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Summary 

Increased macrophage infiltration and extracellular matrix deposition in adipose tissue and 

skeletal muscle are observed in obesity and associated with insulin resistance. Daily calorie 

restriction (DR) and intermittent fasting (IF) are two dietary approaches to treat obesity. A 

handful of studies have compared the effects of DR versus IF on metabolic health in humans. 

However, the impact of these dietary interventions on adipose tissue and skeletal muscle 

remodelling are poorly investigated. This thesis focuses on the adipose tissue and skeletal 

muscle remodelling following 8-weeks of DR or IF in humans, and also examines metabolic 

characteristics and adipose tissue remodelling in lean and diet-induced obese mice following 

IF.  

 

The study reported in Chapter 3 is the first randomised controlled study to compare continuous 

and intermittent intake patterns at two energy levels (at energy balance, or 30% energy 

restriction). This study showed that IF induced greater reductions in body weight, fat mass, 

homeostatic model assessment of insulin resistance and total cholesterol. However, the mode 

of dietary restriction did not impact overall insulin sensitivity by the clamp method, and fasting 

for 24-hours induced transient insulin resistance. In Chapter 4, weight loss by DR and IF 

reduced fat cell size and stimulated markers of extracellular matrix remodelling, but did not 

reduce markers of inflammation. In contrast, IF transiently elevated markers of inflammation 

in adipose tissue and muscle, which was associated with increases in non-esterified fatty acids 

(NEFA).  

 

To further examine the metabolic profiles and adipose tissue remodelling in response to IF, 

C57BL/6J mice were fed chow or high-fat diet ad libitum for 8-weeks, then subjected to ad 
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libitum feeding or IF for another 8-weeks. The study in Chapter 5 suggests IF promoted fat 

mass loss and improved glucose tolerance in chow and high-fat diet fed mice, but decreased 

body weight, and visceral adipose tissue inflammation and fibrosis in high fat diet fed mice 

only. In contrast to humans, IF did not increase macrophages in adipose tissue in mice, despite 

marked increases in NEFA. 

 

The mechanisms underlining improved metabolic phenotype in chow and high fat diet fed mice 

following IF was documented in Chapter 6. Our data shows that IF increased energy 

expenditure and promoted subcutaneous and visceral adipose tissue browning in both chow 

and high fat diet fed mice. However in humans, eight weeks of IF did not alter mRNA levels 

of uncoupling protein 1, a marker of white adipose tissue browning. 

 

The adipose tissue and skeletal muscle remodelling in response to acute overfeeding was 

described in Chapter 7. This study suggests extracellular matrix remodelling in adipose tissue 

is an early event in response to over-nutrition, and occurs prior to altered insulin sensitivity by 

clamp. 

 

In conclusion, this research highlights that energy restricted intermittent fasting promotes 

greater weight and fat loss, but does not induce greater improvements in insulin sensitivity by 

clamp versus daily calorie restriction. This thesis also suggests intermittent fasting results in 

favourable adipose tissue remodelling in mice, and distinct tissue adaptations versus daily 

calorie restriction in humans.  
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1.1 Obesity 

1.1.1 Definition 

Obesity is a condition in which abnormal or excessive adipose tissue accumulates in the body 

due to positive balance between energy intake and expenditure. Commonly, it is classified 

using body mass index (BMI), which is defined as a person’s body weight in kilograms divided 

by the square of his or her height in metres (kg/m2). According to the criteria from the World 

Health Organisation, for adults, obesity is a BMI greater than or equal to 30. A BMI less than 

30 but greater than or equal to 25 is classified as overweight (World Health Organisation, 2018, 

February 16). Recently, obesity has been recognised as a chronic and preventable disease 

(Hruby and Hu, 2015).  

 

1.1.2 Prevalence 

The prevalence of obesity and overweight has increased rapidly worldwide and in Australia. 

It was estimated that the worldwide prevalence of obesity nearly tripled between 1975 and 

2016. Globally, it was estimated that 39% of adults were overweight and about 13% of the 

world’s adult population were obese in 2016, with a proportion of 11% in men and 15% in 

women (World Health Organisation, 2018, February 16). If this global trends continue, 18% 

of men and 21% of women will be obese by 2025 (N. C. D. Risk Factor Collaboration, 2016). 

 

This situation is even more critical in Australia. The latest survey by the Australian Bureau of 

Statistics revealed that 63.4% of Australian adults were overweight or obese in 2014-2015, and 

the prevalence of obesity reached 27.9% (Australian Bureau of Statistics, 2015, December 8). 

A more recent study estimated that the prevalence of obesity for Australian adults would 

continue to climb, reaching 35% by 2025 (Hayes et al., 2017).  
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1.1.3 Causes 

The causes of obesity are multifactorial. These include excessive calorie intake, physical 

inactivity, inadequate sleep, socioeconomic status, nutritional insults during intra-uterine 

growth, and genetic factors (Caballero, 2007, Brisbois et al., 2012, Stettler and Iotova, 2010, 

Goldstone and Beales, 2008, Fall, 2011, Beccuti and Pannain, 2011). For example, people with 

high socioeconomic status in low-income areas are more likely to be obese, whilst in high-

income countries, those with high socioeconomic status are less likely to be obese (Pampel et 

al., 2012). Offspring from pregnant mothers who suffered from extreme food deficiency or 

who were obese have increased risk of adulthood obesity (Parlee and MacDougald, 2014, Liu 

et al., 2017c, Dabelea, 2007). Mutations in genes encoding factors regulating energy 

intake/expenditure such as leptin (LEP), leptin receptor (LEPR), proopiomelanocortin (POMC) 

and melanocortin-4 receptor (MC4R) are linked with severe early-onset obesity (Montague et 

al., 1997, Clément et al., 1998, Krude et al., 1998, Vaisse et al., 1998). 

 

1.1.4 Impact 

Obesity is linked with a number of health issues. Obesity increases the risks for coronary heart 

diseases, stroke, type 2 diabetes, pulmonary diseases, osteoarthritis and cancer etc., thus 

leading to increased all-cause mortality (Poirier et al., 2006, Katsiki et al., Zammit et al., 2010, 

Kahn et al., 2006, Basen-Engquist and Chang, 2011, Flegal et al., 2013). Additionally, obesity 

causes a significantly economic burden to the health system. It was estimated that obesity 

accounts for between 0.7% and 2.8% of a country’s expenditure in healthcare annually 

(Withrow and Alter, 2011). But the situation in Australia is more severe. The most recent report  

revealed that 7% of the total health burden in Australia was due to overweight and obesity 

(Australian Institute of Health and Welfare, 2017, April 13). In total, 25% of the coronary heart 
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disease burden, 22% of the stroke burden, 19% of the cancer burden and 53% of the diabetes 

burden were attributed to overweight and obesity (Australian Institute of Health and Welfare, 

2017, April 13). 

 

1.1.5 Lifestyle Management  

Lifestyle interventions remain the cornerstone of weight management. These interventions aim 

to modify eating behaviours and/or physical activity to achieve weight loss, improving health 

and quality of life (Heymsfield and Wadden, 2017, American College of Cardiology/American 

Heart Association Task Force on Practice Guidelines, 2014). The advantages of these 

interventions are low cost with no, or minimal side effects (Heymsfield and Wadden, 2017).  
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1.2 Calorie restriction 

Calorie restriction (CR) is a nutritional approach characterised by reducing nutrient intake 

without causing malnutrition. In 1935, McCay and colleagues for the first time demonstrated 

that long-term CR prolonged the maximum lifespan in rats (McCay et al., 1935). Since then, 

this lifespan extension effect of CR has been repeatedly confirmed in a large spectrum of 

species, including yeast, nematode, fruit flies, mice and rats (Kapahi et al., 2017, Ingram and 

de Cabo, 2017). In addition to prolonged lifespan, a growing number of studies in rodents, 

monkeys and preliminary data in humans have shown that moderate CR can prevent and 

reverse age-related chronic diseases, such as obesity, insulin resistance, diabetes, and chronic 

heart disease (Balasubramanian et al., 2017, Ingram and de Cabo, 2017, Kapahi et al., 2017, 

Most et al., 2017).  

 

1.2.1 Calorie restriction, lifespan and health-span in rodents 

Rodents in moderate CR displayed lifespan extension, the degree of which depends on the 

onset and duration of CR. Rodents that started CR at the age of weaning (3 to 6 weeks) 

manifested decreased weight gain and an approximately 30-60% increase in maximum lifespan 

(McCay et al., 1935), and showed a more youthful metabolic phenotype and immunologic 

responses than the age-matched control (Masoro et al., 1980, Weindruch et al., 1979). Mice of 

long-lived strains that were subjected to a restricted diet in late adulthood (12-13 months) 

increased average mean and maximum lifespan by 10-20% compared to ad libitum litter mates 

(Weindruch and Walford, 1982). Of note, initiation of CR at an older age for rodents may not 

extend, and may even reduce, lifespan. Forster et al. reported that CR (-40% energy) in 

C57BL/6N mice increased lifespan when it was introduced at 4-months of age, but reduced 

their lifespan when initiated at 24-months of age (Forster et al., 2003). Similar findings with 

shorter lifespan was observed when CR was implemented in 300 day old Sprague-Dawley rats 
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(Ross, 1977). Further, the impacts of CR on lifespan also depend on the genotype of the rodents. 

In a CR study (-40% energy) which included 41 recombinant inbred strains of mice, the lifespan 

for the majority of the strains was not extended, and notably, nearly 27% of the strains had 

shortened lifespan (Liao et al., 2010).  

 

CR also prevents the functional and structural changes in multiple organs and tissues, and 

improves health-span of rodents. CR inhibits spontaneous, chemical- and radiation-induced 

malignant tumours in several animal models of cancer (Longo and Fontana, 2010). CR can 

prevent or delay the incidence of chronic kidney disease and heart disease, as well as diabetes 

(Weindruch et al., 1986, Shimokawa et al., 1993, Masoro, 2005). Moreover, a variety of 

cytokines such as tumour necrosis factor α (TNFα) and leptin secreted by adipocytes were also 

reduced by CR (Barzilai and Gupta, 1999). Finally, neurodegenerative conditions such as 

Alzheimer’s disease, Parkinson’s disease, Huntington’s disease and cerebral stroke in mouse 

models can be prevented by CR, via decreased neurodegeneration and β-amyloid deposition 

and increased neurogenesis in the central nervous system (Cohen et al., 2009, Mattson, 2005).  

 

It should be noted that CR may bring some detrimental effects on health-span. CR reduced the 

bone mineral content and bone mineral density in rodents independent of the age that CR was 

initiated (Huang and Ables, 2016). CR may also affect immune function causing increased risk 

of infection and retardation of wound healing (Gardner, 2005, Gardner et al., 2011, Ritz et al., 

2008, Clinthorne et al., 2010, Harrison and Archer, 1987, Reiser et al., 1995, Otranto et al., 

2009). 
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1.2.2 Calorie restriction, lifespan and health-span in non-human primates 

Currently, there are two groups exploring the long-term impact of calorie restriction in non-

human primates, one at the National Institute on Aging (NIA) (Lane et al., 1992), the other at 

the Wisconsin National Primate Research Centre (WNPRC) (Ramsey et al., 2000a). A large 

body of evidence shows that calorie restriction significantly improves health-span of non-

human primates (Colman et al., 2009, Kemnitz, 2011).  

 

Monkeys undergoing 30% food restriction showed lower body weight compared with ad 

libitum fed control monkeys, in parallel with a decrease of both subcutaneous and visceral 

adipose tissue measured by dual-energy x-ray absorptiometry or computer tomography 

(Mattison et al., 2003, Colman and Anderson, 2011, Colman et al., 1999, Ramsey et al., 2000b). 

Monkeys on a CR diet displayed decreased fasting insulin and glucose, improved glucose 

tolerance and ameliorated pancreatic β cell function (Mattison et al., 2012, Bodkin et al., 2003, 

Lane et al., 1995, Kemnitz et al., 1994, Anderson et al., 2009, Hansen and Bodkin, 1993, Gresl 

et al., 2001), suggesting that CR enhances both insulin secretion and peripheral insulin 

sensitivity and prevents the onset and development of diabetes in non-human primates. CR also 

reduces the risk of cardiovascular diseases in rhesus monkeys. Evidence shows that CR 

lowered blood pressure, total cholesterol and triglyceride, and improved the lipoprotein profiles 

by increasing high- density lipoprotein (HDL) and reducing very low-density lipoprotein 

(LDL) (Lane et al., 1999, Edwards et al., 1998, Rezzi et al., 2009, Verdery et al., 1997).  

 

As the beneficial effects of CR in rhesus monkeys are in line with findings in rodents, it is 

reasonable to speculate that CR may also prolong lifespan of non-human primates. However, 

whether CR extends lifespan in monkeys is still in debate. The NIA study (Mattison et al., 

2012)showed that after 20 years of intervention, CR did not improve survival outcomes in both 
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adult and aged monkeys. In contrast, the WNPRC study (Colman et al., 2014) reported that 

monkeys with long-term 30% CR showed significant improvements in age-related and age-

caused survival. The authors involved in these two studies compared the distinct outcomes 

from two groups and pointed out that differences in study design, the source of the monkeys in 

each study, the age at which CR was initiated, the implementation of the diet for control 

monkeys, diet composition and feeding time may help explain the divergence between two 

studies (Mattison et al., 2017, Colman et al., 2014). In the NIA study, Food allotments for the 

control monkeys were based on their age and body weight in accordance with National 

Research Council guidelines (Mattison et al., 2012). Monkeys in the WNPRC study however 

were fed ad libitum, which mirrored human feeding habits (Colman et al., 2014). In addition, 

the diet in the NIA study was lower in fat, and higher in protein and fibre compared to the diet 

used in the WNPRC study. Thus, control monkeys in the NIA study displayed lower body 

weight than those in the WNPRC study, which minimised the differences between the 

intervention and control groups in the NIA study.  

 

1.2.3 Calorie restriction in humans 

Since CR prolongs lifespan in rodents and in one study in monkeys, questions have been raised 

as to whether increased longevity in humans can be achieved. So far, the most convincing 

evidence is from the prevalence of centenarians on the island of Okinawa in Japan (Kagawa, 

1978). Okinawan adults had a 20% reduction of calorie intake along with extended life span 

compared to people living in mainland Japan (Suzuki et al., 2001, Japanese Ministry of Health, 

2005). The mortality rates caused by cerebral vascular disease, malignancy, and heart diseases 

on Okinawa were significantly lower than those for the rest of Japan (Mizushima and Yamori, 

1992).  
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The CALERIE study (Comprehensive Assessment of Long-term Effects of Reducing Intake of 

Energy) was the first randomised clinical trial to investigate the long-term impacts of CR in 

healthy humans. In the first step, CALERIE-1 study was conducted in three centres exploring 

the impacts of CR after 6-12 months. A series of publications from this programme suggest 

that CR promoted weight and fat mass loss, and reduced the risk for type 2 diabetes and 

cardiovascular diseases (Heilbronn et al., 2006, Larson-Meyer et al., 2006, Redman et al., 2007, 

Weiss et al., 2006, Fontana et al., 2007, Villareal et al., 2006, Das et al., 2007, Pittas et al., 

2006, Ahmed et al., 2009). More importantly, this study for the first time found that CR in 

humans reduced DNA and RNA damage in red blood cells, and increased mitochondrial DNA 

content in skeletal muscle (Civitarese et al., 2007, Heilbronn et al., 2006, Racette et al., 2006). 

 

Since many of the favourable adaptations occurring in rodents by CR which are considered to 

contribute to the extended lifespan were not seen in humans in the CALERIE-1 study, a 2-year 

CALERIE-2 study was launched in multiple research centres (Ravussin et al., 2015). Currently, 

this study is still ongoing. Preliminary data from this trial suggest that body weight was 

decreased by 11.5% after 12-months of intervention and maintained at the end of 2 years 

(10.4%) (Ravussin et al., 2015). Two years of CR significantly reduced circulating 

inflammatory factors including TNFα and C-reactive protein (CRP) (Ravussin et al., 2015). 

Additionally, risks for cardiovascular diseases including total cholesterol, total glycerides, 

mean blood pressure and homeostatic model assessment of insulin resistance (HONA-IR) were 

significantly decreased (Ravussin et al., 2015). 

 

There are also some non-randomised studies investigating the long-term effects of CR on 

human ageing. The participants in these studies were members from a Calorie Restriction 

Society who self-adopted a CR regimen believing this intervention would prolong their 
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lifespan. These individuals are very lean (BMI<20kg/m2) and stick to CR (approximate -30%)  

for an average length of 15 years (Fontana et al., 2004). Compared to age- and gender-matched 

control individuals, these members displayed a marked decrease in risk factors for type 2 

diabetes and cardiovascular diseases, including circulating levels of total cholesterol (TC), 

triglycerides (TC), LDL, blood pressure, carotid artery intima-media thickness, left ventricular 

diastolic dysfunction, glucose, insulin, HOMA-IR, CRP, TNFα and interleukin 6 (IL-6) 

(Fontana et al., 2004, Meyer et al., 2006, Fontana et al., 2010). However, similar to CALERIE 

study, circulating insulin-like growth factor 1 (IGF-1) levels, which is a key molecule linked 

with longevity and whose marked decrease was observed in rodent studies by CR (Sonntag et 

al., 1999),  were not affected in these participants who underwent very long-term CR (Fontana 

et al., 2008). 

 

There are some concerns about CR in humans, too. First, it is difficult to achieve and maintain 

the prescribed calorie intake, especially long-term. For example, in the CALERIE-1 study at 

Washington University, the achieved calorie restriction was only -11.5% after 12-months, 

which was far less than the prescribed -20% (Racette et al., 2006). Similarly, in the CALERIE-

2 study, averaged CR during the first 6-months was -19.5 ± 0.8%, and -9.1 ± 0.7% over the 

next 18 months, which were also less than the prescribed (-25%) (Ravussin et al., 2015). 

Second, CR causes significant reductions in resting metabolic rate which has been confirmed 

by doubly-labelled water (Redman et al., 2009), metabolic chamber (Heilbronn et al., 2006) 

and ventilated hood system (Martin et al., 2007). This decrease in energy expenditure will 

compromise the expected weight loss. Third, CR decreases bone mineral density in lumbar 

spine, total hip and femoral neck, which may increase the risk of bone fracture (Villareal et al., 

2016). 
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Overall, these studies show that CR improves health-span, but it is not feasible to perform a 

randomised controlled trial to test whether CR will prolong lifespan in humans.  
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1.3 Intermittent fasting 

Intermittent fasting (IF) is a dietary intervention characterised by alternating between periods 

of eating and fasting, typically in 24 hours. In 1946, it was first reported that rats placed onto 

IF diets displayed prolonged lifespan (Carlson and Hoelzel, 1946).  

 

1.3.1 Intermittent fasting, lifespan and health-span in rodents  

Since the first report of prolonged lifespan in IF rats, several following-up studies have 

confirmed this effect, both in rats and mice (Raffoul et al., 1999). Maximum lifespan was 

increased by 18-80% in rats, this was consistent with a significant body weight reduction (40% 

to 50%) compared to ad libitum controls, as these rats did not gorge (Goodrick et al., 1982, 

Goodrick et al., 1983a, Goodrick et al., 1983b, Beauchene et al., 1986). The reasons for such a 

fluctuation in lifespan extension is not clear, but this is very similar in comparison with CR 

studies (Weindruch et al., 1988), possibly due to the study design or strain differences. In mice, 

maximum lifespan is increased (range 11%-56%) (Talan and Ingram, 1985, Ingram and 

Reynolds, 1987), while body weight changes were not significant. Talan et al. (Talan and 

Ingram, 1985) examined IF in C57BL/6J and found that the mean and maximum lifespan of IF 

mice was increased by 11% over ad libitum fed control, with the mean lifespan 29.2 months in 

IF and 26.4 months in control, respectively. Goodrick et al. (Goodrick et al., 1990) examined 

the effect of IF started at different ages, and found that mean and maximum lifespan of 

C57BL/6J mice were extended when an IF regimen was started at 1.5 or 6 months of age. Both 

of these two studies confirmed a smaller weight gain in IF mice compared to ad libitum fed 

control. However, some other studies reported that body weight was not different between IF 

and ad libitum fed mice (Anson et al., 2003, Varady et al., 2010, Varady et al., 2008), as mice 

on IF can consume sufficient food on feeding days so that there is no net energy deficit (Anson 

et al., 2003, Soeters et al., 2009). This phenomenon makes IF quite distinct from CR, 
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suggesting that fasting per se, instead of weight loss, can lead to favourable effects on 

metabolism.   

 

In addition to lifespan, multiple effects of IF on health-span have been investigated in rodents. 

Similar to CR, IF delayed the onset of cancer in wild type as well as genetically modified mice 

which have an accelerated cancer death phenotype (Xie et al., 2017, Siegel et al., 1988). Rats 

bearing tumour cells that were subjected to IF displayed a longer survival period compared to 

ad libitum fed controls (Siegel et al., 1988). In addition, IF is effective to reduce the risk for 

diabetes. Animals subjected to an IF protocol displayed lower fasting insulin levels and glucose 

concentrations after administration of a glucose or insulin load (Anson et al., 2003, Xie et al., 

2017, Gotthardt et al., 2016, Joslin et al., 2017). The cardio-protective effects of IF have been 

investigated in animal models of myocardial infarction. Compared to control animals, IF 

reduced myocardial infarction size and apoptotic cells, improved the survival and recovery as 

well as cardiac function (Ahmet et al., 2005, Godar et al., 2015, Katare et al., 2009). Further, 

IF has been shown to improve the brain function in animal models with neurological disorders, 

such as Alzheimer’s disease and Parkinson’s disease (Mattson et al., 2017). 

 

To test whether 100% energy deprivation on fasting day is required for the benefits of IF in 

mice, modified fasting, which allows 25% food on fasting days has been tested. Modified IF 

resulted in similarly beneficial effects versus “true” IF that involves zero calorie intake during 

the fasting periods. Varady et al. (Varady et al., 2010, Varady et al., 2007b) found that, despite 

no significant weight changes, mice with 50% food restriction on fasting day for 4 weeks had 

reduced adipocyte size, while 75% restriction on a fasting day reduced the proportion of 

visceral adipose tissue and increased circulating adiponectin levels. These beneficial effects 

were further confirmed following human studies in which modified IF increased markers of 
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insulin sensitivity and decreased fat mass and blood lipids (Halberg et al., 2005, Varady et al., 

2009).  

 

Since I commenced my PhD, a number of studies have reported the effects of IF in diet induced 

obese mice (Gotthardt et al., 2016, Joslin et al., 2017, Liu et al., 2017b, Li et al., 2017, Kim et 

al., 2017). These studies are summarised in Table 1.1 and will be discussed in Chapter 5.  
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Table 1-1: Studies examining intermittent fasting in diet-induced obese mice 

First 

author 

and year 

Animal and 

age (weeks) 

Diet Group Trail length Fasting 

protocol 

Effect of IF in diet-induce obese mice 

Weight Adipose tissue Glucose 

metabolism 

Other alterations 

(Kim et 

al., 2017) 

 

C57BL/6J  

Male  

8 wks 

 

Chow 

HFD  

(45% of fat) 

Chow-AL 

Chow-IF 

HFD-AL 

HFD-IF 

16-wks IF 2 fed days 

followed :1 

fast day 

 ↑ Fat mass ↓ 

Fat cell size ↓ 

Inflammation ↓ 

M2-macrophage↑ 

ipGTT↑ 

ipITT↑ 

Gonadal fat browning ↑ 

Liver size ↓ 

Liver steatosis ↓ 

 

 

(Liu et al., 

2017b) 

C57BL/6J 

Male and 

female 

8 wks 

Chow 

HFD 

(41% of fat) 

Chow-AL 

Chow-IF 

HFD-AL 

HFD-IF 

12-wks DIO 

6-wks IF 

ADF ↓ in male 

→ in female 

Not assessed ipGTT↑ 

ipITT→ 

in both sexes 

Beta cell survival ↑ 

(Li et al., 

2017) 

C57BL/6N 

Male 

7-8 wks 

Chow 

HFD 

(60% of fat) 

Chow-AL 

Chow-IF 

HFD-AL 

HFD-IF 

3-month DIO 

30 days IF 

ADF ↓ 

 

Fat mass ↓ 

 

ipGTT ↑ Inguinal fat browning ↑ 

Liver steatosis ↓ 

(Joslin et 

al., 2017) 

C57BL/6J 

Male 

5 wks 

Chow 

HFD 

(60% of fat) 

Chow-AL 

HFD-AL 

HFD-IF 

14-wks DIO 

10-wks IF 

ADF ↓ 

 

Not assessed Insulin ↓ 

ipGTT↑ 

Leptin↓ 

Temperature (fast) ↓ 

Heart rate (fast) ↓ 

(Gotthardt 

et al., 

2016) 

C57BL/6 

Male 

7 wks 

Chow 

HFD 

(45% of fat) 

HFD-chow(AL) 

HFD-chow(IF) 

HFD-HFD(AL) 

HFD-HFD(IF) 

8-wks DIO 

4-wks IF 

ADF ↓ 

 

Total fat mass ↓ Insulin ↓ 

oGTT → 

ipITT ↑ 

Leptin ↓ 

Ghrelin→ 

 

Abbreviations: Chow: rodent chow diet. HFD: high fat diet (% of calorie from fat). DIO: diet-induced obesity. ADF: alternate day fasting. ipGTT: 

intraperitoneal glucose tolerance test. ipITT: intraperitoneal insulin tolerance test. oGTT: oral glucose tolerance test. 

↑: increased versus HFD-AL; ↓: decreased versus HFD-AL; →: no significant change versus HFD-AL. 
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Table 1-2: Human studies examining the effects of intermittent fasting on metabolism 

First 

author and 

year 

 

Participant

s  

 

Trial 

length 

 

Groups1 

 

Diet 

Effect of intermittent fasting 

Weight 

change 

Adipose tissue Diabetes risk Other changes 

(Hoddy et 

al., 2014) 

n=74 

Obese 

10 

weeks 

1. ADF-L 

2. ADF-D 

3. ADF-SM 

ad libitum on feed day; 25% 

energy on fasting day 

↓3  (all groups) ↓3  FM and VAT 

( all groups) 

Unchanged  ↑3  LDL particle size;  

↓3  SBP only in ADF-SM 

(Varady et 

al., 2013)  

n=32 

Nonobese  

 

12 

weeks 

 

1. control 

2. ADF 

As above ↓2  ↓2  fat mass  Not measured ↑2 LDL particle size, 

plasma adiponection 

↓2 TG, CRP, leptin 

 

(Klempel et 

al., 2013c) 

n=35 

Obese  

10 

weeks 

1. ADF-HF 

2. ADF-LF 

125% energy on feed day; 25% 

energy on fasting day;  

↓3  

 (all groups) 

Not measured Not measured ↑3 LDL particle size (all 

groups); ↓3  LDL 

(Klempel et 

al., 2013a) 

n=32 

Obese  

10 

weeks 

1. ADF-HF 

2. ADF-LF 

As above ↓3   

(all groups) 

Not measured Not measured ↑ adiponectin, ↓ leptin and 

resistin in both ADFs 

(Eshghinia 

and 

Mohammad

zadeh, 

2013) 

n=15 

Overweight 

and obese 

8 

weeks 

No control; 3 days 

fasting/week 

25-30% energy on Mon, Wed, 

Sat); ad libitum on Friday; 1700-

1800 Kcal/d on the rest 3 days 

↓3   

 

↓3 fat mass Unchanged  ↓3  WC, SBP, DBP, TC, 

TG, LDL 

(Varady et 

al., 2011) 

n=16 

Obese 

10 

weeks 

No control group ad libitum on feed day; 25% 

energy on fasting day 

↓3   

 

Not measured Not measured ↑3  LDL particle size; 

↓4  WC, LDL and TG 

(Bhutani et 

al., 2010) 

n=16  

Obese  

10 

weeks 

No control group As above ↓3   ↓3  fat mass  Not measured ↑3  adiponectin, 

↓3  WC, LDL, TG, leptin 

and resistin 

(Varady et 

al., 2009)  

n=16 

Obese 

10 

weeks 

No control group As above ↓3   ↓3  fat mass Not measured ↓3  TC,TG, LDL,SBP 

(Soeters et 

al., 2009) 

n=8 

Lean 

2 

weeks 

1. Control  

2. Fast for 20-hour  

Equal food intake in 2 groups None  Not measured Unchanged  ↓2 RMR 

(Halberg et 

al., 2005)  

n=8 

Healthy  

15 

days 

No control group ad libitum on feed day; 20h fasting 

on fasting day 

None Not measured ↑3 insulin sensitivity  ↑3 adiponectin, lipolysis 

(Heilbronn 

et al., 

2005b) 

n=16 

Nonobese 

22 

days 

No control group 200% energy on feed day; energy-

free food on fasting day 

↓3   

 

↓3  fat mass ↓3  fasting insulin, 

 

↑3 fat oxidation; 

↓3  RQ after  prolonged 

fasting  

Abbreviations : TC, total cholesterol;  LDL, low density lipoprotein; TG, triglyceride; CRP, C reactive protein; SBP, systolic blood pressure; DBP, 

diastolic blood pressure; RMR, resting metabolic rate; RQ, respiratory quotient;  FM, fat mass; VAT, visceral adipose tissue; WC, waist 

circumference. 
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1ADF, alternate day fasting; HF, high fat diet (45% fat); LF, low fat diet (25%); ADF-L, meal at lunch time (12pm-2pm); ADF-D, meal at dinner 

time (6pm-8pm); ADF-SM, three small meals. 2P<0.05 versus control 3P<0.05 versus baseline
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1.3.2 Intermittent fasting in humans 

The limited data available examining IF in humans is summarised in Table 1.2. In 2005, 

Heilbronn et al. (Heilbronn et al., 2005b) showed that non-obese subjects that underwent a 24-

hour fast every other day for 22 days exhibited decreased body weight, as well as fat mass 

compared to baseline. In their study, a significant decrease in respiratory quotient was detected 

and both non-esterified fatty acids and blood ketones were elevated, suggesting increased fat 

oxidation. Meanwhile, they found that fasting insulin was also decreased compared with 

baseline, indicating improved insulin sensitivity in humans after IF (Heilbronn et al., 2005b). 

Very shortly after, Halberg et al. (Halberg et al., 2005) found that healthy men subjected to IF 

for 15 days had increased insulin-mediated glucose uptake rate, and increased lipolysis and 

plasma adiponectin, suggesting improved insulin sensitivity (Halberg et al., 2005). Unlike the 

fasting every other day protocol in Heilbronn’s study, participants in Halberg’s study were 

fasted for 20-hours on alternate days (started at 2200 and ended at 1800 the following day), 

thus individuals maintained their body weight (Halberg et al., 2005). Since then, several 

modified IF studies have been performed. Unlike the “true” IF conducted in most rodent 

studies, these experimental designs have allowed participants up to 25% of daily baseline 

energy intake on the fasting day. Modified IF resulted in significant weight loss in individuals 

with obesity and decreased TC, LDL, TG, leptin and resistin, and increased adiponectin 

(Varady et al., 2009, Bhutani et al., 2010). However, to our knowledge, there is no study 

examining insulin sensitivity with the gold standard method of hyperinsulinaemic-euglycaemic 

clamp. As long-term IF studies have not been performed, whether IF expands lifespan in 

humans is unknown. 
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1.4 Studies comparing calorie restriction versus intermittent fasting 

To date, a number of mice studies have been performed comparing the effects of CR versus IF. 

In 1987, Ingram et al. (Ingram and Reynolds, 1987) examined mice undergoing CR or IF and 

found that IF produced greater increases in maximum lifespan (56% in IF and 36% in CR, 

respectively). Since then, several follow-up studies have further examined metabolic 

phenotypes in these two diet regimens. Anson et al. (Anson et al., 2003) randomised 9-week 

old mice to one of the following four groups: ad libitum (AL), CR (-40%), alternate day fasting 

(ADF) and ADF paired-fed (ADF-PF; daily food equal to the average daily intake of ADF). 

During the intervention, mice in ADF consumed a roughly equivalent amount of food in a 48-

hour cycle as AL mice, leading to a similar body weight compared to AL. Mice in CR had a 

49% smaller weight gain after 20 weeks intervention. Interestingly, both CR and ADF mice, 

but not ADF-PF displayed lower fasting glucose and insulin vs. AL, indicating that intermittent 

fasting, rather than restricted energy intake resulted in these beneficial effects. Varady et al. 

(Varady et al., 2007a, Varady et al., 2007b, Varady et al., 2008) compared CR vs. IF in mice 

and showed that CR and IF similarly reduced visceral fat mass, increased blood adiponectin, 

reduced the proliferation rates of T cells and prostate cells, and decreased blood IGF-1 levels. 

Of note, the “hunger hormone” ghrelin was only increased in mice following alternate day 

fasting. These studies, as well as modified IF mice studies are summarised in Table 1.3.  
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Table 1-3: Animal studies comparing intermittent fasting vs. calorie restriction on metabolism1 

Reference Animal  Trail 

length 

Groups2 

diet 

Effect of IF vs. IF 

Weight 

change 

Adipose tissue Diabetes risk Other alterations 

(Varady et 

al., 2010) 

n=30 

C57BL/6J 

Female 

Age 8 weeks 

4 weeks 1. AL 

2. CR-25% 

3. ADF-75% 

4. ADF-85% 

5. ADF-100% 

↓3 in CR-25% ↑4 Subcutaneous fat  

↓4 Visceral fat 

(all intervention 

groups) 

 

Not measured ↑4 Adiponection, TG-glycerol synthesis 

and de novo lipogenesis 

(all intervention groups) 

 

(Varady et 

al., 2008) 

n=30 

C57BL/6J 

Female 

Age 8 weeks 

4 weeks 1. AL 

2. CR-25% 

3. ADF-75% 

4. ADF-85% 

5. ADF-100% 

↓3 in CR-25% Not measured Not measured ↓4 Cell proliferation in CR-25%, ADF-

85% and ADF-100%;  

↓4 IGF-1 in CR-25% and ADF-100% 

↑3 ghrelin  in ADF-100% 

(Varady et 

al., 2007b)  

n=24 

C57BL/6J 

Male 

Age 8 weeks 

4 weeks  1. AL 

2. ADF-25% 

3. ADF-50% 

4. ADF-100%  

↓5 in ADF-

100% 

↓4  adipose size in 

ADF-50% and ADF-

100% 

 

Not measured ↑3 Net lipolysis in ADF-100%  

↑4  FFA: in all ADFs 

 

(Varady et 

al., 2007a) 

n=24 

C57BL/6J 

Male 

Age 8 weeks 

4 weeks 1. AL 

2. ADF-25% 

3. ADF-50% 

4. ADF-100% 

↓3 in ADF-

100% 

Not measured Not measured ↓4 Proliferation rates of T-cells and 

prostate cells in ADF-50% and ADF-

100% 

↓3 IGF-1 in ADF-100% 

(Anson et al., 

2003) 

n=32 

C57BL/6 

Male  

Age 6 weeks 

20 

weeks  

1. AL 

2. ADF 

3. CR-40% 

4. PF 

↓3 in CR-40% Not measured ↓6 glucose in CR and ADF 

↓7  insulin in CR and ADF 

↑4  IGF-1 in ADF and PF 

↓3 IGF-1in CR-40% 

↑3  β-HB in ADF 

↓3  β-HB in CR-40%  
1 DM, diabetes mellitus; FFA, free fatty acid; TG, triglyceride; IGF-1, insulin-like growth factor 1; β-HB, β-hydroxybutyrate. 
2 AL, ad libitum; ADF, alternate day fasting; CR-25%, 25% energy restriction; CR-40%, 40% energy restriction; ADF-25%,75% energy intake on 

fasting day; ADF-50%, 50% energy intake on fasting day; ADF-85%, 15% energy intake on fasting day; ADF-100%, no food intake on fasting 

day; PF, pair-fed mice (daily food allotment equal to IF);  
3 Post-intervention values of intervention groups significantly different from post-intervention values of control group, P<0.05. 
4 Post-intervention values of intervention groups significantly different from post-intervention values of control group, no difference between 

indicated intervention groups P<0.05. 
5 Post-intervention values of indicated group significantly different from post-intervention values of ADF-25% and ADF-50%,control group, no 

difference between indicated and control P<0.05. 
6Post-intervention values of intervention groups significantly different from post-intervention values of control group and PF, no significant 

difference between indicated intervention groups P<0.05. 
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7 Post-intervention values of intervention groups significantly different from post-intervention values of control group, significant difference 

between ADF and IF groups P<0.05. 
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In humans, Harvie et al. compared an IF diet versus CR in two separate cohorts of women over 

3 or 6 months (Harvie et al., 2011, Harvie et al., 2013). The design of this diet was slightly 

different in that the 2 fasting days were prescribed consecutively, allowing 25% of energy 

requirements, followed by ad libitum consumption for 5 days per week. IF resulted in similar 

weight loss at 6-months vs. CR (Harvie et al., 2011). Of note, the IF group was assigned a meal 

replacement during the 2 days of severe energy restriction, whereas the CR group was 

prescribed a conventional food based diet. Meal replacements typically show better adherence 

and weight loss than conventional food based diets (Harvie et al., 2011). However, a 

subsequent 3-month study by this group implemented a food based program in both groups, 

and also reported similar weight loss following modified IF versus CR (6% vs 4%, P=0.1). A 

greater reduction in fat mass was observed in modified IF at 3 months, and this group continued 

to lose significantly more weight (-0.5kg) versus CR (-0.1kg) one month after cessation of the 

active weight loss phase. A slightly greater reduction in fasting insulin in the intermittent diet 

at 3 and 6 months was also observed (Harvie et al., 2011, Harvie et al., 2013).  

 

Two clinical trials comparing the effects of IF versus CR have been recently published since 

we conducted the human study. They are summarised in Table 1.4 and will be discussed in 

Chapter 3.  

 

It should be noted that none of these studies examined the metabolic adaptations on both fed 

and fasted days (Harvie et al., 2011, Harvie et al., 2013, Trepanowski et al., 2017, Catenacci et 

al., 2016). It is not clear whether energy restriction is necessary for intermittent fasting to have 

beneficial effects on health in humans.
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Table 1-4: Human studies comparing intermittent fasting vs. calorie restriction 

Reference Participants  

(N, age, BMI) 

Study 

duration  

Group  Fasting protocol   Effects of IF vs. CR 

Adiposity  Diabetes risk CVD risk  Inflammation  

(Trepanowski 

et al., 2017) 

14 men 

86 women 

18-65 yrs 

25.0-40 kg/m2 

6-month 

weight loss  

 

6-month 

follow-up 

Control  

CR  

IF 

 

Alternate day fasting; 

25% of energy requirement provided on fast 

day; 

125% of energy requirement on fast day; 

Total energy matched with CR. 

6-month 

WL: ns 

FML: ns 

Glu, Ins and HOMA-

IR: ns 

HDL: ↑  

TG, LDL and 

TG: ns 

CRP: ns  

12-month 

ns ns ns ns 

(Catenacci et 

al., 2016) 

6 men 

19 women  

18-55 yrs 

30-52kg/m2 

8-week IF 

 

24-week 

follow-up 

CR 

IF 

Alternate day fasting; 

Zero food on fast day; 

Energy not prescribed on fed days 

8-weeks    

WL: ns 

FML: ns 

Glu and Ins: ns  TC, HDL, LDL 

and TG: ns 

not assessed  

32-week 

ns ns ns not assessed  

(Harvie et al., 

2013) 

115 women 

Agemean>45yrs 

24-45kg/m2 

and/or fat 

mass>30% 

3-month 

weight loss 

 

1-month 

weight 

maintenance  

CR 

IF 

2 consecutive fasting days/week, 30% of 

energy requirement provided on fast day. 

Weekly energy matched with CR (-25%) 

 

1 fasting day/week during weight 

maintenance phase 

3-month  

WL: ns 

FML: ↑ 

Glu: ns 

Ins and HOMA-IR: ↑ 

not assessed not assessed  

4-month 

ns ns not assessed not assessed  

(Harvie et al., 

2011) 

107 women 

30-45 yrs  

24-40 kg/m2 

6-month IF CR 

IF 

2 consecutive fasting days per week 

 

25% food on fast day 

WL: ns 

FML: ns 

Glu: ns  

Ins and HOMA-IR: ↓  

TC, HDL, LDL 

and TG: ns 

CRP: ns  

Abbreviations: BMI: body mass index. CR: daily calorie restriction. IF: intermittent fasting. WL: weight loss. FML: fat mass loss. Glu: fasting 

glucose. Ins: fasting insulin. HOMA-IR: homeostatic model assessment of insulin resistance. CVD: cardiovascular diseases. TC: total cholesterol. 

LDL: low-density lipoprotein. HDL: high-density lipoprotein. TG: triglycerides. CRP: C-reactive protein. 

 

ns: no difference in the change between IF versus CR. ↑: greater increases in IF vs. CR. ↓greater reductions in IF vs. CR.  
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1.5 Adipose tissue remodelling in obesity, calorie restriction and 

intermittent fasting. 

Adipose tissue is the main site of nutrient storage in the body and accounts for most of the 

weight gained during obesity. It consists of both cellular and non-cellular components. 

Adipocytes are the main cell type in adipose tissue to store energy in the form of lipid. Immune 

cells including macrophages, T cells and neutrophils infiltrate into adipose tissue, playing 

important roles in the regulation of adipocyte function and systemic metabolism. Additionally, 

extracellular matrix (ECM), which is a non-cellular structure provides mechanical and 

nutritional support to neighbouring cells.   

 

Adipose tissue displays great plasticity with a series of events occurring in response to nutrient 

availability, namely adipose tissue remodelling (Sun et al., 2011).  During chronic over-

nutrition, fat pads expand to store excess energy. This process is achieved through the 

enlargement of adipocyte size (hypertrophy) and/or new adipocyte generation (hyperplasia) 

(Martinez-Santibanez and Lumeng, 2014). Monocytes are rapidly recruited into adipose tissue 

and are polarised to classically activated M1-macrophages, which release pro-inflammatory 

molecules (e.g. TNFα, IL-6 and MCP1) contributing to the development of insulin resistance 

(Fujisaka et al., 2013, Lumeng et al., 2007a, Aron-Wisnewsky et al., 2009). Owing to the 

nutrient excess, the synthesis of ECM exceeds its degradation, leading to extra ECM deposition 

in adipose tissue (Martinez-Santibanez and Lumeng, 2014). This consequently restricts the 

expansion of adipocytes, causing lipid deposition in non-storage tissues such as liver and 

muscle, which in turn impairs insulin sensitivity (Khan et al., 2009, O'Hara et al., 2009, Li et 

al., 2010). Moreover, ECM may be also involved in the recruitment of macrophages into 

adipose tissue through ECM-macrophage crosstalk (Martinez-Santibanez and Lumeng, 2014). 

To catch up with the adipose tissue expansion, new blood vessels are generated to provide 
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nutritional support (Martinez-Santibanez and Lumeng, 2014). However, some evidence 

suggests this does not fully compensate the demand from adipose tissue leading to hypoxia and 

the activation of inflammatory cascades (Ye et al., 2007). The association between adipose 

tissue macrophages, extracellular matrix and insulin sensitivity will be reviewed in Chapter 2. 

 

Some studies have also examined the acute effects of weight gain by overfeeding on adipose 

tissue remodelling in humans. Current evidence pointed out that the weight gained by 4-8 

weeks of overfeeding led to impaired insulin sensitivity and increased ECM synthesis in 

adipose tissue, without altering macrophage accumulation in adipose tissue (Tam et al., 2010, 

Tam et al., 2014). However, it is not clear whether ECM remodelling in adipose tissue is an 

early contributor to, or a consequence of, insulin resistance in obesity. 

 

The effects of CR on adipose tissue have been extensively studied in both animals and humans. 

Moderate CR decreases fat mass as well as fat cell size in both mice and humans (Varady et 

al., 2007b, Larson-Meyer et al., 2006). However, it appears that the decrease in fat mass is 

mainly contributed by the decreased fat cell size, as some evidence suggests that fat cell number 

remains constant following marked weight loss (Spalding et al., 2008). The adaptation of 

macrophages in response to CR is dependent on its length and severity. For example, mice in 

the early stage of CR displayed increased macrophage accumulation in adipose tissue (Kosteli 

et al., 2010). This phenomenon was also observed in humans on a very low calorie diet (Capel 

et al., 2009). Following marked weight loss, macrophages in adipose tissue were significantly 

reduced (Magkos et al., 2016, Zamarron et al., 2017). Interestingly, some studies have 

suggested that this is accompanied by a phenotype switch from inflammatory M1- to anti-

inflammatory M2- profiles (Fabbiano et al., 2016). The responses in ECM are also somewhat 

controversial. A number of mouse and human studies have demonstrated that CR reduced the 
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mRNA levels of collagens and increased the mRNA of matrix metalloproteinase (MMPs) 

which degrade ECM (Zamarron et al., 2017, Magkos et al., 2016), however, most of these 

studies are limited to the measurement of gene expression. A clinical trial quantifying collagen 

content in subcutaneous adipose in participants following bariatric surgery showed that 

collagen deposition was actually increased after marked weight loss (Liu et al., 2016). 

 

The impacts of IF on adipose tissue remodelling are less investigated and mainly limited to 

mice studies. Varady et al reported that 4-weeks of IF decreased visceral fat mass as well as 

fat cell size, and this change was also observed in a modified IF approach (Varady et al., 2007b, 

Varady et al., 2010).  The effects of IF on adipose tissue inflammation is unclear. However, 

some studies showed that an acute 24-hour fast increased macrophage accumulation in adipose 

tissue in mice (Kosteli et al., 2010, Asterholm et al., 2012, Ding et al., 2016). This increase 

coincided with elevated NEFA levels and was proposed to buffer the lipids released from 

adipocytes(Kosteli et al., 2010). How IF affects ECM remodelling in adipose tissue is unclear. 
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1.6 Skeletal muscle remodelling in obesity, calorie restriction and 

intermittent fasting 

Skeletal muscle contains thousands of muscle fibres which are bundled together and 

surrounded by a layer of extracellular matrix (Tabebordbar et al., 2013). Immune cells, 

including macrophages and T cells reside in muscle fibres, secrete a number of cytokines which 

are associated with muscular contraction, repair and regeneration (Pillon et al., 2013). Recently, 

it has been suggested that skeletal muscle undergoes remodelling in obesity and in response to 

dietary interventions (Wu and Ballantyne, 2017, Martinez-Huenchullan et al., 2017).  

 

In mice, significant increases in macrophage and inflammation-associated markers, including 

Emr1, Cd11c, Tnfα and Ccl2 were detected in skeletal muscle after 1-week of high-fat diet 

feeding, and remained higher at 10-weeks, along with impaired glucose tolerance (Fink et al., 

2014). Of note, a follow up study confirmed this finding and pointed out that increased 

macrophages are predominantly located in extramyocellular adipose tissue, which is closely 

linked with insulin sensitivity (Khan et al., 2015).  

 

Obesity also affects muscle extracellular matrix remodelling through regulating its synthesis 

and degradation. Compared with lean mice, diet-induced obese mice displayed higher levels of 

collagen genes including Col1a1, Col1a2, Col3a1, Col6a1 and integrin which are key 

components of extracellular matrix (Kang et al., 2011, Inoue et al., 2013). Some evidence 

suggests obesity alters the expression and activity of MMPs, which belong to a zinc 

endopeptidase enzymatic superfamily and function to degrade extracellular matrix. Biga et al 

suggested that C57BL/6J mice fed a high fat diet (60%) for 6 weeks displayed increased mRNA 

levels and activity of MMP2 and MMP9 (Biga et al., 2013). In contrast, Kang et al 

demonstrated that 14-20 weeks of high fat diet feeding decreased MMP9 activity without 
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altering MMP2 (Kang et al., 2011). Discrepancy of these studies could be due to the diet or 

length of high fat diet feeding. But overall, these data suggest that obesity may cause a net 

increase in extracellular matrix deposition in skeletal muscle as revealed by histology (Kang et 

al., 2011). 

 

How obesity affects human muscle remodelling is less known and remains controversial. Some 

evidence suggests that macrophage accumulation in muscle is positively linked with obesity 

and insulin resistance (Patsouris et al., 2014, Varma et al., 2009, Fink et al., 2014). However, 

there are a growing number of studies showing that muscle macrophages are not associated 

with obesity and insulin sensitivity (Amouzou et al., 2016, Tam et al., 2012b), or are negatively 

correlated with obesity and insulin resistance (Fink et al., 2013, Liu et al., 2017a). Limited 

evidence suggests individuals with obesity display increased extracellular matrix deposition in 

skeletal muscle (Martinez-Huenchullan et al., 2017, Berria et al., 2006). 

 

Evidence that examined the impacts of CR on muscle remodelling is even scarcer. Kayo et al 

reported that 9-year CR in male rhesus monkeys down-regulated a number of genes in 

inflammatory responses including human leukocyte antigen DM, octamer transcription factor 

2 and iNOS in muscle (Kayo et al., 2001). Surprisingly, genes involved in ECM synthesis were 

up-regulated, such as COL1A1, COL1A2, COL3A1, COL6A3 and COL8A1 (Kayo et al., 2001).  

Yang et al assessed skeletal muscle adaptations in a group of lean adults (BMI 19.2±1.1kg/m2) 

from the Calorie Restriction Society who maintained a CR diet for 3-15 years (Yang et al., 

2016). They found that a CR diet significantly decreased a number of factors in inflammation 

pathways in muscle, including nuclear factor kappa B subunit 1 (NF-κB), TNFα, IL-6, IL-8, 

and iNOS compared to age-matched control adults (BMI 25.3±2.3kg/m2). However, the impact 
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of long-term CR on muscle extracellular matrix remodelling was not examined in this study. 

The impacts of IF on muscle remodelling is unknown. 
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1.7 Research questions 

The general aims of this thesis are to answer the following questions: 

1. Is energy restriction necessary for intermittent fasting to have beneficial effects on 

health in humans? 

2. Does intermittent fasting increase adipose tissue and skeletal muscle inflammation in 

mice and humans? 

