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followed by conclusion and appendices. 

The resulting research conducted during the three and a half years of this PhD 

program has resulted in publication of two articles in reputed journals. Additionally 
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Abstract 

 

Objectives: This study investigated the role of Lactobacillus rhamnosus GG (LGG) 

on bone loss and local and systemic inflammation in an in vivo mouse model of 

induced periodontitis. Changes in the gastrointestinal physiology and the influence of 

different probiotic administration methods were also investigated.  

Methods: 36 mice were allocated into six groups (n = 6 per group). Experimental 

periodontitis was induced in three of the groups by oral inoculation with 

Porphyromonas gingivalis and Fusobacterium nucleatum over a period of 44 days. 

The probiotic LGG was administered via two different methods (oral inoculation and 

oral gavage) prior to, and during, disease induction. The antimicrobial activity of LGG 

on the pathogens used was tested. Alveolar bone levels were assessed using in vivo 

micro-computed tomography. Gingival and intestinal tissue changes were evaluated 

using histological analysis. Systemic and intestinal inflammation were assessed by 

measuring the level of the pro-inflammatory markers IL-6 and LIX in tissue and blood 

serum using multiplex assays and immunohistochemistry. The phylogenetic structure 

and diversity of the intestinal microbiota were analysed by sequencing the 16S rRNA 

genes of the caecal content. Statistical significance was accepted when for p < 0.05. 

Results: Pre-treatment with LGG either via oral gavage or oral inoculation 

significantly reduced bone loss (p < 0.0001), gingival inflammation (p < 0.0001) and 

TRAP positive cells (p = 0.0020 – 0.0176) for the probiotic treated groups when 

compared with controls. Analysis of the pro-inflammatory marker LIX expression in 

serum demonstrated a significant increase in systemic inflammation for the disease 

mice when compared with controls. LGG demonstrated no antimicrobial activity 
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against P. gingivalis and F. nucleatum . There were significant changes in the 

histology of the gastrointestinal tract of disease mice when compared with controls (p 

< 0.05). Additionally, disease mice presented a significant increase in the expression 

of the inflammatory marker IL-6 in gut tissue when compared with controls. Mice pre-

treated with LGG via gavage had significantly reduced tissue inflammation scores in 

the duodenum and significantly lower levels of IL-6 in the ileum when compared with 

disease. Oral inoculation with P. gingivalis and F. nucleatum led to a significant 

change in the bacterial composition of the caecal microbiome of the control group 

versus disease (p < 0.05). LGG therapy prevented gut microbiome changes induced 

by P. gingivalis and F. nucleatum, regardless of the probiotic mode of administration. 

Conclusions: Administration of P gingivalis and F nucleatum induced significant 

changes in intestinal and systemic inflammation and significant changes in the 

intestinal microbiome. Therapy with LGG effectively supressed bone loss and local 

inflammation for all probiotic treated groups when compared with disease 

irrespective of the mode of administration. Additionally, pre-treatment with LGG 

exerted a protective effect against intestinal and systemic inflammation and had a 

significant influence on the composition of the gut microbiome, promoting beneficial 

bacteria in the intestines of treated mice. Clinically, in the future, LGG may offer a 

low-risk, easy to use treatment option for the management of periodontitis. 
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Chapter 1. Introduction 

 

1.1 Periodontitis 

 

For nearly three decades now, periodontitis has been defined as a chronic 

inflammatory condition of both the supporting soft and hard tissues of the teeth 

resulting in progressive destruction of periodontal ligament and alveolar bone (1). It 

has also been acknowledged that, in periodontitis, specific microorganisms are 

necessary but their presence alone is not sufficient for the development of the 

disease (2). Indeed, as recently pointed out, the host immune system and an 

inappropriate inflammatory response, together with genetic and modifying 

environmental factors play a pivotal role in the pathogenesis and treatment of this 

complex condition (3). 

In 2015, the American Association of Periodontology (AAP) recognised the 1999 

classification of chronic periodontitis as slight (or mild), moderate and severe (or 

advanced) (Table 1) and established guidelines for the severity of this disease (4). 

According to the report, diagnosis of periodontitis is based on the presence of two or 

more of the following clinical and radiographic parameters: 1. one or more sites of 

inflammation (bleeding on probing), 2. increased probing depth or clinical attachment 

loss and 3. radiographic bone loss. The report also defined features of chronic and 

aggressive periodontitis, the two main forms of destructive periodontal disease, and 

stated that correct diagnosis of these conditions had significant implications on their 

therapy and long-term prognosis (4). According to a World Health Organization 
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report from 2012, 15–20% of adults aged 35-44 years suffer from severe periodontal 

disease resulting in tooth loss (5). In Australia, the most recent data come from the 

2004-2006 National Survey of Oral Health and show that one in five Australian adults 

suffer from moderate to severe periodontitis that may result in tooth loss (6).  

 

Table 1. Severity of periodontitis as per American Association of Periodontology 

clinical interpretation of the 1999 Classification of Periodontal Diseases and 

Conditions adapted from Geurs et al. (4) 

 

 Slight (Mild) Moderate Severe 

(Advanced) 

Probing depth > 3and < 5 mm ≥ 5 and < 7 mm ≥ 7 mm 

Bleeding on probing Present Present Present 

Radiographic bone 

loss 

≥ 2 and ≤ 3 mm > 3 and ≤ 5 mm > 5 mm 

Clinical attachment 

loss 

1-2 mm 3-4 mm ≥ 5 mm 

 

Periodontitis is a complex condition and associations have been reported with 

various systemic conditions such as rheumatoid arthritis (7), diabetes mellitus (8), 

cardiovascular disease (9), obesity (10), chronic pulmonary disease (11) and chronic 

kidney disease (12). Therefore, considering the health impact of periodontitis on the 

individual, there is a clear need for new prevention and periodontal treatment 

strategies. 

The precise aetiology of periodontitis is complex, multifactorial and not completely 

understood, and some of the specific factors that determine a person’s susceptibility 

to this disease are still to be elucidated (13). Presence of bacterial biofilm 



Page | 17  
 

accumulation on tooth surfaces at the gingival margin initially results in gingivitis 

(Figure 1b), an inflammation of the soft tissues which can be completely reversed 

under normal physiological conditions by using adequate oral hygiene practices(14). 

In individuals susceptible to periodontitis, soft tissues inflammation is accompanied 

by significant changes in the ecology of the oral microflora towards dysbiosis, 

together with destruction of gingivae, periodontal ligament and alveolar bone (15) 

(Figure 1c). (Terms highlighted in bold throughout the text are included in Table 2).  

 

 

Figure 1. a. Healthy periodontal tissues. b. Early gingival inflammation (arrow: dark 

red, oedematous gingivae). c. Clinical appearance of chronic periodontitis (arrow: 

scalloped,   receding, inflamed gingivae. (14) © John Wiley & Sons, reproduced with 

permission (License no 4311130321878) 

 

Disease initiation and progression are influenced by several environmental risk 

factors including yet not limited to smoking and uncontrolled type-2 diabetes (16) and 

host-specific risk factors determined by the individual’s genetic makeup (17). Current 

treatments for periodontitis, more specifically, subgingival debridement together with 

the use of antimicrobial mouthwashes, lead to a temporary reduction in the level and 

proportion of certain pathogenic bacteria and associated inflammation that has not 

proven sufficient to control the disease (18, 19). Systemic broad-spectrum antibiotics 

such as doxycycline, amoxicillin or metronidazole are sometimes used in conjunction 

with subgingival debridement for the treatment of chronic and aggressive 

periodontitis (20-22). The rationale for use of these particular adjunctive antibiotics is 
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based on the change they induce in the microbial composition of the subgingival 

biofilm, together with reduced bleeding, clinical attachment loss and probing depths 

(23). Treatment compliance may be affected by adverse gastrointestinal side-effects 

such as antibiotic-associated diarrhoea, nausea, vomiting (24) and intestinal 

dysbiosis (25). Additionally, the benefits of antibiotic use on the patient’s periodontal 

condition need to be considered in the light of increased bacterial resistance due to 

the frequency of antibiotic use (26). 

 

Table 2. Glossary of terms 

 

A recent randomised, double blind, placebo controlled clinical trial examined the 

relevance and long term impact of adjunctive systemic antibiotics on the progression 

Glossary of terms 

Metagenomics 

Analysis of genetic information recovered from a host sample 

Microbiota 

A complex community of microorganisms present in a certain environment. It 
includes prokaryotes such as bacteria and archaea, and eukaryotes such as 
fungi, protozoa and viruses 

Microbiome 

All genetic material within a microbiota 

Symbiosis 

Long-term biological relationship between two or more species 

Dysbiosis 

Alteration in the diversity, composition or function of the microbiome (such as 
types and number of bacteria), associated with a diseased state 

Probiotics 

Live micro-organisms which, when administered in adequate amounts, confer a 
health benefit on the host 



Page | 19  
 

of periodontitis (27). Over a period of 27.5 months and with 506 participating patients 

from different dental centres, the use of metronidazole plus amoxicillin as an 

adjunctive treatment resulted in a small, although statistically significant, additional 

reduction in further attachment loss when compared with placebo (27). The authors 

concluded that antibiotics should be restricted for use with specific patient groups 

and conditions, such as in aggressive and severe forms of periodontitis, whilst also 

taking into account the overall risk for periodontal disease and the modification of 

behavioural risk factors such as smoking (27). In conclusion, the potential benefits of 

using systemic antibiotics as adjuncts in the treatment of periodontitis and the impact 

of their side effects on individual heath (gut dysbiosis) and public health (increase in 

antibiotic resistance) need to be carefully considered (Figure 2) (28). 

 

         

            

Figure 2. Benefits and side effects of antibiotic use in periodontitis on patient’s 

periodontal condition and general health, and on public health. Abbreviations: CAL – 

clinical attachment loss 

Increase in antibiotic 
resistance

Gut dysbiosis:

Autoimmune disease, 
obesity, metabolic 

syndrome

Reduction in

probing depth,

bleeding, 

CAL

Side effects of antibiotic 

use on public health 

Side effects of antibiotic 

use on patient’s general 

health 

Benefits of antibiotic use 

on patient‘s periodontal 

condition 
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In this context, manipulation of the commensal pathogenic bacteria by increasing the 

number of beneficial microorganisms may be considered as an alternative strategy 

to antibiotic treatment and achievement of long term periodontal health (29). 

 

1.1.1 The role of Porphyromonas gingivalis and Fusobacterium 

nucleatum in progression of periodontal disease 

 

Recent developments in metagenomics clearly demonstrated both oral and 

gastrointestinal microbiomes are the most diverse human microbial environments 

(30). The oral cavity harbour 13 phyla with more than 700 species of aerobic, 

facultative anaerobic and anaerobic bacteria (31). Of all the Gram-positive or Gram-

negative bacterial species commonly isolated from the oral cavity, six phyla contain 

96% of the taxa (31) (Table 3). Changes in bacterial composition and structure of the 

diverse oral environment have been associated with transition from symbiotic to 

dysbiotic bacterial communities (32). Fusobacterium nucleatum and Porphyromonas 

gingivalis represent two oral microbiome bacterial species that are linked with 

progression of periodontal disease (33). F. nucleatum is an obligate anaerobe Gram-

negative bacterium belonging to the Fusobacteriaceae family, ubiquitous in the 

human oral cavity, isolated from both heathy and diseased sites (34). F. nucleatum 

has a remarkable ability to increase chances of survival in a biofilm environment for 

anaerobic and facultative-anaerobic bacteria by co-aggregating with them (35). In 

the oral cavity, co-aggregation between species enables bacteria to withstand the 

salivary flow and establish a metabolic relationship (36). 
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Table 3. Six oral bacteria phyla contain 96% of the taxa (31) 

 

Gram-positive 

bacteria 

Bacterial 

Phylum 

Bacterial 

Genus 

Commonly isolated 

bacterial species 

 Firmicutes Streptococcus S. salivarius, S. mutans 

  Staphylococcus S. aureus 

  Enterococcus E. fecalis 

  Lactobacillus L. casei, L. salivarius 

  Bacillus B. cereus 

 Actinobacteria Actinomyces A. israelli 

Gram-negative 

bacteria 

Fusobacteria Fusobacterium F. nucleatum 

 Bacteroidetes Tannerella T. forsythia 

  Porphyromonas P. gingivalis 

  Prevotella P. intermedia 

 Spirochaetes Treponema T. denticola 

 Proteobacteria Aggregatibacter A. 

actinomycetemcomitans 

 

F. nucleatum is thought to be a key bacterium in the formation of mature oral biofilm, 

binding via interspecies adherence with early Gram-positive colonisers such as 

streptococci and Actinomyces (37, 38). Following establishment in the oral biofilm, F. 

nucleatum lowers the redox potential (Eh) of the environment, facilitating adherence 

and persistence of certain late anaerobic Gram-negative colonisers such as 

Porphyromonas and Aggregatibacter (39, 40). A recent metatranscriptome analysis 

supported the polymicrobial synergy and dysbiosis model for periodontitis 

pathogenesis and asked for further studies to determine the specific role of F. 

nucleatum in periodontitis (38). Oral infection with 109 F. nucleatum in 100 µl of PBS 

in Balb/c mice induced inflammation and infiltration of macrophages in gingival tissue 

and promoted alveolar bone resorption (41). It has been previously demonstrated 
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that dual infection with F. nucleatum and P. gingivalis in mice aggravates alveolar 

bone loss and inflammation compared with animals treated with either bacterium 

alone (42).  

P. gingivalis belongs to the phylum Bacteroidetes and is an anaerobic Gram-

negative bacterium inhabiting the oral cavity (43). P. gingivalis is associated with 

Treponema denticola and Tannerella forsythia, forming the ‘red complex’, 

traditionally considered to play important roles in pathogenesis of periodontitis based 

on their bacterial virulence and association with affected sites (1, 44, 45). Recent 

advances in metagenomics demonstrate that the roles of the ‘red complex’ bacteria 

in disease progression are important. However, with emergence of recent research, 

these roles may need to be re-evaluated to include other virulence expressing 

organisms such as Neisseria spp., Corynebacterium matruchotii, Rothia 

dentocariosa, Veillonella parvula and Actinomyces spp previously not linked with the 

pathogenesis of periodontitis yet which may be of potential significance (46). 

According to Killian et al., P. gingivalis occurs in relatively low abundance in the oral 

biofilm (33). Nevertheless, P. gingivalis presence has been associated with a shift in 

microbial balance from a symbiotic to a dysbiotic state, this bacterium being 

considered one of the keystone pathogens associated with pathogenesis and 

progression of periodontitis (46). In addition, germ free mice inoculated with P. 

gingivalis (109 CFU/ml) alone did not develop bone loss, leading to the conclusion 

that very low colonization levels of this bacterium changes the amount and 

composition of the oral microbiota and that a commensal microbiota is required for 

bone loss to develop (47). The colonisation of keystone pathogens such as P. 

gingivalis is facilitated by defects in the immune status of the host including 

neutrophil recruitment and results in an enhancement of further dysbiotic bacterial 
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communities that amplifies the destructive inflammatory response resulting in the 

destruction of periodontal tissue (48). The tissue breakdown products (e.g. degraded 

collagen, heme-compounds) provide nutrients for the dysbiotic microbiota thus 

contributing to the chronic, pathogenic cycle (49) (Figure 3).  

 

 

             Figure 3. Inflammation and dysbiosis in periodontitis (49) 

             © John Wiley & Sons, reproduced with permission (license no 4311150371929). 
   

 

P. gingivalis participates in modulating the host’s response from symbiosis into 

dysbiosis by expressing a variety of virulence factors such as lipopolysaccharide 

(LPS), gingipains, fimbriae and capsules with roles in the destruction of periodontal 

tissues including alveolar bone (50). Of these virulence factors, the proteolytic 

enzymes gingipains, participate in stimulating or inhibiting the host’s innate immune 

responses and the expression of inflammatory mediators (51, 52). Gingipains also 

participate in degradation of type I collagen and fibrinogen (53, 54) and abundantly 
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supply periodontal pockets with iron and haem required by periodontal pathogens 

(55). 

Future research into P. gingivalis virulence factors and mechanisms of action may be 

of significant value in understanding the role of these bacteria in the progression of 

periodontal disease (56). 

 

1.1.2 P. gingivalis and F. nucleatum link with systemic inflammation 

and gut dysbiosis 

 

There has been growing evidence in recent years regarding the ability of P. 

gingivalis and F. nucleatum to alter the microbial balance towards dysbiosis and 

systemic inflammation (44, 57). Oral administration of a combination of P. gingivalis, 

F. nucleatum and Prevotella intermedia (109 CFU/ml each) in five week old wild type 

female mice resulted in significant dysbiosis of the oral microbiome and slight 

changes in gut microbiome together with significant changes in the local and 

systemic immune response when compared with controls (58). Specifically, mice 

with induced periodontitis on a normal diet presented a significant increase in genus 

Lactococcus in the periodontal microbiota (58). In contrast, when mice were on a 

high fat diet, induced periodontitis significantly increased genera Bacteroides, 

Clostridium and Ruminococcus (58). Furthermore, changes in the periodontal 

microbiota were associated with an increase in insulin resistance (58). In a separate 

pre-clinical study, oral administration of P. gingivalis (1010 CFU/ml) twice a week for 

five weeks resulted in altered proportions between Bacteroidetes and Firmicutes in 

the ileal microbiome with a significant increase in the order Bacteroidales (59). 
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These changes coincided with increases in IL-6 serum levels and insulin resistance 

which further lead to inflammatory changes in adipose tissue and liver (59). 

Nakajima et al. (2015) demonstrated that in mice, a single oral administration of 109 

CFU/ml of P. gingivalis (stain W83) significantly increased the proportion of phylum 

Bacteroidetes and decreased the proportion of phylum Firmicutes in the gut, and 

increased serum endotoxin levels (60). Infected mice presented higher quantities of 

bacterial DNA in their liver (60). In addition, intestinal gene expression of proteins 

involved in intestinal permeability, such as tjp-1 and occludin, was downregulated 

(60). These results suggest that intestinal microbiota changes induced by oral 

administration of P. gingivalis precede systemic inflammatory changes and may 

provide a mechanistic link in the associations between periodontitis and systemic 

disease (60). 

 

1.1.3 Bone loss in periodontitis – is there a connection with the 

gut? 

 

Periodontitis is the result of an imbalance between bone resorption and bone 

remodelling and advances in the knowledge of bone loss mechanisms in general 

have led to a progress in understanding pathology of bone loss in periodontitis (61) 

(Fig 4). The bone resorption and remodelling processes represent a complex 

interplay involving bone resorbing osteoclasts and bone forming osteoblasts (62). 

