  

C H A P T E R  4  
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Implications of using captive 

l izards in geometric 

morphometric analyses 

I use 3D geometric morphometrics to observe the 

differences in cranial shape and ontogenetic patterns 

between samples of wild and captive jacky lizards, and 

examine how captive lizards may be interpreted in a 

broader data set containing multiple species. 

Using jaw bones to estimate 

Australian dragon body size  

I use the maxilla and dentary bones of Australian 

agamid lizards to examine the relationship between 

tooth row length and snout-vent length, to provide a 

method for estimating agamid body sizes in fossil 

assemblages. 

Geometric morphometrics 

provides a more objective 

approach for interpreting the 

affinity of fossi l  l izard jaws  

I evaluate the taxonomic affinity of a fossil maxilla 

from the Holocene deposits of Kelly Hill Caves 

(Kangaroo Island, South Australia) by comparing 

them to a sample of modern agamid lizards using 

computer models generated from X-ray computed 

tomography data and 3D geometric morphometrics.  

 Summary and conclusions 

 

  

C HAPTER 6 

C HAPTER 7 

C HAPTER 9 

C HAPTER 8 
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Anatomical  reference for  the l izard cranium 
To accompany this thesis, I have produced an anatomical reference, showing cranial elements 

that are discussed within it and that are referred to in definitions of landmarks used for 

geometric morphometrics. The specimen used as an example is an adult jacky lizard 

(Amphibolurus muricatus), which has a fairly “average” shaped cranium. It must be noted that 

although the braincase is made of several elements fused together to varying degrees (see below), 

the elements are shown in the same colour, for clarity in the overall cranium structure.  

 Table 1.1 ‒ Key to abbreviations used to label elements and structures in anatomical 
reference. Based mostly on those defined and used (with some changes in capitalisation) 
in Evans, 2008 (p 2-4), unless otherwise indicated.  

* Structures not in Evans, 2008, defined by the author.  
† Braincase elements. 
 

Figure 1.5 ‒ Key for colours used to label bone elements in anatomical reference. 

ac.tt Acrodont teeth* p.f Parietal foramen 
b.tb Basal tubercle† Pa Palatine 
Bo Basioccipital† pg Squamosal ventral "peg" 
bo.co Basioccipital condyle† pl.tt Pleurodont teeth* 
bpt.p Basipterygoid process Po Postorbital 
Ec Ectopterygoid pocc Paroccipital process† 
Ep Epipterygoid Prf Prefrontal 
f.pr Facial process of maxilla prf.p Prefrontal process* 
Fr Frontal Pro Prootic† 
io.f Infraorbital fenestra* Pt Pterygoid 
J Jugal pt.fl Pterygoid flange 
L Lacrimal Px Premaxilla 
l.f Lacrimal foramen Q Quadrate 
Mx Maxilla So Supraoccpital† 
mx.lp Maxillary lappet Sq Squamosal 
N Nasal St Supratemporal 
n.b Narial basin* Stp Stapes 
or Orbital* Sx Septomaxilla 
Ot Otooccipital† utf Upper temporal fenestra 
P Parietal V Vomer 
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Figure 1.6 ‒ Anatomical reference. Dorsal (A) and ventral (B) views of the cranium of 
Amphibolurus muricatus (Australian Museum specimen R154972). 
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Figure 1.7 ‒ Anatomical reference. Lateral (A), anterior (B), and posterior (D) views of 
the cranium of Amphibolurus muricatus (Australian Museum specimen R154972).  
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CHAPTER 2 ─ Exceptional disparity 
in Australian agamid lizards is a 

possible result of arrival into 
vacant niche 

 

Jaimi A. Gray, Mark N. Hutchinson, Marc E. H. Jones 

 

Abstract  
Australia provides abundant examples of continental-scale evolutionary radiations. The initiation 

of the collision of the Asian and Australian tectonic plates, around 30 million years ago, 

facilitated an influx of squamates into Australia, and the subsequent squamate radiations resulted 

in high taxonomic diversity. The morphological disparity seen in these major squamate groups, 

however, remains underexplored. Here, we examine the major cranial proportions of 1144 

specimens, representing 240 species, using 2D linear measurements, to explicitly quantify the 

morphological disparity of Australian agamid lizards (Amphibolurinae) and compare it to that of 

agamid, acrodont, and iguanian clades from other parts of the world. Our results indicate the 

Australian Amphibolurinae have a high degree of cranial disparity, that exceeds that of any other 

group examined, and we suggest that this is linked to the relaxed selective environment that 

greeted the founders of Amphibolurinae when they first arrived in Australia. 

Key words: Agamidae, cranium, Iguania, morphological disparity, ternary diagram 
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Introduct ion 
Evolutionary radiations (Losos and Mahler, 2010) are often linked to particular events, such as a 

clade invading a new geographic area (Nilsson et al., 2004), new environment (e.g. Slater et al., 

2010) or following a major extinction event (e.g. Jarvis et al., 2014). In such cases factors such as 

new resources, freedom from competition, and an absence of predators and pathogens can lead 

to rapid speciation (diversity) which is often, but not always (Rundell and Price, 2009), 

accompanied by expansion into new ecological niches that drive a shift or expansion of 

morphospace (disparity). This phenomenon is particularly associated with island faunas, where 

examples of adaptive radiations are well known, e.g. Tahitian snails, (Murray et al., 1993), 

Hawaiian honeycreepers (Lovette et al., 2002), and Caribbean Anolis lizards (Yoder et al., 2010; 

Losos, 2011). The taxonomic diversity exhibited by such island radiations has been well 

documented, however phenotypic disparity has only recently come under more detailed scrutiny 

(Harmon et al., 2003). Moreover, continental-scale radiations remain poorly studied in general.  

Australia is rich with examples of successful continental-scale evolutionary radiations. 

Around 30 million years ago (Ma), the northward-drifting margin of the Australian plate (Sahul 

shelf) collided with continental crust of Southeast Asia (Sunda shelf) in the New Guinea-Timor 

region, narrowing the ocean gap between the two landmasses and filling the intervening ocean 

with island arcs and terrain fragments that provided an archipelagic sweepstakes route for faunal 

exchange between tropical Asia and Australia (Hall, 2001). In this exchange, Australia (previously 

temperate-polar and apparently with poor taxonomic squamate diversity) appears to have 

received most of its current squamate taxonomic diversity, including agamids (Hugall et al., 2008; 

Chen et al., 2013), scincids (Skinner et al., 2011), varanids (Ast, 2001; Vidal et al., 2012), elapids 

(Keogh, 1998; Sanders et al., 2008), typhlopids (Vidal et al., 2010) and boids (Scanlon and Lee, 

2011) from a small number of tropical Asian invaders (Oliver and Hugall, 2017). Most Australian 

clades appear to be monophyletic, implying single origins, and all of these Australian clades show 

the characteristics of adaptive radiations, with numerous species (over 1000 Australian squamate 

species) and highly varied body forms. 

The taxonomic diversity associated with Australian squamates is immense (see Cogger, 

2014), but their morphological disparity remains underexplored. One of the colonising groups, 

the agamid lizards, is represented today by the amphibolurine radiation (Hugall et al., 2008; 

Melville et al., 2011) which is taxonomically diverse (around 108 species) and varied in body size 

(adult mass from 2-3 g to 1000 g) and ecological niche (Pianka et al., 2017). They occupy almost 

every habitat on the Australian continent (Powney et al., 2010) and the adjacent islands of 
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Melanesia (Manthey and Denzer, 2006). Amphibolurinae provides a model group to investigate 

morphological disparity of an evolutionarily successful group.  To date, discussion of the 

morphological disparity in this group has tended to be qualitative, highlighting extreme examples 

such as Moloch (Bell et al., 2009) or Chlamydosaurus (Shine, 1990), or if quantitative, limited to a 

few factors such as limb proportions (Melville et al., 2006; Collar et al., 2010) and locomotor 

performance (Thompson and Withers, 2005; Clemente et al., 2008). Broad patterns in the skull 

morphology in these lizards may be associated with functional or developmental constraints, and 

therefore represent an important element of the anatomy to examine in an adaptive context. 

Today, two-dimensional and three-dimensional shape analysis is commonly used to 

assess morphological disparity, especially for sturdy structures such as the skull. These methods 

are robust, widely accepted, and provide a wealth of informative data. However, the 

thoroughness and time required for data collection means that it can often be difficult to acquire 

large sample sizes. For this study, we required a method that would allow us to include a 

remarkably large sample size, that didn’t necessarily require direct access to specimens (i.e. able 

to take measurements from images or standard fossil reconstructions), and that would allow the 

inclusion of incomplete specimens (as long as a general shape is able to be discerned). We 

therefore use two-dimensional linear measurements of cranial proportions to provide an explicit 

quantitative measure of cranial disparity for Australian agamids and their relatives. We provide 

insights into macroevolutionary patterns in Australian agamids and include comparisons with 

other agamid, acrodont and iguanian clades.  
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Mater ia l  and methods 
We sampled 1144 iguanians from multiple collections (see Tables 2.1 and supplementary 

material: ES2.1) representing between 33% and 100% of the genera in each sampled family. As 

far as available material allowed, we assembled a comprehensive representation of the taxonomic 

diversity across the amphibolurines and several outgroup clades, and also endeavoured to include 

specimens that would represent the broadest range of cranial geometries. We included iguanian 

families from the Acrodonta clade (Chamaeleonidae and Agamidae), and from the Pleurodonta 

clade (all other iguanian families). The complete data set included skeletal specimens as well as 

images taken of surface reconstructions of X-ray computed tomography (CT) scans. We also 

included measurements from the reconstructed images of five fossils that are generally regarded 

as early members of Iguania, the priscagamids (Alifanov, 1996), Ctenomastax parva (Keqin and 

Norell, 2000) and Saichangurvel davidsoni (Conrad and Norell, 2007).  

Head shape was assessed via two-dimensional linear measurments (cf. Marugán-Lobón 

and Buscalioni, 2003, see Fig. 2.1). This approach was used to allow a large and encompassing 

sample size including both images of specimens and images of reconstructed fossils. Use of 2D 

measurements enables this study to be more readily compared to previous studies, as well as any 

future additions to this data set. Crania were imaged in lateral view and aligned using the long 

axis of the maxillary tooth row (defined by the anterior end of the anteriormost tooth and 

posterior end of the posteriormost tooth, for agamids the acrodont tooth row was used due to 

dorsal curvature in the anterior set of pleurodont teeth in many species).  

Figure 2.1 – Image of Amphibolurus muricatus (Australian Museum specimen R154969) 

cranium in lateral view, with boundaries of proportional measurements used in this 

study. 
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We subdivided the cranium into three units: snout, orbit, and post-orbit (Fig. 2.1). These 

units are comparable to those used in the Marugán-Lobón and Buscalioni (2003) study on 

Archosauria, with terminology and boundaries adjusted for consistency with squamate skull 

anatomy. The snout spans between the tip of the premaxilla and anterior-most boundary of the 

orbit whereas the post-orbit spans between the posterior-most boundary of the orbit and the 

posterior-most point of the parietal. For each specimen, we measured the length of each unit of 

the cranium using ImageJ v 1.52 (Schneider et al., 2012), and calculated proportions of units with 

respect to skull length. 

All measurements were plotted on a morphospace represented by a ternary diagram 

using the R (v 3.4.0) package ggtern (Hamilton, 2018). The theoretical morphospace shows all 

theoretically possible combinations between percentages of the snout, orbit, and post-orbit (see 

Fig. 2.2). Each sub-triangle is equal to 1% of the theoretical morphospace. The empirical 

morphospace is the area of morphospace occupied by this data set. We calculated convex hulls 

and their areas (% of theoretical morphospace) to compare disparity of iguanians. To check for 

sample size bias, we plotted the disparity against log transformed sampled diversity for each 

group. The disparity of Iguania, and each major clade (e.g. Acrodonta), family (e.g. Agamidae), 

and subfamily (e.g. Agaminae) was regressed against species and generic diversity (number of 

taxa sampled) to measure the relationship between diversity and disparity and identify any 

exceptions.  

Figure 2.2 – Theoretical morphospace diagram showing examples of theoretical skull 
proportions (note that all theoretical skulls are the same height). 
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Results 

Dispar i ty  of  iguan ian  fami l ies  
The total sample of iguanians (see Fig. 2.3) occupied 11.69% of the theoretical morphospace, a 

relatively tightly packed, rounded cluster of points. Of the iguanian families, Agamidae (10.29%) 

was the most disparate (see Fig. 2.3A and Table 2.1), followed by Phrynosomatidae (4.32%), 

Iguanidae (4.04%), and Chamaeleonidae (3.24%). The remaining families (e.g. Corytophanidae, 

Crotaphytidae, Dactyloidae, Polychrotidae, and Tropiduridae) each occupied less than 2% of the 

morphospace. The morphospace area occupied by pleurodont iguanians was almost entirely 

overlapped by the acrodontans, the only exceptions to this were Dactyloidae, and small 

peripheral areas of the morphospaces of Chamaeleonidae, Iguanidae and Phrynosomatidae. 

There were two areas of the morphospace occupied exclusively by Agamidae. These areas 

represented, firstly, a relatively long snout and short post-orbit, and secondly, a relatively large 

post-orbit and short snout.  

Dispar i ty  of  iguan ian  subc lades  
Morphospace areas identified as exclusively agamid seem to be associated almost entirely with 

disparity of Amphibolurinae (see Fig. 2.3B). The Amphibolurinae had the highest disparity of the 

agamid clades (10.15%), followed by Draconinae (4.30%). The remaining agamid clades each 

occupied 2% or less of the theoretical morphospace. While most of the disparity in the other 

groups is encompassed by that of Amphibolurinae, there is a marginal area where Draconinae 

extends past the amphibolurine morphospace. Gowidon longirostris, Pogona vitticeps, Moloch horridus, 

and Ctenophorus reticulatus are all examples (among others), of amphibolurines with extreme skull 

proportions. The fossil specimens fell mostly within morphospace areas that were shared by 

many of the iguanian families, with two of the priscagamids in the peripheral areas of 

amphibolurine morphospace (see Fig. 2.3A and B). 

Divers i ty  versus  d i spar i ty  
There is a positive relationship between disparity and log taxic diversity (Fig. 2.4, see also Table 

2.1). The R² value for disparity versus diversity at the genus level is 0.93 (P = < 0.001), and the 

R² value for disparity versus diversity at the species level is 0.95 (P = < 0.001). Amphibolurinae 

is a clear outlier, with approximately twice the disparity than we might except for the sampled 

diversity. Of the larger and well sampled families, Phrynosomatidae had the lowest level of 

disparity at both the generic and species level. Chamaeleonidae, Draconinae, and Agaminae also 

had low disparity relative to their diversity. 
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Figure 2.3 – Theoretical morphospace showing distribution of our entire sample, and 
comparison of morphospace occupation of different iguanian families (A), and 
acrodontan clades (B), with fossil specimens represented by stars and crosses. 
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Table 2.1 – Generic and specific diversity and disparity recorded and compared in this 
chapter. 

 
 

Taxa Described 
genera 

Described 
species 

Total 
specimens 

Sampled 
genera 

Sampled 
species 

% 
described 

genera 
sampled 

% 
described 

species 
sampled 

% 
ternary 

plot 

Iguania 119 1876 1144 81 240 68.07 12.79 11.69 

Acrodonta 73 694 740 47 147 64.38 21.18 10.61 

Pleurodonta 47 1183 397 34 93 72.34 7.86 8.58 

Agamidae 60 488 674 37 123 61.67 25.20 10.29 

Chamaeleonidae 12 206 61 9 21 75.00 10.19 3.24 

Corytophanidae 3 9 27 3 6 100.00 66.67 1.49 

Crotaphytidae 2 12 32 2 5 100.00 41.67 1.01 

Dactyloidae 1 424 8 1 4 100.00 0.94 0.35 

Hoplocercidae 3 19 1 1 1 33.33 5.26 NA 

Iguanidae 9 44 69 9 10 100.00 22.73 4.04 

Leiocephalidae 1 31 1 1 1 100.00 3.23 NA 

Leiosauridae 6 33 2 2 2 33.33 6.06 NA 

Phrynosomatidae 10 155 243 10 58 100.00 37.42 4.32 

Polychrotidae 1 8 3 1 2 100.00 25.00 0.04 

Tropiduridae 8 136 9 4 4 50.00 2.94 0.87 

Agaminae 10 128 50 7 13 70.00 10.16 2.02 

Amphibolurinae 15 108 522 14 67 93.33 62.04 10.15 

Draconinae 29 220 71 11 29 37.93 13.18 4.30 

hydrosaurines 2 4 14 2 3 100.00 75.00 0.88 

Leiolepidinae 1 9 5 1 3 100.00 33.33 0.19 

Uromastycinae 2 18 17 2 7 100.00 38.89 1.58 
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Figure 2.4 – Log diversity (sampled taxa), at both the genus and species level, versus 
disparity (% morphospace area occupied), with taxa of interest (Amphibolurinae) 
outlined, and 95% confidence intervals shown in grey. Abbreviations: AC= Acrodonta, 
PL= Pleurodonta, AG= Agamidae, CH= Chamaeleonidae, CO= Corytophanidae, CR= 
Crotaphytidae, DA= Dactyloidae, IG= Iguanidae, PH= Phrynosomatidae, PO= 
Polychrotidae, TR= Tropiduridae, Ag= Agaminae, Am= Amphibolurinae, Dr= 
Draconinae, Hy = hydrosaurines, Le = Leiolepidinae, Ur= Uromastycinae. 

 

 

Discuss ion 
All of the iguanian families plot as a single set within a relatively tight region of the theoretical 

morphospace. This is unlike similar morphospaces constructed for archosaur skulls, where 

discrete skull types can be discerned according to a broad but patchy distribution of taxa 

(Marugán-Lobón and Buscalioni, 2003). Against this background pattern, our data reveal that, 

not only is Agamidae more morphologically disparate than any of the sampled iguanian families, 

its Australian component, Amphibolurinae, contributes a substantial component of this disparity. 

The amphibolurines have expanded into new areas of the morphospace that currently remain 

unoccupied by other extant iguanian families. 
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Although our data set had a focus on Agamidae, and Amphibolurinae in particular, our 

results imply that amphibolurine disparity is higher than expected for its taxonomic diversity, at 

both the generic and specific levels. Draconinae is the sister clade to the Amphibolurinae, and 

the two clades have therefore had an equivalent evolutionary time frame in which to achieve 

their observed diversity. The taxonomic diversity of the draconines is markedly greater than that 

of the amphibolurines. We may therefore expect that draconine disparity to also be greater than 

that of amphibolurines, but we observe the reverse. However, care must be taken when 

comparing clades when uneven sampling is present. This difference could be due to less 

extensive sampling of draconines compared to that of amphibolurines. Future work to complete 

the draconine sampling would provide an interesting perspective on how time frames may limit 

the elaboration of disparity.   

Phrynosomatidae were very well sampled and permit a less tentative comparison to 

Amphibolurinae. Phrynosomatidae show lower disparity despite being another species-rich 

continental radiation. One possible explanation for this might be clade age – if Phrynosomatidae 

was a younger clade and had less time to diversify.  However, estimates for the origin of 

Phrynosomatidae are in excess of 40 Ma (Townsend  et al., 2011), which is distinctly older than 

estimates of 25-30 Ma for Amphibolurinae (Chen et al., 2013).  An alternative explanation is that 

competition has limited or enhanced evolutionary possibilities in the two clades. 

Phrynosomatidae evolved in sympatry with its close relatives (phylogenetically, behaviourally, 

and ontogenetically), the crotaphytids and iguanids, hence the iguanian morphospace may have 

been preoccupied (Pianka et al., 2017) throughout phrynosomatine evolution. In contrast, 

Amphibolurinae, diversifying in Australia (Hugall et al., 2008; Oliver and Hugall, 2017), were 

presented with vacant niches and reduced competition. The absence of other anatomically and 

ecologically similar squamate families may have allowed amphibolurines to expand into the 

morphospace of other iguanians, as well as novel morphospace. It may be worthwhile testing 

whether clades of Australian varanids and skinks, which diversified in parallel with 

Amphibolurinae since the late Oligocene (Blom et al., 2016; Oliver and Hugall, 2017), show a 

similar pattern of enhanced disparity compared to Asian counterparts. 

The presence or absence of competing related clades may have had an additional role in 

respectively constraining or permitting diversification, in that extinction of some morphotypes 

may also have resulted from more intense competitive pressure. Thus some of the lower levels 

of disparity in clades such as phrynosomatids may stem from pruning via extinction (Rabosky 

and Lovette, 2008) in more selectively stringent continental areas compared with better survival 

of disparate clades in the less biotically rigorous Australian environment. Fossil acrodontan jaws 
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from the Eocene of India show a range of extinct dentition that suggest a range of extinct skull 

shapes (e.g. Rana et al., 2013), and this possibility would be worthwhile investigating further 

where fossil data are available. 

The amphibolurines explore exclusive combinations of post-orbit and snout lengths that 

are more extreme than other agamids or iguanians. Variation in the iguanian skull shape space 

potentially relates morphological disparity to ecomorphological breadth (Collar et al., 2010; 

Pianka et al., 2017), representing differences in functional traits. The length of the post-orbit 

region may be related to the size of the jaw closing muscles, and snout length related to outlever 

and gape (Jones, 2008). The different sizes of these particular units could to be the result of 

trade-offs between greater bite force and enhanced prey capturing ability (Olson, 1961; 

Kohlsdorf et al., 2008). A greater bite-force does not necessarily relate to prey capture, and in 

some lizards it has been shown that to have head dimensions that produce a bite force in excess 

of that required for prey capture (Herrel et al., 1999; Lopez-Darias et al., 2014) It is likely that 

variation in cranial shape may also reflect other factors such as combat ability or male to male 

competition (Lappin and Husak, 2005; Husak et al., 2006).  Many new studies of the evolution of 

shape are taking advantage of 3D morphometric methods and software, but we found that the 

relatively simple proportional measurements used in our 2D analysis allowed a larger and more 

encompassing sample size than is currently feasible with 3D landmarks. As 2D analysis has been 

more widely used to examine morphology, by using the same approach we have been able to 

readily compare our results to those of previous studies. It also allows the inclusion of fossil 

agamids with fewer assumptions. We have, however, also done 3D analyses on a smaller sample 

size of agamid skulls. This study showed different but complimentary results and has been 

submitted for publication elsewhere. 

Due to the patchy nature of available data in natural history collections used in this study, 

we were unable to account for sexual dimorphism or ontogeny in our data collection. Future 

work should seek to assess the role of underlying factors such as functional traits, competition, 

sexual dimorphism, or ontogeny to gain an understanding of the drivers behind disparity in 

iguanian lizards.  
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CHAPTER 3 ─ Patterns in tooth 
number among Australian agamids 

 

Jaimi A. Gray, Mark N. Hutchinson, Marc E. H. Jones 

 

Abstract  
Teeth have great potential as tools for investigating many different biological patterns, thanks to 

their character rich nature, prevalence in the fossil record, and association with ecology. Data 

collected from teeth can reveal ontogenetic and phylogenetic variation, but quantitative studies 

on reptile teeth remain limited. Here we report on tooth counts in 578 specimens, representing 

63 species and 14 genera of the Australian radiation of agamid lizards (Amphibolurinae), to 

examine patterns during growth. Amphibolurine agamids have the lowest recorded tooth counts 

among squamates of similar sizes. Within the Amphibolurinae, tooth counts consistently increase 

with size, and variation among taxonomic groups reflects phylogenetic relatedness. The patterns 

in tooth counts through growth will likely have consequences for how food may be orally 

processed (e.g. point loading, cutting surface area) and provide the beginnings of data that will 

help to retrieve species-level differences within amphibolurines. 

Keywords: Agamidae, dentition, macroevolutionary patterns, Squamata, teeth,
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Introduct ion 
Teeth are an important tool for investigating ontogenetic, functional, phylogenetic and ecological 

patterns in extant and extinct animals, thanks to their character rich nature. Data concerning 

teeth, including shape, microanatomy, and tooth counts are commonly used to identify patterns 

in extant amniotes (Osborn, 1907; Gingerich, 1974; Massare, 1987; Farlow et al., 1991; Sues and 

Reisz, 1998; Reisz and Tsuji, 2006; Meloro and Jones, 2012; LeBlanc and Reisz, 2013; Brink and 

Reisz, 2014). Teeth can also provide insights that can help affiliate fossil specimens with 

taxonomic groups (Gingerich, 1974; Archer et al., 1989). There is a major data deficiency for 

squamates (lizards and snakes), even though they make up a crucial component of biodiversity in 

many past and present ecosystems (Powney et al., 2010; Jones et al., 2013). Although squamate 

fossil jaws are commonly recovered from fossil deposits (e.g. Covacevich et al., 1990; Lee et al., 

2009; Longrich et al., 2012), a lack of basic knowledge of the dentition means that their 

interpretation is difficult. The confirmed value of dentition for interpreting other fossil taxa (e.g. 

mammals), highlights a potential for more informed taxonomic, phylogenetic, and ecological 

interpretations of fossil squamates (Worthy, 2016). A more thorough understanding of the 

patterns among extant squamate taxa is needed to fulfil this potential. 

Tooth number is one aspect of dentition that can exhibit a great deal of phylogenetic and 

ontogenetic variation. It is also a meristic variable that is easy to systematically record in a 

reproducible way. Consequently, the number of teeth, or tooth positions, in tooth bearing bones 

has been commonly recorded and used in phylogenetic and taxonomic analyses of adult 

squamates (Kluge, 1962; Ray, 1965; Montanucci, 1968; Greer, 1991; Hutchinson, 1992; 

Hocknull, 2002; Gauthier et al., 2012). Some tooth development patterns during postnatal 

growth have been reported for particular squamate species, but there has been little investigation 

into the interspecific variation in these patterns that may occur among or within squamate 

families or clades. Reports using small sample sizes (i.e. one or two species) have shown that 

increasing the number of teeth during growth is a common pattern in many groups, as has been 

reported in Iguanidae (Ray, 1965; Montanucci, 1968; Kline and Cullum, 1984), Gekkonidae 

(Kluge, 1962; Thorpe, 1983), and Scincidae (Arnold, 1980; Greer, 1991). However, some 

squamate groups appear to maintain a consistent number of teeth during growth, as reported for 

Teiidae (Dessem, 1985), Serpentes (Rasmussen, 1996), and Varanidae (Brown et al., 2015). 

Moreover, decreasing tooth counts during growth have been reported in Anguidae (Cooper, 

1966) and Lacertidae (Cooper, 1963). These varying patterns suggest that being able to predict 

patterns of tooth counts during growth is highly dependent on the taxonomic group of interest.  
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For the lizard family Agamidae, total tooth counts observed in adult animals have been 

reported for a few species, including several from the Australian clade (Hocknull, 2002). 

However, tooth count patterns during growth have been documented in only two species of 

agamids, Agama agama (Cooper et al., 1970) and Uromastyx hardwickii (Cooper and Poole, 1973). 

While patterns of tooth counts during growth in agamids seem to be distinctly different 

compared with other squamates (see Fig. 6 in Brown et al., 2015), more sampling is obviously 

needed and it is unknown how these patterns may vary among different agamid species. 

 With around 108 currently recognised species, the amphibolurine agamids of Australia 

are a continental-scale evolutionary radiation of lizards. Since their arrival to Australia from 

Southeast Asia around 30 million years ago (Ma) (Oliver and Hugall, 2017), they have 

successfully adapted to a range of different habitats across the entire continent, ranging from 

deserts in the arid zone to subtropical rainforest habitats (Powney et al., 2010). While their 

taxonomic diversity has long been recognised, morphological patterns that accompany this 

diversity remain to be quantitatively explored. This study aims to use tooth numbers of the 

maxillary and dentary bones of agamid lizards to test whether different patterns in tooth counts 

during growth can be detected at multiple taxonomic levels, and to examine the nature of these 

patterns. 
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Mater ia l  and methods 

Mater ia l  
Measurements were taken from a combination of dry skeletal specimens (articulated and 

disarticulated) and three-dimensional (3D) reconstructions of X-ray micro computed 

tomography scans of amphibolurine lizards from South Australian Museum, Queensland 

Museum, Field Museum of Natural History, University of Texas at Austin, Melbourne Museum, 

and Western Australian Museum. In total, 578 specimens of amphibolurine skulls were 

measured. This sample included Intellagama, 31 species from the Amphibolurus group (of Hugall et 

al., 2008), 29 species of Ctenophorus (Table 1), and six species from the least nest monophyletic 

group (LN group).  

