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Abstract

“Epidemic fade-out” refers to the situation in which an infection is eliminated

after an initial major wave of infection. This thesis by publication contains

three papers (two published, the third submitted and under review) on the

subject of epidemic fade-out in the Markovian SIR-with-demography infection

model.

The first paper [6] surveys previous work containing methods for approxi-

mating the probability of epidemic fade-out, then proposes a numerical method

which is more accurate. Using this method, it surveys trends over a range of

parameters, and observes that the probability of epidemic fade-out has a non-

monotonic relationship with respect to β, the transmission rate parameter. It

shows that this probability often has a local maximum where R0, the basic re-

production number, is about 2; and gives an explanation for this phenomenon.

The second paper [7] examines the possibility of controlling β, in order

to maximise the probability of epidemic fade-out. An optimal policy may be

found using Markov decision theory, but this requires very large data struc-

tures, meaning this is impractical for all but very small population sizes. So

the paper also derives a simple formula for an almost-optimal policy, which

can be applied for any population size, and is independent of the values of β.

The third paper [8] extends the Markovian SIR-with-demography infection

model to allow β to be time dependent, as the transmission rate may vary

with the time of year. It also extends the work to the Markovian SIRS model.

It presents an algorithm for calculating the probability of epidemic fade-out

for these models, and considers parameters appropriate to influenza-like and

measles-like infections. It concludes that the local maximum in the probability

of epidemic fade-out is at a value of R0 somewhat greater than 2, when β is

4



time-dependent.
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1 Introduction

1.1 Epidemic fade-out

“Fade-out” refers to the situation in which an infectious disease fades out in

a population. That is, it reaches the point where no individuals are infectious

or carry the infection. Since this is in the context of an infectious disease, this

means that the disease is eliminated from the population.

Two ways in which an infection might fade out are reasonably intuitive. A

disease may be introduced into a population, but then fade out in the initial

stage before taking hold, failing to infect a significant number of individuals.

There does not appear to be a standard term for this, so we shall refer to it as

“initial fade-out”. This is illustrated in Figure 1, where initial fade-out occurs

if the infection fades out near point A.
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Figure 1: A possible plot of number infected, versus time. An infection may
fade out near point A (initial fade-out), or become endemic (point C). Epi-
demic fade-out refers to fade out during the trough after an initial wave of
infection, near point B.

Alternatively, an infection might persist through the initial stage, and be-

come endemic in the population, as illustrated by an infection reaching a point
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near C in Figure 1. It may then later fade out due to a change in circumstances,

or simply due to random effects. In this case, the mean time to fade-out will

usually be quite long, and it is referred to as “endemic fade-out” [2].

“Epidemic fade-out”, the subject of this thesis, is distinct from either of

these [2], and refers to the situation when an infection fades out in the first

trough after an initial major wave of infection. This is illustrated by fade-out

occurring near point B in Figure 1. In contrast to an initial fade-out, there

is a major outbreak and a significant number of individuals are infected in

that outbreak. In contrast to endemic fade-out, epidemic fade-out occurs a

relatively short time after the initial outbreak.

A condition for epidemic fade-out is that the outbreak contains oscillations.

If one plots the number of infected individuals against time, then oscillations

may occur [2]. When the oscillations reach their low point, stochastic effects

may cause the number of infected individuals to fall to zero, effecting fade-out.

In some situations, the first peak is particularly high, and the first trough is

particularly low, as in Figure 1. So fade-out during this first trough is more

likely than during the second and subsequent troughs, and is worthy of separate

consideration [19]. Epidemic fade-out generally only refers to fade-out in this

first trough, and that is the usage assumed in this thesis.

The term “epidemic fade-out”, though used by many authors [2, 9, 20, 48,

59] (or without the hyphen: “epidemic fadeout” [43]) is not universal. Other

terms which have been used are “extinction in the first trough” [18], “fade-out

post epidemic” [21], and “extinction at the end of a major outbreak” [59].

These all refer to the same phenomenon.
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1.2 Motivation and aims

The motivation for this work is that a number of prominent researchers mention

epidemic fade-out as a phenomenon worthy of further research, in order to gain

a better understanding of the dynamics of outbreaks of an infectious disease.

The first attempt to calculate the probability of epidemic fade-out was by

van Herwaarden in 1997 [59], which will be discussed in more detail in Section

2.4.3. Commenting on this paper, Diekmann and Heeterbeek wrote in 2000,

“In fact we only know one paper in which the relevant probability is calculated...

It is hoped that this will trigger more work in this direction, concentrating on

other models and different methods such that in the end a more robust picture

emerges”[22].

Nevertheless, in the intervening years, only one further paper emerged, by

Meerson and Sasorov in 2009 [48]. This again led to suggestions that more

work should be done in this area. In a 2013 seminar, Britton said that the

problem was “Not well solved even for simplest model!” (sic) [18]. Then a

2015 paper co-authored by Britton listed further understanding of epidemic

fade-out as one of “Five challenges for stochastic epidemic models involving

global transmission” [19]. They wrote, “a more challenging question is how

to calculate the probability that the infection persists through the trough that

follows the initial epidemic”. After noting the published work of van Herwaar-

den and Meerson and Sasorov, they wrote “Challenges remain in extending

this work beyond the simplest settings”.

Therefore this work was undertaken to extend the understanding of epi-

demic fade-out.

The work contains two main themes, spread over two published papers and

one submitted paper. The first theme is the calculation of the probability of

epidemic fade-out. This is the focus of the first [6] and third [8] papers. In
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addition to calculating this probability, these papers examine, and in some

cases explain, the factors which affect this probability.

The other theme, and the topic of the second paper [7], is the control of epi-

demic fade-out. The first paper included the somewhat surprising result that

the probability of epidemic fade-out has a non-monotonic relationship with β,

the transmission rate parameter. Therefore this paper considers strategies for

controlling β in order to maximise the probability of epidemic fade-out. In

particular, it provides a simple formula for a close-to-optimal strategy.

All of the work in this thesis uses the Markovian SIR-with-demography

model [51]. In addition, the third paper extends the work to also apply to the

Markovian SIRS model [30], which is closely related.

1.3 Organisation of this thesis

This work is a “thesis by publication”. During the course of my candidature

I submitted three papers in which I was the lead author. This thesis refers to

these as Paper 1, Paper 2 and Paper 3. Papers 1 [6] and 2 [7] were published

in 2016 and 2017 respectively, while Paper 3 [8], the most recent, is still under

review. These papers form the main body of the thesis.

Chapter 2 includes an in-depth description of the SIR-with-demography

and SIRS infection models, and reviews the literature; both of these infection

models, and of work investigating epidemic fade-out.

Chapters 3, 4 and 5 contain the publications themselves. Each chapter in-

cludes a short introduction to the paper, a “Statement of Authorship” declara-

tion, and the paper itself. Chapters 3 and 4 contain reprints of the published

versions of Papers 1 and 2, respectively. Chapter 5 contains the submitted

version of Paper 3.

Chapter 6 explains the reasons for the choices of software used.

11



The conclusion in Chapter 7 summarises the results, and considers possible

directions for future research.
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2 Model and Literature review

2.1 The SIR-with-demography model

The main model used in this thesis is the “SIR-with-demography model” [51],

although Paper 3 [8] also uses the “SIRS model” [30].

The use of a model allows assumptions to be made. Almost any model will

significantly simplify the physical world, but a well-chosen model will closely

approximate the physical world, and allow observations and predictions to be

made about real world systems. The Markovian SIR model has a long history

and is well tested. The use of demography – adding births and deaths to an

otherwise static population – allows the modelling of changes in population,

and also has a long history of usage. The SIRS model is a closely related

model, which models waning immunity of an infection.

But the SIR-with-demography and SIRS models are also simple enough

to compute results reasonably effectively. Therefore we concentrate on these

models. The SIR-with-demography model also has the advantage that it is

the model which was used in previous studies of epidemic fade-out [59, 48],

allowing us to compare our results with theirs.

The SIR-with-demography model and the SIRS model are both compart-

mental models. In a compartmental model, every individual in the popula-

tion is put into one of a number of compartments. Individuals in the same

compartment are assumed to all have the same characteristics. Therefore, to

completely describe the system, all that is required is to specify the number

of individuals in each compartment.

Both of these models are variants of the basic “SIR infection model”. This

is used to model the spread of a disease with two main properties: first, the

disease is infectious, and is spread by the contact between an infectious individ-

13



S I R
βSI/N γI

Figure 2: The SIR infection model

ual and a susceptible individual; and second, recovery from the disease grants

immunity, so that those who have recovered are permanently immune. (In the

SIRS model, which is discussed in Section 2.3, immunity is not permanent;

and wanes with time.)

The SIR infection model takes its name because it consists of three com-

partments, “S”, “I” and “R”; and these three compartments are also used in

the SIR-with-demography and SIRS models.

“S” stands for “susceptible”, and individuals in this compartment are sus-

ceptible to the disease in question.

“I” stands for “infectious”, and individuals in this compartment are infec-

tious, capable of spreading the disease.

“R” stands for “recovered” (or according to some authors, “removed”).

Individuals in this compartment have recovered from the infection and, im-

portantly, are immune from further infection. They play no part in the further

spread of the disease, which is why they are sometimes treated as removed

from the population.

As a convention, this thesis will use quote marks to denote the compartment

itself, and the same letter without quotes to denote the number of individuals

in that compartment. So the “S” compartment contains S individuals, the

“I” compartment contains I individuals, and the “R” compartment contains

R individuals.

The transition rates between states in the SIR model are shown in Figure

2. The model assumes that infections occur at a rate proportional to both S

and I. Each infectious individual has potentially infectious contacts with other

14



individuals, at an average rate β. However, only the susceptible individuals

can be infected, so the probability of the contact actually causing an infection

is approximately S/N , where N is the population size. This gives an infection

rate of βSI/N .

For small population sizes, an infection rate of βSI/(N−1) is more correct,

because an individual cannot contact or infect themselves. However in larger

populations, as considered in the SIR-with-demography model used in this

thesis, N ≈ N − 1, so the difference is trivial.

Recovery from infection is assumed to occur at rate γ (that is, the infectious

time is exponentially distributed with mean infectious time 1/γ). This gives

rise to a net rate of γI from the “I” state to the “R” state.

The SIR model, and extensions of it considered in this thesis, assume that

the populations can be treated as homogeneous – that is, that all individuals

have the same infection and recovery rates, or at least that it is a valid working

assumption that average rates can be used. It also assumes the population is

well mixed, so that all individuals have an equal probability of making an

infectious contact. Both of these assumptions can be relaxed by making the

model more complicated, but that is outside the scope of this thesis.

The SIR-with-demography model extends the SIR model by adding de-

mography, and is shown in Figure 3. These might be birth and death rates,

or immigration and emigration rates. For convenience, we shall refer to them

as birth and death rates in this thesis, but immigration and emigration is not

excluded. Per capita deaths occur from each state at rate µ (corresponding to

an exponentially distributed lifetime with mean 1/µ), and births occur at rate

µN .

As this is a stochastic model, the population size is not fixed, but varies with

time. So the meaning of N is that it is the mean equilibrium population size [3].

15



S I R
βSI/NµN

µS

γI

µI µR

Figure 3: The SIR-with-demography epidemic model.

(That paper adds the qualification “when the infection has been eradicated”,

but this qualifier is not necessary, because the death rate for individuals is the

same, regardless of what state they are in). There is also no upper limit on

the population size, so the state space is unbounded, an issue which we had to

address in this research.

Note that R does not figure in any of the rate equations for the “S” or

“I” states. Therefore it is possible to remove the “R” state. This gives the

representation of the SIR-with-demography model used in this research, as

shown in Figure 4. The corresponding transition rates are shown in Table 1.

An important feature is that the state space is two-dimensional, since there

are only two variables, S and I.

S I
βSI/NµN

µS (γ + µ)I

Figure 4: The SIR-with-demography epidemic model, without the “R” state,
as used throughout this thesis.

Inevitably, not every author uses the same symbols when describing their

work mathematically. In this thesis, unless indicated otherwise, we use the

terminology in Figure 4 and Table 1 when discussing other researchers’ work.

We also use p0 as shorthand for “probability of epidemic fade-out”. However

not all authors have an identical definition of p0, and one issue we encountered

16



Description Transition Rate

Infection (S, I)→ (S − 1, I + 1) βSI/N

Birth of Susceptible (S, I)→ (S + 1, I) µN

Death of Susceptible (S, I)→ (S − 1, I) µS

Removal of Infectious (S, I)→ (S, I − 1) (γ + µ)I

Table 1: Transition rates for the Markovian SIR-with-demography epidemic
model displayed in Figure 4.

was that no one else had attempted to define p0 precisely.

Important concepts, which appear throughout this thesis, are the deter-

ministic approximation and endemic point. In the deterministic approxima-

tion (also known as the deterministic model [59]), instead of the stochastic

rate equations in Table 1, the system is specified by the differential equations

(where t is time):

dS/dt = µ(N − S)− βSI/N,

dI/dt = βSI/N − (γ + µ)I.

(1)

In the deterministic approximation, assuming a starting condition with

positive I, the system converges to a stable equilibrium point, which is some-

times called the endemic point [39]. This point has the values S = Se and

I = Ie, and is the point at which dS/dt = 0 and dI/dt = 0. It is not difficult

to show that,

(Se, Ie) = N

(
γ + µ

β
,
µ(β − γ − µ)

β(γ + µ)

)
. (2)

2.2 Historical development of the model

The SIR infection model has a long history. The concept of “mass action” –

of the rate of infection being proportional to both the number of susceptible

17



individuals and the number of infectious individuals – appears to originate

with Hamer in 1906 [1].

But the SIR model itself is generally credited to originate with Kermack

and McKendrick’s 1927 paper [36], with the SIR model sometimes called the

“Kermack-McKendrick model” [1].

Kermack and McKendrick introduced a deterministic model. That is, the

rates in Figure 2 were deterministic rates; so the model can be represented by

the differential equations:

dS/dt = −βSI/N

dI/dt = βSI/N − γI.
(3)

They demonstrated the efficacy of the model by showing how it matched

the data from an outbreak of plague in 1905, as shown in Figure 5.

However the SIR model has no way of supplying new susceptibles (dS/dt

is never positive in (3)). The addition of demography (to give the SIR-with-

demography model) is usually credited [1] to Soper’s 1929 paper [56]; and

Bartlett in 1956 refered to it as “the Hamer-Soper model” [11]. However it

appears more accurate to credit it to an earlier (1921) paper by Martini [44],

which has the equations in a slightly different form. Therefore N̊asell refers to

the SIR-with-demography equations as “the Martini model” [50].

The SIR-with-demography model has become very widespread, with some

papers even referring to it as the “basic SIR model” [43] or the “Classic En-

demic Model” [31]. This indicates how ubiquitous it is, and why it is a good

choice of model to study.

Like Kermack and McKendrick, both Martini and Soper used deterministic

models. However deterministic models cannot account for fade-out; stochastic

models are required for this.

18



.

Figure 5: The figure from Kermack and McKendrick’s 1927 paper, which il-
lustrates the accuracy of the deterministic SIR infection model
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S I R
βSI/N γI

νR

Figure 6: The SIRS model

McKendrick in 1926 [47] and Greenwood in 1931 [28] attempted stochastic

treatments of infections, but not with SIR-type models.

Stochastic treatments of the SIR-related models emerged in the late 1940s

and 1950s. The origin of stochastic analysis of the SIR model was touched

upon by Bartlett in 1949 [10], then Bailey in 1950 published a more thorough

stochastic treatment of the SIR model (without demography) in 1950 [4]. The

first stochastic treatment of the SIR-with-demography model appears to have

been by Bartlett in 1956 [11].

So we see, from 1956 onwards, the stochastic SIR-with-demography model

regularly appearing in the literature, and this is the main model used in this

thesis.

2.3 The SIRS model

The SIR-with-demography model is the main model used in this work, and

the only model used in Papers 1 and 2 [6, 7]. However, in Paper 3 [8], we also

use the closely related SIRS (“Susceptible-Infectious-Recovered-Susceptible”)

model. This models the renewal of susceptibles via waning immunity (that

is, infectious individuals who are already in the community, can move from

the “R” state to the “S” state); rather than introducing new individuals to

the community. This is a more appropriate model to use for diseases with

an immune time which is much shorter than individuals’ lifetime, such as

20



S I
βSI/Nν(N − S − I) γI

Figure 7: The SIRS model with the “R” state removed

Description Transition Rate

Infection (S, I)→ (S − 1, I + 1) βSI/N

Removal of Infectious (S, I)→ (S, I − 1) γI

Loss of Immunity (S, I)→ (S + 1, I) ν(N − S − I)

Table 2: Transition rates for the Markovian SIRS epidemic model displayed in
Figure 7.

influenza. The SIRS model appears to have been introduced by Hethcote in

1976 [30].

The SIRS model is illustrated in Figure 6. A property of the SIRS model

is that the population is constant, with N being the fixed population size.

Therefore R = N − S − I and the “R” state can be removed, as in Figure 7,

with the transition rates shown in Table 2

For our purposes, there is no qualitative difference in behaviour between

the two models. In the software, they are both modelled with a single model,

illustrated in Figure 8, with the condition that exactly one of µ and ν must be

zero.

A combination in which µ and ν are both non-zero is the SIRS-with-

demography model [24, 51], and represents a system in which both births

S I
βSI/NµN + ν(N − S − I)

µS

(γ + µ)I

Figure 8: Combined model of SIR-with-demography and SIRS, in which ex-
actly one of µ and ν must be zero.
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and deaths, and waning immunity, are modelled. However (unlike the SIRS

model), the population size is not fixed, so the assumption R = N − S − I no

longer holds; and (unlike the SIR-with-demography model), R does feature in

a rate equation for S. Therefore, unlike the SIRS and SIR-with-demography

models, the “R” state cannot be removed. This means the model has a three-

dimensional state space – compared to a two-dimensional state space for the

SIRS and SIR-with-demography models. Since we wish to keep the models

simple, this put the SIRS-with-demography model outside the scope of this

thesis.

2.4 Epidemic fade-out and related problems

In terms of issues related to fade-out, Ball in 1983 largely solved the problem

for initial fade-out [5] – that is, fade-out before a major outbreak occurs. A

specific treatment for the SIR-with-demography model was given in 1995 [60].

In terms of endemic fade-out, the question is one of the time for fade-

out to occur. Numerous works have examined the Mean Time to Extinction

(MTE) in a general stochastic case [35, 41], in related models such as the

logistic model [49, 54] or SIRS with demography [51], and in the specific case

of SIR-with-demography [60, 50].

2.4.1 Critical Community Size (CCS)

In comparison to initial and endemic fade-out, epidemic fade-out has been

relatively neglected. The term, and its distinguishment from endemic fade-

out, appears to originate with Anderson and May [2].