Pro-inflammatory mediators including TNF-α, IL-1, IL-17, RANKL, OPG, PGE2 play 

an important role in regulating this process (63). The host inflammatory response 

against certain pathogens increases production of pro-inflammatory cytokines 



Page | 26  
 

creating a state of chronic systemic inflammation which contributes to bone 

resorption (64). 

 

            

           Figure 4. Mechanisms of bone destruction in periodontitis (61)  

           © John Wiley & Sons, reproduced with permission (license no 4311150676261).   

 

The gastrointestinal tract regulates calcium absorption and thus participates in bone 

health (65). The associations between the intestinal microbiome and bone 

metabolism have been studied using germ free (GF) and conventionally (CONV) 

raised mice and have established that intestinal microbiota played a significant role 

in regulating bone density and physiology (66) (Table 4). 

Absence of intestinal microbiota in GF mice leads to an increase in bone mass, 

decrease in osteoclasts and osteoclast precursor cells, and decrease in pro-

inflammatory cytokines IL-6 and TNF-α in bone when compared with CONV mice 
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(66). Mouse models also demonstrated that exposing animals to low doses of 

antibiotics resulted in larger bones with increased mineral content (67).  

 

Table 4 Studies demonstrating interactions between gut and bone 

Study Type of 

participants 

Results 

Balesaria et 

al., 2009 (66) 

Patients 

aged 24-80 

years 

Human duodenal calcium transport proteins 

respond to vitamin D metabolites involved in 

calcium absorption 

Oostalaner et 

al., 2012 (70) 

CD patients Osteoclastogenesis is increased in patients with 

CD due to interactions between osteoclasts 

precursors and T cells 

Sjogren et al., 

2012 (67) 

Female 

mice 

Absence of gut microbiota in GF mice leads to 

increase in bone mass and decrease in 

osteoclasts, osteoclast precursor cells and 

inflammatory cytokines IL-6 and TNF-α in bone 

when compared with CONV mice 

Cox et al., 

2014 (68) 

Male and 

female mice 

Exposing mice to low doses of antibiotics from 

birth resulted in larger bones with increased 

mineral content when compared with controls 

CD – Crohn’s disease, GF – germ-free mice, CONV – conventionally raised mice 

Clinical studies have demonstrated that chronic inflammatory diseases in which the 

inflammatory site is distant from the bone, such as Crohn’s disease, may also cause 

bone loss independent of calcium absorption (68, 69). A recent review discussing the 

epidemiologic and biologic evidence for periodontal manifestations of inflammatory 

bowel disease, especially Crohn’s disease, was unable to make any definite 

conclusions regarding the effect of periodontal treatment on the evolution of 

inflammatory bowel disease (IBD) and more clinical trials were needed (70). 
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Nevertheless, clinical studies included in this comprehensive review reported higher 

values for mean clinical attachment loss and deeper periodontal pockets in IBD 

patients (71, 72). Current research demonstrates that the intestinal microbiome may 

play an important part in bone health, with the mechanisms of the interactions 

between intestinal inflammation and bone loss still to be determined (73). 

 

1.2 Probiotics 

 

1.2.1 The human gut microbiome 

 

The human microbiota includes bacteria, archaea, fungi, protozoa and viruses (74). 

The ratio between bacterial and human cells in the body has recently been 

suggested to be close to 1:1 (75). Of all body microbiota, microbes residing in the 

gastrointestinal (GI) tract, together with their genes, are referred to as the gut 

microbiome and their roles in metabolism, physiology and immunity are of vital 

importance (76). Particularly, interactions between gut microbiota and the host 

mucosal immune system are paramount for maturation and modulation of the 

immune system (77). Advances in metagenomics and related methods have shown 

that bacterial composition varies in different sites of the GI tract and the main gut 

bacterial species belong to the Firmicutes and Bacteroidetes phyla with 

Actinobacteria, Proteobacteria, and Verrucomicrobia phyla also present (78-80). 

Adult gut microbiome composition varies between individuals and can be altered by 

several factors including age, diet and medical interventions (81). 
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1.2.2 Gut microbiome dysbiosis link with disease 

 

The gut microbiome encompasses the largest numbers and the most diverse 

species of bacteria with important roles in health and disease (82). The relationship 

between commensal bacteria and the host is paramount for maintaining homeostasis 

of a healthy individual (83). Some of the well-known roles played by gut bacteria 

include providing a barrier against pathogenic organisms, synthesising vitamins B 

and K and fermenting non-digestible dietary fibres into short chain fatty acids (SCFA) 

(84). New clinical evidence is accumulating regarding the complex role of the 

microbiome in systemic disease proved by clinical interventions using probiotics, 

prebiotics and antibiotics (85). 

Gut dysbiosis represents an alteration of the composition of the gut microbiome (86). 

It has been correlated with a multitude of systemic conditions such as inflammatory 

bowel disease, irritable bowel syndrome and colon cancer (87), type 2 diabetes, 

obesity and atopy (88, 89), anxiety, depression, autism spectrum disorders and 

memory abilities (90). However, when considering connecting gut dysbiosis with a 

diseased state, it is currently difficult to distinguish between cause and effect since 

the gut microbiota can influence the host and the diseased state can influence the 

microbiota (74). 

 

1.2.3 Biology and mechanisms of probiotics 

 

The definition of probiotics as "live micro-organisms which, when administered in  
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adequate amounts, confer a health benefit on the host" (91) has recently been 

reinforced as relevant (92). Most probiotics are ubiquitous to the GI, genitourinary 

and oral tracts where they play paramount roles in metabolism, physiology and 

immunity (93). The majority of probiotics belong to the Firmicutes, Actinobacteria and 

Proteobacteria phyla (94) with the following genera commonly isolated:  

Lactobacillus (94), Enterococcus (95), Streptococcus (96), Bacillus (97), 

Pediococcus (98), Leuconostoc (99), Bifidobacterium (94), Streptomyces (100), and 

Escherichia (101) (Table 5). 

 

Table 5 The most commonly isolated probiotic bacterial taxa 

Bacterial Phylum Bacterial 

Genus 

Commonly isolated bacterial species 

Firmicutes Lactobacillus L. casei, L. salivarius, L. acidophilus, L. 

reuteri, L. rhamnosus. L. plantarum, L. 

fermentum, L. brevis, L. gasseri, L. 

paracasei 

 Enterococcus E. faecium 

 Streptococcus S. thermophilus 

 Bacillus B. coagulans 

 Pediococcus P. acidlactici 

 Leuconostoc L. mesenteroides 

Actinobacteria Bifidobacterium B. bifidum, B. breve, B. longum, 

B.infantis, B. animalis, B. adolescentis, 

B. lactis 

 Streptomyces Streptomyces spp 

Proteobacteria Escherichia E. coli nissle 
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Mechanisms of probiotics are currently under study and, although they seem to 

depend on the strain, dose and mode of delivery (93), three general modes of action 

have been suggested (Figure 5). Probiotics may inhibit pathogenic bacteria by 

decreasing the luminal pH and thus restricting the pathogens’ adhesion capabilities, 

by competing with pathogens for nutrients, and by secreting antimicrobial 

substances such as bacteriocins, lactic acid and hydrogen peroxide (102).  

 

 

Figure 5. Proposed mechanisms of probiotic action include restriction of the    

pathogens’ adhesion capabilities, competition with pathogens for nutrients and 

secretion of antimicrobial substances 

 

Probiotics may improve the epithelial barrier function by modulating signalling 

pathways, increasing expression of tight junction proteins occludin, ZO and cadherin, 

producing short chain fatty acids and enhancing production of mucins and defensins 



Page | 32  
 

(103). Probiotics may also modulate the immune system by increasing secretion of 

IgA, increasing production of anti-inflammatory cytokines IL-10, IL-12, TGF-β, and 

decreasing production of pro-inflammatory cytokines TNF-α, INF-γ, IL-8, IL-17, IL-1β, 

IL-6 (104). 

Temporary colonisation of probiotics may have an effect on the host with or without 

major changes to the resident microbiome (105). For example, Lactobacillus 

rhamnosus GG (LGG) administered to 76 volunteers for four weeks, temporarily 

colonised the gastrointestinal tract and lowered the activity of β-gluconoridase, an 

intestinal enzyme that catalyses the breakdown of complex carbohydrates, by 

approximately 80 % in all participants (106). When administered to mice for three 

days prior to radiation exposure, LGG (5 x 107 CFU/ml) significantly reduced 

radiation-induced epithelial injury and improved crypt survival, protecting the 

intestine without significantly altering the bacterial composition (107). This study also 

demonstrated that administration of a small number of this probiotics (LGG, 5 x 107 

CFU/ml) has the ability to exert an influence in areas populated by large numbers of 

other bacteria (107). A large number of systematic reviews of probiotic action also 

highlight the probiotics ability to exert their effects at sites distant from the site of 

administration. For instance, Bifidobacterium or Lactobacillus species with doses 

between 109 and 1010 CFU/ml administered orally or via gastric gavage for two 

weeks in animals and four weeks in humans exerted significant effects on the central 

nervous system, improving memory abilities and psychiatric disorder-related 

behaviours such as anxiety, depression and autism (90). Probiotic action can also be 

shared by a larger number of members of a certain taxonomic group although 

different probiotic strains can exert their effect through completely different 

mechanisms (108). Future studies are needed for a better understanding of the 
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probiotics and their contribution to health, together with appropriate probiotic strain 

selection for disease prevention (105) 

 

1.2.4 Probiotics and bone loss prevention 

 

Recent pre-clinical and clinical studies in the area of probiotics and bone loss 

prevention reveal the implication of the intestinal microbiota in regulating bone health 

(109, 110). Current research indicates probiotics may act on bone indirectly by either 

changing the gut microbiome, modifying the intestinal barrier function or modulating 

the immune system (111). For example, McCabe et al. showed that treating healthy 

mice with 300 µl of Lactobacillus reuteri 109 CFU/ml three times per day for four 

weeks enhanced bone density in male mice but not female mice whilst supressing 

levels of the pro-inflammatory cytokine TNF-α in the jejunum and ileum (109). Li et 

al. reported that administering 109 CFU/ml of Lactobacillus rhamnosus GG at 3.5 day 

intervals for four weeks protected female mice against bone loss by increasing the 

gut barrier integrity and decreasing production of the osteoclastogenic cytokines IL-

17, TNF, RANKL, IFNγ, and IL-4 (112). In eight week old female mice, consumption 

of 1.5 x 108 CFU/ml of the probiotic Bacillus subtilis daily for 14 days before the 

introduction of orthodontic tooth movement significantly decreased osteoclasts 

numbers in periodontal tissues of teeth under mechanical loading (113). Similarly, 

other probiotic studies addressing bone loss prevention in animal models of 

experimental periodontitis have yielded encouraging results (114). In male mice, 

topical administration of Lactobacillus brevis CD2 (8 x 105 CFU in 1 mm2 lyopatch) 

for a week resulted in significantly decreased alveolar bone loss, together with lower 
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expression of gingival inflammatory cytokines TNF-α, IL-1β, Il-6 and IL-17 and lower 

counts of anaerobic bacteria for treated mice when compared with placebo-treated 

mice (114). A more detailed discussion regarding probiotic-periodontitis studies 

published between 1980 and August 2015 is presented in chapter 2 of this thesis. 

More recently, 1.5 x 108 CFU/ml of Bacillus subtilis and Bacillus licheniformis 

administered orally for 44 days in rats with ligature induced periodontitis significantly 

protected against alveolar bone loss and local and systemic inflammation (115). 

Significant suppression of bone loss and gingival inflammation were also observed in 

6-8 weeks old female Balb/c mice with periodontitis when using a daily dose of 200 

μl of 2-9 x109 CFU/ml of Lactobacillus rhamnosus GG for 36 days (116). A key 

finding of this study was that probiotics exerted their effects irrespective of their 

mode of administration (oral gavage or via oral inoculation) (116). Another probiotic, 

Lactobacillus gasseri SBT2055 demonstrated protective effects on alveolar bone 

loss and gingival inflammation when 1 × 109 CFU/200 µL were gavaged into 8-week 

old Balb/c female mice with periodontitis (117). Oliveria et al. (2017) investigated the 

effects of a probiotic from the Bifidobacterium genus (1.9 x 109 CFU/ml 

Bifidobacterium animalis subsp.lactis) with promising results (119). In 3-months old 

male Wistar mice, administration of this probiotic resulted in significantly greater 

expression of osteoprotegerin and β-defensins as well as lower levels of interleukin-

1b and receptor activator of nuclear factor-kappa B ligand in periodontal tissues for 

the probiotic treated group when compared with the periodontitis group (118).  

Given the limited numbers of these investigations, there is a clear need for future 

animal and clinical studies in elucidating the role of probiotics in bone prevention and 

their mechanisms of action. 
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1.3 Hypothesis 

 

The hypothesis of my study was that probiotic treatment with Lactobacillus 

rhamnosus GG (LGG) prior to the induction of experimental periodontitis in mice will 

reduce or inhibit local and systemic inflammation and alveolar bone loss. 

 

 1.4 Aims 

 

The aim of my research project was to investigate the administration of probiotics as 

a preventive measure using an established mouse model of experimentally induced 

periodontal bone loss. The project specifically determined: 

(i) the effect of LGG on alveolar bone loss and local and systemic 

inflammation, 

(ii) changes in the gut physiology and microbiome as a result of 

experimentally induced periodontal disease and probiotic treatment and 

(iii) the influence of different methods of probiotic administration on the 

observed bone and gut changes. 
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Chapter 2 Probiotic and periodontitis – a literature review  

[Gatej et al., (2017) Journal of the International Academy of Periodontology. 19(2): 

42–50] 

 

2.1 Abstract  

 

Objective: This review was designed to explore the use of probiotics in prevention or 

treatment of periodontitis. 

Methods: A search was performed using MEDLINE and bibliographies from previous 

reviews in order to identify any randomised controlled animal and human probiotic 

interventions in periodontitis. 

Results: Five studies using probiotics in animal models of periodontitis and eight 

clinical studies using probiotics in patients with chronic periodontitis were analysed. 

The analysis of the animal models s howed reduction in periodontal pathogens and 

bleeding on probing when probiotics were used in adjunction to mechanical 

debridement and significant increase in alveolar bone levels and bone density in the 

probiotic groups when compared with placebo. Some of the results of the clinical 

studies indicated de- creased clinical parameters (gingival inflammation, bleeding on 

probing, plaque index) and decreased pro-inflammatory markers levels in saliva or 

gingival crevicular fluid in treated periodontitis patients when compared with controls 

or placebo. Other results included decreased periodontal pocket depth and clinical 

attachment loss for scaling and root planing plus probiotic treatment versus scaling 

and root planning alone or placebo and also reduction in Porphyromonas gingivalis 

numbers and the total viable count and proportion of obligate anaerobic bacteria. 

Conclusions: Within the limitations of this review, the results are encouraging, 
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supporting the notion that there is a place for probiotics in the treatment of 

periodontitis. Future independent studies are needed to investigate specific probiotic 

strains, doses, delivery methods, treatment schedules, mechanisms of action, safety 

and how to maintain the results of the probiotic interventions. 

 

 

2.2 Introduction 

 

Periodontitis is a common chronic inflammatory condition affecting the dentition of the 

adult population (1). A key factor in the development of this disease is an increased 

bacterial challenge, specifically the presence of elevated numbers of certain potentially 

pathogenic commensal bacterial species resulting from altered environmental 

conditions arising from the host’s inflammatory response (2).  

Subgingival debridement, surgical interventions and in some cases selective use of 

antibiotics and antiseptics are current approaches used to reduce the pathogenic 

bacteria. While these treatments result in a temporary reduction of the bacterial load 

and associated inflammation, they are often not sufficient to control the disease (3, 4). 

Therefore, other adjunctive strategies need to be investigated. The administration of 

beneficial bacteria -probiotics- with antimicrobial and anti-inflammatory properties is 

one of several novel approaches being considered as an adjunct treatment for the 

management of periodontitis and may offer a low risk, inexpensive and easy-to-use 

treatment option. 
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2.3 Periodontitis 

 

Periodontitis is a chronic inflammatory condition affecting both the hard and soft 

tissues surrounding the teeth, caused by a combination of specific bacteria and 

inflammatory host responses and resulting in the destruction of the connective tissue 

of the gingivae, periodontal ligament and alveolar bone (1). It is one of the two most 

prevalent oral health burdens world-wide. A World Health Organization report from 

2012 found 15–20% of middle-aged adults suffered from severe periodontal disease 

resulting in tooth loss (5). Periodontitis is also considered a risk factor for 

cardiovascular disease, pulmonary disease, type II diabetes, rheumatoid arthritis and 

adverse pregnancy outcomes (6-9). 

The precise etiology of periodontitis is complex, multifactorial and not completely 

understood. Generally, it is believed to be a biofilm-induced disease with the host’s 

immune system playing a central role (2, 10-13). The disease is associated with an 

imbalance in the host’s local microbiome with elevated numbers and proportions of 

bacterial species designed as ‘pathogens’ and reduced proportions of bacteria 

associated with health (14-16). 

Current treatments for periodontal disease including subgingival debridement, surgical 

interventions and selective use of antibiotics and antiseptics, aim to reduce the 

pathogenic load (4). Although these numbers of pathogens are reduced considerably, 

the shift is only temporary as re-colonization occurs within months (17, 18). The use 

of antibiotics as part of the treatment brings with it the important global issue of 

antibiotics resistance that has the potential to render many antibiotics useless. It also 

brings along a long list of possible side-effects, notably, antibiotic-associated diarrhea 
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(19). 

Considering all of these factors, increasing the proportion of beneficial bacteria with 

inflammation modulating properties presents as an option to address the bacterial 

imbalance and may be considered as a preventive or treatment option in achieving 

periodontal health. 

 

2.4 Probiotics 

 

2.4.1 History, sources, definition 

 

The microorganisms that live inside and on humans outnumber the body’s cells tenfold 

with the majority of them being bacteria, with some archaea and eukaryotes also being 

present (20). In periodontal health, communities of bacteria live in symbiosis with the 

host, playing a role in its immune function and health status. A disturbance in the 

microbial balance (a process labelled as ‘dysbiosis’) has been associated with several 

medical conditions (21). Obesity, metabolic diseases, gastrointestinal diseases, 

autoimmune diseases, allergies and cancer have all been partly associated with an 

increased number of harmful bacteria and a decreased number of beneficial bacteria 

(22). 