Measurem ents  
For dry skulls, number of visible tooth positions were counted for the maxilla (upper jaw bone) 

and dentary (lower jaw bone), on both the left and right sides. Teeth on the premaxilla were 

counted but tooth counts were erratic and displayed few discernible patterns. For very small 

specimens, a binocular light microscope was used to obtain tooth position counts. Digital 

callipers were used to measure tooth row length. For 3D models of skulls based on CT data, 

tooth positions were counted in Avizo v 9.0 (Visualization Sciences Group, 2013), and where 

necessary cross-sections were examined. The “measure 3D” tool in Avizo was used to measure 

tooth row length. For this study, tooth row length was considered a proxy for size and growth, 

as was confirmed by significant positive correlations between available snout-vent length data 

and measured tooth row lengths (R² = 0.86, see Chapter 7). All analyses were conducted using 

code written for the R v 3.5.0 statistical framework (R Core Development Team, 2018).  

Table 3.1 – Sample used to explore tooth counts during growth. LN = least nested. 

 

Monophyletic group Genera  Species Dentary Maxilla 

Amphibolurus group 8  31 239 262 

Ctenophorus group 1  25 224 236 

Intellagama 1  1 24 34 

LN group 4  6 41 46 

Total 14  63 528 578 
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Exam in ing  patterns  in  tooth  counts  dur ing  growth 
To illustrate the range of tooth counts observed in particular species of amphibolurine lizards, 

we extracted data for all species from the data set for which we had a sample size of ten or more 

and used a dumbbell plot to represent the range of tooth counts observed in those species, for 

both the maxilla and dentary bones. To study the relationships between tooth count and tooth 

row length in amphibolurine lizards, we ran analysis of variance (ANOVA) models (using a type 

III sum of squares), using log transformed tooth row length (a proxy for size), taxonomic 

affiliation, and their interaction as model effects (count ~ log (row length) * taxa). If the 

interaction terms were significant, this indicated that the allometric patterns (increases in tooth 

count associated with increases in size) differed in either slope or elevation (or both), among 

taxa. Analyses were performed for both the maxilla and dentary, at the monophyletic group, 

genus, and species level. To minimise the effect of asymmetry due to missing or broken teeth, 

for each specimen, the parallel maximum was used in the analyses where either the left or right 

side was used (depending on which side had the most teeth). For ANOVAs at the broadest 

taxonomic level, we defined four groups, all of which represent monophyletic clades: the 

Ctenophorus group (all species in the Ctenophorus genus); the Amphibolurus group (eight genera: 

Amphibolurus, Chlamydosaurus, Diporiphora, Gowidon, Lophognathus, Pogona, Rankinia, and 

Tympanocryptis); Intellagama (which is the lone sister taxon to Ctenophorus and the Amphibolurus 

group); LN group (three genera: Lophosaurus, Chelosania, and Moloch); and Intellagama. We also 

performed separate ANOVAs for the generic level (12 genera), and species level (20 species). 

For analyses at the generic and species levels we excluded taxa with a sample size of less than 10. 

Taxa-specific allometric patterns were visualised using plots of tooth count, regressed on log 

transformed tooth row length.  

 When significant interaction terms were obtained, we performed pairwise tests to identify 

which taxa significantly differed in allometric slope from one each other in both elevation and 

slope, for the maxilla and dentary. All post hoc pairwise tests were carried out using the smatr 

package in R (Warton et al., 2012). First, we performed separate tests for differences in slope and 

elevation among allometric trajectories. This was done for the maxilla and dentary at the group, 

genus, and species levels. If the P-values for these tests were significant, this indicated that there 

were significant differences among taxa for either elevation or slope (depending which test was 

done). Secondly, we carried out pairwise comparisons that identified which taxa’s elevations and 

slopes differed significantly from each other, at each taxonomic level. To assess differences, we 

examined pairwise P-values for differences between taxa for both slope and elevation, as well as 

correlation coefficients, slopes, and intercepts for dentary and maxilla of each taxon.   
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Results 

Var iat ion  in  observed  tooth  count  r anges  
For most species of amphibolurine lizard, the minimum and maximum tooth count observed for 

the dentary were higher than that of the maxilla (Fig. 3.1). This pattern was not unexpected as 

part of the upper tooth row is occupied by the premaxilla. Exceptions included Chlamydosaurus 

kingii and Intellagama lesueurii, where the observed maximum maxillary tooth count was higher 

than the observed maximum dentary tooth count, and also Moloch horridus, where the observed 

maximum and minimum tooth counts were the same for the maxilla and dentary. For species of 

Diporiphora and Ctenophorus reticulatus, the observed maximum counts examined for the dentary 

and maxilla were the same. The highest tooth count of any species was achieved by Ch. kingii, 

with a maximum observed count of 25 teeth for the maxilla. Ch. Kingii also showed the broadest 

range of tooth counts of any of the species included (8-25, for the maxilla). The narrowest range 

in tooth counts was observed in D. winneckei and Ct. fionni (8-14 and 11-17, respectively).  

Al lom etr ic  var iat ion  and  pa i rwise  compar i sons  
D i f f e r e n c e s  a m o n g  g r o u p s  

There is a significant positive allometric relationship between tooth count and size for the 

maxilla and dentary in each group (Fig. 3.2A and B). R² values indicated that this relationship is 

very weak in the LN group, and individuals belonging to the LN group are spread out over the 

entire occupied range of the dentary and maxilla counts (see supplementary material: Fig. S3.1). 

For both the dentary and maxilla, the Ctenophorus group has the highest slope and therefore adds 

the most teeth for a given increase in size. The LN group has the lowest slope and therefore 

adds the fewest teeth for a given increase in size. For both jaw bones, the Amphibolurus group 

and Intellagama reach the greatest jaw lengths. Significant differences in slope indicated that, 

although they end up with the same number of teeth in the largest individuals, smaller dragons of 

a given size in the Amphibolurus group have more teeth than Intellagama of the same size. If we 

compare the Ctenophorus group with the Amphibolurus group, smaller individuals from both 

groups start out with similar numbers of teeth. While the Ctenophorus group and Intellagama were 

not significantly different from one another in terms of slope, they did have significantly 

different elevations. Even though the Ctenophorus group have more teeth than Intellagama of a 

given size, the two groups increase their tooth counts at a similar rate. All coefficients and 

pairwise P-values can be observed in supplementary material: Tables S3.1 and S3.2.  
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Figure 3.1 – Minimum and maximum observed tooth counts for 20 different species of 
amphibolurine lizards (samples of ≥ 10). Green points represent maxillary counts, and 
blue points represent dentary counts. Light colours represent the minimum observed 
values, and dark colours represent the maximum observed values. Sample sizes for each 
species and jaw bone can be found on the right side of the plot. 

 



C H A P T E R  3  –  T o o t h  c o u n t s  d u r i n g  g r o w t h  
 

65 
 

Table 3.2 – ANOVA results of maxilla and dentary tooth counts and tooth row length 
(log transformed), at different taxonomic levels (count ~ log (row length) * taxa). P-
values < 0.05 in bold. 

 

Dentary SS DF F value P-value 
Monophyletic group     

Intercept 203.55 1 58.98 <0.0001 
Log (row length) 943.34 1 273.35 <0.0001 
Group 140.54 3 13.57 <0.0001 
Log (row length : group) 147.83 3 14.28 <0.0001 
Residuals 1701.37 493    

Genus     

Intercept 0.23 1 0.09 0.7680 
Log (row length) 64.98 1 24.72 <0.0001 
Group 80.94 11 2.80 0.0015 
Log (row length : group) 64.34 11 2.22 0.0124 
Residuals 1225.27 466    

Species     

Intercept 17.14 1 9.38 0.0024 
Log (row length) 76.57 1 41.91 <0.0001 
Group 87.59 19 2.52 0.0005 
Log (row length : group) 97.14 19 2.80 0.0001 
Residuals 582.77 319   

Maxilla SS DF F value P-value 
Monophyletic group     
Intercept 78.65 1 28.03 <0.0001 
Log (row length) 1481.96 1 528.16 <0.0001 
Group 147.89 3 17.57 <0.0001 
Log (row length : group) 144.07 3 17.12 <0.0001 
Residuals 1562.88 557    
Genus     
Intercept 0.29 1 0.14 0.7060 
Log (row length) 90.75 1 45.20 <0.0001 
Group 85.06 11 3.85 <0.0001 
Log (row length : group) 41.14 11 1.86 0.0417 
Residuals 1058.15 527    
Species     
Intercept 18.54 1 14.77 0.0001 
Log (row length) 212.03 1 168.84 <0.0001 
Group 58.83 19 2.47 0.0007 
Log (row length : group) 64.25 19 2.69 0.0002 
Residuals 460.89 367   
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D i f f e r e n c e s  a m o n g  g e n e r a  
There was a significant positive allometric relationship between tooth count and size for the 

maxilla and dentary of each genus except Lophosaurus (see Fig. 3.2C and D). We also did not 

detect a significant result for Rankinia dentaries, but this was a product of small sample size due 

to the inclusion of museum specimens that lacked dentaries. While many pairwise differences in 

elevation were detected (43 for dentary and 47 for maxilla, out of a possible 66), very few 

pairwise differences were detected in slope (five for dentary and three for maxilla, out of a 

possible 66). Moloch has the steepest slope (for both maxilla and dentary), and therefore it adds 

the most teeth as size increases. The remaining genera all have similar slopes with no pairwise 

differences detected among them. Of these remaining genera, Chlamydosaurus exhibits the lowest 

elevation (for both maxilla and dentary), while Amphibolurus and Tympanocryptis have the highest 

elevations (for maxilla and dentary). Ctenophorus, Diporiphora, and Rankinia all tend toward the 

high range of values for observed elevations. The sporadic distribution of points observed in the 

LN group for the “among groups” comparison can be explained by the large difference between 

Moloch and Lophosaurus (both LN) identified by generic pairwise comparisons. All coefficients and 

pairwise P-values can be observed in supplementary material: Tables S3.3 and S3.4. 

D i f f e r e n c e s  a m o n g  s p e c i e s  
There was a significant positive allometric relationship between tooth count and size for the 

maxilla and dentary in each species (see Fig. 3.2E and F). Exceptions were dentaries of P. minor, 

which was due to a lack of smaller representative specimens, and also Rankinia, (issue identified 

above). While many pairwise differences in elevation were detected (108 for dentary and 112 for 

maxilla, out of a possible 190), very few pairwise differences were detected in slope (ten for 

dentary and nine for maxilla, out of a possible 190). Among the sufficiently sampled species, 

Moloch has the steepest slope, which was unsurprising given it is the sole member of its genus and 

also exhibits the steepest slope in the generic comparison. Ct. reticulatus has a relatively steep 

slope, (for maxilla and dentary, also reflected in the pairwise P-values), and therefore adds the 

most teeth (apart from Moloch) as size increases. Among the elevation differences between 

species, the most distinct character exhibited (by both maxilla and dentary) is the large tooth row 

lengths and considerably lower elevations achieved by Chlamydosaurus, Intellagama, P. barbata, and 

P. vitticeps. This indicates fewer teeth for a given size than other species in the sample, but they 

have an ability to achieve a similar (or greater) number of teeth by growing larger. Among 

remaining species, there are no distinct patterns that separate species belonging to particular 

groups or genera, but rather a continuum of different elevations among species. All coefficients 

and pairwise P-values can be observed in supplementary material: Tables S3.6 and S3.7. 
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Figure 3.2 – Tooth count allometry showing the patterns detected by statistical testing, 
at the monophyletic group (A and B), genus (C and D), and species (E and F) levels, for 
both the maxilla (A, C, E) and dentary (B, D, F), See supplementary material: Figure S3.1 
for distributions of individual data points. 
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Discuss ion 
We confirm that all amphibolurine agamids increase tooth counts during growth, as suggested by 

the few existing reports on agamid postnatal tooth development (Cooper et al., 1970; Cooper 

and Poole, 1973). This was expected, since agamids add additional teeth to the posterior of the 

tooth row during growth, and don’t lose or replace their existing acrodont teeth (Cooper et al., 

1970). Different amphibolurine agamid taxa largely have a common slope of tooth counts during 

growth, as shown by the overwhelmingly small amount of pairwise differences among generic 

and specific slopes. By contrast, the very large amount of pairwise differences in elevation imply 

that differences in tooth number are already present among young dragons, and species then 

proceed to add teeth during growth at similar rates, maintaining differences in tooth counts 

among different dragon taxa of a given size. Interestingly, amphibolurines that have higher 

elevations (more teeth for a given tooth row length) also seem to be species with smaller adult 

sizes (e.g. Ctenophorus, Tympanocryptis). Indicating that smaller dragons have smaller teeth relative 

to their body size. Phylogenetic history is a contributing factor for tooth growth patterns, but 

unexplained variation in the data (see supplementary material: Fig. S3.1) indicates additional 

factors are introducing complexity to these patterns. 

There are several known features of agamids that may contribute to the complexity in 

tooth count patterns during growth. Firstly, and perhaps most importantly, their dentition is 

typically made up of teeth with two markedly different tooth shapes and replacement patterns 

(Berkovitz and Shellis, 2017). Secondly, acrodont teeth generally increase in size at more 

posterior tooth row positions, with teeth at the posterior end of the tooth row markedly larger 

than teeth at the anterior end (Cooper et al., 1970). The distribution of teeth along the jaw is 

further complicated as posterior teeth tend to be rotated slightly about their vertical axis, 

producing overlap between them (Cooper et al., 1970). Thirdly, growth is accompanied by wear 

of the teeth and the hard tissues surrounding them, which in some cases is so severe that 

individual teeth are indistinguishable in older anterior dentition. Lastly, here we use a proxy for 

relative size, but it is not necessarily a proxy for age (Petermann et al., 2017), as the growth rates 

of agamids can vary through time (associated with resource availability, Radder et al., 2007). 

There are likely to be some complex underlying mechanisms that regulate tooth growth relative 

to overall growth in agamids, contributing to the variation we observe in allometric patterns (e.g. 

Handrigan and Richman, 2011; Jernvall and Thesleff, 2012). Since the variation introduced by 

these factors may vary among different taxa, finer level analyses that examine variation relating to 

these factors, in particular agamid clades, genera, and species are needed to solidify our 

knowledge of different growth patterns in agamid teeth. 
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Where dentition is concerned, just as Uromastyx is an outlier among agamids (Edmund, 

1969; Robinson, 1976), so too is Moloch among amphibolurines. Because Moloch is such a 

distinctive species, it is one of the few that have received great attention in morphological 

descriptions, including dentition. The distinctive dentition of Moloch was reflected in our results, 

as departures from common amphibolurine patterns (i.e. differences in elevation rather than 

slope), almost exclusively involve Moloch. There are a number of reported characters that 

contribute to this distinctiveness. Not only is its tooth shape distinct, and markedly different 

between the maxilla and dentary, it also lacks caniniform pleurodont teeth (they are instead small, 

peg-like, and often completely eroded in adults), and a progression in tooth sizes along the jaw 

(Bell et al., 2009): characters that seem to be consistent in other amphibolurines (Hocknull, 2002; 

Bell et al., 2009; Berkovitz and Shellis, 2017). Although the functional significance of their 

dentition remains a mystery, our results are in concordance with the large body of evidence 

indicating that Moloch is a highly specialised lizard (Pianka and Pianka, 1970); Meyers and Herrel, 

2005). This same level of understanding is yet to be achieved for other amphibolurine species, 

but would enhance our understanding of the patterns observed for other taxa in this study.  

The relationship between tooth counts and size is known for very few other squamate 

taxa, as shown by the summary by Brown et al. (2015) of current knowledge of the patterns of 

tooth counts during growth for squamate groups. This review was constrained by very small 

sample sizes, with very large families represented by only one to four species (and only one 

species of agamid). Before now, there has been no comprehensive investigation into variation in 

tooth growth patterns among taxa within any squamate clade. The fact that we have been able to 

observe a relatively large amount of variation within just one subfamily of the much larger 

agamid family indicates a dire need for more data for the other agamid clades, and for other 

squamate families, if we are to consider the entirety of variation in any given clade.  

Results from this study will be strengthened when expanded to include other jaw bone 

characters including tooth sizes and shape. We have shown that group membership of 

amphibolurine fossil jaw specimens can probably not be predicted using tooth counts and tooth 

row lengths alone. Although some taxonomic groups may be more readily distinguished with the 

consideration of these variables, it is essential to combine tooth data with other tooth and jaw 

characters (e.g. Hocknull, 2002) to devise a more holistic inference. Some observations made 

here may help refine the taxonomic possibilities. For example, only a few species reach the 

maximum tooth counts recorded, and observing such counts in a fossil specimen would narrow 

the pool of comparative taxa. Differences we observe here in tooth growth patterns, combined 

with tooth sizes, shapes, and other characters, may also have adaptive significance for food 
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processing (Lucas and Luke, 1984; Kraklau, 1991; Evans and Sanson, 1998; Freeman and 

Lemen, 2005; Jones, 2006; Jones, 2009). Investigation into the feeding mechanisms (cf. Moazen 

et al., 2009; Jones et al., 2012) of dragons of different sizes and taxonomic affinity may advance 

our understanding of the role of teeth in food processing and hence improve our understanding 

of growth patterns in teeth. 
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CHAPTER 4 – Changes in 
ontogenetic patterns facilitate 
diversification in skull shape of 

Australian agamid lizards 
 

J a i m i  A .  G r a y ,  E m m a  S h e r r a t t ,  M a r k  N .  H u t c h i n s o n ,  M a r c  E .  H .  J o n e s  

Abstract  
Morphological diversity among closely related animals can be the result of differing growth 
patterns. The Australian radiation of agamid lizards (Amphibolurinae) exhibits great ecological 
and morphological diversity, which they have achieved on a continent-wide scale, in a relatively 
short period of time (30 million years). Amphibolurines therefore make an ideal study group for 
examining ontogenetic allometry. We used two-dimensional landmark based geometric 
morphometric methods to characterise the postnatal growth patterns in cranial shape of 18 
species of amphibolurine lizards and investigate the associations between cranial morphology, 
and life habit and phylogeny. For most amphibolurine species there is a similar juvenile cranial 
phenotype. By adulthood crania are more disparate in shape and occupy different sub-spaces of 
the total shape space. To achieve this disparity, cranial shapes do not follow a common growth 
pattern, and there are differences among species in both the direction of growth in 
morphospace, and the magnitude of growth. Our results show great variability in growth 
trajectories among species that results in a diversity of adult cranial shapes in the Australian 
agamids. We found that different growth patterns among the amphibolurines are significantly 
associated with different ecological life habits. The clade Ctenophorus includes species that 
undergo small magnitudes of shape change during growth. They have dorsoventrally deep, blunt-
snouted skulls (associated with terrestrial lifestyles), and also dorsoventrally flat skulls (associated 
with saxicolous lifestyles). The sister clade to Ctenophorus, which includes the bearded dragon 
(Pogona), frill-neck lizard (Chlamydosaurus), and long-nosed dragon (Gowidon), includes shapes that 
involve differing snout lengths and broad and robust post-orbital regions, (both associated with 
scansorial lifestyles). Phylogenetic signal in cranial morphology appears to be largely overwritten 
by signals that reflect adaptive responses. This knowledge about growth patterns and skull shape 
diversity in agamid lizards will be valuable for placing phylogenetic, functional and ecological 
studies in a morphological context. 

Keywords: Agamidae, evolutionary development, geometric morphometrics, lizards, ontogeny, 
skull
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Introduct ion 
A great deal of research has highlighted the role of natural selection in producing morphological 

variation, and subsequently researchers have proposed adaptive explanations for patterns of 

diversification (Losos, 2011; Tokita et al., 2017). The range of possible forms that natural 

selection can act upon is limited by the changes that can be produced by several processes, 

including growth and development (ontogeny) (Klingenberg, 1998, 2016). Throughout their 

development, organisms can undergo changes in shape, due to differences in relative growth of 

components, and alterations in timing of their growth, a concept defined as ontogenetic 

allometry (Klingenberg, 1998, 2016). Studies on ontogenetic allometry have been carried out 

since 1930, and considerable advances in methodology have allowed exploration of patterns in 

more refined detail (Huxley and Teissier, 1936; Gould, 1966; Gould, 1977; Nelson, 1985; 

Klingenberg, 1996; Klingenberg, 1998; Klingenberg and Marugán-Lobón, 2013). These studies 

have shown that changes in the attributes of ontogenetic patterns are important for facilitating 

evolutionary processes, (Cock, 1966; Gould, 1966; Klingenberg, 1998; Wilson and Sánchez-

Villagra, 2010, 2011) and evolutionary flexibility of ontogenies has been reported in several 

recent works (e.g. Adams and Nistri, 2010; Klingenberg, 2010b; Hugi et al., 2012; Esquerré et al., 

2017).  

Due to allometry, there are two ways in which changes to an ancestral growth pathway 

can generate morphological diversity. Firstly, changes in adult shape can occur due to changes in 

adult size, without changes to the shape-size relationship. Modifications in timing or rate of the 

ancestral growth pathway (heterochrony) account for diversification of shape. Such 

heterochronic changes, “when a descendant retains the ancestral relationship between size and 

shape” (Klingenberg, 1998 p. 87), are referred to as the ontogenetic scaling hypothesis (Gould, 

1977; Klingenberg, 1998). Secondly, changes in adult shape can occur due to departure from the 

ancestral growth pathway: changes to the relationship between size and shape (on a plot, changes 

in slope, intercept, or a combination of both). This instance may be inferred when ontogenetic 

variation among members of a group does not map onto a common ontogenetic trajectory. 

Generally it was thought that ontogenetic pathways are phylogenetically stable, and that the 

ontogenetic scaling hypothesis can explain most variation (West et al., 1997; Gould, 2002). 

However, growth pathways certainly can change. Closely related taxa can show varying patterns 

of heterochrony (Klingenberg and Zimmermann, 1992; Adams and Nistri, 2010; Hipsley and 

Müller, 2017), and ontogenetic divergence (Bastir and Rosas, 2004) and convergence (Piras et al., 

2010). Variation in growth patterns among related taxa show that selection can rapidly modify 
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postnatal developmental pathways under some circumstances (e.g. (Adams and Nistri, 2010; 

Wilson and Sánchez-Villagra, 2010, 2011; Urošević et al., 2013)).  

Differences in ontogenetic patterns have often been associated with differences in 

ecology, in an interplay between selective forces and developmental processes. Evolutionary 

radiations consisting of many closely related species provide opportunities to examine how 

changes to an ancestral growth pathway may have contributed to morphological diversification 

within a particular clade. The Australian radiation of dragon lizards, the Amphibolurinae 

(Agamidae), includes iconic species such as the frill-neck lizard, bearded dragon, and thorny 

devil. They constitute a diverse component of Australia’s reptile fauna comprising around 108 

species, and probably represent the descendants of a single continental colonisation from 

Southeast Asia approximately 30 million years ago (Ma) (Hugall et al., 2008; Melville et al., 2011; 

Oliver and Hugall, 2017). They diversified into a range of distinct morphotypes and ecological 

niches as the continent became increasingly arid (Melville et al., 2001; Fujioka and Chappell, 

2010), and today they are particularly diverse in the arid zone (Melville et al., 2006; Powney et al., 

2010). Among the most ecomorphologically relevant features of lizards is their head morphology 

(e.g. Kohlsdorf et al., 2008); its role in supporting sensory structures, in food gathering, for social 

signalling and as a weapon, mean that it must be responsive to multiple selective pressures. 

Amphibolurinae includes some markedly varied and specialised skull shapes (Siebenrock, 1895; 

Bell et al., 2009), but apart from one recent limited study (Stilson et al., 2017), there has been 

little examination of cranial growth patterns among different species. 

 This study aims to investigate whether the evolution of different cranial shapes among 

18 species of the Amphibolurinae is achieved through heterochrony: without changes to the 

ancestral growth pathway (as predicted by the ontogenetic scaling hypothesis), or through 

modification of these pathways. We use two-dimensional landmark based geometric 

morphometrics to characterise cranial shape, and compare the direction and magnitude of 

postnatal growth trajectories using a phenotypic trajectory analysis (Collyer and Adams, 2013). 

We also test for associations between ontogenetic patterns and life habit (Collyer et al., 2015), 

and whether there is a phylogenetic signal in juvenile or adult skull shapes (Adams, 2014). 
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 Mater ia l  and methods 

Study  spec imens 
Material comprised 2D lateral view images of 361 specimens representing 18 different species of 

amphibolurine lizards (Table 4.1, see supplementary material: File ES4.1 for images). The species 

were chosen to optimise taxonomic breadth, skull shape diversity, and size, but limited to species 

where the sample size was 10 specimens or more and included both juveniles and adults. We 

collected data from skeletal specimens from several institutions including South Australian 

Museum, University of Texas at Austin, Western Australian Museum, Field Museum of Natural 

History, Queensland Museum, University of Adelaide, and Melbourne Museum. Institution and 

specimen catalogue numbers and images of specimens can be found in supplementary material: 

File ES4.2, and on the MorphoBank repository (http://morphobank.org/permalink/?P3110). 

Table 4.1 – Species studied. Sample sizes were dependent on availability from 
collections. Average skull length is the mean of the basal skull length of the largest three 
individuals of each species. Life habit categories were based on records in Wilson and 
Swan (2013) and Cogger (2014).  

Species n 
Average adult skull 
length (mm) 

Life habit 

Ctenophorus caudicinctus 26 22.43 Saxicolous 

Ctenophorus cristatus 15 24.39 Terrestrial 

Ctenophorus decresii 10 23.51 Saxicolous 

Ctenophorus isolepis 30 17.72 Terrestrial 

Ctenophorus nuchalis 21 29.07 Terrestrial 

Ctenophorus reticulatus 29 26.05 Terrestrial 

Amphibolurus muricatus 34 28.72 Semi-arboreal 

Chlamydosaurus kingii 17 75.97 Semi-arboreal 

Diporiphora nobbi 12 23.22 Semi-arboreal 

Diporiphora winneckei 12 13.37 Semi-arboreal 

Gowidon longirostris 20 32.65 Semi-arboreal 

Lophognathus gilberti 16 31.80 Semi-arboreal 

Pogona barbata 29 64.83 Semi-arboreal 

Pogona vitticeps 29 60.46 Semi-arboreal 

Rankinia diemensis 12 18.97 Terrestrial 

Tympanocryptis tetraporophora 11 15.93 Terrestrial 

Intellagama lesueurii 22 70.96 Semi-arboreal 

Moloch horridus 15 16.31 Terrestrial 

http://morphobank.org/permalink/?P3110
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Im aging 
The left side of the cranium was studied from 2D images. Each skeletal specimen was oriented 

using dry sand (black in colour for contrast) and photographed using an Olympus TG-4 camera 

mounted on a large flexible tripod, with a ruler set to the sagittal (midline) axis of the skull as a 

reference for scale. We also used 2D images of 3D rendered surface models generated from 

micro-Computed Tomography (CT) reconstructions of specimens in alcohol from South 

Australian Museum. These specimens had been micro CT scanned at either ~18 or ~9 µm 

resolution (depending on the size of the specimen) using a Skyscan 1076 (Bruker micro-CT) at 

Adelaide Microscopy. Each CT scan was reconstructed using the NRecon software interface 

(Skyscan, 2011). We used Avizo v 9.0 (Visualization Sciences Group, 2013) to digitally segment 

the cranium, threshold non-bone components from the scan, and render a surface model, which 

was then oriented laterally to capture a 2D image within Avizo, with a scale bar. 

Landm arks  and  Shape  Analys i s  
Lateral cranial shape was characterised using 2D landmark based geometric morphometrics. 

Landmarks were digitised on the images of the crania using tpsDig v. 2.21 (Rohlf, 2016). We set 

the scale for each specimen using scale bars present in the digital images, and digitised 16 single 

point landmarks (see Fig. 4.1), that represented equivalent points on bones at suture junctions, 

boundaries, and extremes of curvature on structures (see supplementary material: Table S4.1 

Figure 4.1 – Lateral image of Amphibolurus muricatus showing positions of 2D 
landmarks used to characterise shape. Number correspond to landmark definitions in 
supplementary material: Table S4.1. 
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for landmark definitions). All subsequent analyses were performed using a routine written for the 

R statistical framework v 3.4.0. The raw 2D landmark coordinates (which are in supplementary 

material: File ES4.3) were subjected to a generalised Procrustes alignment (GPA) using the R 

package geomorph (Adams et al., 2018). This effectively removed differences in size, position, and 

orientation, leaving only shape variation (Rohlf and Slice, 1990).  The resulting Procrustes aligned 

shape coordinates were used as shape variables in subsequent analyses. Centroid size (the square 

root of the sum of the square distances of each landmark before GPA) was used as a proxy for 

body size. We were unable to use snout-vent length measurements because this data was not 

available for most of the skeletal specimens used. 