However, the study of CCS (Critical Community Size) is in many ways

related. CCS was proposed by Bartlett in relation to measles. He determined

that the CCS for measles (in the pre-vaccination era; vaccination began in the
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1960s in most developed countries [2, 23, 31]) is between about 200, 000 and

300, 000 [12, 13]. This study is regarded as a classic; both the paper and its

result is widely cited, albeit at a slightly revised figure of 250, 000 to 500, 000

[2, 29, 21].

The reason for relating CCS to epidemic fade-out is that CCS implicitly

refers to the situation of an outbreak fading out soon after its major wave

of infection. We are aware of only one paper [43] which connects the terms

CCS and epidemic fade-out directly, although a number of studies connect the

concepts [29, 22, 57, 52, 63].

It has been pointed out that below the CCS, an infection dies out “in the

troughs between epidemics” [29], which is very much the definition of epidemic

fade-out.

A number of papers point out that epidemic fade-out is caused by the pool

of susceptibles running out, due to the intensity of the infection [57, 43, 63].

N̊asell is somewhat more precise, saying, “We interpret this to say that the

critical community size is that value of N for which the probability of extinction

after waiting for one quasi-period T0 equals 0.5” [52], where the quasi-period

T0 is the period of oscillations in the number of infectious individuals. That

is, N̊asell explicitly says that CCS is tied to fade-out within a fixed period of

time. However, none of these papers make an attempt to directly calculate the

probability of epidemic fade-out.

Diekmann and Heesterbeek make some heuristic obervations about CCS in

the SIR-with-demography model, and even estimate the relative influence of µ

and N , with the CCS roughly depending on N
√
µ relative to other parameters.

They say that a higher N
√
µ makes a recurrence of outbreaks more likely (that

is, p0 ≈ 1), and that a lower N
√
µ makes a single outbreak more likely (that

23



is, p0 ≈ 0)1. For other situations they simply say “everything else in between

could be called critical” [22].

Swinton et al. [57] divide SIR-with-demography outbreaks into three types:

those with low birth rates (that is, low µ), which always fade out after the first

wave; those with high birth rates, which never fade out after the first wave; and

those which are intermediate, which may or may not exhibit epidemic fade-out,

depending on stochastic effects. They note that these types are affected by

µ (epidemic fade-out becomes less likely as µ increases), and by N (epidemic

fade-out becomes less likely as N increases), but make no attempt to quantify

these factors.

Similarly, Lloyd-Smith et al. [43] make a number of useful qualitative ob-

servations about epidemic fade-out, but go no further. Like Swinton et al.,

they note the dependence of the probability of epidemic fade-out on N (im-

plying that the probability of epidemic fade-out falls as N increases). They

also note that there is no “abrupt” change in this probability in most cases –

in other words, there is no clear-cut CCS at which there is a dramatic drop

in the probability of epidemic fade-out, instead noting that epidemic fade-out

depends on a number of factors which “depend on N in complex ways”. In

this regard, they posit that pre-vaccination measles, which does exhibit a rea-

sonably clear CCS, is the exception rather than the rule. As with Swinton et

al., they point out that epidemic fade-out depends very much on the value of

µ. They also point out that epidemic fade-out depends on (in their words)

the “intensity” of the epidemic (because a more intense epidemic depletes the

population of more susceptibles). But they do not quantify this “intensity”,

nor do they attempt to calculate the probability of epidemic fade-out.

Xiao et al. [63] perform many random simulations and infer a number of

1In fact there is a slight mistake in their written text – on page 48 they write “small’
where they mean “large”, and vice versa – but their formulae are correct.
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conclusions from them. But they too make no attempt at a formula for the

probability of epidemic fade-out, or for CCS, from the parameters.

Similarly to Diekmann and Heesterbeek, N̊asell makes a number of approx-

imations and derives some simplified expressions for the CCS in the SIR-with-

demography model [52].

So while there is a lot of work on CCS, it is either inferred from observations,

or based on some simplifying assumptions. While they contain some very useful

information, none of these are directly useful in calculating the probability of

epidemic fade-out.

2.4.2 Probability of epidemic fade-out – introduction

On the specific subject of epidemic fade-out, only two papers existed before

ours, as previously mentioned in Section 1.2. We now discuss these in greater

detail.

Both papers consider the probability of epidemic fade-out for the SIR-

with-demography model. We are not aware of any attempts to calculate the

probability of epidemic fade-out in any other model.

2.4.3 van Herwaarden, 1997

van Herwaarden [59], was the first person to calculate an approximation for

the probability of epidemic fade-out, given a set of parameters. He uses the

SIR-with-demography model as specified in Figure 4 and Table 1.

van Herwaarden makes the point that if the renewal rate (µ) is very high,

then the probability of epidemic fade-out is close to 0; and if µ is very low, then

the probability of epidemic fade-out is close to 1. He writes that his derivation

specifically pertains to the intermediate case. (This distinction, between three

different types of outbreaks, was later used by Swinton et al. in their discussion
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of CCS [57], which was mentioned above).

van Herwaarden first calculates expressions for the path of the outbreak in

the deterministic model. That is, he calculates the evolution in time of (S, I)

given the differential equations (1),

dS/dt = µ(N − S)− βSI/N

dI/dt = βSI/N − (γ + µ)I;

and an initial condition of small I, and S = N − I ≈ N . The deterministic

path is shown in Figure 9, which is copied from van Herwaarden’s paper.

Figure 9: [59, Figure 2], showing the deterministic path of an outbreak from
an initial point P1, using x = S/N , ỹ = I/(Nµ) and β̃ = β. The path is
divided into segments A through to G. The dotted line shows points where
the tangent to the deterministic path is vertical. P2 is the endemic equilibrium
point.

van Herwaarden breaks the path into segments, A through to G. For each

segment he derives an expression for the path, using a local asymptotic ex-

pansion. He derives one expansion for segments A and E (where I is high),

another expansion for segments C and G (where I is low), and a third expan-

26



sion for segments B, D and F (where I is varying most dramatically). He

then matches adjacent expansions at their boundaries. The result is that he

obtains a single expression for the deterministic trajectory up to and including

segment C, the region in which epidemic fade-out may occur.

In effect, van Herwaarden breaks the problem into two components. For the

first part of the problem (segments A and B) he assumes that a deterministic

solution is sufficient. He does not elaborate on the reason for this (simply

saying “This part of the process is dominated by the deterministic field”),

but implicitly the reason is that both S and I are sufficiently large for the

deterministic approximation to hold to a good degree of accuracy.

van Hewaarden then sets up a two boundary problem in segment C: an

absorbing boundary at I = 0, and an artificial upper absorbing boundary at

I = Ie, where Ie is the endemic I value (2). To solve this problem – that is, to

calculate the probability of first hitting a particular absorbing boundary – he

uses the Fokker-Planck equation [25], and calculates an approximate solution.

Then, using a point from the deterministic analysis as the starting con-

dition, he obtains an approximate expression for the probability of epidemic

fade-out. The expression, which is explicit but rather complicated, is given in

our Paper 1 [6, Equation (8)].

This expression assumes an initially naive population, (that is, P1 in Fig-

ure 9 is at x = 1 and ỹ = 0, corresponding to S = N and I ≈ 0, though

of course in reality the initial I must be non-zero). The final section of van

Herwaarden’s paper shows how to use the same techniques to calculate the

probability of epidemic fade-out for different initial conditions.

So in summary, van Herwaarden derives an explicit expression which is

approximately equal to the probability of epidemic fade-out. There are lim-

itations – he notes that his asymptotic approximations of the Fokker-Planck
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equation assumes a large2 N – but as we shall see in Paper 1 [6], the results

are still quite accurate, though not as accurate as the numerical method we

devise in that paper.

2.4.4 Meerson and Sasorov, 2009

The only other previous paper to attempt to calculate the probability of epi-

demic fade-out, was by Meerson and Sasorov in 2009 [48]; though some of the

details were discussed in a subsequent paper which Meerson co-authored [55].

Like van Herwaarden, they set up a two boundary problem. Due to their

choice of parameters, the artificial upper absorbing boundary was slightly dif-

ferent, a diagonal line from (Se, Ie) to (N, 0) instead of a horizontal line at

I = Ie (where Se and Ie are as specified in (2)). The simulations and cal-

culations we conducted suggest that this choice of upper absorbing boundary

made little difference: if a realisation reached this boundary, it would almost

invariably also reach the boundary defined by van Herwaarden.

They borrow van Herwaarden’s deterministic analysis, and use his expres-

sions to give the same starting point for their two boundary problem. But

instead of using the Fokker-Planck equation, they use the WKB approxima-

tion [15],

The WKB approximation is named after three theoretical physicists –

Wentzel, Kramers and Brillouin – who all published works using it in 1926

[62, 38, 17]. It is sometimes alternatively called the Liouville-Green or LG

approximation [26], because it was later realised [53] that the method was

discovered separately by Liouville [42] and Green [27] in 1837.

The WKB approximation improves on a shortcoming in the Fokker-Planck

approximation, that the latter very often fails to model large fluctuations cor-

2He writes 1/
√
N � µ � 1, but this cannot be correct because µ is not dimensionless.

It appears that 1/
√
N � µ/γ � 1 is intended.
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rectly [48]. This can make it unsuitable in applications where large fluctuations

are the main cause of fade-out [55]. The WKB approximation is an expansion

method which more accurately predicts these large fluctuations [55].

In the context of the probability of epidemic fade-out, the method is only

claimed to hold for N large enough that the probability of epidemic fade-out is

near zero; though we observed it was quite accurate across a range of values [6].

Like van Herwaarden, they derive an expression which is explicit but rather

complicated. The expression is given in Paper 1 [6, Equation (9)].

Nevertheless, we did not observe a significant increase in accuracy (over

the use of the Fokker-Planck method as used by van Herwaarden [59]) in their

probability of epidemic fade-out calculations [6]. One possible reason is the

mechanics of epidemic fade-out: the WKB approximation was claimed to be

more accurate for large fluctuations, and large fluctuations are the major cause

of endemic fade-out, which was the subject of earlier papers which applied the

WKB approximation to ecological modelling [37, 34]. It may be that, compared

to endemic fade-out, epidemic fade-out is less reliant on large scale fluctuations.

Simulations during the work for this thesis indicated that epidemic fade-out

most commonly occurred when the deterministic path of the outbreak took the

number of infectious individuals (I) to quite a low value; and from that point

only a relatively small fluctuation is required for fade-out to occur. In terms

of numbers of realisations (and hence, in terms of the overall contribution to

probability of epidemic fade-out), this mode of fade-out far exceeded those

due to large fluctuations. That may explain why the WKB approximation’s

superiority in modelling large fluctuations was not a noticeable factor.

It may also mean that the WKB method is in fact superior when epidemic

fade-out is a rare event (that is, when p0 is very low). However we only

compared the methods for situations when epidemic fade-out was reasonably
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probable, choosing parameter sets for which p0 was roughly between 0.1 and

0.9 [6].

30



3 Paper 1

3.1 Introduction

Paper 1 is entitled “The probability of epidemic fade-out is non-monotonic

in transmission rate for the Markovian SIR model with demography”. It was

published in Journal of Theoretical Biology in 2016 [6].

As we observed in the literature review, two very good approximate for-

mulae for p0 had already been published [59, 48]. However, these were still

sufficiently complex that it was difficult to make qualitative conclusions about

the phenomenon of epidemic fade-out.

Therefore we devised a numerical calculation method, that we showed was

more accurate (but slower to compute) than the previously published formulae,

and faster (though sometimes less accurate) than more exact methods.

Then in the latter part of the paper, we used this approximation to survey

trends in p0, and observed that it was non-monotonic in β, the transmission

rate parameter. We also offered an explanation for why this occurs.

We concluded by suggesting possible applications of this non-monotonicity,

as well as pointing to the need to examine epidemic fade-out in other models.

These became the directions for Papers 2 and 3.

3.2 Statement of Authorship
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3.3 Paper 1

The paper, as published in Journal of Theoretical Biology in 2016, is on the

following pages.
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a b s t r a c t

Epidemic fade-out refers to infection elimination in the trough between the first and second waves of an
outbreak. The number of infectious individuals drops to a relatively low level between these waves of
infection, and if elimination does not occur at this stage, then the disease is likely to become endemic. For
this reason, it appears to be an ideal target for control efforts. Despite this obvious public health
importance, the probability of epidemic fade-out is not well understood. Here we present new algo-
rithms for approximating the probability of epidemic fade-out for the Markovian SIR model with
demography. These algorithms are more accurate than previously published formulae, and one of them
scales well to large population sizes. This method allows us to investigate the probability of epidemic
fade-out as a function of the effective transmission rate, recovery rate, population turnover rate, and
population size. We identify an interesting feature: the probability of epidemic fade-out is very often
greatest when the basic reproduction number, R0, is approximately 2 (restricting consideration to cases
where a major outbreak is possible, i.e., R041). The public health implication is that there may be
instances where a non-lethal infection should be allowed to spread, or antiviral usage should be mod-
erated, to maximise the chance of the infection being eliminated before it becomes endemic.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The ultimate goal of modelling infectious disease dynamics is
to gain insight into how to use resources best to eliminate infec-
tion. This may be achieved by making invasion difficult through
minimising the probability of a major outbreak, for example
through the use of prophylactic vaccination, antivirals or contact
tracing (Ball, 1983; Ball and Lyne, 2002; Ross and Black, 2015).

For endemic diseases, with wide prevalence, once again the
predominant focus is on reducing transmission as much as pos-
sible, and there have been a number of studies calculating the

mean time to endemic fade-out (van Herwaarden and Grasman,
1995; Nåsell, 2001; Kamenev and Meerson, 2008).

Much less attention has been paid to what is the optimal
approach to adopt when a major outbreak occurs. Typically, focus
has been given to minimising the amount of infection – either the
rate of new infections, or the total number of infections over the
first wave of an outbreak – for example, through the use of anti-
virals, and once available, vaccination (e.g., McCaw and McVernon,
2007; Black et al., 2013). Here we instead focus on the probability
of epidemic fade-out – that is, the probability of infection being
eliminated between the first and second waves of infection.

In fact, a more comprehensive understanding of the probab-
ility of epidemic fade-out is named as one of the five challenges
(for stochastic epidemic models involving global transmission) by
Britton et al. (2015), supporting earlier calls (Anderson and May,
1991; Diekmann and Heesterbeek, 2000). The interest in this
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quantity for infection elimination is that following the first wave of
an outbreak, the number of infectious individuals drops to a
relatively low level. Then, if fade-out does not occur, it is likely that
the disease will become endemic. Hence, this “first trough” of
infection appears intuitively to be an ideal target for elimination.

We study a Markovian SIR model with demography (van Her-
waarden and Grasman, 1995; Nåsell, 1999; Andersson and Britton,
2000), and in particular the probability of epidemic fade-out as a
function of effective transmission rate, recovery rate, population
turnover rate, and population size parameter. We identify the
ubiquity of a non-monotonicity property of the probability of
epidemic fade-out as a function of effective transmission rate
(holding other parameters fixed). In fact, the probability of epi-
demic fade-out is very often greatest when the basic reproduction
number, R0, is approximately 2 (restricting consideration to cases
where a major outbreak is possible, i.e., R041). This means that
there may be cases when, faced with an infectious outbreak, it
would be beneficial to not take action to reduce R0.

The identification of this phenomenon was achieved through
the development of a numerical method which is highly accurate
and efficient for computation of the probability of epidemic fade-
out. To our knowledge, as supported by the paper (Britton et al.,
2015), there have been only two existing methods proposed, both
approximations, for evaluating this probability (van Herwaarden,
1997; Meerson and Sasorov, 2009). These existing methods are
asymptotic approximations, with accuracy improving in the limit
as the population size parameter tends to infinity. Our method has
the benefit of being highly accurate across a wider range of
population sizes, including moderate-sized populations, while still
using light computer resources and hence scaling well to large
population sizes.

In the next section we introduce the Markovian SIR model with
demography that we study, before discussing deterministic and
diffusion approximations of this model which are relevant to
existing methods and our new method for evaluating the prob-
ability of epidemic fade-out. We then review the existing
approximations. In Section 3 we detail our new method for com-
puting the probability of epidemic fade-out. In Section 4.1 we
validate its accuracy and efficiency, and in Section 4.2 we inves-
tigate the dependence of the probability of epidemic fade-out on
the model parameters, identifying the ubiquity of a non-
monotonicity property in the effective transmission rate. Finally,
we conclude this work and discuss future research ideas.

2. Background

In this section we present the two existing methods for
approximating the probability of epidemic fade-out (van Her-
waarden, 1997; Meerson and Sasorov, 2009). To achieve this, we
first introduce the underlying model assumed in these earlier
studies, and also two asymptotic approximations of this model.
These are not only required for both existing methods but also for
our new methods to be presented in Section 3.

2.1. The Markovian SIR model with demography

Following previous work (van Herwaarden, 1997; Meerson and
Sasorov, 2009), we adopt the Markovian SIR model with demo-
graphy (van Herwaarden and Grasman, 1995; Nåsell, 1999;
Andersson and Britton, 2000). However, we note that our methods
can be easily modified to suit other SIR models which involve
replenishment of susceptibles.

The well-known SIR model puts every individual in the popu-
lation into one of three classes: “S” for Susceptible, “I” for Infec-
tious, and “R” for Recovered (or Removed). Let S, I and R denote the

number of individuals in the respective states. Then, we assume
that susceptible individuals become infectious at rate βSI=N, and
infectious individuals recover at rate γI, where β is the effective
transmission rate parameter, 1=γ is the average infectious period
of an individual and N is the total population size. The population
is closed, and hence of a constant size.

The SIR model with demography extends the SIR model by also
having births (or immigration) of susceptibles, at a fixed rate μN,
and deaths (or emigration) from each state at rates μS, μI and μR
respectively, where μ is the population turnover rate parameter.
We note that this means the actual population size, Sþ IþR, is no
longer fixed, but that the birth rate is held constant (i.e., N, the
population size parameter, is constant). A consequence of the
latter, along with the fact that the number of recovered indivi-
duals, R, has no direct bearing on the other states, and that our
interest herein is on the number of infectious individuals, is that
we may describe the state of the system by (S,I) (Kamenev and
Meerson, 2008) with state space fðS; IÞ : 0rS; Ig. The Markovian
SIR model with demography we consider herein is detailed in
Table 1 and Fig. 1.

2.2. Asymptotic approximations: the density process

We now state two limiting results of the SIR model with
demography, in the limit as N becomes large (Kurtz, 1970, 1971;
Pollett, 1990). These approximations assist us in defining the
probability of epidemic fade-out, and are furthermore made use of
in the two existing methods for approximating the probability of
epidemic fade-out, discussed in Section 2.3, and in our own
methods to be introduced in Section 3.