Beneficial bacteria are present in preserved food and beverages around the world: 

Korean kimchi, Indonesian tempeh, Indian chutney, Japanese miso, sauerkraut, kefir, 

yogurt and cheese. The preservation process called ‘lacto-fermentation’ is an 

anaerobic process in which lactic acid bacteria, predominantly Lactobacilli, convert 

carbohydrates into lactic acid which acts as a preservative (23). Consuming fermented 
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foods is an ancient practice dating back as far as 5400 BC, whilst recommendations 

for gastrointestinal illness date back to 76 AD (24). The first scientist to lay down the 

foundations for the concept of beneficial bacteria was the Ukrainian born Nobel 

laureate bacteriologist Ilya Ilyich Mechnikov, known as “the father of modern 

immunology”. He proposed a theory that aging is caused by toxic bacteria in the gut 

and attributed the longevity of peasants from the Balkan area to their consumption of 

large quantities of sour milk that contained Lactobacilli (25). 

Other scientists continued Metchnikov’s work and in 1965 the term “probiotics,” 

meaning “for life”, was introduced (26). The current definition for probiotics is given by 

the World Health Organisation which defines probiotics as live microorganisms, most 

often bacteria (sometimes fungi), which, when consumed, confer beneficial effects to 

the host (27). Probiotics are bacterial strains usually isolated from human commensal 

microbiota and adequately characterized for strain identity, content, stability, and 

proven health effects. The most commonly used species of probiotics belong to the 

Lactobacillus, Bifidobacterium, Escherichia, Enterococcus and Bacillus genera and 

are all ubiquitous residents of the human skin, gastrointestinal tract, respiratory tract 

and vagina (28). Lactobacilli are Gram-positive, rod-shaped, facultative-anaerobes. 

Some of the most commonly known members that have been isolated and studied are 

Lactobacillus acidophilus, L. reuteri, L. bulgaricus, L. rhamnosus, L. salivarius, L. 

casei.  Bifidobacteria are Gram-positive, anaerobic bacteria, with some of the most 

commonly known members being Bifidobacterium bifidum, B. breve, B. longum, and 

B. infantis (29).  
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2.4.2 Function and mechanisms 

 

Probiotics fulfil many useful functions thus having a major heath impact. They 

produce lactic acid with anti-bacterial effect, hydrogen peroxide with antiseptic effect, 

and anti-viral and anti-fungal agents that suppress pathogens. Probiotics are 

important for immune system development and regulation, maintenance of a healthy 

lining of the GI tract, food digestion, synthesis of amino acids, proteins and different 

vitamins, absorption of calcium, iron and vitamin D (30-32). In order to exert all these 

affect, probiotics need to be able to survive the gastrointestinal passage resisting 

acid and bile and to preserve their stability during manufacturing and storage (33).  

Additional studies have shown that a combination of different probiotic species 

and/or strains (e.g. Lactobacillus rhamnosus GG and Bifidobacterium lactis Bb12) 

can enhance their effects in a synergetic manner (34, 35) 

The precise mechanisms of how probiotics exert their effects are not known yet and 

may depend on a variety of factors: the condition being treated, the strain and the 

concentration of the probiotics used and the stage when they are introduced, the 

presence of prebiotics or enteric bacteria (36). 

The effects of probiotics can originate from three local or systemic main modes of 

action (37-39): 

1. Indirectly, probiotics compete with pathogens for essential nutrients; they can 

also restrict the pathogens’ adhesion capabilities by changing the environmental pH. 

2. Directly, probiotics are involved in the production of antimicrobial substances 

(lactic acid, hydrogen peroxide, bacteriocins) that can kill or inhibit the growth of 

periodontal pathogens. 
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3. Probiotics can act on the host by modulating the host’s innate and adaptive 

immune response (reducing the production of pro-inflammatory cytokines: IL-6, IL-

1β, TNFα and increasing production of anti-inflammatory cytokines: IL-10) and by 

improving the intestinal barrier integrity (40). 

It has not been established yet if colonization of the oral cavity by probiotics is 

necessary in order for them to exert their effects in the mouth, and the process of 

colonization of the oral cavity itself remains unclear, with studies using biased 

methods of detecting bacteria (41). 

 

2.4.3 Lactobacillus rhamnosus GG 

 

One of the most studied probiotic microorganisms is Lactobacillus rhamnosus GG 

(LGG). It was originally isolated from healthy human intestines in 1983 (42). LGG 

survives the low pH of the stomach and the bile acids of the duodenum. It has pili 

facilitating adherence to the inner lining of the digestive system thus colonising the 

intestine (43). One study investigating the colonisation of LGG in the oral cavity 

concluded that this is improbable in majority of cases but possible in some (44). 

Lactobacillus rhamnosus GG has been extensively investigated in gastrointestinal 

studies and it is now used in dairy products in many countries. This probiotic does not 

ferment sucrose or lactose and has been shown to significantly reduce the risk of 

caries (45, 46). It has also been demonstrated to have anti-inflammatory properties in 

vivo (47). 

Considering its non-cariogenic and anti-inflammatory properties, LGG may prove to 

be a good candidate for future probiotic-periodontitis studies. 
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2.4.4 Probiotics in other fields of medicine 

 

Traditionally, probiotics have been used in gastroenterology. Evidence-based reviews 

indicate that certain strains of probiotics contribute to the microbial balance of the 

gastrointestinal tract - supporting the immune system and reducing inflammation (31). 

Clinical trials have assessed the effects of probiotics in antibiotic-associated diarrhoea, 

gastroenteritis, irritable bowel syndrome, inflammatory bowel disease, Crohn’s 

disease, obesity, rheumatoid arthritis and allergies (33, 48). There are also laboratory 

studies that have shown promising results in treatment of childhood autism and colon 

cancer (49, 50). 

 

2.4.5 Probiotics and oral health 

 

There have been many studies published investigating the potential health benefits of 

probiotics on systemic health, but investigations regarding their use in oral health are 

limited by comparison. These vary a lot in terms of probiotics strains used, 

concentrations, and vehicles for the application (cheese, lozenges, milk, kefir, ice 

cream, gum, drops, powder, and mouthwash) (51). 

Probiotics have been evaluated in caries control and have demonstrated the capacity 

to reduce Streptococcus mutans levels in saliva (46) . A recent meta-analysis indicated 

that probiotics could have a positive effect in caries prevention (52) . There are also 

probiotic evaluations in oral conditions e.g. candidiasis, chemotherapy-induced 

mucositis or halitosis (53, 54). 
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2.4.6 Probiotics and periodontitis 

 

In periodontal disease, some studies investigated the role of probiotics in gingivitis and  

reported a significant decrease in terms of plaque and gingival indices, bleeding on 

probing and gingival inflammation in the probiotic groups (54). 

A search was performed using MEDLINE in order to identify any randomised 

controlled animal and human probiotic intervention studies in periodontitis. The search 

considered those works published between 1980 and August 2015 and aimed at 

evaluating the effects of probiotics in periodontitis using the words “periodontal 

disease”, “periodontitis” and “probiotics”. Additional hand searches were performed 

and included bibliographies from previous reviews on the topic of oral probiotics (51, 

53-56). Only articles published in English were selected. Five studies using probiotics 

in animal models of periodontitis and eight clinical studies using probiotics in patients 

with chronic periodontitis were identified.  

 

2.4.6.1 Probiotics in animal models of periodontitis 

 

Table 1 highlights four animal studies where periodontal pockets were artificially 

created or a ligature induced periodontitis model was used in either rats or beagle 

dogs. 

Five mm periodontal bony defects were surgically created four months prior to the 

experiment in a split mouth, double blind, randomised trial in beagle dogs (57). Pellets 
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containing a mixture of Streptococcus salivarius, S. sanguinis and S. mitis were 

applied to the root surface after scaling and root planing (i.e. to a supressed oral 

microbiota). The authors concluded that the use of probiotics significantly delayed and 

reduced inflammation (bleeding on probing) in the probiotic group when compared 

with scaled and root planed pockets alone. There was also reduction in total anaerobic 

bacteria and delay in recolonization of pockets by the pathogens when compared with 

the control group and the reduced levels were maintained 12 weeks after the treatment 

in the probiotic group but not the control group  (51, 57). The limitations of the study 

were the absence of a placebo control group, the inter-subject variation, the small 

sample size (eight dogs) and the intra-oral translocation. 

Another study using the same model in eight beagle dogs found that there was a 

significant increase in bone levels for the periodontal pockets treated with probiotics 

for 12 weeks in comparison with the control group (58). Bone density in the probiotic 

group also improved significantly. The previously mentioned limitations apply, together 

with the use of conventional radiographic films that introduces potential measurement 

accuracy errors. 

In a randomised controlled study, 32 rats with ligature induced experimental 

periodontal disease were administered Bacillus subtillis for forty four days (59). The 

probiotic intervention generated reduced attachment loss and alveolar bone loss and 

protected the small intestine from reactive changes induced by ligature-induced 

periodontitis. There are a few shortcomings to this study. Like all ligature induced 

periodontitis models, the mechanical lesions could aggravate the periodontal 

destruction (60). In addition, the mode of probiotic administration, via drinking water, 

makes it difficult to quantify the amount ingested by each animal. 
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In another ligature induced periodontitis study, a 44-day experiment using the probiotic 

B. subtilis and restrain stress concluded that probiotics supplementation may reduce 

tissue breakdown in unstressed rats and that immunomodulatory effects of probiotics 

in intestinal and periodontal tissues were influenced by stress (61). All the limitations 

of the Messora et al. study (59) apply here as well. 

The animal studies showed an effect of probiotics on oral microbiota and a limited 

effect on periodontal parameters. Due to the limited data available and all the 

limitations discussed above, it is premature to draw a conclusion on the recommended 

methodology (probiotic strain, concentration, duration of treatment and mode of 

administration).  

 

Table 1. Animal probiotics studies included in this review 

Study Type of 

participants, 

number 

Condition Probiotic strains, ve- 

hicle, time 

Results 

Teughles et 

al., 2007 

(Teughels et 
al., 2007b) 

Beagle dogs, 8 Artificially created 

periodontal pockets 

Streptococcus salivarius, 

S. sanguinis, S. mitis, 

pellets, 12 weeks 

Reduction in periodon- 

tal pathogens and BOP 

when probiotics were used 

in adjunction to 

mechanical debridement 

Nackaerts et 
al., 2008 

Beagle dogs, 8 Artificially created 

periodontal pockets 

S. salivarius, S. sangui- 

nis, S. mitis, pellets, 12 

weeks 

Significant increase in 

bone levels and bone 

density in probiotic group 

when compared with 

placebo 

Messora et 
al., 2013 

Wistar rats, 32 Ligature-induced 

periodontitis 

Product based on Bacillus 

subtilis, in water, 44 days 

Mean values of AL and 

ABL were significantly 

higher in the induced 

periodontitis group com- 

pared with the treatment 

group 

Foureaux et 
al., 2014 

Wistar rats, 64 Ligature-induced 

periodontitis 

associated with 

restraint stress 

Product based on B. 

subtilis, in water, 44 

days 

Bone loss was prevented 

in the probiotic treated 

induced periodontitis 

unstressed group 
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2.4.6.2 Probiotics in clinical studies in patients with chronic 

periodontitis 

 

Studies using probiotics in patients with chronic periodontitis present a high degree of 

heterogeneity in the probiotic strains, dosages, vehicles of administration, modes of 

administration and duration. Table 2 presents eight clinical studies with variations in 

terms of the severity of disease, sample size and administration of oral hygiene 

instructions. 

L. brevis lozenges were used in a 2007 double blind 4-day study in 21 male and female 

adults with no systemic diseases and with moderate-severe chronic periodontitis to 

assess anti-inflammatory effects of this probiotic (62). The authors concluded that all 

clinical parameters (gingival index (GI), plaque index (PI), calculus and temperature 

sensitivity) decreased in the probiotic group, in association with salivary levels of 

prostaglandin E2 (PGE2), metalloproteinase (MMP) and interferon γ (INF-γ).  

 

Table 2. Clinical probiotics-chronic periodontitis studies included in this review 

Study Type of participants, 

number, age 

Probiotic strains, 

vehicle, time 

Results 

Riccia et al., 

2007 

Adults, 29, 24-51 Lactobacillus brevis, 

lozenges, 4 days 

Decreased clinical parameters in treated 
periodontitis patients when compared with 
controls (gingival inflammation, BOP, plaque, 
calculus, temperature sensitivity); Decreased 
levels of PGE

2
, MMP and INF-γ in saliva 

samples of treated periodontitis patients 

Shimauchi et 
al., 2008 

Adults, 66, 32-61 L. salivarius, tablets, 8 

weeks 

Current  smokers in the probiotic group showed 

a significantly greater improvement of 

plaque index and probing pocket depth from 

baseline when compared with those in the 

placebo group 
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Vivekananda et 
al., 2010 

Adults, 30, 34-50 L. reuteri, lozenges, 42 

days 
PPD, CAL, GI, GBI and PPD significantly 

reduced  in the SRP plus probiotic group 

compared with SRP alone or placebo 

Teughels et 
al., 2013 

Adults, 30, older 

than 35 

L. reuteri, lozenges, 12 

weeks 

Significantly more pocket depth reduction and 
attachment gain in the moderate and deep 
pockets and also reduction in P.gingivalis 
numbers in the test group when compared with 
controls 

Vicario et al., 
2013 

Adults, 20, 44-65 L. reuteri, tablets, 30 

days 

Improved short-term clinical outcomes (PI, 

BOP, and PPD) in non-smoking patients with 

initial-to- moderate chronic periodontitis 

Szkaradkiewic
z et al., 

2014 

Adults, 38, 31-46 L. reuteri, tablets, 2 

weeks 

Significant improvement in SBI, periodontal 

probing depth and clinical attachment level 

and also decreased levels of pro-

inflammatory cytokines TNF- γ, IL-1β, IL-17 

in treated patients when compared with the 

control group 

Ince et al., 
2015 

Adults, 30, 35-50 L. reuteri, lozenges, 3 

weeks 
Significant differences in PI, GI, BOP and 

PPD and significant mean values of 

attachment gain in favour of the test group 

compared with controls. Significant 

decreased levels of MMP-8 and increased 

levels of TIMP-1 were found in GCF for the 

test group up to day 180 

Tekce et al., 
2015 

Adults, 30, 35-50 L. reuteri, lozenges, 3 

weeks 

1 year follow up study from the previous 

Ince et al.; 2015. PI, GI and BOP 

significantly lower in the test group compared 

with controls; difference in the total viable 

count and the proportion of obligate 

anaerobes were decreased in the test group 

up to day 180 

PGE
2
, prostaglandin E

2
; MMP, metalloproteinase; TIMP-1, tissue inhibitor of metalloproteinase; INF- , 

interferon ; PI, plaque index; BOP, bleeding on probing; PPD, pocket probing depth; CAL, 

clinical attachment loss; GI, gingival index; GBI, gingival bleeding index; SRP, scaling and root 

planing; SBI, sulcus bleeding index 

 
 

The anti-inflammatory effects of L. brevis were attributed to its capacity to prevent the 

production of nitric oxide and hence the release of PGE2 and the activation of MMPs 

(62). No placebo group was used in this study, no data ware provided on the 

periodontal disease and data for bleeding on probing (BOP) were unclear. 
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L. salivarius tablets were administered three times daily for eight weeks in a double 

blind, placebo controlled, randomised clinical study that included 66 adult patients with 

mild to moderate chronic periodontitis (63). The authors found significantly decreased 

PI, GI and pocket depth in probiotic treated smokers when compared with placebo. No 

significant difference was detected in BOP between the probiotic and the placebo 

groups. The study also looked at salivary lactoferrin levels as a measure for the host’s 

immune response and found that these were decreased significantly in the test group 

smokers. The study does not report on the lactoferrin levels of the non-smokers group 

alone. The Hawthorn effect regarding altered oral hygiene regimens due to 

observation was taken into account. The patients who volunteered were workers at 

the company that manufactured the probiotic tablets and funded the study (63). 

The use of L. reuteri lozenges in 30 adult patients with mild to moderate chronic 

periodontitis combined with scaling and root planing (SRP) significantly reduced GI, 

clinical attachment loss (CAL), gingival bleeding index (GBI) and periodontal pocket 

depth (PPD) and was more effective than either treatment alone (64). Patients 

receiving only probiotics without SRP also showed significant clinical improvement 

when compared with placebo. The administration of probiotics started 21 days after 

SRP, twice a day for three weeks. The authors of this double blind, randomised, 

placebo controlled clinical trial presented probiotics as an adjunct or alternative to 

periodontal treatment when SRP might be contraindicated. The private laboratory 

making the probiotic funded the test products and the publication of the study (64). 

L. reuteri lozenges were also used for 12 weeks in a randomised, placebo controlled 

clinical trial in 30 adults with moderate to severe previously untreated chronic 

periodontitis (65). The group found that there was more pocket depth reduction and 

attachment gain, together with reduction in Porphyromonas gingivalis numbers in the 
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probiotic group when compared with controls, concluding that L. reuteri can be a useful 

adjunct to SRP. The private laboratory that manufactured the probiotic partially 

supported this study (65). 

Two strains of L. reuteri tablets were used for 30 days in a double blind, placebo-

controlled, randomised clinical trial in non-smoking patients with initial to moderate 

chronic periodontitis (66). The probiotics used significantly improved short-term clinical 

outcomes (BOP, PI and PPD). No mechanical intervention was performed. The 

subject size used in this study was quite small (20 patients) and the study period short. 

No statistically significant changes could be shown in the control group (66). 

In 2014, an experiment using L. reuteri tablets for two weeks in 38 adult patients with 

moderate chronic periodontitis found significant improvement in sulcus bleeding index 

(SBI), PPD and CAL in treated patients when compared with controls (67). The 

gingival crevicular fluid (GCF), levels of pro-inflammatory cytokines TNF-α, IL-1β and 

IL-17 were decreased in the treated group (67). 