Visua l i s ing  shape var iat ion 
We performed a principal component analysis (PCA) on the Procrustes aligned shape 

coordinates to visualise the variation among sets of landmarks in the data set. To interpret the 

shape differences described by the major axes of variation identified by the PCA, we plotted a 

morphospace (PC1 versus PC2) with points identified by size and species. To visualise the shape 

variation associated with the major axes of variation, we used thin-plate spline deformation grids 

(Bookstein, 1991), produced using the “PlotRefToTarget” function in geomorph, and a wireframe 

representation of the skull, to represent shape differences between corresponding landmarks of 

the mean shape and minimum or maximum values for PC1 and PC2.  

Exam in ing  a l lometry  
To examine whether the morphological disparity in cranial shape among species differs between 

juveniles and adults, we quantified the disparity for two separate groups: the smallest three 

juveniles of each species (start of growth trajectory); and the largest three adults of each species 

(end of growth trajectory). We calculated morphological disparity using the “morphol.disparity” 

function in geomorph, which estimates Procrustes variance while accounting for group size, and 

uses absolute differences in variances to test for pairwise differences in morphological disparity 

between groups. The statistical significance between the juvenile and adult groups was assessed 

using a randomised residual permutation test with 1000 iterations.  

We determined whether any species displayed isometric growth (no change in shape with 

a change in size), by fitting individual regression of log transformed size on shape for each 

species, using the “procD.lm” function from the R package geomorph, which assesses significance 

via distributions generated with resampling permutations (we used 1000 iterations). If the 

association between size and shape for a particular species was significant the null hypothesis of 
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isometry was rejected and revealed that there was an ontogenetic allometric pattern present for 

that particular species.  

To test whether ontogenetic trajectories differ among species we conducted a phenotypic 

trajectory analysis (PTA) (Adams and Collyer, 2009) on the shape coordinates using the 

“trajectory.analysis” function in geomorph. This procedure quantifies different attributes of a shape 

change trajectory between two or more points, in this case we measure the attributes of shape 

change between two groups: juveniles and adults. To circumvent issues with estimating nearness 

to adulthood in a clade with such broad variation in adult body sizes, we were able to categorise 

each specimen as either a juvenile or adult based on the number of acrodont teeth they had. If a 

specimen had more than 80% of the maximum number of acrodont teeth observed for that 

species, they were categorised as an adult. This was a necessary shortcut in the absence of hard 

data in the literature. 80% seemed to be the point where growth levelled off and was therefore 

used as an estimate of a species approaching adulthood. In some cases we altered the 

categorisation if a specimen was missing enough teeth to hinder obtaining a count, and were able 

to categorise these as either juveniles or adults based on the centroid sizes observed for other 

specimens of that particular species. We used species as groups, and juveniles and adults as the 

trajectory points. This analysis involved pairwise comparisons of two different attributes: the 

magnitudes of the trajectories among species, and also directions of the trajectories among 

species. Attribute differences were evaluated from sampling distributions generated from 1000 

random permutations (based on a null model that lacked coefficients for a species-transect 

interaction) (Collyer and Adams, 2013). To visualise the ontogenetic phenotypic trajectories, we 

plotted the first two PCs of shape variation with arrows representing vectors of shape change 

(where the start of the arrows represents mean juvenile shapes and the end of the arrows 

represents mean adult shapes) and used thin-plate spline deformation grids to visualise shape 

change.  

We tested for differences in ontogenetic allometric patterns of skull shape among 

ecological life habit groups by running a multivariate analysis of covariance (MANCOVA) model 

using the geomorph function “procD.allometry”, with log transformed centroid size, life habit, and 

their interaction as model effects. Life habit was split into three categories (see Table 1), based 

on information available in Wilson and Swan (Wilson and Swan, 2013) and Cogger (Cogger, 

2014).  Statistical significance was evaluated using Goodall’s (Goodall, 1991) F-ratio and a 

randomised residual permutation procedure using 1000 iterations (Collyer et al., 2015). If the 

interaction terms were significant, this indicated that the allometric trajectories differed among 

life habit groups. We identified which life habits groups differed from each other, using the 
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“advanced.procD.lm” function in geomorph. These tests identified which life habit groups 

significantly differed in allometric slope from each other, via pairwise assessments of the 

similarity in slopes and intercepts through 1000 randomised residual permutations. To visualise 

ontogenetic allometric trajectories of species with different life habits, we plotted the predicted 

shape scores (from a multivariate regression of shape ~ log (size) * species), on log transformed 

centroid size, and identified points by life habit. 

Phylogenet i c  s igna l  
  We inferred an evolutionary tree using Hugall et al., Melville et al., and Pyron et al. 

(Melville et al., 2001; Hugall et al., 2008; Pyron et al., 2013), and used this tree to estimate 

phylogenetic signal present in shape and size of the smallest juveniles and adults, relative to what 

is expected for the inferred phylogeny under a Brownian motion model of evolution (see 

supplementary material: File ES4.4 for nexus tree). We used the mean shape of the smallest three 

individuals (by centroid size) for each species to estimate phylogenetic signal in juvenile shapes, 

and the mean of the largest three individuals (by centroid size) of each species to estimate 

phylogenetic signal in adult shapes. To estimate phylogenetic signal we calculated Kmult (Adams, 

2014), which is a generalisation of Blomberg’s K-statistic appropriate for high-dimensional and 

multivariate data (Blomberg et al., 2003). We determined statistical significance of Kmult using 

phylogenetic permutation with 1000 iterations, which is calculated by permuting the multivariate 

shape data of the specimens among all tips of the phylogenetic tree. This was done using the 

“physignal” function in geomorph. To visualise how shape variation among species is associated 

with phylogeny we carried out separate PCAs on the landmark data for the mean shape of the 

three smallest juveniles and mean shape of the three largest adults, and used the 

phylomorphospace approach to project a phylogeny into the juvenile and adult PC biplots (with 

internal nodes estimated using maximum likelihood), implemented with the function 

“phylomorphospace” in the R package phytools (Revell, 2012). 
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Results 

Var iat ion  in  crania l  shape 
A principal component analysis (PCA) characterising cranial shape show that most of the smaller 

individuals have high PC1 values and low PC2 values (Fig. 4.2, see also supplementary material: 

Table S4.2 for PC summary), which characterises skulls with relatively larger orbits and relatively 

shorter, smaller, and more slender post-orbit elements (jugal, postorbital, squamosal, parietal), 

and short blunt snouts. The other three quadrants of the morphospace are each associated with 

one of three major adult morphotypes. Gowidon longirostris is one example of an extreme 

morphotype (low PC1 values and low PC2 values) which has a relatively long and pointed snout, 

long maxillary facial process, a wide postorbital bar (jugal), small orbit, and an overall 

dorsoventrally shallow skull.  

Figure 4.2 – Cranial morphospace representing the two main axes of shape variation 
from a PCA of the sets of Procrustes aligned landmark coordinates. Points are coloured 
according to species affiliation, and scaled according to centroid size. TPS deformation 
grids and wireframes represent shape differences between corresponding landmarks of 
the mean shape and minimum and maximum values for PC1 and PC2 of the geometric 
morphometric data. 
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Chlamydosaurus kingii, Intellagama lesueurii, Pogona barbata and P. vitticeps have relatively short snouts 

(compared to the most long snouted forms) and broad, robust post-orbit elements (low PC1 

values and high PC2 values). Interestingly, these four species are also those with the largest adult 

size. Ch. kingii and both species of Pogona have relatively short but pointed snouts, whereas I. 

lesueurii has a more rounded snout. The third extreme form of shape variation has a short and 

blunt snout, robust post-orbit elements, and a dorsoventrally deep overall skull profile, e.g. 

Ctenophorus nuchalis, Ct. reticulatus and Moloch horridus. For any particular species, the intermediate 

and adult ontogenetic stages occupy morphospace between the large-orbit form associated with 

smaller individuals (high PC1 values and low PC2 values), and one of these three broad 

morphotypes. 

Exam in ing  ontogenet i c  a l lom etry  
Morphological disparity (Procrustes variance) was significantly (P = 0.001) greater in the three 

largest adults of each species (Procrustes variance = 0.0148) than in the three smallest juveniles 

of each species (Procrustes variance = 0.0099). The disparity calculated for the smallest juvenile 

and largest adult representatives of each species show that different agamid species begin life 

with a similar cranial shape and later disperse towards more disparate adult forms.  

Tests for isometry in growth patterns for each species indicated that all species have 

significant allometric growth (lack of isometry): changes in shape that are associated with 

changes in size. The variation detected in the shape data by a phenotypic trajectory analysis 

(PTA) revealed significant differences in growth trajectories: among directions (angles) of shape 

change, and also among magnitudes of shape change. Vectors representing ontogenetic 

trajectories of different species are shown in Figure 4.3a, where the start of an arrow represents 

the mean juvenile shape and the end of the arrow represents the mean adult shape. For PC1, 

most species trajectories move from high values as juveniles, to low values as adults. For PC2, 

most species trajectories move from low values as juveniles, to high values as adults.  

The direction of ontogenetic shape change in different species in the sample are shown 

by the direction of the arrows in Figure 4.3a. Pairwise P-values for direction (angle) differences 

in the PTA are reported in supplementary material: Table S4.3. Out of 153 possible pairs of 

species, 74 shared a common slope, while the remaining 79 pairs had significantly different 

directions of ontogenetic shape change. The pairwise results show that there are several cases 

where members belonging to the same genus have different directions of ontogenetic shape 

change. M. horridus has a significantly different direction of shape change than all other sampled 

species. I. lesueurii,  
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Figure 4.3 – Ontogenetic allometric trajectories derived from the phenotypic allometric trajectory analysis 
(a) and the species ontogenetic allometric patterns identified by life habit (b). For both plots, the size of 
points for each specimen is scaled to centroid size. In a, specimens are plotted on a morphospace 
represented by PCs 1 and 2 on the x and y axes respectively. The arrows represent predicted trajectories for 
each species. The arrows start at the mean juvenile shape and end at the mean adult shape. The grey 
points represent the total variation within the sample. TPS deformation grids represent the shape change 
from the mean shape of the data set to the shape at the minimum and maximum values on that axis. In b, 
the x-axis represents log-transformed centroid size, and the y-axis represents the first principal component 
of the predicted values of multivariate regression of shape on size (as identified by MANCOVA). TPS 
deformations grids represent the shape change from the mean shape of the data set to the shape of the 
smallest and largest specimens in the data set. 
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Ch. kingii, P. barbata, and P. vitticeps have the largest adult size, and all have similar directions of 

ontogenetic shape change. The species with the smallest adult sizes are Ct. isolepis, Diporiphora 

winneckei, Rankinia diemensis, Tympanocryptis tetraporophora, and M. horridus, and they also have mostly 

similar directions of ontogenetic shape change, apart from M. horridus. 

 Magnitudes of shape change for the different species in the sample can be observed by 

the length of the trajectory arrows in Figure 4.3a. Pairwise P-values for magnitude in the PTA are 

reported in supplementary material: Table S4.4. Out of 153 possible pairs of species, 90 had a 

similar magnitude of shape change, while the remaining 63 pairs had significantly different 

magnitudes of shape change. Species in this study with a larger adult size (Ch. kingii, I. lesueurii, P. 

barbata, P. vitticeps) have greater magnitudes of ontogenetic shape changes than other sampled 

agamids. Ct. isolepis shows the smallest magnitude of shape change compared with all other 

sampled species. Ct. cristatus, Ct. decresii, Ct. nuchalis and Ct. reticulatus all have relatively small 

magnitudes of shape change. In Ctenophorus, only three significant pairwise differences in 

magnitude were detected (both involving Ct. isolepis). Within the sister clade to Ctenophorus we 

detected 21 pairwise differences, mostly involving Ch. kingii and the species of Pogona, which 

show the largest magnitude of shape change of any species (Table S4.4).  

Cranial shape is influenced by size, life habit and the interactions of the two 

(MANCOVA, size F(1, 361) = 128.35, P = 0.001; habit F(3, 361) = 39.83, P = 0.001; size*habit F(3, 361) 

= 5.24, P = 0.001). The MANCOVA results indicated that there is significant allometry in cranial 

shape, and that this allometry differs among life habit categories (see supplementary material: 

Table S4.5). The differences in ontogenetic allometric patterns (log transformed centroid size vs. 

predicted cranial shape) between species with different life habits is evident in a plot of size 

versus predicted shape (Fig. 4.3b). Pairwise comparisons revealed that all life habit groups have 

significantly different slopes (direction of shape change) from one another, except for the semi-

arboreal and saxicolous groups. There were also significant pairwise differences in trajectory 

length (amount of shape change) detected in pairwise comparisons for all three life habit groups 

(see supplementary material: Table S4.6 for P-values for pairwise angle and length differences for 

life habit groups). 
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Figure 4.4 – Phylomorphospaces (of PC1 versus PC2) for smallest juvenile (a) and largest 
adult shapes (b). Abbreviations are as follows: AM = A. muricatus, CH = Ch. kingii, CCa 
= Ct. caudicinctus, CCr = Ct. cristatus, CD = Ct. decresii, CI = Ct. isolepis, CN = Ct. 
nuchalis, CR = Ct. reticulatus, DN = D. nobbi, DW = D. winneckei, GL = G. 
longirostris, IL = I. lesueurii, LG = L. gilberti, MH = M. horridus, PB = P. barbata, PV 
= P. vitticeps, RD = R. diemensis, TT = T. tetraporophora. c shows the inferred 
phylogenetic tree of relationships between agamids used in this study. All points are 
coloured according to life habit category. d shows examples of adult skulls that represent 
extreme variation in shape and different life habits. Scale bar = 10 mm. 
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Phylogenet i c  s igna l  
Tests for phylogenetic signal (relative to what is expected under a Brownian motion model of 

evolution) in cranial shape of the smallest juveniles and the largest adults revealed that both 

juveniles and adults show significant phylogenetic signal in their shape (juvenile: Kmult = 0.44, P 

= 0.001; adult: Kmult = 0.44, P = 0.001). The amount of phylogenetic signal is moderate, and the 

same for both the juvenile and adult shape data. Even though the amount of phylogenetic signal 

in both sets of shape data is the same, the relative distribution of the species in the cranial 

morphospace is not the same for juveniles and adults. The phylomorphospaces (see Fig. 4.4) 

show distributions of the juvenile and adult shape data in morphospace relative to the phylogeny, 

and that many of the branches overlap with one another. The distribution of points in the 

juvenile and adult cranial morphospaces supports the detected disparity differences between 

juveniles and adults, with the juvenile skulls occupying a much more restricted area of the same 

cranial morphospace than the adult skulls. There was no significant phylogenetic signal detected 

in cranial size (juveniles: K = 0.31, P = 0.130; adults, K = 0.36, P = 0.063).  
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Discuss ion 
The amphibolurine post-natal growth pathway is evolutionarily flexible and has played a major 

role in producing great morphological disparity in adult cranial shape. Different ontogenetic 

patterns are significantly associated with different life habits, suggesting that at least some of the 

variation in adult cranial shape is adaptive. Shape variation in both juveniles and adults had some 

phylogenetic signal, indicating that inheritance plays some role in structuring the morphological 

and ontogenetic variation we observe. Overall, it appears that an interaction between 

evolutionary history and environmental pressures influences ontogenetic patterns in skull shape 

of this radiation of lizards. 

Most of the disparity in the adult cranial form of the sampled amphibolurines develops 

during post-hatching ontogeny. For just under half of the sampled species, we observe shape 

changes along a shared slope, with indicates paedomorphy is the particular heterochronic pattern 

in a number of species of Ctenophorus. This finding is consistent with the ontogenetic scaling 

hypothesis (changes in the time or rate of development along the growth pathway). However, 

heterochrony is insufficient to explain the entirety of morphological diversity of the 

amphibolurines. More often than not, we observe differences in both direction and magnitude of 

growth pathways between pairs of species, which suggests that ontogenetic divergence has been 

a major factor in the evolution of the disparity seen in adult amphibolurine lizards. 

The extent to which ontogenies are conserved during evolution has been a continued 

topic of controversy that has influenced the development of phylogenetic methods (Gould, 

1977; de Queiroz, 1985; Kluge and Strauss, 1985; Nelson, 1985), and this study adds to the 

growing amount of evidence that morphological ontogenies are as prone to selection and 

evolutionary change as other aspects of morphology. It has been suggested that changes in the 

direction of allometric slopes are rare, since they represent costly alterations to growth dynamics 

(Huxley and Teissier, 1936; Gould, 1966; Gould, 1977), but our study adds to the many others 

that have suggested that such changes occur frequently (Adams and Nistri, 2010; Klingenberg, 

2010a; Wilson and Sánchez-Villagra, 2011). The importance of evolving ontogenies in generating 

morphological diversity in amphibolurines resembles what has been shown in other reptiles 

(Esquerré et al., 2017), other vertebrates (Weston, 2003; Wilson, 2018), and even in plants 

(Strelin et al., 2016). In some cases, developmental pathways do represent an evolutionary 

constraint, canalising the phenotypic variation of species into particular portions of 

morphospace, as has been reported in lacertid lizards (Piras et al., 2011). It seems that ontogenies 

are more flexible than previously thought, and can allow morphology to explore previously 

unoccupied areas of morphospace. 
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In both juvenile and adult skull shapes, phylogenetic affinity is less strongly supported 

than are correlations with ecological groups. This is in agreement with other studies on the skulls 

of reptiles (Claude et al., 2004; Hipsley and Müller, 2017), mammals (Wilson, 2010; Fuchs et al., 

2015), and fish (Frédérich and Vandewalle, 2011), that have identified greater associations 

between morphology and diet (Wilson and Sánchez-Villagra, 2010; Fuchs et al., 2015), feeding 

habits (Herrel et al., 2006; Frédérich and Vandewalle, 2011), habitat (Urošević et al., 2013; 

Hipsley et al., 2016), and environmental factors (Frédérich and Vandewalle, 2011; Marcy et al., 

2016), than with phylogeny. In contrast, some studies confirm a strong phylogenetic signal in 

morphological variation, such that ecological correlations are not evident (Hipsley et al., 2016; 

Dial et al., 2017; Doke et al., 2017), or seem to have minimal effect (Powder et al., 2015). While 

adaptive factors and phylogeny both undoubtedly play a role in shaping morphological diversity, 

the extent of this role evidently differs amongst clades and should be assessed on a case-by-case 

basis. 

Our findings add to the growing body of evidence (Klingenberg, 1996; Wilson and 

Sánchez-Villagra, 2010; Collyer and Adams, 2013; Wilson et al., 2013; Collyer et al., 2015) that 

highlights the importance of using a rigorous quantitative framework to investigate the 

underlying basis of phenotypic variation. We have yet to investigate the influence of sexual 

dimorphism on amphibolurine lizards because of the lack of sex information for most of the 

museum specimens studied. Sexual size dimorphism has been recorded for at least one species in 

this study (see (Badham, 1976; Thompson and Withers, 2005)), and therefore we cannot 

discount the possibility that it has an influence on skull shape, considering the strong allometric 

effects observed in these lizards. Therefore, future studies are encouraged to investigate the 

effect of sexual dimorphism on morphological variation in this clade. Furthermore, the influence 

on growth of diet and feeding habits on skull shape are yet to be studied in this group but are 

required to fully understand the evolutionary patterns we have observed. Our study thus serves 

as foundation for further studies to examine hypotheses about these factors, and to that end we 

provide a morphological database (http://morphobank.org/permalink/?P3110). 

Conclusions 
Diversity in cranial shape of amphibolurine lizards seems to be the result of a combination of 

heterochrony and changes in growth patterns, which are related to phylogenetic affinity and 

adaptive evolution. The expectation of a conserved phylogenetic pattern, as predicted by the 

ontogenetic scaling hypothesis, does not fully explain the variation in skull shapes, and we have 

strong evidence that there is an adaptive basis for much of the variation in ontogenetic allometry 

http://morphobank.org/permalink/?P3110
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that we observe. Our study emphasises the power of growth pathways for facilitating the 

morphological variation that is characteristic of large and speciose evolutionary radiations. It also 

underlines the importance of using quantitative multivariate analyses to properly appreciate the 

role of developmental processes in shaping phenotypic diversity across species. 
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CHAPTER 5 ─ Evolution of cranial 
shape in a continental-scale 

evolutionary radiation of lizards 
 

Jaimi A. Gray, Emma Sherratt,  Mark N. Hutchinson, Marc E. H. Jones 

 

Abstract  
Morphological disparity can be generated during adaptive radiation in response to factors such as 

new resources, freedom from competition, and an absence of predators and pathogens. The 

oldest ancestor of the extant Australian radiation of agamid lizards (Amphibolurinae) arrived in 

Australia from Southeast Asia approximately 30 million years ago. Since then, Australian agamids 

have become a species-rich and ecologically diverse clade. Today, they are comprised of around 

108 species distributed among every Australian habitat, and are particularly successful in arid 

environments. We have relatively sound knowledge of their taxonomic diversity and 

phylogenetic relationships, but their morphological diversity remains largely unexplored. Despite 

being such a taxonomically and ecologically diverse clade, their adaptive character has not been 

explicitly tested. Here, we use three-dimensional geometric morphometrics to characterise skull 

shape in Australian agamids and their Asian agamid relatives (Draconinae), and investigate the 

association between skull shape and ecological life habit. We find that in addition to phylogenetic 

affinity and evolutionary allometry, ecological factors play a major role in skull shape evolution 

of this clade, confirming their adaptive character. Through our evaluation of the cranial 

morphospace we find common themes of ecomorphology, where tree-dwelling species have 

long skulls and snouts, terrestrial species have short, blunt skulls, and saxicolous species have 

dorsoventrally flat skulls. These characteristics likely result from trade-offs to optimise functional 

capabilities, which often play a role in the evolution of skull shape. 

Key words: adaptive, Agamidae, geometric morphometrics, lizards, phylomorphospace, skull 
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Introduct ion 
A major aim of the discipline of evolutionary biology is to understand the processes underlying 

different patterns of morphological diversification, and one fascinating aspect of morphological 

diversity lies in adaptive radiation. The process of adaptive radiation involves “the rapid 

evolution of morphologically and ecologically diverse species from a single ancestor” (Osborn, 

1902; Schluter, 2000). A fundamental concept in adaptive radiation is “ecological opportunity”, 

where certain conditions allow rapid speciation through adaptation to different niches (Losos 

and Mahler, 2010). Rapid speciation can result from factors such as new resources, freedom 

from competition, and an absence of predators and pathogens. Consequently, adaptive radiations 

are often linked to particular events, such as a clade invading a new geographic area or 

environment (Lovette et al., 2002), or following a major extinction event (Jarvis et al., 2014). For 

adaptive radiations of animals, one of their defining characters is a diversity of morphological 

forms that are functionally associated with the use of different types of resources following the 

invasion of a range of vacant niches (Cooper et al., 2010; Monteiro and Nogueira, 2010; Dumont 

et al., 2011; Jønsson et al., 2012; Sanger et al., 2012; Wilson et al., 2012).  

It has been hypothesised that island adaptive radiations represent a release from 

competition or a reduction in predation, and hence produce greater morphological and 

ecological diversity when compared to mainland radiations (Carlquist, 1974; Losos and Ricklefs, 

2009). Australia is a unique case: although considered an island, because it is isolated and 

surrounded by sea, it is also a large continent. To explain the drivers behind Australian 

evolutionary radiations, it is important to consider the particular conditions that a clade’s 

ancestor was presented with upon its arrival and subsequent diversification. There are two 

factors that highlight the potential for Australia to have presented an invading clade with 

ecological opportunity (Schluter, 2000). Firstly, up until 30 million years ago (Ma), Australia was 

likely deficient of almost all of the major squamate (lizards and snakes) clades (Oliver and Hugall, 

2017), which potentially provided squamate invaders with a release from competition. Secondly, 

around 20 Ma, global climate change began (Fujioka et al., 2009; Fujioka and Chappell, 2010), 

which potentially opened up empty niches for invaders. These environmental circumstances 

suggest that Australia would have presented arriving ancestors of Australian radiations with the 

ecological opportunities that would facilitate adaptive radiation. 

Dated molecular phylogenies show that the deepest divergences of Australian arid-

adapted squamate taxa evolved from mesic-adapted ancestors around the same time that 

aridification began, and it is likely that these lineages were the result of oceanic dispersal from 
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proximal southern Asia (Oliver and Hugall, 2017). Inferred palaeoclimate trends suggest an 

extensive warm mesic environment in Australia at around 25-16 Ma, followed by fragmentation 

via aridification from around 15 Ma, and inland desertification since 7 Ma (Fujioka et al., 2005; 

Fujioka et al., 2009; Fujioka and Chappell, 2010). Rapid speciation within the arid zone is 

temporally consistent with the onset of aridification (Melville et al., 2001; Byrne et al., 2008; 

Shoo et al., 2008). Today, squamates make up the most taxonomically diverse constituent of the 

Australian vertebrate fauna and are distributed across the entire continent. 

Amphibolurines (Agamidae) are a speciose (approximately 108 species) group of 

Australian lizards, with a relatively well-understood phylogeny (Hugall et al., 2008; Melville et al., 

2011; Pyron et al., 2013). The group of taxa that are least nested (cf. Sereno, 1999), herein 

referred to as the "LN group", branched off outside the major furcation of the amphibolurine 

clade and includes a handful of rainforest adapted and semi-aquatic species, as well as the iconic 

thorny devil, Moloch horridus (Hugall et al., 2008). The second clade, comprises Intellagama plus a 

monophyletic grouping of the remaining amphibolurine species. This diverse clade is divided 

into two further clades that make up the core of the amphibolurine radiation: the “Ctenophorus 

group” and the “Amphibolurus group” (of Hugall et al., 2008). The Ctenophorus group is comprised 

of a single speciose genus (29 species), found throughout most of Australia and comprised of 

predominantly small, terrestrial dragons. The Amphibolurus group comprises ten genera 

comprised of different numbers of species, and, includes both semi-arboreal and terrestrial 

dragons. Generic diversity ranges from genera that contain a single species (e.g. Rankinia), to the 

much more speciose Diporiphora (22 species).  

Amphibolurines are ecologically diverse and have adapted to life on and off the ground, 

inhabiting burrows, soil, grass, rocks, stumps, shrubs, and trees (Pianka and Pianka, 1970; Pianka, 

1971; Collar et al., 2010; Pianka, 2013c, 2013b, 2013a, 2014). They have also developed many 

strategies for evading predators and catching prey, including speed (Cogger, 2014), crypsis (Shoo 

et al., 2008), defensive displays (Throckmorton et al., 1985; Shine, 1990), and spines (Pianka and 

Pianka, 1970). A detailed interspecific examination of variation in amphibolurine cranial 

morphology in an ecological context has yet to be attempted. Additionally, though considered to 

be an ecologically and evolutionarily successful group, their potential to be defined as an 

“adaptive radiation” has not yet been explicitly investigated. 

The term “adaptive radiation” is given to clades that exhibit exceptional ecological and 

phenotypic disparity (Losos and Mahler, 2010). The main aim of this paper is to characterise the 

morphological diversity in the amphibolurines, and investigate whether it matches patterns 



C H A P T E R  5  –  E v o l u t i o n  o f  c r a n i a l  s h a p e  
 

103 
 

expected from the ecological process of adaptive radiation (Ricklefs, 2004; Gavrilets and Losos, 

2009). We use three-dimensional geometric morphometrics to characterise cranial shape in a 

dataset of 52 species of agamid lizards, representing the broad range of phylogenetic and 

morphological diversity of Australian agamid lizards and their Asian sister clade (Draconinae). In 

an adaptive radiation, ecological factors play a key role in evolution, and therefore skull 

morphology should be significantly linked to adaptive ecology and ecological groups should be 

found in association in morphospace (Clabaut et al., 2007). We map the current phylogeny into 

the morphospace to infer aspects of the evolutionary history of cranial shape, using the 

phylomorphospace approach (sensu Sidlauskas, 2008). We perform statistical analyses that 

enable us to assess the adaptive character of this radiation of lizards, and consider the potential 

for particular skull shapes to be beneficial for adapting to different ecological zones.  
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Mater ia l  and methods 

Study  sam ples  
We sampled 52 individuals − both intact, alcohol preserved specimens and dry skeletal skull 

specimens − representing 52 species from the lizard family Agamidae: 44 from the Australian 

clade, Amphibolurinae, and eight from its Asian sister clade, Draconinae. Specimens were 

sampled primarily from the herpetology collection at South Australian Museum, Adelaide, and 

supplemented by loans from the Australian Museum in Sydney (see supplementary material: 

Table S5.1, for specimen information). Sampling included at least one representative from each 

currently recognised amphibolurine genus except Cryptagama. Draconinae species were sampled 

to represent the morphological variation observed in the group. All specimens were adults, as 

identified by a complete acrodont tooth row (Cooper et al., 1970). 