Let YN(t) be a process following the model defined in Section
2.1, with each value being an (S,I) pair, and with initial value
ðS0; I0Þ. The associated density process is XNðtÞ ¼ YNðtÞ=N, with each
possible value x being an (s,i) pair, where s¼S/N and i¼ I=N; and
the initial value is x0 ¼ ðs0; i0Þ ¼ ðS0=N; I0=NÞ. The density process is
important because it allows us to analyse the limiting behaviour as
N-1.

Let f ðx; lÞ be the transition rate of the density process from state
ðxÞ to state ðxþ l=NÞ, where l can take on the possible 1-step
transition values in Table 1: ð�1;1Þ, ð1;0Þ, ð�1;0Þ and ð0; �1Þ,
respectively. Also define for the density process:

FðxÞ ¼
X
l

lf ðx; lÞ ¼ �βsiþμð1�sÞ; βsi�ðγþμÞi� �
; ð1Þ

B(x), a matrix whose ðj; kÞth element is given by bj;k ¼ ∂f j
∂xk
,

) BðxÞ ¼
�βi�μ �βs
βi βs�ðγþμÞ

 !
; ð2Þ

Table 1
Events, transitions and their rates for the Markovian SIR model with demography.

Description Transition Rate

Infection ðS; IÞ-ðS�1; Iþ1Þ βSI=N
Birth of susceptible ðS; IÞ-ðSþ1; IÞ μN
Removal of susceptible ðS; IÞ-ðS�1; IÞ μS
Removal of infectious ðS; IÞ-ðS; I�1Þ ðγþμÞI

Fig. 1. Diagram of the Markovian SIR model with demography. Note, the “R” state is
redundant and has been removed.
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and G(x), a matrix whose ðj; kÞth element is given by
gj;k ¼

P
l lj lkf ðx; lÞ,

) GðxÞ ¼
βsiþμð1þsÞ �βsi

�βsi βsiþðγþμÞi

 !
: ð3Þ

Then by Theorem 3.1 of Kurtz (1970) and Theorem 3.2 of Pollett
(1990), we have In the limit as N-1, XN(t) weakly converges to a
process which at time t is Gaussian with mean X(t) and covariance
ΣðtÞ=N; where X(t) and ΣðtÞ are the solutions to

dXðtÞ
dt

¼ FðXðtÞÞ; Xð0Þ ¼ ðs0; i0Þ; ð4Þ

dΣðtÞ
dt

¼ BðXðtÞÞΣðtÞþΣðtÞBðXðtÞÞT þGðXðtÞÞ; Σð0Þ ¼ 0: ð5Þ

The solution to (4) when multiplied by N, NX(t), is also known
as the deterministic approximation to YN(t). A typical solution of
this approximation is shown in Fig. 2. The basic reproduction
number corresponding to this approximation is

R0 ¼ β=ðγþμÞ: ð6Þ
Assuming R041, the process begins at a point A, with a large
number of susceptible individuals and a small number of infec-
tious individuals (typically A¼ ðS; IÞ ¼ ðN�1;1Þ). The outbreak rises
through point B to point C, falls through point D to point E, and
then rises again to point F. The cycle then repeats, on a smaller
scale, as it spirals in towards the endemic value ðSe; IeÞ. Solving (1)
for FðxÞ ¼ ð0;0Þ and scaling by N give

ðSe; IeÞ ¼N
ðγþμÞ
β

;
μðβ�γ�μÞ
βðγþμÞ

� �
: ð7Þ

The maximum C and the minimum E of the deterministic infection
curve occur when S¼ Se, and we have chosen the points B, D and F
to be at I ¼ Ie.

2.3. Previous methods

The two main previous papers on this topic are by van Her-
waarden (1997) and Meerson and Sasorov (2009). Both of these
methods share in common the first part of the analysis: they
assume that the outbreak follows the trajectory of the determi-
nistic approximation until I falls below Ie (i.e., until point D in
Fig. 2), and then set up a two boundary hitting probability pro-
blem. There is the natural lower absorbing boundary at I¼0, and
the probability of hitting this boundary before the upper boundary
is used to approximate the probability of epidemic fade-out, here
known as p0. The choice of the upper absorbing boundary and

method of solution of the two boundary hitting probability pro-
blem distinguishes the two methods.

van Herwaarden (1997)chooses the upper absorbing boundary
to be I ¼ Ie. He then approximates p0 as the probability of hitting
the I¼0 boundary before the upper boundary. To do this, van
Herwaarden assumes that S and I are continuous, then simplifies
analysis by using the Fokker–Planck equation, effectively assuming
the diffusion approximation as presented in Section 2.2. He uses
boundary layer analysis to obtain an approximation to the prob-
ability of absorption at the lower boundary.

This results in the following approximation of p0 (where W0 is
the principal branch of the Lambert W function, and Γ is the
gamma function), assuming 1=

ffiffiffiffi
N

p
⪡μ⪡1:

x1A ¼ ð�γ=βÞW0 ð�β=γÞ expð�β=γÞ� �
;

C3 ¼ � ln
�βx1A
βx1A�γ

� �

�
Z 1

x1A

x1A
1�x1A

γ s�s ln sð Þ�1ð Þ
βs2 1�sþ γ=β

� �
ln sð Þ� �þ 1

s�x1A

 !
ds;

K ¼ 1
μ
exp

βx1Aþ β�γ
� �

ln 1�x1Að Þ
μ

þC3

� �
;

p0 ¼ exp
�KNμ2 β=μ

� � β� γ�μð Þ=μ exp �β=μ
� �

γþμ
� �

Γ β�γ�μ
� �

=μ
� �

0
@

1
A: ð8Þ

Meerson and Sasorov (2009) instead use a slightly different
upper absorbing boundary, namely a diagonal line from ðSe; IeÞ to
ðN;0Þ, and employ the WKB (Wentzel–Kramers–Brillouin) expan-
sion method (Bender and Orszag, 1978) in place of the Fokker–
Planck equation to solve the two boundary problem. This results in
the following approximation of p0:

K ¼ β=μ;
δ¼ 1�ðγþμÞ=β;
xm ¼ ð�ðγþμÞ=βÞW0 ð�β=ðγþμÞÞ expð�β=ðγþμÞÞ� ��1;

Q1 ¼
Z xm

0

s sþδ
� �

1þsð Þ2 s� 1�δ
� �

ln 1þsð Þ� �� xm
1þxmð Þ s�xmð Þ

 !
ds;

ym ¼ δþxm
� �

xm
1þxm

�xm
δ

� �Kδ
exp K xmþδ

� �� 1þx�1
m

� �
Q1

� �
;

C ¼ ymδ
2π 1�δ
� � ;

S0 ¼ C

ffiffiffiffiffiffiffi
2π
Kδ

r
;

p0 ¼ exp �NS0ð Þ: ð9Þ
The analysis assumes NS0⪢1, and hence p0 close to 0; however

it turns out to be quite accurate in nearly all cases.
We assess the accuracy of these approximations in Section 4.1.

However, we note that a nice property of these methods is that
they give explicit mathematical expressions for p0, with negligible
computing time.

3. New algorithms

We now consider new algorithms for approximating the
probability of epidemic fade-out. These methods are based upon
reducing the dependency upon asymptotic approximations, yet
still seeking to retain computational efficiency.

Similar to the existing methods, we decompose the problem
into two parts. We first consider the state of the process upon its
first entrance to the first trough. In place of the deterministic
approximation used in the earlier work, we calculate an approx-
imate distribution of the process based upon the diffusion
approximation as presented in Section 2.2; further details are
presented below in Section 3.2.

Fig. 2. A deterministic trace with N¼ 1000; β¼ 2:5; γ ¼ 1; μ¼ 0:1, and initial point
ð999;1Þ, with endemic values Se and Ie (dashed lines). The outbreak starts at A, goes
through points B, C, D and E through to F, and converges on ðSe ; IeÞ. The first trough is
between points D and F.

P.G. Ballard et al. / Journal of Theoretical Biology 393 (2016) 170–178172

36



In the second part of our methods, we calculate the probability
of reaching I ¼ 0 before exiting the first trough. In this region,
where I is relatively small and stochastic effects are important, we
use discrete-state stochastic models. We present two alternative
ways to do this: an exact computation in Section 3.3.1, and an
efficient approximation in Section 3.3.2. This theoretically should
further improve upon previous methods, which used asymptotic
approximations (diffusion or WKB) for this calculation. In our
discrete-state, stochastic representation of the system, the defini-
tion of the first trough can be unclear; for this reason, we com-
mence by providing a precise definition of epidemic fade-out,
which we adopt in our methods.

3.1. Definition of epidemic fade-out

Since we are dealing with a discrete system, we round up the
endemic fixed point to the next highest integer pair, i.e. Sd ¼ ⌈Se⌉
and Id ¼ ⌈Ie⌉. Let T ¼ ðS; IÞ : SoSd; I¼ Id, i.e. the set of states on the
dotted (green) line in Fig. 3. We define the entrance to the first
trough as the point when the system first enters T.

It is now tempting to define the end of the first trough as the
point when the system next reaches I4 Id. However, due to sto-
chastic effects, it is possible for the system to immediately jump
up to I4 Id, but this certainly does not mean the end of the first
trough. Therefore we need to set the upper boundary to a value
greater than Id in the SoSd region. So long as it is sufficiently far
from Id to avoid small fluctuations, this value is not critical. Hence
2Id was chosen because it means that T is an equal distance from
each absorbing I boundary.

So we define the end of the first trough to be when the system
reaches either I ¼ 2Id, or both SZSd and IZ Id; i.e., the dashed
(red) lines in Fig. 3.

We then define p0, the probability of epidemic fade-out, as the
probability that the process is absorbed at I¼ 0 before it exits the
first trough (that is, before it reaches the dashed red line), given
that the process reaches the start of the first trough.

3.2. Part I: The distribution upon first entrance

In the first part of our method we approximate the distribution
of the process upon its first entrance to T, i.e., the distribution of
the process upon first reaching the green dotted line in Fig. 3.
Results of Ethier and Kurtz (1986) provide this distribution, cor-
responding to the diffusion approximation presented in Section
2.2.

Let τ be the time at which X(t) first enters T, i.e.
τ¼minftZ0 : XðtÞATg.

We may then approximate the “hitting distribution” of X(t)
when it first enters T, as now described.

If we use the subscript j to denote the jth element of a vector,
and subscript j; k to denote the row j, column k element of a
matrix; then by applying Theorem 11.4.1 of Ethier and Kurtz (1986)
we have: In the limit as N-1, the distribution of the density process
XN(t) when it first enters T is Gaussian, with mean XðτÞ1 and variance

H¼ ΣðτÞ1;1þ
FðXðτÞÞ1
FðXðτÞÞ2

� �2

ΣðτÞ2;2�2
FðXðτÞÞ1
FðXðτÞÞ2

� �
ΣðτÞ1;2

 !
=N; ð10Þ

where F(x), X(t) and ΣðtÞ are as defined in Eqs. (1), (4) and (5). We
start the diffusion at point B in Fig. 2 (that is, ΣðtÞ ¼ 0 at point B)
because we condition on a major outbreak occurring.

In our methods, we approximate the hitting distribution of S in
T by discretising a Gaussian distribution with mean NXðτÞ1 and
variance N2H, and renormalising such that SZ0 and SoSd
(because SZSd corresponds to sample paths which never meet the
criteria of entering the first trough). We call this discrete, renor-
malised distribution Δ, and it is the initial distribution for the
calculations in Sections 3.3.1 and 3.3.2.

3.3. Part II: Modelling the behaviour within the first trough

For the second part of the computation we define the first
trough Markov chain, with states arranged as in Fig. 4. Each state is
represented by an (S,I) pair. Column S has states ðS;0Þ to ðS;2IdÞ for
SrSd, and has states ðS;0Þ to ðS; IdÞ for S4Sd. There are two
absorbing boundaries, representing the two possible outcomes:
the lower absorbing boundary corresponds to epidemic fade-out
occurring, and consists of the states ðS;0Þ for all S; the upper
absorbing boundary corresponds to epidemic fade-out not occur-
ring, and consists of the states ðS;2IdÞ for SoSd, ðS; IdÞ for S4Sd,
and (S,n), for all nA ½Id;2Id�, for S¼ Sd.

3.3.1. Exact model
We can evaluate p0 exactly (for a given starting distribution, Δ).

One way to solve this, using standard techniques (Norris, 1998),
would be to simultaneously solve equations for all the approxi-
mately ðNþSdÞ � Id points in the first trough. However we may
take advantage of the fact that almost invariably 2Id⪡N, and solve
it more efficiently by evaluating a column at a time, as now
described.

For each column S, create a stochastic transition matrix, AS, of
the first exit from column S to its neighbouring columns. We
partition AS into two matrices FS and BS – such that AS ¼ ½FSBS� –

Fig. 3. Deterministic trace with the same parameters, and same points D, E and F,
as Fig. 2. States in T, which denotes the start of the first trough, are shown by the
dotted (green) line. The end of the first trough is shown by the dashed (red) line.

Fig. 4. A two-dimensional representation of the states in the first trough Markov
chain, with Sd ¼ 6 and Id ¼ 4. The states in the absorbing boundaries are shown as
solid circles. States in T (the start of the first trough) are denoted by triangles, and
contain Δ, the distribution of the process when it enters the first trough. States
continue infinitely to the right.
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which represent the first exit into the next and previous column,
respectively. Provided state (S,m) is not in the upper absorbing
boundary: then the ðm;nÞth element of FS is the probability that
the first exit from column S is into state ðSþ1;nÞ, given that the
process starts in state (S,m); and the ðm;nÞth element of BS is the
probability that the first exit from column S is into state ðS�1;nÞ,
given that the process starts in state (S,m). These probabilities are
calculated exactly for the Markovian SIR model with demography,
which has the transition rates illustrated in Fig. 5(a).

The upper absorbing boundary is an artificial absorbing
boundary, so we need to treat it in a specific manner. We define FS
and BS such that any probability mass in the upper absorbing
boundary of column S moves to the upper absorbing boundary of
column Sþ1. More specifically, if the state (S,m) is in the upper
absorbing boundary, then row m of ½FSBS� is all zeros, except the
ðm;nÞth element of FS which is equal to 1, where n¼ 2Id if SoSd, or
n¼ Id if SZSd.

We define PS as the matrix of first entry into column Sþ1 from
column S. So the ðm;nÞth element of PS is the probability that the
first entry to column Sþ1 is into state ðSþ1;nÞ, given that the
process starts in state (S,m).

With these definitions, we establish the recursive relation:

PS ¼
F0 if S¼ 0
ðI�BSPS�1Þ�1FS if S40;

(
ð11Þ

where I (here only) is the identity matrix. The FS and BS matrices
are straightforward to calculate, so we can determine each PS
matrix.

Now define the vector DS to be the distribution of Δ in column
S. The only non-zero element of DS is element Id, and then only if
SoSd. Finally, we define ES to be the distribution of all probability
mass which first entered the first trough at column S or less, on the
first trough Markov chain's first entry to column S. By definition,
all probability mass enters the first trough at SoSd. So for SZSd,
the definition of ES simplifies to: the probability distribution on
the first trough Markov chain's first entry to column S.

We then use PS and DSþ1 to calculate ESþ1 through the recur-
sion:

E0 ¼D0;

ESþ1 ¼ ESPSþDSþ1 if SZ0: ð12Þ
As we increment S, eventually all but a vanishingly small

amount of the probability mass is at one of the absorbing
boundaries. That is, for any δ, there is an SZSd such that elements
0 and Id of ES sum to greater than 1�δ; when this occurs, p0 is
taken to be element 0 of ES.

For a given Δ, this method gives an exact result (to the accuracy
of the δ chosen). But (as we shall see in Section 4.1) it does not
scale well to very large population sizes. This is because it requires
the calculation and storage of four matrices (FS, BS, PS�1 and PS)
with a maximum size of ð2Idþ1Þ � ð2Idþ1Þ. We now proceed to

consider an approximate model which reduces the computational
overheads.

3.3.2. Approximate model
Considering the method in Section 3.3.1, we can substantially

reduce both evaluations and storage by making the following
observation: whenever the system goes back from column S to
column S�1, it returns to column S after an unknown number of
intermediate events, followed by a “birth” event (because the birth
events, at rate μN, are the only events which increase the number
of susceptibles). So let us – as an approximation – assume that this
“unknown number of intermediate events” is in fact no events. In
other words, every “death of a susceptible” event (at rate μS) is
paired with a birth event (at rate μN); and every infection event
(at rate βSI=N) is also paired with a birth event. So, with this
assumption, we calculate the jump chain transition probabilities
using the one step transition rates shown in Fig. 5(b) rather than
Fig. 5(a).

If we were to follow the analysis of Section 3.3.1, that would
mean BS ¼ 0 and so Eq. (11) reduces to PS ¼ FS. However it is
possible to avoid generating FS (or any other large matrices)
altogether.

Given ES and the transition probabilities within column S, we
can calculate the expected number of visits to each state before
exiting the column. Since each state (S,I) only communicates with
the adjacent states ðS; I�1Þ and ðS; Iþ1Þ, this is a tri-diagonal series
of simultaneous equations, which can be solved using an efficient
technique such as the Thomas algorithm (Hoffman, 2001). These
expected numbers of visits multiplied by the transition prob-
abilities to the right (determined from the transition rates in Fig. 5
(b)) give ESþ1. In other words, with reference to Eq. (12), we cal-
culate the vector ESPS directly without calculating PS.

The elements of ES corresponding to the absorbing boundaries
(I¼ 0, and I¼ 2IdorId) accumulate probability mass as S incre-
ments. As in Section 3.3.1, for sufficiently large SZSd, all but a
vanishingly small amount of probability mass is absorbed, allow-
ing us to efficiently approximate p0.

Given the simpler computation and low storage requirement, it
is no surprise that this is much faster than the exact method in
Section 3.3.1. But, as we shall show in the next section, this
method is also very accurate.

4. Results

4.1. Accuracy and efficiency

In this section we compare the accuracy of all methods – the
previous work of van Herwaarden (1997) and Meerson and
Sasorov (2009) as presented in Section 2.3, and our new algo-
rithms as detailed in Section 3.

As references, we also add an exact computation, and a Monte
Carlo simulation. The exact computation uses a truncated state
space, with an extra absorbing boundary at Sþ I¼ ð1:1ÞN. The
amount of probability mass absorbed at that boundary is extre-
mely low (never greater than 10�5) and does not affect the results
significantly. For both the exact computation and Monte Carlo
simulation, as well as our methods, we calculate p0 using the
definition in Section 3.1. For previous works, we use the expres-
sions in Section 2.3.