The effects of L. reuteri on clinical and biochemical parameters, adjunctive to initial 

periodontal therapy were evaluated in a randomised, parallel, controlled, double-

masked clinical trial of 30 adult patients with initial to moderate chronic periodontitis 

over a one year period (68, 69). Significant differences were found in PI, GI, BOP and 

PPD in favour of the test group, together with significant mean values of attachment 

gain. The GCF levels of proteolytic enzyme metalloproteinase MMP-8 and the tissue 

inhibitor of metalloproteinase TIMP-1 were measured and followed for 360 days with 

significantly decreased levels of MMP-8 and increased levels of TIMP-1 detected up 

to day 180. Both forms of MMPs (active and latent) were measured and the active 

forms seemed to be found at sites with progressive periodontitis. The total viable count 
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and the proportion of obligates anaerobes were also decreased up to day 180. The 

study was supported by a private laboratory. However, the authors of the study 

declared that the company was not involved in the data management (68, 69). 

The high degree of heterogeneity of the human studies (different strains and 

concentrations, small sample size, different duration of treatment, durability of 

response, mode of administration and the role of environmental factors such as the 

pH of the delivery area) makes it difficult to draw a robust conclusion. Despite all 

these limitations, it seems that probiotics can still have an impact on the oral 

microbiota and a limited effect on periodontal parameters. This now needs to be 

investigated further. 

Probiotic therapy is generally considered to be safe and complications rare (31) with 

a closer exploration needed in critically ill or immunocompromised patients (70) 

 

2.5 Conclusions and recommendations for future research  

 

Periodontitis is an inflammatory disease that has proven very difficult to treat. The 

results of the animal and clinical periodontitis studies included in this short literature 

review support the notion that there is a place for probiotics in the treatment of 

periodontitis and that probiotics may offer a low-risk, inexpensive, easy to use 

prevention or treatment option for the management of periodontal disease. In the 

future, more independent studies are needed to look into specific probiotic strains, 

doses, delivery methods, treatment schedule, mechanisms of action, safety and how 

to maintain the results of the probiotic interventions. 
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CHAPTER 3: Competition between Lactobacillus  rhamnosus GG 

and opportunistic pathogens Porphyromonas gingivalis and 

Fusobacterium nucleatum in vitro 

 

3.1 Introduction 

 

Periodontitis is a common polymicrobial chronic inflammatory condition affecting the 

tissue surrounding the teeth (1). Porphyromonas gingivalis and Fusobacterium 

nucleatum are two key bacteria believed to be involved in the aetiology of this disease 

(2). An increasing number of preclinical and clinical studies have demonstrated the 

benefit of probiotic treatment in inflammatory diseases with a polymicrobial aetiology 

(3). Lactobacillus rhamnosus GG (ATCC 53103) (LGG) is a naturally occurring Gram 

positive, facultative anaerobic bacteria which exerts a series of health benefits and 

has been extensively investigated in clinical trials (4-8). LGG, due to its non-cariogenic 

and anti-inflammatory properties, is thought to be a good candidate for probiotic-

periodontitis studies (9). The molecular mechanisms through which LGG exerts its 

effects are yet to be elucidated and may include inhibition of pathogens, competition 

for nutritional resources and modulation of the immune system by regulating the 

intestinal epithelial barrier (10). Antimicrobial activity of LGG has been demonstrated 

against some bacterial species but studies investigating its antimicrobial activity 

against pathogens involved in the aetiology of periodontitis are limited (11). 

The aim of this experiment was to investigate the antimicrobial ability of LGG against 

P. gingivalis and F. nucleatum in vitro and make suggestions regarding its potential  

use in experimental periodontitis studies. 
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3.2 Materials and methods 

 

3.2.1 Bacterial strains 

 

The probiotic LGG was obtained from the ATCC collection, Manassas, Virginia, USA 

(ATCC® Number 53103). It was cultured in de Man, Rogosa and Sharpe (MRS) 

(Oxoid, Basingstoke, UK) broth and on MRS agar plates at 37°C in an atmosphere of 

N2/CO2/H2 (90:5:5) for 48 hours. 

F. nucleatum (ATCC® Number 25586) and P. gingivalis (strain W50) were cultured 

on anaerobic blood agar plates (Oxoid) and stored for three days at 37ºC in an 

atmosphere of N2/CO2/H2 (90:5:5). 

 

3.2.2 LGG - growth rate and cell density 

 

The growth curves of LGG were established in order to correlate the optical density 

(OD) of the culture with the number of viable bacterial cells. Briefly, LGG was 

cultured in MRS broth at 37°C in an atmosphere of N2/CO2/H2 (90:5:5). After 48 

hours, colonies were Gram stained and 1 ml of the culture was placed into a sterile 

tube together with 45 ml of fresh broth. Optical density was measured using a 

http://www.atcc.org/Products/All/53103.aspx
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spectrophotometer (Shimadzu, Japan) at a wavelength of 600 nm every two hours 

initially and then every hour for a total of six hours.  

Concentrations of live bacteria were confirmed by serial dilutions and plating for 

counting of colony forming units (CFU).  Broth cultures were serially diluted at each 

time point using 0.85% saline. Aliquots of 0.1 ml of each of the 10-4, 10 -5, 10-6 and 

10-7 solutions were plated in duplicate on MRS agar plates and incubated at 37°C in 

an atmosphere of N2/CO2/H2 (90:5:5) for 48 hours after which colonies were counted 

and recorded as colony forming units per millilitre (CFU/ml). 

 

3.2.3 Diffusion assays 

 

The anti-microbial activity of the probiotic LGG against P. gingivalis and F. 

nucleatum was examined using an agar diffusion assay. 

In the first experiment, P. gingivalis, F. nucleatum and LGG were grown on agar 

plates at 37ºC in an atmosphere of N2/CO2/H2 (90:5:5). Bacterial colonies were used 

to inoculate 10 ml of heart infusion broth (Oxoid) for P. gingivalis and F. nucleatum 

and 10 ml of MRS broth for LGG. After three days growth, P. gingivalis and F. 

nucleatum were swabbed separately across three agar plates and three wells were 

created equilaterally in each plate. 1.5 ml of LGG culture was placed in four sterile 

Eppendorf tubes, centrifuged at 10000 g for five minutes and filtered through a 0.22 

μm bacterial filter (Sarstedt, Germany). The cell free supernatant (CFS) was placed 

in two of the wells of the agar plates containing either P. gingivalis or F. nucleatum 
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while sterile broth was placed in the third well to act as a control. The plates were 

incubated for four days after which inhibition zones were observed. The tests were 

performed in duplicate. 

The second experiment followed a protocol described by Khalaf et al. (12). One 

hundred μl of P. gingivalis (1010 CFU) and 100 μl of F. nucleatum (108 CFU) were 

spread onto separate agar plates and allowed to dry. Five ml of LGG broth (109 

CFU) was centrifuged at 10000 g for five minutes and filtered (0.22 μm). After 

adjusting the pH to 7, 10 μl of the CFS were placed onto plates containing either P. 

gingivalis or F. nucleatum. The plates were incubated for four days after which 

inhibition zones were observed. All tests were performed in duplicate. 

 

3.3. Results 

 

3.3.1 Colonies were identified as LGG 

 

After incubation, the plates were visually inspected. Colonies were identified as LGG 

based on colonial morphology (large, round, creamy white, opaque) and Gram stain 

appearance (small uniform Gram positive rods). 
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3.3.2 LGG growth rate 

 

Bacterial growth curve of LGG correlated with its cell density (CFU/ml) and showed 

that in the relatively short time of five hours the concentration of LGG varied between 

3 - 8 x 108 CFU/ml (optical density of 0.6 - 1 at 600 nm) (Figure 1 and Figure 2). 

These values correspond with concentrations used in previous animal studies (13). 

 

 

Figure 1: Bacterial growth curve for Lactobacillus rhamnosus GG; Optical density 

measured at a wavelength of 600 nm; Each point represent the average of two 

measurements ±SEM. 
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Figure 2: Concentration of LGG (CFU/ml) relative to optical density; Optical density 

measured at a wavelength of 600 nm. 

 

3.3.3 LGG exerts no antimicrobial activity against P. gingivalis and 

F. nucleatum in vitro 

 

Antimicrobial activity of LGG was investigated using two methods. After four days of 

incubation, F. nucleatum and P. gingivalis formed confluent lawns on the plates and 

no inhibition zones were observed using either method. Results using the first agar 

diffusion method are illustrated in Figures 3 and 4 and results using the second 

direct contact method are illustrated in Figures 5 and 6. 
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Figure 3: LGG developed no inhibition           Figure 4: LGG developed no inhibition  
zones against F nucleatum              zones against P. gingivalis                       
Black arrows - LGG CFS wells; White arrows -             Black arrows - LGG CFS wells; White arrows -
Negative control (sterile broth); CSF – cell free             Negative control (sterile broth); CSF – cell free                                                                     
supernatant               supernatant 

 

 

 

   

Figure 5: LGG developed no inhibition                Figure 6: LGG developed no inhibition   
zones against F nucleatum at pH 7                                 zones against P. gingivalis at pH 7          
Black arrows – LGG CFS; CSF – cell free                          Black arrows – LGG CFS; CSF – cell free 
supernatant        supernatant 
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3.4 Discussion and conclusions 

 

Although bacterial antagonism of some strains of lactobacilli against oral pathogens 

has been previously investigated (14, 15), there are limited studies available 

investigating competition between LGG, P. gingivalis and F. nucleatum. 

Results from the current study found no antimicrobial activity for LGG against the two 

pathogens. Previously, human isolates of oral lactobacilli including L. paracasei, L. 

casei, L. salivarius, L plantarum, L. fermentum and L. rhamnosus demonstrated an 

inhibitory effect against some Gram negative periodontal pathogens including P. 

gingivalis (14). The LGG used in the current study did not originate from an oral 

source and has been reported as being unable to colonise the oral cavity (8, 16). 

The antimicrobial activity of lactobacilli is generally linked with their ability to produce 

lactic acid, hydrogen peroxide and bacteriocins (11). Lactobacilli antimicrobial activity 

is also species dependent: peptide bacteriocins from L. plantarum were found to 

prevent colonisation by P. gingivalis in vitro whilst bacteriocins from L. brevis had no 

antimicrobial effect on P. gingivalis (12). The lack of inhibition zones observed in the 

current study might suggest that the mechanisms of action did not involve LGG’s 

antimicrobial ability. Future investigations should explore the potential antagonism 

between LGG, P. gingivalis and F. nucleatum in co-culture as well as experimenting 

with a wider variety of environmental conditions such as pH and temperature.  

Other mechanisms of lactobacilli action including anti-inflammatory effects have 

been reported previously (17). An in vitro study proved that the probiotic strain L. 

rhamnosus (ATCC 9595) prevented P. gingivalis induced inflammation by 
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modulating TLR signaling (3) whilst animal studies showed that probiotic 

supplementation with L. acidophilus, Bacillus subtilis, Enterococcus faecium and 

Bifidobacterium bifidum  improved local and systemic inflammation in rats with 

induced oral mucositis (18). In the gut, LGG can block uncontrolled inflammatory 

responses (19). These mechanisms may prove to be of interest in periodontal 

disease studies since it has been demonstrated that controlling inflammation in 

periodontitis can promote tissue regeneration and restore homeostasis (20).  

In conclusion, the current study suggests the effect of LGG on P. gingivalis (W50) 

and F. nucleatum (ATCC 25586) was not the result of any observed anmicrobial 

property. Taking into account LGG’s demonstrated anti-inflammatory properties and 

immunomodulatory effects, this probiotic may prove to be a good candidate for 

probiotic-periodontitis pre-clinical studies. 
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CHAPTER 4 
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prevents alveolar bone loss in a mouse model 

of experimental periodontitis 
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Lactobacillus rhamnosus GG prevents alveolar bone loss in a 

mouse model of experimental periodontitis 

[Gatej et al., (2017) Journal of Clinical Periodontology. DOI 10.1111/jcpe.12838: 1–9] 

 

 

4.1 Abstract 

 

Aim: This study investigated the role of Lactobacillus rhamnosus GG on bone loss 

and local and systemic inflammation in an in vivo mouse model of experimental 

periodontitis.  

Materials and methods: Experimental periodontitis was induced in mice by oral 

inoculation with Porphyromonas gingivalis and Fusobacterium nucleatum over a 

period of 44 days. The probiotic LGG was administered via oral inoculation or oral 

gavage prior to, and during disease induction. The antimicrobial activity of LGG on 

the inoculum was also tested. Alveolar bone levels and gingival tissue changes were 

assessed using in vivo micro-computed tomography and histological analysis. Serum 

levels of mouse homologues for IL-8 were measured using multiplex assays. 

Results: Pre-treatment with probiotics either via oral gavage or via oral inoculation 

significantly reduced bone loss (p < 0.0001) and gingival inflammation (p < 0.0001) 

when compared with periodontitis group. Oral gavage treatment group had 

significantly less TRAP positive cells (p < 0.02) then periodontitis group. LGG 

showed no antimicrobial activity against Porphyromonas gingivalis and 

Fusobacterium nucleatum. 



Page | 87  
 

Conclusions: LGG effectively supresses bone loss in a mouse model of induced 

periodontitis irrespective of the mode of administration. 

 Clinical Relevance  

Scientific rationale for the study: Probiotic interventions in periodontitis have 

increased in recent years with more studies needed to elucidate their role in alveolar 

bone loss. 

Principal findings: In the current study, the use of the probiotic Lactobacillus 

rhamnosus GG prior to the induction of experimental periodontitis prevented bone 

loss and reduced local inflammation for all probiotic treated groups, irrespective of 

the probiotic mode of administration. 

Practical implications: Lactobacillus rhamnosus GG may prove to be a good 

candidate for human probiotic-periodontitis studies and may offer a low risk, easy to 

use option for adjunctive use in the management of periodontitis. 

 

4.2 Introduction 

 

Periodontitis (PD) is a chronic inflammatory condition affecting the tissues 

surrounding teeth. It is influenced by elevated numbers of specific bacteria that can 

become pathogenic due to changes in the local environment controlled by the host 

(1, 2). Alveolar bone loss is a distinctive feature of periodontitis and its prevention 

still represents a challenge for clinicians. There is a clear need for future adjunctive 

preventive bone loss therapies together with new treatment protocols targeting the 

host response (3). The administration of probiotics with inflammation modulating 
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properties is one of several new approaches being considered as an option to 

address the bacterial imbalance and prevent bone loss in periodontitis. This may 

offer a low risk, inexpensive and easy-to-use preventive or treatment option in 

achieving periodontal health (4). 

Probiotics are defined by the World Health Organisation as live microorganisms, 

most often bacteria, which, when consumed, confer beneficial effects to the host (5). 

Probiotics play important roles in food digestion and nutrient absorption, synthesis of 

proteins and vitamins whilst also being important in the development and regulation 

of the immune system (6, 7) The use of probiotics in the management of periodontitis 

has previously been investigated; however, there is insufficient data regarding their 

role in controlling alveolar bone loss (4). Of the limited number of published studies 

available, most have investigated bone loss using conventional radiography or 

histomorphometric analyses that introduce potential measurement inaccuracies (8-

10)  

Lactobacillus rhamnosus GG (LGG) is a probiotic that has been extensively and 

safely used in gastrointestinal clinical applications (11). LGG has the ability to 

survive the low pH of the stomach and the bile acids of the duodenum and exerts 

anti-inflammatory properties in vivo (12). 

The primary outcome of this study was to determine the effect of LGG on alveolar 

bone loss and the secondary outcome was to determine changes in local and 

systemic inflammation. 
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4.3 Materials and Methods 

 

4.3.1 Ethics 

 

This project was approved by the University of Adelaide Animal Ethics Committee (M-

2015-116) and complied with National Health and Research Council (Australia) Code 

of Practice for Animal Care in Research and Training (2014). 

 

4.3.2 In vitro evaluation of LGG antimicrobial activity on P. gingivalis 

and F. nucleatum  

 

To investigate the potential antimicrobial activity of LGG, P. gingivalis (W50), F. 

nucleatum (ATCC® 25586) and LGG (ATCC® 53103) were grown on agar plates at 

37ºC in an atmosphere of N2/CO2/H2 (90:5:5). Bacterial colonies were Gram stained 

and used to inoculate ten ml of heart infusion broth (Oxoid, Basingstoke UK) for P. 

gingivalis and F. nucleatum and ten ml of MRS broth (Becton, Dickinson and 

Company, Sparks, USA) for LGG. After three days P. gingivalis and F. nucleatum were 

swabbed uniformly across three agar plates and then three wells were created 

equilaterally in each plate. LGG broth was placed in four sterile Eppendorf tubes, 

centrifuged at 10000 g for five minutes and filtered (0.22 μm). The cell free supernatant 

was placed in two of the wells on the P. gingivalis and F. nucleatum agar plates while 

sterile broth was placed in the third well to act as a control. 

The antimicrobial activity of LGG was also assessed following a protocol described by 

Khalaf et al. (13). Briefly, 100 μl of P. gingivalis (1010 CFU) and 100 μl of F. nucleatum 

(108 CFU) were spread on agar plates and allowed to dry. Five ml of LGG broth (109 
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CFU) was centrifuged at 10000 g for five minutes and filtered (0.22 μm). After adjusting 

the pH to 7, 10 μl of LGG’s supernatant were placed onto the P. gingivalis or F. 

nucleatum layer. The plates were incubated for four days after which inhibition zones 

were observed. 

 

4.3.3 Animals 

 

Thirty-six 6-8 week old BALB/c female mice were obtained from the Laboratory Animal 

Services of the University of Adelaide and were housed in a PC2 animal holding facility 

(OGTR certification No 2067/2008). All mice were subjected to a period of five days of 

acclimatization and were kept in a room with a 12h light/dark cycle and temperature 

from 22-24 °C. The animals were housed with soft, sterile bedding, free of antibacterial 

products, were fed a powdered, sterile, non-granular food to prevent impaction of food 

around the gingiva and had access to sterile non-acidic water throughout the 

experiment. Mice were randomly assigned to six groups (n = six animals/group). 

Group 1: Control (no periodontitis, no treatment) 

Group 2: PD (periodontitis, no treatment) 

Group 3: LGG Gav + PD (treatment with LGG via oral gavage (Gav) and subsequent 

periodontitis) 

Group 4: LGG Gav (treatment with LGG via oral gavage) 

Group 5: LGG Oral + PD (treatment with LGG via oral inoculation (Oral) and 

subsequent periodontitis) 

Group 6: LGG Oral (treatment with LGG via oral inoculation). 

All mice were assessed daily for general health parameters. At the completion of the 

study (day 44), animals were killed by cervical dislocation under anesthesia with a final 
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solution of xylazine (20 mg/kg of body weight) and ketamine (100 mg/kg of body 

weight). Heads, livers, kidneys, spleens, stomachs and intestines were kept for 

analysis. 