Phylogeny  
To infer the phylogenetic tree (Fig. 5.1) we used a combination of the most recent relevant 

phylogenetic studies (Melville et al., 2001; Hugall et al., 2008; Shoo et al., 2008; Melville et al., 

2011; Pyron et al., 2013; Melville et al., 2014). We built a topological synthesis (i.e. without 

branch lengths) of well supported phylogenetic relationships using Mesquite v 3.51 (Maddison 

and Maddison, 2018). Branch lengths were subsequently estimated using the ape R package 

(Popescu et al., 2012) function “compute.brlen”, which uses the Grafen (1989) computation 

method. We defined and examined five major monophyletic clades in our data set: the 

Draconinae; the least nested (LN) group; Intellagama; the Amphibolurus group; and the Ctenophorus 

group. 

Eco logica l  categor ies  
Life habit categorisations for species were based in information available in Wilson and Swan 

(2013), Cogger (2014), Grismer (2011), Kaiser et al. (2011), Somaweera and Somaweera (2009), 

and Jansen and Bopage (2011): 

Arboreal: Primarily observed in trees and rarely on the ground. 

Semi-arboreal: Observed spending considerable time on the ground and in trees or shrubs. 

Terrestrial: Primarily observed on the ground, may use or dig burrows. 

Saxicolous: Primarily confined to rocky ranges and outcrops.  
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Figure 5.1 – Evolutionary tree of the agamid species studied here, inferred from multiple 
sources of recent phylogenetic studies, with coloured points to indicate life habits, and 
coloured tree branches to show the five major monophyletic clades. See “Phylogeny” 
section of “Materials and methods” for details. 
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X-r ay  computed  tomography 
To obtain digital reconstructions of skulls for measurement, we used high resolution X-ray micro 

computed tomography (CT) on the heads of whole specimens preserved in alcohol, and skeletal 

skull specimens. All CT scans were made with the Skyscan 1076 system at Adelaide Microscopy, 

at the University of Adelaide. Specimens were scanned with a voxel size of either 8 or 16 

microns, dependent on the size of the specimen, with an appropriate range of X-ray settings 

including a current range of 100-250 μA, and a voltage range of 36-82 kV. An aluminium (0.5 

mm) filter was used for all scans. CT scan data was reconstructed using Bruker Nrecon software 

v 6.6.9.4 (Skyscan, 2011). Crania were digitally segmented by applying a threshold for bone and 

extracted as 3D volumes using Avizo v 9.0 (Visualization Sciences Group, 2013). We digitally 

removed non-cranial bony elements (lower jaws, hyoids, scleral ossicles, and vertebrae), and 

cranial material was converted into a 3D surface model (a triangular mesh of approximately one 

million faces). 

Landm ark ing  and shape  analys i s  
To characterise cranial shape, we used 3D landmark based geometric morphometric methods 

(Bookstein, 1996; Dryden and Mardia, 1998; Klingenberg, 2010). We digitised 102 landmarks in 

3D over each cranium model (Fig 5.2, see also supplementary material: Table S5.2, for landmark 

definitions), which represented the cranial shape and were placed at equivalent points on bones 

at sutures, and extremes and boundaries of curvature of major structures, using Landmark Editor 

v 3.0.6 (Wiley et al., 2007). To confirm that our landmark set was sufficient to capture the shape 

variation in our sampled species, we used the “lasec” function in the R package laMBDA 

(Watanabe, 2018) (landmark sampling curve in supplementary material: Fig. S5.1). Landmark 

data were subjected to generalised Procrustes alignment (GPA) and projection into tangent space 

using the R package geomorph v 3.0.6 (Adams et al., 2018). The Procrustes fit corrected for object 

asymmetry, and we extracted coordinates for the symmetric component of shape (Klingenberg et 

al., 2002). These Procrustes-aligned coordinates were used in subsequent analyses. 

  



C H A P T E R  5  –  E v o l u t i o n  o f  c r a n i a l  s h a p e  
 

107 
 

  

Fi
gu

re
 5

.2
 –

 L
an

dm
ar

ks
 u

se
d 

to
 c

ha
ra

ct
er

is
e 

cr
an

ia
l s

ha
pe

 in
 3

D
. L

an
dm

ar
ks

 d
ig

iti
se

d 
on

 th
e 

cr
an

iu
m

 s
ur

fa
ce

 in
 d

or
sa

l v
ie

w
 (A

), 
pa

la
ta

l v
ie

w
 (B

) l
at

er
al

 v
ie

w
 (C

), 
an

d 
po

st
er

io
r v

ie
w

 (D
). 

N
um

be
rs

 a
re

 b
as

ed
 o

n 
sc

he
m

e 
us

ed
 in

 I
D

A
V

 L
an

dm
ar

k 
E

di
to

r, 
an

d 
ca

n 
be

 
m

at
ch

ed
 to

 d
ef

in
iti

on
s 

in
 s

up
pl

em
en

ta
ry

 m
at

er
ia

l: 
T

ab
le

 S
5.

2.
 



C H A P T E R  5  –  E v o l u t i o n  o f  c r a n i a l  s h a p e  
 

108 
 

Effec t  o f  phy logeny,  ev olut ionary  a l lometry ,  and  l i fe  habi t  on  
skul l  shape 

To recognise the degree to which variation in cranial shape among the sampled agamid species is 

evolutionarily associated with size variation (evolutionary allometry, see Klingenberg, 1996) and 

ecology, we performed a phylogenetic generalised least-squares (PGLS) analysis of shape on log 

transformed size and life habit while accounting for the phylogenetic relationships among 

agamid species, using the “procD.pgls” function in geomorph. The “procD.pgls” function 

performed 1000 permutations of shape data across the tips of the tree, and estimates were 

compared to observed values to assess significance (Adams and Collyer, 2018). Centroid size (a 

measure of size extracted from the landmarks) was used to represent head size (Dryden and 

Mardia, 1998). To visualise evolutionary allometry, we carried out a multivariate regression of 

shape on size using “procD.pgls” function, plotted the shape variation attributed to size as the 

regression score (Drake and Klingenberg, 2008), and identified the points by life habit and 

phylogenetic group. To illustrate the shape differences associated with the minimum and 

maximum skull sizes, we used to “plotRefToTarget” function in geomorph to warp a mesh 

representing the mean specimen to shapes representing the smallest and largest skulls in the data 

set. 

We used the allometry corrected skull shape data for agamid specimens to examine the 

variation not associated with evolutionary allometry. To obtain allometry corrected shape data, 

we used a multivariate adaptation of phylogenetic size correction methods (Klingenberg, 2016). 

To obtain allometry corrected shape variables for each specimen, we performed a regression of 

shape on size using “procD.pgls”, which computed the regression residuals for the cranial shape 

of each species, and these were added to the original shape variables. To examine phylogenetic 

structure in the cranial morphospace, we performed a principal component analysis (PCA) and 

generated a cranial morphospace by plotting the main axes of shape variation (see supplementary 

material: Fig. S5.2 for PCA before allometry correction). We projected the phylogeny into the 

cranial morphospace by calculating ancestral states of the internal nodes by maximum likelihood, 

using the “phylomorphospace” function in the R package phytools (Revell, 2012). To evaluate the 

degree of phylogenetic signal present in the shape and size variables relative to expectations 

under a Brownian motion model of evolution, we used the “physignal” function in geomorph, 

which uses Kmult, a mathematical generalisation of the K statistic (Blomberg et al., 2003) for 

highly multivariate data (Adams, 2014). Significance was tested for by 1000 permutations of data 

among the tips of the phylogenetic tree. 
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To examine the distribution of monophyletic clades in the cranial morphospace, we 

identified points in the cranial morphospace by their monophyletic clade (see Fig. 5.1). To assess 

whether the two most speciose clades of the Amphibolurinae, the Ctenophorus group and the 

Amphibolurus group (core of the Australian radiation), were different from one another in terms 

of their morphological disparity, we used the “morphol.disparity” function in geomorph, which 

calculates the Procrustes variance of each group, using residuals of a linear model fit (Zelditch et 

al., 2012). Significance was evaluated by 1000 permutations, where vectors of residuals were 

randomised among the two groups. 

To observe and describe the shape differences associated with the main axes of variation 

in the allometry corrected shape variables, we used to “plotRefToTarget” function in geomorph to 

warp a mesh representing the mean shape to shapes representing the minimum and maximum 

values for the first four principal components (PCs). 
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Results 
A PGLS model evaluating the influence of cranial size and ecology on cranial shape (see Table 

5.1) revealed that 11% of the total variance of shape is significantly associated with size variation 

(P = 0.001), and 14% of the total variance of shape is significantly associated with life habit (P = 

0.001). Life habit categories were partitioned along the allometric trajectory, which was 

represented by log transformed centroid size versus regression score (Fig. 5.3A). Relative to the 

mean shape, greater cranium size is associated with: a longer and dorsoventrally shallower snout; 

broader and more robust postorbitals and temporal bars (jugals, postorbits); larger and longer 

supratemporal fenestra; smaller orbits; dorsoventrally straighter tooth rows; a broader anterior 

end to the frontal; and a more anteriorly located braincase. Smaller cranium size is associated 

with: a shorter and more rounded snout; more slender and narrower postorbitals and temporal 

bars; smaller and shorter upper temporal fenestra; larger orbits; more dorsoventrally curved 

tooth rows; a narrower anterior end to the frontal; and a more posteriorly located braincase (see 

Fig. 5.3B).  

The PCA of allometry corrected shape variables revealed that most of the shape variation 

among species is concentrated in four dimensions (out of 52, see supplementary material: Table 

S5.3 for summary of first six PCs) with subsequent PCs each contributing small amounts (<5%). 

The phylogenetic signal is very low in both cranial shape and size of the sampled agamid lizards 

(shape: P = 0.001, Kmult = 0.112; size: P = 0.001, Kmult = 0.1786), well below expectations of a 

Brownian motion model of evolution. These results, and the many crisscrossing branches in the 

phylomorphospace (see Fig. 5.4) show that there is substantial homoplasy in cranial shape of the 

sampled agamids. The four ecological life habit categories used in this study were associated with 

particular areas of the cranial morphospace (Fig. 5.4). Arboreal species occupy an almost 

exclusive area of morphospace representing negative PC1 values. Semi-arboreal species occupy a 

large area in the centre of the morphospace, and overlap with terrestrial and saxicolous species of 

dragons. Terrestrial species largely overlap with semi-arboreal species, but also extend into their 

own area of morphospace, associated with high values of PC1 and PC2. Saxicolous species 

overlap a little with semi-arboreal and terrestrial species, but mostly occupy their own area of the 

morphospace, associated with high PC1 values and low PC2 values.  
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Figure 5.3 – Evolutionary allometry of the sampled agamid crania. In A, evolutionary 
allometry was examined by a multivariate regression of shape on log transformed 
centroid size. In B, warped surfaces represent shapes of the largest and smallest sampled 
crania.  
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Figure 5.4 – Phylomorphospace illustrating the distribution of life habit groups in the 
allometry corrected cranial morphospace. Skull images are meshes of cranium 
specimens that represent extremes of shape variation. 

Table 5.1 – Examining evolutionary allometry: results table for the PGLS model of 
cranial shape by size and life habit (shape ~ log (size) * life habit). The effect of centroid 
size and ecological life habit on cranial shapes within the 52 sampled species of agamid 
as evaluated by a phylogenetic least squares model (details in methods). Statistical 
significance was evaluated by permutation using 1000 iterations. Bold indicates P-values 
of less than 0.05. 

 DF SS MS R² F Z P-value 

Log (size) 1 0.728 0.729 0.112 7.704 5.520 0.001 

Habit 3 1.073 0.358 0.165 3.782 5.462 0.001 

Log (size) : life habit 3 0.543 0.181 0.084 1.916 4.960 0.001 

Residuals 44 4.160 0.095 0.640    

Total 51 6.505      
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Figure 5.5 – Allometry corrected cranial morphospace illustrating the distribution of 
monophyletic clades, with convex hulls mapped on to represent the disparity of the two 
core lineages of the Amphibolurinae, the Amphibolurus group and the Ctenophorus 
group. 

While there is no clear association between clade affiliation and evolutionary allometry 

(see Fig. 5.3A), the five clades seem to be associated with particular areas of the allometry 

corrected cranial morphospace. Draconines and the LN group mostly occupy the same corner of 

the morphospace (apart from M. horridus), at low PC1 values and high PC2 values, but are 

separate from each other within this area, with the LN group having lower PC1 values. The core 

of the amphibolurine radiation (Ctenophorus group and Amphibolurus group) occupy the opposite 

side of the morphospace, and the two groups overlap substantially with one another. The 

morphological disparity (Procrustes variance) of the Amphibolurus group and the Ctenophorus 

group are not significantly different from one another (P = 0.856), and they overlap considerably 

along the main axes of shape variation (see Fig. 5.5). Both groups also expand into their own 

exclusive areas of the cranial morphospace. PC1 describes major differences between draconines 

and amphibolurines. PC2 did not separate out particular taxonomic clades, but describes the 

major differences between Moloch, and the rest of the sample.  
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Shapes differences associated with the major PCs of the allometry corrected shape data 

can be observed in Figure 5.6. PC1 describes 33.33% of the total shape variation. Low PC1 

scores represent a relatively long, narrow, and posteriorly rounded skull with a rounded orbit, 

whereas high PC1 scores represent a relatively short, wide, and posteriorly angular skull with a 

dorsoventrally compressed orbit. This axis also describes differences between a dorsoventrally 

straight tooth row (high values), and one that curves dorsally at its anterior end (low values). PC2 

describes 11.66% of the total variation. Low PC2 scores represent a dorsoventrally shallow and 

elongate skull whereas high PC2 scores represent a short, dorsoventrally deep skull with an 

extremely blunt snout.  

Figure 5.6 – The major axes of variation in cranial shape (from a PCA corrected for 
evolutionary allometry), shown as warped cranial surfaces. Cranial shape differences 
associated with the PCs are shown as shapes representing the positive and negative end 
of each axis. 
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Discuss ion 
Australia, with its vast array of different habitats and biomes, is a fascinating place in which to 

explore the drivers of evolutionary radiation. We set out to do this using the Australian radiation 

of agamid lizards. Broadly, adaptive radiation can be defined as the evolution of ecological and 

phenotypic diversity in a rapidly multiplying lineage (Schluter, 2000). According to Schluter 

(2000), descendant species fit the “adaptive” criteria if there is an association between diverse 

phenotypes and their divergent environments. We explored the phenotypic variation in crania of 

Australian radiation of agamid lizards, and revealed that ancestral amphibolurines gave rise to 

new clades that today exhibit a morphologically diverse array of skull shapes. However, the 

pattern of morphological variation within the sampled agamid skulls is not closely tied to 

phylogenetic relatedness. Instead, species with the same life habits share morphological features 

and occur in association in the cranial morphospace, even when they are not each other’s closest 

relatives. This emphasises the adaptive character of these lizards, and suggests they are strong 

contender to be considered an “adaptive radiation”.  

There is surprisingly little phylogenetic signal in skull shape among the sampled agamids. 

A lack of distinct phylogenetic structure is evident from the criss-crossing patterns of branches 

within amphibolurine genera, and extensive overlap of branches within the cranial morphospace. 

The range of potential skull shapes seems to be constrained to a particular region of 

morphospace, but within this space, evolution is relatively free and labile, which is similar to 

what has been seen in species of bird (Tokita et al., 2017), mammal (Goswami et al., 2014), and 

fish (Clabaut et al., 2007). To describe a similar pattern, Goswami et al. (2014) used the analogy 

of a fly trapped within a tube. We suggest evolution of the sampled agamid lizards is more 

analogous to a fly in a deflated balloon, as there seems to be some flexibility around the 

peripheral areas of the occupied morphospace. This flexibility allows the evolution of more 

extreme skull shapes for particular ecological groups, e.g. the very dorsoventrally flat skulls of 

rock dwellers, and the blunt-faced forms seen in some terrestrial species (that also happen to be 

burrowers: see Cogger, 2014). The patterns we observe in the cranial morphospace indicate that 

multiple cases of convergent and parallel evolution, and rapid morphological diversification exist 

in the Australian agamid lizard clade, and deserve further attention. This capacity to rapidly 

evolve a variety of different phenotypes appears to have led to a greater potential to exploit their 

respective environments (Vermeij, 1973).  

If shared evolutionary history is not the main factor influencing similarities in the skull 

shapes among amphibolurine lizards, then the parallel and convergent evolution we observe in 
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this clade is probably the result of equivalent ecological conditions (Sturmbauer et al., 2003). 

Australian agamid skulls are distributed in the morphospace according to their life habit, and 

statistical tests confirmed that particular skull shapes are similar because of shared ecological 

characteristics. Our study adds to the growing body of literature showing that ecological role 

frequently overrides phylogenetic inheritance on a macroevolutionary scale (Clabaut et al., 2007; 

Pierce et al., 2008; Kimmel et al., 2009; Stayton, 2011; Sakamoto and Ruta, 2012; Casanovas-

Vilar and van Dam, 2013; Klingenberg and Marugán-Lobón, 2013). It seems clear that ecological 

opportunity can be a powerful driver of morphological diversification, but it is also increasingly 

apparent that the morphological variation in any given clade is a consequence of the 

combination and interaction of several factors. Allometry, phylogeny, ecology, and development 

are all factors that determine morphological diversity, but which factors have the greatest 

influence over morphological variation, and to what extent, differs amongst clades.  

The strong association between distribution of species in the cranial morphospace and 

ecological life habit indicates divergent selection for agamid lizards with different ecological life 

habits. Since selection acts, not directly on phenotypes, but on the functional capabilities of 

those phenotypes (Arnold, 1983; Garland and Losos, 1994) it is likely that homoplastic aspects 

of skull shape represent important functional aspects for life habit strategies. For example, the 

length of the snout has an effect on the length of the out-lever, and consequently, an effect on 

bite force (Olson, 1961). Although an elongate snout is therefore associated with a reduced bite 

force, there is also evidence that longer snouts can enhance capture efficiency of highly mobile 

prey (Kohlsdorf et al., 2008). Furthermore, having a taller head may indicate a further trade-off 

between greater bite forces (associated with taller heads), and faster climbing speeds (associated 

with flatter heads) (Herrel et al., 1999; Herrel et al., 2001). Our results indicate that ecological 

trade-offs have occurred in order to optimise function in different habitats, and this is likely to 

be a major factor that has shaped the evolution of skull shape in Australia’s agamid lizard 

radiation. 

Our study brings the adaptive character of amphibolurine lizards to light, even though 

specific interpretations are difficult, with various ecological parameters acting concurrently on 

the evolution of skull shape. In reality, life habit for these lizards may be considered a 

continuum, with various species displaying different extents of their assigned category. Our 

categories are a simplification of life history but this issue reflects the problem of characterising 

animals that live in complex environments for which field data remains lacking. This system 

would benefit from an in-depth ecological assessment akin to the perch height and diameter 

information of Caribbean lizard habitats (Losos, 1990). A more detailed examination of the 
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relationship between life history and skull shape may be possible in the future following further 

field research. There remains a lot to be gained from studying this system in more detail, 

including more in-depth ecological assessments, and exploratory investigation of the anatomy 

and function underlying the different skull shapes characterised here. Furthermore, similar work 

investigating the morphological diversification of other Australian squamate clades that are 

estimated to have arrived around a similar time would broaden our understanding of whether 

environmental change on the large, squamate-poor, island continent of Australia, may have 

facilitated adaptive radiation. 

Conclusions 
Our study uncovered the major patterns of morphological variation in amphibolurine lizards, 

and revealed that the constraint of phylogeny on the Australian radiation of agamid lizards is 

small. In contrast, the evolution of a broad array of different skull shapes has been notably 

impacted by ecological life habit, as can be expected for an “adaptive radiation” (Schluter, 2000). 

We suggest that a combination of evolutionary lability and ecological opportunity, presented to 

the ancestral agamid upon its arrival to Australia, and subsequent environmental changes, has 

culminated in a radiation of lizards that may indeed be considered “adaptive”. 
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CHAPTER 6 ─ Implications of using 
captive lizards in morphological 

analyses 
 

Jaimi A. Gray, Mark N. Hutchinson, Marc E. H. Jones 

 

Abstract  
It is inevitable that captive animal populations must be used in research and conservation efforts, 

but a suite of distinctive traits not present in wild predecessors is often observed in captive and 

domesticated populations. Although this issue has received much attention in mammals, the 

effects of captivity on reptiles are mostly unknown. Here, we use three-dimensional geometric 

morphometrics to detect differences in cranial shape between samples of wild and captive jacky 

lizards (Amphibolurus muricatus). We also place a selection of wild and captive lizards into a larger 

data set to explore how the inclusion of captive specimens might affect interspecific analyses and 

subsequent interpretation. Our results reveal that captive lizards have broader skulls and shorter 

faces than wild lizards, and the differences between captive and wild lizards are distinct, even in 

interspecific comparisons. The broad heads and short faces of captive jacky lizards are also 

characters associated with captivity in a broad range of other animal groups, suggesting 

uniformity in underlying mechanisms. Our research indicates that inferences made about wild 

populations from biological studies on captive reptiles should be made with caution. Although 

we have shed light on the effects of captivity in lizards, we are still far away from understanding 

the underlying causes and mechanisms. Since it is unavoidable that we must use captive 

populations for biological research, it is critical that further work is carried out to understand the 

underlying causes, as well the continuity of these traits among other reptiles. 

Keywords: captivity, domestication, geometric morphometrics, lizards, reptiles, skull
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Introduct ion 
For over 150 years, dramatic biological differences between captive and wild animals have been 

observed and documented (Darwin, 1868). It is now well known that animals in captivity possess 

a collection of traits that are not seen in their wild counterparts. These reported differences have 

led to a perception that captive animals are biologically abnormal, and therefore should be used 

with caution in research (Hollister, 1917; Howell, 1925). Nevertheless, captive animals have 

played, and continue to play, a critical role in biological research and conservation efforts. This is 

particularly true when it is not possible to research extant species in their natural habitat, such is 

the case for endangered and rare species. Thus, data sets used for many different types of 

biological studies are often completely or partly made up of captive animal specimens (Bonnan et 

al., 2008). A well-rounded understanding of the effects of captivity still eludes biologists 

(particularly for non-mammal species), but is essential for ensuring optimal evolutionary success 

of captive populations, and also important in the interpretation of any biological data set that 

includes captive animals.  

The propagation of captive animals can lead to a myriad of effects on the morphology 

and physiology of the resulting populations. Additionally, over multiple generations in captivity 

the magnitude of trait differences between wild and captive populations has been shown to 

increase (McPhee, 2004). Remarkably, some of the traits associated with captivity have been 

reported to occur in captive mammals, birds, reptiles, and fish, and this all-encompassing 

influence reflects intrinsic developmental links in the process of domestication (Moss, 1972; 

Crossley and del Mar Miguélez, 2001; Marchetti and Nevitt, 2003; Furrer et al., 2004; Connolly 

and Cree, 2008; Drake, 2011). Various reasons have been proposed to be the cause of the 

differences between captive and wild animals, including relaxed selective environments 

(Frankham et al., 1986), founder effects (McPhee, 2004), changes in the direction of selection 

(Endler, 1986), differences in diet compared to the natural state (Gore, 1993; Lieberman et al., 

2004), and deficiencies in neural cells during development (Wilkins et al., 2014). Regardless of 

the reasons for the differences, they may ultimately render captive populations unsuitable as 

proxies for the wild state of a species, hindering research. Additionally, reintroductions to the 

wild after captive breeding have been seen to fail through poor foraging and lack of predator 

recognition (Frankham et al., 1986; Jolly et al., 2018), and in one case, a loss of ability for 

effective locomotion in their natural environment (Menzel and Beck, 2000; Wallece, 2000). For 

the benefit of captive populations and the research involving them, it is of critical importance 
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that we understand the effects of captivity over multiple generations and throughout 

development of individuals in the population.  

Skeletons can be surprisingly phenotypically and evolutionarily plastic, and differences in 

cranial morphology attributable to being in captivity have been reported in a range of mammals 

and some reptiles (Groves, 1966; Groves, 1982; O'Regan, 2001; McPhee, 2004; Bello‐

Hellegouarch et al., 2013; Hartstone-Rose et al., 2014; Drumheller et al., 2016; Duong et al., 

2017). Now that biologists have an extensive toolkit of geometric morphometric methods at 

their disposal to quantitatively characterise and compare the shapes of skeletal elements of 

animals (Bookstein, 1989; Bookstein, 1991; Bookstein, 1996; Klingenberg et al., 2002; 

Klingenberg, 2010; Zelditch et al., 2012), we can look at the way captivity affects morphology in 

more refined detail.  

While we had been assembling data on cranial variation on Australian agamids, it become 

apparent that agamids from a captive colony were showing consistent differences in skull shape 

to wild lizards of the same species: Amphibolurus muricatus, also known as (and herein referred to 

as) the jacky lizard. We have taken advantage of these samples to present preliminary work. 

Here, we compare the cranial morphology of our samples of captive and wild jacky lizards of 

different body sizes, and also compare them to other Australian agamid species of different body 

sizes. Our objectives are to firstly, characterise the differences in cranial morphology between the 

sampled captive and wild lizards, secondly, determine whether differences between captive and 

wild jacky lizard skulls shapes were the result of heterochrony, and thirdly, examine how 

captivity may affect the interpretation of a broader taxonomic data set.  
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Mater ia ls  and methods 

Spec imens 
To compare cranial shape differences between a sample of captive and a sample of wild lizards, 

we used 26 alcohol preserved specimens of jacky lizards. Our sample included 18 captive 

specimens from the University of Canberra, which were a mixture of either one or two 

generation captive-reared animals. We also included seven wild specimens from the herpetology 

collection at South Australian Museum, Adelaide, and from the Australian Museum in Sydney 

(see supplementary material: Table S6.1 for specimen information). For a broader taxonomic 

dataset, representing a sample that might be used for interspecific comparisons, we included six 

other species of Australian agamids, comprised of a combination of alcohol preserved and dry 

skeletal specimens of different body sizes. Species included for comparison were Ctenophorus 

isolepis, Diporiphora nobbi, Gowidon longirostris, Pogona barbata, Rankinia diemensis, and Tympanocryptis 

tetraporophora. For each comparison species, four to six specimens of different sizes (representing 

different ontogenetic stages) were included (see supplementary material: Table S6.2 for specimen 

information). 

X-r ay  computed  tomography 
To obtain skull data, we used high resolution X-ray micro computed tomography (CT). All CT 

scans were made with the Skyscan 1076 system at Adelaide Microscopy, at the University of 

Adelaide. Specimens were scanned at a resolution of either 8 or 16 microns, depending on the 

size of the specimen. Typically, an aluminium filter (0.5 mm) was used, with a voltage of 36-82 

kV, and a current of 100-250 μA. CT scan data were segmented by applying a threshold to 

extract material of the same density as bone, then removing non-cranial bony elements (lower 

jaws, hyoids, scleral ossicles, and vertebrae). We rendered the crania as three-dimensional (3D) 

volumes using Avizo v 9.0 (Visualization Sciences Group, 2013). The resulting surfaces were 

used for landmarking (ply files can be found in supplementary material: File ES6.1). 

Landm ark ing  and shape  analys i s  
Cranial shape was characterised using 3D landmark based geometric morphometric analysis 

(Bookstein, 1996; Dryden and Mardia, 1998; Klingenberg, 2010). We used IDAV Landmark 

Editor v 3.0.0.6 (Wiley et al., 2007) to digitise 102 landmarks in 3D over the cranium (the same 

landmarks that were used in Chapter 5, see Fig. 5.2 and supplementary material: Table S5.2), that 

represented the cranial shape and were placed at equivalent points on bones at sutures, and 

extremes and boundaries of curvature of major structures. Two landmark data sets were 

generated. One containing the 26 specimens of captive and wild jacky lizards (hereafter referred 
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to as data set A, see supplementary material: Table ES6.2 for landmark coordinates), and another 

containing all specimens of each comparison species, and eight jacky lizard specimens: four 

captive and four wild (hereafter referred to as data set B, see supplementary material: Table 

ES6.3 for comparison species landmark coordinates). The jacky lizards in data set B were chosen 

to represent the extremes of shape variation in the first two axes of a principal components 

analyses (PCA) of data set A, and also to represent the range of sizes of both captive and wild 

jacky lizards in data set A (see supplementary material: Table S6.2 for jacky lizards chosen). 

For the data sets A and B, landmark data were subjected to a generalised Procrustes 

alignment (GPA) and projected into tangent space using the R package geomorph (Adams et al., 

2018). The Procrustes fit for data set B corrected for asymmetry (Klingenberg et al., 2002). The 

Procrustes-aligned coordinates were used in subsequent analyses. We wanted to observe the 

shape variation in both data sets before and after allometric corrections, so we performed 

multivariate regressions of shape on size to calculate the degree of variation in cranial shape 

among specimens that was associated with variation in size (Klingenberg, 1996). Centroid size (a 

measure of size extracted from the landmarks) was used to represent head size (Dryden and 

Mardia, 1998).The specific procedures for each allometric correction are outlined in the 

following sections. 