3. Does intermittent fasting improve metabolic heath in chow and high fat diet fed mice? 

4. Does intermittent fasting reduce adipose tissue fibrosis in mice and humans? 

5. Does white adipose tissue browning contribute to improved health by intermittent 

fasting in mice and humans? 

6. Does short-term over-nutrition trigger adipose tissue and skeletal muscle remodelling 

in humans? 

  



  Chapter 1 

31 
 

1.8 Specific Aims and hypotheses 

Study 1: Effects of intermittent versus continuous energy intakes on insulin sensitivity 

and metabolic risk in women who are overweight or obese 

Aims:    

1. To compare intermittent fasting versus continuous energy intakes at 100% or 70% of 

calculated energy requirements on peripheral insulin sensitivity, weight and body 

composition, and cardio-metabolic outcomes. 

2. To explore acute metabolic changes that occur when switching between a fed (i.e. after 

a 12-h overnight fast) and fasted (24-h fast) state. 

Hypotheses:  

1. Intermittent fasting without energy restriction will improve markers of metabolic 

health.  

2. Intermittent fasting with energy restriction may be more effective than daily calorie 

restriction to improve insulin sensitivity, promote weight and fat loss and reduce 

cardiovascular risk. 

3. The “metabolic switching” between the fed and fasted states that is characteristic of IF 

may underlie the observed health benefits of intermittent fasting. 

 

Study 2: Adipose tissue and skeletal muscle remodelling following eight-weeks of 

intermittent fasting or daily calorie restriction in women who are overweight or obese 

Aim: 

To compare the effects of intermittent fasting versus calorie restriction on adipose tissue 

and skeletal muscle remodelling. 

Hypothesis:  
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Intermittent fasting and calorie restriction may reduce fibrosis, but intermittent fasting 

may increase inflammation in adipose tissue and skeletal muscle. 

 

Study 3:  Does intermittent fasting improve metabolic health in chow and high fat diet 

fed mice?  

Aims:  

1. To examine the effects of intermittent fasting on body weight and glucose tolerance. 

2. To assess the effects of intermittent fasting on adipose tissue inflammation and fibrosis.  

Hypotheses:  

1. IF will improve glucose tolerance in chow fed mice without weight loss. 

2. IF will improve glucose tolerance and promote weight loss in high fat diet fed mice. 

3. IF will reduce adipose tissue fibrosis, but may increase adipose tissue inflammation.  

 

Study 4:  Does intermittent fasting promote white adipose tissue browning in mice and 

humans? 

Aims:  

1. To examine the effects of intermittent fasting on food intake and energy expenditure in 

chow and high fat diet fed mice.  

2. To assess markers of white adipose tissue browning in mice and humans undergoing 

intermittent fasting. 

Hypothesis:  

Intermittent fasting will increase energy expenditure and promote white adipose tissue 

browning in mice, and will promote white adipose tissue browning in humans. 
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Study 5: Adipose tissue and skeletal muscle remodelling in response to acute overfeeding 

in young adults. 

Aim: 

To examine adipose tissue and skeletal muscle remodelling in response to 3 days of 

overfeeding in young adults.  

Hypothesis:  

Markers involved in adipose tissue and skeletal muscle remodelling will be sensitive to 

3 days of overfeeding, and associated with markers of insulin resistance.  
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2.1 Abstract 

In diet induced and genetically obese rodent models, adipose tissue is associated with 

macrophage infiltration, which promotes a low grade inflammatory state and the development 

of insulin resistance. In humans, obesity is also closely linked with macrophage infiltration in 

adipose tissue, a pro-inflammatory phenotype and insulin resistance. However, whether 

macrophage infiltration is a direct contributor to the development of insulin resistance that 

occurs in response to weight gain, or is a later consequence of the obese state is unclear. There 

are a number of concomitant changes that occur during adipose tissue expansion, including the 

number and size of adipocytes, the vasculature and the extracellular matrix. In this review, we 

will examine evidence for and against the role of macrophage recruitment into adipose tissue 

in promoting the development of insulin resistance in rodents and humans, as well as discuss 

the emerging role of macrophages in mediating healthy adipose tissue expansion during periods 

of caloric excess. 

 

Key words: adipose tissue remodelling; inflammation; insulin resistance; macrophages; 

obesity 
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2.2 Obesity is a low grade inflammatory state 

The prevalence and severity of obesity is increasing rapidly in the majority of countries 

worldwide, and is highly associated with insulin resistance and an increased risk of developing 

type 2 diabetes, cardiovascular disease, and cancer. However, the precise mechanisms linking 

adipose tissue expansion and insulin resistance are unclear. Adipose tissue was originally 

considered an inert organ, whose sole function was the storage of lipid for energy. 

Metabolically, this is important and insufficient adipose storage has been linked to lipid storage 

in ectopic sites and insulin resistance (Heilbronn et al., 2004a). However, adipose tissue is now 

recognised to be an active endocrine organ that secretes numerous “adipokines”, which have 

remote actions in tissues including brain, skeletal muscle and liver, as well as paracrine and 

autocrine actions. Many of the cytokines that are secreted from adipose tissue are pro-

inflammatory, and obesity was first described as a low-grade inflammatory condition more 

than two decades ago. In this study, Hotamisligil et al. (Hotamisligil et al., 1993) showed that 

diet-induced obese rodents displayed elevations in circulating and adipose tissue levels of 

tumour necrosis factor alpha (TNFα). Since this seminal work, human and rodent obesity has 

been linked with altered secretion of many other inflammatory adipokines, including 

interleukin-6 (IL-6), plasminogen activated inhibitor (PAI-1), serum amyloid A (SAA), 

migration inhibitory factor (MIF), resistin, inducible nitric oxide synthase (iNOS), colony 

stimulating factor-1 (CSF1) and monocyte chemoattractant protein-1 (MCP-1).  

 

Diet and lifestyle interventions that result in weight loss and improvements in insulin sensitivity 

reduce the circulating and local expression of pro-inflammatory cytokines (Ryan and Nicklas, 

2004), which have been shown to directly inhibit the insulin signalling cascade (Krogh-Madsen 

et al., 2006, Lumeng et al., 2007c) via inhibitor kB Kinases (IKK), JUN N-terminal Kinase 

(JNK) and inhibitory serine phosphorylation of insulin receptor substrate-1 (IRS-1). In humans, 
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TNF infusion also reduced insulin-stimulated glucose uptake (Krogh-Madsen et al., 2006), 

whilst chronic exposure to IL-6 increased hepatic and peripheral insulin resistance in mouse 

(Klover et al., 2003) and mice lacking TNFα are protected from obesity-induced insulin 

resistance (Uysal et al., 1997).  

 

2.3 Adipose tissue macrophage infiltration and polarisation in obesity 

Adipose tissue obtained from obese humans and rodents is infiltrated by an increased number 

of macrophages (Weisberg et al., 2003, Xu et al., 2003). This was first shown by two groups 

in 2003 (Weisberg et al., 2003, Xu et al., 2003), where it was identified that the stromal vascular 

fraction was responsible for the majority of the pro-inflammatory phenotype that is observed 

in obesity. Their work suggested that this increase in macrophage number was limited to 

adipose tissue, although other studies have since described increases in inflammatory cells in 

other tissues (Stanton et al., 2011, Fink et al., 2014). Macrophages are mononuclear phagocytes 

involved in immunological and inflammatory processes, whose function is to provide an 

immediate defence against foreign organisms and to clear resultant cellular debris (Fain et al., 

2004, Maury et al., 2007). Macrophages can form crown-like structures (CLS) that completely 

surrounding necrotic adipocytes and fuse to form lipid containing giant multi-nucleated cells, 

that stain strongly for MAC2 (Cinti et al., 2005). Other immune cells are also present in adipose 

tissue, including neutrophils, mast cells, B-cells, T-cells and increased in obese animal and 

human models, although few T-cells were detected in subcutaneous adipose tissue collected 

from overweight and moderately obese individuals in our hands (Tam et al., 2010).  

 

Whilst, the total number of adipose tissue macrophages correlates strongly with the degree of 

obesity and insulin resistance (Cancello et al., 2005), it has been reported that there is also a 

change in the type of macrophage (Morris et al., 2011). “M1” macrophages are pro-
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inflammatory and release factors such as TNF, IL6, iNOS, CD40, CD11c and MCP1, whereas 

“M2” macrophages express an anti-inflammatory gene profile that is characterised by higher 

expression of TGFβ, Ym1, arginase 1, CD206 and Il10. Diet induced obese mice have increased 

expression of genes that are characteristic of M1 or "classically activated" macrophages 

(Fujisaka et al., 2013, Lumeng et al., 2007a). Increased M1 macrophages have also been 

detected in subcutaneous adipose tissue from morbidly obese vs. lean individuals (Aron-

Wisnewsky et al., 2009). Further, surgery-induced weight loss altered the M1/M2 ratio due to 

a concomitant decrease in M1 and increase in M2 macrophages, which was correlated with the 

change in insulin sensitivity (Aron-Wisnewsky et al., 2009). However, there is poor expression 

of many of these markers in humans, and some have shown that obesity is associated with 

increased M2, as well as M1 macrophages (Bourlier et al., 2008, Fjeldborg et al., 2014, Xu et 

al., 2013). This controversy highlights that simple classification into “M1” and “M2” 

macrophages is not entirely appropriate since macrophage phenotype spans a continuum in 

vivo. Recently, Kratz et al. (Kratz et al., 2014) reported that cell surface markers CD274, CD38 

and CD319 were classical M1 markers, since they were activated by lipopolysaccharide (LPS) 

and elevated in airway macrophages collected from patients with cystic fibrosis. In their hands, 

these cell surface markers were not elevated in subcutaneous or visceral adipose tissue 

collected from obese patients or rodents, even though these tissues displayed a pro-

inflammatory phenotype. Kratz et al. (Kratz et al., 2014) went on to show that treatment of 

macrophages in vitro with metabolic activators such as glucose, insulin, palmitate and visceral 

adipose tissue conditioned media, increased cell surface expression of markers ABCA1, CD36 

and PLIN2, but did not elevate CD274 and CD38 or M2-markers CD206 and TGF1b. This was 

mirrored in the subcutaneous and intraperitoneal adipose tissue depots obtained from obese 

mice and from obese humans. This study suggested that a distinct subset of macrophages may 

exist in adipose tissue, termed “metabolically activated macrophages, (MME)”. Whether this 
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holds true in less obese populations, and if MME macrophages are differentially altered in 

response to weight loss or gain is currently unknown. 

 

What causes macrophage infiltration of adipose tissue? 

Numerous theories have been proposed that may explain macrophage recruitment into adipose 

tissue in the obese state, including increased adipose cell size and necrosis, local hypoxia and 

nutritional endotoxemia.  

 

Adipocyte size and necrosis 

Adipose tissue can expand through adipocyte hyperplasia or hypertrophy (Heilbronn et al., 

2004a). Adipocyte size is clearly increased in obesity, and displays a strong independent 

association with insulin resistance and progression to type 2 diabetes (Weyer et al., 2000, 

Dubois et al., 2006). Adipocyte hypertrophy is also a strong predictor of the number of 

macrophages in adipose tissue (Weisberg et al., 2003, Tchoukalova et al., 2007). Interestingly, 

adiponectin overexpressing transgenic ob/ob mice have increased fat mass, but reduced 

adipocyte size and are protected from macrophage infiltration and inflammation in adipose 

tissue, and have a healthy metabolic phenotype despite massive obesity (Kim et al., 2007).  The 

mechanisms underlying the potential relationship between adipocyte size and macrophage 

infiltration may be multifactorial. Larger adipocytes display an altered secretion of 

chemoattractant and immune-related genes that may promote macrophage infiltration (Jernas 

et al., 2006). Large adipocytes also have increased lipolysis (Laurencikiene et al., 2011, 

Michaud et al., 2014), which may stimulate macrophage infiltration as has been shown to occur 

in response to prolonged fasting, as well as pharmacologically (Kosteli et al., 2010). Finally, 

the rate of adipocyte death is also elevated in obesity (Cinti et al., 2005, Giordano et al., 2013). 

Immunohistochemistry shows that the CLS surround necrotic adipocytes and the phagocytic 
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ingestion of these adipocytes increases the lipid content of CLS, which protects against lipid 

leak (Altintas et al., 2011, Wu et al., 2011). This beneficial action of the macrophage may limit 

the continuation of the inflammatory response.   

 

Local adipocyte hypoxia  

Hypoxia occurs when oxygen availability does not match demand by the surrounding tissue. 

In rodent models of obesity, increased adipose tissue hypoxia is observed alongside increased 

expression of hypoxia-inducible factor-alpha (HIF1) and TNF (Ye et al., 2007). The 

hypoxic area in adipose tissue of obese animals coincides with macrophage infiltration (Rausch 

et al., 2008) and also induces M1 polarity of macrophages (Fujisaka et al., 2013). Adipocyte-

specific HIF1α knockout results in improved glucose tolerance, decreased macrophage 

infiltration, and reduced MCP-1 and TNFα expression in adipose tissue versus wild type 

(Kihira et al., 2014). Suppression of HIF1α by administration of antisense oligonucleotides 

results in weight loss, increased energy expenditure and decreased fasting blood glucose in 

diet-induced obese mice (Shin et al., 2012), although this study did not examine whether 

infiltration of macrophages and adipose tissue inflammation was altered. Together, these data 

suggest that hypoxia promotes macrophage infiltration into adipose tissue, and that HIF1α may 

mediate this, at least in part. However, whilst adipose tissue hypoxia is established in obese 

mouse models (Hosogai et al., 2007, Ye et al., 2007, Rausch et al., 2008), there is conflicting 

evidence as to whether adipose tissue hypoxia is a feature of human obesity (Pasarica et al., 

2009b, Goossens and Blaak, 2012). Pasarica et al (Pasarica et al., 2009b) showed that the partial 

pressure of oxygen was lower in adipose tissue from obese individuals versus lean individuals, 

and that this was in parallel with increased macrophage markers in adipose tissue and insulin 

resistance. However, Goosens et al. (Goossens and Blaak, 2012) noted that while there was 

low oxygen in adipose tissue, the metabolic demands of adipose tissue from obese individuals 
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was reduced and detected no net hypoxia in these individuals. The reason for this potential 

species difference is not clear, and more work is required to test whether adipose tissue in 

humans is hypoxic and whether localised hypoxia is a mechanism through which macrophages 

are recruited to adipose tissue.  

 

Nutritional endotoxaemia 

LPS activates and drives the M1 phenotype of macrophages via Toll-like receptor -4 (TLR4) 

and NF-κB, leading to transcription of pro-inflammatory cytokines (eg TNFα, IL-6, MCP-1) 

(Hoch et al., 2008, Leuwer et al., 2009). Numerous studies have examined the consequences 

of TLR4 deficiency, and with mixed results. Some studies have observed reductions in 

circulating inflammatory cytokines and macrophage infiltration of adipose tissue and improved 

insulin sensitivity (Shi et al., 2006, Suganami et al., 2007, Saberi et al., 2009), but this is not 

observed universally (Orr et al., 2012). Kratz et al. (Kratz et al., 2014) also recently showed 

that activation of “MME” macrophages was independent of TLR4. Thus, the role of TLR4 in 

mediating this relationship is still under debate. What is clear is that mice that are fed a high 

fat diet have higher LPS (Cani et al., 2007). This may be due to changes in gut microbiota, and 

increasing intestinal permeability by modulating the expression of genes coding for tight 

junction proteins (Cani et al., 2007, Cani et al., 2008, Lam et al., 2012). Interestingly, transfer 

of gut microbiota of obesity prone-rats increased adipose tissue macrophages, T-cell 

infiltration, TNFα, PAI1 and IL-6 versus transfer of gut microbiota from obesity-resistant rats 

(Duca et al., 2014). Treatment with antibiotics also reduced gut microbiota and activation of 

TLR4, and this was associated with reduced adipose tissue inflammation, as assessed by the 

numbers of CLS and F4/80+ macrophages (Cani et al., 2008, Carvalho et al., 2012). 

Interestingly, the mean size of adipocyte in antibiotic group was also reduced, suggesting there 

may be a role for gut in promoting adipose tissue remodelling (Cani et al., 2008). The 
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mechanisms underlying relationships between specific types of bacteria in the gut, obesity and 

inflammation is still in its infancy and little evidence is currently available in humans. 

Nonetheless, gut permeability may mediate some of the inflammatory response via TLR4 in 

intraperitoneal adipose tissue. 

 

Local proliferation 

Quite recent data suggests that tissue resident macrophages may also be capable of local 

proliferation (Jenkins et al., 2011, Hashimoto et al., 2013), and that the proliferating 

macrophages were M2-polarised (Bourlier et al., 2008). Haase et al (Haase et al., 2014) 

observed that the ki67+ positive proliferating macrophages were associated with CLS in human 

subcutaneous and visceral adipose tissue, although the absolute numbers were very low. 

Further work is required to understand whether local proliferation of macrophages contributes 

significantly to the total macrophage pool, and if this is altered in the obese state. 

 

2.4 Are adipose tissue macrophages responsible for obesity-induced 

insulin resistance?        

Genetic mouse models 

Many genetic approaches to reduce macrophage infiltration of adipose tissue prevent the 

deleterious consequences of obesity. For example, RIP140 mice that have been engineered to 

have a reduction in the circulating monocyte populations have an altered ATM profile in white 

adipose tissue, with a dramatic reduction in inflammatory M1 and an expansion 

in M2 macrophages, which was associated with improved insulin sensitivity (Liu et al., 2014). 

Whole body CCL2 knockouts similarly had reduced inflammation, decreased macrophage 

infiltration in adipose tissue and improved insulin sensitivity when exposed to high fat diet 

(Lumeng et al., 2007b) and transgenic adipose tissue specific overexpressing CCL2 mice 
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display increased macrophage infiltration and insulin resistance (Kamei et al., 2006). This 

suggests that reducing the inflammatory response improves insulin sensitivity in obese mice. 

However, this is not universally observed (Inouye et al., 2007) and studies examining knockout 

of C-C motif chemokine receptor-2 (CCR2, the receptor for CCL2) have also produced mixed 

outcomes in terms of protection from diet induced insulin resistance (Weisberg et al., 2006, 

Lumeng et al., 2007a, Gutierrez et al., 2011). On the other hand, ablation of CD11c+ cells 

increased insulin sensitivity in diet induced obese mice (Patsouris et al., 2008) and macrophage 

specific JNK1/2 knockouts were protected from macrophage infiltration of adipose tissue, and 

insulin resistance (Han et al., 2013). In summary, many studies using genetic manipulation to 

reduce macrophage infiltration of adipose tissue show an insulin sensitive phenotype. 

However, this is not universally observed. The reason for these discrepancies may be in the 

type of high fat diet imposed, the length of the overfeeding protocols and the genetic 

background of the mice under investigation.  

 

Diet and Lifestyle Interventions 

Substantial weight loss induced by bariatric surgery is insulin sensitising and significantly 

reduces the total number of macrophages in adipose tissue and induces a switch in macrophage 

polarisation towards an M2 phenotype, with increased staining for the anti-inflammatory 

cytokine IL10 and reduced expression of MCP1 and HIF1 (Cancello et al., 2005). Weight 

loss following a diet and lifestyle intervention also reduced adipose tissue expression of CD14, 

CD68, IL-6, IL-8, and TNF (Bruun et al., 2006). Both of these studies examined very large 

changes in adiposity in morbidly obese individuals, who have a range of co-morbidities. 

However, studies in less overweight individuals have shown similar results (Auerbach et al., 

2013). Exercise also significantly reduced circulating levels of LPS and TLR4 activation, 

lowered M1 macrophage infiltration, and improved insulin sensitivity in mice fed a high fat 
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diet (Kawanishi et al., 2013, Oliveira et al., 2013). The temporal response to caloric restriction 

in diet induced obese mice was recently examined (Kosteli et al., 2010). In this study, 

macrophage infiltration increased initially in response to caloric restriction, with the peak in 

adipose tissue macrophage numbers coinciding with the peak of circulating free fatty acids and 

adipose tissue lipolysis. Later time-points were associated with reduced macrophage 

infiltration. In humans, no change was observed in adipose tissue macrophage numbers after 4 

weeks of very low calorie diet in moderately obese females, whereas macrophages were 

significantly reduced following moderate calorie restriction and weight loss over the 

subsequent 4 months (Kovacikova et al., 2011). These data suggest that lifestyle interventions 

will reduce the inflammation and macrophage infiltration in adipose tissue in obese, but that 

this may not occur rapidly in response to caloric restriction.  

 

Therapeutic Interventions 

Treatment with thiazolidinediones, an agonist of PPARγ, reduced macrophage number in 

adipose tissue, in parallel with improved insulin sensitivity by triggering apoptosis of M1 

macrophages and increasing M2 macrophages (Bodles et al., 2006, Spencer et al., 2014). 

Administration of a recombinant adenovirus Glucagon-like peptide-1 (GLP-1) to diabetic 

ob/ob mice reduced fat mass, adipocyte size, M1 macrophages, and production of inflammatory 

cytokines (Lee et al., 2012).  Dipeptidyl peptidase-4 inhibitor, which acts by inhibiting the 

degradation of GLP-1 or glucose-dependent insulinotropic polypeptide also reduced total 

macrophage numbers and M1 macrophage staining in adipose tissue as well reduced mRNA 

expression of inflammatory cytokines, IL-6, TNFα (Kim et al., 2005, Dobrian et al., 2011, 

Shirakawa et al., 2011). Angiotensin type 1 receptor (AT1R) blocker, a classical anti-

hypertensive, decreased macrophage infiltration in adipose tissue of high fat diet-induced obese 

mice (Cole et al., 2010) and a similar response was observed in a randomised clinical trial in 
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humans (Goossens et al., 2012). Together, this data suggests that medications that target 

glucose regulation by either increasing insulin secretion and/or insulin sensitivity also reduce 

macrophage infiltration and inflammation in adipose tissue. 

 

Experimental Overfeeding  

There is conflicting evidence as to whether macrophage infiltration occurs early during weight 

gain, and thus could be responsible for the insulin resistant phenotype. A rapid induction of 

inflammatory gene expression was observed in adipose tissue in response to high fat diet (Chen 

et al., 2005, Brake et al., 2006), with significant increases in circulating levels of plasma MCP1 

detected after 4-weeks (Chen et al., 2005). However, Xu et al. (Xu et al., 2003) quantified 

macrophage numbers by histology and could only detect a significant increase in macrophage 

infiltration after 8 weeks of high fat diet. This preceded the rise in plasma insulin in their study, 

indicating that macrophage infiltration occurred prior to development of insulin resistance. One 

elegant study examined the temporal response to high fat diet, and observed that adipocyte 

hypertrophy and hypoxia preceded adipocyte necrosis and macrophage infiltration, which were 

elevated at 8 and 16 weeks (Strissel et al., 2007). In this study, the increase in macrophage 

infiltration coincided with impaired responsiveness to insulin tolerance test. However, gold 

standard measures of insulin sensitivity, the hyperinsulinemic clamp were not performed. 

Temporal investigation of diet induced insulin resistance shows that whole-body insulin 

resistance, as measured by hyperinsulinaemic-euglycaemic clamp, is detected after 1 week but 

that this is due to impaired hepatic insulin sensitivity. Adipose tissue is insulin resistant after 

1 week, while skeletal muscle displays insulin resistance by 3 weeks of high fat exposure 

(Turner et al., 2013).  
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Experimental overfeeding studies in humans show a much slower rate of weight gain, typically 

less than 2% per week (Bouchard et al., 1990). This is likely a very different stimulus to the 4-

5% weight gain that occurs when susceptible mice are exposed to overfeeding diets (Strissel et 

al., 2007). In our hands, overfeeding for 28 days resulted in less than 5% weight gain, with 

significant increases in total and abdominal fat mass and liver fat deposition (Samocha-Bonet 

et al., 2010). In parallel, increases were observed in fasting insulin and reductions were 

observed in peripheral insulin sensitivity by hyperinsulinaemic clamp. Importantly, this study 

showed that peripheral insulin resistance occurred, without significant changes in macrophage 

infiltration of subcutaneous adipose tissue as demonstrated using flow cytometry, 

immunohistochemistry and gene expression (Tam et al., 2010). Similarly, few changes were 

detected in circulating markers of inflammation, with the exception of the predominately liver 

derived cytokines CRP and Fetuin-A (Samocha-Bonet et al., 2014). We also observed no 

changes in adipocyte cell size, but it should be noted this was biopsied from subcutaneous 

abdominal adipose tissue. Similar results have since been reported following modest weight 

gains in other experimental overfeeding studies in humans that also induced insulin resistance 

(Alligier et al., 2012, Johannsen et al., 2014). This data suggest that low-grade systemic and 

subcutaneous adipose tissue inflammation, macrophage infiltration and immune activation 

likely occurs secondary to weight gain and peripheral insulin resistance, at least in humans. 

However, interpretation of these findings is limited to subcutaneous abdominal adipose tissue. 

Visceral adipose tissue contains more macrophages potentially contributing to the well 

described adverse effects of visceral adiposity (Cancello et al., 2006, Harman-Boehm et al., 

2007, Ortega Martinez de Victoria et al., 2009) and may be more important in this response. 

Tchoukalova et al. (Tchoukalova et al., 2010) also showed that multiple subcutaneous sites 

should be sampled since 4-weeks of overfeeding increased adipocyte size, but not adipocyte 
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number, in abdominal sites and increased adipocyte number without changes in adipocyte size 

in femoral sites.  

 

2.5 Does macrophage infiltration promote healthy adipose tissue 

expansion? 

Obesity and type 2 diabetes is associated with hypertrophic adipocytes and a reduced 

proportion of pre-adipocytes within adipose tissue (Tchoukalova et al., 2007). We, and others, 

have theorised that some individuals have reduced ability for adipogenesis, promoting 

adipocyte hypertrophy, ectopic lipid deposition and insulin resistance (Danforth, 2000, 

Heilbronn et al., 2004a). This theory however, was not supported in a recent human 

overfeeding study (Johannsen et al., 2014). Whilst some studies suggest that macrophages 

suppress adipogenesis, this evidence was produced in vitro (Constant et al., 2006, Hammarstedt 

et al., 2007). In vivo, the opposite response has been observed (Sadler et al., 2005, Wernstedt 

Asterholm et al., 2014). This difference may be because in vitro there is no need for 

angiogenesis or remodelling of the extracellular matrix (ECM) to accommodate the increasing 

adipocyte mass. Mice were recently engineered to express either a dominant negative (dn) 

version of TNFα or dnRIDα/β, which inhibits a number of inflammatory pathways (TLR4, 

TNFα and IL1-β), specifically in adipose tissue (Wernstedt Asterholm et al., 2014). Both 

models displayed reduced adipose tissue inflammation but were glucose intolerant, had 

increased fibrosis and hepatic steatosis when exposed to a high fat diet. Mice also displayed 

similar to larger adipocytes versus controls, despite having reduced fat pad weights. This 

suggests that blocking the inflammatory response specifically in adipose tissue impaired the 

ability of this tissue to expand, and led to ectopic lipid accumulation and the development of 

insulin resistance. Strissel et al. (Strissel et al., 2007) showed significant increases in 

adipogenesis following 20-weeks of exposure to high fat diet, which was subsequent to 
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macrophage infiltration at 8-16 weeks, providing indirect evidence to suggest that macrophage 

infiltration promotes adipogenesis in vivo. Wang et al. (Wang et al., 2013) examined 

adipogenesis in various adipose depots during high fat overfeeding. Epididymal fat pads were 

increased by 84% and subcutaneous fat pads were increased by 163% in response to 12-weeks 

exposure. After 7 days, very little adipogenesis was noted and there was no change in the size 

of the adipocyte. After 5-weeks, adipocyte hypertrophy was observed. Adipocyte hyperplasia 

was observed at 12 weeks in the epididimal fat pad but was still minimal in the subcutaneous 

fat pads at 12-weeks. This study did not extend to 20-weeks, and macrophage infiltration was 

not examined. 

 

Remodelling of adipose tissue involves not only changes to adipocyte, but also to the 

extracellular matrix and vasculature to accommodate the expanding mass. Morbidly obese 

individuals display reduced capacity for angiogenesis in subcutaneous adipose tissue versus 

lean (Gealekman et al., 2011), and this has been linked to impaired adipose tissue expandability 

(Rupnick et al., 2002, Nishimura et al., 2007). Vascular endothelial growth factor (VEGF) is a 

key factor in angiogenesis and is highly expressed in macrophage (Cursiefen et al., 2004, 

Walczak et al., 2004). Serum VEGF levels are increased in obesity, but capillarization in 

adipose tissue is reduced in obese humans. Recent studies utilising mouse models provide 

conflicting evidence as to whether VEGF-A prevents or accelerates metabolic dysfunction (Sun 

et al., 2012, Cao, 2013, Wu et al., 2014). In vitro, administration of anti-VEGF antibodies 

inhibited angiogenesis and the formation of adipogenic and angiogenic cell clusters, suggesting 

that this is essential for differentiation of adipocytes. Debels et al. (Debels et al., 2013) 

examined a murine tissue engineering model following addition of zymogen as an 

inflammatory agent, to a Matrigel matrix. In this context, macrophages were observed at 2-

weeks, along with immature new blood vessels. At 4-weeks, blood vessels had matured, and 
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immature adipocytes were observed, with mature adipocytes observed at 6-weeks. Importantly, 

knockout of macrophages reduced both angiogenesis and adipogenesis, suggesting that 

macrophages promote healthy adipose tissue expansion, at least in this type of environment.  

 

The extracellular matrix consists of structural and adhesion molecules such as collagens, 

glycoproteins and fibronectin that provide a structural lattice for cellular adherence, 

organisation and communication. Deposition and breakdown of the ECM is fundamental in the 

repair processes in response to inflammation, and is distinct from the abnormal deposition of 

ECM proteins, which is a process known as “fibrosis”. In obesity, fibrosis in adipose tissue and 

other organs is clearly increased (Henegar et al., 2008, Sun et al., 2013), and some studies have 

shown this can persist despite massive weight loss in subcutaneous adipose tissue (Henegar et 

al., 2008). It is unclear what contributes to excessive ECM accumulation in obesity. In vitro, 

pro-inflammatory macrophages have been identified as one such target, contributing to fibrosis 

development and maintenance (Keophiphath et al., 2009). In humans, Pasarica et al showed 

increased adipose tissue expression of COL6A3 mRNA, in parallel with increased CD68+ and 

CD163/MAC2+ macrophages and increased MIP and MCP1 expression (Pasarica et al., 

2009a). Further, obese subjects with expression of COL6A3 above median had increased 

visceral adipose tissue mass, increased MIP1 and MCP1, and fewer smaller adipocytes. Weight 

loss reduced the expression of ECM genes in adipose tissue (Kolehmainen et al., 2008) and 

overfeeding increased expression of COL6A3 in men, suggesting that rapid changes in the 

ECM are needed to accommodate the changing adipose mass (Pasarica et al., 2009b). 

Interestingly, diet induced obese mice lacking Col6A1 have an unrestricted expansion of 

adipocyte size, fewer crown like structures representing regions of adipocyte death and 

inflammation and improved glucose control (Khan et al., 2009), suggesting that fibrosis 

increases the rigidity of adipose tissue and restricts adipocyte expansion. Few studies have 
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examined the temporal response of ECM proteins to experimental overfeeding. Alligier et al. 

examined the effects of a moderate increase in energy intake at 14 and 56 days. Increases in 

lipid metabolism genes were observed at 14 days, followed by increases in ECM and genes 

related to adipogenesis and angiogenesis at 56 days, which was supported by histological 

examination (Alligier et al., 2012). Similarly Tam et al. reported significant increases in 

adipose tissue expression in collagens I and II and TGFβ after 10% weight gain, although no 

changes were noted in expression of inflammatory genes in either study suggesting ECM 

remodelling was independent of macrophage infiltration (Tam et al., 2014).  

 

2.6 Conclusions  

Obesity is clearly associated with an increase in the total number of macrophages in adipose 

tissue, and increased secretion of pro-inflammatory factors and chronic low grade 

inflammation, all of which may contribute to the development of insulin resistance. However, 

we and other have shown that macrophage infiltration is not an immediate response during 

experimental overfeeding in humans, despite expanding adipose mass and insulin resistance. 

Studies in mouse suggest that macrophage infiltration occurs about 8-16 weeks after initiation 

of high fat diet, which is typically after the development of insulin resistance. This disconnect 

between macrophage infiltration and insulin resistance, is also observed in many genetic 

manipulation studies in mice, and raises some questions as to whether macrophages are causal 

in the development of the insulin resistant phenotype. Studies investigating the temporal 

response to exposure to high fat diet suggest that macrophage infiltration during weight gain 

may be transitory, and promote healthy adipose tissue expansion, at least initially (Figure 2.1). 

Moreover, blocking this response may promote unhealthy adipose tissue expansion, and 

ectopic lipid deposition. Further work is required to ascertain whether we can selectively 
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activate macrophages to promote healthy adipose tissue expansion, and therefore potentially 

improve metabolic health. 

 

 

Figure 2-1: Macrophage infiltration in adipose tissue 

Macrophage infiltration in adipose tissue is a dynamic process that is reduced following energy 

restriction, and increased upon exposure to prolonged energy excess. During weight gain, 

adipocyte hypertrophy, necrosis and M1 macrophage infiltration occur. Macrophage 

infiltration may then promote healthy adipose tissue expansion, at least initially, via 

adipogenesis, angiogenesis, and remodelling of the extracellular matrix, improving the 

metabolic milieu of adipose tissue. Failure of this process leads to unhealthy adipose tissue 

expansion including pro-inflammatory activation of macrophages, adipocyte hypertrophy, 

adipocyte hypoxia, and fibrosis (Heilbronn and Liu, 2014).  
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What is already known about this subject? 

 Intermittent fasting with energy restriction produces similar reductions in body weight, 

and cardiovascular risk as daily energy restriction, and may have modest additional 

benefits to reduce markers of insulin resistance (e.g., HOMA-IR, fasting insulin). 

 The acute changes in metabolic parameters during fed and fasting states, have not been 

reported widely, nor in this population.  

 No studies to date have assessed changes in insulin sensitivity by hyperinsulinaemic-

euglycaemic clamp in response to intermittent fasting after both a fed, and fasted day. 

 

What does this study add?  

 This is the first randomised controlled study to compare continuous and intermittent 

intake patterns at two energy levels (at energy balance, or 30% energy restriction).  

 Intermittent fasting with energy restriction induced greater reductions in weight, fat 

mass losses, and greater reductions in total and LDL-cholesterol and non-esterified fatty 

acids (NEFA) compared with continuous daily restriction.  

 Intermittent fasting did not impact insulin sensitivity when examined in the fed state, 

but was transiently impaired following a 24-hour fast.  
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3.1 Abstract 

Objective: To compare intermittent fasting (IF) versus continuous energy intakes at 100% or 

70% of calculated energy requirements on insulin sensitivity, cardiovascular risk, body weight 

and composition.  

 

Methods: Women with overweight (N=88; 50.2±0.9 years, BMI 32.3±0.5 kg/m2) were 

randomised to one of four diets (IF70, IF100, dietary restriction [DR70], or Control) in a 

2:2:2:1 ratio for 8 weeks. IF groups fasted for 24-h after breakfast on 3 non-consecutive 

days/week. All foods were provided and diets matched for macronutrient composition (35% 

fat, 15% protein, 50% carbohydrate). Insulin sensitivity by hyperinsulinaemic-euglycaemic 

clamp, weight, body composition and plasma markers were assessed following a “fed” day 

(12-h fast), and a 24-h fast (IF only).  

 

Results: The IF70 group displayed greater reductions in weight, fat mass, total- and low-

density lipoprotein-cholesterol (LDL-cholesterol) and non-esterified fatty acids compared with 

DR70 and IF100 (all P ≤0.05). IF100 lost more weight and fat than Control, however fasting 

insulin was increased. There were no differences in insulin sensitivity by clamp, however, a 

24-h fast transiently reduced insulin sensitivity. 

 

Conclusion: When prescribed at matched energy restriction, IF reduced weight and fat mass, 

and improved total and LDL-cholesterol more than DR. IF prescribed in energy balance failed 

to improve markers of metabolic health, despite modest weight loss. 

 

Key words: cardiovascular risk; continuous dietary restriction; insulin sensitivity; intermittent 

fasting; weight loss   
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3.2 Introduction  

Continuous dietary restriction (DR) remains the cornerstone lifestyle intervention to reduce the 

risk of developing type 2 diabetes and cardiovascular disease in individuals who are overweight 

(Neter et al., 2003, Look Ahead Research Group et al., 2007, Wing et al., 2011, Diabetes 

Prevention Program Research, 2015, Goodpaster et al., 1999). Due to the inherent difficulty 

associated with long-term adherence to DR (Scheen, 2008, Moreira et al., 2011), alternative 

approaches are being investigated.  

 

Intermittent fasting (IF) involves alternating periods of eating with fasting periods of up to 24 

hours, for 1-4 days/week. In mice, intermittent 24-hour fasting results in favourable 

redistribution of adipose tissue (Varady et al., 2010), reduced fasting glucose and insulin 

(Anson et al., 2003), and improved cardiovascular health (Mattson and Wan, 2005). In most of 

these studies, the metabolic health benefits were observed with minimal weight differences 

(Varady et al., 2010) or versus pair fed controls (Anson et al., 2003), suggesting that fasting 

may be the stimulus required to improve health.  

 

Studies in humans have shown that IF reduces weight and fat mass, total cholesterol, LDL-

cholesterol, triglycerides, postprandial lipemia and fasting insulin (Heilbronn et al., 2005b, 

Antoni et al., 2018, Varady et al., 2009, Hoddy et al., 2014, Varady et al., 2013), while others 

have shown no significant improvements in metabolic health, despite weight loss (Bhutani et 

al., 2013, Williams et al., 1998). To our knowledge, five studies have compared an intermittent 

versus continuous dietary approach for 2-12 months (Catenacci et al., 2016, Harvie et al., 2011, 

Harvie et al., 2013, Trepanowski et al., 2017, Antoni et al., 2018). These studies have shown 

that IF and DR produce similar reductions in body weight and markers of cardiovascular risk. 

However, Harvie et al reported that IF reduced body fat and fasting insulin more than DR 
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(Harvie et al., 2011). Two studies have examined insulin sensitivity by hyperinsulinaemic-

euglycaemic clamp after IF (Halberg et al., 2005, Soeters et al., 2009), but none have compared 

this with DR. Moreover, changes in metabolic parameters between fed and fasted states have 

only been examined in lean men (Halberg et al., 2005). This is important since “metabolic 

switching” between fed and fasting states, rather than weight loss, may underlie the health 

benefits of IF (Antoni et al., 2017, Anton et al., 2018).  

 

The aims of this study were to conduct a randomised, controlled trial, in women who were 

classified as overweight or obese to: 1) compare the effects of intermittent versus continuous 

food intakes at two energy levels on peripheral insulin sensitivity, weight and body 

composition, and cardio-metabolic outcomes; and 2) to explore the acute metabolic changes 

that occur when switching between a fed (i.e., after a 12h overnight fast) and fasted (24h fast) 

state.  
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3.3 Participants and Methods 

Participants 

Between 1 March 2013 and 4 September 2015, 119 women were screened following 

advertisement in local newspapers and media to participate in this single-centre, randomised 

controlled trial in Adelaide, South Australia (Fig. 3.1). A total of 88 women were enrolled in 

the study. Inclusion criteria were: aged 35-70 years; BMI 25-42 kg/m2; self-reported to be 

weight-stable (within 5% of their screening weight) for >6 months prior to study entry; non-

diabetic; non-smoker; sedentary or lightly active (i.e., <2 moderate to high-intensity exercise 

sessions per week); consumed <140 g alcohol/week; no personal history of cardiovascular 

disease, eating disorders or major psychiatric disorders (including those taking 

antidepressants); not pregnant or breastfeeding; and not taking medication that may affect study 

outcomes (e.g., phentermine, orlistat, metformin, excluding antihypertensive/lipid lowering 

medication). The Royal Adelaide Hospital Research Ethics Committee approved the study, and 

all participants provided written, informed consent prior to their inclusion. The study was 

registered with Clinicaltrials.gov (NCT01769976). 

 

Randomisation and masking 

The active trial period was 10 weeks, including a 2-week lead-in, and an 8 week intervention. 

During the lead-in, participants consumed their normal diet and maintained their weight. 

Following this, participants were randomly assigned in a 2:2:2:1 ratio to one of the four diets; 

1) IF70: intermittent fasting diet at 70% of calculated baseline energy requirements per week; 

2) IF100: intermittent fasting diet at 100% of calculated baseline energy requirements per week 

(i.e., weight maintenance); 3) DR70: continuous restriction at 70% of calculated baseline 

energy requirements daily; 4) Control: 100% of calculated baseline energy requirements daily. 

Daily energy requirements were calculated by averaging predicted daily energy expenditure 
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from two published equations, both of which use age, gender, height and weight variables 

(Institute of Medicine (U.S.). Panel on Macronutrients. and Institute of Medicine (U.S.). 

Standing Committee on the Scientific Evaluation of Dietary Reference Intakes., 2005, Redman 

et al., 2009). Block randomisation (4 or 8 participants) was performed by a research officer, 

with stratification by BMI (<=32.9 or >=33 kg/m2) and age (<=49.9 or >=50 years). Nine 

participants withdrew from the study. Seven no longer wished to participate, and two were 

withdrawn by the investigators; one for pre-existing bronchial issues unrelated to the study, 

and one due to gastrointestinal surgery that was not disclosed during the screening process 

(completers: DR70: n=24, IF70: n=22, IF100: n=22, Control: n=11).  

 

On fed days, IF70 were provided with~100%, and IF100 ~145% of energy requirements. IF 

groups consumed breakfast before 8am on fasting days (~32% of energy requirements was 

given at breakfast on fasting days to IF70, and ~37% to IF100; Appendix table 1), then 

commenced a ~24 hour “fast” until 8 am the following day, on 3 non-consecutive 

weekdays/week. During the fast, participants were allowed water and small amounts of energy-

free foods (e.g., “diet” drinks, chewing gum, mints), black coffee and/or tea, and were provided 

with 250 mL of a very low energy broth (20 kcal/250 mL, 2.0g protein, 0.1g fat, 3.0g 

carbohydrate) for lunch or dinner. All diets were matched for macronutrient composition (35% 

fat, 15% protein, 50% carbohydrate). Participants were free-living, and foods were delivered 

fortnightly to their home, excluding fresh fruit and vegetables. Portions of fruits and vegetables 

were standardised (1 ‘serve’ of fruit = 150g of fresh fruit or 30g dried fruit; 1 ‘serve’ of 

vegetables = 75g raw, steamed or boiled vegetables) and participants self-selected according 

to the number of serves specified in their individual menus.  
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Figure 3-1: CONSORT flow diagram 

 

Adherence and perceptions of appetite 

Participants completed daily checklists to monitor adherence, and energy intake in weeks 1, 4 

and 7 was calculated from 7-day food diaries using FoodWorks (version 8, Xyris Software; 

Appendix table 1 and 2). Participants attended our clinic weekly, where they returned the 7-

day checklist from the previous week, were weighed (Fig. 3.2A), and received individual 

counselling to maintain compliance. Perceptions of appetite and symptoms (hunger, fullness, 

desire-to-eat, mental alertness, irritability and perceived difficulty adhering to the diet) were 
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assessed at baseline, week 1 and week 6 using validated visual analogue scales (Parker et al., 

2004).  

 

Metabolic testing 

To minimize the influence of the menstrual cycle, pre-menopausal women were studied in the 

follicular phase. Participants consumed a standardised diet (100% of calculated energy 

requirements, 35% fat, 15% protein, 50% carbohydrate) for 3 days, and were instructed to 

avoid exercise, alcohol, and caffeine for 24 hours prior to the first metabolic testing visit 

(“baseline”). Participants fasted for 12 hours overnight prior to the baseline and “fed” (week 

8) visits. IF groups underwent a third metabolic visit following a 24-hour fast to capture 

outcomes from fasting days. This visit occurred 2-7 days after the “fed” visit, depending on 

clinician availability (Fig.3.2). At all visits, participants arrived at 0730h, were weighed in a 

gown after voiding and waist and hip measurements were taken. Blood pressure was measured 

with the participant in a seated position, after 10-min of rest. Intravenous cannulae were placed, 

baseline samples collected and a primed 120-min hyperinsulinaemic-euglycaemic (60 

mU/m2/min) clamp commenced as previously described (Heilbronn et al., 2004b). Peripheral 

insulin sensitivity (M) was calculated as the mean glucose infusion rate (GIR) during steady-

state (last 30 min), normalised for the estimated size of fat free mass (FFM) as described by 

others (GIR /kg FFM+17.7) (DeFronzo et al., 1979, Tam et al., 2012c). Steady-state insulin 

was significantly lower after 24-hour fasts in IF70 (P=0.002), and IF100 (P=0.05), suggesting 

increased insulin clearance following a prolonged fast (Heijboer et al., 2005, Soeters et al., 

2008). We calculated insulin-adjusted GIR by dividing M by I, where I is the steady-state 

insulin concentration (mU/L),*100 (DeFronzo et al., 1979, Rebelos et al., 2011). Due to 

scheduling conflicts or technical issues on the day, 11 clamps were not conducted. Of these 11, 

5 participants did not have baseline clamps and so subsequent clamps were not scheduled, 2 
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completed baseline clamps only, and 4 completed baseline and the “fed” visit only. The 

following n were used in the completer’s analysis of the clamp data: DR70, n=22; IF70, n=17; 

IF100, n=19; Control, n=10. Homeostatic model assessment of insulin resistance (HOMA-IR) 

was calculated as (fasting serum insulin (mU/L) × fasting plasma glucose (mmol/L))/22.5. 

Total body composition was assessed by dual-energy x-ray absorptiometry (DXA; Lunar 

Prodigy; GE Healthcare, NSW, Australia). All procedures were identical on study days, 

however no DXA was performed at the “fast” visit. 

 

 

Figure 3-2: Schematic of study design 

 

Analytical methods 

Blood samples were immediately centrifuged and frozen at -80°C. Blood lipids and fasting 

blood glucose were examined by photometric assays in the laboratory of SA Pathology (South 

Australia, Australia). Serum insulin was measured by radioimmunoassay (HI-14K, Millipore; 

MA, USA). Serum non-esterified fatty acids (NEFA) were measured by enzymatic colorimetric 

assay (NEFA-HR (2), Wako Diagnostics; CA, USA). Plasma ß-hydroxybutyrate (RANBUT 

D-3 Hydroxybutyrate kit, Randox; Antrim, UK), alanine aminotransferase (ALT), aspartate 

aminotransferase (AST), and high-sensitivity c-reactive protein (HS-CRP) were measured 

using commercially available enzymatic kits (Beckman Coulter Inc.; CA, USA) on a Beckman 
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AU480 clinical analyser (Beckman Coulter Inc.; CA, USA). Samples from each subject were 

analysed within the same run to reduce instrument variation. Serum fibroblast growth factor-

21 was measured by ELISA (R & D Systems; MN, USA).  

 

Statistical analysis 

The number of participants was established from past studies (Samocha-Bonet et al., 2012, 

Heilbronn et al., 2004b, Albu et al., 2010). The primary comparison was insulin sensitivity 

normalised for fat free mass and steady-state insulin concentration (M/I; GIR/kg 

FFM+17.7/mU), between DR70 and IF70. With n=22 per group (randomised 1:1) a t-test 

would allow detection of a mean difference in M of 15µmol/kg FFM+17.7 between groups, 

based on an SD of 17, with 80% power (two-sided α=0.05). This has allowed for a 10% drop 

out rate, and thus we recruited a total of n=25 per group. For completeness we included an 

IF100 group and a non-weight loss group (Control) at half sample size. 

 

Statistical methods 

All endpoints were assessed as follows. DR70 and IF70 measured at the fed day were compared 

using linear regressions, adjusting for baseline levels. Thereafter we included the IF70 24-hour 

fast measurements and compared the three levels (DR70 vs IF70-12h vs IF70-24h) using mixed 

effects regressions, with a random intercept per individual and compound symmetry correlation 

structure. Finally, we assessed the diet comparison with and without adjusting for weight loss, 

which was included as an additional fixed effect. IF100 vs Control diets were compared in a 

similar manner using the same regression models. Finally IF70 vs IF100 were compared using 

linear mixed effects regressions using the same random effect structure as above, with baseline 

measure, time (12 hr vs 24 hr) and diet (IF70 vs IF100) as the three fixed effects. Individuals 

missing outcome data were excluded from each analysis, while those missing baseline data 



  Chapter 3 

69 
 

were imputed using cohort means. After examination of residual distributions all endpoints 

measured from plasma (glucose, insulin, ketones and liver markers) except total-, HDL-, and 

LDL- cholesterol were log-transformed. Data are shown as mean ± SEM. Diet comparisons are 

pairwise with significance set at P<0.05 (two sided). Statistical analyses were performed using 

SPSS software (version 21.0; SPSS Inc., IBM, NY, USA) and R (version 3.3.3). 
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3.4 Results 

A total of 88 women (mean age 50.2±0.9 years, mean BMI 32.3±0.5 kg/m2) were enrolled in 

the study. Baseline age, weight, BMI, percent body fat, fasting glucose, insulin, and blood 

lipids appeared balanced between treatment groups (Table 3.1). Women who were post-

menopausal (n=47) were older and displayed higher levels of triglycerides, ALT and AST than 

those were pre-menopause (all P<0.05).  