 

4.3.4 Probiotic treatment 

 

The mouse model of experimental periodontitis used in this study has been described 

previously (14, 15). Briefly, all animals received kanamycin 1mg/ml (Sigma, St. Louis, 

MO, USA) in deionised water ad libidum for a period of seven days to reduce the native 

flora and support colonisation of the pathogenic bacteria. LGG is not susceptible to 

kanamycin (16, 17). After the cessation of the antibiotic (day 8), twenty-four mice 

received a daily dose of 200 μl of 2-9 x109 CFU/ml of LGG (ATCC® Number 53103) in 

sterile 2% carboxymethyl cellulose (CMC) (Sigma, St Louis, MO, USA) in phosphate 

buffered saline (PBS). Twelve mice (groups LGG Oral and LGG Oral + PD) received 

oral inoculation of LGG with bacteria directly swabbed around the molars using a small 

brush. Another twelve mice (groups LGG Gav and LGG Gav + PD) received oral 

gavage of LGG with bacteria administered directly into the stomach using a bulb tipped 

gavage needle attached to a syringe. LGG treatment started three days prior to the 

induction of periodontitis and it continued daily for the whole duration of the experiment 

(day 44). 

 

4.3.5 Induction of experimental periodontitis 

 

Animals from groups PD, LGG Gav + PD and LGG Oral + PD were inoculated over 

two sessions with an inoculum containing Porphyromonas gingivalis (strain W50) and 

http://www.atcc.org/Products/All/53103.aspx
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Fusobacterium nucleatum (ATCC® 25586). One hundred microlitres of 2-4 x1010 

CFU/ml of P. gingivalis and 4-6 x108 CFU/ml of F. nucleatum in sterile 2% CMC in 

phosphate buffered saline (PBS) were swabbed onto the molars with the use of a 

microbrush. The inoculation protocol has been previously documented (15, 18). 

 

4.3.6 Live-animal micro-computed tomography 

 

Mice were scanned using a Skyscan 1076 High Resolution Micro-CT Scanner 

(Skyscan, Bruker, Belgium) to determine bone changes in the jaws. The scanning 

specifications and protocol have been previously published (18). Live scans were 

taken before probiotic treatment (day 3) and at the end of the experiment (day 44). 

Mice in the control group were scanned at the same time points to give an indication 

of alveolar bone changes that occur with normal mouse growth. 

 

4.3.7 Micro-CT data processing 

 

Scans were reconstructed using a cone-beam algorithm with the following settings: 

smoothing = 1, ring artefacts reduction = 10, beam hardening correction = 30% 

(NRecon software, Version 1.6.10.2, Skyscan, Bruker, Belgium). DataViewer software 

(Version 1.5.2.4, Skyscan) was used for 3D viewing of the images and realignment of 

the sagittal planes. The images were opened using CTAnalyser software (Version 

1.15.4.0 +, Skyscan) as previously described (18). Changes in the alveolar bone 

height were assessed by measuring the cemento-enamel junction (CEJ) to the 

alveolar bone crest (ABC) distance (CEJ-ABC) between first and second maxillary 
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molars on three slices (left and right) for each mouse using sagittal sections of the jaw 

(Figure 1). Two independent, blinded operators performed the measurements. 

 

 

Figure 1. Representative micro CT appearance and analysis of periodontal bone 

loss between first and second maxillary molars. Control (A); PD (B); LGG Gav (C); 

LGG Gav + PD (D); Red bars represent CEJ-ABC distance measurements; 

Abbreviations: PD = Periodontitis, Gav = Gavage, CEJ-ABC = Cemento-enamel 

junction to alveolar bone crest. 

 

 

4.3.8 Histological analysis 

 

4.3.8.1 Haematoxylin and eosin staining 

 

Heads were sectioned in half, processed and embedded in paraffin. Sections best 

representing the longitudinal cutting of the first and second molars from the maxillae 

were selected and stained with haematoxylin and eosin for analysis. Histological 

sections were imaged using the NanoZoomer Digital Pathology System (NDP 

Hamamatsu, Hamamatsu City, Japan) at x 40 magnification. Histological assessment 

and scoring were carried out by two independent, blinded operators using a four-point 
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scale system based on previous methods (19). Total numbers of inflammatory cells 

(lymphocytes, plasma cells, neutrophils or macrophages) were assessed within an 

area of four mm2, which included the alveolar bone between the first and second 

molars. Normal tissue was scored as 0 (< 5% inflammatory cells), mild inflammation 

was scored as 1 (5–20% inflammatory cells), moderate inflammation was scored as 2 

(20–50% inflammatory cells), and severe inflammation (> 50% inflammatory cells) was 

scored as 3. The number of multinucleated osteoclast cells (more than three nuclei) 

per square millimetre within the assessed area was also determined. 

 

4.3.8.2 Tartrate-resistant acid phosphatase (TRAP) staining 

 

TRAP staining was conducted on longitudinal cutting sections of the maxillae to detect 

the number of osteoclasts on the bone surface and pre-osteoclasts in the surrounding 

soft tissue using a method adapted from Udagawa et al. (20). Briefly, slides were 

TRAP stained (TRAP, Sigma-Aldrich, San Louis, MO) and left to incubate at 37 ºC for 

15 min before rinsing with PBS and counterstaining with haematoxylin. The number of 

TRAP-positive cells with three or more nuclei were counted by two blinded observers 

in a consistent region of interest (4 mm2 that included the alveolar bone between the 

first and second molars) as previously described (21). 

 

4.3.9 Serum collection 

 

At the completion of the study (day 44), blood was collected through cardiac puncture 

and allowed to clot for 1 hour at room temperature. Serum was separated by 

centrifugation at 1000 g for 20 minutes and stored at -20 ºC until required. 
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4.3.10 Multiplex analysis 

 

Serum was analysed for the presence of mouse homologues of interleukin 8 (IL-8): 

keratinocyte chemoattractant (KC), lipopolysaccharide induced CXC (LIX) and 

macrophage inflammatory protein 2 (MIP2) using a magnetic Luminex Screening 

Assay according to the manufacturer’s protocol (R&D Systems, Minneapolis, MN, 

USA). All standards and samples were assayed in duplicate using a Luminex 200 

system (Luminex Corporation, Austin TX, USA). Concentrations were analysed using 

xPONENT version 3.1 software (Luminex Company). 

 

4.3.11 Statistics 

 

Data were analysed using the SAS 9.4 statistical software (SAS Institute Inc., Cary, 

NC, USA). 

The power of this study was 85% for a sample size of six per group and a significance 

level of 0.05 based on the expected difference regarding the primary outcome. For 

analysis of bone resorption, body weights and TRAP data, a linear mixed-effects 

model was performed to account for clustering and repeated measurements on mouse 

together with a compound symmetry covariance structure (for bone) and an 

unstructured covariance structure (for weights). Six replicate measurements were 

carried out on each of the six mice per group to allow for a correlation of bone loss 

measurements within each mouse (measurements taken from the same mouse would 

likely be more similar than measurements taken from different mice). Post-hoc 

comparisons were used to analyse statistically significant differences between groups. 

All values shown are mean ± standard error (SEM). A linear regression model was 
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performed to analyse local inflammation results and post-hoc comparisons were used 

to analyse statistically significant differences between groups. For systemic 

inflammation (LIX, MIP2 and KC), linear regression models with logarithmic 

transformation of the outcome were performed and post-hoc comparisons were used 

to analyse statistically significant differences between groups. 

 

4.4 Results 

 

4.4.1 Animals 

 

Mice did not lose significant amounts of weight across the duration of the 

experiment. In addition, there were no other adverse events noted. One mouse died 

on day 26 but this was thought to be unrelated to the experiment. 

 

4.4.2 LGG demonstrated no antimicrobial activity against P 

gingivalis and F nucleatum in vitro 

 

Antimicrobial activity of LGG was investigated by using two methods. After four days 

of incubation no inhibition zones were observed using either method (Data not 

shown). 
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4.4.3 Effect of LGG administered orally on weight gain 

 

Body weight was monitored weekly for eight weeks. Mice receiving LGG orally did 

not gain significant weight over the duration of the experiment: LGG Oral (p = 0.085), 

LGG Oral + PD (p = 0.055). All the other groups presented statistically significant 

weight gain: Control (p = 0.0003), LGG Gav (p = 0.046), LGG Gav + PD (p = 0.038) 

and PD (p < 0.0001). (Supplementary information). 

 

4.4.4 Effect of LGG on bone resorption 

 

Micro-CT scans of live animals at the end of the experiment and final histology 

analyses showed an established chronic inflammatory reaction in the disease (PD) 

group. Analysis of the micro-CT scans confirmed that periodontitis had been induced 

with statistically significant mean bone loss in the disease (PD) group (p < 0.0001) 

(Figure 2). Mice in this group, at the end of the experiment had mean bone loss 20% 

greater than the same mice at the start (exponentiated estimate=1.20, 95% CI: 1.12, 

1.28). No significant mean bone loss (p > 0.05) between end and start of the 

experiment was observed for Control, LGG Gav, LGG Gav + PD, LGG Oral and LGG 

Oral + PD. 

 

4.4.5 Effects of LGG on gingival and systemic inflammation 

Semi-quantitative histological analysis of the periodontal tissues of the first and  
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second maxillary molar regions showed significantly more inflammatory cell infiltrate 

and osteoclast numbers in the PD group when compared with controls (p < 0.0001). 

All animals treated with probiotics had similar inflammatory scores when compared 

with controls (p > 0.05). However, when compared with the PD group, they 

presented with significantly less inflammation (p < 0.001) (Figure 3). 

 

 

 

Figure 2. Analysis of periodontal bone loss. Control: mice (n = 5); PD: mice (n = 

6) with induced periodontitis; LGG Gav + PD: mice (n=6) with PD and treated by oral 

gavage with LGG; LGG Gav: mice (n=6) treated by oral gavage with LGG; LGG Oral 

+ PD: mice (n=6) with PD and treated by oral inoculation with LGG; LGG Oral: mice 

(n=6) treated by oral inoculation with LGG; Bars represent mean bone loss (µm) ± 

SEM; Abbreviations: PD = Periodontitis, Gav = Gavage. 
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Analysis of TRAP staining (Table 1, Figure 4 and 5) indicated that mice in the PD 

group had a statistically significant greater number of TRAP positive cells compared 

with controls (7.24 ± 2.15, p = 0.0020). LGG Oral, LGG Gav and LGG Gav + PD 

groups had statistically significant less TRAP positive cells than mice in the PD 

group (p < 0.02). The LGG Oral + PD group had less TRAPP positive cells than the 

PD group (3.99 ± 2.05), albeit not statistically significant (p = 0.062). Further 

comparisons presented in Table 1 were not significant. 

 

Figure 3. Histological analysis of maxillary periodontal tissues. Control: mice (n 

= 5); PD: mice (n = 6) with induced periodontitis; LGG Gav + PD: mice (n=6) with PD 

and treated by oral gavage with LGG; LGG Gav: mice (n=6) treated by oral gavage 

with LGG; LGG Oral + PD: mice (n=6) with PD and treated by oral inoculation with 

LGG; LGG Oral: mice (n=6) treated by oral inoculation with LGG; Bars represent 

mean inflammatory score ± SEM; p < 0.0001; Abbreviations: PD = Periodontitis, 

GAV = Gavage. 
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Table 1. Linear regression results of TRAP versus Group. Groups in bold have a 

mean TRAP positive value significantly different to the PD group; p < 0.05; 

Abbreviations: PD = Periodontitis, GAV = Gavage, TRAP = Tartrate resistant acid 

phosphatase. 

Group – comparison 
value 

Group – reference 
value 

Estimate ± SEM 
(positive cells/mm2) 

p value 

PD 
 

LGG Gav + PD 5.86 ± 2.05 0.0076 

PD 
 

LGG Gav 6.00 ± 2.09 0.0072 

PD 
 

LGG Oral + PD 3.99 ± 2.05 0.0615 

PD 
 

LGG Oral 5.15 ± 2.05 0.0176 

PD 
 

Control 7.24 ± 2.15 0.0020 

LGG Gav + PD 
 

LGG Gav 0.14 ± 2.02 0.9453 

LGG Gav + PD 
 

LGG Oral + PD -1.87 ± 1.98 0.3516 

LGG Gav + PD 
 

LGG Oral -0.71 ± 1.98 0.7233 

LGG Gav + PD 
 

Control 1.37 ± 2.08 0.5133 

LGG Gav LGG Oral + PD 
 

-2.01 ± 2.02 0.3256 

LGG Gav LGG Oral 
 

-0.85 ± 2.02 0.6771 

LGG Gav Control 
 

1.24 ± 2.11 0.5628 

LGG Oral + PD LGG Oral 
 

1.17 ± 1.98 0.5605 

LGG Oral + PD Control 
 

3.25 ± 2.08 0.1282 

LGG Oral Control 
 

2.08 ± 2.08 0.3242 

 

 



Page | 101  
 

 

Figure 4. Representative images of standard hematoxylin and eosin staining of 

the gingival tissue near the first and second and third maxillary molars in: 

group PD (A and B); Control (C and D); LGG Gav + PD (E and F); LGG Oral + PD 

(G and H); Black arrows = multinucleated osteoclasts at resorption; Abbreviations: 

PD = Periodontitis, Gav = Gavage; Scale bars: 200 μm (A, C, E and G) and 20 μm 

(B, D, F and H). 
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Figure 5. TRAP positive multinucleated cells/mm2 in maxillary periodontal 

tissues. Control: mice (n = 5); PD: mice (n = 6) with induced periodontitis; LGG Gav 

+ PD: mice (n=6) with PD and treated by oral gavage with LGG; LGG Gav: mice 

(n=6) treated by oral gavage with LGG; LGG Oral + PD: mice (n=6) with PD and 

treated by oral inoculation with LGG; LGG Oral: mice (n=6) treated by oral 

inoculation with LGG; Bars represent mean ± SEM; Abbreviations: PD = 

Periodontitis, GAV = Gavage, TRAP = Tartrate resistant acid phosphatase. 

 

Circulating levels of LIX in blood serum were 61% less in control mice when 

compared with PD mice (p = 0.0188) (Figure 6). All probiotic and probiotic treated 

groups had lower concentrations for LIX when compared with the periodontitis group, 

albeit not statistically significant. Differences in circulating serum levels of KC and 

MIP2 were not statistically significant between groups. (Data not shown). 
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Figure 6. Serum LIX concentration (pg/ml) as an indicator of systemic 

inflammation. Control: mice (n = 5); PD: mice (n = 6) with induced periodontitis; 

LGG Gav + PD: mice (n=6) with PD and treated by oral gavage with LGG; LGG Gav: 

mice (n=6) treated by oral gavage with LGG; LGG Oral + PD: mice (n=6) with PD 

and treated by oral inoculation with LGG; LGG Oral: mice (n=6) treated by oral 

inoculation with LGG; Bars represent mean LIX concentration in serum (pg/ml) ± 

SEM; Abbreviations: PD = Periodontitis, Gav = Gavage, LIX - Lipopolysaccharide 

induced CXC. 

 

4.5 Discussion 

 

In the present study, the effects of the probiotic LGG were investigated in a mouse 

model of periodontitis. LGG was chosen due to its non-cariogenic (22) and anti-

inflammatory properties (12). Previously, acid-producing lactobacilli and 
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bifidobacteria have been considered a risk for dental caries (23). This concept has 

been challenged with clinical studies suggesting some probiotic species are 

beneficial for oral health and LGG may reduce the risk of caries (24, 25). Treatment 

with LGG was conducted before the initiation of disease to assess its ability to 

prevent alveolar bone loss. Oral inoculation and oral gavage were used as different 

methods of probiotic administration. 

The results of the present study demonstrated that use of LGG prior to the induction 

of periodontitis prevented alveolar bone loss and local inflammation in the probiotic 

treated groups when compared with the periodontitis group. The lack of inhibition 

zones suggested that the mechanisms of action might involve the anti-inflammatory 

properties of LGG rather than its antimicrobial ability. It was evident that LGG 

significantly inhibited alveolar bone resorption and gingival inflammation in the 

probiotic treated periodontitis groups, irrespective of the mode of administration (oral 

gavage or oral inoculation). This could suggest that LGG colonisation in the mouth 

was not a prerequisite for the inhibition of bone loss. Mice in the disease group (PD) 

with significant mean alveolar bone loss, increased presence of osteoclastic cells 

(TRAP) and inflammatory infiltrates are consistent with our previous studies (18, 19). 

A key finding from the current study was that animals treated with probiotics prior to 

disease induction showed no evidence of bone resorption correlated with 

significantly reduced gingival inflammation. The oral gavage treatment group 

presented a significant reduction in TRAP positive cells. 

Evidence supporting the use of probiotics in periodontal disease continues to 

increase. Previous studies have clearly shown that oral administration of probiotics 

improved periodontal pocket depth, bleeding on probing, attachment loss and 
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reduced the levels of periodontal pathogens in patients with chronic and advanced 

periodontitis (26, 27) 

Further, these studies have demonstrated an effect of probiotics on the oral 

microbiome and some effects on periodontal parameters. However, more studies are 

required before a standardized protocol can be agreed upon in terms of the probiotic 

concentration, duration and frequency of treatment. In contrast to therapy studies, 

enquiries investigating bone loss prevention in periodontitis are scarce and tend to 

be pre-clinical in nature. Mice treated with locally administered probiotics have been 

shown to have significantly decreased bone loss and lower expression of 

inflammatory cytokines (10). Probiotics administered systemically via drinking water 

in a ligature-induced periodontitis model resulted in reduced alveolar bone loss and 

protected the intestine from reactive changes (9, 28, 29). Recently, probiotic therapy 

has been reported to decrease the number of TRAP positive cells for the probiotic 

treated groups when compared with controls in periodontal tissues surrounding teeth 

submitted to mechanical loading (30). LGG, the probiotic used in the current study, 

has been shown to suppress trabecular bone loss associated with estrogen 

deficiency in mice  

(Li et al., 2016). Li and colleagues demonstrated that in female mice, estrogen 

deficiency increased gut permeability and therefore increased susceptibility to 

infection leading to upregulation of Th17 cells and osteoclastogenic cytokines 

(RANKL, IL-17 and TNF) in the intestine via changes in the intestinal microbiota. The 

authors suggested the protective effect of LGG against bone loss was due to its 

ability to decrease gut permeability (31). It will be a matter for future investigations to 

determine whether this is the mechanism of action in our current study. Other 

probiotics (L. reuteri) have been shown to improve bone density in male mice (32) 
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and to prevent bone loss associated with estrogen deficiency in female mice possibly 

via alteration of the immune response due to changes in the intestinal microbiota 

(33). The mechanisms by which probiotics participate in bone homeostasis are not 

completely understood and depend on the strains of the probiotics used, 

concentrations, duration of treatment, mode of administration and clinical indication 

(34). In order to understand the mechanisms involved in the observed effects of 

probiotics in our study, systemic inflammation was analysed by monitoring the 

mouse homologues for IL-8: LIX, KC and MIP-2 that are known to activate and 

attract neutrophils and are involved in the amplification of the inflammatory cascade 

(35). Mice in the PD group presented significantly higher concentration of LIX when 

compared with controls. MIP2 and KC levels presented no differences between 

groups and this may be due to the LIX levels remaining elevated longer than KC or 

MIP2 or due to LIX having biological roles distinct from MIP2 or KC (36). LGG has 

been shown to mediate the effects of pro-inflammatory cytokines interferon-γ and 

TNF-α on the epithelial barrier integrity (37) and to improve intestinal epithelial 

barrier function via tight junction changes (38). These findings imply that LGG acts 

on the host’s immune response by producing factors capable of modulating 

inflammation, an idea consistent with the proven fact that probiotics engage with the 

innate and acquired immune response (34). Future research will need to assess the 

levels of inflammatory cytokines in gut tissue (IL-1β, IL-6) and gene expression of 

proteins related to gut barrier function in order to elucidate the underlying 

mechanisms of these interactions. 