Crania l  shape  var iat ion  in  capt iv e  and  wi ld  jacky  l i zards  

To characterise the shape variation in data set A, we performed a PCA on the Procrustes aligned 

shape variables before any allometric corrections had been done (see supplementary material: 

File ES6.2 for coordinates). This analysis identified the main components of shape variation and 

illustrated the associated shape differences between the mean shape and the maximum and 

minimum of each PC. We visualised the shape differences identified by the PCA using vector 

diagrams representing the differences between landmark constellations of the mean shape and 

the minimum and maximum shape scores for PC1 and PC2, using the “plotRefToTarget” 

function in geomorph. We calculated the morphological disparity of the captive and wild samples 

and tested for a significant difference between them, using the “morphol.disparity” function in 

the R package geomorph. To investigate whether the differences between captive and wild skull 

shapes were the result of heterochrony, we estimated the allometric relationships between cranial 

shape and size by running a multivariate analysis of covariance (MANCOVA) model using log 

transformed centroid size, source (wild or captive), and their interaction as model effects (shape 

~ log (size) * source). This was done using the “procD.allometry” function in geomorph. If the 

interaction terms were significant, this indicated that the allometric trajectories differed between 
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captive and wild samples, and that heterochronic changes along a single developmental pathway 

were not the reason for skull shape differences. To examine allometric patterns, we plotted 

regression scores on log transformed centroid size. To visualise the shape differences associated 

with size, we built wireframe diagrams representing the shape of the smallest and largest 

specimens, using the “plotRefToTarget” function in geomorph (see supplementary material: File 

ES6.4 for wireframe specifications). To obtain values of allometry corrected shape variables a 

regression of shape on size was performed using the “procD.lm” function in geomorph, and we 

obtained the regression coefficients. We used the coefficients to compute residual shape scores 

for the cranial shape of each specimen. To examine the non-allometric variation remaining in the 

data set, we performed a PCA on the shape variables after allometry correction. We calculated 

the morphological disparity (Procrustes variances) of the allometry corrected shape of captive 

and wild samples and tested for a significant difference between them, using the 

“morphol.disparity” function in the R package geomorph.   

Using  capt iv e  l i zards  in  a  broader  taxonom ic  data set  
To demonstrate the ways in which captive and wild jacky lizards would be interpreted in a larger 

data set, we characterised shape variation in the data set B, by performing a PCA on the shape 

variables (see supplementary material: File ES6.3 for coordinates). To obtain values of allometry-

corrected shape variables a regression of shape on size was performed using the “procD.lm” 

function in geomorph, and we obtained the regression coefficients. We used the coefficients to 

compute residual shape scores for the cranial shape of each specimen. We carried out two 

versions of allometric correction for data set B, one without species as a factor (shape ~ log 

(size)), and one with species as a factor (shape ~ log (size) * species). We used the allometry 

corrected shape for each specimen to examine shape variation not attributable to allometry 

(Monteiro, 1999; Sidlauskas et al., 2011). To examine the distribution of specimens in 

morphospace, we performed three separate PCAs: one for shape variables before any allometry 

correction; after an allometry correction (shape ~ log (size)); and after an allometry correction 

with species as a factor (shape ~ log (size) * species). We calculated the morphological disparity 

(Procrustes variance) using “morphol.disparity”, for each species and reported any clear 

differences between the jacky lizards and other species. We also plotted allometric trajectories 

(regression scores on log-transformed centroid size), to examine the distribution of wild and 

captive jacky lizards.   
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Results 

Var iat ion  in  crania l  shape  of  wi ld  and  capt iv e  jacky  l i zar ds  
The PCA of the 26 sampled jacky lizard specimens before allometric correction revealed that the 

first two principal component (PC) axes (see Fig. 6.1) account for 45% of the shape variation in 

the data set. The remaining PCs each explain less than 10% of the variation. PC1 almost 

completely divides the sampled wild and captive jacky lizards, and seems to be associated with 

size (the smallest specimens had the highest values while the largest specimens had the lowest 

values). PC2 seems to be associated with size (but is different for captive and wild samples), and 

the shape differences associated with this axis are more subtle (see Fig. 6.2). MANCOVA results 

(Table 6.2) showed that there is a significant difference in ontogenetic pattern between samples 

of captive and wild lizards. The MANCOVA results also indicate that size variation has a 

significant influence on skull shape for the entire jacky lizard data set. The captive and wild 

samples were not significantly different from one another in terms of their morphological 

disparity (Procrustes variances: captive = 0.00184; wild = 0.00258; P = 0.07). 

 

Figure 6.1 ‒ Cranial morphospace (PC1 versus PC2) for data set A (all jacky lizard 
specimens), colour coded for source. Black rings indicate specimens selected for 
inclusion in data set B. 
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Figure 6.2 ‒ Shape differences encompassed by the major axes of shape variation from a 
PCA of jacky lizards before allometry correction. Shape differences for landmarks are`1` 
represented by vectors that indicate direction and magnitude, and sets of landmarks are 
oriented with the anterior of the cranium to the left, and the posterior to the right. 
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Figure 6.3 ‒ Ontogenetic allometry of captive and wild jacky lizards. A shows allometric 
trajectories: regression scores on log transformed centroid size. B shows cranial 
morphospace after allometric correction. Point diagrams show the skull shapes 
associated with largest and smallest size, relative to the mean shape (shown in grey). 
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Table 6.1 ‒ MANCOVA results for ontogenetic allometry of jacky lizard specimens 
(shape ~ log (size) * source). 

 

The plot of regression scores on log transformed centroid size (Fig. 6.2A) illustrates the 

difference in ontogenetic allometric patterns between wild and captive lizards. Collectively, the 

MANCOVA and the PCA results (before allometry correction) suggest that captive lizards 

appear to have a different cranial developmental pathway to that of wild caught lizards, and this 

has resulted in novel skull shapes. After allometric correction, the cranial morphospace no longer 

separates wild and captive jacky lizards (see Fig. 6.2B), highlighting the strong influence of 

ontogenetic allometry on shape in data set A. Notably, although they no longer occupied distinct 

areas of the cranial morphospace, captive jacky lizards exhibit a broader range of variation than 

wild lizards. This was confirmed by a significant difference in disparity between allometry 

corrected skull shapes in the captive and wild samples (Procrustes variances: captive = 0.00155; 

wild = 0.0011; P = 0.024).  

 DF SS MS Rsq F Z P-value 

Data set A (shape ~ log (size) * source)     

Log (size) 1 0.0201 0.0201 0.3100 11.84 6.01 0.001 

Source 1 0.0062 0.0062 0.0957 3.65 6.43 0.001 

Log (size) : source 1 0.0029 0.0029 0.0442 1.69 4.23 0.001 

Residuals 21 0.0357 0.0017     

Total 24 0.0648      

Data set B (shape ~ log (size) * species)      

Log (size) 1 0.0990 0.0990 0.3408 43.44 7.07 0.001 

Species 6 0.1149 0.0191 0.3956 8.40 11.50 0.001 

Log (size) : species 6 0.0219 0.0036 0.0754 1.60 10.91 0.001 

Residuals 24 0.0550 0.0023 0.1883    

Total 37 0.2904      



C H A P T E R  6  –  E f f e c t s  o f  c a p t i v i t y  
 

136 
 

Figure 6.4 – Principal component (PC) 1 versus PC2 for different PCA results for data set 
B (A-C), coloured by species. A: before any allometry correction; B: After general 
allometry correction (shape ~ log (size)) C: after allometry correction with species as a 
factor (shape ~ log (size) * species); D: observing allometric patterns for different 
comparison species. All points are scaled to represent centroid size. 
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Com par ison  of  capt ive  spec imens against  a  br oader  taxonom ic  
sam ple  

The shape space for data set B representing PC1 versus PC2 before allometric correction (Fig. 

6.4A) accounts for 58.44% of the total shape variation in the data set. PC1 has a strong 

association with size: small lizards tend to have higher values and large lizards tend to have lower 

values. The captive and wild jacky lizards are almost completely separated by PC1 values, with 

the wild specimens mostly having lower PC1 values than captive specimens. The exception to 

this is the very smallest wild jacky lizard, which plotted similarly to the captive specimens. Once 

an allometric correction was performed, smaller and larger representatives of species plot closer 

to one another in the PC1 versus PC2 morphospace (Fig. 6.4B). The captive and wild jacky 

lizards still remain separate from each other. After a species specific allometry correction (see 

Fig. 6.4C), the PC1 versus PC2 morphospace no longer separates agamid species from one 

another, with most clustering haphazardly in the centre of the morphospace. Still, the captive 

and wild jacky lizards remain separate from each other. Combined, the captive and wild jacky 

lizards seem to display a larger amount of shape variation than the other species included for 

comparison, in each PCA example. 

Multivariate regression (see Table 6.1) revealed that shape variation associated with size 

accounts for 34.08% of the total variation in the data set (P = 0.001), while species affiliation 

accounts for 39.56% of the total variation. The ontogenetic allometric trajectories (see Fig. 6.4D) 

reveal distinct patterns for some agamid species, while some are similar to others. Most 

importantly, the inclusion of captive specimens affects the jacky lizard ontogenetic allometric 

trajectory, as revealed by the distribution of specimens around the line of best fit: three out of 

four captives fall below the line, while three out of four wild specimens fall above the line.  

  



C H A P T E R  6  –  E f f e c t s  o f  c a p t i v i t y  
 

138 
 

Discuss ion 
We found that cranial shape in our sample of captive jacky lizards was strikingly different to 

cranial shape in our sample of wild jacky lizards. Captive jacky lizards tended to have broader 

and shorter skulls than wild jacky lizards, a character that has also been associated with captivity 

in other animal groups that are distantly related to lizards (e.g. Cardini et al., 2015). Furthermore, 

we found that in the context of a broader data set including multiple different sized specimens of 

different species of agamid lizards, captive lizards consistently remain distinct from their wild 

counterparts.  

Our results revealed the shape differences between captive and wild jacky lizards are not 

the result of simple heterochrony. Instead, captive jacky lizards have obtained a novel skull 

shape. Intriguingly, we can draw parallels here, between the captive jacky lizards and the case of 

domestic dogs. Early research suggested that domestic dogs evolved via heterochrony and were 

inferred to represent paedomorphic wolves (Wayne, 1986). However, this hypothesis was not 

upheld when the skulls were subjected to three-dimensional geometric morphometric analysis: 

like the jacky lizards, domestic dogs represent novel skull phenotypes, rather than paedomorphic 

forms of an ancestral phenotype (Drake, 2011). It is remarkable that such a pattern recurs in two 

very distantly related animal species, and suggests that there may be common underlying causes 

for differences in traits observed in skull shape of captive and wild animals. 

A few prior studies on captive reptiles exist (Furrer et al., 2004; Connolly and Cree, 2008; 

Drumheller et al., 2016), and our results are consistent with previously demonstrated 

morphological distinctiveness of captive reptile populations (Connolly and Cree, 2008). The 

morphological distinctiveness of the sampled captive jacky lizards was apparent, even in the 

context of a larger data set designed to examine interspecific variation. Moreover, in some cases 

shape differences between captive and wild jacky lizards in the cranial morphospace were just as 

great as shape differences between different agamid species. Therefore, for studies that use data 

sets made up of either a combination of wild and captive lizards, or purely of captive lizards, 

intraspecific variation may be greater than we would otherwise expect. For species represented 

purely by captive individuals, their position in shape space may not be an accurate representation 

of the wild state of their morphology. The large amount of shape variation in the captive jacky 

lizards implies that perhaps relaxed selection for traits required to survive in the wild has allowed 

morphology to drift. An additional consideration is that the origin of the jacky lizards may have 

affected their morphology (the founder effect). If our results are corroborated by larger sample 



C H A P T E R  6  –  E f f e c t s  o f  c a p t i v i t y  
 

139 
 

sizes, biologists may need use more caution in the analysis and interpretation of data sets that 

include captive animals.  

We have shown that differences in skull morphology between wild and captive lizards 

exist, but we are still a long way from understanding the underlying causes and mechanisms 

behind these differences. Often, captive populations provide the only viable opportunity to study 

the biology of a particular species. Therefore we need to understand the processes underlying the 

observed differences. The consistency between the traits observed in captive jacky lizards and 

those reported in other animals (i.e. broader and shorter faces) indicates that there may be 

common underlying causes for these characteristics (Trut, 1999; O'Regan and Kitchener, 2005; 

Drake, 2011; Hartstone-Rose et al., 2014). Non-mammal captive populations, including this one, 

would therefore benefit from an investigation into the underlying causes, for example, whether 

captive breeding in reptiles leads to similar neural crest cell deficiencies that have been suggested 

to be linked to the suite of traits observed in captive mammals (Wilkins et al., 2014; Sánchez-

Villagra et al., 2016) to indicate whether causes are indeed recurrent in multiple, distantly related 

animal groups. These notions may also be strengthened by determining whether, along with the 

skull shape differences observed here, other traits associated with captivity that have been 

reported in other animals, also occur in lizards. Uniformity among the suite of traits associated 

with captivity, and the underlying causes, would provide a compelling case for a unified theory of 

the process of domestication. 

Conclusions 
This study documents the fact that, for our sample, there are pronounced morphological 

differences between captive and wild jacky lizards, a group that has not previously been 

examined at this level of detail. Although more work is required in order to understand the 

mechanisms behind these differences, our study highlights the need for caution when 

interpreting results from biological studies involving captive lizards. We show that traits 

associated with captivity, which have mostly been demonstrated in mammals, also occur in 

reptiles.  
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CHAPTER 7 ─ Using jaw bones to 
estimate Australian dragon body 

size 
 

Jaimi A. Gray, Marc E. H. Jones, Mark N. Hutchinson 

 

Abstract  
The body size of a fossil specimen can give palaeontologists an important indication of an 

animal’s physiological capabilities and requirements, as well as its role in an ecosystem. Because 

material may be broken and incomplete, body length is often estimated using the dimensions of 

specific structures and relationships established with baseline data. This approach is frequently 

used for fossil mammal material but rarely used for fossil reptiles, even though reptile material 

can also be recovered in reasonable sample sizes. Here, we use the maxilla and dentary of 

Australian agamid lizards to examine the relationships between a quantitative linear 

measurement, tooth row length, and a body size proxy (snout-vent length). We find a positive 

linear relationship between tooth row length and snout-vent length (both log transformed) for 

the maxilla and dentary, which indicates that tooth row length of the jaw bones can be used 

effectively to estimate body size of Australian agamid lizards. We use a collection of maxillae 

from different South Australian cave deposits to demonstrate how snout-vent length can be 

estimated and how the results might be interpreted. Further work may involve expanding this 

data set to include other squamates, so fossil squamate material can make a greater contribution 

to palaeoecological reconstructions of specific localities and recent time (< 3 million years). 

Key words: Agamidae, body size, cave deposits, dentary, fossil, jaw bone, maxilla 
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Introduct ion 
Animal remains in fossil deposits can be used to determine presence, absence, abundance, and 

diversity of species through space and time, and are important for understanding the 

composition of past faunal communities. Comparisons of faunal assemblages over geological 

time scales have revealed that different species can have different responses to environmental 

change, and the structure and function of faunal assemblages can change markedly, even over 

relatively short time periods of several thousand years (Graham and Grimm, 1990; Lyons, 2005). 

An ability to compare faunal composition through time with palaeoenvironments, including 

climate change and geological processes, is essential for understanding the processes that shape 

biodiversity. 

Understanding the evolution of body size is a common objective when modelling past 

ecosystems. Body sizes of fossil specimens are an important palaeontological factor that can give 

clues about an animal’s adaptation to its environment and its place in an ecosystem (Wilson, 

1975; Vézina, 1985; Gregory, 1986; Peters and Peters, 1986; Hurlburt, 1999; Woodward et al., 

2005; Cooper and Stankowich, 2010). Even rough estimates of body size can be used to make 

inferences about individual fossil specimens, which also contribute to the overall interpretation 

of a fossil assemblage (e.g. Gregory, 1986; Finarelli and Flynn, 2006). Body size can provide an 

indication of many metabolic and physiological variables (Schmidt-Nielsen, 1984), and give an 

indication of an animal’s ecological role and performance capacity (Huey and Hertz, 1982; Huey 

and Hertz, 1984; Garland, 1985), such home range, bite force, and limits on prey size. Body size 

of a particular individual can also affect what kind of refuges it can use to hide from predators, 

which microhabitats that species can occupy, and can inform ontogenetic and taxonomic 

interpretations. Obtaining body size information from fossils is therefore of great interest to 

palaeobiologists (Gingerich et al., 1982; Garland, 1985; Grabowski et al., 2015; Slavenko et al., 

2016; Campione, 2017), but taphonomic processes render most fossil specimens incomplete 

(Behrensmeyer, 1984). Therefore, their overall linear dimensions can be difficult to estimate and 

palaeobiologists often use parts of the skeleton to extrapolate the size of an animal from bone 

fragments. Some skeletal data, such as tooth, skull or femur dimensions, have been shown to 

have a strong correlation with body size (Gingerich et al., 1982; Farlow et al., 2005; Young et al., 

2011). However, most of this work has been done on mammals, and relatively little has been 

done on small non-mammalian vertebrate such as lizards and frogs (Esteban et al., 1995). 

Squamate reptiles (lizards and snakes) in the fossil record are often represented by 

disarticulated cranial material that is often broken. Within squamates, lizards are most often 
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represented by the jaw bones (Worthy, 2016; Gray et al., 2017), the dentary (lower) and the 

maxilla (upper). The character rich nature of the jaw bones means they are readily assigned to 

major clades (e.g. families and major subgroups within families), but we generally lack the ability 

to affiliate them with more precise taxonomic groups (Bell and Mead, 2014). Even without 

precise taxonomic assignments, jaw bones can tell us about aspects of lizard biology, such as 

body size. In this study, we use the Australian agamid clade as an example and establish a 

method for estimating their body size from lizard jaw bones. Australian agamids arrived in 

Australia around 30 million years ago (Ma), and their current diversity is known to be around 108 

species. Although their evolutionary success is apparent from their current ecological and 

taxonomic diversity, little exploration has been done into their evolutionary history since they 

first appeared in Australia (Hugall et al., 2008) and this is largely due to a poor understanding of 

their assemblages in the fossil record.  

We assemble a data set of maxillary and dentary tooth row lengths for modern Australian 

agamids and test our approach using fossil maxilla from South Australian cave deposits (Kelly 

Hill Caves and Naracoorte Caves). We report on the usefulness of the maxilla and dentary bones 

as estimators of body size, with the overall aim of providing a method to predict body size in 

assemblages of fossil agamid lizards.  
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Methods 
We used jaw bones from specimens of extant species with known snout-vent length (SVL). 

Specimens were from South Australian Museum, Queensland Museum, Western Australian 

Museum, Melbourne Museum, University of Texas at Austin, and the Field Museum of Natural 

History in Chicago. Although we collected baseline data from specimens of living species, we 

needed our data set to be applicable to fossil specimens. Therefore, we chose a parameter that 

would be frequently available despite the damage often evident in fossil material robust, given 

that fossil material is often damaged: tooth row length (see Fig. 7.1). We measured the tooth row 

length of 174 dentaries and 189 maxillae. 

We estimated the linear dimension of body size: snout-vent length, rather than body 

mass (weight), because SVL measurements were more commonly available for the representative 

museum specimens used as comparative material. Also, SVL and body mass are closely related to 

one another in lizards (Meiri, 2010). To determine whether we could estimate SVL from tooth 

row length, from either the dentary or maxilla, we used ordinary least squares regression. Both 

tooth row lengths and SVL were log transformed for this analysis. Tooth row length was 

regressed against SVL, and correlation between these two variables was estimated using the 

correlation coefficient.  

Figure 7.1 ‒ Disarticulated maxilla (top) and dentary (bottom) of Ctenophorus pictus 
(South Australian Museum specimen R07691), showing the boundaries used to measure 
tooth row length. 
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We tested our approach by measuring the tooth row lengths of 17 fossil agamid maxillae 

specimens (registered at South Australian Museum) sorted from three South Australian cave 

deposits: Wet Cave and Blanche Cave at the Naracoorte Caves, and Kelly Hill Caves on 

Kangaroo Island (see Fig. 7.2). We used the fossil tooth row lengths and our calculated 

coefficients to estimate the SVL of the specimens, and provide an example of how the SVL may 

be used to make interpretations about fossil deposits.  

Figure 7.2 ‒ Labial (left) and lingual (right) views of agamid fossil maxillae from Wet 
Cave (blue plate) and Blanche Cave (green plate) at Naracoorte Caves, and Kelly Hill 
Caves on Kangaroo Island (black plate), used to provide an example of estimating and 
interpreting snout-vent length. All specimens are registered at the South Australian 
Museum. Scale bars = 5 mm. 



C H A P T E R  7  –  E s t i m a t i n g  b o d y  s i z e  f r o m  f o s s i l  j a w s  
 

151 
 

Results 
Maxillary and dentary tooth row length are both significantly positively correlated with snout-

vent length (SVL) (see Fig. 7.3). The correlation coefficients were relatively high for both the 

maxilla and dentary, and indicate that 86% (for the maxilla) and 87% (for the dentary) of the 

variation in tooth row length in our samples can be explained by SVL. All of the most distinct 

outliers above the upper 95% confidence interval for both the maxilla and dentary were Moloch 

horridus, which was expected due to its distinctive morphology. We used the coefficients resulting 

from the ordinary least squares regression (in Fig. 7.3) to estimate SVL for the fossil specimens 

in Figure 7.2. 

In the Wet Cave deposits, estimated SVL values range from 76.07 mm to 198.65 mm 

(see Table 7.1). Several of these specimens tend towards the higher end of the range of observed 

SVL values for the extant Australian agamids, many of which cannot achieve such a large size 

during their lifetime. We may therefore use this information to tentatively infer that the largest 

fossil belonged to the largest local agamid genus (Pogona). For the Blanche Cave deposits, 

estimated SVL ranges from 67.59 mm to 73.85 mm. For the Kelly Hill Caves deposits, estimated 

SVL ranges from 51.83 mm to 89.74 mm. Most of the specimens in both the Blanche Cave and 

Kelly Hill Caves deposits tend towards the lower end of the SVL range of all sampled agamids, it 

is therefore likely that many of these specimens are either juvenile or smaller agamid species. 

Figure 7.3 ‒ Snout-vent length (SVL) versus tooth row length (TRL), both log 
transformed, for dentary (left) and maxilla (right), with 95% confidence interval. Includes 
coefficients and linear equations used to estimate SVL of fossil specimen. 
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Table 7.1 ‒ List of fossil maxillae specimens from Australian cave deposits and snout-
vent length (SVL) estimates (with 95% confidence interval) based on tooth row length. N 
= Naracoorte Caves; KI = Kangaroo Island. Specimens are all registered at South 
Australian Museum. 

  

 

 

  

Specimen Deposit Tooth row 
length (mm) 

SVL ± 3.73 
(mm) 

P51926 Wet Cave (N) 11.04 76.52 

P51923 Wet Cave (N) 10.98 76.17 

P51927 Wet Cave (N) 28.65 198.65 

P51921 Wet Cave (N) 16.33 113.24 

P51924 Wet Cave (N) 10.97 76.07 

P51922 Wet Cave (N) 23.98 166.27 

P51905 Blanche Cave (N) 9.75 67.59 

P51899 Blanche Cave (N) 10.65 73.85 

P51900 Blanche Cave (N) 10.16 70.43 

P51898 Blanche Cave (N) 10.61 73.58 

P53915 Kelly Hill Caves (KI) 10.64 73.79 

P53921 Kelly Hill Caves (KI) 12.32 85.43 

P53917 Kelly Hill Caves (KI) 11.78 81.69 

P53918 Kelly Hill Caves (KI) 12.94 89.75 

P53920 Kelly Hill Caves (KI) 9.19 63.73 

P53919 Kelly Hill Caves (KI) 7.48 51.83 

P53816 Kelly Hill Caves (KI) 11.48 79.63 
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Discuss ion 
We present the first report of quantitative data for estimating the body size of Australian fossil 

agamids from jaw bones. We found that there was a positive linear relationship between snout-

vent length (SVL) and tooth row length, for both the maxilla and dentary. Where comparative 

material is concerned, the SVL measurement is of particular interest, since it was common for 

many skeletal specimens in skeletal collections that we used, which are used as comparative 

material, to be accompanied by SVL data, but not body weight data. Standard guides for 

Australian reptiles such as Cogger (2014), and Wilson and Swan (2013), also report SVL in 

species descriptions. Although we estimated the linear dimension of body size, there is a strong 

correlation between SVL and body mass for the agamid family (Meiri, 2010). Therefore any 

estimation of SVL may also be used to make inferences about the approximate body mass of a 

particular individual.  

Estimating body size in this way may allow inferences to be made about individual fossil 

specimens. For instance, if a particularly small body size is estimated for a fossil specimen, that is 

not consistent with the average observed size for any adult agamid, then it is possible that 

particular specimen is from a juvenile. Furthermore, there are only a certain few extant 

Australian agamids have an average adult SVL larger than 150 mm (Wilson and Swan, 2013), 

these include Chlamydosaurus kingii (258 mm), Intellagama lesueurii (245 mm), Pogona barbata (250 

mm), and Pogona vitticeps (250 mm). Therefore, assuming that there has been no significant body 

size evolution, we can narrow down the possible comparative species pool for further analyses 

that use apomorphic characters (Bell et al., 2010; Stilson et al., 2017), or landmarks (Gray et al., 

2017). The largest specimens from Wet Cave are most likely to be comparable to species of 

Pogona, since the historical and current distributions of Chlamydosaurus and Intellagama are both 

considerably more northern. At the other end of the scale, the smallest specimen (SVL estimate 

of 51.83 mm), from Kelly Hill Caves, is likely to be a juvenile, since there are relatively few 

agamids (but still some possibilities, e.g. Ctenophorus chapmani) with a recorded adult size this 

small. Even though some species are this small as adults, most of these have a different 

geographical distribution, such that the likelihood of them occurring in this deposit is low.   

Identifying biases, such as the tendency towards smaller animals that we observe in the 

Blanche Cave and Kelly Hill Caves deposits, is important. The skulls of agamid lizards have been 

shown to vary dramatically through growth (see Chapter 4), such that a young dragon of a 

particular species may look more similar to a different dragon species that it does to its own adult 

counterpart. Current comparative skeletal data sets largely comprise adult representatives of 
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species, and therefore, if fossils are from juvenile animals, they may not be morphologically 

comparable. Any indication of body size bias may lead to further investigation into the way 

fossils are accumulated in their respective deposits. For example, animals that prey on lizards and 

transport them to caves may find smaller lizards easier to kill or carry, whether they are juveniles 

or smaller species (e.g. Leopole and Wolfe, 1970; Debus et al., 2004). A bias towards smaller 

lizards might also be indicated by observations of abundant juvenile lizards taking refuge in a 

particular cave (Reed, 2018) matched with an abundance of juveniles in the fossil assemblage in 

that cave (in less damaged specimens, juveniles can be identified by an underdeveloped tooth 

row). This kind of information about modes of accumulation can help palaeontologists make 

more informed interpretations of specific faunal assemblages.  

There is a strong correlation between SVL and body mass in other squamate families that 

occur in the Australian fossil record, including Gekkonidae, Scincidae, and Varanidae (Meiri, 

2010). Like agamids, their jaw bones are also commonly recovered from Australian fossil 

deposits (Hutchinson and Mackness, 2002; Archer et al., 2006; Reed and Bourne, 2009; 

Hollenshead et al., 2010). It is likely that tooth row lengths from other small reptile groups may 

be used in the same way to infer body size in the fossil record. Assembling an assortment of 

coefficients to estimate body size from jaw bones of other Australian reptiles would provide a 

useful resource for palaeontologists, and would allow inferences to be made about the 

accumulation and taphonomy processes in cave deposits, as well as contributing to 

palaeoenvironmental interpretations about reptile assemblages. 