Since we are interested in evaluating a probability which is
only state (and not time) dependent, we may scale time and hence
fix γ ¼ 1, so time is in units of the average infectious period of an
individual.

We chose seven values of the population size parameter, N:
1000, 3000, 10,000, 30,000, 100,000, 300,000 and 1,000,000; and

Fig. 5. Transition rates from state (S,I) (except when state (S,I) is in the upper
absorbing boundary. (a) shows the exact model (Section 3.3.1). (b) shows the
approximate model (Section 3.3.2), in which every infection event (rate βSI=N) or
removal of susceptible event (rate μS) is “paired” with a birth event (rate μN).
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six effective transmission rate parameter values, β:1.1,1.2,1.5,2,
4 and 8. For each of these 42 pairs of values, we chose three values
of population turnover rate parameter μ, to give final p0 values of
approximately 0.1, 0.5 and 0.9 respectively. In a few cases (notably
for low N and low β), an appropriate μ value could not be found.
The μ values used are given in Table A1 in Appendix A.

For Nr3000 all methods were compared against an exact
computation. For larger N they were all compared against Monte
Carlo simulations. The worst case and average errors for each N
value are shown in Fig. 6. Error bars are due to the uncertainty in
the result from the Monte Carlo simulations, which require a very
long run time for large N.

We see that both our methods are noticeably more accurate
than the previously published results. We also see the accuracies
of our two methods are comparable. This suggests that most of the
error is in the diffusion approximation of Δ (Section 3.2), rather
than the Markov chain approximation of Section 3.3.2.

We also consider the efficiency of our methods, and compare
them to exact computations and Monte Carlo simulations. To give
comparable (though generally lower) accuracy, the Monte Carlo
simulations were run long enough to give a standard deviation of
σ ¼ 0:005¼ 0:5% in their approximations of p0. All tests were run
on a 2014 iMAC (Intel i5 core, 2.7 GHz, 8 GB RAM, Mac OS X)
running Cython (Behnel et al., 2011). Computation time for dif-
ferent methods is shown in Fig. 7. The methods of van Herwaarden
and Meerson and Sasorov are not shown, because they take neg-
ligible time (in the milliseconds), and their times are independent
of N. Therefore these methods remain the best for getting an
approximate answer quickly.

The time for the exact computation is approximately propor-
tional to N3, and quickly becomes impractical. Our first method,
based upon a diffusion approximation to the first entrance to the
first trough, combined with an exact computation (Section 3.3.1)
also has a computation time approximately proportional to N3, and
becomes impractical as N approaches 105.

Our second method, based upon a diffusion approximation to
the first entrance to the first trough, combined with an

approximate model (Section 3.3.2) has a time which is approxi-
mately proportional to N2 and so is practical up to at least N¼ 107.
The small memory overhead means even larger sizes may be
computed if a long run time is not a concern.

The time for a set of Monte Carlo simulations is proportional to
a little less than N2, though our method is projected to be faster
and more accurate up to at least N¼ 107.

So for a very wide range of N (from a few thousand, to the
millions), the diffusion plus approximate model algorithm appears
to be the most accurate of practical methods.

4.2. Analysis of the results

We used the method of Section 3.3.2 to run a larger set of tests,
to explore how the probability of epidemic fade-out changes as a
function of model parameters.

For N¼ 1000;10;000;100;000 and 1,000,000, we tested: γ ¼ 1;
β values from 1.1 to 5, stepping in increments of 0.1; and μ values
from 0.010 up to 0.089, 0.049, 0.029 and 0.019 for the respective
values of N, stepping in increments of 0.001. Contour plots of the
p0 values are shown in Fig. 8.

Fig. 8 shows the interesting result that p0 is generally non-
monotonic in β. Naively, one might expect a higher infection rate β
to cause the infection to be more persistent, and so give a lower p0.
What we instead see, in most cases, is a local maximum near β¼ 2.
Since μ⪡1 and γ ¼ 1, it follows that R0 ¼ β=ðγþμÞ � β and so the
local maximum is also near R0 ¼ 2.

The main reason for the non-monotonicity, and the peak near
R0 ¼ 2, can be seen by considering the traces for R0 ¼ 5, 2 and
1.3 in Fig. 9. Note these are the solutions to Eq. (4) (scaled by N),
and hence the deterministic approximations to the epidemic. We
define Im to be the minimum I value in the first trough of the
deterministic approximation.

We may rearrange Eqs. (1) and (7) to give dI=dt ¼ ðβI=NÞðS�SeÞ
and hence dðlnðIÞÞ=dt ¼ ðβ=NÞðS�SeÞ. This means that for a given
deterministic curve, the rate of change of lnðIÞ is proportional to
S�Se. It can also be shown that the minimum S occurs at I4 Ie.

If we compare the R0 ¼ 2 curve to the R0 ¼ 1:3 curve, we see
that the R0 ¼ 2 curve starts further from its endemic point; that is,
it has a higher initial S�Se value. This means S�Se is higher in the
early stages of the outbreak, which causes I to rise more steeply

Fig. 6. Plot of worst case and average error versus population size N, with 72σ
error bars.

Fig. 7. Plot of computation time versus population size N. Mean computation times
are shown with solid lines. Slowest computation times are shown with
dashed lines.
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and for longer, so the maximum I� Ie value is higher. This in turn
gives S more time to fall, so the curve reaches a lower minimum
S�Se value. Finally, this gives more time for I to fall, so the R0 ¼ 2
curve falls to a considerably lower Im value then the R0 ¼ 1:3 curve.
Biologically, the R0 ¼ 2 case indicates the infection “burning out” –
it uses up so much resources (indicated by S falling low) that it is
slow to re-establish itself, so it falls to a low Im, giving it a higher
probability of epidemic fade-out.

If we compare the R0 ¼ 5 curve to the R0 ¼ 2 curve, the R0 ¼ 5
curve has an even higher initial S�Se value, and so rises to a
higher maximum I� Ie. But then, as S falls, it is limited by the
condition that SZ0. So it does not fall to as low a minimum S�Se
value as the R0 ¼ 2 curve does. This in turn means that its Im is not
as low as for R0 ¼ 2. It also only has to reach a comparatively low S

before S4Se, and the deterministic curve begins to rise again.
Biologically, R0 ¼ 5 corresponds to a case where the infection rate
is so high that the infection can re-establish itself from compara-
tively low resources.

So Se �N=2 corresponds to a “sweet spot” where the curve can
swing from a high S�Se to a low S�Se, giving the most time for
the curve to fall to a low Im. And it follows from (6) and (7) that
R0 ¼ 2 corresponds to Se ¼N=2, and so this sweet spot occurs near
R0 ¼ 2. This is illustrated in Fig. 10, which plots Im versus R0 for the
same parameters as used in Fig. 9, with the lowest Im occurring at
R0 � 2:4.

When we consider stochastic effects, a lower Im corresponds to
a greater probability of absorption at I¼ 0, and hence a higher p0.
However the probability of absorption also depends on the time
the deterministic process spends near Im. A longer time near Im

Fig. 8. Constant p0 contours for various β, μ and N values, with γ ¼ 1 and ðS0 ; I0Þ ¼ ðN�1;1Þ. The p0 ¼ 0:1 contour is dashed, the p0 ¼ 0:9 contour is dotted, and the contours
for p0 ¼ 0:2–0:8 in steps of 0.1 are solid. For most combinations of N and μ, p0 peaks near β¼ 2.

Fig. 9. Comparison of deterministic traces, on a logarithmic I scale, for N ¼ 100;
000; γ ¼ 1; μ¼ 0:02 and ðS0 ; I0Þ ¼ ðN�1;1Þ. The R0 values of 5, 2 and 1.3 correspond
to Se values of approximately N=5;N=2 and 4N=5 respectively. The plus signs show
the endemic points ðSe ; IeÞ to which the curves converge. The dots mark the max-
imum I, minimum S and first trough minimum IðImÞ.

Fig. 10. Im and p0 plotted against R0, for N ¼ 100;000; γ ¼ 1; μ¼ 0:02,
ðS0 ; I0Þ ¼ ðN�1;1Þ, and β¼ R0ðγþμÞ. In this example, the minimum Im is at R0 � 2:4,
while the maximum p0 is at R0 � 2:2.
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corresponds to a longer time near the I¼ 0 absorbing boundary.
This gives the process more opportunity to be absorbed due to
stochastic effects, and so should lead to a higher p0.

It is shown in Appendix B that in the first trough of the
deterministic process, the time for which Io Imþϵ, for sufficiently
small ϵ, is monotonically decreasing in βIm. This means it is also
monotonically decreasing in R0Im. We must handle this result with
some care because Im is itself dependent on R0. But it means that,
in the region where the Im versus R0 curve is relatively flat, a
decrease in R0 gives an increase in p0. So we would expect the
maximum p0 to occur at an R0 slightly lower than the R0 which
gives rise to the minimum Im. This is also illustrated in Fig. 10. For
this particular case the minimum Im occurs at R0 � 2:4, but the
lowest p0 occurs at R0 � 2:2.

5. Conclusion

We have presented a two stage method for calculating an
accurate approximation for the probability of epidemic fade-out.
Using an approximate model on the second stage gives an algo-
rithm which is both fast and accurate. It is more accurate than the
previously published formulae, and scales much better than exact
computation methods. This technique can also be used in other
SIR-type models with replenishment of susceptibles (for instance,
those with a fixed population size).

A possible justification for why the approximate model of
Section 3.3.2 retains such a high level of accuracy is that in the first
trough (when I is low), the birth events ðμNÞ are almost always at a
higher rate – and often a much higher rate – than infection events
ðβSI=NÞ. Therefore there is a very small penalty (in terms of
accuracy) for pairing every infection event with a birth event.

Further, comparing Fig. 5(b) to (a), we see that the approx-
imation makes no change to the one step behaviour in the I
(vertical) dimension. In the S (horizontal) dimension, the beha-
viour is simplified, but the average drift (μðN�SÞ�βSI=N) is
modelled correctly (except when μðN�SÞ�βSI=No0, but in those
cases the Markov chain is near point F in Fig. 3, so the computation
is nearly complete). So the S dimension is modelled accurately in
the first moment but not the second moment. It appears that this
only introduces a small error because the I dimension is much
more critical than the S dimension.

Using this fast and accurate method, we have found that the
probability of epidemic fade-out often peaks when the basic
reproduction number, R0, is approximately 2 (restricting con-
sideration to cases where a major outbreak is possible, i.e., R041).
This is because R0 � 2 is high enough to use up a large proportion
of resources, but not so high that the infection can easily recover
from having few resources. The reason this occurs near R0 ¼ 2
appears to be due to the endemic point being near S¼N=2.

A potential public health application is that there may be
instances where action against an infection should be limited, to
maximise the chance of infection being eliminated before it becomes
endemic. We note there is some similarity here to the observations of
Rozhnova et al. (2013), that decreasing R0 by vaccination may
sometimes lead to higher persistence, though their study was with
respect to an already endemic infection, with seasonality.

The question of whether a peak near R0 ¼ 2 extends to other
measures or models, is a topic for future research. Another avenue for
future research is to determine methods which allow calculation of
the probability of epidemic fade-out for models with seasonal forcing
(i.e., a time-dependent effective transmission rate parameter) (Keeling
et al., 2001). This in turn could aid understanding of the Critical

Community Size for diseases such as measles in the pre-vaccine era
(Conlan et al., 2010).
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Appendix A

See Table A1.

Table A1
μ values used in Section 4.1.

N β μ for p0 � 0:9 μ for p0 � 0:5 μ for p0 � 0.1

1000 1.1 – 0.43 –

1.2 0.053 – –

1.5 0.034 0.084 –

2.0 0.033 0.060 0.112
4.0 0.025 0.041 0.064
8.0 0.015 0.025 0.039

3000 1.1 – 0.064 –

1.2 0.026 0.050 –

1.5 0.025 0.046 0.091
2.0 0.026 0.041 0.062
4.0 0.021 0.031 0.042
8.0 0.012 0.018 0.025

10,000 1.1 0.020 0.051 –

1.2 0.017 0.038 0.095
1.5 0.019 0.030 0.046
2.0 0.021 0.031 0.041
4.0 0.017 0.024 0.031
8.0 0.010 0.014 0.018

30,000 1.1 0.012 0.030 –

1.2 0.012 0.022 0.041
1.5 0.016 0.023 0.031
2.0 0.018 0.025 0.031
4.0 0.015 0.020 0.024
8.0 0.008 0.011 0.014

100,000 1.1 0.008 0.016 0.033
1.2 0.009 0.015 0.022
1.5 0.013 0.018 0.023
2.0 0.015 0.020 0.025
4.0 0.013 0.017 0.020
8.0 0.007 0.010 0.012

300,000 1.1 0.006 0.010 0.017
1.2 0.008 0.012 0.016
1.5 0.011 0.015 0.019
2.0 0.014 0.017 0.021
4.0 0.011 0.015 0.017
8.0 0.006 0.008 0.010

1,000,000 1.1 0.005 0.007 0.010
1.2 0.006 0.009 0.012
1.5 0.010 0.013 0.015
2.0 0.012 0.015 0.018
4.0 0.010 0.013 0.015
8.0 0.006 0.007 0.008
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Appendix B

theorem. In the first trough of the deterministic process, the time θ
for which Io Imþϵ, for sufficiently small ϵ, is monotonically
decreasing in βIm.

Proof. Consider the deterministic plot of I versus S, as in
Figs. 2 and 3. At the first trough minimum (point E), dI=dS¼ 0. For
sufficiently small ϵ, we can therefore treat d2I=dS2 as constant, and
in the region where Io Imþϵ, I is parabolic when plotted against S.
So the distance in the S dimension, for which Io Imþϵ, is mono-
tonically decreasing in the parabola curvature d2I=dS2.

The rate at which the deterministic process moves in the S
direction is dS=dt, so θ is inversely proportional to dS=dt. This
means that θ is monotonically decreasing in ðd2I=dS2ÞðdS=dtÞ.

Substituting I ¼Ni and S¼Ns into (1) gives

dS
dt

¼ μN�μS�βSI=N; ðB:1Þ

dI
dS

¼ dI=dt
dS=dt

¼ βSI=N�ðγþμÞI
μN�μS�βSI=N

ðB:2Þ

) d2I

dS2
¼ ðβI=NÞðμN�μS�βSI=NÞ� βSI=N�ðγþμÞI	 
ð�μ�βI=NÞ

ðμN�μS�βSI=NÞ2

¼ Iμðβ�γ�μÞ�βI2ðγþμÞ=N
ðμN�μS�βSI=NÞ2

: ðB:3Þ

At the first trough minimum of the deterministic curve we have
defined I¼ Im. Also dI=dS¼ 0, so it follows from (B.2) that
S¼NðγþμÞ=β, and N�S¼Nðβ�γ�μÞ=β. Substituting these into
Eqs. (B.1) and (B.3) gives

dS
dt

¼ μNðβ�γ�μÞ=β� ImðγþμÞ;

d2I

dS2
¼ Imμðβ�γ�μÞ�βI2mðγþμÞ=N

μNðβ�γ�μÞ=β� ImðγþμÞ	 
2;

) d2I

dS2

 !
dS
dt

� �
¼ βIm

N
: ðB:4Þ

Therefore θ is monotonically decreasing in βIm.□
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4 Paper 2

4.1 Introduction

Paper 2 is entitled “Intervention to maximise the probability of epidemic fade-

out”. It was published in Mathematical Biosciences in 2017 [7].

Paper 1 had made the observation that p0 was non-monotonic in β, the

transmission rate parameter. This suggested that there were two or more

competing effects influencing epidemic fade-out.

We assumed the existence of a method of control which allows one to reduce

β. Then this paper investigated how to find the optimal policy to apply that

control, in order to maximise p0. The analysis was performed for the SIR-

with-demography model, under two different control scenarios.

We first used Markov decision theory, which provides optimal policies, but

is impractical to use for all but the smallest systems. Then the main contri-

bution of the paper is that we derived a simple formula which gives a close to

optimal policy. This formula is simple, and independent of the chosen values

of β. We also demonstrated that close to optimal results are obtained even if

only an approximation of this policy can be enforced.

4.2 Statement of Authorship
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4.3 Paper 2

The paper, as published in Mathematical Biosciences in 2017, is on the follow-

ing pages.
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a b s t r a c t 

The emergence of a new strain of a disease, or the introduction of an existing strain to a naive popu- 

lation, can give rise to an epidemic. We consider how to maximise the probability of epidemic fade-out 

– that is, disease elimination in the trough between the first and second waves of infection – in the 

Markovian SIR-with-demography epidemic model. We assume we have an intervention at our disposal 

that results in a lowering of the transmission rate parameter, β , and that an epidemic has commenced. 

We determine the optimal stage during the epidemic in which to implement this intervention. This may 

be determined using Markov decision theory, but this is not always practical, in particular if the popula- 

tion size is large. Hence, we also derive a formula that gives an almost optimal solution, based upon the 

approximate deterministic behaviour of the model. This formula is explicit, simple, and, perhaps surpris- 

ingly, independent of β and the effectiveness of the intervention. We demonstrate that this policy can 

give a substantial increase in the probability of epidemic fade-out, and we also show that it is relatively 

robust to a less than ideal implementation. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

One of the key goals of epidemiology is to take action to min- 

imise the impact of epidemic outbreaks. With this in mind, many 

studies have investigated ways to optimise the control of an out- 

break. Good overviews can be found in Kar and Batabyal [12] and 

Yaesoubi and Cohen [28] . 

Studies tend to take one of two approaches: investigating ei- 

ther the use of vaccination [25] (reducing the susceptible popu- 

lation), or prophylactic measures to reduce the spread of the in- 

fection [22] . Prophylactic measures include antivirals [4,9,17,18] , or 

non-pharmaceutical interventions such as school closures [10] or 

the teaching of basic personal health habits [21] . Vaccination is 

usually the ideal, but it is often not available in the early stages 

of a novel strain/disease. Antivirals, or other measures to reduce 

the spread of an infection, are therefore an important tool in at- 

tempting to control an outbreak. 

Previous studies have concentrated on either the initial stages 

of an infection – and measures to prevent the infection becoming 

an outbreak – or an established infection, endemic to a popula- 

tion. In this paper, we instead examine epidemic fade-out , which 

has been nominated as an area requiring more research [5,6] , and 

has not previously been investigated in terms of control. 

∗ Corresponding author. 

E-mail addresses: peter.ballard@adelaide.edu.au (P.G. Ballard),

nigel.bean@adelaide.edu.au (N.G. Bean), joshua.ross@adelaide.edu.au (J.V. Ross). 

Epidemic fade-out refers to the case in which an infection has 

a large initial outbreak, and it is eliminated from the population 

in the first trough after that initial outbreak [19] . Therefore, tech- 

niques to maximise the probability of epidemic fade-out offer the 

opportunity to prevent an infection from becoming established –

that is, endemic – in a population. 