 

Table 3-1: Baseline characteristics of participants 

 Control 

(n=12) 
IF100 

(n=25) 
IF70 

(n=25 
DR70 

(n=26) 

Age at enrolment (years) 49.8±2.6 51.0±1.8 49.5±2.0 50.9±1.8 

Weight (kg) 83.8±4.8 84.1±2.8 89.4±2.8 88.4±2.8 

BMI (kg/m2) 30.9±1.5 31.2±0.9 32.4±0.8 32.6±1.0 

Pre/Postmenopausal 6/6 10/15 13/12 11/14 

Body fat (%) 44.5±2.6 47.0±1.3 48.3±1.4 48.4±1.4 

Waist circumference (cm) 98.0±5.8 98.8±2.6 100.5±2.2 99.0±1.8 

Hip circumference (cm) 112.1±3.5 112.1±1.9 115.1±2.1 115.7±2.4 

Fasting glucose (mmol/L) 4.9±0.1 4.9±0.1 4.9±0.1 4.9±0.1 

Fasting insulin (mU/L) 16.8±2.2 18.6±1.5 19.5±1.5 15.5±1.3 

HOMA-IR 3.8±0.6 4.1±0.4 4.3±0.3 3.4±0.3 

Total cholesterol (mmol/L) 4.5±0.4 5.0±0.2 4.8±0.1 4.9±0.1 

HDL-C (mmol/L) 1.3±0.2 1.4±0.2 1.4±0.1 1.4±0.1 

LDL-C (mmol/L) 2.6±0.3 3.0±0.2 2.9±0.1 3.0±0.1 

Triglycerides (mmol/L) 1.4±0.3 1.5±0.1 1.2±0.1 1.3±0.1 

HS-CRP (mg/dL) 2.1±0.6 2.8±0.5 2.9±0.5 2.7±0.5 

ALT (U/L) 16.7±1.9 21.6±2.4 19.5±1.9 19.7±1.7 

AST (U/L)  19.7±1.4 21.3±1.3 20.1±1.1 19.5±1.0 

FGF-21 (mmol/L) 163.8±32.7 169.1±23.1 142.5±23.1 184.4±22.1 

DR70: continuous energy restriction at 70% of baseline energy requirements: IF70: 

intermittent fasting diet at 70% of baseline energy requirements; IF100: intermittent fasting 
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diet at 100% of baseline energy requirements; Control (C): continuous food intake at 100% 

baseline energy requirements. Abbreviations: ALT: alanine transaminase; AST: aspartate 

transaminase; FGF-21: fibroblast growth factor-21; HDL-C: high-density lipoprotein 

cholesterol; HS-CRP: high-sensitivity C-reactive protein; HOMA-IR: homeostatic model 

assessment of insulin resistance; LDL-C: Low-density lipoprotein cholesterol. 

 

Data are shown as mean ± SEM. There were no significant differences between groups at 

baseline in any of the outcome measures.  

 

In addressing aim 1, total weight (P=0.03; Fig. 3.3B) and fat loss (P=0.05; Fig. 3.3C) were 

significantly greater in IF70 compared with DR70, and compared with IF100 (both P<0.01). 

Total weight and fat loss were also greater in IF100 compared with Control (both P<0.001). 

The reduction in FFM (Fig. 3.3D) was not statistically different between IF70 and DR70 

(P=0.07) and IF70 and IF100 (P=0.06), but was greater in IF100 compared with Control 

(P=0.04). The proportion of weight lost as FFM was not significantly different between IF70 

and DR70 (P=0.94), IF70 and IF100 (P=0.74) or IF100 and Control (P=0.11; Appendix table 

3). The reduction in waist circumference was greater in IF70 compared with IF100 (P=0.04; 

Appendix table 3). There were no differences between groups for change in hip circumference 

(Appendix table 3). Given the unexpected differences in weight loss between DR70 and IF70, 

and IF100 and Control, we have reported comparisons below unadjusted, and adjusted for 

weight loss. 
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Figure 3-3: Changes in anthropometric outcomes following 8 weeks of intermittent or 

continuous intake at 70 and 100% of daily energy requirements 

(A) Weekly weights; (B) Change in body weight; (C) Change in fat mass; (D) Change in fat 

free mass. Control (C): continuous energy intake at 100% of baseline energy requirements; 

IF100: intermittent fasting diet at 100% of baseline energy requirements; IF70: intermittent 

fasting diet at 70% of baseline energy requirements; DR70: continuous energy restriction at 

70% of baseline energy requirements. 

 

Data are shown as mean ± SEM. Pairwise comparisons: *P<0.05 vs Control; ^P<0.05 vs. 

IF100; ‡P<0.05 vs. DR70.  

 

Self-reported energy intake was not significantly different from provided in Control (P=0.83) 

or DR70 (P=0.96) (Appendix table 1). The IF100 group reported consuming 240±336 

kcal/day less than provided on fed days, and the IF70 group 188±200 kcal/day less than 

provided on fed days (Appendix table 2). This resulted in an overall average weekly deficit of 

~9% and ~2% respectively. As such, energy restriction was greater in IF70 (-31±2%) compared 

with DR70 (-30±2%) (P=0.02), and in IF100 (-9±8%) compared with Control (0±5%; P=0.02). 
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Perceived difficulty adhering to the diet was higher in IF100 compared with IF70 and Control 

at week 1 (both P<0.05), but not at week 6 (P=0.61 compared with IF70, P=0.08 compared 

with Control). In week 1, self-reported feelings of hunger on a fed day were lower in IF70 

compared with DR70, and higher compared with IF100. (Appendix figure 1).  

 

The change in insulin sensitivity by clamp was not significantly different between IF70 and 

DR70 (P=0.95), IF70 and IF100 (P=0.31) or IF100 and Control (P=0.65) after a fed day (Fig. 

3.4A). However, there was a trend for insulin sensitivity to be impaired after a fast day in IF70 

compared with DR70 (P=0.08). Changes in glucose (Fig. 3.4C) and insulin (Fig. 3.4D) were 

significantly greater after a fast day in IF70 compared with DR70 (both P<0.05) and after a fed 

day compared with IF100 (both P=0.02). This translated into reduced (i.e. improved) HOMA-

IR after a fast day in IF70 compared with DR70 (P=0.01; Fig. 3.4B) and increased HOMA-IR 

after a fed day in IF100 compared with IF70 after the fed day (P=0.002). Increased fasting 

insulin (P=0.05) in IF100 compared with Control after a fed day was also observed. There was 

a greater reduction in NEFA after a fed day in IF70 compared with DR70 (P=0.005), and 

greater increases after a fasting day (P=0.003) Fig. 3.4E). Adjusting for weight loss did not 

alter the outcomes for HOMA-IR or NEFA. 

 

The changes in total and LDL-cholesterol were greater in IF70 compared with DR70 (both 

P<0.01) and IF100 (both P≤0.05, Table 3.2). The change in triglycerides was significantly 

greater in IF70 compared with DR70 (P=0.05). There were no differences between diets for 

the change in HDL-cholesterol (table 2), HS-CRP, ALT (Appendix table 3), AST (Fig. 3.4F) 

or the change in systolic and diastolic blood pressure (Appendix table 3). The change in FGF-

21 was greater in IF70 compared with IF100 (P=0.008; Fig. 3.4G). After adjustment for weight 
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loss, differences between IF70 and DR70 for the changes in total (P=0.01) and LDL-cholesterol 

(P=0.04) remained.  
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Figure 3-4: Changes in markers of insulin sensitivity and biochemical markers following 

8 weeks of intermittent or continuous intake at 70 and 100% of daily energy requirements 

(A): Change in insulin sensitivity as assessed by hyperinsulinaemic-euglycaemic clamp; 

completers analysis (DR70 n=22; IF70 n=18; IF100 n=19; C n=10); (B): Change in HOMA-

IR; (C): Change in fasting blood glucose; (D): Change in fasting insulin; (E) Change in non-

esterified fatty acids (NEFA); (F): Change in Alanine transaminase; (G): Change in fibroblast 

growth factor-21; (H): Change in β-hydroxybutyrate. Control (C): continuous energy intake at 

100% of baseline energy requirements; IF100: intermittent fasting diet at 100% of baseline 

energy requirements; IF70: intermittent fasting diet at 70% of baseline energy requirements; 

DR70: continuous energy restriction at 70% of baseline energy requirements. Black bars: 

change from baseline to fed visit; Red bars: change from baseline to fasted visit. 

 

Data are shown as mean ± SEM. Pairwise comparisons: *P<0.05 vs Control; ^P<0.05 vs. 

IF100; ‡P<0.05 vs. DR70; All end-points (excluding insulin sensitivity) were log-transformed 

before analysis.  

 

With regards to aim 2, a 24-hour fast significantly impaired insulin sensitivity by clamp 

compared with a 12-hour fast (P=0.002; Fig. 3.4A, Appendix table 4). Contrary to this, 

HOMA-IR was improved by a 24-hour fast (P<0.0001, Fig.3.4B). Fasting glucose (Fig. 3.4C) 

and insulin (Fig. 3.4D) were reduced (both P=0.01) and plasma NEFA (Fig. 3.4E), and ketone 

(Fig. 3.4H) concentrations were increased (all P<0.001). A 24-hour fast also increased AST 

(P=0.01; Fig. 3.4G) and reduced insulin-induced suppression of NEFA (P=0.002; Appendix 

table 4). 

 

Table 3-2: Change in plasma lipids and inflammatory marker C-reactive protein 

following 8 weeks of diet intervention 

 C 

(n=11) 

IF100 

(n=22) 

IF70 

(n=22) 

DR70 

(n=24) 

Total cholesterol (mmol/L) -0.30±0.15 -0.37±0.15 -0.59±0.08b.c -0.24±0.10 

HDL-cholesterol (mmol/L) -0.03±0.07 -0.07±0.06 -0.10±0.03 -0.05±0.02 

LDL-cholesterol (mmol/L) -0.16±0.12 -0.16±0.13 -0.37±0.07b,c -0.13±0.08 

Triglycerides (mmol/L) -0.25±0.09 -0.28±0.12 -0.24±0.07c -0.16±0.05 

HS-CRP (mg/dL) 1.11±0.55 -0.33±0.23a -0.30±0.35 0.34±0.46 
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Control (C): continuous energy intake at 100% of baseline energy requirements; IF100: 

intermittent fasting diet at 100% of baseline energy requirements; IF70: intermittent fasting 

diet at 70% of baseline energy requirements; DR70: continuous energy restriction at 70% of 

baseline energy requirements. HDL: high-density lipoprotein; LDL: Low-density lipoprotein; 

HS-CRP: high-sensitivity C-reactive protein. 

 

Data are shown as mean ± SEM. aSignificantly different from Control (P<0.05); bSignificantly 

different from IF100 (P<0.05); cSignificantly different from DR70 (P<0.05).  
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3.5 Discussion 

This randomised controlled trial showed that provision of an energy restricted-IF diet led to 

greater loss of weight and fat mass, improvements in total and LDL-cholesterol and NEFA 

versus energy matched DR. There were no overall differences in insulin sensitivity by clamp 

between groups, although the 24-hour fast induced transient insulin resistance. When IF was 

prescribed in energy balance, transient increases in risk markers for type 2 diabetes were 

observed, despite modest weight loss. Taken together, these data suggest that IF with energy 

restriction improves metabolic health, while IF in energy balance does not. 

 

One study has shown that IF led to greater weight loss over eight weeks (Catenacci et al., 2016). 

However, the IF group were prescribed a lower energy intake and this, rather than the mode of 

meal delivery, was likely responsible for this outcome. Harvie et al prescribed a similar energy 

deficit between intermittent and continuous energy-restricted groups (Harvie et al., 2011). In 

that study, weight loss was not statistically different between intermittent and continuous 

groups after 6 months (-6.4 kg [95% CI -7.9 - -4.8kg] IF compared with 5.6 kg [-6.9 - -4.4 kg] 

DR). Although, self-reported energy intakes were lower in the intermittent group, the 

intermittent group consumed meal replacements on “fasting” days, whereas the continuous 

group was prescribed a conventional food-based diet, daily (Harvie et al., 2011). This study 

was repeated with conventional food based diets prescribed to both groups for three months, 

and fat mass losses were greater in the intermittent versus continuous group (Harvie et al., 

2013). In contrast, Trepanowski et al. show that weight and fat loss was not different between 

intermittent and continuous restriction groups at six months or one year (Trepanowski et al., 

2017). The authors noted that this study was underpowered to detect weight differences.  

 

In the current study, IF did not preserve fat free mass as has been reported previously (Varady 

et al., 2013, Varady et al., 2009), and resulted in significantly more weight and fat mass loss. 



  Chapter 3 
 

78 

 

Whilst participants were instructed to maintain their pre-enrolment activity levels, we 

acknowledge that undisclosed changes in activity could have contributed to this outcome. 

Analysis of self-reported diet records showed excellent adherence in the Control and DR70 

groups, and in the IF groups on fasting days, since reported food intake was not significantly 

different from prescribed. However, IF participants reported consuming less food than 

prescribed on “fed” days, resulting in an additional energy restriction of 2% in the IF70, and 

9% in the IF100 group. A degree of spontaneous energy restriction on “fed” days has been 

reported previously (Harvie et al., 2013, Trepanowski et al., 2017), and appears to be a benefit 

of IF.  

 

The mechanistic reason for this remains elusive, however the increase in plasma ketone 

concentrations may play a role. Inducing physiological ketosis reduces feelings of hunger and 

increases feelings of fullness in humans (Boden et al., 2005), and may also mitigate the 

reduction in postprandial cholecystokinin and increased ghrelin concentrations that occur in 

response to energy restriction (Sumithran et al., 2013). Fasting for 24 hours also reduces ghrelin 

concentrations (Koutkia et al., 2005). However, the impacts of IF on gut peptides are 

controversial (Heilbronn et al., 2005b, Catenacci et al., 2016). In the current study, we observed 

no differences in perceived hunger between modes of dietary restriction, but this was recorded 

at a single time point only each day. Previous studies report that perceived hunger on a fast day 

(Heilbronn et al., 2005b) or averaged across eating and fasting days (Harvie et al., 2013) was 

unchanged, while others report reduced hunger at the end of a fasting day (Klempel et al., 

2010). The effects of IF on appetite regulation deserves further investigation. 

 

There is controversy in the existing literature over whether IF is superior to DR to improve 

metabolic health, with four out of five studies reporting greater improvements in markers of 
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diabetes or cardiovascular risk (Catenacci et al., 2016, Harvie et al., 2013, Harvie et al., 2011, 

Antoni et al., 2018). In this study, we observed greater reductions in total cholesterol, LDL 

cholesterol and NEFA in the IF70 compared with DR70 group, and transiently lower glucose 

and insulin levels after the fasting day. However, the additional weight loss in the IF70 group 

may underlie the greater metabolic benefits observed in this study, despite our intentions to 

match weight loss in these groups. To account for this, we adjusted for the change in body 

weight, and observed that greater reductions in NEFA, total cholesterol and LDL-cholesterol 

levels in the IF70 group occurred independent of weight loss. The reduction in NEFA likely 

reflects greater improvements in adipose tissue insulin sensitivity (Appendix figure 2) and 

stimulation of fatty acid oxidation after IF. 

 

In order to establish whether the purported health benefits of IF were attributable to weight 

loss, or the fasting pattern per se (i.e., patterns of regular feeding and fasting), as has been 

established in mice (Anson et al., 2003), we included the IF100 group. Women in this group 

were provided food at overall energy balance, which necessitated them eating at ~145% of 

energy balance for four days per week. Aside from modest weight and fat loss, there were no 

metabolic health benefits in the IF100 group. This is contrary to mouse study observations 

(Anson et al., 2003, Mattson and Wan, 2005, Varady et al., 2010). Further, transient increases 

in glucose and insulin were observed after a fed day, as we have noted previously in response 

to acute overfeeding (Samocha-Bonet et al., 2010). We speculate this intermittent 

‘overfeeding’ underlies the lack of overall benefits observed in this group. The long-term 

impacts of these transient elevations in risk markers of type 2 diabetes are unclear. However, 

Trepanowski et al. showed that LDL concentrations were elevated by IF after 12 months 

(Trepanowski et al., 2017). While we cannot directly extrapolate our findings to free-living 
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individuals, both studies highlight the necessity of examining the safety of IF long-term, when 

weight loss typically slows (Ravussin et al., 2015). 

 

In our study, we observed marked elevations in blood NEFAs and ketones, and decreases in 

fasting insulin and blood glucose on fasting days, reflecting the switch towards activation of 

adipose tissue lipolysis and fatty acid oxidation. This is similar to findings by Heilbronn et al. 

who measured samples following 3 weeks of ADF (after a 10-hour overnight fast) and again 

after a 34-hour fast (Heilbronn et al., 2005a). Few studies have examined the acute changes in 

metabolic parameters between “fed” and “fasted” states. Halberg et al reported that NEFA and 

glycerol concentrations were increased, while glucose concentrations were decreased when 

measured after a 20-hr fast. They observed no change in beta-hydroxybutrate, or insulin. 

However, samples were taken immediately before breaking a 20-hour fast (at 5pm), and 

compared to samples taken after an overnight fast (8am). Thus clock differences (i.e., morning 

vs. evening) could have contributed to this result. Nonetheless, this metabolic switching has 

been postulated to result in up-regulation of mitochondrial fatty acid oxidation, and may 

underpin the benefits to metabolic health by IF (Anton et al., 2018). In support of this, we noted 

that the IF70 group displayed greater reductions in NEFA following the fed days compared 

with DR70, which was independent of the amount of weight lost.  

 

Transient insulin resistance was induced in response to a 24-hour fast in both IF groups, when 

assessed by clamp. This change was at trend level when comparing a 24-hour fast in IF70 with 

the fed day in the DR70 group. This may have been partly due to reduced steady state insulin 

concentrations, which are indicative of increased insulin clearance (Heijboer et al., 2005), 

despite adjustment. Nonetheless, this finding contrasts data obtained by HOMA (Harvie et al., 

2013, Harvie et al., 2011) and highlights that assessing insulin sensitivity by this method is 
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insufficient to make inferences of “insulin sensitivity” in studies of IF. It also highlights the 

possibility that tissue-specific changes in insulin sensitivity may occur in response to IF, since 

HOMA-IR generally reflects hepatic insulin sensitivity, whilst the clamp mainly reflects 

muscle insulin sensitivity. To our knowledge, only two studies have previously investigated 

the impacts of two weeks of IF on peripheral insulin sensitivity by clamp, in lean men. In the 

study by Halberg et al, body weight was unchanged, insulin sensitivity was improved, and the 

authors reported an increase in insulin-induced suppression of adipose tissue lipolysis (Halberg 

et al., 2005). In contrast, Soeters et al performed a 2-step clamp to assess both hepatic and 

peripheral insulin sensitivity and reported no differences in either measure following 14 days 

of IF or a standard diet in weight-stable participants (Soeters et al., 2009). In both of these 

examples, insulin sensitivity was assessed solely following the “fed” day. In humans, 

prolonged fasting (>48h) induces insulin resistance; this is likely a protective mechanism to 

spare glucose for the central nervous system (Hoeks et al., 2010). Impaired glucose tolerance 

was observed after a 36-hour fast, and 3 weeks of alternate day fasting in women (Heilbronn 

et al., 2005a). Reduced insulin sensitivity has also been detected by IVGTT after a 24h fast in 

lean individuals (Salgin et al., 2009). This was mitigated by blocking lipolysis with acipimox, 

suggesting it is mediated by the increase in NEFA (Salgin et al., 2009). In light of this, further 

understanding of the overall effects of IF on NEFA, lipid metabolism and ectopic lipid 

deposition is required. 

 

This was a short-term, highly-controlled intervention conducted solely in women. As such, this 

data is not translatable beyond eight weeks or to wider populations, including men, or those 

with established metabolic disturbances, such as type 2 diabetes. Therefore, further longer-term 

highly controlled interventions and in other populations are required. This study was powered 

to detect a 15 unit difference in M with N=22/group and thus was underpowered to detect the 
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primary outcome, given that we were only able to conduct clamps in N=17 from the IF70 

group. The randomisation pattern of 2:1 for IF100:Control also weakens the comparisons 

between these two groups. 

 

IF was more effective than DR for reducing body weight, and improving metabolic health, 

when prescribed with a similar energy deficit, but did not differentially impact insulin 

sensitivity assessed by hyperinsulinaemic-euglycaemic clamp. When IF was prescribed 

without energy restriction, there were transient elevations in markers of diabetes risk, and no 

overall beneficial effects on metabolic parameters, despite minor weight loss. This study 

demonstrates that IF approaches that involve repeated 24-hour fasts improve metabolic health 

when in energy deficit, but not when in energy balance.  
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4.1 Abstract  

Background:  Increased macrophage infiltration and extracellular matrix deposition in adipose 

tissue and skeletal muscle occur in obesity, and are associated with insulin resistance. However, 

acute fasting also increases adipose tissue macrophage infiltration in mice. This study 

compared the effects of 8 weeks of daily calorie restriction (DR) versus intermittent fasting 

(IF) on markers of adipose tissue and skeletal muscle remodelling in women who were 

overweight and obese.   

 

Methods: Women who were overweight or obese (N=76, BMI 25.0-42.0kg/m2) were 

randomized to one of three diets and provided with all foods to meet 100% (IF100) or 70% 

(IF70 and DR70) of calculated energy requirements. IF groups initiated a 24-hour fast, after 

consuming breakfast, on 3 non-consecutive days/week. Weight, body composition, non-

esterified fatty acids (NEFA), circulating inflammation markers, markers of macrophages and 

extracellular matrix in adipose tissue and skeletal muscle were measured at baseline and after 

8-weeks of intervention following an overnight 12-hour fast (all groups) and a 24-hour fast (IF 

groups).  

 

Results: IF70 resulted in greater weight and fat loss versus DR70 and IF100 (P<0.05). Markers 

of inflammation in serum, subcutaneous adipose tissue and skeletal muscle were unchanged by 

DR or IF, when assessed after the overnight fast. However, serum NEFA and markers of 

classically activated M1-macrophages in adipose tissue, and alternatively activated M2- 

macrophages in muscle were increased after the 24-hour fast in both IF groups (all P<0.05), 

and the changes in NEFA and CD68 mRNA levels in adipose tissue were positively correlated 

(r=0.56, P=0.002). Matrix metalloproteinase-2 mRNA levels in adipose tissue were increased 

in IF70 and DR70, but adipose tissue collagen by histology was unchanged in any group.  
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Conclusions: Intermittent fasting transiently elevated markers of macrophage infiltration, 

which may link with stimulation of lipolysis. 

 

Key words: adipose tissue, calorie restriction, extracellular matrix, intermittent fasting, 

macrophage, skeletal muscle.  
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4.2 Introduction 

Obesity is associated with increased adipocyte size (Trayhurn et al., 1979, Salans et al., 1973), 

inflammation and fibrosis in adipose tissue (Xu et al., 2003, Weisberg et al., 2003, Khan et al., 

2009) and skeletal muscle (Fink et al., 2014, Tam et al., 2015, Martinez-Huenchullan et al., 

2017), which are linked to the development of insulin resistance (Sun et al., 2011, Martinez-

Santibanez and Lumeng, 2014, Wu and Ballantyne, 2017). In humans and animal models of 

obesity, monocytes are recruited into adipose tissue and skeletal muscle. These macrophages 

are polarised towards inflammatory M1-macrophages, which release pro-inflammatory 

cytokines including interferon-gamma (IFN-γ), lipopolysaccharide (LPS) and tumour necrosis 

factor alpha (TNFα), impairing the insulin signalling cascade (Lumeng et al., 2007a, Fink et 

al., 2014, Martinez-Santibanez and Lumeng, 2014, Wu and Ballantyne, 2017). There is also an 

increase in extracellular matrix (ECM) deposition, which provides mechanical and nutritional 

support to neighbouring cells. Excessive accumulation of the ECM has been linked with 

impairments in adipocyte expansion, and ectopic lipid accumulation in liver and skeletal 

muscle (Sun et al., 2013, Divoux et al., 2010).  

 

Daily calorie restriction (DR) promotes weight and fat loss, and reduces the risk of type 2 

diabetes and cardiovascular diseases in individuals with obesity (Barnosky et al., 2014, 

Heilbronn and Ravussin, 2003). Mouse and human studies have shown that DR reduces 

adipocyte size (Larson-Meyer et al., 2006, Zamarron et al., 2017) and macrophage infiltration 

in adipose tissue and muscle (Fabbiano et al., 2016, Capel et al., 2009, Yang et al., 2016). There 

is also some evidence that DR may result in phenotype switching of macrophages from the 

inflammatory M1- to anti-inflammatory M2-macrophage profile in adipose tissue, in mice 

(Fabbiano et al., 2016). DR down-regulates mRNA levels of collagen genes and up-regulates 
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genes involved in ECM degradation in adipose tissue (Higami et al., 2006, Magkos et al., 

2016), but its effects on muscle ECM remodelling are less clear. 

 

Intermittent fasting (IF) involves intermittent periods of zero, or minimal energy intake, 

typically for 24 hours, followed by unlimited food access. IF reduces body weight, fat mass 

and improves cardiovascular and diabetes risk markers in mice and in humans (Varady et al., 

2010, Gotthardt et al., 2016, Heilbronn et al., 2006, Heilbronn et al., 2005b, Trepanowski et 

al., 2017). The impacts of intermittent fasting on markers of adipose tissue or skeletal muscle 

remodelling have not been examined in humans. This is of interest since three studies in mice 

have reported that an acute 24-hour fast increase macrophage infiltration into adipose tissue 

(Asterholm et al., 2012, Ding et al., 2016, Kosteli et al., 2010). 

 

This study compared the effects of 1) eight-week daily calorie restriction versus intermittent 

fasting on markers of adipose tissue and skeletal muscle remodelling in women with 

overweight or obesity,  and 2) the acute effects of the 24-hour fast during IF on these outcomes. 

We hypothesised that DR and IF would differently impact markers of adipose tissue and 

skeletal muscle remodelling, and particularly markers of inflammation. 
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4.3 Research Design and Methods 

Participants and Study Design 

Eighty-eight women aged 35-70 years, with a BMI of 25-42 kg/m2, were recruited. Those who 

were smokers, taking medications known to affect appetite, body weight, diagnosed with 

diabetes, cardiovascular diseases and eating disorders, pregnant or breastfeeding, or planning 

to become pregnant, had >5% weight change in past 6 months, took part in >2 moderate to 

high-intensity exercise sessions per week, consumed >140g alcohol/week were excluded. This 

study was approved by the Royal Adelaide Hospital Research Ethics Committee, and all 

participants provided written, informed consent prior to their inclusion. The study was 

registered as a clinical trial with Clinicaltrials.gov (NCT01769976). 

 

This report excludes the control group (n=12), as biopsies were not obtained. Seventy-six 

participants were randomly assigned to one of three diets, DR70, IF70 and IF100 by BMI (<33 

or >33 kg/m2), for 8 weeks. The estimated energy requirements for each participant were 

calculated as described previously (Samocha-Bonet et al., 2010). DR70 were provided 70% of 

calculated energy requirements, daily. The IF70 group were provided foods at ~100% of energy 

requirements, and IF100 at ~145% of energy requirements on fed days. On fasting days, IF 

groups consumed breakfast before 8am (~ 32-37% of energy requirements) prior to “fasting” 

for 24-hours, until 8am the following day, every other week-day (3 fasting days per week). 

During the fasting period, participants were allowed to consume water and energy-free foods, 

black coffee and/or tea, and one very low calorie broth (250 ml, ~20 kcals). A total of night 

participants withdrew (Fig. 4.1).
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Figure 4-1: Flowchart of the study 
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Metabolic Testing in Participants  

Participants were required to attend the research clinic at 7:30 a.m., at baseline and after 8-

weeks following an overnight 12-hour fast. IF groups undertook an additional visit following 

a 24-hour fast. Body weight, height, waist and hip circumference were measured with the 

participant dressed in a hospital gown after voiding. Blood samples were obtained, and serum 

and plasma were separated and stored at -80°C freezer for analysis of insulin, non-esterified 

fatty acids (NEFA), TNFα, interleukin-6 (IL-6), interleukin-10 (IL-10) and monocyte 

chemoattractant protein-1 (MCP-1). Total body composition was assessed by dual-energy x-

ray absorptiometry (Lunar Prodigy; GE Healthcare, NSW, Australia) at baseline and after 8-

weeks following an overnight fast for all groups. 

 

Adipose and muscle tissue biopsies 

Subcutaneous abdominal adipose and vastus lateralis muscle samples were obtained by 

percutaneous biopsy at baseline and at week 8 after 12-hour fast (all groups) and 24-hour fast 

(IF groups only). Briefly, biopsy sites were located and cleaned. After anesthetizing the skin 

and underlying tissues with lidocaine, adipose tissue was aspirated from the periumbilical area 

and vastus lateralis samples were collected using the Bergstrom technique as previously 

described (Tam et al., 2010, Tam et al., 2017). A small piece of sample (~30mg) was fixed for 

histology, and the remainder (~150mg) frozen in liquid nitrogen and stored at -80°C. Not all 

participants consented to both adipose and skeletal muscle biopsies. Due to this, and scheduling 

conflicts, biopsy samples were obtained from a subset of participants (n=14-16/group for 

adipose tissue and n=12-16/group for muscle, Fig. 4.1). The baseline characteristics in those 

who underwent adipose tissue or skeletal muscle biopsies were not different between groups 

and were not different from that of those who completed 8 weeks of intervention. 
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Table 4-1: Taqman primers used for gene expression analysis 

Gene symbol Gene Name Assay ID 

Housekeeper 

ACTB Actin beta Hs01060665_g1 

PPIB Peptidylprolyl isomerase B Hs00168719_m1 

LRP10 LDL receptor related protein 10 Hs01047362_m1 

Pan macrophage  

CD68 CD68 molecule Hs02836816_g1 

M1-macrophage  

CD40 CD40 molecule Hs01002913_g1 

TNF Tumor necrosis factor Hs01113624_g1 

IL6 Interleukin 6 Hs00985639_m1 

M2-macrophage 

CD163 CD163 molecule Hs00174705_m1 

IL10 Interleukin 10 Hs00961622_m1 

Macrophage recruitment  

CCL2 C-C motif chemokine ligand 2 Hs00234140_m1 

CCL3 C-C motif chemokine ligand 3 Hs00234142_m1 

Extracellular matrix  

COL6A1 Collagen type VI alpha 1 Hs01095585_m1 

MMP2 Matrix metallopeptidase 2 Hs01548727_m1 

TIMP1 TIMP metallopeptidase inhibitor 1 Hs00171558_m1 

Lipolysis   

LIPE Lipase E, hormone sensitive type Hs00193510_m1 

PLIN1 Perilipin 1 Hs00160173_m1 

lipogenesis 

FASN Fatty acid synthase Hs01005622_m1 

ACACA Acetyl-CoA carboxylase alpha Hs01046047_m1 

Adipogenesis 

CEBPb CCAAT/enhancer binding protein beta Hs00270923_s1 

SREBF1 Sterol regulatory element binding transcription factor 1 Hs01088691_m1 
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Biochemical Analysis 

Blood lipids and fasting blood glucose were examined by photometric assays in the laboratory 

of SA Pathology (Adelaide, South Australia, Australia). Serum insulin was measured by 

radioimmunoassay (HI-14K, Millipore, MA, USA). Plasma high-sensitivity C-reactive protein 

(Hs-CRP, Beckman Coulter Inc, CA, USA) was measured using commercially available 

enzymatic kits on a Beckman AU480 clinical analyser (Beckman Coulter Inc). Serum TNFα, 

IL-6 and IL-10 were analysed by multiplex bead array assays (R & D Systems, Minneapolis, 

USA) with MAGPIX Multiplex Reader (Luminex, Austin, TX, USA). Serum non-esterified 

fatty acids (NEFA) were measured by enzymatic colorimetric assay (NEFA-HR (2), Wako 

Diagnostics, CA, USA), and serum MCP-1 was measured using ELISA kit (BD, San Diego, 

CA, USA) on a VersaMax ELISA Microplate Reader (Sunnyvale, CA, USA). Samples were 

run in duplicate and samples from each participant were tested within the same run to reduce 

instrument variation. Homeostasis model of assessment-insulin resistance (HOMA-IR) was 

calculated as fasting glucose (mmol/L) × fasting insulin (mU/L)/22.5. 

 

Quantitative Real-Time PCR 

As described previously (Chen et al., 2016a), total RNA was extracted from adipose (100-

150mg) and muscle (30-50mg) samples using TRI Reagent (Sigma, St. Louis, USA) following 

manufacturer’s instructions. The concentration and purity of RNA were assessed by NanoDrop 

Lite Spectrophotometer (Thermo Fisher Scientific, CA, USA). cDNA synthesis was conducted 

using T100 Thermal Cycler (Bio-Rad, CA, USA) with 1000 ng of each RNA sample using the 

QuantiTect reverse transcription kit (Qiagen, Valencia, CA, USA) according to kit instructions. 

Quantitative real-time PCR was performed using the Taqman primers for pan-macrophage 

(CD68), inflammatory M-1 macrophage (CD40, TNF and IL6), anti-inflammatory M2-

macrophage (CD163 and IL10), macrophage recruitment (CCL2 and CCL3), extracellular 
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matrix (COL6A1, MMP2 and TIMP1), lipolysis (LIPE and PLIN1), lipogenesis (ACACA and 

FASN), adipogenesis (CEBPb and SREBF1, Table 4.1) and Fast Universal PCR Master Mix 

(Applied Biosystems, Foster City, CA, USA). The samples were run in duplicate on an ABI 

7500 sequence detection system (Applied Biosystems, Foster City, CA, USA) with internal 

negative controls and a standard curve (pooled from ten participants at baseline). Relative gene 

expression was analysed using the 2−ΔCT method and normalised for the mean of ACTB and 

PPIB for adipose tissue, and the mean of ACTB and LPR10 for skeletal muscle, which were 

not different at baseline, or following the intervention. CCL3, TNF and IL6 were below 

detectable limits in adipose tissue and muscle.  

 

Histological Analysis and Immunofluorescent Staining. 

Adipose tissue biopsy samples were fixed in Bouin’s solution (Sigma-Aldrich, HT10132), 

dehydrated, paraffin embedded, sectioned at 5µm and mounted on positively-charged glass 

slides. All slides were randomly assigned numeric codes by a research officer to blind the 

investigator (BL) quantifying outcomes. Hematoxylin and eosin (H&E) staining was 

performed using a standard protocol. Digital images were acquired using a camera (U-TV1X-

2, Olympus, Tokyo, Japan) and diameters measured using cellSens Software (Olympus, Tokyo, 

Japan). Adipocyte diameter was measured in at least three fields of view at 20X. The mean 

diameter was calculated from an average of 300 cells per sample as described previously (Tam 

et al., 2010). Masson’s trichrome staining was performed using a commercial kit (Sigma, St. 

Louis, MO, USA) following manufacturer’s instructions. Slides were scanned using the 

Pannoramic 250 Flash II scanner (3DHISTECH, Budapest, Hungary) and whole sections were 

analysed using Masson’s trichrome macro in Image J (National Institutes of Health). Particular 

care was taken to exclude areas which contained blood vessels, as collagen is associated with 

vasculature (Rhodes and Simons, 2007).  
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For CD40 (M1-macrophage) and CD206 (M2-macrophage) co-staining, deparaffinised and 

rehydrated slides were incubated with ELOXALL solution (SP-600, Vector) for 10min at room 

temperature to eliminate endogenous peroxidase and alkaline phosphatase. Antigen retrieval 

was achieved using modified citrate-based buffer (S1700, Dako) and incubation in a 95°C 

water bath for 20min. Slides were blocked with 5% bovine serum albumin (Sigma) in 

phosphate-buffered saline (PBS, Sigma) for 60min at room temperature before incubated with 

a mouse anti-human CD40 (1:200, MAB6321, R& D) for 90min at room temperature. Slides 

were then washed with PBS for 5min for 3 times prior to being incubated with a chicken anti-

mouse secondary antibody (1:500, A-21200, ThermoFisher) for 60min at room temperature.  

Following 5min x 3 washing, goat anti-human CD206 (1:200, AF2534, R & D) and the 

corresponding donkey anti-goat secondary antibody (1:500, A-11057, ThermoFisher) were 

applied. CD40 and CD206 co-labeled slides were counterstained with ProLong Gold Antifade 

Mountant with DAPI (P36941, ThermoFisher). Eight to ten fields at 40X were analysed using 

the camera and software mentioned above. Positive cells were expressed per 100 adipocytes as 

described previously (Aron-Wisnewsky et al., 2009) .  

 

Statistical analysis 

Data are expressed as mean ± SEM. Individuals who withdrew from the study were not 

included in the analyses. Participants completing baseline and week-8 (12-hour fast) biopsies 

were included for gene expression analyses. All statistical analyses were performed using IBM 

SPSS Statistics 24 (Armonk, New York, USA). Baseline differences between groups were 

analysed using one-way ANOVA with Bonferroni-Holm post-hoc test. A maximum likelihood 

mixed effects model was employed to examine the group differences of 8-week intervention 

following an overnight 12-hour fast, as well as the time effects within each group. The model 

included fixed effects for intervention, visit and the intervention by visit interaction, and a 
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random effect for subject with an unstructured covariance matrix to account for the repeated 

visits. The effect of intervention was assessed with planned contrasts between groups in the 

change from baseline to week 8 (12-hour fast). Bonferroni-adjusted pairwise comparisons were 

also conducted within each group to assess differences over time from baseline to following a 

12-hour fast (all groups) and a 24-hour fast (IF groups only). Data were log-transformed for 

analysis if skewness in the residuals was observed. Significance was accepted as P < 0.05. 
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4.4 Results  

Anthropometrics and metabolites at baseline 

Anthropometric and metabolic parameters of the participants at baseline are summarised in 

Table 4.2. There were no significant differences between groups with respect to any variables 

assessed at baseline. There were no significant differences between individuals completed this 

trial and those underwent biopsies or did not with regards to the variables listed in Table 4.2. 

 

Table 4-2: Anthropometric and metabolic measures of participants at baseline  

Variable DR70 IF70 IF100 P  

N 26 25 25 
 

Age (years) 50.9 ± 1.8 49.5 ± 2.0 51.0 ± 1.8 0.827 

Pre-/post- menopause  11/16 11/14 13/12 - 

Weight (kg) 88.4 ± 2.8 89.4 ± 2.8 84.1 ± 2.8 0.289 

Height (cm) 164.7 ± 1.0 166.0 ± 1.7 162.2 ± 1.5 0.158 

Waist(cm) 99.0 ± 1.8 100.5 ± 2.2 98.8 ± 2.6 0.859 

Hip(cm) 115.7 ± 2.4 115.1 ± 2.1 112.1 ± 1.9 0.433 

Waist/hip 0.86 ± 0.01 0.87 ± 0.02 0.88 ± 0.02 0.640 

BMI (kg/m2) 32.6 ± 1.0 32.4 ± 0.8 31.2 ± 0.9 0.746 

TG (mmol/l) 1.3 ± 0.1 1.2 ± 0.1 1.5 ± 0.1 0.093 

TC (mmol/l) 4.9 ± 0.1 4.8 ± 0.1 5.0 ± 0.2 0.256 

HDL-C (mmol/l) 1.4 ± 0.1 1.4 ± 0.1 1.4 ± 0.2 0.728 

LDL-C (mmol/l) 3.0 ± 0.1 2.9 ± 0.1 3.0 ± 0.2 0.726 

Glucose (mmol/l) 4.9 ± 0.1 4.9 ± 0.1 4.9 ± 0.1 0.956 

Insulin (mU/ml) 15.5 ± 1.3 19.5 ± 1.5 18.6 ± 1.5 0.116 

HOMA-IR 3.4 ± 0.3 4.3 ± 0.3 4.1 ± 0.4 0.207 

Hs-CRP (mg/l) 2.7 ± 0.5 2.9 ± 0.5 2.8 ± 0.5 0.907 

Data are presented as mean ± SEM. One-way ANOVA with Bonferroni-Holm post-hoc test. 

DR70: continuous energy restriction at 70% baseline energy requirements: IF70: intermittent 

fasting diet at 70% baseline energy requirements; IF100: intermittent fasting diet at 100% 

baseline energy requirements. BMI: body mass index; TG: triglycerides; TC: total cholesterol; 

HDL-C: high density lipoprotein cholesterol; LDL-C: low density lipoprotein cholesterol; 

HOMA-IR: homeostasis model assessment of insulin resistance; Hs-CRP: high-sensitivity C-

reactive protein  
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Adiposity, glucose metabolism and non-esterified fatty acids  

Body weight and fat mass were reduced in all groups (all P<0.001), with greater reductions in 

IF70 vs. DR70 and IF100 (both P<0.05, Fig. 4.2A and B). Adipocyte size was reduced in all 

groups (all P≤0.01), with no difference between groups (Fig. 4.2C and D). When measured 

following the overnight fast, NEFA levels were decreased in all groups (all P<0.05), with 

greater reductions in IF70 vs. DR70 (P=0.02, Fig. 4.2E). Fasting HOMA-IR was reduced in 

IF70 (P=0.01), and a group effect was observed between IF100 vs. IF70 and DR70 (both 

P<0.05, Fig. 4.2F). When measured following the 24-hour fast, NEFA levels were increased 

(both P<0.05, Fig. 4.2E) and HOMA-IR was reduced (both P≤0.01, Fig. 4.2F) in both IF 

groups. Since biopsies were performed in a subgroup of participants, an additional analysis 

examining the outcomes reported above was conducted. This revealed the responses to dietary 

intervention were not different between participants underwent biopsies and those did not. 

Importantly, all the within group effects reported in Fig.4.2 held. However, the between group 

difference in weight and fat mass loss did not exist. 
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Figure 4-2: Adiposity, glucose metabolism, and non-esterified fatty acids following 8 

weeks of intervention  

(A): Body weight; (B): Fat mass; (C): Representative H&E staining of subcutaneous adipose 

tissue; (D): Fat cell size; (E): HOMA-IR and (F): NEFA. DR70: continuous energy restriction 

at 70% baseline energy requirements: IF70: intermittent fasting diet at 70% baseline energy 

requirements; IF100: intermittent fasting diet at 100% baseline energy requirements. Scale bar: 

100μm. 

 

Data presented as Mean±SEM. ^P<0.05 vs. DR70 in the change from baseline to week 8 

following a 12-hour fast; ‡ P<0.05 vs. IF100 in the change from baseline to week 8 following 

a 12-hour fast. *P<0.05, **P<0.01 and ***P<0.001 vs. baseline.  

 

Systemic and tissue inflammation  

When measured following the overnight fast, there were no within or between group changes 

in any inflammatory markers assessed in serum (Fig. 4.3A-D, and Appendix figure 3), adipose 

tissue (Fig. 4.3I-K and Fig. 4.3M-P) or muscle (Fig. 4.3Q-T, and Appendix figure 4 and 5), 

except for an increase in serum MCP-1 in IF100 (P=0.01, Fig. 4.3D). When measured 

following the 24-hour fast, serum MCP-1 (Fig. 4.3D), CD40 mRNA levels (Fig. 4.3M), the 

total number of M1- and pan-macrophages in adipose tissue by histology (Fig. 4.3I and K), 

CD163 mRNA levels and the CD163:CD40 ratio in muscle (Fig. 4.3R and T) were increased 

in the IF70 group (all P<0.05).  The number of M1-, M2- and pan-macrophages in adipose 

tissue (Fig. 4.3I-K), CD163 and CD68 mRNA levels and the CD163:CD40 ratio in muscle 

(Fig. 4.3R-T) were also increased after the 24-hour fast in the IF100 group (all P<0.05). When 

measured following the 24 hour fast, the change in CD68 mRNA levels in adipose tissue was 

positively correlated with the change in NEFA in both IF groups (r=0.56, P=0.002, Fig. 4.3L). 
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Figure 4-3: Systemic and tissue inflammation following 8 weeks of intervention 

(A-D): Serum TNFα, IL-6, IL-10 and MCP-1; (E-H): Representative images of fluorescent 

staining for M1-macrophage (CD40), M2-macrophage (CD206), nuclei (DAPI) and layout; (I 

to K): Quantification of M1-, M2- and total macrophages in adipose tissue; (L): Correlation 

between changes in NEFA levels and CD68 mRNA levels in adipose tissue after a 24-hour 

fast; (M-O): mRNA levels of CD40 (M1- macrophage), CD163 (M2- macrophage) and CD68 

(pan-macrophage) in adipose tissue; (P): The ratio of CD163:CD40 in adipose tissue; (Q-S): 

mRNA levels of CD40, CD163 and CD68 in skeletal muscle and (T): The ratio of 

CD163:CD40 in muscle. DR70: continuous energy restriction at 70% baseline energy 

requirements: IF70: intermittent fasting diet at 70% baseline energy requirements; IF100: 
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intermittent fasting diet at 100% baseline energy requirements. Scale bar: 20μm. AU: arbitrary 

unit. 

 

Data presented as Mean±SEM. *P<0.05 and **P<0.01 vs. baseline.  

 

Extracellular matrix remodelling in adipose tissue and muscle  

When measured following the overnight fast, there were no between group differences in the 

change in extracellular matrix markers in adipose tissue (Fig. 4.4A-C) or muscle (Fig. 4.4E-

G). However, MMP2 mRNA levels were increased in adipose tissue in DR70 and IF70 (both 

P<0.01, Fig. 4.4B). COL6A1 and MMP2 mRNA levels were increased in skeletal muscle in 

IF100 (both P≤0.05, Fig. 4.4E and F). When measured after the 24-hour fast, MMP2 mRNA 

levels remained elevated in adipose tissue in the IF70 group (P=0.002, Fig. 4.4B). However, 

the integrated density (Fig. 4.4D) or area (Appendix figure 6) of collagen in adipose tissue 

assess by Trichrome staining was not altered in any group.  

 

 

 

Figure 4-4: Extracellular matrix remodelling in adipose tissue and muscle following 8 

weeks of intervention 

(A-C): mRNA levels of COL6A1, MMP2 and TIMP1 in adipose tissue; (E-G): mRNA levels 

of COL6A1, MMP2 and TIMP1 in muscle; (D and H): Representative image of Masson's 

trichrome staining and quantification of the integrated density of collagen in adipose tissue. 
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DR70: continuous energy restriction at 70% baseline energy requirements: IF70: intermittent 

fasting diet at 70% baseline energy requirements; IF100: intermittent fasting diet at 100% 

baseline energy requirements. Scale bar: 100μm. AU: arbitrary unit. 

 

Data presented as Mean±SEM. *P<0.05 and **P<0.01 vs. baseline. 

 

Lipid metabolism and adipogenesis markers in adipose tissue  

When measured following the overnight fast, FASN mRNA levels in adipose tissue were 

decreased in the IF70 group (P=0.02, Fig. 4.5A), and this was significantly different from the 

change in FASN mRNA levels in the IF100 group (P=0.03). ACACA mRNA levels in adipose 

tissue were tended to be reduced in the DR70 group (P=0.05, Fig. 4.5B). When measured 

following the 24-hour fast, there were no significant change in markers of lipogenesis (Fig. 

4.5A and B) or lipolysis (Fig. 4.5C and D) in either IF group. mRNA levels of CEBPb and 

SREBF1 were not altered in any group (Fig. 4.5E and F). 

 

 

Figure 4-5: Lipogenesis, lipolysis, and adipogenesis markers in adipose tissue following 8 

weeks of intervention 

(A and B) mRNA levels of lipogenesis markers ACACA and FASN; (C and D) mRNA levels 

of lipolysis markers LIPE and PLIN1; (E and F): mRNA levels of adipogenesis markers 

CEBPb and SREBF1. DR70: continuous energy restriction at 70% baseline energy 
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requirements: IF70: intermittent fasting diet at 70% baseline energy requirements; IF100: 

intermittent fasting diet at 100% baseline energy requirements. AU: arbitrary unit. 

 

Data presented as Mean±SEM. ‡P<0.05 vs. IF100 in the change from baseline to week 8 

following a 12-hour fast. *P<0.05 vs. baseline. 
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4.5 Discussion  

Obesity is associated with increased macrophage infiltration and extracellular matrix 

deposition in adipose tissue, which can be at least partially reversed following weight loss by 

DR (Weisberg et al., 2003, Xu et al., 2003, Zamarron et al., 2017, Divoux et al., 2010, Higami 

et al., 2006, Magkos et al., 2016). The effects of IF, as an alternative weight loss strategy, on 

tissue remodelling in humans are unknown. Data obtained from mouse studies suggest that 

macrophage infiltration is stimulated in response to an acute 24-hour fast (Kosteli et al., 2010, 

Ding et al., 2016, Asterholm et al., 2012). In this study, we observed an increase in markers of 

macrophage infiltration in human adipose tissue in response to the 24-hour fast imposed by the 

intermittent fasting schedule. This was associated with increases in NEFA, a marker of adipose 

tissue lipolysis, as has also been shown previously in mouse models (Kosteli et al., 2010).  

 

Macrophages are the dominant leukocyte population in adipose tissue, and can be divided into 

two subtypes based on their functional properties: M1- and M2- macrophages. M1, or 

classically activated macrophages, secrete pro-inflammatory molecules such as IFN-γ, LPS and 

TNFα, and contribute to obesity related morbidities. The M2- subtype represents alternatively 

activated anti-inflammatory macrophages (Martinez-Santibanez and Lumeng, 2014). In this 

study, DR did not impact any of the markers of macrophages or inflammation in adipose tissue, 

skeletal muscle, or systemically. This finding is in line with previous reports (Magkos et al., 

2016, Tam et al., 2012a). Tam et al reported that 24-weeks of DR led to 10% weight loss in 

individuals with obesity, but did not alter systemic inflammation or markers of macrophages 

in adipose tissue (Tam et al., 2012a). Magkos et al reported that 10-15% weight loss by DR 

partially improved systemic inflammation, without altering mRNA levels of macrophage 

markers in subcutaneous adipose tissue in humans with obesity (Magkos et al., 2016). In 

skeletal muscle, one study reported that inflammatory markers were decreased in skeletal 
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muscle collected from individuals following long-term DR (3-15 yrs) versus age-matched 

sedentary individuals consuming western diet (Yang et al., 2016), but this was not observed 

after 3-months of DR (Liu et al., 2017a). 