Supplementary  mater ia l  
Electronic files 

File ES7.1 ‒ Specimen numbers with tooth row length and snout-vent length data (CSV). 
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CHAPTER 8 ─ Geometric 
morphometrics provides a more 

objective approach for interpreting 
the affinity of fossil lizard jaws 

 

Jaimi A. Gray, Matthew C. McDowell ,  Mark N. Hutchinson, Marc E. H. Jones  

Abstract  
The jaws of lizards commonly occur in Quaternary fossil deposits and have the potential to 

inform our understanding of recent changes in climate and environment. However, 

interpretation of their taxonomic affinity is frequently difficult due to lack of morphological 

characters and identifications are sometimes no more than subjective visual comparisons. Here, 

we evaluate the taxonomic affinity of a maxilla from the Holocene of Kelly Hill Caves 

(Kangaroo Island, South Australia) by comparison to a sample of modern agamid lizards using 

computer models generated from X-ray computed tomography data and three-dimensional 

geometric morphometrics. To represent the shape of the maxilla we used 22 fixed landmarks and 

30 semi-landmarks placed at equivalent points on the three-dimensional surface files of the 

maxillae. Procrustes distances show that with respect to overall shape difference, the fossil does 

not closely resemble Ctenophorus decresii, which is the only agamid currently present on Kangaroo 

Island. Preliminary comparisons to other candidate agamid taxa from southeastern Australia 

suggest instead that the fossil is most similar to Amphibolurus muricatus and A. norrisi and least 

similar to Tympanocryptis lineata. Geometric morphometrics shows promise as a more objective 

means of quantifying and characterising shape differences. However, reliable identifications 

require sufficient specimen collections that include ontogenetic and other sources of variation. 

Keywords: Agamidae, geometric morphometrics, Holocene, landmarks, maxilla, morphology, 

Squamata, taxonomy
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Introduct ion 
The study of fossils provides a unique window for research into the evolutionary history of taxa. 

The age, geographic origin, and palaeoenvironment of fossils provide important sources of 

evidence for the evolution of morphological characters, past distribution of taxa, and wider 

environmental changes. This is particularly true for recent fossils (< 500 ka) that may have close 

living relatives or even represent living species with ecological tolerances that are well 

understood. However, for such fossils to be of any use, it must first be possible to identify them 

to some taxonomic level with confidence. The reliability of the alpha taxonomy is of high 

importance because it is often used in broader studies to quantify past changes in diversity or 

constrain molecular divergence analyses (e.g. Bell et al., 2010; Parham et al., 2012; Mannion et al., 

2015; Slavenko et al., 2016). 

The Holocene-Pleistocene fossil reptile assemblages of Australia have not been well 

studied in comparison with their mammal counterparts (e.g. Travouillon et al., 2006). Members 

of reptile clades can be found in samples from many fossil localities, potentially representing 

most of the major components of an exceptionally diverse living squamate fauna. However, 

interpretation is inhibited by a poor understanding of reptile osteology at low taxonomic levels 

and an inability to make objective comparisons. Variation within and between species tends to 

involve subtle differences in the shapes of processes, and relative proportions which can be a 

challenge to compare holistically (Evans, 2008; Hollenshead et al., 2010; Sherratt et al., 2015). 

Specific characters can be defined and used as apomorphies (e.g. Hutchinson, 1997), but this 

requires some baseline knowledge of variation within the taxon being examined, and such data 

may not be available (Bell and Mead, 2014). Many skeletal collections lack adequate samples of 

lizards and the published descriptions and images can be of limited use because they are most 

often focused on the articulated cranium as a whole. The taxonomy of modern species tends to 

be derived from analysis of genetic data and external characters (e.g. scale number, proportions) 

and does not tend to provide any information on osteological characters (e.g. McLean et al., 

2013). Authors documenting fossils tend to provide outline drawings or photographs of 

specimens (Covacevich et al., 1990; Hocknull et al., 2007; Prasad and Bajpai, 2008) which assist 

in broad comparisons but cannot convey the full three-dimensional aspect of the bones. Tooth 

positions can provide more objective comparisons (e.g. Hollenshead et al., 2010), but our 

understanding of the extent of associated variation in all taxa is poorly developed. Moreover, it 

may not be possible to count tooth positions in a fossil due to tooth wear or breakage. 
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 Although it has yet to be widely applied to the isolated bones of Quaternary reptile 

fossils, geometric morphometrics provides an alternative and potentially more objective 

approach for characterising and comparing them (Adams et al., 2004). For comparing anatomical 

structures it generally involves the use of landmarks and outlines to quantify variation amongst 

specimens and analyses require multivariate statistics. Geometric morphometrics is considered 

superior to previous forms of biometrics (e.g. isolated linear measurements) because it records 

the geometric relationship between a cloud of landmarks, or set of curves, and thus provides a 

holistic measurement of overall shape in contrast to isolated linear measurements (Adams and 

Collyer, 2009). This facilitates standardisation between specimens of different size via Procrustes 

superimposition and permits visualisations that aid interpretation. Over the past decade 

geometric morphometrics has become an increasingly accessible approach for morphological 

analyses, and has been used to characterise and compare shape variation amongst two-

dimensional images of reptile skulls (e.g. Stayton, 2005; Jones, 2008; Meloro and Jones, 2012; 

Sanger et al., 2013; Fabre et al., 2014; Openshaw et al., 2016), and it has also been applied to 

three-dimensional reptile anatomy using X-ray computed tomography (Parr et al., 2012; McCurry 

et al., 2015). In at least one case it has been used as an approach to associate fossils with modern 

taxa (Dollion et al., 2015). 

Here we use three-dimensional (3D) geometric morphometrics (see Zelditch et al., 2012) 

to more objectively characterise the maxillae of modern agamid lizards from southern Australia 

to facilitate comparisons with a recent (< 20 ka) fossil specimen from Kangaroo Island. 

Ctenophorus decresii is the only agamid species present on Kangaroo Island today but fossil remains 

provide the opportunity to discover whether different taxa were present there in the past. 
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Mater ia l  and methods 

Foss i l  Mater ia l  
We analysed an almost complete agamid fossil maxillae (South Australian Museum specimen 

P53917) from Kelly Hill Caves on Kangaroo Island. The specimen was recovered from 

sediments with an age range of 11,645–10,360 years before present (95% confidence interval), 

according to a chronological model developed by MCM using Bayesian analysis. The fossil 

assemblage was carefully excavated layer by layer and dated using U-Th dating of speleothems, 

AMS radiocarbon-dating of bone, and optically stimulated luminescence of quartz grains. 

Excavated sediment was wet-sieved using 1.5 mm mesh. The residues of small vertebrate 

remains were dried then sorted (picked) for taxonomically identifiable specimens. The specimen 

examined here is entirely removed from the matrix and has excellent surface preservation clearly 

showing the location of foramina and sutural facets (see Fig. 8.1). It is essentially complete 

except that the distal edges of the posterodorsal process may be rounded and a portion of the 

dorsal edge of the facial process is broken and missing.  

Modern  Mater ia l  
We characterised ten modern species, each represented by a single specimen from South 

Australian Museum: Amphibolurus muricatus (R21375), A. norrisi (R60767), Ctenophorus decresii 

(R28618), C. fordi (R34489), C. pictus (R28608), Pogona barbata (R32503), P. vitticeps (R18545), 

Tympanocryptis lineata (R59721), and Rankinia diemensis (R269B). These taxa represent agamids 

living in South Australia today or that have been reported from South Australian fossil deposits 

(Reed and Bourne, 2009; Government of South Australia, 2013). Our set of specimens was 

intended to be a minimum sampling in order to assess the ease with which different species 

could be characterised, and used as a pilot data set for comparison of the modern fauna with 

recent fossils.  

The fossil specimen was subjected to micro X-ray computed tomography (CT) at 

Adelaide Microscopy using a Bruker Skyscan 1076 at a resolution of 9 microns. CT scan 

reconstructions were obtained for each comparison species from the scanned specimen database 

at South Australian Museum. All CT scans used in this study were reconstructed using NRecon 

software provided by the scanner manufacturer (NRecon, version 1.6.9.4, Skyscan, Kontich, 

Belgium). The reconstructed scans were digitally segmented to extract the right maxilla from the 

cranium, and surface files were created using the “segmentation editor” in Avizo v 8.1 

(Visualization Sciences Group, 2013) with minimal smoothing (Fig. 8.1, see also supplementary 

material: File ES8.1 for ply files).  
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Figure 8.1 ‒ Computer models of agamid maxillae surfaces in labial view. Specimens (all 
from South Australian Museum): A, Pogona vitticeps (R18545); B, Amphibolurus 
muricatus (R34730); C, A. norrisi (R60767); D, P. barbata (R32503); E, Ctenophorus fordi 
(R34489); F, Tympanocryptis lineata (R59721); G, C. decresii (R28618); H, C. pictus 
(R28608); I, Rankinia diemensis (R269B); J, unnamed fossil (P53917). Abbreviations: ap, 
anterior process; f, foramen; fp, facial process; nr, narial ridge; pp, posterior process; 
snm, subnarial margin; som, suborbital margin; t, tooth. Scale bar is 5mm. 
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Landm ark ing 
Landmarks were placed on the surface files of the fossil and comparative maxillae using the 

software package “IDAV Landmark” (Institute for Data Analysis and Visualisation, 2005). 

Twenty-two fixed landmarks and 30 semi-landmarks were placed at equivalent points on the 3D 

surface files: at the most extreme points of particular features, and along the major curves 

(shown in Fig. 8.2, see also supplementary material: Table S8.1 for landmark definitions and Fig. 

S8.1 for nomenclature). Each fixed landmark consists of a single point on the surface of the 

bone with x, y, z coordinates, and each semi-landmark is part of a collection of ten evenly spaced 

points along a curve (see supplementary material: File ES8.2 for coordinates). For the fossil 

specimen, missing landmarks (2 and 7) were estimated using a multivariate regression method 

(where each landmark with missing values is regressed on all other landmarks for the set of 

complete specimens, and the missing landmark values are predicted by this linear regression 

model), using the “estimate.missing” function in the R package geomorph (Adams and Otárola-

Castillo, 2013). 

Figure 8.2 ‒ Landmarks used in this study. Single point landmarks are shown in orange, 
semi-landmarks are shown in pink. Surface model of an example maxilla shown in labial 
view (A), lingual view (B), and anterior view (C). See supplementary material: Figure 
S8.1 for nomenclature used to describe landmarks, and Table S8.1 for corresponding 
landmark definitions. 
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Shape  Analys i s  
We repeated the following analysis on two data sets: one data set contained all the extant 

comparison specimens, and the other contained all the extant comparison specimens and fossil 

specimen P53917. Both the Procrustes superimposition and principal component analysis (PCA) 

were carried out using the R package geomorph. 

We performed a Procrustes superimposition to scale the sets of landmarks and fit the 

shapes to each other, to remove the shape differences related to absolute size (but not shape 

allometry) (Rohlf and Slice, 1990). This effectively fitted the landmark constellations around a 

mean constellation. Two distance matrices containing the Procrustes distances between each 

specimen for both data sets were calculated using geomorph in R, which provided an explicit and 

quantitative measure of overall shape similarity. Semi-landmark tangent sliding directions were 

specified using the “Procrustes distance criterion” (Bookstein, 1997). Next, we performed a PCA 

to find the linear combination of variables that represent maximum variance within the current 

specimen sample. A Mantel test (Mantel, 1967) was performed in R to evaluate the similarity of 

the Procrustes distances of the extant specimens resulting from analysis of both data sets. 

We used the geomorph R package to first produce a mesh whose shape was defined by the 

mean shape of its landmark coordinates. We then warped this mesh into the shapes represented 

by the maximum and minimum values of PC1 and PC2. This provided a visualisation of the 

PCA results from which we could determine major shape differences for PC1 and PC2. All mesh 

warping was performed using the thin-plate spline method (Bookstein, 1989). 
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Results 

Extant  Spec imens 
The Procrustes distances (see top triangle of Table 8.1), indicate that the species pairs closest to 

one another in overall shape are Amphibolurus muricatus - A. norrisi, A. muricatus - Ctenophorus pictus, 

A. norrisi - Pogona barbata, and C. pictus - P. vitticeps. The two taxa most dissimilar to others are C. 

fordi and Tympanocryptis lineata, with quite large Procrustes distances between them and other 

specimens included in the analysis. The species-pairs most dissimilar to one another were T. 

lineata - A. norrisi and T. lineata - C. fordi. Ctenophorus decresii is most similar to C. pictus. 

The PCA (Fig. 8.3) reveals that PC1 (34.9% of total shape variation) describes shape 

differences involving the anterior process, where it ranges from being relatively deep at negative 

values (e.g. A. norrisi), to relatively shallow at positive values (e.g. T. lineata). It also describes the 

shape of the facial process, from a swept back process that is relatively broad at its base at more 

negative values (e.g. P. vitticeps), to an upright process that is narrow at its base, at more positive 

values (e.g. T. lineata). The overall shape also contrasts between a dorsoventrally deep maxilla at 

more negative values, to a more dorsoventrally shallow maxilla at more positive values. Maxillary 

shape associated with minimum and maximum values of PC1 are shown in Figure 8.4. 

PC2 (21.0% of variance) describes differences in shape of the suborbital margin, which is 

quite smooth at more positive values (see A. norrisi), and more irregular at more negative values 

(see C. fordi). The subnarial margin also contrasts considerably in shape, from being small and 

having an upright anterior margin at negative values, to being large with a sloped anterior margin 

at more positive values. The anterior process graduates from having a subtle bifurcation at 

negative values, to having a pronounced bifurcation at positive values. The shape of the maxillae 

for this PC differs from being curved along the long axis at negative values, to being relatively 

straight at positive values. Maxillary shape associated with minimum and maximum values of 

PC2 are shown in Figure 8.4. PC1 mainly recognises the difference between T. lineata and other 

agamids whereas PC2 mainly recognises the difference between species of Ctenophorus. 

Amphibolurus muricatus and A. norrisi have similar scores for PC1 and PC2. This is also true for P. 

barbata and P. vitticeps. The three species of Ctenophorus have similar scores for PC1. As indicated 

by the Procrustes distances, T. lineata and C. fordi are particularly different to everything else in 

the sample, plotting at extremes of PC1 and 2 respectively. PC3 (17.0%) mainly recognises the 

difference between P. vitticeps and P. barbata whereas PC4 (9.7%) recognises the differences 

between Rankinia diemensis and all other agamids. 
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Table 8.1 ‒ Pairwise Procrustes distances. Top triangle: all the extant comparison 
specimens included in the analysis. Bottom triangle: all the extant comparison 
specimens included in the analysis, after the inclusion of a not yet identified fossil 
specimen. Colours: closer pairwise distances in darker shades of green. Abbreviations: 
AM, A. muricatus; AN, A. norrisi; CD, C. decresii; CF, C. fordi; CP, C. pictus; PB, P. 
barbata; PV, P. vitticeps; RD, R. diemensis; TL, T. lineata; FS, fossil specimen. 

 
 

Figure 8.3 ‒ Principal component analysis results showing the major axes of variation 
amongst a sample of maxillae from extant agamid lizards. Left: PC1 vs. PC2. Right: PC3 
vs. PC4. Points scaled according to centroid size. Abbreviations; AM, A. muricatus; AN, 
A. norrisi; CD, C. decresii; CF, C. fordi; CP, C. pictus; PB, P. barbata; PV, P. vitticeps; 
RD, R. diemensis; TL, T. lineata. 

 

  AM AN CD CF CP PB PV RD TL 
AM  0.083 0.119 0.156 0.095 0.115 0.107 0.107 0.202 
AN 0.083  0.128 0.167 0.115 0.096 0.14 0.116 0.211 
CD 0.118 0.127  0.133 0.104 0.113 0.148 0.126 0.172 
CF 0.155 0.166 0.132  0.141 0.165 0.173 0.153 0.209 
CP 0.094 0.114 0.103 0.14  0.119 0.097 0.112 0.158 
PB 0.114 0.096 0.112 0.164 0.118  0.154 0.133 0.192 
PV 0.106 0.139 0.147 0.172 0.096 0.152  0.136 0.205 
RD 0.107 0.115 0.125 0.151 0.112 0.132 0.135  0.194 
TL 0.199 0.208 0.169 0.206 0.155 0.189 0.202 0.191  

FS 0.112 0.117 0.138 0.162 0.123 0.14 0.127 0.121 0.209 
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Figure 8.4 ‒ Warped surface meshes (produced using the thin-plate spline method), in 
labial view, that represent the shape of the maxillae at the minimum and maximum 
values of PC1 and PC2. 

Foss i l  Spec im en 
The Procrustes distances of the fossil specimen (see bottom triangle of Table 8.1) show that it is 

most similar in shape to A. muricatus, and least similar to T. lineata. The fossil is also quite 

dissimilar to C. decresii. A Mantel test comparing the Procrustes distances between extant 

specimens for both data sets produced an observed correlation coefficient of 0.999, and a P-

value of 0.001 (at 999 permutations). These results indicate that the inclusion of the fossil 

specimen does not greatly alter the distances between the modern specimens. The pairs which 

are most similar (A. muricatus-A. norrisi) or dissimilar (T. lineata-A. norrisi) amongst the extant 

samples remain the same.  

The fossil has scores for both PC1 and PC2 (together 51.6 % of total shape variation, see 

Fig. 8.5) that are similar to those of the two species of Amphibolurus having a relatively deep 

anterior process, swept back facial process that is wider ventrally, and deeper in shape dorso-

ventrally. With respect to PC3 (15.6%), the fossil has similar scores to C. pictus and C. fordi and 

for PC4 (9.6%) it has similar scores to R. diemensis. Inclusion of the fossil in the PCA has little 

effect on the shape differences described by the main axes of shape variation (PCs 1–4) or the 

distribution of the extant species on those PCs. The fossil does not plot near C. decresii on any of 

the four main axes of variation (76.8%). 
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Figure 8.5 ‒ Principal component analysis results showing the major axes of variation 
amongst a sample of maxillae from extant agamid lizards after inclusion of a not yet 
identified fossil specimen, P53917. Left: PC1 vs. PC2. Right: PC3 vs. PC4. Points scaled 
according to centroid size. Abbreviations; AM, A. muricatus; AN, A. norrisi; CD, C. 
decresii; CF, C. fordi; CP, C. pictus; PB, P. barbata; PV, P. vitticeps; RD, R. diemensis; 
TL, T. lineata. 
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Discuss ion 
The fossil maxilla does not have a shape consistent with that of C. decresii, the only agamid 

currently present on Kangaroo Island. Instead, it most closely resembles the maxilla of species of 

Amphibolurus. One species, A. norrisi, currently occurs on two mainland areas immediately 

adjacent to Kangaroo Island (southern Yorke and Eyre Peninsulas), suggesting a good habitat 

match for this species with Kangaroo Island. If this was the species present, its loss from the 

island could be explicable by the isolation of the island at 9 ka (Adams et al., 2015), possibly due 

to the cooling effect of the surrounding ocean, or as a consequence of the island area effect 

(MacArthur and Wilson, 2001). Confident allocation of the fossil specimen will require greater 

sampling of the living candidate species, (A. norrisi and A. muricatus), both to ensure that these 

two can be distinguished from each other and to demonstrate to a higher degree of probability 

that the fossil falls within their range of variation. However it is notable that even single 

individuals of the candidate species appear to provide a useful framework for comparing the 

shape of the fossil and evaluating its likely identity.  Our results provide the first evidence that in 

the past 20,000 years Kangaroo Island supported a different and possibly more diverse reptile 

fauna.   

 Geometric morphometric analysis of 3D scans provides a very promising approach for 

more objective comparisons of microvertebrate fossils. Previous geometric morphometric 

analyses of reptiles were carried out on the complete cranial structure, but we show here that a 

similar approach may be used for the analyses of the isolated elements often recovered in fossil 

deposits. Although the sample size in our pilot study limits our interpretations, we are still able to 

provide a repeatable, explicit, and quantitative index of the overall shape differences between 

specimens and can examine the relative distribution of the specimens in an empirical shape 

space. A larger sample size could be expected to allow much greater discrimination power (Close 

and Rayfield, 2012; Wilson et al., 2013). This approach would be a potentially powerful tool for 

analysis of new fossils and evaluation of previous identifications (e.g. Holman and Case, 1988; 

Hsio et al., 2016).  

The method remains somewhat subjective with respect to landmark choice and sample 

used, but, once established, it allows explicit comparisons in terms of similarities and differences 

in shape. We chose landmarks with the aim of providing the best and most balanced 

representation of the bone shape and also so that they may be placed unambiguously on every 

specimen under the same definition (see supplementary material: Figure S8.1 and Table S8.1). 

Although we made our best effort to get the most likely species for comparison, it remains 
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possible that the deposits contain taxa that we did not include in our data set. Nevertheless the 

extreme unlikelihood of some matches may still be indicated. Although we acknowledge that a 

simple equivalence between a fossil and a similarly shaped living species risks over-interpretation 

(Bell et al., 2010), nevertheless it seems likely that the most successful comparisons will be with 

the younger sites where it is increasingly probable that the number of extinct species is lower. 

Geometric morphometrics thus adds another tool to reduce the subjectivity and “covert biases” 

noted by Bell et al. (2010).   

The ability to estimate missing landmarks removes a long standing restriction of 

geometric morphometrics (Arbour and Brown, 2014). Before that development, missing 

landmarks needed to be removed from all specimens in the analysis, effectively excluding much 

of the shape information captured by the respective landmarks. This approach maximises the 

morphometry of all specimens, increasing the power to discriminate between species despite 

within species variance.  
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CHAPTER 9 ‒ Summary and conclusions 

Address ing the pr imary  a ims 
Collectively, the chapters of this thesis present the first in-depth quantitative exploration of 

variation in skull morphology within and among species of Australian dragon lizards. I have 

gathered a large amount of quantitative morphological data, at various taxonomic levels, 

characterised the variety of skull shapes seen in Australia’s dragon lizards, and placed them in an 

ecological and evolutionary context. Since the arrival of their ancestor to Australia 30 million 

years ago (Ma), skulls of amphibolurine lizards have undergone a great deal of morphological 

change. I was able to significantly link these changes with several factors, including phylogeny, 

allometry, and ecology. Undoubtedly, these aspects all closely interact and entwine with one 

another to contribute to the evolution of amphibolurine skull shape in a complex manner. I have 

endeavoured to disentangle them from one another and provide a thorough understanding of 

evolution of the amphibolurine skull. To achieve this end, I addressed the four “main aims” 

outlined in the first chapter.  

A I M  1  –  E x p l o r e  d i s p a r i t y  

Am phibolur ines  are  a  h ighly  d i spar ate  c lade  that  explores  nove l  
areas  of  mor phospace  

Two-dimensional measurements of skull proportions revealed that of all the iguanian families 

sampled, the Agamidae have the highest level of disparity. Not only is disparity of the 

amphibolurine clade considerably higher than we might expect for a clade of its taxonomic 

diversity, they also occupy almost the entirety of the Agamidae cranial morphospace. 

Furthermore, amphibolurines occupy exclusive areas of the morphospace, unexplored by any 

other sampled taxa, thereby represent much of the total disparity observed in Agamidae. My 

characterisations of three-dimensional skull shapes revealed that the two clades that make up the 

core of the amphibolurine radiation, the Ctenophorus group and the Amphibolurus group, did not 

have significantly different amounts of disparity. Some members of both groups occupied similar 

morphospace, but members of both groups also explored areas of exclusive morphospace. These 

novel skull shapes were associated with specialised ecological life habits. Lizards with exclusive 

skull shapes included burrowers (with short, flat faces), and rock dwellers (with dorsoventrally 

flattened heads), and it seems that specialisation for different environments is a major factor 

contributing to departures from the mean shape. In Chapter 4, I used two-dimensional 
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geometric morphometrics to quantify and compare the disparity between juvenile and adult 

skulls of amphibolurine species. The significant difference in disparity between juvenile and adult 

skull shapes indicated that ontogeny was playing a vital role in the evolution of the array of 

different skull shapes in amphibolurine lizards, and this finding facilitated the exploration of my 

second aim. 

A I M  2  –  I n v e s t i g a t e  o n t o g e n e t i c  p a t t e r n s  

Var iat ion  in  ontogenet ic  patter ns  p lays  a  major  ro le  in  
ev olut ion  o f  sk ul l  mor phology  

For young dragon lizards, the journey to adulthood is accompanied by dramatic and varied 

increases in size, suggesting that ontogenetic patterns play an important role in their skull shape 

evolution. My exploration of skull shapes in different species of amphibolurines at different 

ontogenetic stages revealed that different species have relatively similar skull shapes as juveniles. 

During growth, they become more disparate in their shape, and by adulthood, different species 

exhibit a spectrum of different skull shapes. To achieve this disparity, amphibolurine species do 

not follow a common ontogenetic pattern. Although some different skull shapes are produced 

through variation of a common trajectory (implying heterochrony), there are several departures 

from this, and consequently, a range of different ontogenetic trajectories among amphibolurine 

lizards. In contrast, an investigation into tooth counts during growth in amphibolurines in 

showed minimal departures from the common ontogenetic pattern, indicating that each 

amphibolurine species grows additional teeth at a similar rate, even though different species may 

have different tooth counts at a given size. Moreover, for a given species, different elements of 

anatomy do not necessarily share common postnatal developmental patterns. Therefore, to gain 

a thorough understanding of these patterns, ontogenetic variation must be addressed on a case-

by-case basis for particular anatomical elements. 

A I M  3  –  C h a r a c t e r i s e  s k u l l  s h a p e  a n d  i d e n t i f y  w h a t  i n f l u e n c e s  v a r i a t i o n  

Am phibolur ine  sku l l  shape  has  been  in f luenced  by  s i ze ,  
phy logeny,  and  ecology  

I detected significant associations between skull shape and three major factors: size, phylogeny, 

and ecological life habit. A significant phylogenetic signal was detected for the distribution of 

amphibolurine species in the cranial morphospaces in Chapters 4 and 5, and the distribution of 

points in both morphospaces seemed to reflect this at the broader taxonomic levels. However, at 

generic and species levels this signal was not particularly strong or distinctive. Even though 

heredity was playing an important role in skull shape, there was more to the story. I discovered 
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that evolutionary allometry accounts for a large amount of skull shape in adult amphibolurines, 

demonstrating that different skull shapes can be achieved through differences in size. The most 

striking result was the significant and prominent association between ecological life habit and 

skull shape. In Chapter 5, life habit was more closely associated with skull shape than 

evolutionary allometry or taxonomic affiliation, and this gave convincing evidence for the 

adaptive character of amphibolurines. 

A I M  4  –  O b t a i n  k n o w l e d g e  t h a t  w i l l  a d v a n c e  f o s s i l  i n t e r p r e t a t i o n  

Contr ibut ions  to  the  interpretat ion  of  agamids  in  the  Austr a l ian 
foss i l  record  

My findings advance our understanding of skull morphology of amphibolurine agamids, and 

consequently, we now have an improved level of baseline knowledge for interpreting agamids in 

the Australian fossil record, including a method for estimating the body size of agamids from jaw 

bones. Furthermore, the striking association between ecological life habit and skull shape points 

towards a potential for using fossil cranial elements to make inferences about the way an extinct 

animal may have interacted with its environment. I also explored the possibility of using 

geometric morphometric methods to make taxonomic inferences about fossil specimens. It 

seems there is promising potential for this method, if the sample of comparative material can be 

expanded to encompass more species and ontogenetic stages.  
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Advances in knowledge about  agamid skul ls  
These chapters have built on the work of Siebenrock (1895), Moody (1980), and Evans (2008), 

whose important studies remain the only summaries of osteology of the skull as a whole in the 

agamid family. They also expand on the only work so far that has documented, in detail, patterns 

of variation in cranial elements among members of the Australian radiation of agamids, by 

Hocknull (2002), and Stilson et al. (2017). These works provided crucial first steps towards 

building a framework of qualitative osteological characters. Moreover, they identified the need 

for a rigorous evaluation of morphological differences within and among taxa to gain a more 

adequate understanding of variation and its drivers. Throughout the chapters of this thesis, I 

have provided an important advancement of this important work by exploring the quantitative 

patterns of variation in members of the Australian radiation of agamid lizards (see Fig. 9.1).  

Within the agamids, Siebenrock (1895) recognised two basic skull types. Small and 

laterally compressed skulls, observed in mostly arboreal agamids like Calotes, Draco, Gonocephalus, 

and Japalura, and wide and flattened skulls, observed mostly in what he described as “terrestrial” 

agamids such as Agama, Pogona, Leiolepis, and Uromastyx. We know now that skull shapes in 

agamids cannot be neatly categorised in this manner. While my results are broadly in line with 

this generalisation (at least for adult representatives of species), it is apparent that amphibolurines 

collectively exhibit a continuum of different skull shapes. By conducting these analyses, I have 

not only provided abundant information regarding size-free, independent shape variables, but I 

have also created a database of images and three-dimensional models as a morphological record, 

upon which other sets of landmarks or morphological features may be measured and analysed. 

Furthermore, as the research on the ecology and evolution of the Australian dragons continues, I 

hope that my findings may be a used as a framework with which to test new hypotheses about 

the evolution of this ecologically diverse clade of lizards.  