In conclusion, our findings indicated that therapy with LGG prior to inducing 

periodontitis suppressed the host response and resulted in significantly less bone 

loss and inflammation for all probiotic treated groups when compared with disease. 
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We conclude that LGG had a significant protective effect on alveolar bone loss 

irrespective of the mode of administration, which may be linked to changes not only 

in the oral microbiome but to changes in the gut microbiome. Whether the effects 

seen in this study were the result of the LGG’s anti-inflammatory capacity it is yet to 

be determined. 
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Chapter 5 Probiotic Lactobacillus rhamnosus GG protects against 

gut dysbiosis induced by P. gingivalis and F. nucleatum in mice 

 

5.1 Abstract 

Aims: This study investigated the impact of Porphyromonas gingivalis and 

Fusobacterium nucleatum inoculation firstly on intestinal inflammation and secondly 

on the structure and diversity of the intestinal microbiome in an in vivo mouse model. 

The role of the probiotic Lactobacillus rhamnosus GG in altering these changes was 

also investigated. 

Materials and methods: 36 mice were allocated into six groups. Experimental bone 

loss was induced in mice by oral inoculation with P. gingivalis and F. nucleatum over 

a period of 44 days. The probiotic LGG was administered via oral inoculation or oral 

gavage prior to and during disease induction. The probiotic treated groups were 

compared with animals with experimental bone loss and with controls. Intestinal 

tissue changes were assessed using histological analysis. Immunohistochemistry 

was used to assess IL-6 expression in gut tissue. Serum levels of C-reactive protein 

were measured using enzyme linked immuno-sorbent assays to determine systemic 

inflammation. The phylogenetic structure and diversity of the intestinal microbiota 

were analysed by sequencing the 16S rRNA genes of the caecal content. Statistical 

differences between groups were identified using a PERMANOVA pseudo F test for 

beta diversity, pairwise Kruskal-Wallis for alpha diversity, analysis of composition of 

microbes for detection of specific taxa associated with different treatments, pairwise 

Kruskal-Wallis followed by Dunn’s multiple comparisons test for histology and Il-6 

expression. Statistical significance was accepted when p value was less than 0.05. 
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Results: Inoculation with P. gingivalis and F. nucleatum induced inflammation 

throughout the gastrointestinal tract (duodenum p = 0.0143, jejunum p = 0.0009, 

ileum p = 0.0017, colon p = 0.0442), increased expression of IL-6 in the ileum (p = 

0.052) and significantly altered the gut microbiome (p<0.05) of experimental mice 

when compared with controls. 

Mice treated with LGG had significantly reduced tissue inflammation in the 

duodenum (p = 0.0437) and significantly lowered levels of IL-6 in the ileum (p = 

0.048) when compared with disease. LGG therapy prevented gut microbiome 

changes associated with P. gingivalis and F. nucleatum inoculation, irrespective of 

the probiotic mode of administration. P. gingvalis or F. nucleatum DNA were not 

detected in caecum or faecal samples. Serum levels of mouse CRP were not 

significantly different between groups. 

Conclusions: P. gingivalis and F. nucleatum inoculation induced changes in intestinal 

inflammation and in the phylogenetic structure and diversity of the intestinal 

microbiome. Oral gavage with LGG prior to P. gingivalis and F. nucleatum 

inoculation exerted a protective effect against intestinal inflammation. Pre-treatment 

with LGG prevented gut microbiome changes associated with P. gingivalis and F. 

nucleatum inoculation, irrespective of the probiotic mode of administration. 

 

5.2 Introduction 

 

Periodontitis is a chronic inflammatory condition affecting the tissues surrounding 

teeth (1). Periodontitis is influenced by elevated numbers of specific bacteria which 
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may become pathogenic as a result of changes in the local environment controlled 

by the host (2, 3). 

Porphyromonas gingivalis (P. gingivalis) and Fusobacterium nucleatum (F. 

nucleatum) represent two bacterial species of the human oral microbiome with roles 

in the pathogenesis of periodontal disease (4). Dual infection with F. nucleatum and 

P. gingivalis in mice aggravates alveolar bone loss and inflammation when 

compared with animals treated with either bacterium alone (5). Previous research 

has shown that in mice, oral administration of P. gingivalis (1010 CFU/ml) twice a 

week for five weeks induces insulin resistance, systemic inflammation and 

endotoxemia associated with changes in the gut microbiota of the ileum (6). A single 

oral administration of 109 CFU/ml of P. gingivalis (strain W83) significantly increased 

proportion of phylum Bacteroidetes and decreased the proportion of phylum 

Firmicutes in the gut, and increased serum endotoxin levels (7). The implications of 

repeated oral inoculations with F. nucleatum and P. gingivalis on the gut have been 

scarcely investigated. As such, further studies are needed to elucidate the effects of 

these bacteria on the gut physiology and microbiome (8).  

The administration of probiotics with inflammation modulating properties is one of 

several new approaches being considered as an option to address the bacterial 

imbalance and prevent bone loss in periodontitis (9). Probiotics have been 

traditionally used as therapeutic and prophylactic strategies for gastrointestinal 

conditions such as inflammatory bowel disease, colitis, chemotherapy induced 

mucositis and diarrhoea (10) and more recently in the management of caries and 

periodontal disease (11). Lactobacillus rhamnosus GG (LGG) is a probiotic that has 

been extensively and safely used in gastrointestinal clinical applications (12). More 

recently, LGG was shown to effectively supress bone loss in a mouse model of P. 



Page | 115  
 

gingivalis and F. nucleatum induced bone loss, irrespective of the mode of 

administration (13). 

The primary aim of this study was to determine any changes in intestinal 

inflammation and in the structure and diversity of the intestinal microbiome induced 

by oral inoculation with P. gingivalis and F. nucleatum. The secondary aim was to 

determine the influence of LGG treatment on these changes. 

 

5.3 Materials and methods 

 

This project was approved by the University of Adelaide Animal Ethics Committee 

(M-2015-116) and complied with National Health and Research Council (Australia) 

Code of Practice for Animal Care in Research and Training (2014). 

 

5.3.1 Preparation of bacterial inocula 

 

P. gingivalis (strain W50) and F. nucleatum (ATCC 25586) were cultured on 

anaerobic blood agar (Oxoid, Thermo Fischer Scientific, Waltham, MA, USA) for 4 

days in an anaerobic atmosphere consisting of a mixture of carbon dioxide, 

hydrogen and nitrogen in a ratio of 5:5:90. LGG (ATCC 53103) was cultured 

according to the manufacturer's recommendations on MRS agar plates (Oxoid, 

Thermo Fischer Scientific, Waltham, MA, USA) at 37°C for 2 days. It was then 

harvested using 2 ml of carboxymethyl cellulose (CMC) ((Sigma, St Louis, MO, USA) 
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per plate. Ten μl of this solution was mixed with 990 μl of PBS and the optical 

density measured and checked against the CFU/OD curve as described in Chapter 3 

(Figure 2). 

 

5.3.2 Murine periodontitis model 

 

Thirty-six 6-8 week old BALB/c female mice were obtained from the Laboratory 

Animal Services of the University of Adelaide and were housed in a PC2 animal 

holding facility (OGTR certification No 2067/2008). All mice received individual tail 

tattoos for identification. They were randomly assigned to six groups (n = six 

animals/group) (Figure 1).  

 
  
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Study design. Control, n=6 (no periodontitis, no treatment), PD, n=6 

(periodontitis, no treatment), PD + LGG Gav, n=6 (treatment with LGG via oral gavage (Gav) 

and subsequent periodontitis), LGG Gav, n=6 (treatment with LGG via oral gavage), PD + 

LGG Oral, n=6 (treatment with LGG via oral inoculation and subsequent periodontitis), LGG 

Oral, n=6 (treatment with LGG via oral inoculation). PD = Periodontitis, Gav = Gavage, Oral 

= Oral inoculation 

 

     PD +  

LGG Gav 

  (n = 6)  

LGG Gav 

  (n = 6) 

    PD +  

LGG Oral  

  (n = 6) 

 Balb/c mice (n=36) 

Control  

(n = 6) 

   PD  

(n = 6) 

LGG Oral  

  (n = 6) 
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All mice were acclimatised for 5 days and were kept in a room with a 12 h light/dark 

cycle and temperature from 22-24 °C. All animals received kanamycin 1 mg/ml 

(Sigma, St. Louis, MO, USA) in deionised water ad libidum for a period of one week 

prior to inoculation to reduce the native microbiota and support colonisation of the 

pathogenic bacteria. The animals were housed with soft, sterile bedding, free of 

antibacterial products and were fed a powdered, sterile, non-granular food to prevent 

impaction of food around the gingiva. All had access to sterile non-acidified, 

autoclaved water throughout the experiment. Mice were assessed daily for a number 

of general health parameters including dull/ruffled coat, change in temperament, 

reduced food/water intake and reluctance to move. The weight of the animals was 

recorded once a week.  

Animals from group PD (n = 6), PD + LGG Gav (n = 6) and PD + LGG Oral (n = 6) 

were inoculated over two sessions with an inoculum containing P. gingivalis and F. 

nucleatum suspended in 2% (v/v) CMC. The inoculation protocol has been briefly 

described in Chapter 4. Two ml of CMC were pipetted onto each plate, spread with 

the aid of a sterile spreader and harvested. For each inoculation, one plate of each 

species were collected (two plates in total for the 18 experimental mice). The viable 

count of bacteria was determined to be 2-4 x1010 CFU for P. gingivalis and 4-6 x108 

CFU for F. nucleatum. One hundred μl of the bacterial solution (or CMC solution for 

control mice) were swabbed onto the molars with the use of a microbrush. The first 

inoculation sequence (4 inoculations over 8 days) began following probiotic 

administration (day 11) and took place 4-6 hours after probiotic treatment (Figure 2). 

After each inoculation, mice were kept without food and water for 1 hour. The first 

inoculation sequence was followed by twice a week inoculations for 2 weeks after 

which all mice received a second inoculation sequence (4 inoculations over 8 days).  
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Figure 2: Timeline of treatment LGG treatment started three days prior to disease 

induction and it continued daily for the whole duration of the experiment (day 44); LGG = 

Lactobacillus rhamnosus GG; * = Inoculation with P. gingivalis and F. nucleatum 

 

Animals from the control group received only oral CMC inoculations. After the 

cessation of the antibiotic, animals from group LGG Gav, PD + LGG Gav, LGG Oral, 

and PD + LGG Oral received a daily dose of 200 μl of 2-9 x109 CFU/ml of LGG in 

sterile 2% CMC in phosphate buffered saline (PBS). Groups LGG Oral (n = 6) and 

PD + LGG Oral (n = 6) received oral inoculation of LGG in which bacteria were 

directly swabbed around the molars using a small brush. Groups LGG Gav (n = 6) 

and PD + LGG Gav (n = 6) received oral gavage of LGG in which bacteria were 

administered directly into the stomach using a 24-gauge ball-tipped gavage plastic 

needle attached to a syringe. Probiotic treatment started three days prior to the 

induction of periodontitis and it continued daily for the whole duration of the 

experiment (day 44) (Figure 2). Each probiotic inoculation took place in the morning 

after which mice had unrestricted access to food and water straight after. 

 

5.3.3 Post-mortem examination 

5.3.3.1 Collection and processing of organs for histology 

At the completion of the study (day 44) animals were killed by cervical dislocation  

LGG daily treatment 
 

Time (days) 8 11 43 40 13 30 32 36 38 25 23 18 16 
* * * * * * * * * * * 

44 
* 
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under anaesthesia with a solution of xylazine (20 mg/kg of body weight) and 

ketamine (100 mg/kg of body weight). Liver, spleen, kidneys and lungs were 

removed, fixed in a solution of 10% (v/v) PBS-buffered formalin for 48 h and in 70% 

ethanol for another 48 h prior to processing and embedding in paraffin. 

The entire gastrointestinal tract was removed and stomach was detached. The 

gastrointestinal tract was cut at the distal end of the ileum, ahead of the ileocecal 

junction and caecum to separate the small and large intestine. It was flushed with 1 

X PBS (pH 7.4) to remove digested content and faecal matter. Two samples of 0.5 

cm length from each of the duodenum, jejunum, ileum and colon were collected in 

cassettes to be processed as described in section 5.3.4. Sections approximately 1 

cm long from the duodenum, jejunum, ileum and colon were cut, snap frozen in liquid 

nitrogen and stored at -80°C for future analysis. The stomach was cut along the 

greater curvature. The content was removed and the stomach was placed in formalin 

for 48 h and in ethanol 70% for another 48 h then paraffin embedded. 

 

5.3.3.2 Collection of caecum contents and faeces 

 

The caecum was separated from the proximal end of the colon. Caecum content was 

removed, placed in sterile Eppendorf tubes, snap frozen and stored at -80°C. Faeces 

were collected from each group of mice at the completion of the study and stored at -

80°C until required. 
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5.3.3.3 Collection of blood serum 

 

Blood was collected via cheek puncture bleeds before treatment (day 8) and via 

cardiac puncture at the conclusion of the study (day 44) and allowed to clot for two 

hour at room temperature. Serum was separated by centrifugation at 1000 g for 20 

minutes and stored at -80° C until required. 

 

5.3.4 Histological analysis of gut samples 

 

The 0.5 cm samples from the duodenum, jejunum, ileum and colon collected in 

cassettes were fixed in 10% buffered formalin for 24 h. Formalin was then replaced 

with 70% alcohol for 48 h after which the samples were processed and embedded in 

paraffin wax. 

 

5.3.4.1 Embedding in paraffin wax 

 

Cassettes were processed using a Leica TP 1020 processor (Leica Biosystems, 

Wetzlar, Germany). At the end of the process, cassettes were removed from the 

processor and they were embedded in paraffin wax using a Leica EG1140H paraffin 

embedding station. Two small regions from each of the duodenum, jejunum, ileum 

and colon as described in section 5.3.3.1 were embedded into paraffin wax blocks. 
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5.3.4.2 Sectioning, H&E staining and scanning of embedded gut sections 

 

The embedded samples were sectioned using a Leica RM2235 Microtome (Leica 

Biosystems, Wetzlar, Germany) to 5 μm thickness. A total of six sections from each 

wax block were mounted on glass Superfrost® microscope slides (Menzel-Gläser, 

Braunschwerg, Germany) and stained with haematoxylin and eosin (H&E) for 

visualisation. All slides were scanned using a Nanozoomer™ (Hamamatsu 

Photonics K.K., Hamamatsu City, Shizuoka Pref., Japan) at 40 X magnification and 

were analysed with Nanozoomer™ Digital Pathology View software (Hamamatsu 

Photonics K.K., Japan). 

 

5.3.4.3 Gastrointestinal histopathological analysis 

 

A total tissue injury score was generated based on the occurrence of eight 

histological criteria in the duodenum, jejunum and ileum and six criteria in the colon 

(14, 15). Two blinded operators scored the following parameters: villous fusion and 

villous atrophy (for duodenum, jejunum and ileum only), disruption of brush border, 

crypt loss, disruption of crypt cells, infiltration of neutrophils and lymphocytes, dilation 

of lymphatics or capillaries and oedema. Each parameter was scored as present = 1 

or absent = 0. 
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5.3.5 Genomic DNA extraction from caecal and faecal samples 

 

Caecal and faecal samples were removed from -80°C ultra-cold storage and thawed. 

For DNA extraction, a QIAmp® Fast DNA Tissue Kit (Qiagen, Hilden, Germany) was 

utilised in accordance to the manufacturer’s protocol. Briefly, a master mix containing 

buffers and enzymes was placed in a tissue disruption tube tubes (Pathogen Lysis 

tubes, Qiagen, Hilden, Germany). A small tissue sample (5-25 mg) from each animal 

was added into each tissue disruption tube and processed. Caecum samples were 

processed for each animal whilst faeces samples were pooled from all animals in a 

group (to a total of 20-25 mg per tube). Samples were homogenised using the 

VortexGenie®2 (Scientific Industries Inc., Bohemia, New York, USA) and incubated 

for ten minutes at 56°C in a heating block, followed by centrifugation for 10 minutes 

at 10000 g. At this point, 5.3 mg lysozyme was added to each tube to improve the 

disruption of the Gram-positive bacterial cell wall and samples were incubated for 

one hour at 37°C, followed by buffer addition. A spin column was used to separate 

DNA from the rest of the solution. The DNA was used for PCR analysis (5.3.5.1 and 

5.3.6) and 16S metagenomics sequencing (5.3.7). 

 

5.3.5.1 Detection of Gram-positive bacteria using Polymerase Chain Reaction 

with Taq Polymerase 

 

DNA extracted from faecal and caecum samples underwent testing for detection of 

Gram-positive bacteria (Firmicutes) before gene sequencing. To determine the 
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amount of DNA required for Polymerase Chain Reaction (PCR) detection, the 

concentration of genomic DNA was first analysed using a NanoDrop 2000c 

spectrophotometer (Thermo Scientific, Waltham, MA, USA) and then diluted with 

ATE buffer (Qiagen, Hilden, Germany) to a final concentration of 20ng/ml. Each PCR 

sample contained 1 µl of diluted DNA, 5 µl of 10X ThermoPol reaction buffer (New 

England Biolabs, Massachusetts, USA), 1μl of dNTPs, 0.5 μl of forward primer (Firm 

934F, GeneWorks, Thebarton, SA, Australia), 0.5 μl of reverse primer (Firm 1060R, 

GeneWorks, Thebarton, SA, Australia), 1μl of Taq polymerase (New England 

Biolabs, Massachusetts, USA) and 41μl of sterile deionised water (Table 1).  