 

Of note, a 24-hour fast increased multiple markers of inflammation in adipose tissue and 

skeletal muscle, and the increase in macrophage marker in adipose tissue was associated with 

elevated NEFA levels. In mice, a 24-hour fast significantly increased circulating NEFA levels 

and macrophage infiltration in adipose tissue (Kosteli et al., 2010). The peak of adipose tissue 

macrophage number coincided with the peak in the circulating concentration of NEFA and 

glycerol released from adipose tissue, suggesting that lipolysis drives macrophage 

accumulation in adipose tissue (Kosteli et al., 2010). Moreover, in vivo and in vitro studies 

have shown that stimulation of adipocyte lipolysis increased the uptake and storage of lipids 

by macrophages (Caspar-Bauguil et al., 2015, Kosteli et al., 2010). Elevations in NEFA are 

linked with insulin resistance in liver and muscle (Delarue and Magnan, 2007),  and thus 

macrophages may play a protective role to buffer elevated NEFA levels induced by fasting, in 

humans.  

 

The phenotype of macrophages covers a continuum of functional states from inflammatory 

M1- to anti-inflammatory M2- profiles (Mantovani et al., 2004). The polarization of 

macrophages toward M1- or M2- phenotype is through distinct pathways by external stimuli. 

For example, lipopolysaccharides and IFNγ promotes a M1- polarization, whilst interleukin 4 

and 10 yields a M2-polarization (Martinez and Gordon, 2014). Some evidence suggests 

macrophages can maintain their population by self-proliferation, and M2-macrophages can be 

transformed into M1-phenotype to promote inflammation (Zheng et al., 2013, Zamarron et al., 

2017). Previous studies in mice show that an acute 24-hour fast, and intermittent fasting, also 
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promote M2-polarisation of macrophages in adipose tissue (Asterholm et al., 2012, Kim et al., 

2017). To our knowledge, the impacts of acute or intermittent fasting on muscle macrophage 

phenotype have not been reported in mice or humans. In this study, we observed IF increased 

mRNA levels of M2- macrophages in muscle. The mechanisms by which IF promotes M2-

polarization requires further study.   

 

ECM is a non-cellular component existing in all tissues, which provides structural support to 

the neighbouring cells, and influences cell morphology and function through cell-matrix 

connections (Sun et al., 2013). The homeostasis of ECM is maintained by a balance between 

synthesis and degradation. Collagens are the main proteins in ECM and are degraded by matrix 

metalloproteinases (MMPs), which are negatively regulated by tissue inhibitors of 

metalloproteinases (TIMPs) (Zamarron et al., 2017). Previous studies have shown that ECM 

accumulation in adipose tissue and skeletal muscle is linked with obesity and poor metabolic 

phenotype, such as insulin resistance (Williams et al., 2015). In this study, we found that MMP2 

mRNA expression, which contributes to the degradation of ECM, was increased in adipose 

tissue in DR and IF70 groups. This finding suggests that weight loss, rather than the mode of 

dietary restriction, increases ECM degradation in adipose tissue. This is in line with a recent 

human study, which suggests that minor weight loss (5%) upregulates genes involved in the 

degradation of ECM in subcutaneous adipose tissue (Magkos et al., 2016). We did not see a 

reduction in collagen deposition in adipose tissue by histology, but this may be the result of the 

minor weight loss achieved. Substantial weight loss by bariatric surgery also did not change 

fibrosis in subcutaneous adipose tissue in morbidly obese patients with and without Type 2 

diabetes after 6 months (Chabot et al., 2017). Interestingly, Clément’s group observed 

increased collagen deposition in subcutaneous adipose tissue 3-12 months after bariatric 

surgery (Liu et al., 2016). However, this was characterised by a decrease in cross-link of matrix 
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fibres and increased degradation of the extracellular matrix, and was associated with an 

increase in M2-macrophages. This study highlights that the “structure or quality” of collagen 

should be taken into consideration when assessing adipose tissue fibrosis. Further studies are 

required to investigate the structure and quality of collagen, and the crosstalk between 

extracellular matrix and macrophages in adipose tissue and skeletal muscle following weight 

loss.  Our data also supports past studies to suggest that ECM gene expression in skeletal 

muscle is sensitive to overfeeding (Tam et al., 2017, Tam et al., 2014), as the mRNA levels of 

COL6A1 and MMP2 were transiently increased in the IF100 group after consuming~145% of 

energy requirements on the fed day. This suggests both intermittent “fasting” and “overeating” 

in an intermittent fasting regimen are signals that could impact tissue remodelling.  

 

This study was a short-term intervention that was limited to women who were overweight and 

obese. Thus, the responses in men and in individuals with normal body weight may be different. 

The long-term effects of intermittent fasting on adipose tissue and skeletal muscle require 

further study.  

 

In conclusion, weight loss by DR or IF reduced fat cell size and stimulated markers of ECM 

remodelling, but did not alter markers of inflammation, when measured after an overnight fast. 

In response to the 24-hour fast, IF transiently elevated markers of inflammation in adipose 

tissue and muscle. The change in markers of macrophage infiltration in adipose tissue 

following the 24-hour fast was associated with the change in NEFA. The long-term effects of 

these transient increases in markers of inflammation in response to intermittent fasting requires 

further investigation.   

 

 



  Chapter 4 
 

110 

 

Acknowledgments 

The authors thank Briohny Johnston for her assistance in recruiting, screening, and conducting 

metabolic visits, and all the volunteers who participated in this research study. 

 

Funding 

This work was supported by a National Health and Medical Research Council Project Grant 

APP1023401. LKH was supported by an Australian Research Council Future Fellowship 

FT120100027. BL was supported by an Australian Government Research Training Program 

Scholarship. 

 

Duality of Interest 

No potential conflicts of interest relevant to this article were reported. 

 

Author Contributions 

BL and ATH performed the study, collected and analysed the data. GAW and CHT provided 

clinical support. LKH and GAW designed the study. KL performed the statistical analysis. All 

authors contributed to data interpretation and preparation of the manuscript. LKH is the 

guarantor of this work and, as such, had full access to all the data in the study and takes 

responsibility for the integrity of the data and the accuracy of the data analysis. 

 

Prior Presentation 

Parts of this study were presented as an oral presentation at the Australian & New Zealand 

Obesity Society 2016 Annual Scientific Meeting, Brisbane, 19-21 October, 2016, and as a 

poster at the 77th Scientific Sessions of the American Diabetes Association, San Diego, 9-13 

June, 2017.



  Chapter 5 
 

111 

 

Chapter 5:  Intermittent Fasting Improves Glucose Tolerance 

and Promotes Adipose Tissue Remodelling in High-fat Diet Fed 

Male Mice 

 

 

Bo Liu1, 2 , Amanda J Page1, 2, George Hatzinikolas1, 2, Miaoxin Chen1, 2, 3, Gary A Wittert1, 2, 

Leonie K Heilbronn1, 2 

 

1Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of 

Adelaide, Adelaide, South Australia, Australia 

2Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide, 

South Australia, Australia 

3Centre for Reproductive Medicine, Shanghai First Maternity and Infant Hospital, Tongji 

University School of Medicine, Shanghai, China 

 

Corresponding author: A/Prof Leonie Heilbronn 

SAHMRI, North Terrace, Adelaide, SA, Australia, 5000 

PO Box 11060, Adelaide SA 5001 

Email: leonie.heilbronn@adelaide.edu.au 

Phone: +61 8 8128 4838 

  

mailto:leonie.heilbronn@adelaide.edu.au


  Chapter 5 
 

112 

 

 



  Chapter 5 
 

113 

 

 

  



  Chapter 5 
 

114 

 

5.1 Abstract 

Background:  Intermittent fasting (IF) promotes weight loss in diet-induced obese mice, but 

its effects on adipose tissue inflammation and fibrosis are unclear.  

 

Methods: Ten-week old male C57BL/6J mice were fed a high-fat (HFD; 43% fat) or chow 

diet (18% fat) for 8-weeks ad libitum (AL), and randomised to AL or IF for an additional 8-

weeks. IF was initiated one hour before lights off (Zeitgeber time 11, lights on at ZT0) for 24-

hours, on 3 non-consecutive days per week. Body weight and energy intake were monitored 

and oral glucose tolerance (2g/kg body weight) was assessed. At the end of the study, all mice 

were sacrificed at ZT7-9, fed state or after a 22-hour fast. Plasma insulin and non-esterified 

fatty acids (NEFA) were analysed. Inguinal and gonadal fat were collected for the assessment 

of markers of inflammation and extracellular matrix. Fat cell size, macrophage numbers and 

collagen content in adipose tissue were assessed by histology. Two-way ANOVA with 

Bonferroni post-hoc test was used to assess the effects of diet (chow and HFD) and schedule 

(AL and IF) between groups. Significance was accepted as P<0.05. 

 

Results: IF decreased energy intake, body weight and fat cell size in HFD fed mice, and 

decreased fat mass and improved glucose tolerance in chow and HFD fed mice (all P<0.05). 

IF decreased mRNA levels of Lgals3, Itgax, Ccl2 and Ccl3 in inguinal and gonadal fat, and 

adipose tissue macrophages numbers in HFD fed mice only (all P<0.05). IF increased mRNA 

levels of Mmp9, but reduced mRNA levels of Col6a1 and Timp1, and fibrosis in gonadal fat in 

HFD fed mice (all P<0.05). The 22-hour fast elevated NEFA levels (all P<0.05), but did not 

alter inflammation markers in adipose tissue in either diet groups.    
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Conclusions: Intermittent fasting improved glucose tolerance in chow and high fat diet fed 

mice, and ameliorated the adipose tissue inflammation and fibrosis in high fat diet fed mice. 

 

Key words: adipose tissue, extracellular matrix, glucose tolerance, intermittent fasting, 

macrophage 
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5.2 Introduction 

Daily caloric restriction (DR) promotes weight loss, improves health, and extends lifespan in a 

variety of species. Intermittent fasting (IF) has recently gained attention as a viable alternative 

to DR. IF extends lifespan, reduces fat mass, and improves glucose tolerance with no, or 

minimal, impact on food consumption and body weight in chow fed mice (Goodrick et al., 

1990, Anson et al., 2003, Varady et al., 2008, Varady et al., 2010). The impact of IF on high-

fat diet fed mice are less clear, with only four animal studies conducted very recently (Gotthardt 

et al., 2016, Joslin et al., 2017, Li et al., 2017, Liu et al., 2017b). These studies have consistently 

reported that IF resulted in significant weight loss, but improvements in glucose tolerance are 

controversial.  

 

White adipose tissue undergoes remodelling during weight gain, including adipocyte 

hypertrophy and/or hyperplasia, increases in macrophage infiltration and extracellular matrix 

(ECM) deposition (Sun et al., 2011, Sun et al., 2013, Martinez-Santibanez and Lumeng, 2014). 

Increased accumulation of macrophages and ECM in adipose tissue has been linked to 

development of insulin resistance (Weisberg et al., 2003, Xu et al., 2003, Olefsky and Glass, 

2010, Sun et al., 2013). Macrophages may also promote ECM deposition (Spencer et al., 2010, 

Bourlier et al., 2012, Keophiphath et al., 2009), which could negatively impact adipocyte 

expansion, promote ectopic lipid deposition and impact metabolic health (Sun et al., 2013, 

Khan et al., 2009). Marked weight loss by DR reduces macrophage infiltration in adipose tissue 

(Hoevenaars et al., 2014, Zamarron et al., 2017, Kovacikova et al., 2011, Capel et al., 2009, 

Magkos et al., 2016), and may promote macrophage phenotype switching from a pro-

inflammatory M1- towards an anti-inflammatory M2- profile (Lumeng et al., 2007a, Fabbiano 

et al., 2016). There is some evidence that markers of ECM synthesis in adipose tissue decrease 

following long-term DR in mice (Higami et al., 2006).  
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Paradoxically, a beneficial role of inflammation in healthy adipose tissue expansion and 

function is also reported (Wernstedt Asterholm et al., 2014). Increases in macrophage 

infiltration in adipose tissue occurs in the early phase of DR, and after 24-hours of fasting(Capel 

et al., 2009, Kosteli et al., 2010, Asterholm et al., 2012, Ding et al., 2016), and this increase 

coincides with elevated circulating non-esterified fatty acids (NEFA) (Kosteli et al., 2010). 

These studies have suggested that adipose tissue macrophages may play a positive role 

buffering lipid released from adipocytes.  

 

We examined the effects of intermittent fasting, on both fed and fast days, in mice fed a chow 

or high-fat diet, on markers of adipose tissue remodelling. We hypothesised that intermittent 

fasting will improve metabolic phenotype and reduce adipose tissue fibrosis, but may increase 

adipose tissue macrophage infiltration in chow and high-fat diet fed mice.  
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5.3 Research Design and Methods 

Ethical approval 

All experimental protocols for the animal study were approved by the animal ethics committee 

of the South Australian Health and Medical Research Institute (SAHMRI) and the University 

of Adelaide, and were performed in accordance with the Australian Code of Practice for the 

Care and Use of Animals for Scientific Purposes. 

 

Animals and diets 

Forty-eight male C57BL/6J mice (Bioresources, SAHMRI, Adelaide, Australia) were housed 

four per cage under a 12:12h light/dark cycle, with lights on at 0700h (Zeitgeber time 0). At 

ten-week old, mice were fed either a lard based high-fat diet (HFD) comprising 43%, 21%, 36% 

of energy from fat, protein, and carbohydrate respectively (SF04-001, Specialty Feeds, WA, 

Australia) or a standard chow diet (Chow) comprising 18%, 24%, 58% of energy from fat, 

protein, and carbohydrate respectively (2018SX, Specialty Feeds, WA, Australia) for eight 

weeks. Mice on each diet were then randomized into ad libitum feeding (AL, n=8) or 

intermittent fasting (IF, n=16) for another eight weeks. Intermittent fasting was initiated at 

ZT11 (1-hour prior to lights off) for 24-hours for 3 non-consecutive days/week (Fig. 5.1A). 

Mice, cardboard tunnels and chew blocks were transferred daily between cages with or without 

food. Ad libitum fed mice were also transferred between feeding cages at the same time to 

standardize handling. All mice had free access to water throughout the study. Body weight and 

food intake were monitored at ZT11 weekly before IF was introduced, and daily after IF was 

implemented. At 28-week old, all mice were sacrificed at ZT7-9 with mice in IF group culled 

in the fed state or following a 22-hour fast. Whole blood was collected via cardiac puncture 

following isoflurane anaesthesia. Following cervical dislocation, inguinal and gonadal adipose 

tissue were collected and weighed. Another group of 10-week old male C57BL/6J mice (n=24) 
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were fed chow or HFD ad libitum for eight weeks and culled at ZT7-ZT9 in the fed state or 

after a 22-hour fast.  

 

Glucose tolerance test 

At twenty-four weeks of age and after 6 weeks of IF or AL feeding, mice were fasted from ZT1 

for 6-hours and then challenged with an oral gavaging of glucose (2 g/kg body weight). Glucose 

was assessed at 0, 15, 30, 60, 90, and 120 minutes via tail vein bleeding by a glucometer 

(AccuChek Performa Monitor, Roche Diagnostics, Indianapolis, USA), and insulin was 

assessed at 0, 15, 30, and 60 minutes.  

 

Plasma analysis 

Insulin was measured using ultra-sensitive ELISA kit (Cat: 10-1249-01, Mercodia, Sweden) 

and Non-esterified fatty acids (NEFAs) by enzymatic colorimetric assay (NEFA-HR (2), Wako 

Diagnostics, CA, USA) on a VersaMax ELISA Microplate Reader (Sunnyvale, CA, USA). 

 

Quantitative Real-Time PCR 

As described previously (Chen et al., 2016a), Total RNA were extracted from gonadal and 

inguinal adipose tissue (100-150 mg) using TRI Reagent (T9424, Sigma, St. Louis, USA) 

following the manufacturer’s instructions. The concentration and purity of RNA were assessed 

by NanoDrop Lite Spectrophotometer (Thermo Fisher Scientific, CA, USA). cDNA synthesis 

was conducted using T100 Thermal Cycler (Bio-Rad, CA, USA) with 1000 ng of each RNA 

sample using the QuantiTect reverse transcription kit (Qiagen, Valencia, CA, USA) according 

to kit instructions. Standard control (25ng/ul) samples were pooled from each sample. 

Quantitative real-time PCR was performed using Taqman primers and Fast Universal PCR 

Master Mix (Applied Biosystems, Foster City, CA, USA). Genes for pan macrophage (Adgre1 
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and Lgals3), inflammatory M1-macrophage (Itgax and Cd38), anti-inflammatory M2-

macrophage (Arg1 and Mrc1), macrophage recruitment (Ccl2 and Ccl3), ECM synthesis 

(Col3a1 and Col6a1), ECM degradation (Mmp2, Mmp9 and Timp1) were assessed using 

Taqman primers (Table 5.1). The samples were run in duplicate on an ABI 7500 sequence 

detection system (Applied Biosystems, Foster City, CA, USA) with internal negative controls 

and a standard curve. Six reference genes including Rn18s, Actb, Gapdh, Hprt, Ppia and B2m 

were examined, and the combination of Actb and B2m was determined as the best housekeeper 

using the NormFinder program as described previously (Chen et al., 2014). The relative gene 

expression was determined using the 2−ΔCT method, where ΔCT = (CTtarget gene–CTreference gene). 

 

Histological Analysis and Immunohistochemical staining 

Briefly, adipose tissue samples were fixed with Bouin’s solution (HT10132, Sigma, St. Louis, 

MO, USA), dehydrated, paraffin embedded, and sectioned at 5μm. Hematoxylin and eosin 

(H&E) staining was performed using a standard protocol, and Masson’s Trichrome staining 

with a commercial kit (HT15, Sigma, St. Louis, MO, USA). For immunohistochemistry, we 

used F4/80 targeting to pan-macrophages and slides were counterstained with Mayer's 

hematoxylin. Slides were scanned using the Pannoramic 250 Flash II scanner (3DHISTECH, 

Budapest, Hungary). At least one thousand adipocytes were analysed for adipocyte size and 

collagen content using Image J built-in macros (National Institutes of Health). Crown-like 

structures and F4/80 positive cells were counted in ten randomly chosen areas at ×40 

magnification and adjusted by adipocyte numbers as described previously (Cancello et al., 

2005). Reagents used for histology are listed in Table 5.2. 
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Table 5-1: Taqman primers used for gene expression analysis 

Gene symbol Gene Name Assay ID 

Housekeeper 

Actb Actin, beta Mm00607939_s1 

18s Eukaryotic 18S rRNA Mm03928990_g1 

Ppia Peptidylprolyl isomerase A Mm02342430_g1 

Hprt Hypoxanthine guanine phosphoribosyl transferase Mm01545399_m1 

Gapdh Glyceraldehyde-3-phosphate dehydrogenase Mm99999915_g1 

B2m Beta-2 microglobulin Mm00437762_m1 

Pan-macrophage 

Adgre1 (F4/80) Adhesion G Protein-Coupled Receptor E1 Mm00802529_m1  

Lgals3 (Mac2) Lectin, Galactoside-Binding, Soluble, 3 Mm00802901_m1 

M1-macrophage 

Itgax (Cd11c) Integrin subunit alpha X Mm00498701_m1 

Cd38 Cluster of differentiation 3 Mm01220906_m1  

M2-macrophage 

Arg1 Arginase, liver Mm00475988_m1 

Mrc1 Mannose receptor, C type 1 Mm01329362_m1 

Macrophage recruitment 

Ccl2 Chemokine (C-C motif) ligand 2 Mm00441242_m1 

Ccl3 Chemokine (C-C motif) ligand 3 Mm00441259_g1 

Extracellular matrix 

Col3a1 Collagen, type III, alpha 1 Mm01254476_m1 

Col6a1 Collagen, type VI, alpha 1 Mm00487160_m1 

Mmp2 Matrix metallopeptidase 2 Mm00439498_m1 

Mmp9 Matrix metallopeptidase 9 Mm00442991_m1 

Timp1 Tissue inhibitor of metalloproteinase 1 Mm01341360_g1 
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Table 5-2: Reagents used for immunohistochemical staining 

Reagent  Source Identifier  

Rat anti mouse F4/80 (1:200) Abcam  Ab6640 

Goat Anti-Rabbit HRP (IgG H&L)  (1:500) Abcam Ab6721 

Goat sera Gibco 16210064 

Endogenous Peroxidase and Alkaline 

Phosphatase Blocking Solution 

Vector  SP-6000 

DAB Vector SK-4105 

Bovine serum albumin (BSA) Sigma-Aldrich A7030-10G 

PBS Sigma-Aldrich P4417-100TAB 

Triton  Sigma-Aldrich 234729 

 

 

Data analysis 

All data are expressed as mean ± the standard error of the mean. Data were analysed statistically 

with SPSS 24 (IBM, Chicago, IL, USA) and log-transformed for analysis if not normally 

distributed. For insulin in the fasted mice, undetectable samples (Figure 5.3) were input with 

the minimum values. Area under the curve (AUC) for glucose and insulin was calculated as 

mentioned previously (Matthews et al., 1990, Allison et al., 1995). Single comparisons were 

performed using two-way ANOVA with diet (Chow and HFD) and schedule (AL and IF) as 

between group factors, Bonferroni post hoc tests were performed when diet*schedule effects 

were present. P<0.05 was considered as statistically significant. 

 

Table 5-3: Mice with insulin undetectable after the fasting day 

 Eight-week intermittent fasting Acute one day fasting 

Diet  Chow HFD Chow HFD 

Number 3/8 3/8 4/8 0/8 
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5.4 Results 

IF differentially impacted on energy intake and adiposity in chow and HFD fed mice  

Cumulative energy intake and final body weight was not different between chow-IF vs. chow-

AL groups (Fig. 5.1B-E). In contrast, HFD-IF displayed reduced energy intake (-28.0%) vs. 

HFD-AL group and significant weight loss (-20.9%, both P<0.001). Weight loss plateaued after 

5 weeks of IF in the HFD-IF group, and the final body weight was not different to the chow 

fed groups. Gonadal and inguinal fat mass was reduced as a result of IF in chow and HFD 

groups, but fat pad weights remained higher in HFD-IF vs. chow-IF (all P<0.05, Fig. 5.1F and 

1G). Fat cell size was decreased by IF in HFD fed mice only (all P<0.001, Fig. 5.1H to 1M).  
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Figure 5-1: IF differentially impacted on energy intake and adiposity in chow and HFD 

fed mice 

(A): Schematic outline of the intermittent fasting regimen used in this study. (B and C): 

Cumulative energy intake during diet-induced obesity and intermittent fasting, results were 

calculated based on 4 mice/cage. (D and E): Body weight during diet-induced obesity and 

intermittent fasting. (F and G): Gonadal and inguinal fat mass. (L and M): Gonadal and 

inguinal fat cell size. (H to K): Representative H & E staining of gonadal fat. Scale bar: 100μm.  

 

Data presented as Mean±SEM. n=8 in AL and 16 in IF per diet in A-D; n=7-8/group in D-G; 

n=5-6 in H and I. Two-way ANOVA with Bonferroni post hoc test. Post hoc test: *P<0.05, 
**P<0.01, and ***P<0.001; ^P<0.01 vs. Chow-IF-Fed and #P<0.01 vs. Chow-IF-Fast. 

 

IF improved glucose tolerance in chow and HFD fed mice  

IF improved glucose tolerance as assessed by glucose AUC in both diet groups (all P<0.05, 

Fig. 5.2A and 2B). Insulin AUC was reduced by IF in HFD fed mice only (P<0.001, Fig. 5.2D 

and 2E). We additionally measured glucose tolerance in the HFD-IF group after a 20-hour fast, 

but this was not different from HFD-IF group that were fasted for 6-hours (Fig. 5.2C). In the 

fed state, IF reduced terminal blood glucose in both diet groups (schedule effect, P<0.01, Fig. 

5.2F), but reduced insulin and HOMA-IR in HFD fed mice only (both P<0.05, Fig. 5.2G and 

2H). Fasting glucose, insulin and HOMA-IR was also reduced in fasted vs. fed state in IF 

groups (all P<0.01, Fig. 5.2F to 2H).  
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Figure 5-2: IF improved glucose tolerance in chow and HFD fed mice 

(A to C): Glucose and area of glucose under the curve during OGTT. (D and E): Plasma insulin 

and area of insulin under the curve during GTT. (F and G): Terminal glucose and insulin. (H): 

HOMA-IR calculated from terminal glucose and insulin. AU: arbitrary unit.  

 

Data presented as Mean±SEM, n=7-8/group. Two-way ANOVA with Bonferroni post hoc test. 

Diet effect: ^^P<0.01. Schedule effect: $P<0.01 vs. AL and &P<0.001 vs. IF-Fed. Post hoc test: 
*P<0.05, **P<0.01, and ***P<0.001; #P<0.05 vs. Chow-IF.   

 

IF reduced adipose tissue inflammation in HFD fed mice 

Markers of adipose tissue inflammation were increased in both gonadal and inguinal fat in 

HFD-AL vs. Chow-AL group (Fig. 5.3A to 3G). IF decreased mRNA levels of Lgals3, Itgax, 

and Ccl2 in both gonadal and inguinal fat, and decreased crown-like structure and pan-

macrophage numbers in gonadal fat in HFD fed mice (all P<0.05, Fig. 5.3B, 3D, 3E, 3G, 3M, 

3O, 3S and 3T). IF did not alter any markers of inflammation in chow fed mice, except for 

decreased Lgals3 mRNA levels in gonadal fat (P<0.05, Fig. 5.3B).  

 

Adgre1, Mrc1, Arg1 and Ccl2 mRNA levels were lower in fasted vs. fed states in gonadal fat 

in IF groups (P<0.01, Fig. 5.3A, 3I, 3J and 3M). Crown-like structure and pan-macrophage 

numbers were not different between fed vs. fasted states in both diets (Fig. 5.3S and 3T). NEFA 

levels were increased in fasted vs. fed state in both diets (both P<0.05, Fig. 5.3P), but there 

was no relationships between the changes in NEFA and any marker of inflammation. 
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Figure 5-3: IF reduced adipose tissue inflammation HFD fed mice 

(A to D): mRNA levels of pan-macrophage marker Adgre1 and Lgals3. (E to H): mRNA levels 

of M1-macrophage marker Itgax and Cd38. (I to L): mRNA levels of M2-macrophage marker 

Mrc1 and Arg1. (M and N): mRNA levels of macrophage recruitment marker Ccl2 and Ccl3 

in gonadal fat. (O): mRNA levels of macrophage recruitment marker Ccl2 ininguinal fat, Ccl3 

was undetectable in inguinal fat. (P): Plasma NEFA. (Q and R): Representative images of 

immunohistochemical staining for F4/80 (pan-macrophage) in gonadal fat in chow and HFD 

ad libitum fed mice. (S and T): Quantification of Crown-like structures and F4/80 positive cells 

in gonadal fat, results were adjusted adipocyte numbers. Scale bar: 100μm. AU: arbitrary unit.  
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Data presented as Mean±SEM. n=7-8/group for A to P, n=5/group for S and T. Two-way 

ANOVA with Bonferroni post hoc test. Diet effect: ^P<0.05, ^^P<0.01 and ^^^P<0.001 vs. chow. 

Schedule effect: $P<0.05 vs. AL and #P<0.05 vs. IF-Fed. Post hoc test: *P<0.05, **P<0.01 and 
***P<0.001; &P<0.05 vs. Chow-IF-Fed.  

 

IF reduced fibrosis in gonadal adipose tissue in HFD fed mice 

IF increased Col3a1 mRNA levels in gonadal and inguinal fat (schedule effect, both P<0.05, 

Fig. 5.4A and 4C), but decreased Col6a1 mRNA levels in gonadal fat (schedule effect, P<0.01, 

Fig. 5.4B). IF increased Mmp9 mRNA levels and decreased Timp1 mRNA levels in gonadal 

fat in HFD fed mice only (all P<0.001, Fig. 5.4F and 4I). Collagen deposition assessed by 

histology was reduced in gonadal fat in HFD-IF vs. HFD-AL group (P=0.05, Fig. 5.4K and 

4L), but was increased in inguinal fat in Chow-IF vs. Chow-AL group (P<0.001, Fig. 5.4M 

and 4N). Decreased Col3a1mRNA levels, but increased Col6a1 and Mmp2 mRNA levels in 

gonadal fat were observed in the fasted vs. the fed state in both IF groups (schedule effect, all 

P<0.05, Fig. 5.4A, 4B and 4E).  

 

Responses to a single acute fast in chow and HFD fed mice 

Recent studies have shown that acute fasting for 24-hours increased markers of inflammation 

in adipose tissue (Kosteli et al., 2010, Ding et al., 2016, Asterholm et al., 2012). We did not 

detect this in response to IF, but habituation to fasting may have occurred. Thus, a group of 

mice were examined after the first exposure to an intermittent fasting diet. In response to one 

acute 22-hour fast, blood levels of NEFA were increased and insulin levels were decreased in 

both diet groups (schedule effect, all P<0.001, Fig. 5.5A and 5B). Fasting did not increase the 

mRNA levels of any inflammation markers examined in gonadal fat or inguinal fat (Fig. 5.5C 

to 5J, inguinal fat data not shown). These results were confirmed by histology (Fig. 5.5K and 
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5L). Col6a1 and Timp1 mRNA levels were decreased after one acute fast (schedule effect, all 

P<0.05, Fig. 5.5N and 5Q). 

 

 

Figure 5-4: IF reduced fibrosis in gonadal fat in HFD fed mice 

(A to D): mRNA levels of ECM synthesis marker Col3a1 and Col6a1. (E to J): mRNA levels 

of ECM degradation marker Mmp2, Mmp9 and Timp1. (K and M): Representative images of 

Masson’s trichrome staining for gonadal and inguinal fat. (L and N): Quantification of collagen 

integrated density in gonadal and inguinal fat. Scar bar: 100μm. AU: arbitrary unit.  

 

Data presented as Mean±SEM. n=7-8/group for A to J and n=5-6/group for L and N. Two-way 

ANOVA with Bonferroni post hoc test. Diet effect: ^P<0.05, ^^P<0.01 and ^^^P<0.001 vs. chow. 

Schedule effect: $P<0.05, $$p<0.01 and $$$P<0.001 vs. AL; #P<0.05, ##P<0.01 and ###P<0.001 

vs. IF-Fed. Post hoc test: ***P<0.001.  
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Figure 5-5: Responses to a single acute fast in chow and HFD fed mice 

(A and B): Plasma insulin and NEFA levels. (C and D): mRNA levels of pan-macrophage 

marker Adgre1 and Lgals3. (E and F): mRNA levels of M1-macrophage marker Itgax and 

Cd38. (G to H): mRNA levels of M2-macrophage marker Mrc1 and Arg1. (I and J): mRNA 

levels of macrophage recruitment marker Ccl2 and Ccl3. (K and L): Crown-like structures and 

F4/80 positive cells, results adjusted adipocyte numbers. (M and N): mRNA levels of ECM 

synthesis marker Col3a1 and Col6a1.  (O to Q): mRNA levels of ECM degradation marker 

Mmp2, Mmp9 and Timp1. AU: arbitrary unit.  
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Data presented as Mean±SEM. n=6/group. Two-way ANOVA with Bonferroni post hoc test. 

Diet effect: ^P<0.05, ^^P<0.01 and ^^^P<0.001 vs. chow. Schedule effect: $P<0.05 and 
$$$P<0.001 vs. AL. Post hoc test: *P<0.05 and ***P<0.001.  
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5.5 Discussion 

Inflammation and fibrosis of adipose tissue occurs in obese animals, and in humans, and is 

associated with impaired glucose tolerance and insulin resistance (Weisberg et al., 2003, Xu et 

al., 2003, Lumeng et al., 2007a, Sun et al., 2013, Pasarica et al., 2009a). Caloric restriction 

improves this phenotype (Zamarron et al., 2017, Higami et al., 2006, Anson et al., 2003, 

Argentino et al., 2005). IF promotes weight loss and may improve glucose tolerance in diet-

induced obese mice (Joslin et al., 2017, Li et al., 2017, Liu et al., 2017b). However, the effects 

of IF on adipose tissue remodelling is unclear. Our results suggest that IF improves glucose 

tolerance in both lean and obese mice, and reduced adipose tissue inflammation and fibrosis in 

obese mice.  

 

In this study, chow fed mice were able to consume sufficient energy during feeding days to 

compensate for the fasting days, and maintain body weight. However, mice that were fed a 

high-fat diet were unable to compensate entirely, resulting in weight loss. This is consistent 

with recent studies (Liu et al., 2017b, Joslin et al., 2017). In our study, HFD-IF mice presented 

with greater inguinal and gonadal fat mass compared to chow-IF mice. This is in agreement 

with previous studies which showed formerly diet-induced obese mice retained greater 

adiposity compared to lean controls (Wang et al., 2011, Guo et al., 2009). Gonadal and inguinal 

fat pad weight was also lower in chow-IF versus chow-AL mice, although these mice did not 

display overall weight differences. This could indicate increased lean mass after IF. Indeed, 

increased lean mass was reported in diet-induced obese mice subjected to chow diet with IF 

(Gotthardt et al., 2016). Preservation of lean mass was also observed in humans who underwent 

a modified IF intervention, where they were allowed to consume 25% of energy requirement 

on each fasting day (Klempel et al., 2013b), but was not observed in a recent study by our 



  Chapter 5 
 

132 

 

group whom consumed ~30% of requirements at breakfast prior to initiating a 24-hour fast 

(Chapter 3)  

  

In this study, we observed that oral glucose tolerance was improved by IF in both diet groups. 

In diet-induced obese mice, this finding is controversial. Gotthardt et al (Gotthardt et al., 2016) 

observed no change in oral glucose tolerance using the same dose applied in this study. 

However, glucose tolerance was improved in diet-induced obese mice when given at 1g/kg 

orally or by intraperitoneal injection (Liu et al., 2017b, Joslin et al., 2017, Kim et al., 2017). 

There is also some evidence that glucose tolerance is impaired on fasted vs. fed days in IF mice 

that were fed a HFD (Joslin et al., 2017). We have also shown transient insulin resistance by 

clamp following a fasting day in humans with obesity after 8 weeks of IF (Chapter 3). In our 

hands, fasting did not alter oral glucose tolerance in mice fed a high-fat diet. Since a group of 

mice that were paired-fed to the HFD-IF group was not included, and thus results cannot be 

distinguished between caloric restriction and weight loss, and IF per se. In mouse studies, 

insulin sensitivity is reported to be improved (Kim et al., 2017, Gotthardt et al., 2016) and 

unchanged (Liu et al., 2017b) when it was assessed by insulin tolerance test (Liu et al., 2017b, 

Kim et al., 2017, Gotthardt et al., 2016). No studies have examined measures of insulin 

sensitivity by tracers, or hyperinsulinaemic-euglycaemic clamp in response to intermittent 

fasting.  

 

Obesity is a low-grade inflammatory state with increased macrophage accumulation in white 

adipose tissue (Xu et al., 2003, Weisberg et al., 2003). In mice, a large body of evidence has 

suggested that weight loss reduces adipose tissue macrophages and improves insulin sensitivity 

(Hoevenaars et al., 2014, Zamarron et al., 2017, Kovacikova et al., 2011, Magkos et al., 2016). 

Weight loss may also promote the phenotype switching of macrophages from inflammatory 
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M1- to anti-inflammatory M-2 profile (Lumeng et al., 2007a, Cancello et al., 2005, Fabbiano 

et al., 2016). In this study, HFD increased markers of adipose tissue macrophages and 

inflammation, which was rescued by IF. This is in agreement with a recent study by Kim et al 

(Kim et al., 2017), which showed that a modified IF regimen (which was comprised of 2 

feeding days followed by 1 fasting day) reduced inflammation-related genes in gonadal fat in 

HFD fed mice (Kim et al., 2017).  However, we did not observe M2-polarisation of 

macrophages following IF as reported by Kim et al (Kim et al., 2017). Of note, there was no 

change in markers of macrophages in IF mice that were fed a chow diet, despite improvements 

in glucose tolerance.  

 

Increased macrophage accumulation in adipose tissue has also been reported during the early 

stage of weight loss by calorie restriction, and after a 24-hour fast (Kosteli et al., 2010, Ding et 

al., 2016, Asterholm et al., 2012, Ebke et al., 2014). Further studies show that adipose tissue 

macrophages take up and store lipids (Caspar-Bauguil et al., 2015, Kosteli et al., 2010). 

Contrary to studies that have reported increased macrophage infiltration in response to an acute 

24-hour fast(Kosteli et al., 2010, Asterholm et al., 2012, Ding et al., 2016), there was no change 

in adipose tissue macrophages in either IF group, after the fasting day, despite marked elevation 

in NEFA. We theorized this could be due to habituation to intermittent fasting and therefore 

examined the response to the first day of IF in a separate group of mice fed chow or HFD. 

Under these conditions, fasting did not alter the mRNA levels of any inflammatory genes or 

macrophage numbers as assessed by histology. This discrepancy could be due to differences in 

the mice strains, ages or diet composition, or the clock time that the tissues were collected. 

Indeed, in one study (Kosteli et al., 2010), the time they collected tissue from fasted mice was 

at ZT2, which was 7-8 hours earlier than the time tissue was collected in our study. This could 

be of importance, since macrophages and cytokines levels are under circadian control (Keller 
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et al., 2009). We should also consider that mice were fasted for 22 hours rather than 24 hours, 

and that the “fed mice” in our study had likely not eaten since lights on at ZT0, potentially 

elevating the baseline comparison level. However, the single reference gene used to normalized 

gene expression results in previous studies (Kosteli et al., 2010, Ding et al., 2016) was reduced 

by acute fasting in our hands. Additionally, that study adjusted the macrophage count by total 

nuclei, or white blood cells, in adipose tissue. Fasting reduces white blood cells, and monocyte 

counts in blood in mice and humans (Walrand et al., 2001, Brandhorst et al., 2015, Cheng et 

al., 2014, Choi et al., 2016), which if occurring in adipose tissue, could artificially elevate the 

number of macrophages detected.  

 

Increased fibrosis in adipose tissue is linked with inflammation and insulin resistance (Sun et 

al., 2013, Guglielmi et al., 2015). The homeostasis of ECM is a balance between collagen 

synthesis, and degradation by matrix metalloproteinases (MMPs), and tissue inhibitor of 

metalloproteinases (TIMPs) that negatively regulate the enzyme activity of matrix 

metalloproteinase, to avoid excessive degradation of the ECM (Bonnans et al., 2014, Sun et al., 

2013, Martinez-Santibanez and Lumeng, 2014). Our results show that IF reduced ECM 

synthesis and promoted ECM degradation in gonadal fat in mice that were fed a high-fat diet. 

This result was supported by histology. In contrast, mRNA levels of collagen, and collagen 

content, were increased in inguinal adipose tissue by IF. This could be due to the different 

nature of collagen in gonadal and inguinal fat. In gonadal fat, collagen presents a peri-adipocyte 

property, surrounding adipocytes and dominantly locating in crown-like structures area (Sun 

et al., 2013, Zamarron et al., 2017). In inguinal fat, however, large fibre bundles are frequently 

presented in adipose tissue through which subcutaneous fat pads attach to the skin. We 

speculate that IF promotes fat pad loss, but may have less impact on large fibre bundles than 

peri-cellular collagens. This highlights that not only the “quantity” but also the “structure or 
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quality” of collagen may be important when assessing tissue fibrosis. Further studies are 

required to investigate the structure or stiffness or adipose tissue following IF. 

 

In conclusion, IF promoted fat mass loss and improved glucose tolerance in mice fed a chow 

or high-fat diet. Adipose tissue inflammation and fibrosis was also improved as a result of 

intermittent fasting in mice fed a high-fat diet.  
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6.1 Abstract  

Background: Intermittent fasting (IF) may limit metabolic adaptations that reduce energy 

expenditure, potentially by stimulating white adipose tissue browning. This study examined 

the effects of 8 weeks of intermittent fasting on energy metabolism and markers of white 

adipose tissue browning in lean and diet-induced obese mice and in women who were 

overweight or obese. 

 

Methods: Ten-week old male C57BL/6J mice were fed a high-fat (43% fat) or chow diet (18% 

fat) for 8 weeks ad libitum, then randomized to ad libitum or IF for 8 weeks. A 24-hour fast 

was initiated one hour before lights off, on 3 non-consecutive days per week (Mon, Wed, Fri). 

At 27 weeks of age, meal size and number, energy intake and energy expenditure were 

measured for 3 days in a metabolic cage (2 fed and one fast day), followed by collection of 

inguinal and gonadal fat pads in the fed state, or after a 22-hour fast (IF mice only). Uncoupling 

protein 1 (UCP1) in fat was assessed by qPCR and immunohistochemistry in mice. UCP1 

mRNA levels were also examined in subcutaneous adipose tissue at baseline, and after 8-weeks 

of IF (in the fed state, and after a 24-hour fast), in women who were overweight or obese (BMI 

25.0-42.0kg/m2, aged 35-70 years).  

 

Results: IF reduced body weight and energy intake in high-fat, but not chow diet, fed mice. 

Gonadal and inguinal fat pad weights were reduced by IF in both diet groups (all P<0.05). 

Energy expenditure and meal numbers were increased in both IF diet groups on fed days 

(P<0.05). IF increased Ucp1 mRNA levels in both inguinal and gonadal fat depots, and UCP1 

protein in inguinal fat (schedule effect, all P<0.05). In women, IF reduced body weight and fat 

mass (-4.0±0.4kg and -3.1±0.3kg [Mean± SEM], respectively, both P<0.001), but had no effect 
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on UCP1 mRNA levels in subcutaneous adipose tissue, irrespective of whether it was sampled 

in the fed or fasted state. 

 

Conclusions: Intermittent fasting increased energy expenditure and promoted white adipose 

tissue browning in chow and high-fat diet fed mice. However, IF did not alter UCP1 mRNA 

levels in subcutaneous adipose tissue in women.      

 

Key words: adipose tissue, browning, energy expenditure, intermittent fasting 
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6.2 Introduction 

Intermittent fasting (IF) is a dietary intervention that involves periods of minimal or no caloric 

intake followed by periods, typically 24-hours, of unrestricted eating. IF is effective to extend 

lifespan (Arum et al., 2009, Xie et al., 2017, Goodrick et al., 1990), reduce fat mass (Gotthardt 

et al., 2016, Barquissau et al., 2018, Li et al., 2017), improve glucose tolerance and insulin 

sensitivity (Anson et al., 2003, Gotthardt et al., 2016, Joslin et al., 2017), and reduce the risk 

for cardiovascular diseases (Krizova and Simek, 1996, Wan et al., 2003) and cancer (Xie et al., 

2017, Chen et al., 2016b) in chow fed rodents. However, few studies have investigated the 

response in obese animals (Gotthardt et al., 2016, Joslin et al., 2017, Liu et al., 2017b, Li et al., 

2017, Kim et al., 2017). In humans, most studies of IF have been conducted in individuals who 

are overweight or obese. In these studies, IF promotes weight and fat mass loss (Heilbronn et 

al., 2005b, Klempel et al., 2013b, Trepanowski et al., 2017, Byrne et al., 2018), reduces total 

cholesterol, low-density lipoprotein cholesterol, triglycerides, systolic blood pressure (Varady 

et al., 2009, Trepanowski et al., 2017), and improves markers of insulin sensitivity (Heilbronn 

et al., 2005b). 

 

Brown adipose tissue plays a critical role in energy homeostasis and thermogenesis (Sidossis 

and Kajimura, 2015). In addition to the classical brown adipocytes residing in brown fat, 

brown-like adipocytes located within white adipose tissue also have thermogenic properties 

(Sidossis and Kajimura, 2015). A range of external cues, such as cold exposure (Barbatelli et 

al., 2010, Lim et al., 2012, Fisher et al., 2012), exercise (Bostrom et al., 2012, Xu et al., 2011, 

Stanford et al., 2015) and pharmaceutical treatment (Wu et al., 2013, Cypess et al., 2015), 

promote the development of beige adipocytes in white adipose tissue in mice. This is known 

as “browning” of white adipose tissue. Recently, three animal studies have shown that both 

daily calorie restriction and IF promote white adipose tissue browning (Fabbiano et al., 2016, 
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Li et al., 2017, Kim et al., 2017), and suggest this could be linked with the alternative activation 

of macrophages (Kim et al., 2017, Li et al., 2017).  

 

The aim of this study was to examine the effects of intermittent fasting on food intake and 

energy expenditure and adipose tissue browning in mice fed chow or high-fat diet in the fed 

and fasted state. We also assessed the effects of IF on expression of uncoupling protein 1 

(UCP1) in subcutaneous adipose tissue in women who were overweight or obese.  
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6.3 Research Design and Methods 

Animals and diets 

This study was approved by the animal ethics committees of the South Australian Health and 

Medical Research Institute (SAHMRI) and the University of Adelaide, and was performed in 

accordance with the Australian Code of Practice for the Care and Use of Animals for Scientific 

Purposes. Mice used in this study were the same as the mice used in Chapter 5. Briefly, ten-

week old male C57BL/6J mice (Bioresources, SAHMRI, Australia) were housed four per cage 

in the Bioresources Facility at SAHMRI  under a 12:12h light/dark cycle, with lights on at 7am 

(Zeitgeber time 0, ZT0) and temperature at 21±3°C. Mice were fed either a lard based high-fat 

diet (HFD, 43% fat, SF04-001, Specialty Feeds, Australia) or a chow diet (chow, 18% fat, 

2018SX, Envigo, United States) ad libitum for eight weeks prior to randomizing mice on each 

diet into ad libitum feeding (AL, n=8) or intermittent fasting (IF, n=16) for another eight weeks. 

Intermittent fasting was initiated at ZT11 for 24-hours for 3 non-consecutive days/week. Food 

access was controlled by transferring mice daily between cages with or without food. Mice fed 

ad libitum were also transferred between feeding cages at the same time to standardize handling. 

All mice had free access to water throughout the study. Body weight and food intake were 

monitored at ZT11 weekly before IF was introduced, and daily after IF was implemented. At 

28-weeks old, all mice were sacrificed at ZT7-ZT9 with mice in IF groups culled after feeding 

or 22-hours fasting (n=7-8/group). Inguinal and gonadal adipose tissue were collected.  

 

At twenty-seven weeks of age, indirect calorimetry (n=7-8/group) was assessed. Mice were 

acclimated to the metabolic cages for 24-hours prior to data collection (Promethium, Sable 

Systems, Las Vegas, NV). Three days of data were collected after acclimation. This was two 

consecutive feeding days, followed by a fasting day. Food access for mice in IF groups was 

controlled using gates connected to the food hoppers. Food spilled by mice and dropped into 
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bedding was carefully removed using forceps before the commencement of data recording, and 

prior to the fasting day, to improve the accuracy of food consumption monitoring. Four mice 

in each HFD group dragged food from the hopper during monitoring periods, this data was not 

included in the analysis and an additional 4 mice were measured to repeat metabolic monitoring. 

However, this behaviour was repeated in some mice and finally n=4-7/group were included for 

the analysis of food related parameters including meal size, meal number and energy intake. 

Data analysis of oxygen consumption (VO2), carbon dioxide expired (VCO2), respiratory 

quotient (RQ), energy expenditure (EE) and activity was performed in n=7-8/group. VO2 and 

VCO2 were measured at 5 minutes intervals for 1 minute to calculate RQ and EE as described 

previously (Kaiyala et al., 2012). VO2, VCO2 and EE were adjusted by a modified body mass 

which was determined by subtracting collected inguinal and gonadal fat mass from body mass, 

lessening the weight bias from this metabolically less active tissue (Tschop et al., 2011). We 

also normalized EE by other ways including body weight, body weight raised to the power 2/3 

or 3/4, or analysis of covariance as mentioned previously (Tschop et al., 2011). For ambulatory 

activity, consecutive adjacent infrared beam breaks in x-, y- and z-axes as an activity count 

were recorded every 5 min as previously described (Kaiyala et al., 2012). Data acquisition and 

food access control were coordinated by MetaScreen v.2.3.4 and raw data were extracted using 

ExpeData v.1.6.4 (Sable Systems) with built-in macros. All metabolic data were expressed in 

two ways: hourly and daily. Hourly value was calculated by the real-time output in one hour.  

Daily value was determined by the sum of hourly value on each day. Weekly values for energy 

intake and energy expenditure were calculated using (Day 1+ Day 2+ Day 3)/3*7 for AL groups, 

and (Day 1 *3+Day 2+Day3*3) for IF groups.  

 

Quantitative real-time PCR 



  Chapter 6 
 

146 

 

The extraction of total RNA, the determination of RNA concentration and purity, and the 

synthesis of cDNA from RNA were performed as previously reported (Chen et al., 2014). 

Quantitative real-time PCR was performed using the Taqman Ucp1 primer 

(Mm01244861_m1), and Fast Universal PCR Master Mix (Cat: 4352042, Applied Biosystems, 

Foster City, CA, USA). The samples were run in duplicate on an ABI 7500 sequence detection 

system (Applied Biosystems, Foster City, CA, USA) with corresponding internal negative 

controls and standard curve (pooled from ten participants at baseline, and from individual 

mouse, respectively). Relative gene expression was analysed using the 2−ΔCT method, where 

ΔCT = (CTtarget gene – CTreference gene). Actb (Mm00607939_s1) and B2m (Mm00437762_m1) 

were selected out from 6 housekeepers (18s, Actb, Gapdh, Hprt, Ppia and B2m) using 

NormFinder as the most stable reference for mice.  

 

Immunohistochemistry 

Inguinal adipose tissue from mice (n=6/group) were fixed in Bouin’s solution (HT10132, 

Sigma-Aldrich), dehydrated, paraffin embedded, sectioned at 5um and mounted on positively-

charged glass slides. De paraffinised and rehydrated slides were incubated with ELOXALL 

solution (SP-600, Vector) for 10 minutes at room temperature to eliminate endogenous 

peroxidase and alkaline phosphatase. Antigen retrieval was achieved using modified citrate-

based buffer (S1700, Dako) and incubation in a 95°C water bath for 20 minutes. Slides were 

incubated with a rabbit anti-UCP1 (1:400, Ab10983, Abcam) overnight and then goat anti-

rabbit secondary antibody (1:500, Ab6721, Abcam) for 1-hour at room temperature. 