Evolut ionary history  of  Austra l ian dragons:  another  
p iece of  the puzzle 

The evolution of different skull shapes in multiple lineages in the core of the Australian agamid 

radiation adds to other lines of evidence suggesting that agamid lizards made the most of the 

fragmenting habitats during the aridification of Australia. Many phylogenetic studies have 

contributed to the story of how Australian agamids evolved into the morphologically and 

ecologically diverse group they are today. My results are broadly in line with phylogenetic work 

of Collar et al. (2010), and Melville et al. (2006) who found that habitat use in dragon lizards 

contributes to convergence in body form. Interestingly, Collar et al. (2010) found that semi-
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arboreal animals and terrestrial animals evolve at faster rates than arboreal and saxicolous 

animals, and this is somewhat reflected in the morphospace occupation of the core 

amphibolurine radiation, as these semi-arboreal and terrestrial species collectively occupied a less 

restricted area of the cranial morphospace. This may also indicate that terrestrial and semi-

arboreal life habit categories are broad, and encompass a wider variety of lifestyles than arboreal 

and saxicolous categories. The evolutionary success of the core of the Australian amphibolurine 

radiation in the desert and woodland habitats of Australia has been documented in broader 

studies on lizard diversity (Byrne et al., 2008; Powney et al., 2010), and in phylogenetic studies 

(Melville et al., 2001; Melville et al., 2006; Shoo et al., 2008; Edwards and Melville, 2010; Melville 

et al., 2011). Their skull shape seems to be evolutionarily flexible, and this evolutionary flexibility 

would have been advantageous for their adaptation to the fragmenting Australian environment 

over the last 20 million years. A substantial amount of intraspecific variation is indicative of 

phenotypic plasticity, and this was particularly apparent in the sampled captive lizards, suggesting 

a rapid and likely epigenetic effect of the surrounding environment on phenotype. 

How amphibolur ines f it  into the bigger evolut ionary 
picture 

The overarching themes in this thesis ring true for other groups of organisms, not just reptiles, 

but also other vertebrates, and even plants. I explored evolutionary and ontogenetic allometry in 

amphibolurine lizard skulls, and outcomes were consistent with many other studies that have 

explored both types of allometric variation. Ontogenetic and evolutionary allometry are closely 

connected in Australian agamid skull morphology. Ontogenetic allometry has previously been 

considered a phenotypic constraint (Klingenberg, 2010), and there are studies that show 

considerable phenotypic variation can be achieved even with a constrained developmental 

pathway (e.g. Piras et al., 2011; Bhullar, 2012). This seems to be the case for tooth development 

patterns in Australian agamids. However, the universality of a conserved ontogenetic pattern 

(heterochrony) is not supported by postnatal growth patterns in skull morphology. My findings 

are consistent with previous research reporting that ontogenetic patterns can represent a 

continuum of developmental flexibility that is sensitive to adaptation, and they play in important 

role in shaping macroevolutionary patterns of diversification (Weston, 2003; Wilson, 2010; 

Frédérich and Vandewalle, 2011; Wilson and Sánchez-Villagra, 2011; Strelin et al., 2016; 

Esquerré et al., 2017; Hipsley and Müller, 2017). Collectively, my results and those of others 

show that ontogenetic patterns may vary depending on the organism or anatomical component 

of interest.  
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In the evolution of Australian agamid skulls, ontogenetic allometry is tightly interweaved 

with evolutionary allometry. Like the many researchers that came before me, I have 

demonstrated the important role that body size plays in the evolution of morphological disparity, 

revealing that like many other animal groups, Australian dragons can achieve different skull 

shapes simply by growing larger, or smaller. My findings that larger adult dragons tend to have 

longer faces, something that is also true for juvenile versus adult dragons (a hint at the close 

connection with ontogenetic allometry), is intriguingly similar to the cranial evolutionary 

allometry (CREA) “rule” demonstrated for multiple mammal lineages (Cardini and Polly, 2013; 

Cardini et al., 2015). This aspect of evolutionary allometry, where longer faces are associated with 

larger adult sizes, is conserved among multiple mammalian clades, but my results demonstrate 

that this “rule” may also hold true for Australian dragons, and has been observed in some other 

lizards (e.g. Hipsley and Müller, 2017), and also birds (e.g. Tokita et al., 2017). Perhaps even 

more intriguingly, it seems that this does not hold true for all herpetological fauna (e.g. Claude et 

al., 2004; Jones, 2008; Sherratt et al., 2014; Palci et al., 2016; Esquerré et al., 2017). My thesis 

emphasises the power of using different kinds of allometry as a quantitative framework for 

investigating the morphological variation that is characteristic of ecologically diverse radiations. I 

have also demonstrated that perhaps, concepts in evolutionary allometry that have been explored 

among closely related vertebrate species, warrant further investigation and comparisons at 

broader taxonomic levels. 

I have found distinct patterns between ecology and skull shape. This is no surprise. Since 

Darwin’s pivotal work on natural selection, scores of researchers have documented close ties 

between the ecology of organisms and their phenotype. My findings align with many other 

modern studies that have used multivariate methods to find an association between phenotype 

and ecology (Harmon et al., 2005; Fuchs et al., 2015; McCurry et al., 2015; Manzano et al., 2017; 

Meloro et al., 2017). I have also added to the large body of evidence that skull shape is 

evolutionarily labile and can reflect the functional demands placed on an animal (Sanger et al., 

2012; McCurry et al., 2015; Meloro et al., 2017), and that skull shape reflects functional trade-offs 

there are made in response to these demands (e.g. Verwaijen et al., 2002; Kohlsdorf et al., 2008; 

Edwards et al., 2016). Studies concerning diets, foraging strategies, feeding styles, and sexual 

display (e.g. Perry and Garland, 2002; Vitt et al., 2003; Pianka and Goodyear, 2012), will all be 

improved by this greater understanding of the morphological variation that accompanies such 

adaptations.  
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Figure 9.1 – Evolutionary tree of Australian dragon lizards used in this thesis, mapped 
with lateral images of their skulls, common ontogenetic patterns (which part of the skull 
grows relatively more than others), and life habits. 
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Future direct ions 

T he  future  of  foss i l  i dent i f i cat ion 
A substantial amount of agamid fossil material has been recovered from Australian deposits, and 

it has the potential to inform studies of palaeoenvironmental patterns through time. However, 

little information has been available for taxonomic comparisons or affiliations with extant 

Australian agamid taxa. It seems that some attributes of animals (e.g. body size) may be inferred 

from simple linear measurements from fossil jaw bones, and coupling this with future advances 

in our ability to make taxonomic affiliations may allow interpretations about ancestors of 

Australian agamids, leading to a more complete understanding of amphibolurine evolutionary 

history. It appears that geometric morphometric methods could be used for identification in 

Australian agamid fossils, but my work should be expanded upon to account for intraspecific 

and ontogenetic variation.  

Im pl icat ions  for  capt ive  l i zar d  popu lat ions  
While I was able to detect significant differences in shape and ontogenetic patterns between 

sampled wild and captive jacky dragons in Chapter 7, including a more complete sampling of 

captive and wild lizards, would allow more robust conclusions to be made about the effect of 

captivity on lizard skull shape. Since captive reptile populations are important for research and 

conservation, further work may involve performing similar analyses for other species of agamids, 

and also other reptiles. We know that, in mammals, a whole suite of traits can be associated with 

captivity (Wilkins et al., 2014; Sánchez-Villagra et al., 2016), but very little work has been done to 

determine if this is also the case for other animal groups. Since the morphological characters we 

observe in captive jacky lizards are similar to some of those seen in mammals, the logical next 

step is to examine whether they possess other characteristics associated with captivity in other 

animals.  

Var iat ion  at  spec ies  and  popu lat ion  leve ls  
While I have examined a great deal of Australian agamid species in this thesis, the taxonomic 

breadth of my samples was subject to time constraints and availability. I have included a 

representative cross-section of Australian agamid species in my analyses, it would be 

advantageous to expand this sample to encompass all recognised species. Furthermore, the 

degree of intraspecific variation indicates that there is some skull shape variation that is not 

accounted for by allometry, phylogeny, or ecology, and it is feasible that there may be shape 

differences among different populations of the same species. Therefore, expanding the sample to 
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explore the variation that may be present among different populations of the same species would 

be an interesting avenue to go down. 

Sexua l  d im orphi sm  
Due to gaps in body size and sex data for some museum specimens, we were unable to 

investigate the influence of sexual dimorphism on Australian dragon lizards. Sexual dimorphism 

in size has been recorded for at least one species of amphibolurine (Badham, 1976), and 

therefore we cannot discount the possibility that it has an influence on skull shape, considering 

the strong allometric effects observed in these lizards. Hence, future directions would seek to 

include data on the sex of specimens used in analyses. 

Assoc iat ion  of  sku l l  shape  wi th  feeding  
Many studies have shown that the morphology and mechanics of the skull are related to feeding 

(Metzger and Herrel, 2005). Agamids have generally been observed to be opportunist omnivores 

(Pough, 1973; Cooper and vitt, 2002), and categorising them in terms of diet is a difficult feat. A 

lack of available data concerning diet meant that, although we were able to discuss possible 

implications of diet and feeding on morphology, we were not able to explicitly test for 

associations between these factors and skull shape. In considering diet and feeding, we must 

account for not only what an animal eats, but also the size of the food, hardness of it, what the 

food is made of, and how the animal forages for this food (Evans and Sanson, 2005). We could 

expand our understanding of skull evolution in this group by systematically collected data 

concerning feeding to the morphological data in this thesis and testing for associations with skull 

shape. This data may also reveal details about the interplay between skull shape, life habit, and 

aspects of feeding.  

Sk ul l  shape  and  sof t  t i s sues  
How differences in skull shape are related to other parts of the head anatomy such as the jaw 

muscles, eyes, and brain could be examined using contrast-enhanced (stained) soft tissue 

scanning (see Gignac and Kley, 2014; Gignac and Kley, 2018), or MRI (Hoops et al., 2018). This 

approach could provide important insights into the development and function of specific 

structures. It could also inform computer based biomechanical modelling analyses such as. 

Multibody Dynamics and Finite Element Analysis (Moazen et al., 2009; Jones et al., 2012; Jones 

et al., 2017), and examination of in vivo bite force performance (Lappin and Jones, 2014) 

O ther  avenues  of  research  
Factors at the genetic and cellular level, such as epigenetics (Schlichting and Wund, 2014) and 

microbiomes (Colston and Jackson, 2016), probably have an important effect on form and 
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function, and may be another avenue of exploration that would help us achieve a comprehensive 

understanding of evolution and ecology of the Australian dragon lizards. 
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Supplementary  mater ia l  for  Chapter  3 

Figure S3.1 – Tooth count allometry with raw data points at the evolutionary group (A 
and B, LN=least nested group), genus (C and D) and species (E and F) levels, for both 
the maxilla (A, C, E) and dentary (B, D, F), showing the allometric patterns detected by 
statistical testing. 
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Table S3.1 – Linear coefficients for dentary and maxillary tooth counts regressed on log tooth row length, for each amphibolurine 
monophyletic clade (LN = least nested). Bold values indicate P < 0.05. 

 DENTARY     MAXILLA     

Group n Elevation Slope R² P-value n Elevation Slope R² P-value 

Amphibolurus 229 0.93 5.64 0.52 <0.001 257 0.17 5.71 0.67 <0.001 

Ctenophorus 210 -4.54 8.74 0.56 <0.001 233 -4.03 8.37 0.57 <0.001 

Intellagama 22 -7.66 7.95 0.77 <0.001 30 -6.62 7.42 0.89 <0.001 

LN 40 1.03 5.85 0.14 0.017 45 3.50 4.78 0.26 <0.001 

 

 

Table S3.2 – Pairwise ANOVA comparisons for dentary and maxillary tooth counts during growth, among amphibolurine monophyletic 
clades (LN = least nested). Top triangles are P-values for slope differences, bottom triangles are P-values for elevation differences. Bold 
values indicate P < 0.05. 

 DENTARY    MAXILLA    

Group Amphibolurus Ctenophorus Intellagama LN Amphibolurus Ctenophorus Intellagama LN 

Amphibolurus  - 0.000 0.036 1.000  - 0.000 0.004 0.733 

Ctenophorus 0.000  - 0.964 0.072 0.000  - 0.528 0.001 

Intellagama 0.002 0.000  - 0.473 0.000 0.000  - 0.019 

LN 0.807 0.064 0.001  - 0.142 0.114 0.000  - 
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Table S3.3 – Linear coefficients for dentary and maxillary tooth counts regressed on log tooth row length, for each amphibolurine genus 
with n ≥ 10. Bold values indicate P < 0.05. 

 MAXILLA     DENTARY     

Genus n Elevation Slope R² P-value n Elevation Slope R² P-value 

Amphibolurus 39 -2.544 7.083 0.653 <0.001 40 -2.725 6.841 0.784 <0.001 

Chlamydosaurus 20 -18.471 10.818 0.626 <0.001 18 -16.192 10.212 0.774 <0.001 

Ctenophorus 210 -4.538 8.743 0.560 <0.001 233 -4.034 8.371 0.571 <0.001 

Diporiphora 42 -3.492 8.289 0.710 <0.001 46 -4.577 8.563 0.762 <0.001 

Gowidon 19 -15.547 12.237 0.755 <0.001 23 -5.680 8.025 0.834 <0.001 

Intellagama 22 -7.657 7.954 0.771 <0.001 30 -6.621 7.419 0.890 <0.001 

Lophognathus 15 -7.489 9.215 0.695 <0.001 17 -5.652 8.165 0.803 <0.001 

Lophosaurus 12 -50.759 21.681 0.063 <0.001 12 -37.759 17.604 0.038 0.545 

Moloch 17 -20.686 17.622 0.668 <0.001 19 -12.295 13.754 0.687 <0.001 

Pogona 66 -6.517 7.725 0.689 <0.001 78 -6.775 7.690 0.885 <0.001 

Rankinia 3 28.786 -5.966 0.255 0.663 12 -3.060 7.848 0.604 0.003 

Tympanocryptis 25 -3.441 8.770 0.551 <0.001 23 -2.042 8.008 0.816 <0.001 
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Table S3.4 – Pairwise ANOVA comparisons for dentary and maxillary tooth counts during growth, among amphibolurine genera with n ≥ 
10. Top triangles are P-values for slope differences, bottom triangles are P-values for elevation differences. Bold values indicate P < 0.05. 

DENTARY Amphibolurus Chlamydosaurus Ctenophorus Diporiphora Gowidon Intellagama Lophognathus Lophosaurus Moloch Pogona Rankinia Tympanocryptis 

Amphibolurus  - 0.728 0.974 1.000 0.065 1.000 1.000 0.105 0.001 1.000 1.000 1.000 
Chlamydosaurus 0.000  - 1.000 1.000 1.000 0.999 1.000 0.968 0.807 0.948 1.000 1.000 
Ctenophorus 0.000 0.000  - 1.000 0.630 1.000 1.000 0.387 0.011 1.000 1.000 1.000 
Diporiphora 0.000 0.000 1.000  - 0.550 1.000 1.000 0.310 0.009 1.000 1.000 1.000 
Gowidon 1.000 0.000 0.000 0.000 -  0.522 1.000 0.999 0.990 0.144 1.000 0.995 
Intellagama 0.000 0.886 0.000 0.000 0.000  - 1.000 0.263 0.009 1.000 1.000 1.000 
Lophognathus 1.000 0.000 0.008 0.053 1.000 0.000  - 0.716 0.278 1.000 1.000 1.000 
Lophosaurus 0.055 1.000 0.000 0.000 0.000 1.000 0.003  - 1.000 0.179 1.000 0.545 
Moloch 0.000 0.000 0.009 0.020 0.000 0.000 0.000 0.000  - 0.002 1.000 0.092 
Pogona 0.000 0.159 0.000 0.000 0.000 1.000 0.000 1.000 0.000 -  1.000 1.000 
Rankinia 0.930 0.000 1.000 1.000 0.765 0.004 0.999 0.246 0.949 0.001  - 1.000 
Tympanocryptis 0.000 0.000 0.210 0.700 0.000 0.000 0.005 0.000 1.000 0.000 1.000  - 

MAXILLA             

Amphibolurus  - 0.406 0.785 0.912 1.000 1.000 1.000 0.353 0.006 1.000 1.000 1.000 
Chlamydosaurus 0.000  - 1.000 1.000 1.000 0.812 1.000 1.000 1.000 0.895 1.000 1.000 
Ctenophorus 0.000 0.000  - 1.000 1.000 1.000 1.000 0.832 0.114 1.000 1.000 1.000 
Diporiphora 0.000 0.000 1.000  - 1.000 1.000 1.000 0.895 0.254 1.000 1.000 1.000 
Gowidon 1.000 0.000 0.000 0.000  - 1.000 1.000 0.780 0.134 1.000 1.000 1.000 
Intellagama 0.000 1.000 0.000 0.000 0.000  - 1.000 0.539 0.019 1.000 1.000 1.000 
Lophognathus 1.000 0.000 0.000 0.000 1.000 0.000  - 0.854 0.328 1.000 1.000 1.000 
Lophosaurus 0.999 0.991 0.000 0.000 0.670 1.000 0.363  - 1.000 0.615 0.920 0.782 
Moloch 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000  - 0.025 0.867 0.146 
Pogona 0.000 0.627 0.000 0.000 0.000 0.327 0.000 1.000 0.000 -  1.000 1.000 
Rankinia 0.002 0.000 1.000 1.000 0.001 0.000 0.090 0.123 0.002 0.000  - 1.000 
Tympanocryptis 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.855 0.000 0.327  - 
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Table S3.5 – Linear coefficients for dentary and maxillary tooth counts regressed on log tooth row length for amphibolurine species with 
n ≥ 10. Bold values indicate P < 0.05. 

 DENTARY     MAXILLA     

Species n Elevation Slope R² P-value n Elevation Slope R² P-value 

A. muricatus 33 -2.979 7.331 0.778 <0.001 34 -3.416 7.174 0.789 <0.001 

Ch. kingii 20 -18.471 10.818 0.626 <0.001 18 -16.192 10.212 0.774 <0.001 

Ct. caudicinctus 19 -5.547 9.564 0.852 <0.001 25 -6.790 9.870 0.876 <0.001 

Ct. cristatus 18 -4.487 7.686 0.977 <0.001 18 -5.673 7.860 0.944 <0.001 

Ct. decresii 13 -4.778 8.542 0.906 <0.001 15 -3.437 7.627 0.725 <0.001 

Ct. fionni 9 -3.649 8.104 0.571 0.019 10 -3.703 7.776 0.786 0.001 

Ct. isolepis 27 -8.747 11.466 0.830 <0.001 29 -6.888 10.525 0.715 <0.001 

Ct. nuchalis 25 -5.658 8.776 0.727 <0.001 28 -9.016 10.116 0.806 <0.001 

Ct. reticulatus 30 -11.923 12.459 0.806 <0.001 30 -12.940 12.986 0.780 <0.001 

D. nobbi 10 -3.572 7.818 0.909 <0.001 10 -6.238 8.699 0.943 <0.001 

D. winneckei 10 -0.124 6.569 0.678 0.003 11 -5.905 9.611 0.801 <0.001 

G. longirostris 15 -18.166 13.075 0.835 <0.001 19 -4.824 7.611 0.836 <0.001 

I. lesueurii 22 -7.657 7.954 0.771 <0.001 30 -6.621 7.419 0.890 <0.001 

L. gilberti 15 -7.489 9.215 0.695 <0.001 17 -5.652 8.165 0.803 <0.001 

M. horridus 17 -20.686 17.622 0.668 <0.001 19 -12.295 13.754 0.687 <0.001 

P. barbata 27 -28.929 14.559 0.515 <0.001 30 -8.854 8.281 0.876 <0.001 

P. minor 12 -1.200 6.186 0.211 0.133 12 0.859 5.197 0.788 <0.001 

P. vitticeps 23 -7.465 8.062 0.877 <0.001 30 -8.520 8.264 0.940 <0.001 

R. diemensis 3 28.786 -5.966 0.255 0.663 12 -3.060 7.848 0.604 0.003 

T. tetraporophora 11 -1.948 8.180 0.885 <0.001 10 -1.994 8.097 0.917 <0.001 
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Table S3.6 – Pairwise ANOVA comparisons for dentary and maxillary tooth counts during growth, among amphibolurine species with n 
≥ 10. Top triangles are P-values for slope differences, bottom triangles are P-values for elevation difference. Bold values indicate P < 0.05.
DENTARY A. mur Ch. kin Ct. cau Ct. cri Ct. dec Ct. fio Ct. iso Ct. nuc Ct. ret D. nob D. win G. lon I. les L. gil M. hor P. bar P. min P. vit R. die T. tet 

A. muricatus - 0.993 1.000 1.000 1.000 1.000 0.066 1.000 0.006 1.000 1.000 0.066 1.000 1.000 0.004 0.018 1.000 1.000 1.000 1.000 
Ch. kingii 0.000 - 1.000 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.991 1.000 1.000 1.000 1.000 1.000 
Ct. caudicinctus 0.000 0.000 - 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.267 0.951 1.000 1.000 1.000 1.000 
Ct. cristatus 0.034 0.000 0.000 - 1.000 1.000 0.017 1.000 0.001 1.000 1.000 0.064 1.000 1.000 0.004 0.013 1.000 1.000 1.000 1.000 
Ct. decresii 0.023 0.000 0.001 0.000 - 1.000 0.993 1.000 0.653 1.000 1.000 0.772 1.000 1.000 0.056 0.403 1.000 1.000 1.000 1.000 
Ct. fionni 0.653 0.000 0.471 0.002 1.000 - 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.967 1.000 1.000 1.000 1.000 1.000 
Ct. isolepis 0.000 0.000 0.831 0.000 0.000 0.003 - 1.000 1.000 0.902 0.991 1.000 0.852 1.000 0.967 1.000 1.000 0.440 1.000 0.995 
Ct. nuchalis 0.776 0.000 0.000 0.000 1.000 1.000 0.000 - 0.931 1.000 1.000 0.955 1.000 1.000 0.112 0.680 1.000 1.000 1.000 1.000 
Ct. reticulatus 0.000 0.000 1.000 0.000 0.003 0.268 0.077 0.000 - 0.501 0.897 1.000 0.308 1.000 1.000 1.000 0.994 0.062 1.000 0.788 
D. nobbi 1.000 0.000 0.000 0.006 1.000 1.000 0.000 1.000 0.018 - 1.000 0.503 1.000 1.000 0.028 0.222 1.000 1.000 1.000 1.000 
D. winneckei 0.400 0.001 1.000 0.000 1.000 1.000 1.000 0.968 1.000 1.000 - 0.846 1.000 1.000 0.177 0.590 1.000 1.000 1.000 1.000 
G. longirostris 1.000 0.000 0.000 1.000 0.018 0.141 0.000 0.039 0.000 0.870 0.002 - 0.460 1.000 1.000 1.000 0.985 0.273 1.000 0.790 
I. lesueurii 0.000 0.998 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 - 1.000 0.025 0.194 1.000 1.000 1.000 1.000 
L. gilberti 1.000 0.000 0.000 1.000 1.000 1.000 0.000 1.000 0.000 1.000 1.000 1.000 0.000 - 0.609 0.999 1.000 1.000 1.000 1.000 
M. horridus 0.000 0.000 0.636 0.000 0.000 0.003 1.000 0.000 0.076 0.000 1.000 0.000 0.000 0.000 - 1.000 0.413 0.014 1.000 0.063 
P. barbata 0.000 0.997 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 - 0.885 0.092 1.000 0.438 
P. minor 1.000 0.104 0.000 1.000 0.068 0.367 0.000 0.406 0.000 0.819 1.000 1.000 0.999 0.999 0.000 0.125 - 1.000 1.000 1.000 
P. vitticeps 0.000 0.321 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.998 1.000 - 1.000 1.000 
R. diemensis 1.000 0.001 1.000 0.789 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.734 0.013 1.000 1.000 0.000 0.996 0.003 - 1.000 
T. tetraporophora 0.000 0.000 1.000 0.000 0.007 0.754 1.000 0.000 0.944 0.001 0.771 0.000 0.000 0.007 1.000 0.000 0.002 0.000 1.000 - 

MAXILLA                     

A. muricatus - 0.978 0.628 1.000 1.000 1.000 0.610 0.640 0.001 1.000 1.000 1.000 1.000 1.000 0.046 1.000 1.000 1.000 1.000 1.000 
Ch. kingii 0.000 - 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.992 1.000 1.000 1.000 0.276 1.000 1.000 1.000 
Ct. caudicinctus 0.000 0.000 - 0.982 1.000 1.000 1.000 1.000 0.983 1.000 1.000 1.000 0.605 1.000 1.000 1.000 0.215 1.000 1.000 1.000 
Ct. cristatus 0.276 0.000 0.000 - 1.000 1.000 0.968 0.981 0.004 1.000 1.000 1.000 1.000 1.000 0.140 1.000 0.978 1.000 1.000 1.000 
Ct. decresii 0.582 0.000 0.061 0.001 - 1.000 1.000 1.000 0.581 1.000 1.000 1.000 1.000 1.000 0.672 1.000 1.000 1.000 1.000 1.000 
Ct. fionni 0.007 0.000 0.002 0.000 1.000 - 1.000 1.000 0.957 1.000 1.000 1.000 1.000 1.000 0.948 1.000 1.000 1.000 1.000 1.000 
Ct. isolepis 0.000 0.000 0.018 0.000 0.000 0.000 - 1.000 1.000 1.000 1.000 0.995 0.650 1.000 1.000 1.000 0.146 0.999 1.000 1.000 
Ct. nuchalis 0.000 0.000 0.000 0.000 1.000 1.000 0.000 - 1.000 1.000 1.000 0.999 0.651 1.000 1.000 1.000 0.187 1.000 1.000 1.000 
Ct. reticulatus 0.000 0.000 1.000 0.000 0.004 0.000 0.549 0.000 - 0.496 1.000 0.044 0.001 0.448 1.000 0.029 0.010 0.008 0.999 0.423 
D. nobbi 0.997 0.000 0.000 0.004 1.000 1.000 0.000 1.000 0.000 - 1.000 1.000 1.000 1.000 0.783 1.000 0.766 1.000 1.000 1.000 
D. winneckei 0.000 0.000 1.000 0.000 0.811 0.795 1.000 0.001 1.000 0.002 - 1.000 1.000 1.000 1.000 1.000 0.794 1.000 1.000 1.000 
G. longirostris 1.000 0.000 0.000 1.000 0.118 0.001 0.000 0.000 0.000 0.308 0.000 - 1.000 1.000 0.204 1.000 1.000 1.000 1.000 1.000 
I. lesueurii 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 - 1.000 0.054 1.000 1.000 1.000 1.000 1.000 
L. gilberti 1.000 0.000 0.000 0.999 1.000 0.924 0.000 0.371 0.000 1.000 0.007 1.000 0.000 - 0.682 1.000 0.991 1.000 1.000 1.000 
M. horridus 0.000 0.000 0.000 0.000 0.000 0.000 0.999 0.000 0.002 0.000 0.559 0.000 0.000 0.000 - 0.346 0.011 0.254 0.997 0.570 
P. barbata 0.000 0.999 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 - 0.875 1.000 1.000 1.000 
P. minor 0.989 0.226 0.000 1.000 0.099 0.001 0.000 0.000 0.000 0.114 0.066 1.000 0.039 0.975 0.000 0.317 - 0.836 1.000 0.990 
P. vitticeps 0.000 0.794 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.997 0.000 0.000 1.000 0.129 - 1.000 1.000 
R. diemensis 0.008 0.000 1.000 0.000 1.000 1.000 0.318 0.999 1.000 0.793 1.000 0.002 0.000 0.239 0.006 0.000 0.053 0.000 - 1.000 
T. tetraporophora 0.000 0.000 0.299 0.000 0.006 0.005 1.000 0.000 0.978 0.000 0.829 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.741 - 
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Supplementary  mater ia l  for  Chapter  4 
 

Table S4.1 – Landmark definitions used to characterise cranial shape in 2D (see Figs. 1.6, 
1.7, and Evans 2008 for nomenclature of skeletal elements). 

 

Table S4.2 – Principal components summary resulting from principal component 
analysis of landmark data, showing proportion of variance and cumulative proportion of 
variance for the first six PCs. 