We use the Markovian SIR-with-demography infection model 

[20] . Important previous work was by van Herwaarden [26] and 

Meerson and Sasorov [19] , who both provided methods for approx- 

imating the probability of epidemic fade-out for this model. van 

Herwaarden used the Fokker-Plank approximation, while Meerson 

and Sasorov used the WKB appoximation. Both of these papers 

gave explicit formulae for the probability of epidemic fade-out, 

to a good degree of accuracy. In a previous paper [3] we out- 

lined a more accurate numerical approximation method, and also 

presented a range of results from our calculations. These results 

showed that the probability of epidemic fade-out is non-monotonic 

in the transmission rate parameter β . Typically, a lower value of β
increases the probability of epidemic fade-out, which is the intu- 

itive result (less transmission → higher probability of fade-out). 

But in some situations, perhaps counter-intuitively, a reduction in 

the value of β causes the probability of epidemic fade-out to de- 

crease. 

Similar examples of non-monotonicity in epidemics – of a re- 

duction in transmission or an increase in treatment actually in- 

creasing the total epidemic size, or making the epidemic more 

likely to persist – have been reported by others, but in different 

http://dx.doi.org/10.1016/j.mbs.2017.08.003 

0025-5564/© 2017 Elsevier Inc. All rights reserved. 
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Fig. 1. The SIR-with-demography epidemic model. S is the number of susceptibles 

and I is the number of infectious individuals. N is a fixed parameter, but the pop- 

ulation size is not fixed. β is the transmission rate parameter, μ is the per-capita 

birth/death rate, and γ is the recovery rate. 

Table 1 

Transition rates for the Markovian SIR-with-demography epi- 

demic model displayed in Fig. 1 . 

Description Transition Rate 

Infection (S, I) → (S − 1 , I + 1) βSI / N 

Birth of susceptible (S, I) → (S + 1 , I) μN 

Death of susceptible (S, I) → (S − 1 , I) μS 

Removal of infectious (S, I) → (S, I − 1) (γ + μ) I

contexts. Feng et al. [7] , Rozhnova et al. [24] , and Lee and Chowell 

[15] all reported non-monotonicity in the context of seasonal forc- 

ing. Xiao et al. [27] saw it in the case of multiple strains of an in- 

fection. Grigorieva and Khailov [8] is perhaps the closest analogue 

to this paper. In a deterministic SIR model, they showed that not 

reducing β early in the infection cycle can minimise the total epi- 

demic size. 

For epidemic fade-out, the non-monotonicity in the transmis- 

sion rate parameter β suggests that there are two or more com- 

peting effects, and that in some states a higher β will maximise 

the probability of epidemic fade-out, and in other states a lower β
will maximise it. So it should be possible to find the optimal policy 

for choosing higher or lower β . Finding this optimal policy is the 

topic of this paper. 

We will show that this optimal policy entails delaying the im- 

plementation of measures to reduce β , resulting in more individ- 

uals being infected in the short term. In lethal epidemics, even if 

the long term result is a more likely fade-out and hence the elim- 

ination of the disease from the population, this is likely to be im- 

possible to do ethically. Therefore, the applicability of this method 

will probably be limited to situations of non-lethal infections, or 

diseases among animals. 

We examine two different control scenarios: an idealised sce- 

nario in Section 3 and a more realistic scenario in Section 4 . 

Section 3.3 is the most significant contribution of the paper, 

where we derive a simple control policy that is a close approx- 

imation to the optimal control policy in the idealised scenario. 

Section 4.3 supplements Section 3.3 , by showing that the same sim- 

ple control policy is also a close approximation to the optimal 

control policy in the realistic scenario. Effectively, we provide an 

explicit, simple rule for when to implement an intervention. Per- 

haps surprisingly, this rule is independent of the transmission rate 

parameter β and the effectiveness of the intervention. The re- 

sults, which show a significant increase in the probability of epi- 

demic fade-out when using any of these methods, are presented in 

Section 5 . 

2. Model and definitions 

2.1. The SIR-with-demography model 

We use the Markovian SIR-with-demography model, as de- 

scribed in Fig. 1 and Table 1 . S and I represent the number of “sus- 

ceptible” and “infectious” individuals respectively. The parameters 

β , γ and μ are all strictly positive. The number of “recovered” in- 

dividuals ( R ) is usually included in the model, but is redundant 

and can be removed from the analysis by considering “death of 

infectious” (at rate μI ) and “recovery of infectious” (at rate γ I ) as 

equivalent [11] . We use a common death rate μ, corresponding to 

a non-lethal infection, as this is the original and most common 

model [1] . If a different death rate μI is used for infectious indi- 

viduals, then the analysis in the rest of this paper follows similarly, 

if one replaces all references to (γ + μ) with (γ + μI ) . 

In the limit as N becomes large, a suitably scaled version of the 

stochastic process converges (uniformly in probability over finite 

time intervals) to a deterministic process [14] ; this provides an ap- 

proximation to the expected dynamics, for finite N , governed by 

the differential equations: 

dS 

dt 
= μ(N − S) − βSI/N, 

dI 

dt 
= βSI/N − (γ + μ) I. (1) 

We refer to this as the deterministic approximation . 

In a naive population, S ≈ N . So R 0 , the basic reproduction num- 

ber, is given by: 

R 0 = 

β

γ + μ
. (2) 

We are only concerned with cases in which R 0 > 1, when a major 

outbreak may occur. In these cases, the endemic point is where 

both derivatives in (1) are equal to zero, and is given by: 

(S e , I e ) = N 

(
γ + μ

β
, 
μ(β − γ − μ) 

β(γ + μ) 

)
. (3) 

The stability analysis of (1) , linearised around the endemic point 

( S e , I e ), determines that the eigenvalues λ obey, 

λ2 + R 0 μλ + μ(γ + μ)(R 0 − 1) = 0 . (4) 

The trajectory of the deterministic approximation is oscillatory if 

and only if these eigenvalues are complex [13] , which in turn re- 

quires, 

γ + μ

μ
> 

R 0 
2 

4(R 0 − 1) 
. (5) 

In any realistic system, γ �μ and inequality (5) is comfortably 

met. In that case, the trajectory of the deterministic approxima- 

tion of a typical outbreak is shown in Fig. 2 . It starts at point A , 

rises to a peak ( B ), falls through C to a first local minimum ( D ), 

and converges in a spiral towards the endemic point. 

Since the stochastic model has discrete states, it is sometimes 

convenient to round the endemic state values up to the next high- 

est integer pair: 

(S d , I d ) = (� S e � , � I e � ) . (6) 

It can also be shown from (1) and (3) that dI / dt is positive for 

S > S e and negative for S < S e , that is: 

sgn 

(
dI 

dt 

)
= sgn ( S − S e ) . (7) 

As we mentioned above, the expected behaviour of the CTMC 

(continuous-time Markov chain) tracks the deterministic approxi- 

mation as N becomes large. However, a stochastic realisation may 

fade out at the start (near point A ), or in the first trough after the 

initial outbreak (near point D ). The latter situation, known as epi- 

demic fade-out, is the topic of this paper. 

The initial state (point A ) is ( S 0 , I 0 ). In all our calculations, I 0 is 

small and S 0 = N − I 0 ; this represents the beginning of an outbreak 

in a naive population. 
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Fig. 2. I versus S plot of the deterministic approximation of a typical SIR-with-demography model. It starts at point A , rises to B , then falls through C to D before rising to E 

and eventually converging on the endemic point ( S e , I e ). An actual stochastic realisation may fade out to I = 0 near point D , an effect known as epidemic fade-out. It follows 

from (7) that points B and D are both at S = S e . 

2.2. Different transmission rate parameters 

During the initial outbreak, a higher value of β causes S to 

fall to a lower value, which in turn can cause I to fall to a lower 

value during the first trough, increasing the probability of epidemic 

fade-out. On the other hand, when the first wave of infection sub- 

sides and the number of infectious individuals becomes very low, a 

lower value of β causes an increase in the probability of epidemic 

fade-out. 

Therefore, we conjecture that the optimal strategy is to allow a 

higher β early in the outbreak, and to implement the lower β later 

in the outbreak, as the CTMC approaches the first trough. (This is 

confirmed in the results in Section 5.1 ). 

The initial transmission rate parameter, corresponding to inter- 

vention measures not being in place, is denoted β (1) , and the value 

whilst the intervention is implemented is denoted β (2) . We specify 

that β (1) > β(2) . 

We also use a superscript in parentheses to represent variables 

corresponding to the use of β (1) or β(2) ; so for instance P ( k ) is the 

transition probability matrix when using β = β(k ) , for k = 1 , 2 . 

2.3. Definition of epidemic fade-out 

Informally, epidemic fade-out refers to fade-out during the first 

trough after the initial substantial wave of infection, roughly be- 

tween points C and E in Fig. 2 . But for calculations, it is impor- 

tant to have a precise definition. (In general the exact definition is 

not overly critical, as long as it is used consistently). To do so, we 

need to define the pre-condition (that a substantial outbreak has 

commenced), and then need to define what constitutes fade-out in 

the first trough (or conversely, what constitutes an escape from the 

first trough). 

We define S to be the state space of all possible ( S, I ) values, 

and we define T to be: 

T = { (S, I) ∈ S | S = S (1) 
d 

− 1 } . (8) 

T is illustrated by the green dotted line in Fig. 3 . We define that 

the initial wave of infection has occurred if the CTMC reaches a 

state in T . We use this definition because if the CTMC satisfies this 

condition, it can be called a substantial outbreak, so a fade-out in 

the subsequent trough can reasonably be called epidemic fade-out. 

Given that the CTMC reaches T , it will almost surely eventually 

fall to a state for which I < I (1) 
d 

. Therefore we define a two bound- 

ary hitting problem: epidemic fade-out occurs if the CTMC reaches 

a lower absorbing boundary L , before it reaches an artificial upper 

absorbing boundary U . The lower absorbing boundary is 

L = { (S, I) ∈ S | I = 0 } . 

In a CTMC in which β is constant, the deterministic approxi- 

mation of the CTMC converges to a point near ( S d , I d ), as given 

by (6) , taking an anticlockwise path in Fig. 2 . So in that case, the 

line U = { (S, I) ∈ S | S ≥ S d , I = I d } would be a natural definition of 

the upper absorbing boundary [3,26] . 

However in a CTMC in which β can take two different values, 

there are two possible solutions to (6) , depending on the value of 

β: 

(
S (1) 

d 
, I (1) 

d 

)
(given by setting β = β(1) in (3) ); and 

(
S (2) 

d 
, I (2) 

d 

)
(given by setting β = β(2) in (3) ); where S (1) 

d 
≤ S (2) 

d 
and I (1) 

d 
≥ I (2) 

d 
. 

To account for the possibility that β may be either β (1) or β(2) , 

we end the first trough at I = I (1) 
d 

for S (1) 
d 

≤ S < S (2) 
d 

, and at I = I (2) 
d 

for S (2) 
d 

≤ S. We join the two boundaries with a vertical boundary 
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Fig. 3. The probability of epidemic fade-out is the probability of the CTMC being absorbed at L ( I = 0 ) before next reaching U (the black (dashed) line), given that it reaches 

T (the green (vertical dotted) line). The red (solid) line shows the behaviour of the deterministic approximation to the CTMC, starting at point A ; with the transmission rate 

parameter changing from β (1) to β (2) at point C . 

at S = S (2) 
d 

for I (2) 
d 

≤ I ≤ I (1) 
d 

, giving: 

U = U 1 ∪ U 2 ∪ U 3 , where 

U 1 = { (S, I) ∈ S | I = I (1) 
d 

, S (1) 
d 

≤ S ≤ S (2) 
d 

} , 
U 2 = { (S, I) ∈ S | S = S (2) 

d 
, I (2) 

d 
≤ I ≤ I (1) 

d 
} , and 

U 3 = { (S, I) ∈ S | I = I (2) 
d 

, S (2) 
d 

≤ S} . 
This is illustrated in Fig. 3 . We therefore define, p 0 , the probabil- 

ity of epidemic fade-out, as the probability that the process is ab- 

sorbed at L before reaching a state in U , given that it reaches T . 

3. Idealised scenario: activation and de-activation of β(2) 

We first consider an idealised scenario, in which it is possible to 

switch an unlimited number of times between using β (1) and β (2) , 

corresponding to activation and de-activation of the intervention 

measure, in a state dependent manner. 

3.1. Definition of the problem 

To give a practical solution, we limit the state space to be finite. 

So for the (infinite) state space S , we define S ′ as the finite set of 

states, 

S ′ = { (S, I) | 0 ≤ S ≤ (1 . 1) N, 0 ≤ I ≤ (1 . 1) N} . (9) 

We enforce this by modifying the CTMC so that in Table 1 , “Infec- 

tion” events may not occur if I ≥ (1.1) N and “Birth of susceptible”

events may not occur if S ≥ (1.1) N . In all but the smallest systems, 

reaching these states is extremely improbable, so this modification 

has a negligible impact on the results. 

We also define M as the set of transient states in S ′ , that is all 

states in neither absorbing boundary: 

M = S ′ \ (U ∪ L ) . (10) 

Then for some set V ⊆M , the policy is: 

β = 

{
β(2) if (S, I) ∈ V and the CTMC has previously reached T ;
β(1) otherwise. 

Problem. Find the set V which maximises p 0 . 

3.2. Optimal solution 

This idealised scenario can be regarded as a Markov decision 

process, with an infinite horizon and no discounting, in which the 

“reward” is gained by reaching absorption at L . It can be solved by 

using a policy iteration algorithm [ 23 , Section 7.2.5]. 

We define two transition probability matrices, P (1) and P (2) on 

M , corresponding to the jump chain of the CTMC [2] . The transi- 

tion probabilities are calculated from the rates specified in Table 1 ; 

where P (k ) 
i j 

is the transition probability from state i to state j when 

using β ( k ) as the transmission rate parameter, for k = 1 , 2 . Transi- 

tions to absorbing states are not included, so some rows will sum 

to less than 1. These matrices are sparse, with at most four non- 

zero entries in each row. 

Since we do not include the absorbing states in P (1) and P (2) , the 

“reward” is only earned from states adjacent to the I = 0 boundary. 

We set up the respective reward vectors, R (1) and R (2) , in which the 

reward is the probability of being absorbed at I = 0 on the next 

step. (Hence values will be non-zero only for states with I = 1 .) 

We create a decision vector D ( n ) for each policy iteration step 

n . It has one entry per state in M , and every entry must be either 1 

or 2. For each step n we also create the matrix P ( n ) and the vector 

R ( n ) according to the rule, 

P i j (n ) = P (D i (n )) 
i j 

, 

R i (n ) = R 

(D i (n )) 
i 

, (11) 

for all i, j ∈ M . 

The goal is to find the vector D ( n ) which maximises p 0 . Then V 

is the set of states i ∈ M for which D i (n ) = 2 . 

49



P.G. Ballard et al. / Mathematical Biosciences 293 (2017) 1–10 5 

The policy iteration algorithm solves this problem as follows: 

1. Set n = 1 and initialise D ( n ) to any permissible vector. 

2. Build P ( n ) and R ( n ), according to (11) . 

3. Determine the column vector v ( n ) by solving: 

(I − P (n )) v (n ) = R (n ) , (12) 

where I is the identity matrix. Then for each state i ∈ M , let 

v (1) 
i 

(n ) = R 

(1) 
i 

+ 

∑ 

j∈ M 

P (1) 
i j 

v j (n ) , (13) 

v (2) 
i 

(n ) = R 

(2) 
i 

+ 

∑ 

j∈ M 

P (2) 
i j 

v j (n ) , (14) 

z i (n ) = sgn 

(
v (2) 

i 
(n ) − v (1) 

i 
(n ) 

)
. (15) 

(We use v (1) 
i 

(n ) and v (2) 
i 

(n ) on the left hand side of (13) and 

(14) because these equations are re-calculating v i ( n ) assuming 

D i (n ) = 1 and D i (n ) = 2 respectively, with the rest of the ele- 

ments in D ( n ) unchanged). 

4. Update the policy: for each state i in D , 

D i (n + 1) = 

{ 

1 if z i (n ) = −1 , 

2 if z i (n ) = 1 , 

D i (n ) if z i (n ) = 0 . 

(16) 

5. If D (n + 1) = D (n ) , then the algorithm terminates, and V is the 

set of states i for which D i (n ) = 2 . Otherwise, increment n and 

repeat from Step 2. 

Notice that v i ( n ) is the probability of hitting L before U (for 

transition matrix P ( n ) and reward vector R ( n )), given that the CTMC 

is in state i . The policy iteration algorithm finds the P ( n ) and R ( n ) 

which give the maximum v i ( n ) for all i ∈ M [ 23 , Proposition 7.2.14], 

and hence finds the policy which gives the maximum p 0 , regard- 

less of the initial state ( S 0 , I 0 ). 

3.3. Simplifying the policy iteration algorithm 

The technique in Section 3.2 is useful for small populations, but 

becomes impractical for even moderate population sizes. For in- 

stance, a population with N = 10 0 0 would have approximately 10 6 

states in M . The corresponding two-dimensional matrix (I − P (n )) 

in (12) is then approximately 10 6 × 10 6 , and even though it is 

sparse, solving (12) takes significant computing resources. There- 

fore, it would be beneficial to find a solution method which avoids 

the need to solve (12) . 

Let q ij be the transition rate between any two states i and j, 

i � = j , if β (1) is the transmission rate parameter (where i ∈ M and j ∈ 

S ′ ). For notational convenience we let q ii = 0 . Also let q i = 

∑ 

j∈ S ′ q i j 

be the sum of all transition rates out of state i when β (1) is the 

transmission rate parameter. So P (1) 
i j 

= 

q i j 

q i 
and R (1) 

i 
= 

∑ 

j∈ L q i j 

q i 
. In 

that case we may rewrite (13) as, 

v (1) 
i 

(n ) = 

∑ 

j∈ L 

(
q i j 

q i 

)
+ 

∑ 

j∈ M 

(
q i j 

q i 

)
v j (n ) . 