Immunohistochemical detection was performed using 3, 3′-diaminobenzidine (DAB, SK-4105, 

Vector) and slides were counterstained with Mayer's haematoxylin, followed by dehydrating 

and mounting. All slides were randomly assigned numeric codes by a research officer to blind 

the investigator (BL) quantifying outcomes. Slides were scanned using the Pannoramic 250 
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Flash II scanner (3DHISTECH, Budapest, Hungary). UCP1 positive areas was analysed in 10 

randomly selected fields at 40X using Image J built-in macros (National Institutes of Health).  

 

Human study 

This human study was registered as a clinical trial with Clinicaltrials.gov (NCT0176997) and 

approved by the Research Ethics Committee of the Royal Adelaide Hospital and the University 

of Adelaide. All participants provided written, informed consent prior to their inclusion. The 

design of the human study and baseline characteristics of the participants have been reported 

in Chapter 3. Briefly, fifty healthy women who were overweight and obese, aged 35-70 years, 

BMI 25.0-42.0 kg/m2 were randomly assigned to one of two IF groups for 8 weeks.  

Participants were provided with ~30% of their daily energy requirements for breakfast, and 

then initiated a 24-hours fast on 3 non-consecutive days/week. On fed days, one group was 

provided foods at ~100% of energy requirements, to achieve an overall 30% energy deficit 

(IF70). The other group was provided foods at ~145% of their daily energy requirements on 

fed days, without overall energy restriction (IF100). Periumbilical subcutaneous adipose was 

obtained by percutaneous biopsy at baseline and after 8 weeks of the intervention diet, after a 

12-hour overnight fast and 24-hour fast as described previously (Chen et al., 2016a). Twenty-

two participants in each group completed the intervention. Due to the unwillingness of some 

participants to undergo biopsies and scheduling conflicts, biopsy samples were obtained from 

all 3 visits from only fourteen individuals in each group. For the purpose of this study, the two 

IF groups were combined together to assess UCP1 mRNA levels in subcutaneous adipose 

tissue. UCP1 mRNA levels (Hs00222453_m1) in human subcutaneous adipose tissue were 

normalized by ACTB (Hs01060665_g1) and PPIB (Hs00168719_m1), which was not different 

at baseline and following the intervention. 

 



  Chapter 6 
 

148 

 

Statistical analysis 

Data are shown as mean ± SEM. All statistical analysis was performed using IBM SPSS 

Statistics 24 (Armonk, New York, USA). The normality of data distribution was assessed by 

Shapiro-Wilk test, and data were log10 transformed if not normally distributed. Single 

comparisons in mouse study were performed using two-way ANOVA with diet (chow and 

HFD) and schedule (AL and IF) as between group factors, Bonferroni post-hoc tests were 

performed when diet by schedule effects were presented. Time effects within group in mouse 

and human studies were examined by repeated measures ANOVA with Bonferroni post-hoc 

test or paired t test (for energy intake and meal numbers in IF mice on two consecutive feeding 

days only). Significance was accepted as P < 0.05.   
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6.4 Results 

As reported in Chapter 5, final body weight was increased in HFD-AL (43.0±0.8g) vs. HFD-

IF (32.9±0.8g), chow-AL (34.7±1.0g) and chow-IF (32.2±0.5g, all P<0.05), and was not 

different between Chow-AL, Chow-IF and HFD-IF groups. Gonadal and inguinal fat mass was 

reduced by IF in both diet groups, but was greater in HFD-IF vs. chow-IF groups (all P<0.05).  
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Figure 6-1: Energy intake, meal size and meal number in metabolic cages 

(A-C): hourly, daily and calculated weekly food intake. (D-E): hourly and daily meal numbers. 

(F-G): hourly and daily meal size. Day 1 and 2 were two consecutive feeding days, followed 

by a fasting day (day 3). Effects of diet and schedule on each day or in a week (energy intake 

only) were analysed by two-way ANOVA with Bonferroni post hoc tests. Within group effects 

over days were analysed using repeated measures ANOVA with Boferroni post hoc test (AL 

groups) or paired t test (IF groups).  

 

Data presented as Mean±SEM. N=4-7/group. Diet effect: #P<0.05 vs. chow on day 1, day 2 

and day 3. Schedule effect: $P<0.05 vs. AL on day 1 and day 2. Post hoc test: *P<0.05. 

 

There were significant diet and schedule effects observed for energy intake measured in the 

metabolic chamber on two refeeding days, with increased energy intake in HFD vs. chow fed 

mice, and in IF vs. AL mice (all P<0.05, Fig. 6.1A and 1B). Meal number was increased by IF 

on refeeding days (schedule effect, both P<0.05, Fig. 6.1D and 1E). Of note, chow-IF mice 

maintained similar energy intake and meal numbers on both refeeding days (both P>0.05). 

However, HFD-IF mice displayed decreased energy intake and meal number on the second vs. 

first refeeding day (both P<0.05). Mathematical extrapolation of this to a weekly value 

suggested that overall energy intake was not different in chow-IF vs. chow-AL mice (-1.4%, 

P=0.94), but was 25% lower in HFD-IF vs. HFD-AL mice (P<0.05, Fig. 6.1C). This data 

supports the weighed food intake data that we reported in Chapter 5. Meal size was not altered 

by IF, but was smaller in HFD vs. chow fed mice (all P<0.05, Fig. 6.1F and 1G).  
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Figure 6-2: Energy expenditure, respiratory quotient and activity  

(A-C): Hourly, daily and calculated weekly energy expenditure. (D-E): Hourly and daily RQ. 

(F-G): Hourly and daily activity. Day 1 and 2 were two consecutive feeding days, followed by 

a fasting day (day 3). Effects of diet and schedule on each day, or in a week (energy expenditure 

only) were analysed by two-way ANOVA with Bonferroni post hoc tests. Within group effects 

over three days were analysed using repeated measures ANOVA with Boferroni post hoc test.  

 

Data presented as Mean±SEM. N=7-8/group. Schedule effect: $P<0.05 vs. AL on day 1 and 

day 2. Post hoc test: *P<0.05; ^P<0.05 vs. chow-AL; &P<0.05 vs. chow-IF and ‡P<0.05 vs. 

HFD-AL.  
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There were significant schedule effects for energy expenditure on the two refeeding days, with 

increased energy expenditure in IF vs. AL mice (schedule effect, both P<0.001, Fig. 6.2A and 

2B). Energy expenditure on a fasting day was not different between IF and AL mice, but was 

lower versus a fed day (schedule effect, P<0.05, Fig. 6.2B). Mathematical extrapolation of this 

showed that calculated weekly energy expenditure was higher in IF vs. AL mice (schedule 

effect, P<0.001, Fig. 6.2C). This result held when energy expenditure was normalized against 

modified body mass, raw body weight, or body weight raised to the power 2/3 or 3/4, or by 

analysis of covariance with body weight as the covariate (Tschop et al., 2011). There were 

significant diet by schedule effects for averaged RQ on the two refeeding days (all P<0.01, Fig. 

6.2D and 2E). RQ was increased in chow-IF vs. chow-AL and HFD-IF mice on both refeeding 

days (all P<0.05), but was increased in HFD-IF vs. HFD-AL mice on the first refeeding day 

only (P<0.05). As expected, RQ was lower on fasted vs. fed days in IF groups (schedule effect, 

P<0.001), and vs. AL mice (both P<0.05). There were significant diet by schedule effects for 

activity, with reduced activity in HFD-AL vs. chow-AL and HFD-IF mice (all P<0.05, Fig. 

6.2F and 2G). There was no difference in activity between fed and fasted days in IF mice. 

 

Ucp1 mRNA levels in gonadal fat were higher in HFD vs. chow fed mice (diet effect, P<0.05, 

Fig. 6.3A). After a fed day, Ucp1 mRNA levels in inguinal and gonadal fat and UCP1 protein 

in inguinal fat were increased in IF vs. AL mice (schedule effect, all P<0.05, Fig. 6.3A to 3E). 

Ucp1 mRNA levels in both fat pads were lower on a fasted vs. fed day in both IF groups 

(schedule effect, both P<0.05), but was not different from AL mice.  
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Figure 6-3: IF promoted white adipose tissue browning in mice but not in humans 

(A and B): Ucp1 mRNA levels in gonadal and inguinal fat in mice. (C): UCP1 positive area in 

inguinal fat in mice. (D and E): Representative images of immunohistochemical staining of 

Ucp1 in chow-AL (D) and chow-IF mice (E). (F): UCP1 mRNA levels in human subcutaneous 

adipose tissue. Effects of diet and schedule (Figure 3A-3C) were analysed using two-way 

ANOVA with Bonferroni post hoc test. Time effects within group (Figure 3F) were analysed 

using repeated measures ANOVA with Bonferroni post hoc test. Scale bar: 100μm. AU: 

arbitrary unit. 

 

Data presented as Mean±SEM. N=7-8/group for Figure 3A and 3B, N=6/group for Figure 3C. 

N=28 for Figure 3F. Diet effect: #P<0.05 vs. chow; Schedule effect: $P<0.05 vs. AL and 
^P<0.05 vs. IF-Fast.  

 

In humans, 8-weeks of intermittent fasting reduced body weight and fat mass (-4.0±0.4kg and 

3.1±0.3kg, respectively, both P<0.001). UCP1 mRNA levels in subcutaneous adipose tissue 

were detectable in 19 out of 28 participants who consented to biopsy (IF100/IF70=10/9). There 

was no difference with regards to any assessed baseline characteristics in participants with 

UCP1 mRNA detectable or undetectable. There were no changes in the UCP1 mRNA levels 

following 8-weeks of IF, either when measured in the morning following a 12-hour overnight 

fast (after a fed day), or after a 24-hour fast (Fig. 6.3F). The change in UCP1 mRNA levels 

following intermittent fasting was not associated with any clinical outcomes reported in 

Chapter 3 and 4.   
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6.5 Discussion  

Intermittent fasting reduces adiposity, improves glucose tolerance and markers of insulin 

sensitivity in rodent models (Varady et al., 2010, Gotthardt et al., 2016, Anson et al., 2003, 

Joslin et al., 2017, Heilbronn et al., 2005b, Harvie et al., 2011). Recent evidence suggests that 

browning of white adipose tissue may contribute to this phenotype (Kim et al., 2017, Li et al., 

2017). Our study confirms and extends this, showing that IF promoted visceral and 

subcutaneous adipose tissue browning in chow and HFD fed mice. However, UCP1 mRNA 

level was not altered in subcutaneous adipose tissue in women with overweight or obesity who 

underwent intermittent fasting for 8-weeks.   

 

Total daily energy expenditure consists of resting energy expenditure and thermoregulation, 

food-induced thermogenesis, and physical activity (Speakman, 2013), and increasing this is 

one approach to tackle obesity (Hill et al., 2012). In this study, energy expenditure was 

increased by intermittent fasting.  In chow fed mice, this was observed without a change in 

activity. Whilst increases in food-induced thermogenesis on refeeding days may have partially 

contributed to increased EE, energy expenditure was not different when measured on a fasting 

day between chow-IF and chow-AL groups. Physical activity was lower in mice fed a high-fat 

diet ad libitum, and likely contributed to some of the difference in energy expenditure between 

HFD groups. These results support recent findings that intermittent fasting increases energy 

expenditure in mice (Kim et al., 2017, Li et al., 2017). Similar to previous studies (Goodrick et 

al., 1990, Anson et al., 2003, Gotthardt et al., 2016, Liu et al., 2017b, Kim et al., 2017), our 

study confirmed that chow-IF mice compensate for intermittent food deprivation by overeating 

on refeeding days, and do not lose weight. This is in contrast to IF mice fed a high-fat diet, 

where calculated food intake was lower and activity and energy expenditure was higher, 

resulting in weight loss. Further analysis using metabolic cage revealed that upon refeeding, 
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chow-IF started to consume food as soon as food was provided even prior to dark phase, but 

HFD-IF mice fasted for an additional hour and initiated eating in the dark phase. Additionally, 

chow-IF mice displayed hyperphagia on two consecutive refeeding days, but HFD-IF mice lost 

hyperphagia after 24-h refeeding consuming similar food as HFD-AL mice. However, the 

signal that is preventing overconsumption on a HFD is unclear. 

 

Intermittent fasting increased adipose tissue browning in inguinal and subcutaneous adipose 

tissue. This is consistent with two recent reports (Kim et al., 2017, Li et al., 2017). We further 

show that the increases in Ucp1 mRNA levels in both inguinal and gonadal adipose tissue were 

higher after the refeeding day. This data suggests that “intermittent overfeeding”, rather than 

“intermittent fasting” promotes white adipose tissue browning. Acute fasting (24-48 hours) 

decreases Ucp1 expression in both brown and white adipose tissue (Tang et al., 2017, Ding et 

al., 2016, Sivitz et al., 1999, Champigny and Ricquier, 1990), whilst refeeding increased Ucp1 

expression (Li et al., 2017, Champigny and Ricquier, 1990). Further, Ding et al. demonstrated 

that an acute 24-hour fasting suppressed white adipose tissue browning via microRNA 149-3p 

and PR domain containing 16 pathway (Ding et al., 2016). Interestingly, recent work by 

Fabbiano et al suggested that daily calorie restriction (-40%) also led to white adipose tissue 

browning in both subcutaneous and visceral adipose tissue. This was mediated by increased 

eosinophil infiltration, type 2 cytokine signalling and alternative activation of macrophage in 

fat (Fabbiano et al., 2016). In our hands, intermittent fasting did not promote alternate 

activation of macrophages in white adipose tissue in mice, or in humans who underwent 8-

weeks of IF (Chapter 3 and 4) 

 

In humans, white adipose tissue browning occurs following burn injury, and administration of 

β3- adrenergic receptor agonists (Cypess et al., 2015, Sidossis et al., 2015, Patsouris et al., 
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2015). However, mild to moderate external stimuli such as cold exposure, exercise and daily 

calorie restriction that promote visceral and subcutaneous adipose tissue browning in mice 

(Barbatelli et al., 2010, Lim et al., 2012, Fisher et al., 2012, Bostrom et al., 2012, Xu et al., 

2011, Stanford et al., 2015, Fabbiano et al., 2016), do not induce subcutaneous adipose tissue 

browning in humans (van der Lans et al., 2013, Nakhuda et al., 2016, Norheim et al., 2014, 

Barquissau et al., 2018). We did not see changes in UCP1 mRNA levels in subcutaneous 

adipose tissue following IF. This is in line with a previous study which suggested diet-induced 

weight and fat mass loss is independent of subcutaneous adipose tissue browning in people 

with obesity (Barquissau et al., 2018). It should also be noted that while brown-like adipocytes 

are found in both visceral and subcutaneous adipose tissue (Zuriaga et al., 2017), their 

distribution patterns are different in mice and humans. As shown in our study, and previously, 

mice have higher levels of brown-like adipocytes in subcutaneous adipose tissue, whereas these 

are higher in visceral fat depots in humans (Zuriaga et al., 2017). This indicates there is likely 

to be a greater potential for visceral than subcutaneous adipose tissue to brown in response to 

external stimuli in humans. However, it was not possible to obtain visceral fat samples in this 

study. 

 

The clock time that food is withdrawn and introduced during IF is likely important in the overall 

phenotype (Albrecht, 2017, Damiola et al., 2000). In this study, we returned food at ZT11, half 

an hour before the twilight when mice start to become active. This is different from most of the 

previous studies where the time to start fasting/feeding was set 2-7 hours after lights on (9am 

to 1pm), which could have induced circadian desynchrony (Goodrick et al., 1990, Varady et 

al., 2010, Anson et al., 2003, Gotthardt et al., 2016, Liu et al., 2017b, Xie et al., 2017). Further 

studies are necessary to examine the importance of this in mice and in humans.  
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In this study, only male mice were examined, and we recruited females in the human study, 

and gender rather than species differences could explain the discrepancy in results. There is 

one study examined the effect of IF in chow and HFD fed female mice. Unlike male mice, 

these female mice were resistant to HFD-induced weight gain and IF-induced weight loss (Liu 

et al., 2017b). Secondly, both trials were of short duration, limiting interpretation.  

 

In conclusion, IF increased energy expenditure and promoted white adipose tissue browning in 

both chow and HFD fed mice, but did not alter UCP1 mRNA levels in human subcutaneous 

adipose tissue.    
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7.1 Abstract 

Background: Adipose tissue and skeletal muscle undergo remodelling in obesity characterised 

by increased macrophage and extracellular matrix accumulation. The aim of this study was to 

examine the acute effects of 3 days of overfeeding on markers of adipose tissue and skeletal 

muscle remodelling in young adults, and the association with insulin sensitivity. 

 

Methods: Thirty-four young healthy adults (24 women and 10 men; age: 18-27 yrs; BMI: 17.1-

35.1 kg/m2) were recruited. Metabolic assessments were performed  at baseline after 3 days 

energy balanced diet (30% fat), and 3 days after overfeeding (+1,250 kcal/day, 45% fat) 

including body weight, fasting glucose, insulin, serum C-reactive protein (CRP), monocyte 

chemoattractant protein 1 (MCP-1) and insulin sensitivity by a hyperinsulinaemic-euglycaemic 

clamp (80mU/m2/min). Adipose tissue and skeletal muscle biopsies were obtained from a 

subgroup of participants at baseline and after overfeeding to assess mRNA levels of makers of 

macrophage, extracellular matrix, adipogenesis and angiogenesis.  

 

Results: Overfeeding increased body weight (1.1±0.2%), fasting glucose and insulin (all 

P<0.05)), but did not alter peripheral insulin sensitivity assessed by clamp, or serum CRP or 

MCP-1. In adipose tissue, mRNA levels of markers involved in extracellular matrix synthesis 

(COL1A1,  COL3A1) and adipogenesis (SREBF1) were increased (all P<0.01), but macrophage 

and angiogenesis markers were not altered. There were no changes in any of the markers 

assessed in muscle.  

 

Conclusion: Extracellular matrix remodelling in adipose tissue occurs rapidly in response to 

acute over-nutrition and weight gain in young adults. 
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7.2 Introduction 

Adipose tissue and skeletal muscle are key organs involved in development of insulin 

resistance, and undergo marked alterations in response to obesity (Wu and Ballantyne, 2017, 

Sun et al., 2011, Petersen et al., 2007). In animals, this includes increases in adipose tissue 

mass through enlargement in fat cell size (hypertrophy) and generating new adipocytes 

(hyperplasia) (Sun et al., 2011, Strissel et al., 2007). This is associated with an increase in 

macrophages (Weisberg et al., 2003, Xu et al., 2003, Lumeng et al., 2007a, Fink et al., 2014, 

Wu and Ballantyne, 2017) and deposition of  extracellular matrix muscle (Sun et al., 2013, 

Kang et al., 2011), which provides mechanical and nutritional support to neighbouring cells, in 

adipose tissue and skeletal muscle (Sun et al., 2013, Kang et al., 2011). Lastly, there is an 

increase in new blood vessel formation (angiogenesis) (Cao, 2010, Silvennoinen et al., 2013), 

as an adaptive response to meet expanded tissue requirements.  

 

In humans, increased markers of inflammation, extracellular matrix and angiogenesis have 

been reported in adipose tissue and skeletal muscle in individuals with obesity (Xu et al., 2003, 

Weisberg et al., 2003, Wu and Ballantyne, 2017, Sun et al., 2013, Martinez-Huenchullan et al., 

2017, Cao, 2010), and were observed in some short-term (28-56 days) overfeeding studies 

(Tam et al., 2014, Tam et al., 2017, Alligier et al., 2012). Since these studies also observed an 

impairment in insulin sensitivity assessed by hyperinsulinaemic-euglycaemic clamp (Tam et 

al., 2014, Tam et al., 2017, Alligier et al., 2012), but whether the remodelling occurring in 

adipose tissue and muscle in response to overfeeding are a cause to or consequence of insulin 

resistance is unclear. 

 

In this study, we examined adipose tissue and skeletal muscle remodelling in response to 3 

days of overfeeding in young adults. We hypothesised that markers involved in macrophage, 
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extracellular matrix, adipogenesis and angiogenesis in adipose tissue and muscle would be 

sensitive to acute changes in energy intake, and that this would be associated with changes in 

markers of insulin sensitivity. 
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7.3 Research design and methods  

Ethics  

The study was approved by the Research Ethics Committee of the Royal Adelaide Hospital 

and the Human Research and Ethics Committee of the University of Adelaide, and was 

registered as a clinical trial at clinicaltrials.gov, registration number NCT01230632. All 

participants provided written, informed consent prior to the commencement of the study. 

 

Study design and participants 

The study design and protocol have been described previously (Chen et al., 2016a, Chen et al., 

2014). Briefly, 34 young adults with age from 18 to 27 yrs and BMI from 17.1 to 35.1 kg/m2 

were recruited. Thirty-one individuals (10 men and 21 women) completed the study and were 

used for the data analysis. Individuals were excluded if they were born premature (<37 weeks) 

or with low birthweight (<2500g), displayed any significant medical conditions, took 

medications affecting glucose or lipid metabolism, smoked cigarettes or drank alcohol 

(>140g/week), and had first-degree relatives with type 2 diabetes or cardiovascular disease. 

Female participants were tested in their follicular phase of menstrual cycle.  

 

Participants were provided with a standardised diet calculated as previously described (Chen 

et al., 2014) (100% of calculated energy requirements, 35% fat, 15% protein, 50% 

carbohydrate) for 3 days prior to the metabolic testing (Fig. 7.1). After baseline assessment, 

individuals were instructed with an overfeeding diet (+1,250 kcal/day, 45% fat, 15% protein, 

and 40% carbohydrates) for 3 days before metabolic assessments were repeated. Participants 

were provided with all foods and completed daily food checklists.  
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Figure 7-1: Scheduling of the overfeeding study 

 

Participants attended the clinic at 8am after a 12-hour overnight fast at baseline and after 3-

days of overfeeding. The tests at two visits were identical except that body composition was 

measured at baseline only using dual energy X-ray absorptiometry (Lunar DPX-Lunar 

Radiation, Madison, Wis., USA). Weight and height were measured in a hospital gown after 

voiding. Intravenous cannulae were inserted and fasting blood samples were collected. 

Following this, a 2-hour hyperinsulinaemic-euglycaemic clamp (80 mU/m2 body surface/min) 

was performed. Glucose was infused at a variable rate to maintain its level at 5.0 mmol/L. 

Peripheral insulin sensitivity was calculated as the glucose infusion rate during steady-stage 

(90-120min), and normalised to fat-free mass as described previously (Chen et al., 2016a).  

 

Adipose tissue and muscle biopsies 

Subcutaneous abdominal adipose tissue and vastus lateralis muscle tissue were obtained by 

percutaneous biopsy as mentioned previously (Tam et al., 2017, Tam et al., 2010) before clamp 

was conducted. Briefly, biopsy sites were located and cleaned. After anesthetising the skin and 

underlying tissues with lidocaine, adipose tissue (~150mg) and vastus lateralis (~100mg) 

samples were collected using the biopsy needles, and were snap frozen in liquid nitrogen and 
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stored at -80°C for future analysis.  Adipose tissue and muscle biopsies were available from 15 

patients at baseline, and 12 and 8 individuals, respectively, after overfeeding.  

 

Table 7-1: Taqman primers used for gene expression analysis 

Category  Gene name Assay ID 

Macrophage   

CD68 CD68 molecule Hs02836816_g1 

CD40 CD40 molecule Hs01002913_g1 

CD163 CD163 molecule Hs00174705_m1 

Macrophage recruitment  

CCL2 C-C motif chemokine ligand 2 Hs00234140_m1 

CCL3 C-C motif chemokine ligand 3 Hs00234142_m1 

Extracellular matrix 

COL1A1 Collagen type I alpha 1 chain  Hs00164004_m1 

COL3A1 Collagen type III alpha 1 chain Hs00943809_m1 

MMP2 Matrix metallopeptidase 2 Hs01548727_m1 

MMP9 Matrix metallopeptidase 9 Hs00234579_m1 

TIMP1 TIMP metallopeptidase inhibitor 1 Hs00171558_m1 

Adipogenesis 

CEBPa CCAAT/enhancer binding protein alpha Hs00269972_s1 

SREBGF1 Sterol regulatory element binding transcription factor 1 Hs01088691_m1 

Angiogenesis 

VEGFa Vascular endothelial growth factor A Hs00900055_m1  

ANGPT2 Angiopoietin 2 Hs01048042_m1  

Housekeeper 

ACTB Actin beta Hs01060665_g1 

 

Quantitative real-time PCR 

As described previously (Chen et al., 2016a), total RNA was extracted from adipose tissue 

(100-150 mg) and skeletal muscle (~30mg) using Trizol (Invitrogen, USA) following 
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manufacturer’s instructions. The concentration and purity of RNA were determined by 

NanoDrop Lite Spectrophotometer (Thermo Fisher Scientific, CA, USA). cDNA synthesis was 

conducted using T100 Thermal Cycler (Bio-Rad, CA, USA) with 800 ng of each RNA sample 

using the QuantiTect reverse transcription kit (Qiagen, Valencia, CA, USA) consistent with 

the manufacturer’s protocol. Quantitative real-time PCR of genes involved in macrophage 

(CD68, CD40 and CD163), macrophage recruitment (CCL2 and CCL3), extracellular matrix 

(COL3A1, COL6A1, MMP2, MMP9 and TIMP1), adipogenesis (CEBPα and SREBF1) and 

angiogenesis (VEGFa and ANGPT2) was performed using Taqman primers (Table 7.1) and 

Fast Universal PCR Master Mix on an ABI 7500 sequence detection system (all from Applied 

Biosystems, Foster City, CA). Samples were run in duplicate with internal negative control and 

a standard curve for which standard samples were pooled from ten participants at baseline. 

Relative gene expression was analysed using the 2−ΔCT method, and normalised by ACTB which 

was not different before and after overfeeding. 

 

Biochemical analysis  

Glucose was analysed using a glucose dehydrogenase method (YSI Life Sciences, Ohio, USA), 

and serum insulin by radioimmunoassay (Millipore, St Charles, MO, USA). Homeostasis 

model of assessment - insulin resistance (HOMA-IR) was calculated as fasting glucose 

(mmol/l) x fasting insulin (mU/L)/22.5. Plasma monocyte chemotactic protein-1 (MCP-1) and 

C-reactive protein (CRP) were assessed by Quantikine® ELISA (R&D Systems Europe, Ltd., 

Abingdon, UK) on a Beckman AU480 clinical analyser (Beckman Coulter Inc), with intra- and 

inter-assay CVs of MCP-1 <8% and <7%, and CRP <9% and <8%, respectively.    

 

Statistics 
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Data are shown as mean ± SEM. All statistical analyses were performed using IBM SPSS 

Statistics 24 (SPSS, Chicago, IL, USA). Data were log10 transformed if not normally 

distributed. Response to overfeeding was analysed using paired t-test. Correlations were 

calculated using Pearson Correlation Coefficients. Significance was accepted as P < 0.05. 
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7.4 Results  

Clinical characteristics of participants at baseline and 3-day after overfeeding are summarised 

in Table 7.2. Fat mass was positively correlated with HOMA-IR (r=0.43, P=0.01), CRP 

(r=0.40, P=0.02), and mRNA levels of CD68 (r=0.58, P=0.01) in adipose tissue. Clinical 

characteristics of the participants who completed 3 days of overfeeding were not different from 

that of those underwent adipose tissue or skeletal muscle biopsies. However, the baseline 

correlations between fat mass, HOMA-IR and CRP did not exist when this was analysed using 

the subgroup of participants underwent biopsies. 

 

Table 7-2: Clinical characteristics and metabolic measures before and after 3 days of 

overfeeding 

Variable  Baseline Overfeeding P value 

Number  10/21 (M/F) 10/21(M/F)  

Age, years 21.0±0.5 -  

Waist/hip Ratio 0.81±0.01 Not assessed  

Fat mass, % 35.6±2.0 Not assessed  

Weight, kg 67.5±2.5 68.2±2.5 <0.001 

BMI 23.0±0.8 23.2±0.8 <0.001 

Fasting glucose,  mmol/L 4.13±0.05 4.23±0.04 0.006 

Fasting insulin, µU/mL 12.44±0.78 13.52±0.86 0.017 

HOMA-IR, AU 2.33±0.17 2.55±0.18 0.008 

GIR, umol/kg FFM/min 99.35±4.24 96.79±4.05 0.306 

MCP-1, ng/L 144.43±10.60 145.48±12.81 0.912 

CRP, mg/L 1.36±0.33 1.43±0.39 0.751 

BMI: body mass index; HOMA-IR: homeostasis model of assessment-insulin resistance; GIR: 

glucose infusion rate; FFM: fat free mass; MCP-1: monocyte chemotactic protein-1; CRP: C-

reactive protein. 

 

Data presented as Mean ± SEM; Statistics were performed by paired t test. 
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As reported previously (Chen et al., 2016a), 3-days of overfeeding resulted in increased body 

weight (1.1±0.2%), fasting glucose and insulin, and thus HOMA-IR. However, peripheral 

insulin sensitivity assessed by clamp was not changed by acute overfeeding (P=0.3) and there 

was no significant changes in serum levels of MCP-1 and CRP. These results held when the 

analysis was performed in those who underwent adipose tissue or skeletal muscle biopsies 

(Table 7.3). 

 

Table 7-3: Comparison of clinical outcomes between participants completed overfeeding 

and underwent adipose tissue or skeletal muscle biopsies 

Parameters Completers Fat  biopsies  Muscle biopsies  

N 31 12 8 

Body weight ↑    P<0.001 ↑      P<0.001 ↑      P<0.001 

Fasting glucose ↑    P=0.006 ↑      P=0.037 ↑      P=0.044 

Fasting insulin ↑    P=0.017 ↑      P=0.050 ↑      P=0.050 

HOMA-IR ↑    P=0.014 ↑      P=0.045 ↑      P=0.042 

GIR ↔  P=0.306 ↔    P=0.586 ↔    P=0.596 

MCP-1 ↔  P=0.912 ↔    P=0.409 ↔    P=0.350 

CRP ↔  P=0.751 ↔    P=0.520 ↔    P=0.712 

↑: increased vs. baseline; ↓: decreased vs. baseline and ↔ no change vs. baseline. 

 

In adipose tissue, mRNA levels of COL1A1,  COL3A1 and SREBF1 were increased by 

overfeeding (all P<0.01, Fig. 7.2), while CD68, CD40, CD163, CCL2, CCL3, VEGFa, 

ANGPT2, MMP2, MMP9, TIMP1, and the ratio of MMPs to TIMP1(not shown) which 

represents the activity of extracellular matrix degradation were not changed. We did not 

observe any changes in the mRNA levels of these genes in skeletal muscle. The change in 

CD40 expression in adipose tissue was positively associated with fasting glucose (r=0.67, 
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P=0.03, Fig. 7.3). These correlations remained significant after adjustment for BMI, gender 

and age. 

 

 

Figure 7-2: Tissue remodelling genes in adipose tissue and skeletal muscle before and 

after 3 days of overfeeding.  

(A and B): mRNA levels of macrophage (CD68, CD40 and CD163) and macrophage 

recruitment (CCL2 and CCL3) in adipose tissue and muscle. (C and D): mRNA levels of 

extracellular matrix genes (COL3A1, COL6A1, MMP2, MMP9 and TIMP1) in adipose tissue 

and muscle. (E and F): mRNA levels of adipogenesis (SREBF1 and CEBPa) and angiogenesis 

(VEGFa and ANGPT2) genes in adipose tissue and muscle. SREBF1 and CEBPa were not 

assessed in muscle.  

 

Data presented as mean ± SEM, N=12 for adipose tissue and n=8 for muscle. Relative mRNA 

expression was calibrated by baseline value. AU: arbitrary unit. Paired t test, **P<0.01 vs. 

baseline. 
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Figure 7-3: Correlation between the change in fasting glucose and CD40 mRNA levels in 

adipose tissue 

N=12. Correlations were calculated using Pearson Correlation Coefficients. AU: arbitrary unit.  
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7.5 Discussion  

Adipose tissue and skeletal muscle undergo remodelling in obesity which is linked with 

impaired insulin sensitivity (Sun et al., 2011, Wu and Ballantyne, 2017, Petersen et al., 2007). 

However, it is not clear whether adipose tissue and/or skeletal muscle remodelling is an early 

contributor to, or a consequence of, insulin resistance in obesity. Our results show that changes 

in the extracellular matrix in adipose tissue is an early event in response to acute over-nutrition 

and may contribute to the onset of insulin resistance during overfeeding. 

 

As we have previously reported (Chen et al., 2016a), 3 days of overfeeding increased body 

weight (~1.1%). Since body composition was not assessed after overfeeding and it is likely that 

minor change in fat mass after 3 days of overfeeding cannot be differeciated by a DEXA, it is 

not clear that the weight gain achieved is attributed to increased fat mass or glycogen synthesis 

or both. That 3 days of overfeeding increased fasting glucose, insulin and thus HOMA-IR is 

consistent with previous studies of short-term overfeeding (3-day) by our group and others 

(Samocha-Bonet et al., 2010, Tam et al., 2017, Jordy et al., 2014), which likely represents 

induction of hepatic insulin resistance (Singh and Saxena, 2010). Of note, peripheral insulin 

sensitivity as assessed by hyperinsulinaemic-euglycaemic clamp, a gold-standard technique, 

was unchanged. The clamp reflects whole body glucose disposal, and primarily skeletal muscle 

since  >80% of the glucose infused during clamp is taken up by skeletal muscle (DeFronzo and 

Tripathy, 2009). This result is in line with a previous study that observed elevated HOMA-IR 

index in the absence of impaired insulin sensitivity assessed by clamp following 5 days of 

overfeeding (Brons et al., 2009).  

 

Compared to normal weight, people with obesity exhibit chronic low-grade inflammation 

including increases in circulating pro-inflammatory mediators, such as tumour necrosis factor 
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α (TNFα), interleukin 6 (IL-6), CRP and MCP-1 etc. (Rodriguez-Hernandez et al., 2013), 

which directly inhibit the insulin signalling cascade (Shoelson et al., 2006). In this study, we 

did not see changes in CRP and MCP-1 levels following short-term 3 days overfeeding, which 

is in agreement with a previous work by Adochio and colleagues (Adochio et al., 2009). 

However, our past work did show a significant increase in CRP levels after 3 days of 

overfeeding (Tam et al., 2010). This discrepancy could be because the participants recruited in 

that cohort were more overweight (BMI: 26.0 vs. 23.0 kg/m2), older (age: 37 vs. 21 yrs) or 

since that cohort was enriched for people with a familial risk of type 2 diabetes (Tam et al., 

2010). We also saw no change in the mRNA levels of macrophage and macrophage-

recruitment genes in adipose tissue and skeletal muscle after 3 days of overfeeding. These data 

are in line with previous studies by our group and others (Tam et al., 2017, Tam et al., 2014, 

Tam et al., 2010, Alligier et al., 2012). Previous studies by our group have also reported that 

28 days of overfeeding did not alter markers of adipose tissue and muscle inflammation, despite 

inducing insulin resistance (Tam et al., 2010, Tam et al., 2017). Similarly, moderate weight 

loss of 5-10% improves insulin sensitivity without altering adipose tissue inflammation 

(Magkos et al., 2016). Our work contributes to growing body of evidence highlighting that 

adipose tissue and skeletal muscle inflammation is a consequence of insulin resistance in obese 

state.  

 

Excessive collagen deposition, a hallmark of fibrosis, in adipose tissue and skeletal muscle also 

occurs in obesity and insulin resistance (Sun et al., 2013, Williams et al., 2015). Collagens are 

the main structural proteins in extracellular matrix, which are cleaved by matrix 

metalloproteinases (MMPs) (Bonnans et al., 2014). The enzyme activity of MMPs is negatively 

regulated by tissue inhibitor of metalloproteinases (TIMPs) to avoid excessive degradation of 

extracellular matrix. Herein, we observed increased mRNA levels of COL1A1 and COL3A1 in 



  Chapter 7 

 

177 
 

adipose tissue after 3 days of overfeeding, which encode fibrillary collagens. We did not see 

changes in mRNA levels of MMP2, MMP9, TIMP1, or the ratio of MMPs to TIMP1, which 

may suggest an increase in extracellular matrix accumulation in adipose tissue. These results 

are supported by previous longer term overfeeding studies (28-56 days) which showed that a 

range of collagen markers including COL1A1, COL3A1, and COL6A3 were increased in 

adipose tissue (Pasarica et al., 2009a, Tam et al., 2014, Alligier et al., 2012), and extend these 

studies by showing this process is a very early event.  

 

Up-regulation of extracellular matrix genes including COL1A1, COL3A1, COL4A1, COL5A1, 

COL6A1, COL6A3 and SPARC have also been reported in skeletal muscle in men after 56 days 

of overfeeding (Tam et al., 2014). In this study, we did not see changes in mRNA levels of 

extracellular matrix genes in skeletal muscle after 3 days of overfeeding. This result is in 

agreement with a recent study by our group where detectable changes in extracellular matrix 

markers appeared at day 28 of overfeeding with no change at day 3 (Tam et al., 2017). 

Together, these data suggest that extracellular matrix in adipose tissue is sensitive to over-

nutrition, but more substantial weight gain is required to trigger extracellular matrix 

remodelling in skeletal muscle. 

 

The formation of mature adipocyte from its precursor cells is finely regulated by a group of 

transcriptional factors including CCAAT/enhancer-binding proteins (CEBP) and sterol 

regulatory element-binding transcription factors (SREBF) (Tang and Lane, 2012). Whether 

nutrient manipulations alters adipocyte turnover, particularly in humans, is debated. 

Approximately 10% of adipocytes are renewal annually in adults (Rosen and MacDougald, 

2006, Spalding et al., 2008). Some evidence suggests that adipocyte death or generation rates 

are not changed in adults with obesity (Spalding et al., 2008). However, increased adipocyte 
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numbers are observed in rodent models of obesity, occurring when adipocytes reach a crucial 

cell size (Cleary et al., 1979, Johnson and Hirsch, 1972, Strissel et al., 2007). In this study, 

SREBF1 mRNA levels were increased in adipose tissue after 3 days of overfeeding, suggesting 

a possibility of increased adipogenesis. However, further studies are required to address 

whether nutritional changes impacts adipogenesis, particularly in humans. 

 

Angiogenesis is the physiological process of the formation of new capillaries from pre-existing 

blood vessels, and plays an important roles in tissue growth, expansion and repair (Cao, 2010). 

Tissue angiogenesis is regulated by multiple factors such as vascular endothelial growth factor 

(VEGF), fibroblast growth factor (FGF), transforming growth factor (TGF) and angiopoietins 

(Angs) (Cao, 2007). In adipose tissue, the rapid expansion of fat mass through hypertrophy 

and/or hyperplasia during energy excess depends on an increase in vascular perfusion to 

provide oxygen and nutrients (Cao, 2010). However, this is controversial, with some studies 

suggesting that compensatory angiogenesis in adipose tissue is insufficient (Ye et al., 2007), 

but others showing adipose tissue hypoxia is not present in individuals with obesity (Vink et 

al., 2017). In skeletal muscle, one animal study suggests obesity increases angiogenesis makers 

and capillary density in skeletal muscle (Silvennoinen et al., 2013). We investigated markers 

of this in both tissues, but observed no changes in response to acute overfeeding.  

 

In conclusion, our study shows that 3 days of overfeeding did not alter insulin sensitivity or 

inflammation in adipose tissue and skeletal muscle, however, increased markers of 

extracellular matrix synthesis in adipose tissue. This highlights that extracellular matrix 

remodelling in adipose tissue is an early event in response to over nutrition, and occurs prior 

to altered insulin sensitivity. 
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Chapter 8:  Conclusions and Future Directions 

  



  Chapter 7 

 

181 
 

8.1 Conclusions  

The mouse study highlighted that IF reduced energy intake, body and fat mass, visceral adipose 

tissue inflammation and fibrosis in high fat diet fed mice only, but improved glucose tolerance 

in both chow and high fat diet fed mice. Results in mice demonstrate that improved glucose 

tolerance by IF in chow fed mice was independent of weight loss, since they fully compensated 

for food deprivation by overeating on refeeding days. The mice work further reveals that IF 

increased energy expenditure and promoted white adipose tissue browning in both chow and 

high fat diet fed mice. This could be one mechanism to explain the improved metabolic 

phenotype in chow and high fat diet fed mice. 

 

The clinical study is the first randomised controlled trail to compare the effects of intermittent 

versus continuous food intakes at two energy levels (at energy balance, or 30% energy 

restriction). This study demonstrates that provision of an energy restricted IF led to greater loss 

of weight and fat mass, improvements in homeostasis model assessment of insulin resistance, 

total cholesterol and non-esterified fatty acids versus provision of a matched continuous energy 

restriction diet. However, there were no overall differences in insulin sensitivity by clamp. 

When IF was prescribed in energy balance, transient increases in risk markers for type 2 

diabetes were observed, despite modest weight loss. Taken together, these data suggest that 

energy restriction is required for beneficial effects on markers of metabolic health in humans.  

 

My results show that intermittent fasting promotes different responses in adipose tissue and in 

muscle collected from humans and mice. The human study demonstrated that a prolonged 24-

hour fast increased circulating, adipose tissue and muscle inflammation. Moreover, increased 

macrophages in adipose tissue after a 24-hour fast were positively correlated with serum non-

esterified fatty acids levels. This data suggests that infiltrated macrophages in adipose tissue 
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could play a physiological role to buffer the excessive release of non-esterified fatty acids. 

However, results from the animal study do not support these findings. Despite increases in the 

blood non-esterified fatty acids levels, prolonged fasting did not increase markers of 

subcutaneous and visceral adipose tissue inflammation in chow and high fat diet fed mice. My 

results also show that intermittent fasting did not alter collagen content in subcutaneous adipose 

tissue in humans, however, this was increased in subcutaneous adipose tissue in mice and 

reduced in visceral fat fibrosis in high fat diet fed mice. Lastly, intermittent fasting promoted 

white adipose tissue browning in mice, but this does not appear to occur in humans at least in 

subcutaneous adipose tissue. My work highlights the limited translation that may be made from 

mouse studies. 

 

My work also supports previous human studies that weight change by calorie restriction or 

short-term overfeeding did not alter adipose tissue and skeletal muscle inflammation, but 

markers of extracellular matrix in adipose tissue were sensitive to short-term over-nutrition.  

 

In conclusion, this research highlights that energy restricted intermittent fasting may lead to 

additional health benefits compared to calorie restriction in humans. This study also suggests 

intermittent fasting results in distinct tissue adaptations versus daily calorie restriction in 

humans, and special attention should be paid to the species difference in the study of obesity 

(Table 8.1). 



       Chapter 7 

 
 

1
8
3
 

Table 8-1: Summary of the thesis 

Dietary intervention IF DR 

Animals/humans  Male mice Women Women 

Diet  Status Chow HFD IF100 IF70 DR70 

Energy intake Fed ↔ ↓↓ ↓ ↓↓ ↓↓ 

Body weight Fed ↔ ↓↓ ↓ ↓↓ ↓ 

Fat mass Fed ↓ ↓↓ ↓ ↓↓ ↓ 

Glucose tolerance Fed ↑ ↑↑ NA NA NA 

Fasted NA ↑↑ NA NA NA 

HOMA-IR Fed ↔ ↓↓ ↔ ↓ ↔ 

Fasted ↓↓ ↓↓↓ ↓ ↓↓ NA 

GIR Fed NA NA ↔ ↔ ↔ 

Fasted NA NA ↓ ↓ NA 

Fat cell size  Fed ↓ ↓↓ ↓ ↓ ↓ 

Fasted ↓ ↓↓ ↓ ↓ ↓ 

Adipose tissue inflammation  Fed ↔ ↓ ↔ ↔ ↔ 

Fasted ↔ ↓ ↑ ↑ ↔ 

Adipose tissue fibrosis Fed ↔ ↓ ↔ ↔ ↔ 

Fasted ↔ ↓ ↔ ↔ ↔ 

Adipose tissue browning  Fed ↑↑ ↑↑ ↔ ↔ ↔ 

Fasted ↑↑ ↑↑ ↔ ↔ ↔ 

IF: intermittent fasting; DR: daily calorie restriction; HFD: high-fat diet; IF100: intermittent fasting diet at 100% of baseline energy requirements; 

IF70: intermittent fasting diet at 70% of baseline energy requirements; DR70: continuous energy restriction at 70% of baseline energy 
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requirements; HOMA-IR: homeostatic model assessment of insulin resistance; GIR: glucose infusion rate during hyperinsulinaemic-euglycaemic 

clamp; NA: not assessed.
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8.2 Future directions 

What are the long-term effects of IF in humans? 

IF is effective to improve health markers and prolong lifespan in rats and mice (Goodrick et 

al., 1982, Goodrick et al., 1983a, Goodrick et al., 1990, Xie et al., 2017). So far, the longest IF 

study in humans is one year duration. This study suggests IF was as effective for weight loss, 

weight maintenance, and cardio-protection as daily calorie restriction (Trepanowski et al., 

2017). Whether IF alters key molecules implicated in longevity in humans is unknown.    

 

Does gender differentially impact the response to IF? 

Male mice are more susceptible to diet induced obesity and alterations in glucose metabolism 

(Hwang et al., 2010). It is possible that males and females may display different responses to 

intermittent fasting. In humans, we observed increased adipose tissue macrophages after 24-

hour fast which was linked with elevated non-esterified fatty acids, but this was not supported 

by mice study. Similarly, the browning phenomenon was detected in mice but not in humans. 

Since only women were recruited for the clinical study, and male mice were used for the animal 

work. It is currently unclear whether the discrepancy in these results is gender or species 

dependent. A study including both genders would help clarify this point.  

 

Does the increased macrophages after a fast in human adipose tissue buffer excess lipids 

released from adipocytes? 

Acute 24-hour fast increased macrophage infiltration in adipose tissue which was positively 

associated with elevated NEFA levels in mice (Kosteli et al., 2010). In vitro and in vivo studies 

suggest macrophages store excess lipids releases from adipocytes (Caspar-Bauguil et al., 

2015). We observed increased macrophages filtration in adipose tissue after a 24-hour fast 

along with elevated non-esterified fatty acids, but whether these macrophages are responsible 
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for the uptake of the released lipids from lipolysis by a fast in humans was not tested, as there 

was insufficient sample. An in vitro study treating macrophage cell line by fatty acids or serum 

collected from the participants may help test this hypothesis. 

 

Does IF affect appetite regulation? 

Recent evidence suggests that individuals following an IF regimen are not able to compensate 

the deprived food on fasting days by overeating on feeding days in a free-living environment 

(Catenacci et al., 2016, Trepanowski et al., 2017). Our human study also highlights that 

participants in the IF groups did not consume all prescribed food on fed days. From metabolic 

cage data, we observed delayed food uptake when food was returned and a significant 

reductions in cumulative energy intake in high fat diet fed mice. Therefore, the sense of hunger 

and satiety may be altered by IF. The effect of IF on appetite regulation requires further 

investigation, and is subject of a new study being run in our laboratory in 2018. 

 

Does IF improve insulin sensitivity in mice? 

A number of animal studies have assessed insulin sensitivity in chow and high fat diet fed mice 

by insulin tolerance test (Gotthardt et al., 2016, Kim et al., 2017), but the results are 

controversial. Peripheral insulin sensitivity by gold standard hyperinsulinaemic-euglycaemic 

clamp has not been reported. Further, as reported by our group and others that prolonged fasting 

impairs peripheral insulin sensitivity (van der Crabben et al., 2008, Vendelbo et al., 2012). It 

is unclear how IF affect insulin sensitivity by clamp and whether insulin sensitivity alters 

between the fed and fasted states in mice. 

 

Does IF impact the circadian rhythm? 
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The physical and behaviour activities of mammals display circadian rhythm which are 

coordinated by internal clock genes. These genes are finely regulated by the light and dark 

cycle as well as the pattern of feeding and fasting playing important roles in the maintenance 

of homeostasis(Manoogian and Panda, 2017). Synchronising the eating activity with the 

internal clock such as restricting the time window for eating to a certain period promotes weight 

loss and improves health in rodents and in humans (Chaix et al., 2014, Hatori et al., 2012, Gill 

and Panda, 2015). It’s unclear whether IF impacts circadian rhythm in mice and humans. 

Additionally, since internal clock has been found in macrophages (Keller et al., 2009). Whether 

the responses of peripheral macrophages to IF display circadian rhythm is unknown.  

 

What mechanism triggers adipose tissue browning following IF in mice? 

We, and others, have shown that IF promotes white adipose tissue browning (Kim et al., 2017, 

Li et al., 2017). By comparing the responses between the fed and fasted states, our data 

highlight that the Ucp1 mRNA levels in both visceral and subcutaneous adipose tissue mirrored 

the food access during intermittent fasting, suggesting intermittent overfeeding is the trigger 

for this to occur. Recent works demonstrated that brown-like adipocytes in adipose tissue were 

derived from their precursor cells as well as existing mature white adipocytes. This process is 

regulated by both transcriptional and post-transcriptional factors, such as AMP-activated 

protein kinase, co-regulator PR domain containing 16, DNA and histone methylation, histone 

acetylation and non-coding RNAs (Sambeat et al., 2017, Kajimura et al., 2015, Mottillo et al., 

2016). Our future work will focus on AMP-activated protein kinase and histone acetylation 

pathway, since its activity is regulated by fasting and feeding (Drazic et al., 2016, Lage et al., 

2008). 

 

Does intermittent fasting affect skeletal muscle inflammation?  



  Chapter 8 

188 
 

Obesity is characterised by macrophage infiltration into adipose tissue and weight loss partially 

reverses this phenotype. This has been documented in both humans and animals (Xu et al., 

2003, Weisberg et al., 2003, Zamarron et al., 2017, Lumeng et al., 2007a, Aron-Wisnewsky et 

al., 2009). Whether this phenomenon exists in skeletal muscle, a key organ involved in energy 

metabolism, remains unclear. In our hands, intermittent fasting appears to trigger distinct 

polarisation of macrophages in adipose tissue and skeletal muscle in humans in which a 24-

hour fast shifts the macrophage population towards a classically activated M1-phenotype in fat 

while alternatively activated M2-phenotype in muscle. Additionally, the response to 

intermittent fasting could be of difference in skeletal muscle from mouse to human, since a 

~24-hour fast failed to provoke a M1- phenotype in both gonadal and inguinal adipose tissue 

in mice. Further studies are required to examine the population and polarisation of 

macrophages in skeletal muscle in response to intermittent fasting. 