 

Table 1: Primer Sequences for PCR Reactions; b = C or T 

Primer 
Nomination 

Primer Sequences (5’ → 3’) Amplicon 
Length 

Function 

Firm 934F GGAGYATGTGGTTTAATTCGAAGCAb  
126 bp 

Detection of 
Firmicutes 
(Gram-
positive) 

Firm 1060 AGCTGACGACAACCATGCAC   

 

 

Table 2: Thermocycler Settings for PCR Reactions 

Primer Pair Initial 
Denatur
ation 

Amplification cycles Final 
Extension 

Denaturation      Annealing        
Extension 

934F/1060R 
(30 cycles) 

3 min - 
94°C 

20 sec - 
95°C 

20 sec - 
60°C 

20 sec - 
72°C 

5 min - 
72°C 

 

PCR reactions took place in an automated thermocycler (Mastercycler Personal 

Eppendorf T100™ Thermal Cycler (BioRad, Hercules, CA, USA) with thermocycler 

settings as per Table 2. PCR products were visualised using a 1.5% agarose gel in 
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1x TAE buffer and 2µl Gel Red (Biotium, Fremont, CA, USA). Each 50 µl of PCR 

products were mixed with 5 µl of 6X Blue Gel Loading dye (New England Biolabs, 

Massachusetts, USA) prior to loading. 10 µl of the mix were loaded in each well and 

10 µl of Quick-Load® 1kb DNA Ladder (New England Biolabs, Massachusetts, USA) 

were loaded into an adjacent line in order to estimate molecular size. PCR products 

were then visualised using trans-UV illumination by scanning with a ChemiDoc™MP 

System (BioRad, Hercules, CA, USA). 

 

5.3.6 PCR Detection of P. gingivalis DNA in caecum and faecal 

samples  

 

The PCR protocol for detection of P. gingivalis DNA in caecum and faecal samples 

was as described in 5.3.5.1 with thermocycler settings as per Table 3. PCR products 

were visualised using a 1.5% agarose gel in 1x TAE buffer and 2µl Gel Red (Biotium, 

Fremont, CA, USA). Each 50 µl of PCR products were mixed with 5 µl of 6X Blue 

Gel Loading dye (New England Biolabs, Massachusetts, USA) prior to loading. 10 µl 

of the mix were loaded in each well and 10 µl of Quick-Load® 1kb DNA Ladder (New 

England Biolabs,  Massachusetts, USA) were loaded into an adjacent line in order to 

estimate molecular size. PCR products were then visualised using trans-UV 

illumination by scanning with a ChemiDoc™MP System (BioRad, Hercules, CA, 

USA). 
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Table 3: Thermocycler Settings for PCR Reactions 

Primer Pair Initial 
Denatur
ation 

Amplification cycles Final 
Extension 

Denaturation      Annealing        
Extension 

934F/1060R 
(30 cycles) 

3 min - 
94°C 

20 sec - 
95°C 

20 sec - 
60°C 

20 sec - 
72°C 

5 min - 
72°C 

 

 

5.3.7 16S rRNA metagenomics gene sequencing 

 

Genomic DNA from the mouse caecum content was extracted (see 5.3.5) and the 

concentration and quality was assessed using a NanoDrop 2000c 

spectrophotometer (Thermo Scientific, Waltham, MA, USA). Aliquotes of 30 µl from 

each sample were placed into 0.6 ml sterile PCR tubes and sent to Flinders 

Genomics Facility (Flinders University, Adelaide, SA, Australia) where all samples 

underwent Illumina sequencing library preparation using Illumina MySeq System 

(Illumina, San Diego, CA, USA). 

 

5.3.7.1 16S Library preparation 

 

The library preparation used a two-step PCR protocol (Figure 3). Briefly, an initial 

PCR was performed using specific primers (Table 4) to amplify the variable V4 

region of the 16S rRNA and attach sequence adapters. The amplified product was 

purified with AMPure XP Beads (Illumina, San Diego, CA, USA). Dual indices and 

Illumina sequencing adapters were added to the purified amplicons in the second 
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PCR stage using a Nextera XT Index Kit (Illumina, San Diego, CA, USA), followed by 

another clean-up process using AMPure XP Beads (Illumina, San Diego, CA, USA). 

Fluorometric quantification of the individual and mixed library was carried out using 

dyes that bind dsDNA. Normalisation was performed when the amplicon length and 

quality were tested using a 2001 Bioanalyzer (Illumina, San Diego, CA, USA. In 

preparation for sequencing, pooled libraries were diluted with a hybridisation buffer 

and heat denatured prior to MiSeq sequencing.  

 

 

  

 

 

 

 

 

  

 

 

 

 

 

 

Figure 3: Steps in 16S Library Preparation for MiSeq Illumina Sequencing (MiSeq, Illumina, 

San Diego, CA, USA) 

 

  First Stage PCR 

       PCR – Clean Up 

  AMPure XP Beads, fresh 80% EtOH, RSB 

 Second Stage PCR 

       PCR – Clean Up 

  AMPure XP Beads, fresh 80% EtOH, RSB 

  Library Quantification and Normalisation 

 Library Denaturing and MiSeq Sample Loading 
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Table 4: Primer Sequences in MiSeq Library Preparation; Sequence adapters are 

underlined 

Primer Nomination Primer Sequences (5’ → 3’) 

515F_Illumina TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG 
                GTGCCAGCMGCCGCGGTAA 

806R_Illumina GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG 
                GGACTACHVGGGTWTCTAAT 

 

 

5.3.7.2 Miseq sequencing 

 

Miseq sequencing was performed by staff at Flinders Genomics Facility (Flinders 

University, Adelaide, SA, Australia). Samples were loaded in the MiSeq system 

(MiSeq, Illumina, San Diego, CA, USA) on flow cells and the sequenced using a 600 

cycle Version 3 kit run as 2x300 paired-end reads. Briefly, the MiSeq system 

generated clusters of identical DNA strands via Illumina clonal bridge amplification 

that occurs simultaneously for all fragments on the flow cell. Sequencing of both 

forward and reverse strands was achieved by using the Next generation sequencing 

(NGS, Illumina, San Diego, CA, USA) method of paired-end sequencing-by-

synthesis. Data generated underwent analysis (see 5.3.8) 

 

5.3.8 Analysis of 16S metagenomics sequencing data 

 

After sequencing, fastq files for the forward and reverse reads were created using 

the Illumina CASAVA pipeline (version 1.8.2). Overlapping forward and reverse 

reads were joined (based on a maximum of 5% nucleotide difference over a 
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minimum 5bp overlap) using BBmerge (sourceforge.net/projects/ bbmap). The 

resulting fastq file was imported into QIIME2 (QIIME 2 2017.12), a bioinformatics 

pipeline-based software for the analysis of metagenomic data (16). All further 

analysis of the amplicon datasets was conducted within the QIIME2 package. 

Sequences were trimmed at 250 bp (25th percentile with a Qscore over 35) and 

subsequently deblurred (17). The taxonomy of each sequence was identified using 

similarity to Greengenes database (version 13_8) with 99% similarity to full length 

16S sequences (18). Taxonomic diversity measurements (alpha and beta-diversity) 

and statistical analyses were also performed and visualized in QIIME2. Core 

diversity analyses were completed by sub-sampling each sample to 9,500 

sequences.   

 

5.3.9 Immunohistochemistry of ileum samples 

 

A previous study found significantly elevated expression of Il-6 in the small intestine 

in mice 48 hours after a single P. gingivalis oral administration (6). Subsequently, 

immunohistochemistry analysis using the avidin-biotin peroxidase method was 

carried out for pro inflammatory cytokine Interleukin 6 (IL-6) on formalin fixed, 

paraffin embedded sections of the ileum. Briefly, samples were dewaxed in 

histolene, rehydrated through graded ethanol and rinsed in phosphate buffered 

saline (PBS). Sections were blocked for 30 minutes with 3% normal horse serum. 

Subsequently they were incubated with the respective primary polyclonal goat 

antibody (1:2000, R&D Systems, Inc.) diluted in normal horse serum (Thermo Fisher 

Scientific, Waltham, MA, USA). This was followed by biotinylated secondary anti-
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goat antibody (Vector Laboratories Inc., Burlingame, CA, USA) for 30 minutes. 

Streptavidin biotin complex was added onto the sections for one hour then 

developed with 20 mM 3,3'diaminobenzidine (DAB) (Sigma, St Louis, MO, USA). 

Slides were counter stained with hematoxylin (Thermo Fisher Scientific, Waltham, 

MA, USA), dehydrated and mounted. Il-6 stained tissue sections were scored by two 

independent, blinded operators based on the presence and intensity of staining in 

the epithelial cells, lamina propria and submucosa. Each section was scored as 0 for 

no staining, 1 for mild staining, 2 for moderate staining and 3 for intense staining 

based on the method as described by Warren et al. (19). 

 

5.3.10 Enzyme-linked immunosorbent assay (ELISA) for 

concentration of C-reactive protein 

 

Serum levels of murine C-reactive protein (CRP) was assessed as a surrogate 

measure of systemic inflammation. Serum was centrifuged at 13000 g for 10 minutes 

at room temperature before diluting 1:10,000. CRP levels were assessed in duplicate 

using a commercially available ELISA kit (R&D Systems, Minneapolis, MN, USA) 

and optical density (450nm) read on a PowerWave microplate reader (BioTek 

Instruments, Winooski, VT, USA).  Standard curves were generated using KC4 

software (BioTek Instruments, Winooski, VT, USA) and used to determine the 

concentration of mouse-CRP in each sample. All samples and standards were 

assessed in triplicate. 
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5.3.11 Statistics 

 

The power of this study was 85% for a sample size of six per group and a 

significance level of 0.05. GraphPad Prism 6 (GraphPad Software Inc, La Jolla, 

California, USA) was used for statistical analysis of IL-6, mouse-CRP expression and 

histology. Differences between the six groups were analysed using the Kruskal–

Wallis test, followed by Dunn’s multiple comparisons test. All values shown are mean 

± standard error of the mean (SEM). For metagenomics sequencing data analysis, 

statistical differences between groups were identified using a PERMANOVA pseudo 

F test for beta diversity, pairwise Kruskal-Wallis for alpha diversity, and analysis of 

composition of microbes (ANCOM) for detection of specific taxa associated with 

different treatments. A p-value of <0.05 was considered statistically significant. 

 

5.4 Results 

 

5.4.1 The effects of P. gingivalis and F. nucleatum administration  

 

5.4.1.1 The effects of P. gingivalis and F. nucleatum administration on 

intestinal inflammation 

 

There was a significant increase in the degree of inflammation present in all parts of 

the gastrointestinal tract of disease mice (PD) when compared with controls 
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(duodenum p = 0.0143, jejunum p = 0.0009, ileum p = 0.0017, colon p = 0.0442) 

(Figures 4, 5, 6, 7). This was characterised by an increased infiltration of 

macrophages, neutrophils, lymphocytes and plasma cells in the lamina propria 

(Figures 8 c and d, 9 b and c, 10 b, 11 b and d). 

 

 

Figure 4: Disease mice (PD) presented significant inflammatory changes in the duodenum 

when compared with Control (p = 0.0143) or gavage treated group (p = 0.0437). Bars 

represent mean inflammatory score ± SEM. PD = Periodontitis, Gav = Gavage 
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Figure 5: Disease mice (PD) presented significant inflammatory changes in the jejunum 

when compared with Control (p = 0.0009). Bars represent mean inflammatory score ± SEM. 

PD Periodontitis, Gav = Gavage

 

Figure 6: Disease mice (PD) presented significant inflammatory changes in the ileum when 

compared with Control (p = 0.0017). Bars represent mean inflammatory score ± SEM. 

Abbreviations: PD = Periodontitis, Gav = Gavage 
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Figure 7: Disease mice (PD) presented significant inflammatory changes in the colon when 

compared with Control (p = 0.0442). Bars represent mean inflammatory score ± SEM. 

Abbreviations: PD = Periodontitis, Gav = Gavage 

 

5.4.1.2 P. gingivalis and F. nucleatum administration induced elevated IL-6 

protein expression in the ileum 

 

IL-6 expression was elevated in the ileum of the disease mice when compared with 

controls (p = 0.052) (Figures 12, 13). 

 

 

 

 



Page | 134  
 

                             

  

 

Figure 8: Representative images of standard haematoxylin and eosin staining of the 

duodenum in group: Control (a), PD (c, d) and PD + LGG Gav (b); PD group presented an 

increase in inflammatory infiltrate (polymorphonuclear cells and lymphocytes)(black arrows), 

and dilation of lymphatics and capillaries; (red arrows); scale bars represent 100 μm (a, b, c, 

d) and 50 μm (e); Abbreviations: PD = Periodontitis, Gav = Gavage 

 

a b 

c d 
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Figure 9: Representative images of standard haematoxylin and eosin staining of the 

jejunum in group: Control (a), PD (b,c); PD group presented an increase in inflammatory 

infiltrate of polymorphonuclear cells and lymphocytes (black arrows), dilation of lymphatics 

and capillaries (red arrows) and thickening of the mucosa (black star); scale bars represent 

100 μm. Abbreviations: PD = Periodontitis, Gav = Gavage 

 

 

 

a b c 
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Figure 10: Representative images of standard haematoxylin and eosin staining of the ileum 

in group: Control (a), PD (b); PD group presented an increase in inflammatory infiltrate of 

polymorphonuclear cells and lymphocytes (black arrows) and dilation of lymphatics and 

capillaries (red arrows); scale bars represent 100 μm (a, b and 50 μm (c). Abbreviations: PD 

= Periodontitis, Gav = Gavage 

 

 

 

 

 

a b c 
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Figure 11: Representative images of standard haematoxylin and eosin staining of the colon 

in group: Control (a, c) and PD (b, d). PD group presented an increase in inflammatory 

infiltrate (polymorphonuclear cells and lymphocytes) (black arrows) (scale bars represent 

100 μm (a, b) and 50 μm (c, d). Abbreviations: PD = Periodontitis, Gav = Gavage 

 

a b 

c d 
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Figure 12: Total Il-6 immunohistochemistry ileum score; there was a significant difference 

LGG Gav + PD group when compared with PD (p = 0.048). Abbreviations: PD = 

Periodontitis, Gav = Gavage, IHC – Immunohistochemistry 

         

Figure 13: Representative images of IL-6 immunohistochemistry staining of the ileum. 

There was significant difference for Control (a) and PD + LGG Gav (c) groups when 

compared with PD (b). Scale bars represent 100 µm. Abbreviations: PD = Periodontitis, Gav 

= Gavage 

a b c 
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5.4.1.3 P. gingivalis and F. nucleatum administration altered the gut 

microbiome 

 

Mice inoculated with P. gingivalis and F. nucleatum presented with increased 

abundance and evenness of the caecal microbiome (p = 0.068, Figure 14) and a 

significant change in the microbial composition of the caecal microbiome (p = 0.01, 

Figure 15) when compared with controls. ANCOM analysis identified unclassified 

Clostridiales taxa belonging to the phylum Firmicutes present in the Control group 

and absent in disease mice. 

 

 

Figure 14: Shannon’s diversity index (H) for Control and PD mice (9,500 sequences per 

sample for rarefaction, H = 3.33; p = 0.068). Abbreviations: PD = Periodontitis 
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5.4.1.4 P. gingivalis DNA was not detected in caecum and faecal samples 

 

PCR testing was performed on a random selection of both caecal (n = 19) and faecal 

(n = 9) samples. P. gingivalis DNA was not detected in any of the samples (Figure 

16). Some samples showed the presence of primer dimers. Metagenomics analysis 

of 16S DNA sequences of caecum samples and P. gingivalis culture identified 

Porphyromonas sp. present in the culture and absent in all caecum samples 

(Supplementary Figure 1, pg. 163). Sequencing for F. nucleatum provided a similar 

result with Fusobacterium sp. present in the F. nucleatum culture and absent in all 

caecum samples (Supplementary Figure 2, pg. 164). 

 

   

Figure 15: PCoA plot of beta diversity index showing statistically significant differences 

between Control and PD group (PERMANOVA pseudo F test statistic: 2.08592; p = 0.01). 

Abbreviations: PD = Periodontitis, Gav = Gavage 
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Figure 16: P. gingivalis DNA was not detected by PCR in any faeces or caecum 

samples. Lane M: molecular weight marker (100bp); lane 1-8: negative faecal samples, 9-

27: negative cecum samples; lane 28: positive control of P. gingivalis; lane 29: negative 

control (water); Pg – P. gingivalis 

 

5.4.2 The effects of LGG administration in mice 

 

5.4.2.1 The method of LGG administration had no effect on intestinal 

inflammation 

 

Mice treated exclusively with LGG, either via oral inoculation (LGG Oral) or via oral 

gavage (LGG Gav), presented no differences in inflammatory scores for the 

duodenum, jejunum, ileum or colon when compared with controls (p > 0.05) (Figures 

4, 5, 6, 7). No change was seen in IL-6 expression in the ileum of treated animals 

when compared with controls. (Figure 12). 
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5.4.2.2 LGG administration altered the gut microbiome 

 

Abundance of the caecal microbiome was increased in mice orally gavaged with 

LGG (p = 0.068) and significantly increased in mice orally inoculated with LGG (p = 

0.028) when compared with control mice (Table 5, Figure 17).  There was no 

significant difference in abundance and evenness between the two different delivery 

methods, oral inoculation and oral gavage (Alpha diversity Kruskal Wallis pairwise; H 

= 0.0256; p = 0.8272, Figure 17). 

Administering LGG using either the gavage or oral inoculation method significantly 

changed the bacterial composition of the caecal microbiome when compared with 

controls (Control and LGG Oral, p = 0.012, Control and LGG gavage, p = 0.009, 

Figure 18). ANCOM analysis identified Lachnospiraceae family, belonging to the 

order Clostridiales, present in control mice and absent in the LGG Oral group. For 

the LGG Gav group, ANCOM identified Bacteroidales and unclassified bacteria 

belonging to the order Clostridiales, present in the treated mice and absent in 

controls. 