In order to unify these two sums, we also define v j (n ) = 1 for j ∈ L , 

and v j (n ) = 0 for j ∈ U . Then, 

v (1) 
i 

(n ) = 

∑ 

j∈ S ′ q i j v j (n ) 

q i 
. (17) 

For every state i ∈ M , except those for which S i = 0 , let h be 

the state that is reached from i by an infection event, and let 

δi = (β(1) − β(2) ) S i I i /N, where S i and I i are the S and I values cor- 

responding to state i . That is, q ih − δi is the transition rate from 

state i to state h when using β (2) as the transmission rate param- 

eter. (The S i = 0 case is excluded because in that case no infection 

event is possible, so v (1) 
i 

(n ) = v (2) 
i 

(n ) , so (15) always evaluates to 

zero and it never matters whether or not i is in V .) Thus, S i > 0 

ensures that δi > 0. Then (14) becomes: 

v (2) 
i 

(n ) = 

∑ 

{ j ∈ S ′ , j � = h } q i j v j ( n ) 

q i − δi 

+ 

( q ih − δi ) v h ( n ) 

q i − δi 

⇒ v (2) 
i 

(n ) = 

∑ 

j∈ S ′ q i j v j (n ) 

q i − δi 

− δi v h (n ) 

q i − δi 

. (18) 

Substituting in (17) gives, 

v (2) 
i 

(n ) = 

(
q i 

q i − δi 

)
v (1) 

i 
(n ) − δi v h (n ) 

q i − δi 

⇒ v (2) 
i 

(n ) − v (1) 
i 

(n ) = 

(
q i 

q i − δi 

− 1 

)
v (1) 

i 
(n ) − δi v h (n ) 

q i − δi 

⇒ v (2) 
i 

(n ) − v (1) 
i 

(n ) = 

δi 

(
v (1) 

i 
(n ) − v h (n ) 

)
q i − δi 

. (19) 

Then noting that δi > 0 and q i − δi > 0 , 

sgn 

(
v (2) 

i 
(n ) − v (1) 

i 
(n ) 

)
= sgn 

(
v (1) 

i 
(n ) − v h (n ) 

)
. (20) 

We can also substitute (17) and then (18) into the right hand 

side of (19) , to give: 

v (2) 
i 

(n ) − v (1) 
i 

(n ) = 

δi 

q i − δi 

(∑ 

j∈ S ′ q i j v j (n ) 

q i 
− v h (n ) 

)

= 

δi 

q i − δi 

(∑ 

j∈ S ′ q i j v j (n ) 

q i 
− δi v h (n ) 

q i 
− (q i − δi ) v h (n ) 

q i 

)

= 

δi 

q i − δi 

(
(q − δi ) v (2) 

i 
(n ) 

q i 
− (q i − δi ) v h (n ) 

q i 

)

⇒ v (2) 
i 

(n ) − v (1) 
i 

(n ) = 

δi 

(
v (2) 

i 
(n ) − v h (n ) 

)
q i 

⇒ sgn 

(
v (2) 

i 
(n ) − v (1) 

i 
(n ) 

)
= sgn 

(
v (2) 

i 
(n ) − v h (n ) 

)
. (21) 

Comparing (12) to (13) and (14) tells us that v i ( n ) is equal to 

either v (1) 
i 

(n ) or v (2) 
i 

(n ) , so (20) and (21) combine to give, 

sgn 

(
v (2) 

i 
(n ) − v (1) 

i 
(n ) 

)
= sgn ( v i (n ) − v h (n ) ) , 

which can then be substituted into (15) . So (12) –(14) can be re- 

moved from Step 3 of the policy iteration algorithm, which simpli- 

fies to: 

3. For each state i , 

z i (n ) = sgn ( v i (n ) − v h (n ) ) . (22) 

The meaning of (22) and (16) is that we should reduce the tran- 

sition rate from i to h only if v i ( n ) > v h ( n ), which is a reasonably 

intuitive result. 

An important feature of (22) is that it does not necessarily in- 

clude a full matrix calculation. This opens the possibility of simpler 

ways to calculate an optimal, or close to optimal, policy. For in- 

stance, (22) could be evaluated for a small number of states, using 

an approximate method as in [3] to calculate v i ( n ) and v h ( n ). 
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3.3.1. A simplified policy based on the deterministic local minimum 

A further advantage of (22) is that we do not need to calculate 

v i ( n ) and v h ( n ) at all. We only need to calculate which is greater. 

We can get a very quick approximation of sgn ( v i (n ) − v h (n ) ) 
in (22) by taking advantage of a property which we reported pre- 

viously [3] : for a state x in the region where dI / dt of the deter- 

ministic approximation is negative or zero (which means S ≤ S (1) 
e , 

by (7) ), v x ( n ) is generally negatively correlated to the minimum I 

value of the deterministic curve beginning at x . 

That is, to a good approximation, the closer the curve of the 

deterministic approximation comes to an absorbing boundary, the 

more likely the process is to be absorbed at that boundary. A de- 

terministic curve with a lower minimum passes closer to the ab- 

sorbing boundary, and is closer to that boundary for a longer time; 

both of these effects contribute to making epidemic fade-out more 

probable. 

Furthermore, it is possible to reduce this comparison to a for- 

mula. It is preferable to reduce β when v h < v i , which means (by 

our approximation) that h must be on a “higher” deterministic 

curve than i . A line from i to h (that is, from ( S, I ) to (S − 1 , I + 1) ) 

has a slope of −1 . Since dI / dt < 0 in this region, a step of slope −1 

goes to a “higher” deterministic curve when d S/d t > −d I/d t; that 

is, if: 

(γ + μ) I < μ(N − S) . (23) 

For states in the region where dI / dt of the deterministic approx- 

imation is positive (which means at least for S > S (2) 
e ), we cannot 

use this approximation because the deterministic minimum has al- 

ready been passed. However, h is always on a higher (further from 

I = 0 ) curve than i , as well as having a higher I value; so β = β(2) 

is always preferred. 

In the region S (1) 
e < S ≤ S (2) 

e : if at any point we “try” β = β(1) , 

this means that S e = S (1) 
e , so S > S e . Then we find (by the analysis in 

the previous paragraph) that β = β(2) is preferred. So this means 

that β = β(2) is preferred for all S > S (1) 
e . 

Putting this together gives the following set V , the set of states 

in which to use β (2) : 

V = V 1 ∪ V 2 ∪ V 3 , where 

V 1 = { (S, I) ∈ S | S ≤ S (1) 
e , (γ + μ) I < μ(N − S) } , 

V 2 = { (S, I) ∈ S | S (1) 
e < S ≤ S (2) 

e , I < I (1) 
e } , and 

V 3 = { (S, I) ∈ S | S (2) 
e < S, I < I (2) 

e } . (24) 

This formula is explicit, and it is quick to calculate regardless of 

the population size. It specifies V with a simple line, as illustrated 

by the green (top) line in Fig. 4 . 

If the CTMC roughly follows the deterministic approximation 

( Figs. 2 and 3 ) then V is first entered when S < S (1) 
e . So the most 

important component of (24) is V 1 , as specified in (23) . Note, im- 

portantly and possibly surprisingly, that (23) is independent of the 

values of β (1) and β (2) . So the condition for initially using β (2) does 

not depend on the values of β (1) and β (2) . 

The formula also tells us, at least assuming the approximation 

used here, that the optimal policy cannot be improved by allow- 

ing three or more values of β . The optimum is always to use the 

highest available β for states not in V (corresponding to no inter- 

vention), and the lowest available β (corresponding to the most 

effective set of interventions) for states in V . 

4. Realistic scenario: activation only of β(2) 

4.1. Definition of the problem 

The idealised scenario in Section 3 corresponds to the most ef- 

fective intervention possible, but it is not realistic. It allows the 

CTMC to repeatedly switch between using β (1) and β (2) as the 

state changes. In most real-world situations it would not be prac- 

tical to start and stop infection-reducing measures as the process 

changes state near the boundary of V . 

A more realistic situation, which we refer to as the realistic sce- 

nario , allows activation of β (2) only once. In this scenario, once 

β = β(2) is used, β = β(2) is always used (until the boundary L or 

U is reached), even if the CTMC subsequently leaves the region V . 

This is more practical because, in a typical application, measures to 

reduce the infection rate would be kept in place for a reasonable 

length of time once they are implemented. 

As in Section 3.2 , T is defined in (8) , and M is defined in (10) . 

Then for some set V ⊆ M , the policy is: 

Initially, β = β(1) . When the CTMC reaches a state in V, having 

previously been in a state in T, it permanently uses β = β(2) . 

Problem. Find the set V which maximises p 0 . 

4.2. Optimal solution 

Since it is a relatively simple task to calculate the absorption 

probability once we are permanently using β = β(2) , the realistic 

scenario can be regarded as an “optimal stopping” problem. The 

optimal stopping algorithm is as follows [ 23 , Section 7.2.8]: 

1. Build P (1) , R (1) , P (2) and R (2) as in Section 3.2 . 

2. Find v (2) , the solution to (
I − P (2) 

)
v (2) = R 

(2) . (25) 

Now, v (2) is the vector of absorption probabilities assuming the 

transmission rate parameter is fixed at β (2) , which form the 

“stopping rewards”. So in state i , the CTMC can “stop” (switch 

to β = β(2) ) and take the “stopping reward” v (2) 
i 

. 

3. Find, by linear programming, the vector v with the minimum 

�i v i , subject to the constraints: 

v i ≥
∑ 

j∈ M 

P ( 
1 ) 

ij 
v j + R 

( 1 ) 
i 

and v i ≥ v ( 2 ) 
i 

, ∀ i ∈ M. (26) 

4. Create V to represent the optimal policy. For each state i , if v i = 

v (2) 
i 

, then the optimal policy in state i is to switch to using β (2) , 

so i is added to V . If v i > v (2) 
i 

, then the optimal policy in state i 

is to continue using β (1) , so i is not added to V . 

As in Section 3.2 , v i is the probability of hitting L before U , given 

that the CTMC is in state i . The vector v = ( v i , i ∈ M ) , can also be 

calculated from a given V without running the algorithm: row i of 

P is zero if i ∈ V , and is otherwise equal to row i of P (1) ; element i 

of R is equal to v (2) 
i 

if i ∈ V , and is otherwise equal to R (1) 
i 

; and v is 

the solution to, 

( I − P ) v = R. (27) 

4.3. Simplifying the optimal stopping algorithm 

If we use the same definitions for q ij , q i , δi and h as in 

Section 3.3 , then the solution to (25) and (26) satisfies: 

v (1) 
i 

= 

∑ 

j∈ S ′ q i j v j 
q i 

, (28) 

v (2) 
i 

= 

∑ 

j∈ S ′ q i j v (2) 
j 

q i − δi 

− δi v (2) 
h 

q i − δi 

, and (29) 

v i = max 
(
v (1) 

i 
, v (2) 

i 

)
, (30) 

for all i ∈ M . 

Another way of expressing (30) is to say, 

z i = sgn 

(
v (2) 

i 
− v (1) 

i 

)
; (31) 
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Fig. 4. Comparison of the policies for exact methods of Sections 3.2 and 4.2 , and the simplified method of Section 3.3.1 . The parameters are N = 300 , β(1) = 3 , β(2) = 2 . 4 , 

γ = 1 and μ = 0 . 2 . In each scenario, the policy ( V ) is the set of states below the respective line. Lines are in the same vertical order as the legend box. All lines are coincident 

along U . The endemic points corresponding to β (1) and β (2) , 
(
S (1) 

d 
, I (1) 

d 

)
and 

(
S (2) 

d 
, I (2) 

d 

)
respectively, are marked. 

where v i = v (2) 
i 

if z i = 1 , v i = v (1) 
i 

if z i = −1 , and v i may be either 

if z i = 0 . In that case, we see that the (28), (29) and (31) are iden- 

tical to (17), (18) and (15) respectively with the “( n )” postscripts 

removed, with the exception of the use of v (2) 
i 

instead of v i on the 

right hand side of (29) . Then, 

v (2) 
i 

− v (1) 
i 

= 

∑ 

j∈ S ′ q i j v (2) 
j 

q i − δi 

− δi v (2) 
h 

q i − δi 

− v (1) 
i 

= 

∑ 

j∈ S ′ q i j 

(
v (2) 

j 
− v j 

)
q i − δi 

+ 

∑ 

j∈ S ′ q i j v j 
q i − δi 

− δi v (2) 
h 

q i − δi 

− v (1) 
i 

= 

∑ 

j∈ S ′ q i j 

(
v (2) 

j 
− v j 

)
q i − δi 

+ 

q i v (1) 
i 

q i − δi 

− δi v (2) 
h 

q i − δi 

− v (1) 
i 

= 

∑ 

j∈ S ′ q i j 

(
v (2) 

j 
− v j 

)
q i − δi 

+ 

δi 

(
v (1) 

i 
− v (2) 

h 

)
q i − δi 

= 

δi 

(
v (1) 

i 
− v h 

)
q i − δi 

+ 

(∑ 

j∈ S ′ q i j 

(
v (2) 

j 
− v j 

))
− δi 

(
v (2) 

h 
− v h 

)
q i − δi 

⇒ z i = sgn 

( 

δi 

(
v (1) 

i 
− v h 

)
+ 

[ ( ∑ 

j∈ S ′ 
q i j 

(
v (2) 

j 
− v j 

)) 

− δi 

(
v (2) 

h 
− v h 

)] ) 

. 

(32) 

Although it may not be immediately obvious, (32) is quite sim- 

ilar to (22) . The only differences are: the expression in square 

brackets; the presence of v (1) 
i 

instead of v i ; and the inclusion of 

δi . Note that since v i ≥ v (1) 
i 

and v i ≥ v (2) 
i 

for all i , the right hand 

side of (32) cannot be greater than the right hand side of (22) , so 

the criterion for including a state i in V is always more stringent in 

the realistic scenario than in the idealised scenario. 

The presence of v (1) 
i 

is due to the fact that the change is one- 

way, so for the initial application of the policy (that is, for the first 

iterative change from v i = v (1) 
i 

to v i = v (2) 
i 

in Section 3.2 ) the two 

equations are identical if the expression in square brackets is zero. 

The expression in square brackets accounts for whether the states 

surrounding state i are in V , and the q ij and δi terms act as weight- 

ing factors. 

However, when we look at the actual optimal policies generated 

by (22) ( Fig. (4) ), we see that most states in V are surrounded by 

other states in V , making the expression in square brackets equal 

to zero. So that suggests that (32) will produce a V very similar to 

the V corresponding to the optimal policy for the realistic scenario 

– that is, that the optimal policies for the two scenarios will have 

very similar sets V . 

This in turn suggests that using the set V defined in (24) will 

also be a good approximation of the optimal policy for the realistic 

scenario, as we see in the following section. 

5. Results 

We refer to the policy calculated in Section 3.2 as the idealised 

scenario – optimal policy , the policy calculated in Section 4.2 as the 

realistic scenario – optimal policy , and the policy calculated using 

(24) in Section 3.3.1 as the simplified policy . 
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Fig. 5. Comparison of p 0 versus β (1) for the three different policies, as well as for no change in β . The parameters are N = 300 , β(2) = (0 . 8) β(1) , γ = 1 , μ = 0 . 2 and 

(S 0 , I 0 ) = (N − 1 , 1) . β(1) = 3 corresponds to the policies in Fig. 4 . (Lines are in the same vertical order as the legend box.). 

5.1. Comparison of optimal policies to the simplified policy 

Due to the computational requirements mentioned in 

Section 3.3 , it is only feasible to calculate the optimal poli- 

cies for small N . Policies were calculated using the methods in 

Sections 3.2, 4.2 and 3.3.1 for a range of parameters for N ≤ 300. 

The corresponding sets V were calculated, and a typical result 

is shown in Fig. 4 . The use of a small N necessitates choosing 

an unrealistically small value of γ / μ to illustrate the policies. 

However, the pre-condition (5) is still met. 

We see that the idealised and realistic scenarios give very simi- 

lar policies, and that the simplified policy is a close approximation 

of both. A similar result was seen with other sets of parameters. 

These results confirmed the prediction of Section 4.3 , that the sim- 

plified policy in Section 3.3.1 , is a good approximation for either 

the idealised scenario or the realistic scenario. 

The result for the idealised scenario also confirmed the conjec- 

ture made in Section 2.2 : that the higher β is preferable early in 

the outbreak, and the lower β is preferable as I falls to a low value. 

This confirms that in the realistic scenario we should switch from 

β(1) to β(2) , not the other way around. 

For small N it is also possible to calculate p 0 exactly: for the 

idealised scenario, (12) is solved and then p 0 = v 0 (n ) ; for the real- 

istic scenario, (27) is solved and then p 0 = v 0 . Some typical results 

are shown in Fig. 5 . It compares the optimal policies for the two 

different scenarios, as well as the simplified policy under the re- 

alistic scenario. Also shown are the outcomes with no change to 

β . 

We see that the results from the three optimisation scenarios 

are extremely similar. This was a result we observed consistently 

over a wide range of parameters. This confirms another result of 

Sections 3.3 and 4.3 : that the simplified policy is very nearly as 

good as the optimal policy, in either scenario. 

Therefore we conclude that the simplified policy is a good prac- 

tical choice, because it is easy to calculate, and so we use it in the 

further tests in the following sections. 

5.2. Effectiveness of the simplified policy 

We examine the effectiveness of the simplified policy in the 

realistic scenario. Note that for large N , exact calculation of p 0 
is impractical, so we calculate p 0 using the approximate solution 

method we previously reported, which has an average error of less 

than 1% [3] . 

Fig. 6 shows a typical result, varying β (1) and β (2) / β(1) for a 

given N, γ and μ. (Although we only show the realistic scenario, 

the results for the idealised scenario are extremely close, to the 

point that the plots look identical.) We see that dramatic improve- 

ments in p 0 can be achieved with a relatively small reduction in 

β . Again, we tested a wide range of parameters, and the simplified 

policy consistently gave significant improvement. 

In passing, note that the “β(2) /β(1) = 1 . 0 ” curve in Fig. 6 shows 

non-monotonicity in β , with a local maximum near β/ (γ + μ) = 

2 , as previously reported [3] . 

5.3. Comparison of the simplified policy to other simple policies 

The simplified policy of (24) is easy to calculate, but a practi- 

cal problem is that in an outbreak scenario where we might wish 

to implement our policy, the precise values of the epidemiological 

parameters are only estimates, and the precise epidemiological sta- 

tus of the population (in terms of the numbers of susceptible and 

infectious individuals) can once again only be estimated. 

Therefore we investigated the robustness of the policy to imple- 

menting the intervention at other stages of the epidemic. These re- 

sults are shown in Fig. 7 . We considered the β(1) = 3 case of Fig. 6 , 
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Fig. 6. Plot of p 0 versus β (1) , for different values of β (2) / β (1) (realistic scenario, simplified policy). The parameters are N = 30 , 0 0 0 , γ = 1 , μ = 0 . 025 and (S 0 , I 0 ) = (N − 1 , 1) . 

keeping the same colour and marker scheme, but switched from 

β = β(1) to β = β(2) at other points in the cycle: points A through 

to E in Fig. 2 . A refers to the case of using β (2) exclusively; B is the 

deterministic maximum I point ( S = S (1) 
d 

while I > I (1) 
d 

); C is when 

I falls to I e ; D is when I reaches its deterministic local minimum 

( S = S (1) 
d 

after point C ) and E refers to the case where β is always 

β(1) . The simplified policy, denoted by ∗, is between points B and 

C . 