 

Is skeletal muscle involved in white adipose tissue browning in mice following 

intermittent fasting? 

Skeletal muscle and brown adipocytes have been closely linked, not only because of the 

detection of ectopic brown adipocytes in skeletal muscle but the crosstalk (Almind et al., 2007, 

Rodríguez et al., 2017). Brown adipose tissue has been shown to regulate skeletal muscle 

function such as exercise capacity via the secretion of factor myostatin, and vice versa (Kong 

et al., 2018, Shan et al., 2013). Myokines such as interleukin 6 and irisin that are released during 

exercise have been reported to promote the browning of white adipose tissue in animals (Kim 

and Plutzky, 2016). A recent study suggests that intermittent fasting increased lean mass in 

mice (Gotthardt et al., 2016), whether this is linked to the browning of white adipose tissue 

could be an interesting direction in the future.
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Appendix table 1: Calculated energy and macronutrient intakes based on self-reported diet checklists 

 Provided Week 1 Week 4 Week 7 

 kcal/day 
kcal/day 

consumed 

protein 

(g/day) 

Total 

fat 
(g/day) 

Saturated 

fat 
(g/day) 

Carbohydrate 

(g/day) 

kcal/day 

consumed 

protein 

(g/day) 

Total 

fat 
(g/day) 

Saturated 

fat 
(g/day) 

Carbohydrate 

(g/day) 

kcal/day 

consumed 

protein 

(g/day) 

Total 

fat 
(g/day) 

Saturated 

fat 
(g/day) 

Carbohydrate 

(g/day) 

Control 2357±98 2363±82 102±4  91±4 29±1 258±9 2338±84 104±4 90±4 29±1 257±9 2377±87 106±4 92±4 30±1 257±9 

IF100 2366±66 2131±68d,e 86±3 82±3 27±1 243±8 2139±76d,e 88±3 83±4 28±1 242±9 2111±67d,e 87±2 82±3 28±1 239±8 

IF70 1702±49 1657±62d,f 72±3 58±2 20±1 193±8 1602±64d,f 69±3 56±3 19±1 189±8 1630±61d,f 71±2 58±2 19±1 187±8 

DR70 1725±44 1694±134 92±2 66±2 22±1 208±7 1748±136 95±2 68±2 23±1 211±7 1699±134 102±7 67±2 23±1 201±5 

Data are mean ±SEM. DR70: continuous energy restriction at 70% of baseline energy requirements: IF70: intermittent fasting diet at 70% of baseline 

energy requirements; IF100: intermittent fasting diet at 100% of baseline energy requirements; Control (C): continuous energy intake at 100% of 

baseline energy requirements. dP<0.05 compared with kcal provided. eP<0.05 compared with Control. fP<0.05 compared with DR70. 

 

 

Appendix table 2: Calculated energy intakes on fed and fasted days, and averaged in intermittent fasting groups based on self-reported 

diet checklists 

  Week 1 Week 4 Week 7 

 Prescribed  

Kcal/day 

Average 

kcal/day 

consumed 

Average 

kcal/fasting 

day 

Average 

kcal 

fed/day 

Average 

kcal/day 

consumed 

Average 

kcal/fasting 

day 

Average 

kcal/fed 

days 

Average 

kcal/day 

consumed 

Average 

kcal/fasting 

day 

Average 

kcal/fed 

day 

IF100 2366±56 2131±68 873±34 3074±105 2139±76 882±34 3082±114 2111±67 859±31 2863±93 

IF70 1702±49 1657±62 697±22 2345±93 1602±64 732±33 2246±95 1630±31 680±24 2316±93 

Data are mean ±SEM. DR70: continuous energy restriction at 70% of baseline energy requirements: IF70: intermittent fasting diet at 70% of baseline 

energy requirements; IF100: intermittent fasting diet at 100% of baseline energy requirements; Control (C): continuous energy intake at 100% of 

baseline energy requirements.  
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Appendix table 3: Changes in outcome parameters following 8 weeks of dietary interventiona,b 

 C 

(n=11) 

IF100 

(n=22) 

P value 

C vs IF100 

IF70 

(n=22) 

P value  

IF100 vs IF70 

DR70 

(n=24) 

P value 

IF70 vs DR70 

Weight (kg) 0.4±0.4 -2.7±0.5c 0.000 -5.4±0.5d,e 0.000 -3.9±0.4 0.03 

Fat mass (kg) -0.2±0.5 -2.3±0.4c 0.001 -3.9±0.4d,e 0.004 -2.8±0.4 0.05 

Fat free mass (kg) -0.4±0.4 -0.5±0.3 0.07 -1.4±0.3 0.06 -0.6±0.3 0.07 

% of weight lost as fat free mass 72±45 14±13 0.11 19±7 0.74 19±6 0.94 

Waist circumference (cm) -1.4±1.7 -4.3±1.0 0.19 -7.6±1.2d 0.04 -5.2±1.0 0.14 

Hip circumference (cm) -0.3±1.3 -3.6±0.7 0.07 -5.3±0.8 0.11 -4.4±1.0 0.45 

M/I (μmol/min/FFM+17.7 kg/mU) -2.4±3.7 -1.5±2.9 0.65 3.7±5.5 0.31 3.5±2.1 0.95 

HOMA-IR -0.1±0.5 0.8±0.3 0.08 -0.9±0.3d 0.002 -0.4±0.3 0.38 

Fasting glucose (mmol/L) 0.01±0.1 0.1±0.1 0.37 -0.2±0.1d 0.02 0.1±0.1 0.22 

Fasting insulin (mU/L) -0.4±1.9 2.9±1.4c 0.05 -3.6±1.0d 0.02 -1.2±1.1 0.70 

Fasting NEFA (mmol/L) -0.08±0.07 -0.16±0.06 0.22 -0.26±0.03e 0.38 -0.10±0.04 0.005 

Total cholesterol (mmol/L) -0.30±0.15 -0.37±0.15 0.88 -0.59±0.08d.e 0.05 -0.24±0.10 0.005 

HDL-cholesterol (mmol/L) -0.03±0.07 -0.07±0.06 0.35 -0.10±0.03 0.30 -0.05±0.02 0.20 

LDL-cholesterol (mmol/L) -0.16±0.12 -0.16±0.13 0.88 -0.37±0.07d,e 0.03 -0.13±0.08 0.001 

Triglycerides (mmol/L) -0.25±0.09 -0.28±0.12 0.62 -0.24±0.07e 0.32 -0.16±0.05 0.05 

HS-CRP (mg/dL) 1.11±0.55 -0.33±0.23c 0.008 -0.30±0.35 0.17 0.34±0.46 0.53 

ALT (mmol/L) 1.5±2.2 -1.3±1.6 0.60 -3.4±1.6 0.26 -3.0±1.7 0.39 

AST (mmol/L) 1.2±1.5 -2.9±1.5 0.23 -1.6±1.0 0.55 1.0±1.3 0.81 

FGF-21 (mmol/L) 10.8±26.3 3.2±22.2 0.66 29.2±18.7d 0.008 13.7±17.9 0.42 

β-hydroxybutyrate (mmol/L) -0.02±0.02 -0.01±0.01 0.42 0.03±0.02d 0.001 -0.00±0.01 0.25 

Systolic blood pressure (mmHg) 1.5±1.7 -5.6±3.4 0.14 -0.6±3.2 0.23 -4.2±2.9 0.34 
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Diastolic blood pressure(mmHg) -1.5±2.0 -2.5±1.4 0.68 -0.4±1.0` 0.23 -0.1±1.5 0.87 

aControl (C): continuous energy intake at 100% of baseline energy requirements; IF100: intermittent fasting diet at 100% of baseline energy 

requirements; IF70: intermittent fasting diet at 70% of baseline energy requirements; DR70: continuous energy restriction at 70% of baseline 

energy requirements. bPairwise comparisons between intermittent and continuous energy intakes at each energy level (i.e., IF100 vs control, DR70 

vs IF70), and between fasting diets (IF100 vs IF70), measured after a fed day. Data are shown as mean ± SEM. cSignificantly different from control 

(P<0.05); dSignificantly different from IF100 (P<0.05); eSignificantly different from DR70 (P<0.05). HDL: high-density lipoprotein; LDL: Low-

density lipoprotein; HS-CRP: high-sensitivity C-reactive protein. 
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Appendix table 4: Changes in outcome parameters after a fed day (Control or DR70) or fasted day (IF70 and IF100), following 8 weeks 

of intermittent fastinga,b 

 Control IF100 IF70 DR70 

   Fed Fasted Fasted Fed 

M/I (μmol/min/FFM+17.7 kg/mU) -2.4±3.7 -7.6±2.2 -2.5±5.9f 3.5±2.1 

HOMA-IR -0.1±0.5 -0.7±0.3 -1.5±0.3e -0.4±0.3 

Fasting glucose (mmol/L) 0.01±0.1 -0.1±0.1 -0.3±0.1e 0.1±0.1 

Fasting insulin (mU/L) -0.4±1.9 -2.6±1.5 -5.9±1.2e -1.2±1.1 

Fasting NEFA (mmol/L) 0.08±0.07 0.13±0.04c 0.16±0.05d,e 0.10±0.04 

Fasting triglycerides (mmol/L) -0.25±0.09 -0.25±0.08 -0.16±0.06 -0.16±0.05 

HS-CRP (mg/dL) 1.11±0.55 -0.02±0.34 0.08±0.37 0.34±0.46 

ALT (mmol/L) 1.5±2.2 -4.2±3.0 0.8±0.3 -3.0±1.7 

AST (mmol/L) 1.2±1.5 -2.0±0.9 0.1±0.1 1.0±1.3 

FGF-21 (mmol/L) 10.8±26.3 11.0±10.1 48.3±10.6f 13.7±17.9 

β-hydroxybutyrate (mmol/L) -0.02±0.02 0.12±0.03c 0.27±0.05d,e -0.00±0.01 

aControl (C): continuous energy intake at 100% of baseline energy requirements; IF100: intermittent fasting diet at 100% of baseline energy 

requirements; IF70: intermittent fasting diet at 70% of baseline energy requirements; DR70: continuous energy restriction at 70% of baseline 

energy requirements. bPairwise comparisons between intermittent and continuous energy intakes at each energy level (i.e., IF100 vs control, DR70 

vs IF70), and between fasting diets (IF100 vs IF70). Data are shown as mean ± SEM. HS-CRP: high-sensitivity C-reactive protein, NEFA: non-

esterified fatty acids. cSignificantly different from control (P<0.05) dSignificantly different from IF100 (P<0.05).eSignificantly different from 

DR70 (P<0.05).ftrend compared with DR70 (P<0.08). 
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Appendix figure 1: Ratings of perceived hunger following 1 and 6 weeks of intervention  

Control (C): continuous energy intake at 100% of baseline energy requirements; IF100: 

intermittent fasting diet at 100% of baseline energy requirements; IF70: intermittent fasting 

diet at 70% of baseline energy requirements; DR70: continuous energy restriction at 70% of 

baseline energy requirements. 

 

(A) ratings of hunger in week 1; black bars denote fed days, striped bars denote fasted days in 

IF groups; (B) ratings of hunger in week 6; black bars denote fed days, striped bars denote 

fasted days in IF groups; Pairwise comparisons: * P<0.05 vs control; ^ P<0.05 vs. IF100; ‡ 

P<0.05 vs. DR70. 

 

 

 

 

Appendix figure 2:  Adipose tissue insulin resistance following 8 weeks of intervention 

Control (C): continuous energy intake at 100% of baseline energy requirements; IF100: 

intermittent fasting diet at 100% of baseline energy requirements; IF70: intermittent fasting 

diet at 70% of baseline energy requirements; DR70: continuous energy restriction at 70% of 

baseline energy requirements. 

 

Data presented as Mean±SEM. ^P<0.05 vs. DR70 in the change from baseline to week 8 

following a 12-hour fast; ‡ P<0.05 vs. IF100 in the change from baseline to week 8 following 

a 12-hour fast. *P<0.05 and **P<0.01 vs. baseline.  
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Appendix figure 3: High sensitive C-reactive protein following 8 weeks of intervention 

DR70: continuous energy restriction at 70% baseline energy requirements: IF70: intermittent 

fasting diet at 70% baseline energy requirements; IF100: intermittent fasting diet at 100% 

baseline energy requirements.  

 

 

 

Appendix figure 4: mRNA levels of CCL2 in adipose tissue and skeletal muscle after 8 

weeks of intervention  

DR70: continuous energy restriction at 70% baseline energy requirements: IF70: intermittent 

fasting diet at 70% baseline energy requirements; IF100: intermittent fasting diet at 100% 

baseline energy requirements.  
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Appendix figure 5: Crown-like structure numbers in adipose tissue after 8 weeks of 

intervention in women 

DR70: continuous energy restriction at 70% baseline energy requirements: IF70: intermittent 

fasting diet at 70% baseline energy requirements; IF100: intermittent fasting diet at 100% 

baseline energy requirements 
 

 

 

Appendix figure 6: Quantification of the collagen area in adipose tissue  

DR70: continuous energy restriction at 70% baseline energy requirements: IF70: intermittent 

fasting diet at 70% baseline energy requirements; IF100: intermittent fasting diet at 100% 

baseline energy requirements.  
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Appendix figure 7: Water consumption of mice measured by metabolic cages 

(A): Hourly water consumption and (B): Daily water consumption. 

 

 

 

 

Appendix figure 8: VCO2 and VO2 of mice measured by metabolic cages 

(A and B): Hourly and daily VCO2 and (C and D): Hourly and daily VO2. 

 

Mean±SEM, n=7-8/group. Effects of diet and schedule on each day were analysed by two-way 

ANOVA with Bonferroni post-hoc tests. Within group effects over three days were analysed 

using repeated measures ANOVA with Boferroni post-hoc test. Day 1 and 2 were two 

consecutive feeding days, followed by a fasting day (day 3). Diet effect: #P<0.05 on each day. 

*P<0.05; **P<0.01 and ***P<0.001; ^P<0.05 vs. chow-AL on day 3; &P<0.05 vs. chow-IF on 

day 1.  



  Bibliography  

198 
 

 

 

 

 

Bibliography 

  



  Bibliography  

199 
 

ADOCHIO, R. L., LEITNER, J. W., GRAY, K., DRAZNIN, B. & CORNIER, M. A. 2009. 

Early responses of insulin signaling to high-carbohydrate and high-fat overfeeding. 

Nutr Metab (Lond), 6, 37. 

AHMED, T., DAS, S. K., GOLDEN, J. K., SALTZMAN, E., ROBERTS, S. B. & MEYDANI, 

S. N. 2009. Calorie Restriction Enhances T-Cell–Mediated Immune Response in Adult 

Overweight Men and Women. The Journals of Gerontology: Series A, 64A, 1107-1113. 

AHMET, I., WAN, R., MATTSON, M. P., LAKATTA, E. G. & TALAN, M. 2005. 

Cardioprotection by intermittent fasting in rats. Circulation, 112, 3115-21. 

ALBRECHT, U. 2017. The circadian clock, metabolism and obesity. Obes Rev, 18 Suppl 1, 

25-33. 

ALBU, J. B., HEILBRONN, L. K., KELLEY, D. E., SMITH, S. R., AZUMA, K., BERK, E. 

S., PI-SUNYER, F. X., RAVUSSIN, E. & LOOK, A. A. R. G. 2010. Metabolic changes 

following a 1-year diet and exercise intervention in patients with type 2 diabetes. 

Diabetes, 59, 627-33. 

ALLIGIER, M., MEUGNIER, E., DEBARD, C., LAMBERT-PORCHERON, S., 

CHANSEAUME, E., SOTHIER, M., LOIZON, E., HSSAIN, A. A., BROZEK, J., 

SCOAZEC, J. Y., MORIO, B., VIDAL, H. & LAVILLE, M. 2012. Subcutaneous 

adipose tissue remodeling during the initial phase of weight gain induced by 

overfeeding in humans. J Clin Endocrinol Metab, 97, E183-92. 

ALLISON, D. B., PAULTRE, F., MAGGIO, C., MEZZITIS, N. & PI-SUNYER, F. X. 1995. 

The use of areas under curves in diabetes research. Diabetes Care, 18, 245-50. 

ALMIND, K., MANIERI, M., SIVITZ, W. I., CINTI, S. & KAHN, C. R. 2007. Ectopic brown 

adipose tissue in muscle provides a mechanism for differences in risk of metabolic 

syndrome in mice. Proceedings of the National Academy of Sciences, 104, 2366-2371. 

ALTINTAS, M. M., AZAD, A., NAYER, B., CONTRERAS, G., ZAIAS, J., FAUL, C., 

REISER, J. & NAYER, A. 2011. Mast cells, macrophages, and crown-like structures 

distinguish subcutaneous from visceral fat in mice. J Lipid Res, 52, 480-8. 

AMERICAN COLLEGE OF CARDIOLOGY/AMERICAN HEART ASSOCIATION TASK 

FORCE ON PRACTICE GUIDELINES, O. E. P. 2014. Expert Panel Report: 

Guidelines (2013) for the management of overweight and obesity in adults. Obesity 

(Silver Spring), 22 Suppl 2, S41-410. 

AMOUZOU, C., BREUKER, C., FABRE, O., BOURRET, A., LAMBERT, K., BIROT, O., 

FEDOU, C., DUPUY, A. M., CRISTOL, J. P., SUTRA, T., MOLINARI, N., 

MAIMOUN, L., MARIANO-GOULART, D., GALTIER, F., AVIGNON, A., 

STANKE-LABESQUE, F., MERCIER, J., SULTAN, A. & BISBAL, C. 2016. Skeletal 

Muscle Insulin Resistance and Absence of Inflammation Characterize Insulin-Resistant 

Grade I Obese Women. PLoS One, 11, e0154119. 

ANDERSON, R. M., SHANMUGANAYAGAM, D. & WEINDRUCH, R. 2009. Caloric 

restriction and aging: studies in mice and monkeys. Toxicol Pathol, 37, 47-51. 



  Bibliography  

200 
 

ANSON, R. M., GUO, Z., DE CABO, R., IYUN, T., RIOS, M., HAGEPANOS, A., INGRAM, 

D. K., LANE, M. A. & MATTSON, M. P. 2003. Intermittent fasting dissociates 

beneficial effects of dietary restriction on glucose metabolism and neuronal resistance 

to injury from calorie intake. Proc Natl Acad Sci U S A, 100, 6216-20. 

ANTON, S. D., MOEHL, K., DONAHOO, W. T., MAROSI, K., LEE, S. A., MAINOUS, A. 

G., 3RD, LEEUWENBURGH, C. & MATTSON, M. P. 2018. Flipping the Metabolic 

Switch: Understanding and Applying the Health Benefits of Fasting. Obesity (Silver 

Spring), 26, 254-268. 

ANTONI, R., JOHNSTON, K. L., COLLINS, A. L. & ROBERTSON, M. D. 2017. Effects of 

intermittent fasting on glucose and lipid metabolism. Proc Nutr Soc, 76, 361-368. 

ANTONI, R., JOHNSTON, K. L., COLLINS, A. L. & ROBERTSON, M. D. 2018. Intermittent 

v. continuous energy restriction: differential effects on postprandial glucose and lipid 

metabolism following matched weight loss in overweight/obese participants. Br J Nutr, 

119, 507-516. 

ARGENTINO, D. P., DOMINICI, F. P., AL-REGAIEY, K., BONKOWSKI, M. S., BARTKE, 

A. & TURYN, D. 2005. Effects of long-term caloric restriction on early steps of the 

insulin-signaling system in mouse skeletal muscle. J Gerontol A Biol Sci Med Sci, 60, 

28-34. 

ARON-WISNEWSKY, J., TORDJMAN, J., POITOU, C., DARAKHSHAN, F., HUGOL, D., 

BASDEVANT, A., AISSAT, A., GUERRE-MILLO, M. & CLEMENT, K. 2009. 

Human adipose tissue macrophages: m1 and m2 cell surface markers in subcutaneous 

and omental depots and after weight loss. J Clin Endocrinol Metab, 94, 4619-23. 

ARUM, O., BONKOWSKI, M. S., ROCHA, J. S. & BARTKE, A. 2009. The growth hormone 

receptor gene-disrupted mouse fails to respond to an intermittent fasting diet. Aging 

Cell, 8, 756-60. 

ASTERHOLM, I. W., MCDONALD, J., BLANCHARD, P. G., SINHA, M., XIAO, Q., 

MISTRY, J., RUTKOWSKI, J. M., DESHAIES, Y., BREKKEN, R. A. & SCHERER, 

P. E. 2012. Lack of "immunological fitness" during fasting in metabolically challenged 

animals. J Lipid Res, 53, 1254-67. 

AUERBACH, P., NORDBY, P., BENDTSEN, L. Q., MEHLSEN, J. L., BASNET, S. K., 

VESTERGAARD, H., PLOUG, T. & STALLKNECHT, B. 2013. Differential effects 

of endurance training and weight loss on plasma adiponectin multimers and adipose 

tissue macrophages in younger, moderately overweight men. Am J Physiol Regul Integr 

Comp Physiol, 305, R490-8. 

AUSTRALIAN BUREAU OF STATISTICS. 2015, December 8. National Health Survey: 

First Results, 2014-15 [Online]. Available: 

http://www.abs.gov.au/ausstats/abs@.nsf/Lookup/by%20Subject/4364.0.55.001~2014

-15~Main%20Features~Overweight%20and%20obesity~22. 

AUSTRALIAN INSTITUTE OF HEALTH AND WELFARE. 2017, April 13. Impact of 

overweight and obesity as a risk factor for chronic conditions [Online]. Available: 

http://www.abs.gov.au/ausstats/abs@.nsf/Lookup/by%20Subject/4364.0.55.001~2014-15~Main%20Features~Overweight%20and%20obesity~22
http://www.abs.gov.au/ausstats/abs@.nsf/Lookup/by%20Subject/4364.0.55.001~2014-15~Main%20Features~Overweight%20and%20obesity~22


  Bibliography  

201 
 

https://www.aihw.gov.au/reports/burden-of-disease/impact-of-overweight-and-

obesity-as-a-risk-factor-for-chronic-conditions/contents/table-of-contents. 

BALASUBRAMANIAN, P., MATTISON, J. A. & ANDERSON, R. M. 2017. Nutrition, 

metabolism, and targeting aging in nonhuman primates. Ageing Res Rev, 39, 29-35. 

BARBATELLI, G., MURANO, I., MADSEN, L., HAO, Q., JIMENEZ, M., KRISTIANSEN, 

K., GIACOBINO, J. P., DE MATTEIS, R. & CINTI, S. 2010. The emergence of cold-

induced brown adipocytes in mouse white fat depots is determined predominantly by 

white to brown adipocyte transdifferentiation. Am J Physiol Endocrinol Metab, 298, 

E1244-53. 

BARNOSKY, A. R., HODDY, K. K., UNTERMAN, T. G. & VARADY, K. A. 2014. 

Intermittent fasting vs daily calorie restriction for type 2 diabetes prevention: a review 

of human findings. Transl Res, 164, 302-11. 

BARQUISSAU, V., LEGER, B., BEUZELIN, D., MARTINS, F., AMRI, E. Z., PISANI, D. 

F., SARIS, W. H. M., ASTRUP, A., MAORET, J. J., IACOVONI, J., DEJEAN, S., 

MORO, C., VIGUERIE, N. & LANGIN, D. 2018. Caloric Restriction and Diet-Induced 

Weight Loss Do Not Induce Browning of Human Subcutaneous White Adipose Tissue 

in Women and Men with Obesity. Cell Rep, 22, 1079-1089. 

BARZILAI, N. & GUPTA, G. 1999. Revisiting the role of fat mass in the life extension induced 

by caloric restriction. J Gerontol A Biol Sci Med Sci, 54, B89-96; discussion B97-8. 

BASEN-ENGQUIST, K. & CHANG, M. 2011. Obesity and cancer risk: recent review and 

evidence. Curr Oncol Rep, 13, 71-6. 

BEAUCHENE, R. E., BALES, C. W., BRAGG, C. S., HAWKINS, S. T. & MASON, R. L. 

1986. Effect of age of initiation of feed restriction on growth, body composition, and 

longevity of rats. J Gerontol, 41, 13-9. 

BECCUTI, G. & PANNAIN, S. 2011. Sleep and obesity. Curr Opin Clin Nutr Metab Care, 

14, 402-12. 

BERRIA, R., WANG, L., RICHARDSON, D. K., FINLAYSON, J., BELFORT, R., 

PRATIPANAWATR, T., DE FILIPPIS, E. A., KASHYAP, S. & MANDARINO, L. J. 

2006. Increased collagen content in insulin-resistant skeletal muscle. Am J Physiol 

Endocrinol Metab, 290, E560-5. 

BHUTANI, S., KLEMPEL, M. C., BERGER, R. A. & VARADY, K. A. 2010. Improvements 

in coronary heart disease risk indicators by alternate-day fasting involve adipose tissue 

modulations. Obesity (Silver Spring), 18, 2152-9. 

BHUTANI, S., KLEMPEL, M. C., KROEGER, C. M., TREPANOWSKI, J. F. & VARADY, 

K. A. 2013. Alternate day fasting and endurance exercise combine to reduce body 

weight and favorably alter plasma lipids in obese humans. Obesity, 21, 1370-1379. 

BIGA, P. R., FROEHLICH, J. M., GREENLEE, K. J., GALT, N. J., MEYER, B. M. & 

CHRISTENSEN, D. J. 2013. Gelatinases impart susceptibility to high-fat diet-induced 

obesity in mice. J Nutr Biochem, 24, 1462-8. 

https://www.aihw.gov.au/reports/burden-of-disease/impact-of-overweight-and-obesity-as-a-risk-factor-for-chronic-conditions/contents/table-of-contents
https://www.aihw.gov.au/reports/burden-of-disease/impact-of-overweight-and-obesity-as-a-risk-factor-for-chronic-conditions/contents/table-of-contents


  Bibliography  

202 
 

BODEN, G., SARGRAD, K., HOMKO, C., MOZZOLI, M. & STEIN, T. P. 2005. Effect of a 

low-carbohydrate diet on appetite, blood glucose levels, and insulin resistance in obese 

patients with type 2 diabetes. Ann Intern Med, 142, 403-11. 

BODKIN, N. L., ALEXANDER, T. M., ORTMEYER, H. K., JOHNSON, E. & HANSEN, B. 

C. 2003. Mortality and morbidity in laboratory-maintained Rhesus monkeys and effects 

of long-term dietary restriction. J Gerontol A Biol Sci Med Sci, 58, 212-9. 

BODLES, A. M., VARMA, V., YAO-BORENGASSER, A., PHANAVANH, B., 

PETERSON, C. A., MCGEHEE, R. E., JR., RASOULI, N., WABITSCH, M. & KERN, 

P. A. 2006. Pioglitazone induces apoptosis of macrophages in human adipose tissue. J 

Lipid Res, 47, 2080-8. 

BONNANS, C., CHOU, J. & WERB, Z. 2014. Remodelling the extracellular matrix in 

development and disease. Nat Rev Mol Cell Biol, 15, 786-801. 

BOSTROM, P., WU, J., JEDRYCHOWSKI, M. P., KORDE, A., YE, L., LO, J. C., 

RASBACH, K. A., BOSTROM, E. A., CHOI, J. H., LONG, J. Z., KAJIMURA, S., 

ZINGARETTI, M. C., VIND, B. F., TU, H., CINTI, S., HOJLUND, K., GYGI, S. P. 

& SPIEGELMAN, B. M. 2012. A PGC1-alpha-dependent myokine that drives brown-

fat-like development of white fat and thermogenesis. Nature, 481, 463-8. 

BOUCHARD, C., TREMBLAY, A., DESPRES, J. P., NADEAU, A., LUPIEN, P. J., 

THERIAULT, G., DUSSAULT, J., MOORJANI, S., PINAULT, S. & FOURNIER, G. 

1990. The response to long-term overfeeding in identical twins. N Engl J Med, 322, 

1477-82. 

BOURLIER, V., SENGENES, C., ZAKAROFF-GIRARD, A., DECAUNES, P., 

WDZIEKONSKI, B., GALITZKY, J., VILLAGEOIS, P., ESTEVE, D., CHIOTASSO, 

P., DANI, C. & BOULOUMIE, A. 2012. TGFbeta family members are key mediators 

in the induction of myofibroblast phenotype of human adipose tissue progenitor cells 

by macrophages. PLoS One, 7, e31274. 

BOURLIER, V., ZAKAROFF-GIRARD, A., MIRANVILLE, A., DE BARROS, S., 

MAUMUS, M., SENGENES, C., GALITZKY, J., LAFONTAN, M., KARPE, F., 

FRAYN, K. N. & BOULOUMIE, A. 2008. Remodeling phenotype of human 

subcutaneous adipose tissue macrophages. Circulation, 117, 806-15. 

BRAKE, D. K., SMITH, E. O., MERSMANN, H., SMITH, C. W. & ROBKER, R. L. 2006. 

ICAM-1 expression in adipose tissue: effects of diet-induced obesity in mice. Am J 

Physiol Cell Physiol, 291, C1232-9. 

BRANDHORST, S., CHOI, I. Y., WEI, M., CHENG, C. W., SEDRAKYAN, S., 

NAVARRETE, G., DUBEAU, L., YAP, L. P., PARK, R., VINCIGUERRA, M., DI 

BIASE, S., MIRZAEI, H., MIRISOLA, M. G., CHILDRESS, P., JI, L., GROSHEN, 

S., PENNA, F., ODETTI, P., PERIN, L., CONTI, P. S., IKENO, Y., KENNEDY, B. 

K., COHEN, P., MORGAN, T. E., DORFF, T. B. & LONGO, V. D. 2015. A Periodic 

Diet that Mimics Fasting Promotes Multi-System Regeneration, Enhanced Cognitive 

Performance, and Healthspan. Cell Metab, 22, 86-99. 



  Bibliography  

203 
 

BRISBOIS, T. D., FARMER, A. P. & MCCARGAR, L. J. 2012. Early markers of adult 

obesity: a review. Obes Rev, 13, 347-67. 

BRONS, C., JENSEN, C. B., STORGAARD, H., HISCOCK, N. J., WHITE, A., APPEL, J. S., 

JACOBSEN, S., NILSSON, E., LARSEN, C. M., ASTRUP, A., QUISTORFF, B. & 

VAAG, A. 2009. Impact of short-term high-fat feeding on glucose and insulin 

metabolism in young healthy men. J Physiol, 587, 2387-97. 

BRUUN, J. M., HELGE, J. W., RICHELSEN, B. & STALLKNECHT, B. 2006. Diet and 

exercise reduce low-grade inflammation and macrophage infiltration in adipose tissue 

but not in skeletal muscle in severely obese subjects. Am J Physiol Endocrinol Metab, 

290, E961-7. 

BYRNE, N. M., SAINSBURY, A., KING, N. A., HILLS, A. P. & WOOD, R. E. 2018. 

Intermittent energy restriction improves weight loss efficiency in obese men: the 

MATADOR study. Int J Obes (Lond), 42, 129-138. 

CABALLERO, B. 2007. The global epidemic of obesity: an overview. Epidemiol Rev, 29, 1-

5. 

CANCELLO, R., HENEGAR, C., VIGUERIE, N., TALEB, S., POITOU, C., ROUAULT, C., 

COUPAYE, M., PELLOUX, V., HUGOL, D., BOUILLOT, J. L., BOULOUMIE, A., 

BARBATELLI, G., CINTI, S., SVENSSON, P. A., BARSH, G. S., ZUCKER, J. D., 

BASDEVANT, A., LANGIN, D. & CLEMENT, K. 2005. Reduction of macrophage 

infiltration and chemoattractant gene expression changes in white adipose tissue of 

morbidly obese subjects after surgery-induced weight loss. Diabetes, 54, 2277-86. 

CANCELLO, R., TORDJMAN, J., POITOU, C., GUILHEM, G., BOUILLOT, J. L., HUGOL, 

D., COUSSIEU, C., BASDEVANT, A., BAR HEN, A., BEDOSSA, P., GUERRE-

MILLO, M. & CLEMENT, K. 2006. Increased infiltration of macrophages in omental 

adipose tissue is associated with marked hepatic lesions in morbid human obesity. 

Diabetes, 55, 1554-61. 

CANI, P. D., AMAR, J., IGLESIAS, M. A., POGGI, M., KNAUF, C., BASTELICA, D., 

NEYRINCK, A. M., FAVA, F., TUOHY, K. M., CHABO, C., WAGET, A., DELMEE, 

E., COUSIN, B., SULPICE, T., CHAMONTIN, B., FERRIERES, J., TANTI, J. F., 

GIBSON, G. R., CASTEILLA, L., DELZENNE, N. M., ALESSI, M. C. & 

BURCELIN, R. 2007. Metabolic endotoxemia initiates obesity and insulin resistance. 

Diabetes, 56, 1761-72. 

CANI, P. D., BIBILONI, R., KNAUF, C., WAGET, A., NEYRINCK, A. M., DELZENNE, N. 

M. & BURCELIN, R. 2008. Changes in gut microbiota control metabolic endotoxemia-

induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes, 

57, 1470-81. 

CAO, Y. 2007. Angiogenesis modulates adipogenesis and obesity. J Clin Invest, 117, 2362-8. 

CAO, Y. 2010. Adipose tissue angiogenesis as a therapeutic target for obesity and metabolic 

diseases. Nat Rev Drug Discov, 9, 107-15. 

CAO, Y. 2013. Angiogenesis and vascular functions in modulation of obesity, adipose 

metabolism, and insulin sensitivity. Cell Metab, 18, 478-89. 



  Bibliography  

204 
 

CAPEL, F., KLIMCAKOVA, E., VIGUERIE, N., ROUSSEL, B., VITKOVA, M., 

KOVACIKOVA, M., POLAK, J., KOVACOVA, Z., GALITZKY, J., MAORET, J. J., 

HANACEK, J., PERS, T. H., BOULOUMIE, A., STICH, V. & LANGIN, D. 2009. 

Macrophages and adipocytes in human obesity: adipose tissue gene expression and 

insulin sensitivity during calorie restriction and weight stabilization. Diabetes, 58, 

1558-67. 

CARLSON, A. J. & HOELZEL, F. 1946. Apparent prolongation of the life span of rats by 

intermittent fasting. J Nutr, 31, 363-75. 

CARVALHO, B. M., GUADAGNINI, D., TSUKUMO, D. M. L., SCHENKA, A. A., LATUF-

FILHO, P., VASSALLO, J., DIAS, J. C., KUBOTA, L. T., CARVALHEIRA, J. B. C. 

& SAAD, M. J. A. 2012. Modulation of gut microbiota by antibiotics improves insulin 

signalling in high-fat fed mice. Diabetologia, 55, 2823-2834. 

CASPAR-BAUGUIL, S., KOLDITZ, C. I., LEFORT, C., VILA, I., MOUISEL, E., 

BEUZELIN, D., TAVERNIER, G., MARQUES, M. A., ZAKAROFF-GIRARD, A., 

PECHER, C., HOUSSIER, M., MIR, L., NICOLAS, S., MORO, C. & LANGIN, D. 

2015. Fatty acids from fat cell lipolysis do not activate an inflammatory response but 

are stored as triacylglycerols in adipose tissue macrophages. Diabetologia, 58, 2627-

36. 

CATENACCI, V. A., PAN, Z., OSTENDORF, D., BRANNON, S., GOZANSKY, W. S., 

MATTSON, M. P., MARTIN, B., MACLEAN, P. S., MELANSON, E. L. & TROY 

DONAHOO, W. 2016. A randomized pilot study comparing zero-calorie alternate-day 

fasting to daily caloric restriction in adults with obesity. Obesity (Silver Spring), 24, 

1874-83. 

CHABOT, K., GAUTHIER, M. S., GARNEAU, P. Y. & RABASA-LHORET, R. 2017. 

Evolution of subcutaneous adipose tissue fibrosis after bariatric surgery. Diabetes 

Metab, 43, 125-133. 

CHAIX, A., ZARRINPAR, A., MIU, P. & PANDA, S. 2014. Time-restricted feeding is a 

preventative and therapeutic intervention against diverse nutritional challenges. Cell 

Metab, 20, 991-1005. 

CHAMPIGNY, O. & RICQUIER, D. 1990. Effects of fasting and refeeding on the level of 

uncoupling protein mRNA in rat brown adipose tissue: evidence for diet-induced and 

cold-induced responses. J Nutr, 120, 1730-6. 

CHEN, A., MUMICK, S., ZHANG, C., LAMB, J., DAI, H., WEINGARTH, D., MUDGETT, 

J., CHEN, H., MACNEIL, D. J., REITMAN, M. L. & QIAN, S. 2005. Diet induction 

of monocyte chemoattractant protein-1 and its impact on obesity. Obes Res, 13, 1311-

20. 

CHEN, M., LIU, B., THOMPSON, C. H., WITTERT, G. A. & HEILBRONN, L. K. 2016a. 

Acute Overfeeding Does Not Alter Liver or Adipose Tissue-Derived Cytokines in 

Healthy Humans. Ann Nutr Metab, 69, 165-170. 



  Bibliography  

205 
 

CHEN, M., WU, L., ZHAO, J., WU, F., DAVIES, M. J., WITTERT, G. A., NORMAN, R. J., 

ROBKER, R. L. & HEILBRONN, L. K. 2014. Altered glucose metabolism in mouse 

and humans conceived by IVF. Diabetes, 63, 3189-98. 

CHEN, Y., LING, L., SU, G., HAN, M., FAN, X., XUN, P. & XU, G. 2016b. Effect of 

Intermittent versus Chronic Calorie Restriction on Tumor Incidence: A Systematic 

Review and Meta-Analysis of Animal Studies. Sci Rep, 6, 33739. 

CHENG, C. W., ADAMS, G. B., PERIN, L., WEI, M., ZHOU, X., LAM, B. S., DA SACCO, 

S., MIRISOLA, M., QUINN, D. I., DORFF, T. B., KOPCHICK, J. J. & LONGO, V. 

D. 2014. Prolonged fasting reduces IGF-1/PKA to promote hematopoietic-stem-cell-

based regeneration and reverse immunosuppression. Cell Stem Cell, 14, 810-23. 

CHOI, I. Y., PICCIO, L., CHILDRESS, P., BOLLMAN, B., GHOSH, A., BRANDHORST, 

S., SUAREZ, J., MICHALSEN, A., CROSS, A. H., MORGAN, T. E., WEI, M., PAUL, 

F., BOCK, M. & LONGO, V. D. 2016. A Diet Mimicking Fasting Promotes 

Regeneration and Reduces Autoimmunity and Multiple Sclerosis Symptoms. Cell Rep, 

15, 2136-2146. 

CINTI, S., MITCHELL, G., BARBATELLI, G., MURANO, I., CERESI, E., FALOIA, E., 

WANG, S., FORTIER, M., GREENBERG, A. S. & OBIN, M. S. 2005. Adipocyte 

death defines macrophage localization and function in adipose tissue of obese mice and 

humans. J Lipid Res, 46, 2347-55. 

CIVITARESE, A. E., CARLING, S., HEILBRONN, L. K., HULVER, M. H., UKROPCOVA, 

B., DEUTSCH, W. A., SMITH, S. R., RAVUSSIN, E. & TEAM, C. P. 2007. Calorie 

restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med, 4, 

e76. 

CLEARY, M. P., BRASEL, J. A. & GREENWOOD, M. R. 1979. Developmental changes in 

thymidine kinase, DNA, and fat cellularity in Zucker rats. Am J Physiol, 236, E508-13. 

CLÉMENT, K., VAISSE, C., LAHLOU, N., CABROL, S., PELLOUX, V., CASSUTO, D., 

GOURMELEN, M., DINA, C., CHAMBAZ, J., LACORTE, J.-M., BASDEVANT, A., 

BOUGNÈRES, P., LEBOUC, Y., FROGUEL, P. & GUY-GRAND, B. 1998. A 

mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. 

Nature, 392, 398. 

CLINTHORNE, J. F., ADAMS, D. J., FENTON, J. I., RITZ, B. W. & GARDNER, E. M. 2010. 

Short-Term Re-Feeding of Previously Energy-Restricted C57BL/6 Male Mice Restores 

Body Weight and Body Fat and Attenuates the Decline in Natural Killer Cell Function 

after Primary Influenza Infection. The Journal of Nutrition, 140, 1495-1501. 

COHEN, E., PAULSSON, J. F., BLINDER, P., BURSTYN-COHEN, T., DU, D., ESTEPA, 

G., ADAME, A., PHAM, H. M., HOLZENBERGER, M., KELLY, J. W., MASLIAH, 

E. & DILLIN, A. 2009. Reduced IGF-1 signaling delays age-associated proteotoxicity 

in mice. Cell, 139, 1157-69. 

COLE, B. K., KELLER, S. R., WU, R., CARTER, J. D., NADLER, J. L. & NUNEMAKER, 

C. S. 2010. Valsartan protects pancreatic islets and adipose tissue from the 



  Bibliography  

206 
 

inflammatory and metabolic consequences of a high-fat diet in mice. Hypertension, 55, 

715-21. 

COLMAN, R. J. & ANDERSON, R. M. 2011. Nonhuman primate calorie restriction. Antioxid 

Redox Signal, 14, 229-39. 

COLMAN, R. J., ANDERSON, R. M., JOHNSON, S. C., KASTMAN, E. K., KOSMATKA, 

K. J., BEASLEY, T. M., ALLISON, D. B., CRUZEN, C., SIMMONS, H. A., 

KEMNITZ, J. W. & WEINDRUCH, R. 2009. Caloric Restriction Delays Disease Onset 

and Mortality in Rhesus Monkeys. Science, 325, 201-204. 

COLMAN, R. J., BEASLEY, T. M., KEMNITZ, J. W., JOHNSON, S. C., WEINDRUCH, R. 

& ANDERSON, R. M. 2014. Caloric restriction reduces age-related and all-cause 

mortality in rhesus monkeys. Nat Commun, 5, 3557. 

COLMAN, R. J., RAMSEY, J. J., ROECKER, E. B., HAVIGHURST, T., HUDSON, J. C. & 

KEMNITZ, J. W. 1999. Body fat distribution with long-term dietary restriction in adult 

male rhesus macaques. J Gerontol A Biol Sci Med Sci, 54, B283-90. 

CONSTANT, V. A., GAGNON, A., LANDRY, A. & SORISKY, A. 2006. Macrophage-

conditioned medium inhibits the differentiation of 3T3-L1 and human abdominal 

preadipocytes. Diabetologia, 49, 1402-11. 

CURSIEFEN, C., CHEN, L., BORGES, L. P., JACKSON, D., CAO, J., RADZIEJEWSKI, C., 

D'AMORE, P. A., DANA, M. R., WIEGAND, S. J. & STREILEIN, J. W. 2004. VEGF-

A stimulates lymphangiogenesis and hemangiogenesis in inflammatory 

neovascularization via macrophage recruitment. J Clin Invest, 113, 1040-50. 

CYPESS, A. M., WEINER, L. S., ROBERTS-TOLER, C., FRANQUET ELIA, E., KESSLER, 

S. H., KAHN, P. A., ENGLISH, J., CHATMAN, K., TRAUGER, S. A., DORIA, A. & 

KOLODNY, G. M. 2015. Activation of human brown adipose tissue by a beta3-

adrenergic receptor agonist. Cell Metab, 21, 33-8. 

DABELEA, D. 2007. The predisposition to obesity and diabetes in offspring of diabetic 

mothers. Diabetes Care, 30 Suppl 2, S169-74. 

DAMIOLA, F., LE MINH, N., PREITNER, N., KORNMANN, B., FLEURY-OLELA, F. & 

SCHIBLER, U. 2000. Restricted feeding uncouples circadian oscillators in peripheral 

tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev, 14, 

2950-61. 

DANFORTH, E., JR. 2000. Failure of adipocyte differentiation causes type II diabetes 

mellitus? Nat Genet, 26, 13. 

DAS, S. K., GILHOOLY, C. H., GOLDEN, J. K., PITTAS, A. G., FUSS, P. J., CHEATHAM, 

R. A., TYLER, S., TSAY, M., MCCRORY, M. A., LICHTENSTEIN, A. H., DALLAL, 

G. E., DUTTA, C., BHAPKAR, M. V., DELANY, J. P., SALTZMAN, E. & 

ROBERTS, S. B. 2007. Long-term effects of 2 energy-restricted diets differing in 

glycemic load on dietary adherence, body composition, and metabolism in CALERIE: 

a 1-y randomized controlled trial. Am J Clin Nutr, 85, 1023-30. 



  Bibliography  

207 
 

DEBELS, H., GALEA, L., HAN, X. L., PALMER, J., VAN ROOIJEN, N., MORRISON, W. 

& ABBERTON, K. 2013. Macrophages play a key role in angiogenesis and 

adipogenesis in a mouse tissue engineering model. Tissue Eng Part A, 19, 2615-25. 

DEFRONZO, R. A., TOBIN, J. D. & ANDRES, R. 1979. Glucose clamp technique: a method 

for quantifying insulin secretion and resistance. Am J Physiol, 237, E214-23. 

DEFRONZO, R. A. & TRIPATHY, D. 2009. Skeletal muscle insulin resistance is the primary 

defect in type 2 diabetes. Diabetes Care, 32 Suppl 2, S157-63. 

DELARUE, J. & MAGNAN, C. 2007. Free fatty acids and insulin resistance. Curr Opin Clin 

Nutr Metab Care, 10, 142-8. 

DIABETES PREVENTION PROGRAM RESEARCH, G. 2015. Long-term effects of lifestyle 

intervention or metformin on diabetes development and microvascular complications 

over 15-year follow-up: the Diabetes Prevention Program Outcomes Study. Lancet 

Diabetes Endocrinol, 3, 866-75. 

DING, H., ZHENG, S., GARCIA-RUIZ, D., HOU, D., WEI, Z., LIAO, Z., LI, L., ZHANG, 

Y., HAN, X., ZEN, K., ZHANG, C. Y., LI, J. & JIANG, X. 2016. Fasting induces a 

subcutaneous-to-visceral fat switch mediated by microRNA-149-3p and suppression of 

PRDM16. Nat Commun, 7, 11533. 

DIVOUX, A., TORDJMAN, J., LACASA, D., VEYRIE, N., HUGOL, D., AISSAT, A., 

BASDEVANT, A., GUERRE-MILLO, M., POITOU, C., ZUCKER, J. D., BEDOSSA, 

P. & CLEMENT, K. 2010. Fibrosis in human adipose tissue: composition, distribution, 

and link with lipid metabolism and fat mass loss. Diabetes, 59, 2817-25. 

DOBRIAN, A. D., MA, Q., LINDSAY, J. W., LEONE, K. A., MA, K., COBEN, J., 

GALKINA, E. V. & NADLER, J. L. 2011. Dipeptidyl peptidase IV inhibitor sitagliptin 

reduces local inflammation in adipose tissue and in pancreatic islets of obese mice. Am 

J Physiol Endocrinol Metab, 300, E410-21. 

DRAZIC, A., MYKLEBUST, L. M., REE, R. & ARNESEN, T. 2016. The world of protein 

acetylation. Biochim Biophys Acta, 1864, 1372-401. 

DUBOIS, S. G., HEILBRONN, L. K., SMITH, S. R., ALBU, J. B., KELLEY, D. E., 

RAVUSSIN, E. & LOOK, A. A. R. G. 2006. Decreased expression of adipogenic genes 

in obese subjects with type 2 diabetes. Obesity (Silver Spring), 14, 1543-52. 

DUCA, F. A., SAKAR, Y., LEPAGE, P., DEVIME, F., LANGELIER, B., DORE, J. & 

COVASA, M. 2014. Replication of obesity and associated signaling pathways through 

transfer of microbiota from obese-prone rats. Diabetes, 63, 1624-36. 

EBKE, L. A., NESTOR-KALINOSKI, A. L., SLOTTERBECK, B. D., AL-DIERI, A. G., 

GHOSH-LESTER, S., RUSSO, L., NAJJAR, S. M., VON GRAFENSTEIN, H. & 

MCINERNEY, M. F. 2014. Tight association between macrophages and adipocytes in 

obesity: implications for adipocyte preparation. Obesity (Silver Spring), 22, 1246-55. 

EDWARDS, I. J., RUDEL, L. L., TERRY, J. G., KEMNITZ, J. W., WEINDRUCH, R. & 

CEFALU, W. T. 1998. Caloric Restriction in Rhesus Monkeys Reduces Low Density 



  Bibliography  

208 
 

Lipoprotein Interaction with Arterial Proteoglycans. The Journals of Gerontology: 

Series A, 53A, B443-B448. 

ESHGHINIA, S. & MOHAMMADZADEH, F. 2013. The effects of modified alternate-day 

fasting diet on weight loss and CAD risk factors in overweight and obese women. J 

Diabetes Metab Disord, 12, 4. 

FABBIANO, S., SUAREZ-ZAMORANO, N., RIGO, D., VEYRAT-DUREBEX, C., 

STEVANOVIC DOKIC, A., COLIN, D. J. & TRAJKOVSKI, M. 2016. Caloric 

Restriction Leads to Browning of White Adipose Tissue through Type 2 Immune 

Signaling. Cell Metab, 24, 434-446. 

FAIN, J. N., MADAN, A. K., HILER, M. L., CHEEMA, P. & BAHOUTH, S. W. 2004. 

Comparison of the release of adipokines by adipose tissue, adipose tissue matrix, and 

adipocytes from visceral and subcutaneous abdominal adipose tissues of obese humans. 

Endocrinology, 145, 2273-82. 

FALL, C. H. 2011. Evidence for the intra-uterine programming of adiposity in later life. Ann 

Hum Biol, 38, 410-28. 

FINK, L. N., COSTFORD, S. R., LEE, Y. S., JENSEN, T. E., BILAN, P. J., OBERBACH, A., 

BLUHER, M., OLEFSKY, J. M., SAMS, A. & KLIP, A. 2014. Pro-inflammatory 

macrophages increase in skeletal muscle of high fat-fed mice and correlate with 

metabolic risk markers in humans. Obesity (Silver Spring), 22, 747-57. 