 

Table 5: Shannon diversity index (H) between control and all other groups (Kruskal-
Wallis pair-wise comparisons). Abbreviations: PD = Periodontitis, Gav = Gavage 
 

Group H value p value 
 

LGG Oral (n=6) 4.80 0.028 
LGG Gav (n-6) 3.333 0.068 
PD (n=6) 3.333 0.068 
PD + LGG Oral 0.30 0.584 
PD + LGG Gav 1.20 0.273 
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Figure 17: Shannon’s diversity index for all groups (9,500 sequences per sample for 

rarefaction). Abbreviations: PD = Periodontitis, Gav = Gavage 

 

  

 

Figure 18: PCoA plot of beta diversity index shows statistically significant differences 

between Control and LGG Oral (PERMANOVA pseudo-F; test stat 1.8719; p = 0.012) and 

Control and LGG Gav (PERMANOVA pseudo-F; test stat 2.4596; p = 0.009) groups. 

Abbreviations: PD = Periodontitis, Gav = Gavage 
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5.4.3 The effects of LGG treatment prior to P. gingivalis and F. 

nucleatum administration 

 

5.4.3.1 Prior use of LGG prevents intestinal inflammatory changes induced by 

P. gingivalis and F. nucleatum  

 

Mice treated with LGG via oral gavage (PD + LGG Gav) presented significantly lower 

inflammatory scores in the duodenum then disease mice (PD) (p = 0.0437) (Figures 

4 and 8c). No significant inflammatory differences in the jejunum, ileum or colon 

were detected for any of the treatment groups PD + LGG Gav and PD + LGG Oral 

when compared with disease (Figures 5, 6 and 7). Expression of IL-6 in the ileum 

was significantly decreased in animals treated with LGG via gavage (PD + LGG Gav) 

when compared with disease (p < 0.05) (Figures 12 and 13c). 

 

5.4.3.2 Treatment with LGG prevents gut microbiota changes associated with 

P. gingivalis and F. nucleatum inoculation 

 

Metagenomics analysis found no significant differences in the abundance of the 

caecal microbiome between treatment groups PD + LGG Oral and PD + Gav LGG 

and Control  (p >0.05, Table 5, Figure 17). The use of LGG prior to P. gingivalis and 

F. nucleatum inoculation did not change the abundance and evenness of the caecal 

microbiome of treated mice when compared with disease (PD and PD + LGG Oral, H 

= 1.64; p = 0.22; PD and PD + LGG Gav, H = 1.0; p = 1, Figure 17). Bacterial 

composition of mice caecal microbiota was significantly altered in LGG treated mice 
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when compared with disease, with orally administered LGG having a greater 

influence than the gavage treatment (PD and PD + LGG Oral, p = 0.015 

(PERMNOVA; pseudo F = 2.08), PD and PD + LGG Gav p = 0.024 (PERMNOVA; 

pseudo F = 1.82, Figure 19)). ANCOM analysis identified Lachnospiraceae family, 

belonging to the order Clostridiales, present in PD + LGG Gav mice and absent in 

PD. When comparing PD + LGG Oral with PD, ANCOM analysis identified 

Cyanobacteria present in PD and absent in PD + LGG Oral, and presence and 

absence of separate sequences of Clostridiales taxa between the two groups. 

 

 

5.4.4 Firmicutes DNA detected in caecal and faecal samples  

 

PCR testing detected presence of Gram positive bacterial species (Firmicutes) in 

caecal and faecal samples (Figure 20). All faecal and caecum samples were 

subsequently micro-sequenced. 
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Figure 19: PCoA plot of beta diversity index mice shows statistically significant differences 

between PD and PD + LGG Oral (PERMANOVA pseudo-F; test stat 2.08; p = 0.015) and PD 

and PD + LGG Gav (PERMANOVA pseudo-F; test stat 1.82; p = 0.024) groups. 

Abbreviations: PD = Periodontitis, Gav = Gavage 
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Figure 20: Gram positive bacterial (Firmicutes) DNA was detected by PCR in a random 

selection of intestinal, caecum and faecal samples. Lane M: molecular weight marker 

(100bp); lane 1, 2, 5-7 negative intestinal samples, lane 10 positive control of Firmicutes; 

lane 3-4 positive faecal samples, 8, 9, 11-14 positive caecal samples, lane 15 negative 

control (water) 
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5.4.5 Effects of LGG treatment on mouse C-reactive protein 

concentration in serum 

 

No significant changes were seen in mouse C-reactive protein levels in mouse 

serum between groups (Figure 21). 

 

 

Figure 21: Difference in mean CRP; there was no significant difference in mean CRP for 

any groups. Abbreviations: PD = Periodontitis, Gav = Gavage, CRP – C-reactive protein 

 

5.5 Discussion 

 

The gut microbiome plays an important role in health and disease (20). An alteration 

of the composition of the gut microbiome has been associated with gastrointestinal 
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conditions such as inflammatory bowel disease and irritable bowel syndrome (21) 

and also with systemic conditions including type 2 diabetes (22) and obesity (23). 

Current research suggests the gut microbiome may also play an important role in 

regulating bone health. However, the mechanisms of the interactions between gut 

inflammation and bone loss are yet to be determined (24). 

An important finding of this study is the systemic changes induced in mice by P. 

gingivalis and F. nucleatum inoculation. We have previously reported significant 

mean alveolar bone loss, increased presence of osteoclastic (TRAP) cells and 

inflammatory infiltrates in the PD group for this model (13, 25). In the current study, 

PD mice had significant inflammatory changes in the gastrointestinal tract, 

represented by increased numbers of inflammatory cells in the jejunum, ileum, 

duodenum and colon. Messora et al. (2013) first reported changes in the 

gastrointestinal structure of animals with induced bone loss in a 44 days study (26). 

Eight rats with ligature-induced periodontitis presented significant alteration of the 

intestinal morphology with significantly different mean values in the jejunum villous 

height and crypt depth (26). The authors suggested these changes were due to an 

increase in pathogenic bacterial counts in the gastrointestinal tract contributing to 

increased inflammation (26). In addition, in the present study, mice inoculated with P. 

gingivalis and F. nucleatum had a significant increase in the expression of the pro-

inflammatory cytokine IL-6 in the ileum when compared with controls. This is in 

agreement with a previous study that found significantly elevated expression of IL6 in 

the small intestine in mice 48 hours after a single P. gingivalis oral administration (7). 

IL-6 is an important mediator secreted by T cells and macrophages (27). Although 

identified in the acute phase response of the inflammatory process or infection, 

persistent IL-6 production can lead to the development of immune-mediated 
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diseases including diabetes (28) and rheumatoid arthritis (29). IL-6 regulates T cell 

differentiation, activation and resistance against apoptosis with roles in maintaining 

chronic intestinal inflammation in inflammatory bowel diseases such as Crohn's 

disease and ulcerative colitis thus being considered a ‘master regulator of intestinal 

disease’ (30). Studies using in vitro and in vivo models identified IL-6 as a potential 

new target for the therapy of gastrointestinal inflammation (31). In periodontitis, IL-6 

is a mediator of bone resorption, stimulating osteoclasts formation and thus being 

associated with the pathogenesis of this condition (32).  

Furthermore, in the current study, oral inoculation with P. gingivalis and F. nucleatum 

led to a significant change in the bacterial composition of the caecum microbiome. 

Unclassified Clostridiales taxa belonging to the phylum Firmicutes were present in 

the caecum of control mice but were absent in mice administered with P. gingivalis 

and F. nucleatum. There has been growing evidence in recent years regarding the 

ability of these two bacteria in altering the microbial balance towards dysbiosis and 

systemic inflammation. Oral administration of P. gingivalis (1010 CFU/ml) twice a 

week for five weeks in mice resulted in altered ratio between Bacteroidetes and 

Firmicutes in the ileal microbiome with significant increase in the order Bacteroidales 

(6). These changes coincided with increases in IL-6 serum levels and insulin 

resistance, which further lead to inflammatory changes in adipose tissue and liver 

(6). Findings from the current study related to the absence of Clostridiales bacteria 

from the caecum of disease mice are consistent with a previous mouse study 

demonstrating that a single oral administration of 109 CFU/ml of P. gingivalis (strain 

W83) significantly decreased the proportion of Clostridiales in the gut of P. gingivalis 

infected mice when compared with controls (7). Reduction in the abundance of 
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intestinal Clostridiales bacteria has been previously associated with development of 

Clostridium difficile infections (33) and increased risk of colorectal cancer (34, 35).  

Nakajima et al. (2015) also demonstrated that mice infected with P. gingivalis 

presented with higher quantities of bacterial DNA in their liver (7). Additionally, 

intestinal gene expression of proteins involved in intestinal permeability, such as 

Tjp1 and Ocln, were down-regulated in the small intestine of infected mice (7). Gut 

microbiota changes, induced by oral administration of P. gingivalis and represented 

by an increased proportion of the phylum Bacteroidetes and decreases proportion of 

the phylum Firmicutes, preceded systemic inflammatory changes and could provide 

a mechanistic link in the associations between periodontitis and systemic disease 

(7). In the current study, bacterial DNA from P. gingivalis or F. nucleatum was not 

detected in caecum or faecal samples, suggesting these bacteria did not colonise 

the gastrointestinal tract. This finding suggests that changes induced by inoculation 

with these bacteria may be attributed to the ability of P. gingivalis and F. nucleatum 

to alter the composition and structure of the gut microbiome which may have 

significant impact on systemic inflammation (36).  

Dysbiosis of the gut microbiome has been previously associated with changes in 

epithelial barrier function with increases in intestinal permeability regulated by tight 

junction proteins such as occludin and claudins (37). Arimatsu et al. (2014) reported 

downregulated expression of tight junction proteins in the ileum of mice orally 

inoculated with P. gingivalis (109 CFU/ml) twice per week for five weeks (6). The 

results of the current investigation seem to be based on mechanisms involving two 

factors. The first factor involves loosening of tight-junctions of the epithelial barrier by 

inflammatory cytokine IL-6 produced by T cells which may allow more antigens to 

cross the barrier and result in inflammation in the gut. The second and a more critical 
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role is played by the disruption of the gut microbiota that can influence the systemic 

production of pro-inflammatory cytokines and may be the cause for a disrupted 

epithelial barrier function. 

Mice treated exclusively with LGG presented no significant differences in gut 

inflammation when compared with controls. This is in agreement with previous 

studies which have shown probiotics are able to maintain a healthy lining of the 

gastrointestinal tract (38). A key finding of the current study refers to mice pre-

treated with LGG and subsequently inoculated with P. gingivalis and F. nucleatum. 

We have previously demonstrated that pre-treatment with LGG in a mouse model of 

experimental periodontitis significantly reduced bone loss (p < 0.0001) and gingival 

inflammation (p < 0.0001) for the treated groups when compared with the disease 

group (13). These results were seen irrespective of the mode of administration (oral 

gavage or oral inoculation) suggesting LGG colonisation in the mouth was not a 

prerequisite for the inhibition of bone loss. In the current study, treatment with LGG 

administered via oral gavage prior to and during inoculation with P. gingivalis and F. 

nucleatum demonstrated a significant protective effect on the ileum, preventing 

inflammatory changes induced by the two pathogenic bacteria such as increased 

inflammatory infiltrate in the lamina propria. Previous animal studies have shown that 

oral administration of Bacillus subtilis (1.5 × 108 CFU/ml) to Wistar rats significantly 

protected the small intestine from changes induced by ligature-induced periodontitis, 

probiotic treated rats presenting lesser or no defects of the villi, basal lamina 

degeneration and infiltration of neutrophils in the jejunum when compared with 

disease (39). In the current study, the underlying mechanism for these changes may 

be attributed to the ability of LGG in altering the composition of the gut microbiome. It 

has been previously shown that LGG improves markers of intestinal barrier function 
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occludin and claudin-1, and promotes beneficial bacteria Bacteroidetes and 

Firmicutes in the intestine of C57BL/J6 mice (40). It is clear that the immune 

mechanisms of probiotic action leading to prevention of gut inflammation and 

dysbiosis are complex (41) and future investigations are needed to elucidate the 

effects of probiotics in this model.  

A limitation of the current study was the choice of mouse CRP as a marker of 

systemic inflammation. Previous human cross-sectional studies reported evidence of 

elevated plasma CRP levels in periodontitis when compared with controls 

(Paraskevas et al., 2008).  In contrast, a clinical study of 246 patients investigating 

inflammatory markers for acute pancreatitis found serum amyloid A to be a better 

predictor of inflammation severity than CRP (Mayer et al., 2002). We have previously 

showed that, in the mouse model used in the present study, mice in the PD group 

presented with significantly higher systemic inflammation, represented by elevated 

serum levels of LIX, a mouse homologue of IL-8, when compared with controls (13). 

Future studies are needed to compare prognostic accuracy of mouse CRP with that 

of serum amyloid A as inflammatory markers in experimentally induced periodontitis. 

In conclusion, my findings indicate that oral administration of P. gingivalis and F. 

nucleatum in this mouse model induced intestinal inflammation together with 

changes in the structure and composition of the gut microbiome. Pre-treatment with 

LGG via oral gavage prior to and during P. gingivalis and F. nucleatum inoculations 

significantly reduced intestinal inflammation for the probiotic treated groups 

compared with disease. Additionally, pre-treatment with LGG restored the 

composition of the caecal microbiome, irrespective of the mode of administration. 

Further studies are required to provide more insights into the mechanisms driving 

these observed changes. 
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Chapter 6 General conclusion, clinical significance and 

future directions 

 

The primary focus of the work described in this thesis was to gain an understanding 

of the clinical and microbiological effects of probiotics in experimentally induced 

periodontitis.  

An initial review of the literature exploring the use of probiotics in prevention or 

treatment of periodontitis supported the notion that there was a place for probiotics in 

the treatment of periodontitis and that future independent studies were needed to 

investigate specific probiotic strains, delivery methods, treatment schedules and 

mechanisms of action. An in vitro experiment investigated the antimicrobial ability of 

Lactobacillus rhamnosus GG (LGG) against Porphyromonas gingivalis (P. gingivalis) 

and Fusobacterium nucleatum (F. nucleatum) and the results suggested that there 

was potential for the use of LGG in experimental periodontitis studies. Subsequently, 

the effect of LGG on bone loss and local and systemic inflammation was investigated 

in an in vivo mouse model of experimental periodontitis. Additionally, the impact of P. 

gingivalis and F. nucleatum inoculation on intestinal inflammation and the structure 

and diversity of the intestinal microbiome was investigated in this model together 

with the role of the probiotic LGG in altering these changes. 

 

6.1 General conclusion 

Repeated oral administration of P gingivalis and F nucleatum in the mouse model of 

experimental periodontitis induced significant mean alveolar bone loss and increased 
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presence of bone resorbing cells and inflammatory infiltrates in the jaw, results that 

are consistent with previous studies. 

New findings arising from this project are administration of P gingivalis and F 

nucleatum also induced significant changes in intestinal and systemic inflammation 

and significant changes in the phylogenetic structure and composition of the gut 

microbiome. A possible explanation for this is that a disruption of the gut microbiota 

can influence the production of pro-inflammatory cytokines, which may be the cause 

for a disrupted epithelial barrier function that allows antigens to cross the barrier, and 

result in inflammation in the gut. More importantly, the results from the studies 

described in this thesis show for the first time that therapy with the probiotic LGG 

either administered via oral inoculation or via oral gavage effectively suppressed 

alveolar bone loss and local inflammation for all probiotic treated groups when 

compared with disease. Additionally, pre-treatment with LGG exerted a protective 

effect against intestinal and systemic inflammation and had a significant influence on 

the composition of the gut microbiome, promoting beneficial bacteria in the intestines 

of treated mice. The underlying mechanisms for these changes may be attributed to 

the ability of LGG in altering the composition of the gut microbiome. The 

mechanisms of probiotic action leading to prevention of gut inflammation and 

dysbiosis are complex and future investigations are needed to elucidate the effects 

of probiotics in this model. 

 

6.2 Clinical significance and future directions 

The results from the animal studies included in this thesis support the notion that 

there is a place for probiotics in the treatment of periodontitis. The approach  
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presented in this thesis was a preventive approach. Further investigations will look at 

treating the disease after is has already occurred and look into the specific 

mechanisms of actions driving the changes. 

In the future, LGG may prove to be a good candidate for human probiotic-

periodontitis studies and may offer a low risk, inexpensive, easy to use prevention or 

treatment option for adjunctive use in the management of periodontitis. 
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Supplementary Figure 1: 16S DNA sequence identified a single specific 

Porphyromonas species in P. gingivalis (strain W50) culture and not in caecal 

samples  

 

 

 

 

 

 

 

 

 

 

 

 

0 

20000 

40000 

60000 

80000 

100000 

120000 

140000 

160000 

180000 

200000 

C
o

n
 

C
o

n
 

C
o

n
 

C
o

n
 

C
o

n
 

P
D

 
P

D
 

P
D

 
P

D
 

P
D

 
P

D
 

P
D

 +
 L

G
G

 G
a

v
 

P
D

 +
 L

G
G

 G
a

v
 

P
D

 +
 L

G
G

 G
a

v
 

P
D

 +
 L

G
G

 G
a

v
 

P
D

 +
 L

G
G

 G
a

v
 

P
D

 +
 L

G
G

 G
a

v
 

L
G

G
 G

a
v
 

L
G

G
 G

a
v
 

L
G

G
 G

a
v
 

L
G

G
 G

a
v
 

L
G

G
 G

a
v
 

L
G

G
 G

a
v
 

P
D

 +
 L

G
G

 O
ra

l 
P

D
 +

 L
G

G
 O

ra
l 

P
D

 +
 L

G
G

 O
ra

l 
P

D
 +

 L
G

G
 O

ra
l 

P
D

 +
 L

G
G

 O
ra

l 
P

D
 +

 L
G

G
 O

ra
l 

L
G

G
 O

ra
l 

L
G

G
 O

ra
l 

L
G

G
 O

ra
l 

L
G

G
 O

ra
l 

L
G

G
 O

ra
l 

L
G

G
 O

ra
l 

P
o

rp
h

y
ro

m
o
n

a
s
 g

in
g

iv
a

lis
 

D
N

A
 S

e
q

u
e
n

c
e

s
 

Porphyromonas sp. 



Page | 163  
 

 

 

Supplementary Figure 2: 16S DNA sequence identified a single specific 

Fusobacterium species in F. nucleatum (ATCC 25586) culture and not in caecal 

samples  
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