As predicted, the simplified policy always gives some improve- 

ment over using either β (1) or β(2) exclusively. However, we found 

that although the simplified policy gave the best results, points B 

and C also gave significant improvement. On the other hand, in- 

tervening to reduce the transmission rate parameter, β , too late 

(point D ) may or may not be preferable to using β = β(2) always 

(point A ). (In the example in Fig. 7 , it is always preferable, but tests 

with other parameter values have indicated that this is not always 

the case). 

So this shows that there is a wide range of switch points which 

give some improvement over using either β = β(1) or β = β(2) 

exclusively. So long as a switch point is chosen after the peak I 

(point B ) and some time before the deterministic local minimum 

of I (point D ), a significant increase in p 0 will be achievable. 

6. Conclusion 

In the SIR-with-demography model, reducing the transmission 

rate parameter from β (1) to β(2) at an appropriate point can give 

a substantial increase in the probability of epidemic fade-out, over 

that when using β (1) or β(2) exclusively. We believe that this has 

applications for timing the implementation of epidemic control 

measures, making it more likely for an epidemic to fade out be- 

fore it becomes endemic. For instance, if there is a large outbreak, 

control measures (such as the allocation of antivirals) might be 

delayed until the epidemic is waning, approximately meeting the 

condition given by (23) . 

This method is effective because it allows the epidemic to 

progress longer without intervention and infect more individu- 

als in the initial outbreak, but this is balanced against the long 

term gain of epidemic fade-out. As we previously noted, this is 

not likely to be ethically possible in lethal epidemics. However, it 

could have applications in situations of non-lethal infections, or 

diseases among animals, where losses can be economically mea- 

sured [16] . Possible future research is to investigate the tradeoffs 

between such policies in terms of total infections. The result of 

Grigorieva and Khailov with a deterministic SIR model [8] , that not 

reducing β early in the infection cycle can minimise the total in- 

fection size, suggests that there might be a similar result when us- 

ing a stochastic model. 

Optimal policies may be calculated using Markov decision pro- 

cess theory, but these are impractical for all but the smallest sys- 

tems. We have presented a simplified policy (24) which gives a 

very close to optimal solution. The key factor in determining this 

policy, the inequality (γ + μ) I < μ(N − S) , is easy to test and is in- 

dependent of the transmission rate parameter, or the effectiveness 

of the control measures. 

We also observed that even a sub-optimal switch point can give 

a substantial increase in the probability of epidemic fade-out. This 

should be useful for practical applications where the exact state of 

the system is not easily observed. 

The method of calculating the simplified policy is based on us- 

ing the deterministic local minimum to estimate the relative prob- 

ability of epidemic fade-out. This technique should be amenable 

to many Markov process problems which concern optimising the 

probability of hitting one boundary before another. A possibility for 

future work is to apply this technique to related problems, such as 

more complicated models, or to the evaluation of the probability 

of fade-out at other points in the epidemic cycle. 
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Fig. 7. Comparison of p 0 for different switch points. ∗ is the simplified policy of (24) . Points A to E are shown in Fig. 2 . The ∗ results correspond to the β(1) = 3 results in 

Fig. 6 . The parameters are N = 30 , 0 0 0 , β(1) = 3 , γ = 1 , μ = 0 . 025 and (S 0 , I 0 ) = (N − 1 , 1) . 
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5 Paper 3

5.1 Introduction

Paper 3 is entitled “The impact of time dependent transmission rate on the

probability of epidemic fade-out” [8]. It was submitted to Journal of Theoret-

ical Biology in early 2018, and is currently (March 2018) under review.

This paper extended the work of Paper 1 by calculating p0 when the trans-

mission rate parameter, β, is time dependent. This is a natural extension

which had been suggested both by ourselves [6] and by others [19]. In addition

to the SIR-with-demography model, which was the sole model in the first two

papers, we extended the method to also account for a slightly different model,

the SIRS model,

Finally, we applied this method by examining trends in p0 for two realistic

parameter sets: influenza-like parameters and measles-like parameters.

5.2 Statement of Authorship
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5.3 Paper 3

The paper, as submitted to Journal of Theoretical Biology in 2018, is on the

following pages.
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The impact of time-dependent transmission rate on the
probability of epidemic fade-out

P. G. Ballard1,∗, N. G. Bean1,, J. V. Ross1,

Abstract

Epidemic fade-out refers to an infection fading out in the first trough after
the initial wave of a major outbreak. Previous work on the probability of
epidemic fade-out has used models with constant parameters. We present a
technique for efficiently calculating the probability of epidemic fade-out with
a time-dependent transmission rate parameter. A general analysis reveals the
different effects on this probability. We then apply the method to two differ-
ent scenarios: we consider influenza-like parameters with a seasonal variation
in transmission rate; and we consider measles-like parameters with the trans-
mission rate changing during school vacations. Both scenarios show that the
probability of epidemic fade-out depends on the time of year at which the epi-
demic is introduced, but in different ways. For flu-like parameters we observe
that the probability of epidemic fade-out has a local minimum at a higher R0

value than the previously reported R0 ≈ 2 using constant parameters. For
measles-like parameters, the seasonal variation lowers the average probability of
epidemic fade-out.

1. Introduction

In modelling the outbreak of an infectious disease, a relatively rarely studied
effect is the phenomenon of epidemic fade-out. This refers to the case when an
infection fades out after a large initial outbreak [1]. This is in contrast to initial
fade-out, when it fades out before a major outbreak occurs [9], and endemic
fade-out, where the infection survives the initial stages, reaches an endemic
state, and fades out at some later time [1].

Epidemic fade-out has been suggested as an area which is deserving of further
research [13, 8, 9]. We are aware of only two papers which give approximate
formulae for the probability of epidemic fade-out [32, 24], as well as our own
numerical approximation [3]; and our study into maximising this probability [4].
However, all of these works assume constant parameters.

∗Corresponding author; peter.ballard@adelaide.edu.au
1School of Mathematical Sciences, and ARC Centre of Excellence for Mathematical and

Statistical Frontiers, The University of Adelaide, Adelaide SA 5005, AUSTRALIA.

Preprint submitted to Elsevier February 14, 2018
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In any realistic system, some of the parameters will change through time.
In particular it has been suggested [9] that a useful step, in analysing epidemic
fade-out, would be to account for the fact that the transmission rate parameter
can vary with time.

Therefore we present here the first study into epidemic fade-out without as-
suming time-invariant parameters. We present a numerical computation method
for calculating the probability of epidemic fade-out, which accounts for a time-
dependent transmission rate parameter. Obviously this calculation could also
be done with Monte Carlo simulations, but the required number of simulations
is very large; and the numerical method allows computations to be done rela-
tively quickly and in a systematic way. In this paper, Monte Carlo simulations
are still done as “spot checks” on a small number of the results, to verify the
accuracy of the method.

We then perform a general analysis of the effect of time dependence at differ-
ent times on the outbreak cycle. Finally, we apply it to two particular examples.

The first example is for influenza-like parameters. Although influenza gen-
erally is seasonal and fades out in a community near the end of winter in tem-
perate climates [33], there are exceptions. It has been observed in Australia
that influenza outbreaks have a more complex pattern in the tropical regions
[31]. Furthermore, some severe influenza outbreaks have been observed to oc-
cur in multiple waves in some regions, rather than a single outbreak. This was
observed both for the 1918-1919 Spanish flu pandemic [25], and for the 2009
swine flu outbreak in the northern hemisphere [14, 30]. Therefore, changes in
the transmission rate parameter could prove important in understanding the
dynamics of an outbreak of influenza or a similar disease.

The second example is one of an illness which usually carries lifetime immu-
nity, such as measles. Modelling seasonal variation in measles is not new [5, 18],
however we believe our approach is novel in that we use a stochastic model
to survey trends in epidemic fade-out. We use a model where the transmission
rate parameter changes due to school vacations, which appear to be the primary
driver of variation for measles [16]; though it may be that seasonal factors are
more important in less-developed countries [10].

Both examples show strong dependence on the time of year at which an
outbreak is introduced. For the influenza example, we also see dependence on
R0, the basic reproduction number. Previously [3] we had reported that the
probability of surviving epidemic fade-out has a local minimum near R0 = 2.
We note that, with seasonal forcing, this local minimum occurs at a higher value
of R0, dependent on the amplitude of the seasonal forcing. For measles-like
parameters, we see that the imposition of seasonal forcing moves the simulated
Critical Community Size (CCS) closer to the observed value [6] for measles.

2. Models and definitions

We use the Markovian SIR-with-demography model [27], and the Markovian
SIRS (Susceptible-Infectious-Recovered-Susceptible) model [20]. These both ex-
tend the well-known Markovian SIR infection model by allowing replenishment
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S I
β(t)SI/NµN

µS

(γ + µ)I

Figure 1: The SIR-with-demography epidemic model. S is the number of susceptibles and I is
the number of infectious individuals. β(t) is the time-dependent transmission rate parameter.
The other parameters are fixed: the population size parameter N , the recovery rate γ, and
the per-capita birth/death rate µ.

of susceptibles, though in different ways. These models are simple, not account-
ing for factors such as latent periods or heterogeneous populations, but their
simplicity allows trends to be more easily analysed.

The SIR-with-demography model replenishes susceptibles via births and
deaths, or immigration and emigration. It assumes individuals have lifetime
immunity, so is appropriate for modelling diseases such as measles. The SIRS
model replenishes susceptibles by the waning of immunity, and is more suit-
able for modelling disease outbreaks where the duration of immunity is short
compared to individuals’ lifetime, as is the case for influenza.

The models are closely related and have very similar characteristics. The
SIR-with-demography model tends to be slightly more complicated because the
population size is not fixed and there is one more type of event. So we shall
mainly present theory for the SIR-with-demography model, then note the dif-
ferences for the SIRS model.

2.1. The SIR-with-demography model

The Continuous-Time Markov Chain (CTMC) for the SIR-with-demography
model is described in Figure 1 and Table 1. S and I represent the number of
“susceptible” and “infectious” individuals respectively. The number of “recov-
ered” individuals (R) does not affect S and I, so it can be removed from the
analysis [19]. This allows “death of infectious” (at rate µI) and “recovery of
infectious” (at rate γI) to be grouped together as “removal of infectious”.

Description Transition Rate

Infection (S, I)→ (S − 1, I + 1) β(t)SI/N

Birth of Susceptible (S, I)→ (S + 1, I) µN

Death of Susceptible (S, I)→ (S − 1, I) µS

Removal of Infectious (S, I)→ (S, I − 1) (γ + µ)I

Table 1: Transition rates for the Markovian SIR-with-demography epidemic model displayed
in Figure 1.
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We consider cases where the infection rate parameter β can vary with time,
so we denote it as a function of time, β(t).

2.1.1. Preliminary theory

In the limit as N becomes large, the stochastic process converges to a deter-
ministic process [29], which may also be called the deterministic approximation
of the stochastic process [26]. It is governed by the differential equations:

dS

dt
= µ(N − S)− β(t)SI

N
, (1)

dI

dt
=
β(t)SI

N
− (γ + µ)I. (2)

At any point in time, the attracting fixed point (at which both (1) and (2)
are zero) is the point (Se(t), Ie(t)), where:

Se(t) =
N(γ + µ)

β(t)
, (3)

Ie(t) =
Nµ

γ + µ

(
1− γ + µ

β(t)

)
. (4)

When β(t) is constant, the meaning of the attracting fixed point is obvious:
it corresponds to the endemic point, which the deterministic process converges
towards in an anticlockwise direction in the (S, I) plane, as illustrated in Figure
2. Again referring to Figure 2, a stochastic realisation may fade out at the start,
near point A (initial fade-out), or in the first trough after the initial outbreak,
near point E (epidemic fade-out).

When β(t) is variable, it makes less sense to speak of an endemic point.
But the position of (Se(t), Ie(t)) still governs the behaviour of the deterministic
process. At any point in time, (Se(t), Ie(t)) is an attracting point, causing the
deterministic process at that point in time to move towards it in an anticlockwise
direction.

The stochastic model has discrete states, so it is also useful to round the
endemic state values up to the next highest integer pair:

Sd(t) = dSe(t)e, (5)

Id(t) = dIe(t)e. (6)

In a naive population, S ≈ N . So assuming a constant β, (2) gives R0, the
basic reproduction number, to be:

R0 =
β

γ + µ
. (7)

We impose the condition R0 > 1, because that is a requirement for a major
outbreak to occur.
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S

I

A

B

C

D

E

F Ie

Se

Figure 2: I versus S plot of the deterministic approximation of a typical SIR-with-demography
or SIRS model, with endemic values Se and Ie (dashed lines). The outbreak starts at A, goes
through points B, C, D and E through to F , and converges on (Se, Ie). The first trough is
between points D and F .

A stability analysis of (1) and (2), linearised in the region of (Se, Ie) as given
by (3) and (4), determines that the associated eigenvalues λ obey,

λ2 +R0µλ+ µ(γ + µ)(R0 − 1) = 0.

This gives the eigenvalues,

λ =
−R0µ

2
±
(µ

2

)√
R0

2 − 4(R0 − 1)(γ + µ)/µ.

In almost any realistic case (and in all cases considered in this paper), the
recovery rate γ is much greater than the population turnover rate µ. This
means γ � µ, and hence (R0 − 1)(γ + µ)/µ� R0

2, so this simplifies to,

λ ≈ −R0µ

2
± i
√

(R0 − 1)(γ + µ)µ.

In general, eigenvalues of the form −a± ib correspond to a decay time constant
of 1/a and oscillations with a period of 2π/b [21]. So in this case, in the limit as
the process approaches the endemic point, the deterministic trajectory spirals
in to the endemic point, circling with period,

Tosc ≈
2π√

(R0 − 1)(γ + µ)µ
. (8)

Even though we are considering a stochastic system, with time-varying β
(and hence time-varying R0), (8) is a useful first-order approximation for the
period of oscillations, which we shall use in Section 4.

5
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S I
β(t)SI/Nν(N − S − I) γI

Figure 3: The SIRS model. S is the number of susceptibles and I is the number of infectious
individuals. β(t) is the time-dependent transmission rate parameter. The other parameters
are fixed: the population size N , the recovery rate γ, and the immunity waning rate ν.

2.2. The SIRS model

Description Transition Rate

Infection (S, I)→ (S − 1, I + 1) β(t)SI/N

Removal of Infectious (S, I)→ (S, I − 1) γI

Loss of Immunity (S, I)→ (S + 1, I) ν(N − S − I)

Table 2: Transition rates for the Markovian SIRS epidemic model displayed in Figure 3.

The SIRS (Susceptible-Infectious-Recovered-Susceptible) model [20] is de-
scribed in Figure 3 and Table 2. Recovered individuals regain susceptibility at
per capita rate ν, corresponding to the waning of their immunity. The pop-
ulation size is fixed at N , so the number in the “recovered” class is equal to
N − S − I, giving a replenishment rate of ν(N − S − I).

The analysis for the SIR-with-demography model in Section 2.1.1 all holds,
with the exception that Equations (1), (2), (3), (4), (7) and (8) are instead:

dS

dt
= ν(N − S − I)− β(t)SI

N
, (9)

dI

dt
=
β(t)SI

N
− γI, (10)

Se(t) =
Nγ

β(t)
, (11)

Ie(t) =
Nν

γ + ν

(
1− γ

β(t)

)
, (12)

R0 =
β

γ
, (13)

Tosc ≈
2π√

(R0 − 1)γν
. (14)
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2.3. Definition of epidemic fade-out

While we may say informally that epidemic fade-out refers to fade-out during
the first trough after the initial wave of a major outbreak, a precise definition
is needed for calculations of its probability.

In a previous paper [3], we defined the first trough as starting when the
CTMC enters a state for which S < Sd and I = Id (near point D in Figure
2). Then either absorption occurs (and the infection fades out) at the lower
absorbing boundary L (specified by I = 0), or the CTMC exits the trough when
it reaches an artificial upper absorbing boundary U , which normally occurs when
S ≥ Sd and I ≥ Id (near point F in Figure 2).

For this work, extra specifications are required, because we need to account
for the fact that Sd(t) and Id(t) can change, since β(t) is not constant. Therefore,
if S is the state space of all possible (S, I) values, we specify a first trough region
T , a lower absorbing boundary L, and an artificial upper absorbing boundary
U , in terms of the variable values Sd(t) and Id(t):

T = {(S, I) ∈ S|I < Id(t)}; (15)

L = {(S, I) ∈ S|I = 0};
U = {(S, I) ∈ S|(S ≥ Sd(t) and I ≥ Id(t))}.

Note that T and U are calculated instantaneously. That is, the first trough
is entered at the first point at which (15) is true, given the β(t) in use at that
instant. Similarly, absorption at L or U is calculated instantaneously (although
L never changes). The justification is that, at any instant in time, the CTMC
is converging towards the endemic point specified by its current parameters.

In addition, we need to avoid a situation where an outbreak is defined to
have occurred simply through a change in Sd(t). This may occur in situations
where the trajectory converges directly towards the endemic point rather than
oscillate around it; meaning one can not meaningfully speak of epidemic fade-
out. Therefore we introduce and use the set Q to determine whether a major
outbreak has occurred. That is, we let

Sdmin = min
t≥0

Sd(t),

and
Q = {(S, I) ∈ S|S < Sdmin}; (16)

a pre-condition of a major outbreak occurring is that the CTMC has entered
Q.

Regions Q, T , L and U are shown in Figure 4. We then specify p0, the
conditional probability of epidemic fade-out, as the probability that the process
is absorbed at L before reaching a state in U , given that it reaches Q and then
T . We also specify p1, the probability of surviving epidemic fade-out, to be
1− p0.
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Sdmin Sdmax
L

I

A

Q

T

U

(Sd(t), Id(t))

Figure 4: Graphical representation of the definition of epidemic fade-out: the condition is that
the CTMC must enter Q (S < Sdmin, the dotted region) and then T (I < Id(t), the hatched
region). Given that condition, the probability of epidemic fade-out (p0) is the probability
of the CTMC being absorbed at L (I = 0, the thick dashed line) before next reaching U
(S ≥ Sd(t) and I ≥ Id(t), the grey region). Both T and U may change, with the vertex
(Sd(t), Id(t)) able to move along the dark blue solid line as β(t) varies. The red (dotted) line
shows a possible behaviour of the deterministic approximation, starting at point A.
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3. Method of calculating the probability of epidemic fade-out

In Section 3.3.2 of a previous paper [3], we described a fast and accurate nu-
merical method for calculating the probability of epidemic fade-out in the SIR-
with-demography infection model, with constant parameters. Here we describe
a modification of this algorithm, which allows time-dependent parameters.