FINK, L. N., OBERBACH, A., COSTFORD, S. R., CHAN, K. L., SAMS, A., BLUHER, M. 

& KLIP, A. 2013. Expression of anti-inflammatory macrophage genes within skeletal 

muscle correlates with insulin sensitivity in human obesity and type 2 diabetes. 

Diabetologia, 56, 1623-8. 

FISHER, F. M., KLEINER, S., DOURIS, N., FOX, E. C., MEPANI, R. J., VERDEGUER, F., 

WU, J., KHARITONENKOV, A., FLIER, J. S., MARATOS-FLIER, E. & 

SPIEGELMAN, B. M. 2012. FGF21 regulates PGC-1alpha and browning of white 

adipose tissues in adaptive thermogenesis. Genes Dev, 26, 271-81. 

FJELDBORG, K., PEDERSEN, S. B., MOLLER, H. J., CHRISTIANSEN, T., BENNETZEN, 

M. & RICHELSEN, B. 2014. Human adipose tissue macrophages are enhanced but 

changed to an anti-inflammatory profile in obesity. J Immunol Res, 2014, 309548. 

FLEGAL, K. M., KIT, B. K., ORPANA, H. & GRAUBARD, B. I. 2013. Association of all-

cause mortality with overweight and obesity using standard body mass index 

categories: A systematic review and meta-analysis. JAMA, 309, 71-82. 

FONTANA, L., KLEIN, S. & HOLLOSZY, J. O. 2010. Effects of long-term calorie restriction 

and endurance exercise on glucose tolerance, insulin action, and adipokine production. 

Age (Dordr), 32, 97-108. 

FONTANA, L., MEYER, T. E., KLEIN, S. & HOLLOSZY, J. O. 2004. Long-term calorie 

restriction is highly effective in reducing the risk for atherosclerosis in humans. Proc 

Natl Acad Sci U S A, 101, 6659-63. 



  Bibliography  

209 
 

FONTANA, L., VILLAREAL, D. T., WEISS, E. P., RACETTE, S. B., STEGER-MAY, K., 

KLEIN, S., HOLLOSZY, J. O. & WASHINGTON UNIVERSITY SCHOOL OF 

MEDICINE, C. G. 2007. Calorie restriction or exercise: effects on coronary heart 

disease risk factors. A randomized, controlled trial. Am J Physiol Endocrinol Metab, 

293, E197-202. 

FONTANA, L., WEISS, E. P., VILLAREAL, D. T., KLEIN, S. & HOLLOSZY, J. O. 2008. 

Long-term effects of calorie or protein restriction on serum IGF-1 and IGFBP-3 

concentration in humans. Aging Cell, 7, 681-7. 

FORSTER, M. J., MORRIS, P. & SOHAL, R. S. 2003. Genotype and age influence the effect 

of caloric intake on mortality in mice. FASEB J, 17, 690-2. 

FUJISAKA, S., USUI, I., IKUTANI, M., AMINUDDIN, A., TAKIKAWA, A., 

TSUNEYAMA, K., MAHMOOD, A., GODA, N., NAGAI, Y., TAKATSU, K. & 

TOBE, K. 2013. Adipose tissue hypoxia induces inflammatory M1 polarity of 

macrophages in an HIF-1alpha-dependent and HIF-1alpha-independent manner in 

obese mice. Diabetologia, 56, 1403-12. 

GARDNER, E. M. 2005. Caloric Restriction Decreases Survival of Aged Mice in Response to 

Primary Influenza Infection. The Journals of Gerontology: Series A, 60, 688-694. 

GARDNER, E. M., BELI, E., CLINTHORNE, J. F. & DURIANCIK, D. M. 2011. Energy 

Intake and Response to Infection with Influenza. Annual Review of Nutrition, 31, 353-

367. 

GEALEKMAN, O., GUSEVA, N., HARTIGAN, C., APOTHEKER, S., GORGOGLIONE, 

M., GURAV, K., TRAN, K. V., STRAUBHAAR, J., NICOLORO, S., CZECH, M. P., 

THOMPSON, M., PERUGINI, R. A. & CORVERA, S. 2011. Depot-specific 

differences and insufficient subcutaneous adipose tissue angiogenesis in human 

obesity. Circulation, 123, 186-94. 

GILL, S. & PANDA, S. 2015. A Smartphone App Reveals Erratic Diurnal Eating Patterns in 

Humans that Can Be Modulated for Health Benefits. Cell Metab, 22, 789-98. 

GIORDANO, A., MURANO, I., MONDINI, E., PERUGINI, J., SMORLESI, A., SEVERI, I., 

BARAZZONI, R., SCHERER, P. E. & CINTI, S. 2013. Obese adipocytes show 

ultrastructural features of stressed cells and die of pyroptosis. J Lipid Res, 54, 2423-36. 

GODAR, R. J., MA, X., LIU, H., MURPHY, J. T., WEINHEIMER, C. J., KOVACS, A., 

CROSBY, S. D., SAFTIG, P. & DIWAN, A. 2015. Repetitive stimulation of 

autophagy-lysosome machinery by intermittent fasting preconditions the myocardium 

to ischemia-reperfusion injury. Autophagy, 11, 1537-60. 

GOLDSTONE, A. P. & BEALES, P. L. 2008. Genetic obesity syndromes. Front Horm Res, 

36, 37-60. 

GOODPASTER, B. H., KELLEY, D. E., WING, R. R., MEIER, A. & THAETE, F. L. 1999. 

Effects of weight loss on regional fat distribution and insulin sensitivity in obesity. 

Diabetes, 48, 839-47. 



  Bibliography  

210 
 

GOODRICK, C. L., INGRAM, D. K., REYNOLDS, M. A., FREEMAN, J. R. & CIDER, N. 

1990. Effects of intermittent feeding upon body weight and lifespan in inbred mice: 

interaction of genotype and age. Mech Ageing Dev, 55, 69-87. 

GOODRICK, C. L., INGRAM, D. K., REYNOLDS, M. A., FREEMAN, J. R. & CIDER, N. 

L. 1982. Effects of intermittent feeding upon growth and life span in rats. Gerontology, 

28, 233-41. 

GOODRICK, C. L., INGRAM, D. K., REYNOLDS, M. A., FREEMAN, J. R. & CIDER, N. 

L. 1983a. Differential effects of intermittent feeding and voluntary exercise on body 

weight and lifespan in adult rats. J Gerontol, 38, 36-45. 

GOODRICK, C. L., INGRAM, D. K., REYNOLDS, M. A., FREEMAN, J. R. & CIDER, N. 

L. 1983b. Effects of intermittent feeding upon growth, activity, and lifespan in rats 

allowed voluntary exercise. Experimental Aging Research, 9, 203-209. 

GOOSSENS, G. H. & BLAAK, E. E. 2012. Adipose tissue oxygen tension: implications for 

chronic metabolic and inflammatory diseases. Curr Opin Clin Nutr Metab Care, 15, 

539-46. 

GOOSSENS, G. H., MOORS, C. C., VAN DER ZIJL, N. J., VENTECLEF, N., ALILI, R., 

JOCKEN, J. W., ESSERS, Y., CLEUTJENS, J. P., CLEMENT, K., DIAMANT, M. & 

BLAAK, E. E. 2012. Valsartan improves adipose tissue function in humans with 

impaired glucose metabolism: a randomized placebo-controlled double-blind trial. 

PLoS One, 7, e39930. 

GOTTHARDT, J. D., VERPEUT, J. L., YEOMANS, B. L., YANG, J. A., YASREBI, A., 

ROEPKE, T. A. & BELLO, N. T. 2016. Intermittent Fasting Promotes Fat Loss With 

Lean Mass Retention, Increased Hypothalamic Norepinephrine Content, and Increased 

Neuropeptide Y Gene Expression in Diet-Induced Obese Male Mice. Endocrinology, 

157, 679-91. 

GRESL, T. A., COLMAN, R. J., ROECKER, E. B., HAVIGHURST, T. C., HUANG, Z., 

ALLISON, D. B., BERGMAN, R. N. & KEMNITZ, J. W. 2001. Dietary restriction and 

glucose regulation in aging rhesus monkeys: a follow-up report at 8.5 yr. Am J Physiol 

Endocrinol Metab, 281, E757-65. 

GUGLIELMI, V., CARDELLINI, M., CINTI, F., CORGOSINHO, F., CARDOLINI, I., 

D'ADAMO, M., ZINGARETTI, M. C., BELLIA, A., LAURO, D., GENTILESCHI, P., 

FEDERICI, M., CINTI, S. & SBRACCIA, P. 2015. Omental adipose tissue fibrosis and 

insulin resistance in severe obesity. Nutr Diabetes, 5, e175. 

GUO, J., JOU, W., GAVRILOVA, O. & HALL, K. D. 2009. Persistent diet-induced obesity in 

male C57BL/6 mice resulting from temporary obesigenic diets. PLoS One, 4, e5370. 

GUTIERREZ, D. A., KENNEDY, A., ORR, J. S., ANDERSON, E. K., WEBB, C. D., 

GERRALD, W. K. & HASTY, A. H. 2011. Aberrant accumulation of undifferentiated 

myeloid cells in the adipose tissue of CCR2-deficient mice delays improvements in 

insulin sensitivity. Diabetes, 60, 2820-9. 



  Bibliography  

211 
 

HAASE, J., WEYER, U., IMMIG, K., KLOTING, N., BLUHER, M., EILERS, J., 

BECHMANN, I. & GERICKE, M. 2014. Local proliferation of macrophages in adipose 

tissue during obesity-induced inflammation. Diabetologia, 57, 562-71. 

HALBERG, N., HENRIKSEN, M., SODERHAMN, N., STALLKNECHT, B., PLOUG, T., 

SCHJERLING, P. & DELA, F. 2005. Effect of intermittent fasting and refeeding on 

insulin action in healthy men. J Appl Physiol (1985), 99, 2128-36. 

HAMMARSTEDT, A., ISAKSON, P., GUSTAFSON, B. & SMITH, U. 2007. Wnt-signaling 

is maintained and adipogenesis inhibited by TNFalpha but not MCP-1 and resistin. 

Biochem Biophys Res Commun, 357, 700-6. 

HAN, M. S., JUNG, D. Y., MOREL, C., LAKHANI, S. A., KIM, J. K., FLAVELL, R. A. & 

DAVIS, R. J. 2013. JNK expression by macrophages promotes obesity-induced insulin 

resistance and inflammation. Science, 339, 218-22. 

HANSEN, B. C. & BODKIN, N. L. 1993. Primary prevention of diabetes mellitus by 

prevention of obesity in monkeys. Diabetes, 42, 1809-14. 

HARMAN-BOEHM, I., BLUHER, M., REDEL, H., SION-VARDY, N., OVADIA, S., 

AVINOACH, E., SHAI, I., KLOTING, N., STUMVOLL, M., BASHAN, N. & 

RUDICH, A. 2007. Macrophage infiltration into omental versus subcutaneous fat 

across different populations: effect of regional adiposity and the comorbidities of 

obesity. J Clin Endocrinol Metab, 92, 2240-7. 

HARRISON, D. E. & ARCHER, J. R. 1987. Genetic Differences in Effects of Food Restriction 

on Aging in Mice. The Journal of Nutrition, 117, 376-382. 

HARVIE, M., WRIGHT, C., PEGINGTON, M., MCMULLAN, D., MITCHELL, E., 

MARTIN, B., CUTLER, R. G., EVANS, G., WHITESIDE, S., MAUDSLEY, S., 

CAMANDOLA, S., WANG, R., CARLSON, O. D., EGAN, J. M., MATTSON, M. P. 

& HOWELL, A. 2013. The effect of intermittent energy and carbohydrate restriction 

v. daily energy restriction on weight loss and metabolic disease risk markers in 

overweight women. Br J Nutr, 110, 1534-47. 

HARVIE, M. N., PEGINGTON, M., MATTSON, M. P., FRYSTYK, J., DILLON, B., 

EVANS, G., CUZICK, J., JEBB, S. A., MARTIN, B., CUTLER, R. G., SON, T. G., 

MAUDSLEY, S., CARLSON, O. D., EGAN, J. M., FLYVBJERG, A. & HOWELL, 

A. 2011. The effects of intermittent or continuous energy restriction on weight loss and 

metabolic disease risk markers: a randomized trial in young overweight women. Int J 

Obes (Lond), 35, 714-27. 

HASHIMOTO, D., CHOW, A., NOIZAT, C., TEO, P., BEASLEY, M. B., LEBOEUF, M., 

BECKER, C. D., SEE, P., PRICE, J., LUCAS, D., GRETER, M., MORTHA, A., 

BOYER, S. W., FORSBERG, E. C., TANAKA, M., VAN ROOIJEN, N., GARCIA-

SASTRE, A., STANLEY, E. R., GINHOUX, F., FRENETTE, P. S. & MERAD, M. 

2013. Tissue-resident macrophages self-maintain locally throughout adult life with 

minimal contribution from circulating monocytes. Immunity, 38, 792-804. 

HATORI, M., VOLLMERS, C., ZARRINPAR, A., DITACCHIO, L., BUSHONG, E. A., 

GILL, S., LEBLANC, M., CHAIX, A., JOENS, M., FITZPATRICK, J. A., 



  Bibliography  

212 
 

ELLISMAN, M. H. & PANDA, S. 2012. Time-restricted feeding without reducing 

caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab, 15, 

848-60. 

HAYES, A. J., LUNG, T. W., BAUMAN, A. & HOWARD, K. 2017. Modelling obesity trends 

in Australia: unravelling the past and predicting the future. Int J Obes (Lond), 41, 178-

185. 

HEIJBOER, A. C., DONGA, E., VOSHOL, P. J., DANG, Z. C., HAVEKES, L. M., ROMIJN, 

J. A. & CORSSMIT, E. P. 2005. Sixteen hours of fasting differentially affects hepatic 

and muscle insulin sensitivity in mice. J Lipid Res, 46, 582-8. 

HEILBRONN, L., SMITH, S. R. & RAVUSSIN, E. 2004a. Failure of fat cell proliferation, 

mitochondrial function and fat oxidation results in ectopic fat storage, insulin resistance 

and type II diabetes mellitus. Int J Obes Relat Metab Disord, 28 Suppl 4, S12-21. 

HEILBRONN, L. K., CIVITARESE, A. E., BOGACKA, I., SMITH, S. R., HULVER, M. & 

RAVUSSIN, E. 2005a. Glucose tolerance and skeletal muscle gene expression in 

response to alternate day fasting. Obes Res, 13, 574-81. 

HEILBRONN, L. K., DE JONGE, L., FRISARD, M. I., DELANY, J. P., LARSON-MEYER, 

D. E., ROOD, J., NGUYEN, T., MARTIN, C. K., VOLAUFOVA, J., MOST, M. M., 

GREENWAY, F. L., SMITH, S. R., DEUTSCH, W. A., WILLIAMSON, D. A., 

RAVUSSIN, E. & PENNINGTON, C. T. 2006. Effect of 6-month calorie restriction on 

biomarkers of longevity, metabolic adaptation, and oxidative stress in overweight 

individuals: a randomized controlled trial. JAMA, 295, 1539-48. 

HEILBRONN, L. K. & LIU, B. 2014. Do adipose tissue macrophages promote insulin 

resistance or adipose tissue remodelling in humans? Horm Mol Biol Clin Investig, 20, 

3-13. 

HEILBRONN, L. K. & RAVUSSIN, E. 2003. Calorie restriction and aging: review of the 

literature and implications for studies in humans. Am J Clin Nutr, 78, 361-9. 

HEILBRONN, L. K., ROOD, J., JANDEROVA, L., ALBU, J. B., KELLEY, D. E., 

RAVUSSIN, E. & SMITH, S. R. 2004b. Relationship between serum resistin 

concentrations and insulin resistance in nonobese, obese, and obese diabetic subjects. J 

Clin Endocrinol Metab, 89, 1844-8. 

HEILBRONN, L. K., SMITH, S. R., MARTIN, C. K., ANTON, S. D. & RAVUSSIN, E. 

2005b. Alternate-day fasting in nonobese subjects: effects on body weight, body 

composition, and energy metabolism. Am J Clin Nutr, 81, 69-73. 

HENEGAR, C., TORDJMAN, J., ACHARD, V., LACASA, D., CREMER, I., GUERRE-

MILLO, M., POITOU, C., BASDEVANT, A., STICH, V., VIGUERIE, N., LANGIN, 

D., BEDOSSA, P., ZUCKER, J. D. & CLEMENT, K. 2008. Adipose tissue 

transcriptomic signature highlights the pathological relevance of extracellular matrix in 

human obesity. Genome Biol, 9, R14. 

HEYMSFIELD, S. B. & WADDEN, T. A. 2017. Mechanisms, Pathophysiology, and 

Management of Obesity. New England Journal of Medicine, 376, 254-266. 



  Bibliography  

213 
 

HIGAMI, Y., BARGER, J. L., PAGE, G. P., ALLISON, D. B., SMITH, S. R., PROLLA, T. 

A. & WEINDRUCH, R. 2006. Energy restriction lowers the expression of genes linked 

to inflammation, the cytoskeleton, the extracellular matrix, and angiogenesis in mouse 

adipose tissue. J Nutr, 136, 343-52. 

HILL, J. O., WYATT, H. R. & PETERS, J. C. 2012. Energy balance and obesity. Circulation, 

126, 126-32. 

HOCH, M., EBERLE, A. N., PETERLI, R., PETERS, T., SEBOEK, D., KELLER, U., 

MULLER, B. & LINSCHEID, P. 2008. LPS induces interleukin-6 and interleukin-8 

but not tumor necrosis factor-alpha in human adipocytes. Cytokine, 41, 29-37. 

HODDY, K. K., KROEGER, C. M., TREPANOWSKI, J. F., BARNOSKY, A., BHUTANI, S. 

& VARADY, K. A. 2014. Meal timing during alternate day fasting: Impact on body 

weight and cardiovascular disease risk in obese adults. Obesity (Silver Spring), 22, 

2524-31. 

HOEKS, J., VAN HERPEN, N. A., MENSINK, M., MOONEN-KORNIPS, E., VAN 

BEURDEN, D., HESSELINK, M. K. C. & SCHRAUWEN, P. 2010. Prolonged Fasting 

Identifies Skeletal Muscle Mitochondrial Dysfunction as Consequence Rather Than 

Cause of Human Insulin Resistance. Diabetes, 59, 2117-2125. 

HOEVENAARS, F. P., KEIJER, J., HERREMAN, L., PALM, I., HEGEMAN, M. A., 

SWARTS, H. J. & VAN SCHOTHORST, E. M. 2014. Adipose tissue metabolism and 

inflammation are differently affected by weight loss in obese mice due to either a high-

fat diet restriction or change to a low-fat diet. Genes Nutr, 9, 391. 

HOSOGAI, N., FUKUHARA, A., OSHIMA, K., MIYATA, Y., TANAKA, S., SEGAWA, K., 

FURUKAWA, S., TOCHINO, Y., KOMURO, R., MATSUDA, M. & SHIMOMURA, 

I. 2007. Adipose tissue hypoxia in obesity and its impact on adipocytokine 

dysregulation. Diabetes, 56, 901-11. 

HOTAMISLIGIL, G. S., SHARGILL, N. S. & SPIEGELMAN, B. M. 1993. Adipose 

expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin 

resistance. Science, 259, 87-91. 

HRUBY, A. & HU, F. B. 2015. The Epidemiology of Obesity: A Big Picture. 

Pharmacoeconomics, 33, 673-89. 

HUANG, T. H. & ABLES, G. P. 2016. Dietary restrictions, bone density, and bone quality. 

Annals of the New York Academy of Sciences, 1363, 26-39. 

HWANG, L. L., WANG, C. H., LI, T. L., CHANG, S. D., LIN, L. C., CHEN, C. P., CHEN, 

C. T., LIANG, K. C., HO, I. K., YANG, W. S. & CHIOU, L. C. 2010. Sex differences 

in high-fat diet-induced obesity, metabolic alterations and learning, and synaptic 

plasticity deficits in mice. Obesity (Silver Spring), 18, 463-9. 

INGRAM, D. K. & DE CABO, R. 2017. Calorie restriction in rodents: Caveats to consider. 

Ageing Res Rev, 39, 15-28. 

INGRAM, D. K. & REYNOLDS, M. A. 1987. The relationship of body weight to longevity 

within laboratory rodent species. Basic Life Sci, 42, 247-82. 



  Bibliography  

214 
 

INOUE, M., JIANG, Y., BARNES, I. I. R. H., TOKUNAGA, M., MARTINEZ-

SANTIBAÑEZ, G., GELETKA, L., LUMENG, C. N., BUCHNER, D. A. & CHUN, 

T.-H. 2013. Thrombospondin 1 Mediates High-Fat Diet-Induced Muscle Fibrosis and 

Insulin Resistance in Male Mice. Endocrinology, 154, 4548-4559. 

INOUYE, K. E., SHI, H., HOWARD, J. K., DALY, C. H., LORD, G. M., ROLLINS, B. J. & 

FLIER, J. S. 2007. Absence of CC chemokine ligand 2 does not limit obesity-associated 

infiltration of macrophages into adipose tissue. Diabetes, 56, 2242-50. 

INSTITUTE OF MEDICINE (U.S.). PANEL ON MACRONUTRIENTS. & INSTITUTE OF 

MEDICINE (U.S.). STANDING COMMITTEE ON THE SCIENTIFIC 

EVALUATION OF DIETARY REFERENCE INTAKES. 2005. Dietary reference 

intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino 

acids, Washington, D.C., National Academies Press. 

JAPANESE MINISTRY OF HEALTH, L. A. W. 2005. Journal of Health and Welfare 

Statistics. Tokyo: Health and Welfare Statistics Association. 

JENKINS, S. J., RUCKERL, D., COOK, P. C., JONES, L. H., FINKELMAN, F. D., VAN 

ROOIJEN, N., MACDONALD, A. S. & ALLEN, J. E. 2011. Local macrophage 

proliferation, rather than recruitment from the blood, is a signature of TH2 

inflammation. Science, 332, 1284-8. 

JERNAS, M., PALMING, J., SJOHOLM, K., JENNISCHE, E., SVENSSON, P. A., 

GABRIELSSON, B. G., LEVIN, M., SJOGREN, A., RUDEMO, M., LYSTIG, T. C., 

CARLSSON, B., CARLSSON, L. M. & LONN, M. 2006. Separation of human 

adipocytes by size: hypertrophic fat cells display distinct gene expression. FASEB J, 

20, 1540-2. 

JOHANNSEN, D. L., TCHOUKALOVA, Y., TAM, C. S., COVINGTON, J. D., XIE, W., 

SCHWARZ, J. M., BAJPEYI, S. & RAVUSSIN, E. 2014. Effect of 8 weeks of 

overfeeding on ectopic fat deposition and insulin sensitivity: testing the "adipose tissue 

expandability" hypothesis. Diabetes Care, 37, 2789-97. 

JOHNSON, P. R. & HIRSCH, J. 1972. Cellularity of adipose depots in six strains of genetically 

obese mice. J Lipid Res, 13, 2-11. 

JORDY, A. B., SERUP, A. K., KARSTOFT, K., PILEGAARD, H., KIENS, B. & JEPPESEN, 

J. 2014. Insulin sensitivity is independent of lipid binding protein trafficking at the 

plasma membrane in human skeletal muscle: effect of a 3-day, high-fat diet. Am J 

Physiol Regul Integr Comp Physiol, 307, R1136-45. 

JOSLIN, P. M. N., BELL, R. K. & SWOAP, S. J. 2017. Obese mice on a high-fat alternate-

day fasting regimen lose weight and improve glucose tolerance. J Anim Physiol Anim 

Nutr (Berl), 101, 1036-1045. 

KAGAWA, Y. 1978. Impact of Westernization on the nutrition of Japanese: changes in 

physique, cancer, longevity and centenarians. Prev Med, 7, 205-17. 

KAHN, S. E., HULL, R. L. & UTZSCHNEIDER, K. M. 2006. Mechanisms linking obesity to 

insulin resistance and type 2 diabetes. Nature, 444, 840-6. 



  Bibliography  

215 
 

KAIYALA, K. J., MORTON, G. J., THALER, J. P., MEEK, T. H., TYLEE, T., OGIMOTO, 

K. & WISSE, B. E. 2012. Acutely Decreased Thermoregulatory Energy Expenditure or 

Decreased Activity Energy Expenditure Both Acutely Reduce Food Intake in Mice. 

PLOS ONE, 7, e41473. 

KAJIMURA, S., SPIEGELMAN, B. M. & SEALE, P. 2015. Brown and Beige Fat: 

Physiological Roles beyond Heat Generation. Cell Metab, 22, 546-59. 

KAMEI, N., TOBE, K., SUZUKI, R., OHSUGI, M., WATANABE, T., KUBOTA, N., 

OHTSUKA-KOWATARI, N., KUMAGAI, K., SAKAMOTO, K., KOBAYASHI, M., 

YAMAUCHI, T., UEKI, K., OISHI, Y., NISHIMURA, S., MANABE, I., 

HASHIMOTO, H., OHNISHI, Y., OGATA, H., TOKUYAMA, K., TSUNODA, M., 

IDE, T., MURAKAMI, K., NAGAI, R. & KADOWAKI, T. 2006. Overexpression of 

monocyte chemoattractant protein-1 in adipose tissues causes macrophage recruitment 

and insulin resistance. J Biol Chem, 281, 26602-14. 

KANG, L., AYALA, J. E., LEE-YOUNG, R. S., ZHANG, Z., JAMES, F. D., NEUFER, P. D., 

POZZI, A., ZUTTER, M. M. & WASSERMAN, D. H. 2011. Diet-induced muscle 

insulin resistance is associated with extracellular matrix remodeling and interaction 

with integrin alpha2beta1 in mice. Diabetes, 60, 416-26. 

KAPAHI, P., KAEBERLEIN, M. & HANSEN, M. 2017. Dietary restriction and lifespan: 

Lessons from invertebrate models. Ageing Res Rev, 39, 3-14. 

KATARE, R. G., KAKINUMA, Y., ARIKAWA, M., YAMASAKI, F. & SATO, T. 2009. 

Chronic intermittent fasting improves the survival following large myocardial ischemia 

by activation of BDNF/VEGF/PI3K signaling pathway. J Mol Cell Cardiol, 46, 405-

12. 

KATSIKI, N., NTAIOS, G. & VEMMOS, K. 2011. Stroke, obesity and gender: A review of 

the literature. Maturitas, 69, 239-243. 

KAWANISHI, N., MIZOKAMI, T., YANO, H. & SUZUKI, K. 2013. Exercise attenuates M1 

macrophages and CD8+ T cells in the adipose tissue of obese mice. Med Sci Sports 

Exerc, 45, 1684-93. 

KAYO, T., ALLISON, D. B., WEINDRUCH, R. & PROLLA, T. A. 2001. Influences of aging 

and caloric restriction on the transcriptional profile of skeletal muscle from rhesus 

monkeys. Proc Natl Acad Sci U S A, 98, 5093-8. 

KELLER, M., MAZUCH, J., ABRAHAM, U., EOM, G. D., HERZOG, E. D., VOLK, H. D., 

KRAMER, A. & MAIER, B. 2009. A circadian clock in macrophages controls 

inflammatory immune responses. Proc Natl Acad Sci U S A, 106, 21407-12. 

KEMNITZ, J. W. 2011. Calorie restriction and aging in nonhuman primates. ILAR J, 52, 66-

77. 

KEMNITZ, J. W., ROECKER, E. B., WEINDRUCH, R., ELSON, D. F., BAUM, S. T. & 

BERGMAN, R. N. 1994. Dietary restriction increases insulin sensitivity and lowers 

blood glucose in rhesus monkeys. Am J Physiol, 266, E540-7. 



  Bibliography  

216 
 

KEOPHIPHATH, M., ACHARD, V., HENEGAR, C., ROUAULT, C., CLEMENT, K. & 

LACASA, D. 2009. Macrophage-secreted factors promote a profibrotic phenotype in 

human preadipocytes. Mol Endocrinol, 23, 11-24. 

KHAN, I. M., PERRARD, X. Y., BRUNNER, G., LUI, H., SPARKS, L. M., SMITH, S. R., 

WANG, X., SHI, Z. Z., LEWIS, D. E., WU, H. & BALLANTYNE, C. M. 2015. 

Intermuscular and perimuscular fat expansion in obesity correlates with skeletal muscle 

T cell and macrophage infiltration and insulin resistance. Int J Obes (Lond), 39, 1607-

18. 

KHAN, T., MUISE, E. S., IYENGAR, P., WANG, Z. V., CHANDALIA, M., ABATE, N., 

ZHANG, B. B., BONALDO, P., CHUA, S. & SCHERER, P. E. 2009. Metabolic 

dysregulation and adipose tissue fibrosis: role of collagen VI. Mol Cell Biol, 29, 1575-

91. 

KIHIRA, Y., MIYAKE, M., HIRATA, M., HOSHINA, Y., KATO, K., SHIRAKAWA, H., 

SAKAUE, H., YAMANO, N., IZAWA-ISHIZAWA, Y., ISHIZAWA, K., IKEDA, Y., 

TSUCHIYA, K., TAMAKI, T. & TOMITA, S. 2014. Deletion of hypoxia-inducible 

factor-1alpha in adipocytes enhances glucagon-like peptide-1 secretion and reduces 

adipose tissue inflammation. PLoS One, 9, e93856. 

KIM, D., WANG, L., BECONI, M., EIERMANN, G. J., FISHER, M. H., HE, H., HICKEY, 

G. J., KOWALCHICK, J. E., LEITING, B., LYONS, K., MARSILIO, F., MCCANN, 

M. E., PATEL, R. A., PETROV, A., SCAPIN, G., PATEL, S. B., ROY, R. S., WU, J. 

K., WYVRATT, M. J., ZHANG, B. B., ZHU, L., THORNBERRY, N. A. & WEBER, 

A. E. 2005. (2R)-4-oxo-4-[3-(trifluoromethyl)-5,6-dihydro[1,2,4]triazolo[4,3-

a]pyrazin-7(8H)- yl]-1-(2,4,5-trifluorophenyl)butan-2-amine: a potent, orally active 

dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. J Med Chem, 48, 

141-51. 

KIM, J. Y., VAN DE WALL, E., LAPLANTE, M., AZZARA, A., TRUJILLO, M. E., 

HOFMANN, S. M., SCHRAW, T., DURAND, J. L., LI, H., LI, G., JELICKS, L. A., 

MEHLER, M. F., HUI, D. Y., DESHAIES, Y., SHULMAN, G. I., SCHWARTZ, G. J. 

& SCHERER, P. E. 2007. Obesity-associated improvements in metabolic profile 

through expansion of adipose tissue. J Clin Invest, 117, 2621-37. 

KIM, K. H., KIM, Y. H., SON, J. E., LEE, J. H., KIM, S., CHOE, M. S., MOON, J. H., 

ZHONG, J., FU, K., LENGLIN, F., YOO, J. A., BILAN, P. J., KLIP, A., NAGY, A., 

KIM, J. R., PARK, J. G., HUSSEIN, S. M., DOH, K. O., HUI, C. C. & SUNG, H. K. 

2017. Intermittent fasting promotes adipose thermogenesis and metabolic homeostasis 

via VEGF-mediated alternative activation of macrophage. Cell Res, 27, 1309-1326. 

KIM, S. H. & PLUTZKY, J. 2016. Brown Fat and Browning for the Treatment of Obesity and 

Related Metabolic Disorders. Diabetes Metab J, 40, 12-21. 

KLEMPEL, M. C., BHUTANI, S., FITZGIBBON, M., FREELS, S. & VARADY, K. A. 2010. 

Dietary and physical activity adaptations to alternate day modified fasting: implications 

for optimal weight loss. Nutr J, 9, 35. 



  Bibliography  

217 
 

KLEMPEL, M. C., KROEGER, C. M., NORKEVICIUTE, E., GOSLAWSKI, M., PHILLIPS, 

S. A. & VARADY, K. A. 2013a. Benefit of a low-fat over high-fat diet on vascular 

health during alternate day fasting. Nutr Diabetes, 3, e71. 

KLEMPEL, M. C., KROEGER, C. M. & VARADY, K. A. 2013b. Alternate day fasting (ADF) 

with a high-fat diet produces similar weight loss and cardio-protection as ADF with a 

low-fat diet. Metabolism, 62, 137-43. 

KLEMPEL, M. C., KROEGER, C. M. & VARADY, K. A. 2013c. Alternate day fasting 

increases LDL particle size independently of dietary fat content in obese humans. Eur 

J Clin Nutr, 67, 783-5. 

KLOVER, P. J., ZIMMERS, T. A., KONIARIS, L. G. & MOONEY, R. A. 2003. Chronic 

exposure to interleukin-6 causes hepatic insulin resistance in mice. Diabetes, 52, 2784-

9. 

KOLEHMAINEN, M., SALOPURO, T., SCHWAB, U. S., KEKALAINEN, J., KALLIO, P., 

LAAKSONEN, D. E., PULKKINEN, L., LINDI, V. I., SIVENIUS, K., MAGER, U., 

SIITONEN, N., NISKANEN, L., GYLLING, H., RAURAMAA, R. & UUSITUPA, M. 

2008. Weight reduction modulates expression of genes involved in extracellular matrix 

and cell death: the GENOBIN study. Int J Obes (Lond), 32, 292-303. 

KONG, X., YAO, T., ZHOU, P., KAZAK, L., TENEN, D., LYUBETSKAYA, A., DAWES, 

B. A., TSAI, L., KAHN, B. B., SPIEGELMAN, B. M., LIU, T. & ROSEN, E. D. 2018. 

Brown Adipose Tissue Controls Skeletal Muscle Function via the Secretion of 

Myostatin. Cell Metab. 

KOSTELI, A., SUGARU, E., HAEMMERLE, G., MARTIN, J. F., LEI, J., ZECHNER, R. & 

FERRANTE, A. W., JR. 2010. Weight loss and lipolysis promote a dynamic immune 

response in murine adipose tissue. J Clin Invest, 120, 3466-79. 

KOUTKIA, P., SCHURGIN, S., BERRY, J., BREU, J., LEE, B. S., KLIBANSKI, A. & 

GRINSPOON, S. 2005. Reciprocal changes in endogenous ghrelin and growth 

hormone during fasting in healthy women. Am J Physiol Endocrinol Metab, 289, E814-

22. 

KOVACIKOVA, M., SENGENES, C., KOVACOVA, Z., SIKLOVA-VITKOVA, M., 

KLIMCAKOVA, E., POLAK, J., ROSSMEISLOVA, L., BAJZOVA, M., HEJNOVA, 

J., HNEVKOVSKA, Z., BOULOUMIE, A., LANGIN, D. & STICH, V. 2011. Dietary 

intervention-induced weight loss decreases macrophage content in adipose tissue of 

obese women. Int J Obes (Lond), 35, 91-8. 

KRATZ, M., COATS, B. R., HISERT, K. B., HAGMAN, D., MUTSKOV, V., PERIS, E., 

SCHOENFELT, K. Q., KUZMA, J. N., LARSON, I., BILLING, P. S., 

LANDERHOLM, R. W., CROUTHAMEL, M., GOZAL, D., HWANG, S., SINGH, P. 

K. & BECKER, L. 2014. Metabolic dysfunction drives a mechanistically distinct 

proinflammatory phenotype in adipose tissue macrophages. Cell Metab, 20, 614-25. 

KRIZOVA, E. & SIMEK, V. 1996. Influence of intermittent fasting and high-fat diet on 

morphological changes of the digestive system and on changes of lipid metabolism in 

the laboratory mouse. Physiol Res, 45, 145-51. 



  Bibliography  

218 
 

KROGH-MADSEN, R., PLOMGAARD, P., MOLLER, K., MITTENDORFER, B. & 

PEDERSEN, B. K. 2006. Influence of TNF-alpha and IL-6 infusions on insulin 

sensitivity and expression of IL-18 in humans. Am J Physiol Endocrinol Metab, 291, 

E108-14. 

KRUDE, H., BIEBERMANN, H., LUCK, W., HORN, R., BRABANT, G. & GRÜTERS, A. 

1998. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation 

caused by POMC mutations in humans. Nature Genetics, 19, 155. 

LAGE, R., DIEGUEZ, C., VIDAL-PUIG, A. & LOPEZ, M. 2008. AMPK: a metabolic gauge 

regulating whole-body energy homeostasis. Trends Mol Med, 14, 539-49. 

LAM, Y. Y., HA, C. W., CAMPBELL, C. R., MITCHELL, A. J., DINUDOM, A., 

OSCARSSON, J., COOK, D. I., HUNT, N. H., CATERSON, I. D., HOLMES, A. J. & 

STORLIEN, L. H. 2012. Increased gut permeability and microbiota change associate 

with mesenteric fat inflammation and metabolic dysfunction in diet-induced obese 

mice. PLoS One, 7, e34233. 

LANE, M. A., BALL, S. S., INGRAM, D. K., CUTLER, R. G., ENGEL, J., READ, V. & 

ROTH, G. S. 1995. Diet restriction in rhesus monkeys lowers fasting and glucose-

stimulated glucoregulatory end points. Am J Physiol, 268, E941-8. 

LANE, M. A., INGRAM, D. K., CUTLER, R. G., KNAPKA, J. J., BARNARD, D. E. & 

ROTH, G. S. 1992. Dietary restriction in nonhuman primates: progress report on the 

NIA study. Ann N Y Acad Sci, 673, 36-45. 

LANE, M. A., INGRAM, D. K. & ROTH, G. S. 1999. Calorie restriction in nonhuman 

primates: effects on diabetes and cardiovascular disease risk. Toxicol Sci, 52, 41-8. 

LARSON-MEYER, D. E., HEILBRONN, L. K., REDMAN, L. M., NEWCOMER, B. R., 

FRISARD, M. I., ANTON, S., SMITH, S. R., ALFONSO, A. & RAVUSSIN, E. 2006. 

Effect of calorie restriction with or without exercise on insulin sensitivity, beta-cell 

function, fat cell size, and ectopic lipid in overweight subjects. Diabetes Care, 29, 

1337-44. 

LAURENCIKIENE, J., SKURK, T., KULYTE, A., HEDEN, P., ASTROM, G., SJOLIN, E., 

RYDEN, M., HAUNER, H. & ARNER, P. 2011. Regulation of lipolysis in small and 

large fat cells of the same subject. J Clin Endocrinol Metab, 96, E2045-9. 

LEE, Y. S., PARK, M. S., CHOUNG, J. S., KIM, S. S., OH, H. H., CHOI, C. S., HA, S. Y., 

KANG, Y., KIM, Y. & JUN, H. S. 2012. Glucagon-like peptide-1 inhibits adipose 

tissue macrophage infiltration and inflammation in an obese mouse model of diabetes. 

Diabetologia, 55, 2456-68. 

LEUWER, M., WELTERS, I., MARX, G., RUSHTON, A., BAO, H., HUNTER, L. & 

TRAYHURN, P. 2009. Endotoxaemia leads to major increases in inflammatory 

adipokine gene expression in white adipose tissue of mice. Pflugers Arch, 457, 731-41. 

LI, G., XIE, C., LU, S., NICHOLS, R. G., TIAN, Y., LI, L., PATEL, D., MA, Y., BROCKER, 

C. N., YAN, T., KRAUSZ, K. W., XIANG, R., GAVRILOVA, O., PATTERSON, A. 

D. & GONZALEZ, F. J. 2017. Intermittent Fasting Promotes White Adipose Browning 

and Decreases Obesity by Shaping the Gut Microbiota. Cell Metab, 26, 801. 



  Bibliography  

219 
 

LI, Q., HATA, A., KOSUGI, C., KATAOKA, N. & FUNAKI, M. 2010. The density of 

extracellular matrix proteins regulates inflammation and insulin signaling in 

adipocytes. FEBS Lett, 584, 4145-50. 

LIAO, C. Y., RIKKE, B. A., JOHNSON, T. E., DIAZ, V. & NELSON, J. F. 2010. Genetic 

variation in the murine lifespan response to dietary restriction: from life extension to 

life shortening. Aging Cell, 9, 92-5. 

LIM, S., HONEK, J., XUE, Y., SEKI, T., CAO, Z., ANDERSSON, P., YANG, X., HOSAKA, 

K. & CAO, Y. 2012. Cold-induced activation of brown adipose tissue and adipose 

angiogenesis in mice. Nat Protoc, 7, 606-15. 

LIU, D., MORALES, F. E., IGLAYREGER, H. B., TREUTELAAR, M. K., ROTHBERG, A. 

E., HUBAL, M. J., NADLER, E. P., ROBIDOUX, J., BARAKAT, H., HOROWITZ, 

J. F., HOFFMAN, E. P., BURANT, C. F. & GORDON, P. M. 2017a. Expression of 

macrophage genes within skeletal muscle correlates inversely with adiposity and 

insulin resistance in humans. Appl Physiol Nutr Metab, 1-7. 

LIU, H., JAVAHERI, A., GODAR, R. J., MURPHY, J., MA, X., ROHATGI, N., 

MAHADEVAN, J., HYRC, K., SAFTIG, P., MARSHALL, C., MCDANIEL, M. L., 

REMEDI, M. S., RAZANI, B., URANO, F. & DIWAN, A. 2017b. Intermittent fasting 

preserves beta-cell mass in obesity-induced diabetes via the autophagy-lysosome 

pathway. Autophagy, 13, 1952-1968. 

LIU, L., PANG, Z. C., SUN, J. P., XUE, B., WANG, S. J., NING, F. & QIAO, Q. 2017c. 

Exposure to famine in early life and the risk of obesity in adulthood in Qingdao: 

Evidence from the 1959-1961 Chinese famine. Nutr Metab Cardiovasc Dis, 27, 154-

160. 

LIU, P. S., LIN, Y. W., LEE, B., MCCRADY-SPITZER, S. K., LEVINE, J. A. & WEI, L. N. 

2014. Reducing RIP140 expression in macrophage alters ATM infiltration, facilitates 

white adipose tissue browning, and prevents high-fat diet-induced insulin resistance. 

Diabetes, 63, 4021-31. 

LIU, Y., ARON-WISNEWSKY, J., MARCELIN, G., GENSER, L., LE NAOUR, G., 

TORCIVIA, A., BAUVOIS, B., BOUCHET, S., PELLOUX, V., SASSO, M., 

MIETTE, V., TORDJMAN, J. & CLEMENT, K. 2016. Accumulation and Changes in 

Composition of Collagens in Subcutaneous Adipose Tissue After Bariatric Surgery. J 

Clin Endocrinol Metab, 101, 293-304. 

LONGO, V. D. & FONTANA, L. 2010. Calorie restriction and cancer prevention: metabolic 

and molecular mechanisms. Trends Pharmacol Sci, 31, 89-98. 

LOOK AHEAD RESEARCH GROUP, PI-SUNYER, X., BLACKBURN, G., BRANCATI, F. 

L., BRAY, G. A., BRIGHT, R., CLARK, J. M., CURTIS, J. M., ESPELAND, M. A., 

FOREYT, J. P., GRAVES, K., HAFFNER, S. M., HARRISON, B., HILL, J. O., 

HORTON, E. S., JAKICIC, J., JEFFERY, R. W., JOHNSON, K. C., KAHN, S., 

KELLEY, D. E., KITABCHI, A. E., KNOWLER, W. C., LEWIS, C. E., MASCHAK-

CAREY, B. J., MONTGOMERY, B., NATHAN, D. M., PATRICIO, J., PETERS, A., 

REDMON, J. B., REEVES, R. S., RYAN, D. H., SAFFORD, M., VAN DORSTEN, 

B., WADDEN, T. A., WAGENKNECHT, L., WESCHE-THOBABEN, J., WING, R. 



  Bibliography  

220 
 

R. & YANOVSKI, S. Z. 2007. Reduction in weight and cardiovascular disease risk 

factors in individuals with type 2 diabetes: one-year results of the look AHEAD trial. 

Diabetes Care, 30, 1374-83. 

LUMENG, C. N., BODZIN, J. L. & SALTIEL, A. R. 2007a. Obesity induces a phenotypic 

switch in adipose tissue macrophage polarization. J Clin Invest, 117, 175-84. 

LUMENG, C. N., DEYOUNG, S. M., BODZIN, J. L. & SALTIEL, A. R. 2007b. Increased 

inflammatory properties of adipose tissue macrophages recruited during diet-induced 

obesity. Diabetes, 56, 16-23. 

LUMENG, C. N., DEYOUNG, S. M. & SALTIEL, A. R. 2007c. Macrophages block insulin 

action in adipocytes by altering expression of signaling and glucose transport proteins. 

Am J Physiol Endocrinol Metab, 292, E166-74. 

MAGKOS, F., FRATERRIGO, G., YOSHINO, J., LUECKING, C., KIRBACH, K., KELLY, 

S. C., DE LAS FUENTES, L., HE, S., OKUNADE, A. L., PATTERSON, B. W. & 

KLEIN, S. 2016. Effects of Moderate and Subsequent Progressive Weight Loss on 

Metabolic Function and Adipose Tissue Biology in Humans with Obesity. Cell Metab, 

23, 591-601. 

MANOOGIAN, E. N. C. & PANDA, S. 2017. Circadian rhythms, time-restricted feeding, and 

healthy aging. Ageing Res Rev, 39, 59-67. 

MANTOVANI, A., SICA, A., SOZZANI, S., ALLAVENA, P., VECCHI, A. & LOCATI, M. 

2004. The chemokine system in diverse forms of macrophage activation and 

polarization. Trends Immunol, 25, 677-86. 

MARTIN, C. K., HEILBRONN, L. K., DE JONGE, L., DELANY, J. P., VOLAUFOVA, J., 

ANTON, S. D., REDMAN, L. M., SMITH, S. R. & RAVUSSIN, E. 2007. Effect of 

calorie restriction on resting metabolic rate and spontaneous physical activity. Obesity 

(Silver Spring), 15, 2964-73. 

MARTINEZ-HUENCHULLAN, S., MCLENNAN, S. V., VERHOEVEN, A., TWIGG, S. M. 

& TAM, C. S. 2017. The emerging role of skeletal muscle extracellular matrix 

remodelling in obesity and exercise. Obes Rev, 18, 776-790. 

MARTINEZ-SANTIBANEZ, G. & LUMENG, C. N. 2014. Macrophages and the regulation 

of adipose tissue remodeling. Annu Rev Nutr, 34, 57-76. 

MARTINEZ, F. O. & GORDON, S. 2014. The M1 and M2 paradigm of macrophage 

activation: time for reassessment. F1000Prime Rep, 6, 13. 

MASORO, E. J. 2005. Overview of caloric restriction and ageing. Mech Ageing Dev, 126, 913-

22. 

MASORO, E. J., YU, B. P., BERTRAND, H. A. & LYND, F. T. 1980. Nutritional probe of 

the aging process. Fed Proc, 39, 3178-82. 

MATTHEWS, J. N., ALTMAN, D. G., CAMPBELL, M. J. & ROYSTON, P. 1990. Analysis 

of serial measurements in medical research. BMJ, 300, 230-5. 



  Bibliography  

221 
 

MATTISON, J. A., COLMAN, R. J., BEASLEY, T. M., ALLISON, D. B., KEMNITZ, J. W., 

ROTH, G. S., INGRAM, D. K., WEINDRUCH, R., DE CABO, R. & ANDERSON, R. 

M. 2017. Caloric restriction improves health and survival of rhesus monkeys. Nat 

Commun, 8, 14063. 

MATTISON, J. A., LANE, M. A., ROTH, G. S. & INGRAM, D. K. 2003. Calorie restriction 

in rhesus monkeys. Exp Gerontol, 38, 35-46. 

MATTISON, J. A., ROTH, G. S., BEASLEY, T. M., TILMONT, E. M., HANDY, A. M., 

HERBERT, R. L., LONGO, D. L., ALLISON, D. B., YOUNG, J. E., BRYANT, M., 

BARNARD, D., WARD, W. F., QI, W., INGRAM, D. K. & DE CABO, R. 2012. 

Impact of caloric restriction on health and survival in rhesus monkeys from the NIA 

study. Nature, 489, 318-21. 

MATTSON, M. P. 2005. Energy intake, meal frequency, and health: a neurobiological 

perspective. Annu Rev Nutr, 25, 237-60. 

MATTSON, M. P., LONGO, V. D. & HARVIE, M. 2017. Impact of intermittent fasting on 

health and disease processes. Ageing Res Rev, 39, 46-58. 

MATTSON, M. P. & WAN, R. 2005. Beneficial effects of intermittent fasting and caloric 

restriction on the cardiovascular and cerebrovascular systems. J Nutr Biochem, 16, 129-

37. 

MAURY, E., EHALA-ALEKSEJEV, K., GUIOT, Y., DETRY, R., VANDENHOOFT, A. & 

BRICHARD, S. M. 2007. Adipokines oversecreted by omental adipose tissue in human 

obesity. Am J Physiol Endocrinol Metab, 293, E656-65. 

MCCAY, C. M., CROWELL, M. F. & MAYNARD, L. A. 1935. The Effect of Retarded 

Growth Upon the Length of Life Span and Upon the Ultimate Body SizeOne Figure. 

The Journal of Nutrition, 10, 63-79. 

MEYER, T. E., KOVACS, S. J., EHSANI, A. A., KLEIN, S., HOLLOSZY, J. O. & 

FONTANA, L. 2006. Long-term caloric restriction ameliorates the decline in diastolic 

function in humans. J Am Coll Cardiol, 47, 398-402. 

MICHAUD, A., BOULET, M. M., VEILLEUX, A., NOEL, S., PARIS, G. & TCHERNOF, A. 

2014. Abdominal subcutaneous and omental adipocyte morphology and its relation to 

gene expression, lipolysis and adipocytokine levels in women. Metabolism, 63, 372-81. 

MIZUSHIMA, S. & YAMORI, Y. 1992. Nutritional improvement, cardiovascular diseases and 

longevity in Japan. Nutr Health, 8, 97-105. 

MONTAGUE, C. T., FAROOQI, I. S., WHITEHEAD, J. P., SOOS, M. A., RAU, H., 

WAREHAM, N. J., SEWTER, C. P., DIGBY, J. E., MOHAMMED, S. N., HURST, J. 