Number Description 

1 Anterior limit of the snout 

2 Anterior limit of the base of the most anterior maxillary tooth 

3 Most dorsal point of the anterior process of the maxilla 

4 Dorsal limit of the nasal opening 

5 Anterior limit of the jugal 

6 Posterior limit of the maxillary posterior dorsal process 

7 Posterior limit of the base of the most posterior acrodont tooth 

8 Most posteroventral point of the jugal 

9 Most anteroventral point of the postorbital 

10 Anterior limit of the squamosal 

11 Posterior limit of the jugal 

12 Posterior limit of the squamosal 

13 Most posterior point of the postorbital-parietal suture 

14 Most anterior point of the postorbital-parietal suture 

15 Most dorsal point of the prefrontal-frontal suture 

16 Anterior limit of the orbital opening 

 PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 

Proportion of variance 0.300 0.263 0.101 0.064 0.042 0.033 

Cumulative proportion 0.300 0.562 0.663 0.727 0.769 0.802 
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Table S4.3 – Pairwise results for angles in phenotypic trajectory analysis. Top triangle shows pairwise P-values, while bottom triangle 
shows pairwise angle differences (bold values indicate P < 0.05). Abbreviations: first three letters of genus name, followed by the first 
three letters of species name. 

 amp_mur chl_kin cte_cau cte_cri cte_dec cte_iso cte_nuc cte_ret dip_nob dip_win gow_lon int_les lop_gil mol_hor pog_bar pog_vit ran_die tym_tet 

amp_mur - 0.01 0.09 0.11 0.63 0.00 0.00 0.00 0.40 0.52 0.45 0.01 0.27 0.00 0.00 0.00 0.06 0.06 
chl_kin 56.39 - 0.45 0.02 0.31 0.02 0.51 0.13 0.09 0.01 0.00 0.85 0.27 0.04 0.68 0.72 0.21 0.04 
cte_cau 38.29 33.44 - 0.05 0.56 0.00 0.26 0.02 0.14 0.10 0.04 0.72 0.44 0.00 0.13 0.41 0.28 0.03 
cte_cri 43.20 59.55 48.11 - 0.37 0.04 0.00 0.00 0.23 0.08 0.07 0.02 0.20 0.01 0.00 0.01 0.03 0.05 
cte_dec 33.77 45.78 35.32 43.77 - 0.04 0.08 0.02 0.51 0.42 0.39 0.21 0.57 0.03 0.13 0.20 0.39 0.49 
cte_iso 52.96 54.96 51.82 48.09 59.15 - 0.00 0.00 0.03 0.03 0.00 0.00 0.18 0.00 0.00 0.00 0.01 0.01 
cte_nuc 61.99 33.22 34.35 65.07 54.83 67.07 - 0.84 0.01 0.01 0.00 0.96 0.07 0.01 0.86 0.98 0.06 0.00 
cte_ret 73.98 40.35 42.50 71.38 65.19 69.97 22.51 - 0.00 0.00 0.00 0.56 0.01 0.01 0.53 0.24 0.01 0.00 
dip_nob 36.49 53.87 46.02 47.43 41.04 58.90 71.56 77.89 - 0.47 0.31 0.03 0.12 0.01 0.01 0.02 0.26 0.68 
dip_win 35.64 67.62 52.76 56.49 45.88 58.70 73.14 86.09 42.58 - 0.43 0.01 0.23 0.00 0.00 0.02 0.30 0.20 
gow_lon 30.12 62.80 44.24 47.47 40.97 65.02 61.62 75.07 41.37 39.02 - 0.00 0.19 0.00 0.00 0.00 0.27 0.02 
int_les 53.13 26.34 25.85 54.87 46.63 55.73 20.97 27.85 59.19 67.15 56.03 - 0.32 0.01 0.81 0.99 0.11 0.01 
lop_gil 35.90 40.84 32.55 43.34 38.02 38.24 46.86 58.37 50.96 48.61 40.91 37.28 - 0.00 0.02 0.28 0.24 0.02 

mol_hor 77.57 58.01 65.33 71.09 66.60 76.14 63.24 59.48 77.50 87.23 84.98 62.07 77.10 - 0.00 0.00 0.01 0.03 
pog_bar 63.84 28.48 35.95 68.94 50.12 72.31 22.95 26.99 64.11 74.94 64.89 24.24 52.04 62.85 - 0.70 0.03 0.01 
pog_vit 53.75 27.46 29.17 55.77 44.09 59.36 18.47 31.11 61.57 66.19 53.26 15.54 35.83 66.09 24.12 - 0.12 0.01 
ran_die 51.84 47.17 39.94 61.71 44.94 61.45 52.45 61.24 47.41 47.31 41.45 48.19 44.56 70.76 54.87 46.20 - 0.08 
tym_tet 50.94 58.27 54.49 58.10 41.85 63.01 75.33 79.49 36.03 51.91 59.30 66.34 62.84 63.79 66.93 69.19 55.99 - 
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Table S4.4 – Pairwise results for magnitude in phenotypic trajectory analysis. Top triangle shows pairwise P-values, while bottom triangle 
shows pairwise magnitude differences (bold values indicate P < 0.05). Abbreviations: first three letters of genus name, followed by the 
first three letters of species name. 

 amp_mur chl_kin cte_cau cte_cri cte_dec cte_iso cte_nuc cte_ret dip_nob dip_win gow_lon int_les lop_gil mol_hor pog_bar pog_vit ran_die tym_tet 

amp_mur - 0.02 0.75 0.44 0.38 0.01 0.33 0.76 0.62 0.41 0.43 0.01 0.61 0.08 0.00 0.00 0.19 0.50 

chl_kin 0.04 - 0.01 0.00 0.26 0.00 0.00 0.04 0.01 0.01 0.00 0.83 0.01 0.53 0.57 0.19 0.00 0.01 

cte_cau 0.00 0.05 - 0.64 0.27 0.01 0.56 0.53 0.83 0.57 0.64 0.01 0.85 0.06 0.00 0.00 0.29 0.70 

cte_cri 0.01 0.05 0.01 - 0.14 0.09 0.92 0.29 0.83 0.88 0.95 0.00 0.80 0.03 0.00 0.00 0.55 0.97 

cte_dec 0.02 0.02 0.02 0.03 - 0.01 0.11 0.53 0.20 0.16 0.16 0.32 0.23 0.53 0.12 0.04 0.05 0.17 

cte_iso 0.04 0.08 0.04 0.03 0.06 - 0.06 0.00 0.09 0.19 0.04 0.00 0.03 0.00 0.00 0.00 0.35 0.09 

cte_nuc 0.01 0.05 0.01 0.00 0.03 0.03 - 0.21 0.75 0.95 0.87 0.00 0.69 0.02 0.00 0.00 0.59 0.90 

cte_ret 0.00 0.04 0.01 0.02 0.01 0.05 0.02 - 0.46 0.29 0.25 0.03 0.44 0.15 0.00 0.00 0.12 0.36 

dip_nob 0.01 0.05 0.00 0.00 0.03 0.03 0.01 0.01 - 0.74 0.89 0.02 0.97 0.06 0.01 0.00 0.46 0.88 

dip_win 0.02 0.06 0.01 0.00 0.03 0.03 0.00 0.02 0.01 - 0.82 0.01 0.70 0.03 0.00 0.00 0.68 0.85 

gow_lon 0.01 0.05 0.01 0.00 0.03 0.03 0.00 0.02 0.00 0.00 - 0.00 0.82 0.03 0.00 0.00 0.48 0.99 

int_les 0.04 0.00 0.04 0.05 0.02 0.08 0.05 0.03 0.05 0.05 0.05 - 0.01 0.68 0.42 0.09 0.01 0.01 

lop_gil 0.01 0.05 0.00 0.00 0.02 0.03 0.01 0.01 0.00 0.01 0.00 0.04 - 0.04 0.00 0.00 0.39 0.83 

mol_hor 0.03 0.01 0.03 0.04 0.01 0.07 0.04 0.03 0.04 0.05 0.04 0.01 0.04 - 0.30 0.08 0.01 0.04 

pog_bar 0.05 0.01 0.05 0.06 0.03 0.09 0.06 0.05 0.06 0.06 0.06 0.01 0.06 0.02 - 0.38 0.00 0.00 

pog_vit 0.06 0.02 0.07 0.07 0.04 0.10 0.08 0.06 0.07 0.08 0.07 0.02 0.07 0.03 0.01 - 0.00 0.00 

ran_die 0.02 0.06 0.02 0.01 0.04 0.02 0.01 0.03 0.02 0.01 0.01 0.06 0.02 0.05 0.07 0.09 - 0.54 

tym_tet 0.01 0.05 0.01 0.00 0.03 0.03 0.00 0.02 0.00 0.00 0.00 0.05 0.00 0.04 0.06 0.07 0.01 - 
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Table S4.5 – Examining allometry: MANCOVA results of cranial shape by size and life 
habit (shape ~ size * habit). Bold values indicate P < 0.05. 

 

 

Table S4.6 – Examining allometry of life habit groups: pairwise angle and length 
differences. Top triangles = P-values (values < 0.05 in bold); bottom triangles = angles. 

 

 Df SS MS R² F Z P-value 

Log (size) 1 0.9360 0.93502 0.224809 128.3495 8.6221 0.001 

Habit 2 0.5809 0.29044 0.139513 39.8258 9.7491 0.001 

Log (size) : habit 2 0.0578 0.02890 0.013883 3.9631 5.2379 0.001 

Residuals 355 2.5889 0.00729     

Total 360 4.1636      

 Saxicolous Semi-arboreal Terrestrial 

Angle    
Saxicolous - 0.114 0.005 
Semi-arboreal 34.07 - 0.001 
Terrestrial 53.58 36.16 - 
Length    
Saxicolous - 0.013 0.001 
Semi-arboreal 0.013405 - 0.015 
Terrestrial 0.001075 0.01448 - 
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Supplementary  mater ia l  for  Chapter  5 
 

Figure S5.1 – Landmark sampling curve produced for landmark data in Chapter 5 using 
the lambda R package. 

 

Figure S5.2 – PCA results before allometry correction.  
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Table S5.1 – Specimens used in shape analyses and relevant information. SAMA = South 
Australian Museum; AMS = Australian Museum. LN = Least nested group. 

Genus Species Evolutionary Group Reg. number Specimen Life habit 
Acanthosaura lepidogaster Draconinae SAMA R64182 Head Arboreal 
Amphibolurus burnsi Amphibolurus SAMA R30986 Head Semi-arboreal 
Amphibolurus muricatus Amphibolurus AMS R154972 Head Semi-arboreal 
Amphibolurus norrisi Amphibolurus SAMA R60767 Head Semi-arboreal 
Bronchocela cristatella Draconinae SAMA R22477 Skull Arboreal 
Calotes  calotes Draconinae SAMA R47735 Skull Arboreal 
Calotes  versicolor Draconinae SAMA R66808 Skull Semi-arboreal 
Chelosania brunnea LN SAMA R140288 Head Semi-arboreal 
Chlamydosaurus kingii Amphibolurus SAMA R21373 Skull Semi-arboreal 
Ctenophorus caudicinctus Ctenophorus SAMA R61888 Head Saxicolous 
Ctenophorus chapmani Ctenophorus SAMA R59616 Head Terrestrial 
Ctenophorus cristatus Ctenophorus SAMA R59493 Head Terrestrial 
Ctenophorus decresii Ctenophorus SAMA R53234 Skull Saxicolous 
Ctenophorus fionni Ctenophorus SAMA R68126 Head Saxicolous 
Ctenophorus fordi Ctenophorus SAMA R34489 Head Terrestrial 
Ctenophorus gibba Ctenophorus SAMA R43604 Head Terrestrial 
Ctenophorus isolepis Ctenophorus SAMA R59391 Head Terrestrial 
Ctenophorus maculatus Ctenophorus SAMA R59600 Head Terrestrial 
Ctenophorus mckenziei Ctenophorus SAMA R26160 Head Terrestrial 
Ctenophorus nuchalis Ctenophorus SAMA R7296 Skull Terrestrial 
Ctenophorus ornatus Ctenophorus SAMA R56064 Head Saxicolous 
Ctenophorus pictus Ctenophorus SAMA R28608 Head Terrestrial 
Ctenophorus reticulatus Ctenophorus SAMA R46987 Head Terrestrial 
Ctenophorus salinarum Ctenophorus SAMA R59079 Head Terrestrial 
Ctenophorus tjankjalka Ctenophorus SAMA R53804 head Saxicolous 
Ctenophorus vadnappa Ctenophorus SAMA R45802 Head Saxicolous 
Diporiphora amphiboluroides Amphibolurus SAMA R4838C Head Semi-arboreal 
Diporiphora lalliae Amphibolurus SAMA R65868 Head Semi-arboreal 
Diporiphora magna Amphibolurus SAMA R58365 Head Semi-arboreal 
Diporiphora nobbi Amphibolurus SAMA R21511 Head Semi-arboreal 
Diporiphora reginae Amphibolurus SAMA R63999 Head Semi-arboreal 
Diporiphora winneckei Amphibolurus SAMA R66514 Head Semi-arboreal 
Draco lineatus Draconinae AMS R57460 Head Arboreal 
Draco timoriensis Draconinae SAMA R13860B Head Arboreal 
Gonocephalus grandis Draconinae SAMA R66697 Skull Arboreal 
Gowidon longirostris Amphibolurus SAMA R18053 Skull Semi-arboreal 
Intellagama lesueurii LN SAMA R27305 Skull Semi-arboreal 
Lophosaurus boydii LN AMS R68782 Head Arboreal 
Lophognathus gilberti Amphibolurus SAMA R38793 Head Semi-arboreal 
Lophosaurus spinipes LN SAMA R40742 Head Arboreal 
Moloch horridus LN SAMA R17325 Head Terrestrial 
Pogona barbata Amphibolurus SAMA R32503 Head Semi-arboreal 
Pogona minor Amphibolurus SAMA R36706 Skull Semi-arboreal 
Pogona nullarbor Amphibolurus SAMA R18581 Skull Semi-arboreal 
Pogona vitticeps Amphibolurus SAMA R18545 Skull Semi-arboreal 
Pseudocalotes tympanistriga Draconinae SAMA R35730 Head Arboreal 
Rankinia diemensis Amphibolurus SAMA R1457B Head Terrestrial 
Tympanocryptis houstoni Amphibolurus SAMA R63157 Head Terrestrial 
Tympanocryptis intima Amphibolurus SAMA R51044 Head Terrestrial 
Tympanocryptis lineata Amphibolurus SAMA R59721 Head Terrestrial 
Tympanocryptis pinguicolla Amphibolurus SAMA R44672 Head Terrestrial 
Tympanocryptis tetraporophora Amphibolurus SAMA R67710 Head Terrestrial 
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Table S5.2 – Landmark definitions for landmarks used to characterise 3D cranial shape 
in Chapters 5 and 6. Numbers correspond to format used in IDAV Landmark Editor 
(starting at 0). See Evans 2008 and anatomical reference in Chapter 1 for nomenclature of 
structures. Table split over 3 pages. 

Number Bone Description 

0 Premaxilla Most anterior tip of the premaxilla (snout) 

1 Premaxilla Most right lateral external point 

2 Premaxilla Most left lateral external point 

3 Maxilla (R) Most dorsal external point of lateral anterior maxillary process 

4 Maxilla (L) Most dorsal external point of lateral anterior maxillary process 

5 Maxilla (R) Just anterior of right narial basin foramen 

6 Maxilla (L) Just anterior of left narial basin foramen 

7 Nasal (R) Most anterior external point 

8 Nasal (L) Most anterior external point 

9 Premaxilla Most posterior tip (external) 

10 Nasal (R) Most anterior point of right external nasal-maxilla suture 

11 Nasal (L) Most anterior point of left external nasal-maxilla suture 

12 Maxilla (R) Most posterior point of lateral maxillary facial process 

13 Maxilla (L) Most posterior point of lateral maxillary facial process 

14 Prefrontal (R) Most anterior external point of prefrontal-nasal process 

15 Prefrontal (L) Most anterior external point of prefrontal-nasal process 

16 Frontal Most anterior external point (central) 

17 Frontal Most  anterior point of right external nasal-maxillary suture 

18 Frontal Most  anterior point of left external nasal-maxillary suture 

19 Nasal (R) Most posterior point 

20 Nasal (L) Most posterior point 

21 Frontal Most posterior point of right external Prefrontal-frontal suture (part of the 
orbit) 

22 Frontal Most posterior point of left external Prefrontal-frontal suture (part of the orbit) 

23 Frontal Posteromedial point of frontal (anterior of parietal foramen) 

24 Frontal Most right lateral point 

25 Postorbital (R) Most dorsal external point 

26 Parietal Most lateral point of right postorbital-parietal suture 

27 Frontal Most left lateral point 

28 Postorbital (L) Most dorsal external point 

29 Parietal Most lateral point of left postorbital-parietal suture 

30 Parietal Most medial point of the right side of the parietal platform (or centre of the 
most medial point where it is long) 

31 Parietal Most medial point of the left side of the parietal platform (or centre of the most 
medial point where it is long) 

32 Parietal Most posterior point of the parietal platform (middle) 

33 Squamosal (R) Most posterodorsal point  

34 Squamosal (L) Most posterodorsal point 

35 Supratemporal (R) Most posterior point 

36 Supratemporal (L) Most posterior point 

37 Supraoccipital Most posterior point of the right external supraoccipital-otooccipital suture 
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Number Bone Description 

38 Supraoccipital Most posterior point of the left external supraoccipital-otooccipital suture 

39 Otooccipital (L) Most medial point 

40 Otooccipital (R) Most medial point 

41 Basioccipital Most dorsal point of the left side of the basal tubercle 

42 Basioccipital Most dorsal point of the right side of the basal tubercle 

43 Basioccipital Most ventral point of the left side of the basal tubercle 

44 Basioccipital Most ventral point of the right side of the basal tubercle 

45 Maxilla (L) Most posterior point of the most posterior pleurodont tooth attachment 

46 Maxilla (L) Most anterior point of the orbital boundary 

47 Prefrontal (L) Most posterior point of the lateral enlargement (meets with maxilla) 

48 Prefrontal (L) Medial limit of the prefrontal lateral enlargement 

49 Maxilla (L) Point of orbital opening level with prefrontal/palatal join to orbital 

50 Maxilla (L) Point of orbital opening level with most anterior external part of jugal 

51 Maxilla (L) Most posterior point of the posterodorsal process 

52 Jugal(L) Most posteroventral point 

53 Postorbital (L) Most anteroventral external point 

54 Squamosal (L) Most posterior external point 

55 Jugal (L) Most posterior external point 

56 Postorbital (L) Most posterior point 

57 Squamosal (L) Most posterior/broadest point of the "ventral peg" (see Evans 2008) 

58 Supratemporal (L) Most anterior point 

59 Maxilla (R) Most posterior point of the most posterior pleurodont tooth attachment 

60 Maxilla (R) Most anterior point of the orbital opening 

61 Prefrontal (R) Most posterior point of the lateral enlargement (meets with maxilla) 

62 Prefrontal (R) Medial limit of the prefrontal lateral enlargement 

63 Maxilla (R) Point of orbital opening level with prefrontal/palatal join to orbital 

64 Maxilla (R) Point of orbital opening level with most anterior external part of jugal 

65 Maxilla (R) Most posterior point of the posterodorsal process 

66 Jugal(R) Most posteroventral point 

67 Postorbital (R) Most anteroventral external point 

68 Squamosal (R) Most posterior external point 

69 Jugal (R) Most posterior external point 

70 Postorbital (R) Most posterior point 

71 Squamosal (R) Most posterior/broadest point of the "ventral peg" (see Evans 2008) 

72 Supratemporal (R) Most anterior point 

73 Premaxilla Most posteroventral point (right) 

74 Premaxilla Most posteroventral point (left) 

75 Maxilla (B) Most posterior point of the join in the maxillary lappet (see Evans 2008) 

76 Vomer (R) Most lateral point 

77 Vomer (L) Most lateral point 

78 Vomer (R) Most posterior point 

79 Vomer (L) Most posterior point 

80 Palatine (R) Most anterolateral point 

81 Palatine (L) Most anterolateral point 

82 Palatine (R) Most anterior point of the maxillary-palatine suture 
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Number Bone Description 

83 Palatine (L) Most anterior point of the maxillary-palatine suture 

84 Palatine (R) Most posterior point of the maxillary-palatine suture 

85 Palatine (L) Most posterior point of the maxillary-palatine suture 

86 Palatine (R) Most anterior point of palatine-pterygoid suture (ventral) 

87 Palatine (L) Most anterior point of palatine-pterygoid suture (ventral) 

88 Pterygoid (R) Most posterior point of palatine-pterygoid suture (ventral) 

89 Pterygoid (L) Most posterior point of palatine-pterygoid suture (ventral) 

90 Maxilla (R) Posterior limit of tooth row (level with jugal "enlargement") 

91 Maxilla (L) Posterior limit of tooth row (level with jugal "enlargement") 

92 Pterygoid (R) Most ventral point of pterygoid process 

93 Pterygoid (L) Most ventral point of pterygoid process 

94 Basipterygoid Most anterior point of right basipterygoid process 

95 Basipterygoid Most anterior point of left basipterygoid process 

96 Basipterygoid Most posterior point of right basipterygoid process 

97 Basipterygoid Most posterior point of left basipterygoid process 

98 Pterygoid (R) Most posteroventral point 

99 Pterygoid (L) Most posteroventral point 

100 Pterygoid (R) Most medial point of lateral edge (medial to pterygoid flange) 

101 Pterygoid (L) Most medial point of lateral edge (medial to pterygoid flange) 

 

 

 

Table S5.3 – Summary for first six principal components, for principal components 
analysis of allometry corrected shape variables in Chapter 5.  

 PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 

Proportion of variance 0.333 0.117 0.072 0.056 0.048 0.044 

Cumulative proportion 0.333 0.450 0.051 0.578 0.625 0.669 
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Supplementary  mater ia l  for  Chapter  6 
Table S6.1 – Jacky lizard (Amphibolurus muricatus) specimens used in the captive 
versus wild comparison, and relevant information. UC = University of Canberra; AMS= 
Australian Museum; SAMA= South Australian Museum. Specimens included in the 
interspecific comparison are indicated by an X in the “data set B” column. SVL = snout-
vent length. 

Institution Reg. number Source Data set B SVL (mm) Centroid size 

UC AA66262 Captive  68 70.50 

UC AA66263 Captive  65 68.69 

UC AA66268 Captive X 75 76.57 

UC AA66274 Captive  56 61.15 

UC AA66276 Captive  54 60.09 

UC AA66278 Captive  52 59.74 

UC AA66280 Captive X 47 57.94 

UC AA66282 Captive X 62 64.64 

UC AA66284 Captive  63 65.83 

UC AA66286 Captive  70 72.83 

UC AA66292 Captive  53 62.10 

UC AA66294 Captive  49 54.35 

UC AA66296 Captive  56 60.65 

UC AA66300 Captive  54 57.39 

UC AA66302 Captive X 48 55.63 

UC AA66304 Captive  56 60.80 

UC AA66308 Captive  60 64.62 

UC AA66312 Captive  53 59.56 

AMS R152446 Wild X 43 51.14 

AMS R152464 Wild  78 74.90 

AMS R154969 Wild  72 88.63 

AMS R154972 Wild X 102 99.01 

AMS R171161 Wild X 72 71.66 

AMS R52459 Wild  62 67.83 

SAMA R34730 Wild X 97 95.64 
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Table S6.2 – Specimens used for data set B in Chapter 6, and relevant information. UC = 
University of Canberra; AMS= Australian Museum; SAMA= South Australian Museum. 

Species Institution Reg. number Specimen type Centroid size 
Amphibolurus muricatus UC AA66268 Head 76.57 
Amphibolurus muricatus UC AA66280 Head 57.94 
Amphibolurus muricatus UC AA66282 Head 64.64 
Amphibolurus muricatus UC AA66302 Head 55.63 
Amphibolurus muricatus AMS R152446 Head 51.14 
Amphibolurus muricatus AMS R154972 Head 99.01 
Amphibolurus muricatus AMS R171161 Head 71.66 
Amphibolurus muricatus SAMA R34730 Head 95.64 
Ctenophorus isolepis SAMA R32154 Head 52.26 
Ctenophorus isolepis SAMA R35553 Skull 53.88 
Ctenophorus isolepis SAMA R59391 Head 58.35 
Ctenophorus isolepis SAMA R60403 Head 35.13 
Diporiphora nobbi SAMA R32501 Head 78.60 
Diporiphora nobbi SAMA R21511 Head 83.13 
Diporiphora nobbi SAMA R29709 Head 39.98 
Diporiphora nobbi SAMA R35064 Head 64.40 
Diporiphora nobbi SAMA R36319 Head 35.98 
Diporiphora nobbi SAMA R3712 Head 45.20 
Gowidon longirostris SAMA R18053 Skull 97.42 
Gowidon longirostris SAMA R29290 Head 91.95 
Gowidon longirostris SAMA R47292 Head 60.77 
Gowidon longirostris SAMA R51542 Head 70.76 
Gowidon longirostris SAMA R60498 Head 40.40 
Pogona barbata SAMA R32503 Head 141.30 
Pogona barbata SAMA R49512 Head 50.06 
Pogona barbata SAMA R59743 Head 113.93 
Pogona barbata SAMA R61274 Head 117.78 
Rankinia diemensis SAMA R1457B Head 76.57 
Rankinia diemensis SAMA R269B Head 68.97 
Rankinia diemensis SAMA R3190 Head 34.14 
Rankinia diemensis SAMA R3294 Head 39.96 
Rankinia diemensis SAMA R3349 Head 56.23 
Rankinia diemensis SAMA R269A Head 74.07 
Tympanocryptis tetraporophora SAMA R49733 Head 26.32 
Tympanocryptis tetraporophora SAMA R58097 Head 43.25 
Tympanocryptis tetraporophora SAMA R58194 Head 46.89 
Tympanocryptis tetraporophora SAMA R64581 Head 42.01 
Tympanocryptis tetraporophora SAMA R67710 Head 56.63 
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Table S6.3 – Summaries of first six principal components from PCAs in Chapter 6. 

 PC 1 PC 2 PC 3 PC 4 PC5 PC 6 

Jacky lizards before allometry correction    

Prop. of 
variance 

0.3381 0.1118 0.0729 0.0646 0.0532 0.0412 

Cumulative 0.3381 0.4499 0.5229 0.5875 0.6407 0.6819 

Jacky lizards after allometry correction    

Prop. of 
variance 

0.1525 0.1191 0.0943 0.0805 0.0691 0.609 

Cumulative 0.1525 0.2715 0.3658 0.4463 0.5154 0.5762 

Comparison species before allometry correction   

Prop. of 
variance 

0.4223 0.1621 0.0665 0.619 0.0356 0.0344 

Cumulative 0.4223 0.5844 0.6509 0.7127 0.7483 0.7827 

Comparison species after allometry correction    

Prop. of 
variance 

0.3305 0.1093 0.0940 0.0745 0.0538 0.0438 

Cumulative 0.3305 0.4398 0.5338 0.6083 0.6621 0.7058 

Comparison species after allometry correction with species as factor  

Prop. of 
variance 

0.1345 0.1077 0.0980 0.0788 0.0735 0.06139 

Cumulative 0.1345 0.2422 0.3400 0.4188 0.4942 0.5555 
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Supplementary  mater ia l  for  Chapter  8  
 

Figure S8.1 – Surface model of an example maxilla shown in labial view (A), lingual view 
(B), anterior view (C), to show nomenclature of components included in landmark 
definitions. 
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Table S8.1 – Table containing the definitions of all landmarks used to characterise the 
maxilla in 3D. 

Landmarks  Description  

1  Posterior end of the tooth row, directly posterior to the last acrodont tooth  

2  Most posterior point of the maxilla  

3  Most anterior point of the notch ventral to the apex of the posterodorsal process  

4  Apex of the posterodorsal process.  

5  Most dorsal point of the lateral flange on the facial process  

6  
Most ventral point between the lateral and medial flanges on the dorsal margin of 

the facial process  

7  Most dorsal point of the medial flange of the facial process  

8  
Apex of the thickened posteromedial ridge on the internal margin of the facial 

process  

9  The divergence point of the medial margin of the medial flange facial process 

10 The divergence point of the lateral margin of the lateral flange of the facial process  

11  Most ventral point of the narial basin (in the centre)  

12  Most dorsal point (apex) of the anteromedial process  

13  
The dorsal point of the notch that separates the anterior and anteromedial 

processes ( between 12 and 14)  

14  Most dorsomedial point of the anterior process  

15  Most ventromedial point of the anteromedial process  

16  Most anterior point of the anteromedial process   

17  Most anterior point of the anterior process  

18  Anterior of the base of the most anterior pleurodont tooth  

19  Most posterior visible point of the naris ridge  

20  
Most concave part of the embayment at the base of the facial process visible in 

medial view  

21  Posterior end of the palatine shelf  

22  Most posterior point of the posteromedial shelf  

Semi-landmarks  

Curve 1 (23-32) 
From the posterior end of the orbital margin (usually approximates the posterior end 

of the palatine shelf) to the most anterior point of the orbital margin.  

Curve 2 (33-42) 

Along the ridge on the lateral face of the maxilla, from a point level with the ventral, 

most point of the narial basin (11), to a point level with the most anterior point of 

the notch ventral to the apex of the posterodorsal (3) 

Curve 3 (43-52) From the anterior end of the palatine shelf, to the posterior end of the palatine shelf.  
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