A., CHEETHAM, C. H., EARLEY, A. R., BARNETT, A. H., PRINS, J. B. & 

O'RAHILLY, S. 1997. Congenital leptin deficiency is associated with severe early-

onset obesity in humans. Nature, 387, 903-8. 

MOREIRA, E. A., MOST, M., HOWARD, J. & RAVUSSIN, E. 2011. Dietary adherence to 

long-term controlled feeding in a calorie-restriction study in overweight men and 

women. Nutr Clin Pract, 26, 309-15. 



  Bibliography  

222 
 

MORRIS, D. L., SINGER, K. & LUMENG, C. N. 2011. Adipose tissue macrophages: 

phenotypic plasticity and diversity in lean and obese states. Curr Opin Clin Nutr Metab 

Care, 14, 341-6. 

MOST, J., TOSTI, V., REDMAN, L. M. & FONTANA, L. 2017. Calorie restriction in humans: 

An update. Ageing Res Rev, 39, 36-45. 

MOTTILLO, E. P., DESJARDINS, E. M., CRANE, J. D., SMITH, B. K., GREEN, A. E., 

DUCOMMUN, S., HENRIKSEN, T. I., REBALKA, I. A., RAZI, A., SAKAMOTO, 

K., SCHEELE, C., KEMP, B. E., HAWKE, T. J., ORTEGA, J., GRANNEMAN, J. G. 

& STEINBERG, G. R. 2016. Lack of Adipocyte AMPK Exacerbates Insulin Resistance 

and Hepatic Steatosis through Brown and Beige Adipose Tissue Function. Cell Metab, 

24, 118-29. 

N. C. D. RISK FACTOR COLLABORATION 2016. Trends in adult body-mass index in 200 

countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement 

studies with 19.2 million participants. Lancet, 387, 1377-1396. 

NAKHUDA, A., JOSSE, A. R., GBURCIK, V., CROSSLAND, H., RAYMOND, F., 

METAIRON, S., GOOD, L., ATHERTON, P. J., PHILLIPS, S. M. & TIMMONS, J. 

A. 2016. Biomarkers of browning of white adipose tissue and their regulation during 

exercise- and diet-induced weight loss. Am J Clin Nutr, 104, 557-65. 

NETER, J. E., STAM, B. E., KOK, F. J., GROBBEE, D. E. & GELEIJNSE, J. M. 2003. 

Influence of weight reduction on blood pressure: a meta-analysis of randomized 

controlled trials. Hypertension, 42, 878-84. 

NISHIMURA, S., MANABE, I., NAGASAKI, M., HOSOYA, Y., YAMASHITA, H., 

FUJITA, H., OHSUGI, M., TOBE, K., KADOWAKI, T., NAGAI, R. & SUGIURA, S. 

2007. Adipogenesis in obesity requires close interplay between differentiating 

adipocytes, stromal cells, and blood vessels. Diabetes, 56, 1517-26. 

NORHEIM, F., LANGLEITE, T. M., HJORTH, M., HOLEN, T., KIELLAND, A., 

STADHEIM, H. K., GULSETH, H. L., BIRKELAND, K. I., JENSEN, J. & DREVON, 

C. A. 2014. The effects of acute and chronic exercise on PGC-1alpha, irisin and 

browning of subcutaneous adipose tissue in humans. FEBS J, 281, 739-49. 

O'HARA, A., LIM, F. L., MAZZATTI, D. J. & TRAYHURN, P. 2009. Microarray analysis 

identifies matrix metalloproteinases (MMPs) as key genes whose expression is up-

regulated in human adipocytes by macrophage-conditioned medium. Pflugers Arch, 

458, 1103-14. 

OLEFSKY, J. M. & GLASS, C. K. 2010. Macrophages, inflammation, and insulin resistance. 

Annu Rev Physiol, 72, 219-46. 

OLIVEIRA, A. G., ARAUJO, T. G., CARVALHO, B. M., GUADAGNINI, D., ROCHA, G. 

Z., BAGAROLLI, R. A., CARVALHEIRA, J. B. & SAAD, M. J. 2013. Acute exercise 

induces a phenotypic switch in adipose tissue macrophage polarization in diet-induced 

obese rats. Obesity (Silver Spring), 21, 2545-56. 



  Bibliography  

223 
 

ORR, J. S., PUGLISI, M. J., ELLACOTT, K. L., LUMENG, C. N., WASSERMAN, D. H. & 

HASTY, A. H. 2012. Toll-like receptor 4 deficiency promotes the alternative activation 

of adipose tissue macrophages. Diabetes, 61, 2718-27. 

ORTEGA MARTINEZ DE VICTORIA, E., XU, X., KOSKA, J., FRANCISCO, A. M., 

SCALISE, M., FERRANTE, A. W., JR. & KRAKOFF, J. 2009. Macrophage content 

in subcutaneous adipose tissue: associations with adiposity, age, inflammatory markers, 

and whole-body insulin action in healthy Pima Indians. Diabetes, 58, 385-93. 

OTRANTO, M., SOUZA-NETTO, I., ÁGUILA, M. B. & MONTE-ALTO-COSTA, A. 2009. 

Male and female rats with severe protein restriction present delayed wound healing. 

Applied Physiology, Nutrition, and Metabolism, 34, 1023-1031. 

PAMPEL, F. C., DENNEY, J. T. & KRUEGER, P. M. 2012. Obesity, SES, and economic 

development: a test of the reversal hypothesis. Soc Sci Med, 74, 1073-81. 

PARKER, B. A., STURM, K., MACINTOSH, C. G., FEINLE, C., HOROWITZ, M. & 

CHAPMAN, I. M. 2004. Relation between food intake and visual analogue scale 

ratings of appetite and other sensations in healthy older and young subjects. Eur J Clin 

Nutr, 58, 212-8. 

PARLEE, S. D. & MACDOUGALD, O. A. 2014. Maternal nutrition and risk of obesity in 

offspring: the Trojan horse of developmental plasticity. Biochim Biophys Acta, 1842, 

495-506. 

PASARICA, M., GOWRONSKA-KOZAK, B., BURK, D., REMEDIOS, I., HYMEL, D., 

GIMBLE, J., RAVUSSIN, E., BRAY, G. A. & SMITH, S. R. 2009a. Adipose tissue 

collagen VI in obesity. J Clin Endocrinol Metab, 94, 5155-62. 

PASARICA, M., SEREDA, O. R., REDMAN, L. M., ALBARADO, D. C., HYMEL, D. T., 

ROAN, L. E., ROOD, J. C., BURK, D. H. & SMITH, S. R. 2009b. Reduced adipose 

tissue oxygenation in human obesity: evidence for rarefaction, macrophage chemotaxis, 

and inflammation without an angiogenic response. Diabetes, 58, 718-25. 

PATSOURIS, D., CAO, J. J., VIAL, G., BRAVARD, A., LEFAI, E., DURAND, A., 

DURAND, C., CHAUVIN, M. A., LAUGERETTE, F., DEBARD, C., MICHALSKI, 

M. C., LAVILLE, M., VIDAL, H. & RIEUSSET, J. 2014. Insulin resistance is 

associated with MCP1-mediated macrophage accumulation in skeletal muscle in mice 

and humans. PLoS One, 9, e110653. 

PATSOURIS, D., LI, P. P., THAPAR, D., CHAPMAN, J., OLEFSKY, J. M. & NEELS, J. G. 

2008. Ablation of CD11c-positive cells normalizes insulin sensitivity in obese insulin 

resistant animals. Cell Metab, 8, 301-9. 

PATSOURIS, D., QI, P., ABDULLAHI, A., STANOJCIC, M., CHEN, P., PAROUSIS, A., 

AMINI-NIK, S. & JESCHKE, MARC G. 2015. Burn Induces Browning of the 

Subcutaneous White Adipose Tissue in Mice and Humans. Cell Reports, 13, 1538-

1544. 

PETERSEN, K. F., DUFOUR, S., SAVAGE, D. B., BILZ, S., SOLOMON, G., YONEMITSU, 

S., CLINE, G. W., BEFROY, D., ZEMANY, L., KAHN, B. B., PAPADEMETRIS, X., 

ROTHMAN, D. L. & SHULMAN, G. I. 2007. The role of skeletal muscle insulin 



  Bibliography  

224 
 

resistance in the pathogenesis of the metabolic syndrome. Proc Natl Acad Sci U S A, 

104, 12587-94. 

PILLON, N. J., BILAN, P. J., FINK, L. N. & KLIP, A. 2013. Cross-talk between skeletal 

muscle and immune cells: muscle-derived mediators and metabolic implications. 

American Journal of Physiology-Endocrinology and Metabolism, 304, E453-E465. 

PITTAS, A. G., ROBERTS, S. B., DAS, S. K., GILHOOLY, C. H., SALTZMAN, E., 

GOLDEN, J., STARK, P. C. & GREENBERG, A. S. 2006. The Effects of the Dietary 

Glycemic Load on Type 2 Diabetes Risk Factors during Weight Loss. Obesity, 14, 

2200-2209. 

POIRIER, P., GILES, T. D., BRAY, G. A., HONG, Y., STERN, J. S., PI-SUNYER, F. X., 

ECKEL, R. H., AMERICAN HEART, A., OBESITY COMMITTEE OF THE 

COUNCIL ON NUTRITION, P. A. & METABOLISM 2006. Obesity and 

cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an 

update of the 1997 American Heart Association Scientific Statement on Obesity and 

Heart Disease from the Obesity Committee of the Council on Nutrition, Physical 

Activity, and Metabolism. Circulation, 113, 898-918. 

RACETTE, S. B., WEISS, E. P., VILLAREAL, D. T., ARIF, H., STEGER-MAY, K., 

SCHECHTMAN, K. B., FONTANA, L., KLEIN, S., HOLLOSZY, J. O. & 

WASHINGTON UNIVERSITY SCHOOL OF MEDICINE, C. G. 2006. One year of 

caloric restriction in humans: feasibility and effects on body composition and 

abdominal adipose tissue. J Gerontol A Biol Sci Med Sci, 61, 943-50. 

RAFFOUL, J. J., GUO, Z., SOOFI, A. & HEYDARI, A. R. 1999. Caloric restriction and 

genomic stability. J Nutr Health Aging, 3, 102-10. 

RAMSEY, J. J., COLMAN, R. J., BINKLEY, N. C., CHRISTENSEN, J. D., GRESL, T. A., 

KEMNITZ, J. W. & WEINDRUCH, R. 2000a. Dietary restriction and aging in rhesus 

monkeys: the University of Wisconsin study. Exp Gerontol, 35, 1131-49. 

RAMSEY, J. J., LAATSCH, J. L. & KEMNITZ, J. W. 2000b. Age and gender differences in 

body composition, energy expenditure, and glucoregulation of adult rhesus monkeys. J 

Med Primatol, 29, 11-9. 

RAUSCH, M. E., WEISBERG, S., VARDHANA, P. & TORTORIELLO, D. V. 2008. Obesity 

in C57BL/6J mice is characterized by adipose tissue hypoxia and cytotoxic T-cell 

infiltration. Int J Obes (Lond), 32, 451-63. 

RAVUSSIN, E., REDMAN, L. M., ROCHON, J., DAS, S. K., FONTANA, L., KRAUS, W. 

E., ROMASHKAN, S., WILLIAMSON, D. A., MEYDANI, S. N., VILLAREAL, D. 

T., SMITH, S. R., STEIN, R. I., SCOTT, T. M., STEWART, T. M., SALTZMAN, E., 

KLEIN, S., BHAPKAR, M., MARTIN, C. K., GILHOOLY, C. H., HOLLOSZY, J. O., 

HADLEY, E. C., ROBERTS, S. B. & GROUP, C. S. 2015. A 2-Year Randomized 

Controlled Trial of Human Caloric Restriction: Feasibility and Effects on Predictors of 

Health Span and Longevity. J Gerontol A Biol Sci Med Sci, 70, 1097-104. 

REBELOS, E., MUSCELLI, E., NATALI, A., BALKAU, B., MINGRONE, G., PIATTI, P., 

KONRAD, T., MARI, A. & FERRANNINI, E. 2011. Body Weight, Not Insulin 



  Bibliography  

225 
 

Sensitivity or Secretion, May Predict Spontaneous Weight Changes in Nondiabetic and 

Prediabetic Subjects. The RISC Study, 60, 1938-1945. 

REDMAN, L. M., HEILBRONN, L. K., MARTIN, C. K., ALFONSO, A., SMITH, S. R. & 

RAVUSSIN, E. 2007. Effect of Calorie Restriction with or without Exercise on Body 

Composition and Fat Distribution. The Journal of Clinical Endocrinology & 

Metabolism, 92, 865-872. 

REDMAN, L. M., HEILBRONN, L. K., MARTIN, C. K., DE JONGE, L., WILLIAMSON, 

D. A., DELANY, J. P., RAVUSSIN, E. & PENNINGTON, C. T. 2009. Metabolic and 

behavioral compensations in response to caloric restriction: implications for the 

maintenance of weight loss. PLoS One, 4, e4377. 

REISER, K., MCGEE, C., RUCKER, R. & MCDONALD, R. 1995. Effects of Aging and 

Caloric Restriction on Extracellular Matrix Biosynthesis in a Model of Injury Repair in 

Rats. The Journals of Gerontology: Series A, 50A, B40-B47. 

REZZI, S., MARTIN, F.-P. J., SHANMUGANAYAGAM, D., COLMAN, R. J., 

NICHOLSON, J. K. & WEINDRUCH, R. 2009. Metabolic shifts due to long-term 

caloric restriction revealed in nonhuman primates. Experimental Gerontology, 44, 356-

362. 

RHODES, J. M. & SIMONS, M. 2007. The extracellular matrix and blood vessel formation: 

not just a scaffold. J Cell Mol Med, 11, 176-205. 

RITZ, B. W., AKTAN, I., NOGUSA, S. & GARDNER, E. M. 2008. Energy Restriction 

Impairs Natural Killer Cell Function and Increases the Severity of Influenza Infection 

in Young Adult Male C57BL/6 Mice. The Journal of Nutrition, 138, 2269-2275. 

RODRIGUEZ-HERNANDEZ, H., SIMENTAL-MENDIA, L. E., RODRIGUEZ-RAMIREZ, 

G. & REYES-ROMERO, M. A. 2013. Obesity and inflammation: epidemiology, risk 

factors, and markers of inflammation. Int J Endocrinol, 2013, 678159. 

RODRÍGUEZ, A., BECERRIL, S., EZQUERRO, S., MÉNDEZ-GIMÉNEZ, L. & 

FRÜHBECK, G. 2017. Crosstalk between adipokines and myokines in fat browning. 

Acta Physiologica, 219, 362-381. 

ROSEN, E. D. & MACDOUGALD, O. A. 2006. Adipocyte differentiation from the inside out. 

Nat Rev Mol Cell Biol, 7, 885-96. 

ROSS, M. H. 1977. Dietary behavior and longevity. Nutr Rev, 35, 257-65. 

RUPNICK, M. A., PANIGRAHY, D., ZHANG, C. Y., DALLABRIDA, S. M., LOWELL, B. 

B., LANGER, R. & FOLKMAN, M. J. 2002. Adipose tissue mass can be regulated 

through the vasculature. Proc Natl Acad Sci U S A, 99, 10730-5. 

RYAN, A. S. & NICKLAS, B. J. 2004. Reductions in plasma cytokine levels with weight loss 

improve insulin sensitivity in overweight and obese postmenopausal women. Diabetes 

Care, 27, 1699-705. 

SABERI, M., WOODS, N. B., DE LUCA, C., SCHENK, S., LU, J. C., BANDYOPADHYAY, 

G., VERMA, I. M. & OLEFSKY, J. M. 2009. Hematopoietic cell-specific deletion of 



  Bibliography  

226 
 

toll-like receptor 4 ameliorates hepatic and adipose tissue insulin resistance in high-fat-

fed mice. Cell Metab, 10, 419-29. 

SADLER, D., MATTACKS, C. A. & POND, C. M. 2005. Changes in adipocytes and dendritic 

cells in lymph node containing adipose depots during and after many weeks of mild 

inflammation. J Anat, 207, 769-81. 

SALANS, L. B., CUSHMAN, S. W. & WEISMANN, R. E. 1973. Studies of human adipose 

tissue. Adipose cell size and number in nonobese and obese patients. J Clin Invest, 52, 

929-41. 

SALGIN, B., MARCOVECCHIO, M. L., HUMPHREYS, S. M., HILL, N., CHASSIN, L. J., 

LUNN, D. J., HOVORKA, R. & DUNGER, D. B. 2009. Effects of prolonged fasting 

and sustained lipolysis on insulin secretion and insulin sensitivity in normal subjects. 

Am J Physiol Endocrinol Metab, 296, E454-61. 

SAMBEAT, A., GULYAEVA, O., DEMPERSMIER, J. & SUL, H. S. 2017. Epigenetic 

Regulation of the Thermogenic Adipose Program. Trends Endocrinol Metab, 28, 19-

31. 

SAMOCHA-BONET, D., CAMPBELL, L. V., MORI, T. A., CROFT, K. D., GREENFIELD, 

J. R., TURNER, N. & HEILBRONN, L. K. 2012. Overfeeding reduces insulin 

sensitivity and increases oxidative stress, without altering markers of mitochondrial 

content and function in humans. PLoS One, 7, e36320. 

SAMOCHA-BONET, D., CAMPBELL, L. V., VIARDOT, A., FREUND, J., TAM, C. S., 

GREENFIELD, J. R. & HEILBRONN, L. K. 2010. A family history of type 2 diabetes 

increases risk factors associated with overfeeding. Diabetologia, 53, 1700-8. 

SAMOCHA-BONET, D., TAM, C. S., CAMPBELL, L. V. & HEILBRONN, L. K. 2014. 

Raised circulating fetuin-a after 28-day overfeeding in healthy humans. Diabetes Care, 

37, e15-6. 

SCHEEN, A. J. 2008. The future of obesity: new drugs versus lifestyle interventions. Expert 

Opin Investig Drugs, 17, 263-7. 

SHAN, T., LIANG, X., BI, P. & KUANG, S. 2013. Myostatin knockout drives browning of 

white adipose tissue through activating the AMPK-PGC1alpha-Fndc5 pathway in 

muscle. FASEB J, 27, 1981-9. 

SHI, H., KOKOEVA, M. V., INOUYE, K., TZAMELI, I., YIN, H. & FLIER, J. S. 2006. TLR4 

links innate immunity and fatty acid-induced insulin resistance. J Clin Invest, 116, 

3015-25. 

SHIMOKAWA, I., HIGAMI, Y., HUBBARD, G. B., MCMAHAN, C. A., MASORO, E. J. & 

YU, B. P. 1993. Diet and the suitability of the male Fischer 344 rat as a model for aging 

research. J Gerontol, 48, B27-32. 

SHIN, M. K., DRAGER, L. F., YAO, Q., BEVANS-FONTI, S., YOO, D. Y., JUN, J. C., AJA, 

S., BHANOT, S. & POLOTSKY, V. Y. 2012. Metabolic consequences of high-fat diet 

are attenuated by suppression of HIF-1alpha. PLoS One, 7, e46562. 



  Bibliography  

227 
 

SHIRAKAWA, J., FUJII, H., OHNUMA, K., SATO, K., ITO, Y., KAJI, M., SAKAMOTO, 

E., KOGANEI, M., SASAKI, H., NAGASHIMA, Y., AMO, K., AOKI, K., 

MORIMOTO, C., TAKEDA, E. & TERAUCHI, Y. 2011. Diet-induced adipose tissue 

inflammation and liver steatosis are prevented by DPP-4 inhibition in diabetic mice. 

Diabetes, 60, 1246-57. 

SHOELSON, S. E., LEE, J. & GOLDFINE, A. B. 2006. Inflammation and insulin resistance. 

J Clin Invest, 116, 1793-801. 

SIDOSSIS, L. & KAJIMURA, S. 2015. Brown and beige fat in humans: thermogenic 

adipocytes that control energy and glucose homeostasis. J Clin Invest, 125, 478-86. 

SIDOSSIS, LABROS S., PORTER, C., SARAF, MANISH K., BØRSHEIM, E., 

RADHAKRISHNAN, RAVI S., CHAO, T., ALI, A., CHONDRONIKOLA, M., 

MLCAK, R., FINNERTY, CELESTE C., HAWKINS, HAL K., TOLIVER-KINSKY, 

T. & HERNDON, DAVID N. 2015. Browning of Subcutaneous White Adipose Tissue 

in Humans after Severe Adrenergic Stress. Cell Metabolism, 22, 219-227. 

SIEGEL, I., LIU, T. L., NEPOMUCENO, N. & GLEICHER, N. 1988. Effects of Short-Term 

Dietary Restriction on Survival of Mammary Ascites Tumor-Bearing Rats. Cancer 

Investigation, 6, 677-680. 

SILVENNOINEN, M., RINNANKOSKI-TUIKKA, R., VUENTO, M., HULMI, J. J., 

TORVINEN, S., LEHTI, M., KIVELA, R. & KAINULAINEN, H. 2013. High-fat 

feeding induces angiogenesis in skeletal muscle and activates angiogenic pathways in 

capillaries. Angiogenesis, 16, 297-307. 

SINGH, B. & SAXENA, A. 2010. Surrogate markers of insulin resistance: A review. World J 

Diabetes, 1, 36-47. 

SIVITZ, W. I., FINK, B. D. & DONOHOUE, P. A. 1999. Fasting and leptin modulate adipose 

and muscle uncoupling protein: divergent effects between messenger ribonucleic acid 

and protein expression. Endocrinology, 140, 1511-9. 

SOETERS, M. R., LAMMERS, N. M., DUBBELHUIS, P. F., ACKERMANS, M., JONKERS-

SCHUITEMA, C. F., FLIERS, E., SAUERWEIN, H. P., AERTS, J. M. & SERLIE, M. 

J. 2009. Intermittent fasting does not affect whole-body glucose, lipid, or protein 

metabolism. Am J Clin Nutr, 90, 1244-51. 

SOETERS, M. R., SAUERWEIN, H. P., DUBBELHUIS, P. F., GROENER, J. E., 

ACKERMANS, M. T., FLIERS, E., AERTS, J. M. & SERLIE, M. J. 2008. Muscle 

adaptation to short-term fasting in healthy lean humans. J Clin Endocrinol Metab, 93, 

2900-3. 

SONNTAG, W. E., LYNCH, C. D., CEFALU, W. T., INGRAM, R. L., BENNETT, S. A., 

THORNTON, P. L. & KHAN, A. S. 1999. Pleiotropic Effects of Growth Hormone and 

Insulin-like Growth Factor (IGF)-1 on Biological Aging: Inferences From Moderate 

Caloric-Restricted Animals. The Journals of Gerontology: Series A, 54, B521-B538. 

SPALDING, K. L., ARNER, E., WESTERMARK, P. O., BERNARD, S., BUCHHOLZ, B. 

A., BERGMANN, O., BLOMQVIST, L., HOFFSTEDT, J., NASLUND, E., 



  Bibliography  

228 
 

BRITTON, T., CONCHA, H., HASSAN, M., RYDEN, M., FRISEN, J. & ARNER, P. 

2008. Dynamics of fat cell turnover in humans. Nature, 453, 783-7. 

SPEAKMAN, J. R. 2013. Measuring energy metabolism in the mouse - theoretical, practical, 

and analytical considerations. Front Physiol, 4, 34. 

SPENCER, M., YANG, L., ADU, A., FINLIN, B. S., ZHU, B., SHIPP, L. R., RASOULI, N., 

PETERSON, C. A. & KERN, P. A. 2014. Pioglitazone treatment reduces adipose tissue 

inflammation through reduction of mast cell and macrophage number and by improving 

vascularity. PLoS One, 9, e102190. 

SPENCER, M., YAO-BORENGASSER, A., UNAL, R., RASOULI, N., GURLEY, C. M., 

ZHU, B., PETERSON, C. A. & KERN, P. A. 2010. Adipose tissue macrophages in 

insulin-resistant subjects are associated with collagen VI and fibrosis and demonstrate 

alternative activation. Am J Physiol Endocrinol Metab, 299, E1016-27. 

STANFORD, K. I., MIDDELBEEK, R. J. & GOODYEAR, L. J. 2015. Exercise Effects on 

White Adipose Tissue: Beiging and Metabolic Adaptations. Diabetes, 64, 2361-8. 

STANTON, M. C., CHEN, S. C., JACKSON, J. V., ROJAS-TRIANA, A., KINSLEY, D., 

CUI, L., FINE, J. S., GREENFEDER, S., BOBER, L. A. & JENH, C. H. 2011. 

Inflammatory Signals shift from adipose to liver during high fat feeding and influence 

the development of steatohepatitis in mice. J Inflamm (Lond), 8, 8. 

STETTLER, N. & IOTOVA, V. 2010. Early growth patterns and long-term obesity risk. Curr 

Opin Clin Nutr Metab Care, 13, 294-9. 

STRISSEL, K. J., STANCHEVA, Z., MIYOSHI, H., PERFIELD, J. W., 2ND, DEFURIA, J., 

JICK, Z., GREENBERG, A. S. & OBIN, M. S. 2007. Adipocyte death, adipose tissue 

remodeling, and obesity complications. Diabetes, 56, 2910-8. 

SUGANAMI, T., TANIMOTO-KOYAMA, K., NISHIDA, J., ITOH, M., YUAN, X., 

MIZUARAI, S., KOTANI, H., YAMAOKA, S., MIYAKE, K., AOE, S., KAMEI, Y. 

& OGAWA, Y. 2007. Role of the Toll-like receptor 4/NF-kappaB pathway in saturated 

fatty acid-induced inflammatory changes in the interaction between adipocytes and 

macrophages. Arterioscler Thromb Vasc Biol, 27, 84-91. 

SUMITHRAN, P., PRENDERGAST, L. A., DELBRIDGE, E., PURCELL, K., SHULKES, 

A., KRIKETOS, A. & PROIETTO, J. 2013. Ketosis and appetite-mediating nutrients 

and hormones after weight loss. Eur J Clin Nutr, 67, 759-64. 

SUN, K., KUSMINSKI, C. M. & SCHERER, P. E. 2011. Adipose tissue remodeling and 

obesity. J Clin Invest, 121, 2094-101. 

SUN, K., TORDJMAN, J., CLEMENT, K. & SCHERER, P. E. 2013. Fibrosis and adipose 

tissue dysfunction. Cell Metab, 18, 470-7. 

SUN, K., WERNSTEDT ASTERHOLM, I., KUSMINSKI, C. M., BUENO, A. C., WANG, Z. 

V., POLLARD, J. W., BREKKEN, R. A. & SCHERER, P. E. 2012. Dichotomous 

effects of VEGF-A on adipose tissue dysfunction. Proc Natl Acad Sci U S A, 109, 5874-

9. 



  Bibliography  

229 
 

SUZUKI, M., WILCOX, B. J. & WILCOX, C. D. 2001. Implications from and for food 

cultures for cardiovascular disease: longevity. Asia Pac J Clin Nutr, 10, 165-71. 

TABEBORDBAR, M., WANG, E. T. & WAGERS, A. J. 2013. Skeletal muscle degenerative 

diseases and strategies for therapeutic muscle repair. Annu Rev Pathol, 8, 441-75. 

TALAN, M. I. & INGRAM, D. K. 1985. Effect of intermittent feeding on thermoregulatory 

abilities of young and aged C57BL/6J mice. Arch Gerontol Geriatr, 4, 251-9. 

TAM, C. S., CHAUDHURI, R., HUTCHISON, A. T., SAMOCHA-BONET, D. & 

HEILBRONN, L. K. 2017. Skeletal muscle extracellular matrix remodeling after short-

term overfeeding in healthy humans. Metabolism, 67, 26-30. 

TAM, C. S., COVINGTON, J. D., BAJPEYI, S., TCHOUKALOVA, Y., BURK, D., 

JOHANNSEN, D. L., ZINGARETTI, C. M., CINTI, S. & RAVUSSIN, E. 2014. 

Weight gain reveals dramatic increases in skeletal muscle extracellular matrix 

remodeling. J Clin Endocrinol Metab, 99, 1749-57. 

TAM, C. S., COVINGTON, J. D., RAVUSSIN, E., REDMAN, L. M. & PENNINGTON, C. 

T. 2012a. Little evidence of systemic and adipose tissue inflammation in overweight 

individuals(dagger). Front Genet, 3, 58. 

TAM, C. S., POWER, J. E., MARKOVIC, T. P., YEE, C., MORSCH, M., MCLENNAN, S. 

V. & TWIGG, S. M. 2015. The effects of high-fat feeding on physical function and 

skeletal muscle extracellular matrix. Nutr Diabetes, 5, e187. 

TAM, C. S., SPARKS, L. M., JOHANNSEN, D. L., COVINGTON, J. D., CHURCH, T. S. & 

RAVUSSIN, E. 2012b. Low macrophage accumulation in skeletal muscle of obese type 

2 diabetics and elderly subjects. Obesity (Silver Spring), 20, 1530-3. 

TAM, C. S., VIARDOT, A., CLEMENT, K., TORDJMAN, J., TONKS, K., GREENFIELD, 

J. R., CAMPBELL, L. V., SAMOCHA-BONET, D. & HEILBRONN, L. K. 2010. 

Short-term overfeeding may induce peripheral insulin resistance without altering 

subcutaneous adipose tissue macrophages in humans. Diabetes, 59, 2164-70. 

TAM, C. S., XIE, W., JOHNSON, W. D., CEFALU, W. T., REDMAN, L. M. & RAVUSSIN, 

E. 2012c. Defining insulin resistance from hyperinsulinemic-euglycemic clamps. 

Diabetes Care, 35, 1605-10. 

TANG, H. N., TANG, C. Y., MAN, X. F., TAN, S. W., GUO, Y., TANG, J., ZHOU, C. L. & 

ZHOU, H. D. 2017. Plasticity of adipose tissue in response to fasting and refeeding in 

male mice. Nutr Metab (Lond), 14, 3. 

TANG, Q. Q. & LANE, M. D. 2012. Adipogenesis: from stem cell to adipocyte. Annu Rev 

Biochem, 81, 715-36. 

TCHOUKALOVA, Y., KOUTSARI, C. & JENSEN, M. 2007. Committed subcutaneous 

preadipocytes are reduced in human obesity. Diabetologia, 50, 151-7. 

TCHOUKALOVA, Y. D., VOTRUBA, S. B., TCHKONIA, T., GIORGADZE, N., 

KIRKLAND, J. L. & JENSEN, M. D. 2010. Regional differences in cellular 



  Bibliography  

230 
 

mechanisms of adipose tissue gain with overfeeding. Proc Natl Acad Sci U S A, 107, 

18226-31. 

TRAYHURN, P., JAMES, W. P. & GURR, M. I. 1979. Studies on the body composition, fat 

distribution and fat cell size and number of 'Ad', a new obese mutant mouse. Br J Nutr, 

41, 211-21. 

TREPANOWSKI, J. F., KROEGER, C. M., BARNOSKY, A., KLEMPEL, M. C., BHUTANI, 

S., HODDY, K. K., GABEL, K., FREELS, S., RIGDON, J., ROOD, J., RAVUSSIN, 

E. & VARADY, K. A. 2017. Effect of Alternate-Day Fasting on Weight Loss, Weight 

Maintenance, and Cardioprotection Among Metabolically Healthy Obese Adults: A 

Randomized Clinical Trial. JAMA Intern Med, 177, 930-938. 

TSCHOP, M. H., SPEAKMAN, J. R., ARCH, J. R., AUWERX, J., BRUNING, J. C., CHAN, 

L., ECKEL, R. H., FARESE, R. V., JR., GALGANI, J. E., HAMBLY, C., HERMAN, 

M. A., HORVATH, T. L., KAHN, B. B., KOZMA, S. C., MARATOS-FLIER, E., 

MULLER, T. D., MUNZBERG, H., PFLUGER, P. T., PLUM, L., REITMAN, M. L., 

RAHMOUNI, K., SHULMAN, G. I., THOMAS, G., KAHN, C. R. & RAVUSSIN, E. 

2011. A guide to analysis of mouse energy metabolism. Nat Methods, 9, 57-63. 

TURNER, N., KOWALSKI, G. M., LESLIE, S. J., RISIS, S., YANG, C., LEE-YOUNG, R. 

S., BABB, J. R., MEIKLE, P. J., LANCASTER, G. I., HENSTRIDGE, D. C., WHITE, 

P. J., KRAEGEN, E. W., MARETTE, A., COONEY, G. J., FEBBRAIO, M. A. & 

BRUCE, C. R. 2013. Distinct patterns of tissue-specific lipid accumulation during the 

induction of insulin resistance in mice by high-fat feeding. Diabetologia, 56, 1638-48. 

UYSAL, K. T., WIESBROCK, S. M., MARINO, M. W. & HOTAMISLIGIL, G. S. 1997. 

Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. 

Nature, 389, 610-4. 

VAISSE, C., CLEMENT, K., GUY-GRAND, B. & FROGUEL, P. 1998. A frameshift 

mutation in human MC4R is associated with a dominant form of obesity. Nature 

Genetics, 20, 113. 

VAN DER CRABBEN, S. N., ALLICK, G., ACKERMANS, M. T., ENDERT, E., ROMIJN, 

J. A. & SAUERWEIN, H. P. 2008. Prolonged fasting induces peripheral insulin 

resistance, which is not ameliorated by high-dose salicylate. J Clin Endocrinol Metab, 

93, 638-41. 

VAN DER LANS, A. A., HOEKS, J., BRANS, B., VIJGEN, G. H., VISSER, M. G., 

VOSSELMAN, M. J., HANSEN, J., JORGENSEN, J. A., WU, J., MOTTAGHY, F. 

M., SCHRAUWEN, P. & VAN MARKEN LICHTENBELT, W. D. 2013. Cold 

acclimation recruits human brown fat and increases nonshivering thermogenesis. J Clin 

Invest, 123, 3395-403. 

VARADY, K. A., ALLISTER, C. A., ROOHK, D. J. & HELLERSTEIN, M. K. 2010. 

Improvements in body fat distribution and circulating adiponectin by alternate-day 

fasting versus calorie restriction. J Nutr Biochem, 21, 188-95. 



  Bibliography  

231 
 

VARADY, K. A., BHUTANI, S., CHURCH, E. C. & KLEMPEL, M. C. 2009. Short-term 

modified alternate-day fasting: a novel dietary strategy for weight loss and 

cardioprotection in obese adults. Am J Clin Nutr, 90, 1138-43. 

VARADY, K. A., BHUTANI, S., KLEMPEL, M. C., KROEGER, C. M., TREPANOWSKI, 

J. F., HAUS, J. M., HODDY, K. K. & CALVO, Y. 2013. Alternate day fasting for 

weight loss in normal weight and overweight subjects: a randomized controlled trial. 

Nutr J, 12, 146. 

VARADY, K. A., BHUTANI, S., KLEMPEL, M. C. & LAMARCHE, B. 2011. Improvements 

in LDL particle size and distribution by short-term alternate day modified fasting in 

obese adults. Br J Nutr, 105, 580-3. 

VARADY, K. A., ROOHK, D. J. & HELLERSTEIN, M. K. 2007a. Dose effects of modified 

alternate-day fasting regimens on in vivo cell proliferation and plasma insulin-like 

growth factor-1 in mice. J Appl Physiol (1985), 103, 547-51. 

VARADY, K. A., ROOHK, D. J., LOE, Y. C., MCEVOY-HEIN, B. K. & HELLERSTEIN, 

M. K. 2007b. Effects of modified alternate-day fasting regimens on adipocyte size, 

triglyceride metabolism, and plasma adiponectin levels in mice. J Lipid Res, 48, 2212-

9. 

VARADY, K. A., ROOHK, D. J., MCEVOY-HEIN, B. K., GAYLINN, B. D., THORNER, 

M. O. & HELLERSTEIN, M. K. 2008. Modified alternate-day fasting regimens reduce 

cell proliferation rates to a similar extent as daily calorie restriction in mice. FASEB J, 

22, 2090-6. 

VARMA, V., YAO-BORENGASSER, A., RASOULI, N., NOLEN, G. T., PHANAVANH, 

B., STARKS, T., GURLEY, C., SIMPSON, P., MCGEHEE, R. E., JR., KERN, P. A. 

& PETERSON, C. A. 2009. Muscle inflammatory response and insulin resistance: 

synergistic interaction between macrophages and fatty acids leads to impaired insulin 

action. Am J Physiol Endocrinol Metab, 296, E1300-10. 

VENDELBO, M. H., CLASEN, B. F., TREEBAK, J. T., MOLLER, L., KRUSENSTJERNA-

HAFSTROM, T., MADSEN, M., NIELSEN, T. S., STODKILDE-JORGENSEN, H., 

PEDERSEN, S. B., JORGENSEN, J. O., GOODYEAR, L. J., WOJTASZEWSKI, J. 

F., MOLLER, N. & JESSEN, N. 2012. Insulin resistance after a 72-h fast is associated 

with impaired AS160 phosphorylation and accumulation of lipid and glycogen in 

human skeletal muscle. Am J Physiol Endocrinol Metab, 302, E190-200. 

VERDERY, R. B., INGRAM, D. K., ROTH, G. S. & LANE, M. A. 1997. Caloric restriction 

increases HDL2 levels in rhesus monkeys (Macaca mulatta). American Journal of 

Physiology-Endocrinology and Metabolism, 273, E714-E719. 

VILLAREAL, D. T., FONTANA, L., DAS, S. K., REDMAN, L., SMITH, S. R., SALTZMAN, 

E., BALES, C., ROCHON, J., PIEPER, C., HUANG, M., LEWIS, M., SCHWARTZ, 

A. V. & GROUP, C. S. 2016. Effect of Two-Year Caloric Restriction on Bone 

Metabolism and Bone Mineral Density in Non-Obese Younger Adults: A Randomized 

Clinical Trial. J Bone Miner Res, 31, 40-51. 



  Bibliography  

232 
 

VILLAREAL, D. T., FONTANA, L., WEISS, E. P., RACETTE, S. B., STEGER-MAY, K., 

SCHECHTMAN, K. B., KLEIN, S. & HOLLOSZY, J. O. 2006. Bone mineral density 

response to caloric restriction-induced weight loss or exercise-induced weight loss: a 

randomized controlled trial. Arch Intern Med, 166, 2502-10. 

VINK, R. G., ROUMANS, N. J., CAJLAKOVIC, M., CLEUTJENS, J. P. M., 

BOEKSCHOTEN, M. V., FAZELZADEH, P., VOGEL, M. A. A., BLAAK, E. E., 

MARIMAN, E. C., VAN BAAK, M. A. & GOOSSENS, G. H. 2017. Diet-induced 

weight loss decreases adipose tissue oxygen tension with parallel changes in adipose 

tissue phenotype and insulin sensitivity in overweight humans. Int J Obes (Lond), 41, 

722-728. 

WALCZAK, R., JOSEPH, S. B., LAFFITTE, B. A., CASTRILLO, A., PEI, L. & 

TONTONOZ, P. 2004. Transcription of the vascular endothelial growth factor gene in 

macrophages is regulated by liver X receptors. J Biol Chem, 279, 9905-11. 

WALRAND, S., MOREAU, K., CALDEFIE, F., TRIDON, A., CHASSAGNE, J., 

PORTEFAIX, G., CYNOBER, L., BEAUFRERE, B., VASSON, M. P. & BOIRIE, Y. 

2001. Specific and nonspecific immune responses to fasting and refeeding differ in 

healthy young adult and elderly persons. Am J Clin Nutr, 74, 670-8. 

WAN, R., CAMANDOLA, S. & MATTSON, M. P. 2003. Intermittent fasting and dietary 

supplementation with 2-deoxy-D-glucose improve functional and metabolic 

cardiovascular risk factors in rats. FASEB J, 17, 1133-4. 

WANG, Q., PERRARD, X. D., PERRARD, J. L., MANSOORI, A., RAYA, J. L., 

HOOGEVEEN, R., SMITH, C. W., BALLANTYNE, C. M. & WU, H. 2011. 

Differential effect of weight loss with low-fat diet or high-fat diet restriction on 

inflammation in the liver and adipose tissue of mice with diet-induced obesity. 

Atherosclerosis, 219, 100-8. 

WANG, Q. A., TAO, C., GUPTA, R. K. & SCHERER, P. E. 2013. Tracking adipogenesis 

during white adipose tissue development, expansion and regeneration. Nat Med, 19, 

1338-44. 

WEINDRUCH, R., NAYLOR, P. H., GOLDSTEIN, A. L. & WALFORD, R. L. 1988. 

Influences of aging and dietary restriction on serum thymosin alpha 1 levels in mice. J 

Gerontol, 43, B40-2. 

WEINDRUCH, R. & WALFORD, R. L. 1982. Dietary restriction in mice beginning at 1 year 

of age: effect on life-span and spontaneous cancer incidence. Science, 215, 1415-8. 

WEINDRUCH, R., WALFORD, R. L., FLIGIEL, S. & GUTHRIE, D. 1986. The Retardation 

of Aging in Mice by Dietary Restriction: Longevity, Cancer, Immunity and Lifetime 

Energy Intake. The Journal of Nutrition, 116, 641-654. 

WEINDRUCH, R. H., KRISTIE, J. A., CHENEY, K. E. & WALFORD, R. L. 1979. Influence 

of controlled dietary restriction on immunologic function and aging. Fed Proc, 38, 

2007-16. 



  Bibliography  

233 
 

WEISBERG, S. P., HUNTER, D., HUBER, R., LEMIEUX, J., SLAYMAKER, S., VADDI, 

K., CHARO, I., LEIBEL, R. L. & FERRANTE, A. W., JR. 2006. CCR2 modulates 

inflammatory and metabolic effects of high-fat feeding. J Clin Invest, 116, 115-24. 

WEISBERG, S. P., MCCANN, D., DESAI, M., ROSENBAUM, M., LEIBEL, R. L. & 

FERRANTE, A. W., JR. 2003. Obesity is associated with macrophage accumulation in 

adipose tissue. J Clin Invest, 112, 1796-808. 

WEISS, E. P., RACETTE, S. B., VILLAREAL, D. T., FONTANA, L., STEGER-MAY, K., 

SCHECHTMAN, K. B., KLEIN, S., HOLLOSZY, J. O. & WASHINGTON 

UNIVERSITY SCHOOL OF MEDICINE, C. G. 2006. Improvements in glucose 

tolerance and insulin action induced by increasing energy expenditure or decreasing 

energy intake: a randomized controlled trial. Am J Clin Nutr, 84, 1033-42. 

WERNSTEDT ASTERHOLM, I., TAO, C., MORLEY, T. S., WANG, Q. A., DELGADO-

LOPEZ, F., WANG, Z. V. & SCHERER, P. E. 2014. Adipocyte inflammation is 

essential for healthy adipose tissue expansion and remodeling. Cell Metab, 20, 103-18. 

WEYER, C., FOLEY, J. E., BOGARDUS, C., TATARANNI, P. A. & PRATLEY, R. E. 2000. 

Enlarged subcutaneous abdominal adipocyte size, but not obesity itself, predicts type II 

diabetes independent of insulin resistance. Diabetologia, 43, 1498-506. 

WILLIAMS, A. S., KANG, L. & WASSERMAN, D. H. 2015. The extracellular matrix and 

insulin resistance. Trends Endocrinol Metab, 26, 357-66. 

WILLIAMS, K. V., MULLEN, M. L., KELLEY, D. E. & WING, R. R. 1998. The Effect of 

Short Periods of Caloric Restriction on Weight Loss and Glycemic Control in Type 2 

Diabetes. Diabetes Care, 21, 2-8. 

WING, R. R., LANG, W., WADDEN, T. A., SAFFORD, M., KNOWLER, W. C., BERTONI, 

A. G., HILL, J. O., BRANCATI, F. L., PETERS, A., WAGENKNECHT, L. & LOOK, 

A. R. G. 2011. Benefits of modest weight loss in improving cardiovascular risk factors 

in overweight and obese individuals with type 2 diabetes. Diabetes Care, 34, 1481-6. 

WITHROW, D. & ALTER, D. A. 2011. The economic burden of obesity worldwide: a 

systematic review of the direct costs of obesity. Obes Rev, 12, 131-41. 

WORLD HEALTH ORGANISATION. 2018, February 16. Obesity and overweight [Online]. 

Available: http://www.who.int/mediacentre/factsheets/fs311/en/. 

WU, D., MOLOFSKY, A. B., LIANG, H. E., RICARDO-GONZALEZ, R. R., JOUIHAN, H. 

A., BANDO, J. K., CHAWLA, A. & LOCKSLEY, R. M. 2011. Eosinophils sustain 

adipose alternatively activated macrophages associated with glucose homeostasis. 

Science, 332, 243-7. 

WU, H. & BALLANTYNE, C. M. 2017. Skeletal muscle inflammation and insulin resistance 

in obesity. J Clin Invest, 127, 43-54. 

WU, J., COHEN, P. & SPIEGELMAN, B. M. 2013. Adaptive thermogenesis in adipocytes: is 

beige the new brown? Genes Dev, 27, 234-50. 

http://www.who.int/mediacentre/factsheets/fs311/en/


  Bibliography  

234 
 

WU, L. E., MEOLI, C. C., MANGIAFICO, S. P., FAZAKERLEY, D. J., COGGER, V. C., 

MOHAMAD, M., PANT, H., KANG, M. J., POWTER, E., BURCHFIELD, J. G., 

XIROUCHAKI, C. E., MIKOLAIZAK, A. S., STOCKLI, J., KOLUMAM, G., VAN 

BRUGGEN, N., GAMBLE, J. R., LE COUTEUR, D. G., COONEY, G. J., 

ANDRIKOPOULOS, S. & JAMES, D. E. 2014. Systemic VEGF-A neutralization 

ameliorates diet-induced metabolic dysfunction. Diabetes, 63, 2656-67. 

XIE, K., NEFF, F., MARKERT, A., ROZMAN, J., AGUILAR-PIMENTEL, J. A., AMARIE, 

O. V., BECKER, L., BROMMAGE, R., GARRETT, L., HENZEL, K. S., HOLTER, S. 

M., JANIK, D., LEHMANN, I., MORETH, K., PEARSON, B. L., RACZ, I., 

RATHKOLB, B., RYAN, D. P., SCHRODER, S., TREISE, I., BEKEREDJIAN, R., 

BUSCH, D. H., GRAW, J., EHNINGER, G., KLINGENSPOR, M., KLOPSTOCK, T., 

OLLERT, M., SANDHOLZER, M., SCHMIDT-WEBER, C., WEIERGRABER, M., 

WOLF, E., WURST, W., ZIMMER, A., GAILUS-DURNER, V., FUCHS, H., HRABE 

DE ANGELIS, M. & EHNINGER, D. 2017. Every-other-day feeding extends lifespan 

but fails to delay many symptoms of aging in mice. Nat Commun, 8, 155. 

XU, H., BARNES, G. T., YANG, Q., TAN, G., YANG, D., CHOU, C. J., SOLE, J., NICHOLS, 

A., ROSS, J. S., TARTAGLIA, L. A. & CHEN, H. 2003. Chronic inflammation in fat 

plays a crucial role in the development of obesity-related insulin resistance. J Clin 

Invest, 112, 1821-30. 

XU, X., GRIJALVA, A., SKOWRONSKI, A., VAN EIJK, M., SERLIE, M. J. & FERRANTE, 

A. W., JR. 2013. Obesity activates a program of lysosomal-dependent lipid metabolism 

in adipose tissue macrophages independently of classic activation. Cell Metab, 18, 816-

30. 

XU, X., YING, Z., CAI, M., XU, Z., LI, Y., JIANG, S. Y., TZAN, K., WANG, A., 

PARTHASARATHY, S., HE, G., RAJAGOPALAN, S. & SUN, Q. 2011. Exercise 

ameliorates high-fat diet-induced metabolic and vascular dysfunction, and increases 

adipocyte progenitor cell population in brown adipose tissue. Am J Physiol Regul Integr 

Comp Physiol, 300, R1115-25. 

YANG, L., LICASTRO, D., CAVA, E., VERONESE, N., SPELTA, F., RIZZA, W., 

BERTOZZI, B., VILLAREAL, D. T., HOTAMISLIGIL, G. S., HOLLOSZY, J. O. & 

FONTANA, L. 2016. Long-Term Calorie Restriction Enhances Cellular Quality-

Control Processes in Human Skeletal Muscle. Cell Rep, 14, 422-428. 

YE, J., GAO, Z., YIN, J. & HE, Q. 2007. Hypoxia is a potential risk factor for chronic 

inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese 

mice. Am J Physiol Endocrinol Metab, 293, E1118-28. 

ZAMARRON, B. F., MERGIAN, T. A., CHO, K. W., MARTINEZ-SANTIBANEZ, G., 

LUAN, D., SINGER, K., DELPROPOSTO, J. L., GELETKA, L. M., MUIR, L. A. & 

LUMENG, C. N. 2017. Macrophage Proliferation Sustains Adipose Tissue 

Inflammation in Formerly Obese Mice. Diabetes, 66, 392-406. 

ZAMMIT, C., LIDDICOAT, H., MOONSIE, I. & MAKKER, H. 2010. Obesity and respiratory 

diseases. Int J Gen Med, 3, 335-43. 



  Bibliography  

235 
 

ZHENG, X. F., HONG, Y. X., FENG, G. J., ZHANG, G. F., ROGERS, H., LEWIS, M. A., 

WILLIAMS, D. W., XIA, Z. F., SONG, B. & WEI, X. Q. 2013. Lipopolysaccharide-

induced M2 to M1 macrophage transformation for IL-12p70 production is blocked by 

Candida albicans mediated up-regulation of EBI3 expression. PLoS One, 8, e63967. 

ZURIAGA, M. A., FUSTER, J. J., GOKCE, N. & WALSH, K. 2017. Humans and Mice 

Display Opposing Patterns of "Browning" Gene Expression in Visceral and 

Subcutaneous White Adipose Tissue Depots. Front Cardiovasc Med, 4, 27. 

 

 

 

 

 

  