We break the algorithm into two parts: a continuous diffusion approximation
when I is large (Section 3.1), and a semi-continuous approximation (discrete
I but continuous S) when I is small (Section 3.2). We first describe these
two methods, without specifying what constitutes “large” or “small” I, before
considering how to best combine them in Section 3.3.

3.1. Diffusion approximation

The diffusion approximation is an extension of the deterministic approxima-
tion. It tracks both the mean and the variance of the state with time, while the
deterministic approximation tracks the mean state only. Aside from the hitting
time variance (17), this is outlined in more detail in [3].

Let YN (t) be a process following the SIR-with-demography model defined
in Section 2.1 (calculations for the SIRS model in Section 2.2 are analogous),
with each value being an (S, I) pair, from some initial value (S0, I0). The
associated density process is XN (t) = YN (t)/N , with each possible value x
being an (s, i) pair, where s = S/N and i = I/N ; and the initial value is
x0 = (s0, i0) = (S0/N, I0/N).

Let f(x, l) be the transition rate of the density process from state (x) to
state (x + l/N), where l = (l1, l2) can take on the possible 1-step transition
values in Table 1: (−1, 1), (1, 0), (−1, 0) and (0,−1), respectively. Also define
for the density

F (x) =
∑

l

lf(x, l) = (−β(t)si+ µ(1− s), β(t)si− (γ + µ)i) ;

B(x), a matrix whose (j, k)th element is given by bj,k =
∂fj
∂xk

,

⇒ B(x) =

(
−β(t)i− µ −β(t)s
β(t)i β(t)s− (γ + µ)

)
;

and G(x), a matrix whose (j, k)th element is given by gj,k =
∑
l lj lk f(x, l),

⇒ G(x) =

(
β(t)si+ µ(1 + s) −β(t)si

−β(t)si β(t)si+ (γ + µ)i

)
.

Then by Theorem 3.1 of Kurtz [22] and Theorem 3.2 of Pollett [28], we have:
In the limit as N →∞, XN (t) converges weakly (on D[0, T ], the space of right-
continuous, left-hand limits functions on [0, T ]) to a process which at time t is
Gaussian with mean X(t) and covariance Σ(t)/N ; where X(t) and Σ(t) are the
solutions to:

dX(t)

dt
= F (X(t)), X(0) = (s0, i0);

9
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dΣ(t)

dt
= B(X(t))Σ(t) + Σ(t)B(X(t))T +G(X(t)), Σ(0) = 0.

If YN (t) = NXN (t) reaches the T defined in (15) at time τ , i.e. τ = min{t ≥
0 : YN (t) ∈ T}, then by applying Theorem 11.4.1 of Ethier and Kurtz [15] we
have: In the limit as N →∞, the distribution of the scaled density process YN (t)
when it first enters T is Gaussian; with S having mean NX(τ)1 and variance

σ2
S = N

(
Σ(τ)1,1 +

(
F (X(τ))1
F (X(τ))2

)2

Σ(τ)2,2 − 2

(
F (X(τ))1
F (X(τ))2

)
Σ(τ)1,2

)
;

and with hitting time having mean τ , and variance

σ2
τ = N

(
Σ(τ)2,2
F (X(τ))2

)
; (17)

(where subscript j denotes the jth element of a vector, and subscript j, k
denotes the row j, column k element of a matrix).

3.2. Semi-continuous approximation

The diffusion approximation does not take account of absorbing boundaries.
So when I is low, meaning the CTMC is near the I = 0 absorbing boundary, a
more accurate technique is required. However the state space is too large to per-
form an exact Markov calculation. What we desire is an accurate approximate
method.

The approximation we use is to treat S as continuous, but keep I discrete.
The justification for this is that I is the critical dimension: absorption at L
always occurs in the I dimension, at I = 0; and absorption at U almost always
occurs in the I dimension, at S > Sd and I = Id. Therefore the I dimension is
more critical, and treating S as continuous should not come at a great cost in
accuracy. This allows an iterative process in which, on each step, a time step-
size is chosen, and S is incremented by dS/dt multiplied by that time step. This
includes the assumption that, at any time, all probability mass shares the same
S value. This is obviously a significant assumption, but it has the advantage that
it simplifies the calculation, because only a one-dimensional vector of probability
mass values needs to be stored at any one time.

We define Iu to be the instantaneous lowest state in the upper absorbing
boundary U ; and we define Imax to be the maximum allowable value of Iu.

We define a vector, E, of probability mass. That is, element i of E, denoted
Ei, contains the probability of I = i. E contains elements 0 through to Imax,
with elements 0 and Imax representing the absorbing states.

With a deterministic model for S, but a stochastic model for I, we need a
“best” I to use when calculating dS/dt. We use Imean, the expected I condi-
tioned on non-absorption:

Imean =

∑Iu−1
I=1 IEI∑Iu−1
I=1 EI

.
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So the differential equation for the common S is, for the SIR-with-demography
model:

dS

dt
= µ(N − S)− βSImean/N ; (18)

and for the SIRS model:

dS

dt
= ν(N − S − Imean)− βSImean/N. (19)

Let us define Γ = γ + µ for the SIR-with-demography model, and Γ = γ
for the SIRS model. Then for each state EI with I in the range 0 < I < Iu,
there is a process moving probability mass into state EI+1 at rate βSI/N , and
a process moving probability mass into state EI−1 at rate ΓI.

With this, we can now specify differential equations for E:

dEI
dt

=





(βS/N)IuEIu if I = Imax,

(βS(I − 1)/N)EI−1 − (βSI/N)EI − ΓIEI if I = Iu − 1,

(βS(I − 1)/N)EI−1 + Γ(I + 1)EI+1 − (βSI/N)EI − ΓIEI if 0 < I < Iu − 1,

Γ(I + 1)EI+1 if I = 0.

(20)
For states with I in the range Iu ≤ I < Imax, all probability mass is moved

instantly into state EImax .
Differential equations (18) or (19), and (20), can then be evaluated numeri-

cally, with a DE solver running until nearly all of the probability mass is in one
of the two absorbing states (EImax and E0). In the computations in Section 4,
we stopped evaluation when more than 1− 10−9 of probability mass was in the
absorbing states.

The distribution of S and time at either absorbing boundary can also be
stored, and passed to the next stage of the calculation.

3.3. Putting it together

3.3.1. Sampling

The algorithm uses the semi-continuous method for the initial stage of the
outbreak, when I is low; the diffusion method in the second stage, when I is
high; and the semi-continuous method again in the third and final stage, in the
trough after the initial outbreak, when I is low again.

However a complication is that the methods do not “interface” simply. The
diffusion approximation requires an initial point mass or Gaussian distribution,
but it follows the semi-continuous approximation of the initial stage, whose
output distribution is non-symmetric. Then the final semi-continuous approx-
imation begins with a point mass in S and time, but it follows the diffusion
approximation whose output is a Gaussian distribution.

In both cases, we solve this problem by taking multiple samples of the previ-
ous stage. So for the diffusion, the output of the first stage is divided up in time
into a number of equal quantiles, and for each quantile, the mean S and time
are used for the starting point of the diffusion stage. Ten quantiles were used,
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which is a relatively large number, but the diffusion stage has a fast execution
time compared to the semi-continuous stages, so the cost is low.

The results of the multiple runs of the diffusion are mixed, giving a probabil-
ity mass distribution in both S and time. This distribution is then assumed to
be Gaussian. (This need not be true in all cases – the output of each diffusion
run is Gaussian, but their mixture need not be – but we observed they were
consistently close to Gaussian, as well as having only a small covariance between
S and time).

We then take samples to approximate this distribution. Even 4 samples are
sufficient, so to preserve mean and variance we sample (S, t) at (µs±σs, µt±σt),
where µs and σs are the mean and standard deviation of S, and µt and σt are
the mean and standard deviation of time. The final semi-continuous stage is
then run for these 4 samples, and the results are mixed to give a final estimate
for p0.

3.3.2. Boundaries

The final decision is of the boundaries to use between the three stages, and
the values of Iu and Imax to use in the semi-continuous stages.

First let us define the maximum possible value of Id(t),

Idmax = max
t≥0

Id(t).

The end points of the first and second stages are not critical, but complica-
tions are avoided if a constant value is used for both. For convenience we use
the same value: we set Iu = Imax = Idmax during the first stage, and end the
second (diffusion) stage when I falls to I = Idmax.

The third stage is a little more complicated. As discussed in Section 2.3,
the absorbing boundary needs to be the time-dependent Id(t) when S ≥ Sd(t).
Referring to Figure 4, in the region where S < Sd(t), I is unbounded for the
SIR-with-demography model, and can go as high as N − S in the SIRS model;
suggesting a large value of Imax in either case. But since in that region the re-
covery rate is greater than the infection rate (that is, the deterministic approx-
imation decreases in I), in practice we only require Imax to be large enough so
that there is some buffer to account for stochastic variation in I when I < Id(t).
The following was found to be sufficient:

Imax = max (2Idmax, Idmax + 100) ;

Iu(t) =

{
Imax if S < Sd(t),

Id(t) if S ≥ Sd(t).

4. Results

We now use this method to examine the effect of varying β on the probability
of epidemic fade-out.

12

70



We note that the initial stage calculates the probability of initial fade-out,
as a by-product. These results are not presented here because they are not of
direct interest to us; but we note that some checks revealed that this was also
consistently very accurate; and that the previous work of Ball [2] was also very
accurate.

Note that all figures in this section plot p1, where p1 = 1− p0, to allow for
easier presentation.

4.1. Performance

The method was run on a 3 GHz Intel i5 core machine, 8 GB RAM, with Mac
OS 10.12.5. The code was implemented in Cython, allowing C-like performance
on the critical loops [7]. Typical calculation times are shown in Table 3, These
are compared to the times for 10, 000 Monte Carlo simulations (Gillespie method
[17]). This number was chosen because it gives 2σ ≈ 0.01 for p1 ≈ 0.5, so it
gives a comparable level of accuracy in the results; though a higher number of
simulations is required for p1 very close to 0 or 1, as in some of the traces in
Figures 6 to 9. Table 3 shows that the algorithm tends to be about 20 to 40
times faster than Monte Carlo simulations.

Section N Section 3 algorithm Monte Carlo

4.2, 4.3 20,000 8 360

4.4 200,000 9 250

4.4 500,000 23 600

4.4 1,000,000 60 1300

4.4 2,000,000 180 2700

Table 3: Typical calculation times, in seconds, for the values of N used in Sections 4.2, 4.3
and 4.4.

4.2. Single Pulse

As a first step, we examine the effect of modulation (increase in the value of
β) in a single short time span, to build a picture of the effect of modulation at
different times in the infection cycle.

To do this, we modulate for a time of Tosc/100. That is, for start-of-
modulation time τ , and some transmission rate parameter β0,

β =

{
1.1β0 if τ ≤ t < τ + Tosc/100;

β0 otherwise.

The results are broadly the same across all parameters, with the main dif-
ference being the time scale (due to different values of Tosc in (8) or (14)). So
we show in Figure 5 a representative plot, using numbers similar to Section 4.3:
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Figure 5: Effect of a short “pulse” of modulation on p1. SIRS model, N = 20000, γ = 52,
ν = 1, β0 = 156; and β = 1.1β0 between times τ and τ + Tosc/100, and otherwise β = β0.
The horizontal dotted line shows p1 when there is a constant β = β0. The vertical dotted lines
correspond respectively to the times of points C and D in Figure 2, if the outbreak follows
the deterministic approximation.
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the SIRS model with N = 20000, γ = 52, ν = 1, and β0 = 156 (corresponding
to R0 = 3).

Figure 5 shows two effects. The first effect is that early in the outbreak –
more or less between points B and D in Figure 2, when I is large – an increase
in β gives a decrease in p1; and this effect is at its greatest near point C,
where I is at its peak. As we have discussed previously [3], this is a slightly
counterintuitive effect, but arises due to the fact that a higher β depletes the
number of susceptibles, so the outbreak is more likely to “burn out”. The
magnitude and timing of the effect, including the fact that it peaks near C, is
a new result.

The “crossover” point, when increasing β begins to have a positive rather
than a negative effect on p1, is just before point D. This is consistent with our
previously reported result [4].

After that point, when the CTMC is in the “trough”, the second effect
dominates: an increase in β gives an increase in p1.

When we consider time-dependent modulation models in the following sec-
tions, all the results can be explained in terms of a combination of these two
effects, to a first order.

4.3. Influenza-like parameters

The influenza virus mutates relatively rapidly, and individuals do not have
lifetime immunity. So it is waning immunity, rather than population turnover,
that is the primary source of the replenishment of susceptibles. Therefore we
model influenza-like parameters with the SIRS model, with a relatively high ν.
We consider ν = 0.5 years−1 (corresponding to a mean loss of immunity time
of 2 years), and γ = 52 years−1 (corresponding to an infectious time of a week)
[12].

We model the seasonal variation in β using a cosine wave. We assume β is
at its maximum in the middle of winter, and at its minimum in the middle of
summer. So for a mean R0 value of R0, and some modulation quantity m,

R0(t) = R0(1 +m cos(2π(t+ φ))),

where t is time (in years, from the start of the outbreak) and φ is the phase,
corresponding to the time from the middle of winter to the start of the outbreak,
also in years. Then β(t) = γR0(t).

There is a range of possible values of R0 for influenza, in some cases R0 = 6
or even higher [23]. Here we are more interested in trends, rather than a specific
R0 or even a specific disease, so we model a range of values of R0. Trends were
similar across a range of values for N and m. Here we show two representative
plots, showing two different values of m: m = 0.1 in Figures 6 and m = 0.2
in Figure 7, for N = 20000. We include, for comparison, one trace for ν = 1
instead of ν = 0.5 in Figure 6.

We also include, as a check, the range of p1 values from Monte Carlo simula-
tions, for a selection of parameters. These confirm the accuracy of the method.
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Figure 6: Effect of cosine wave modulation on p1 for influenza-like parameters: N = 20000,
γ = 52, ν = 0.5, and R0(t) = R0(1 + 0.1 cos(2π(t + φ))). The vertical bars show the range
(±2σ) of values given by Monte Carlo simulations, for R0 = 8, 5 and 2. The “chained” trace
shows identical parameters for R0 = 2, except that ν = 1 instead of 0.5.
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Figure 7: Effect of cosine wave modulation on p1 for influenza-like parameters: N = 20000,
γ = 52, ν = 0.5, and R0(t) = R0(1 + 0.2 cos(2π(t+ φ))).

16

74



Setting ν = 1 does not seem to be realistic, but its plot in Figure 6 (the
“chained” trace for R0 = 2) serves to illustrate how p1 has a dramatic depen-
dence on γ/ν – that is, the ratio between the recovery rate and the regeneration
rate (or equivalently, the ratio between the mean immunity period and the mean
infectious period). A value of γ/ν = 52 gives quite high p1 values, but these fall
by two to three orders of magnitude when γ/ν is doubled to 104. So while we
may observe trends in p1 versus R0, it is γ/ν – a measure of the regeneration
rate – which is far more significant when it comes to determining whether an
infection survives after its first wave.

However using γ = 52 and ν = 0.5, Figures 6 and 7 suggest that the chances
of an influenza outbreak surviving after its first wave of infection are low, in
the absence of further importation of the virus, unless R0 is quite high. This
agrees with the observation that there tends to be a single outbreak per season.
As previously noted, there have been exceptions such as the 1918-19 Spanish
flu [25] and 2009 swine flu [14, 30] pandemics, and these may correspond to R0

towards the higher end of these ranges.
A second observation is that the peaks in the graph shift to the right as R0

increases. This is due to the fact that Tosc is dependent on R0 (14). This may
have implications for determining when is the most critical time of year for an
influenza outbreak to occur.

A third observation is that the degree of dependence on the start time varies
with R0. That is, for low values of R0 (such as 2), p1 varies more dramatically
with φ; while this seasonal variation is less pronounced for higher values of R0.

Furthermore, comparing Figures 6 and 7, we see that this effect becomes
more pronounced as the amount of modulation increases. The reason for this is
essentially that the minimum value of R0(t) is important. If R0(t) is reduced at
a critical time in the outbreak cycle (corresponding to the trough at τ/Tosc ≈ 0.1
in Figure 5) then it causes an increase in p1. Clearly this effect will be greater,
and extend to higher values of R0, as the modulation m increases.

In a CTMC with constant β, we previously reported that, if one plots p1
versus R0 (by varying β and keeping other parameters constant) there is a local
minimum near R0 = 2 [3]. We can now report that, when there is seasonal
variation in β, this local minimum is at a somewhat higher mean value of R0(t),
R0, and this higher value largely depends on the amount of seasonal variation in
R0(t). In the examples shown, this local minimum p1 occurs instead at R0 ≈ 3
when the modulation m is 10% (Figure 6), and at R0 ≈ 4 when the modulation
is 20% (Figure 7).

4.4. Measles-like parameters

The second test case we modelled was measles-like parameters. These differ
from influenza in a number of ways: R0 is higher, people generally have lifetime
immunity, and the population is not naive, with the majority of the population
usually immune (having been infected as a child, or been vaccinated).

We used the SIR-with-demography model, with µ = 1/70, corresponding to
an average 70-year lifetime [1]. We used an upper value R0 of 16 [1] and γ = 41

17

75



0.0 0.2 0.4 0.6 0.8 1.0
 (outbreak start time, in years since start of summer vacation)

10 5

10 4

10 3

10 2

10 1

100

p 1
=

1 
- (

pr
ob

ab
ilit

y 
of

 e
pi

de
m

ic 
fa

de
-o

ut
)

N = 2000000
N = 1000000
N = 500000
N = 200000

Figure 8: Effect of school vacation modulation on p1, for measles-like parameters, for different
values of N . γ = 41, µ = 1/70, β0 = 16(γ+µ), and β = 0.8β0 during the first 6/52 of the year
and three shorter vacations of 2/52 of the year, otherwise β = β0, and (S0, I0) = (0.08555N, 1).
The horizontal dotted lines show p1 when β, the mean β, is used as a constant (β = 15.2615).
The vertical bars show the range (±2σ) of values given by Monte Carlo simulations, for
N = 200000 and N = 2000000.
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(corresponding to an average 9 day infectious period [11]). According to (8),
this gives an infection cycle time of approximately 2.1 years, quite close to the
2-year cycle that measles has been observed to follow [13].

We found overall trends did not vary a lot as R0 varied. This is possibly
because all feasible R0 values for measles are not in the vicinity of R0 = 2. So
instead here we present trends as N is varied, since the Critical Community
Size (CCS) is a historically interesting number in the study of measles.

To model time dependence in measles, we used school vacations instead of
the season to model changes in R0, with R0 dropping by 20% during school
vacations. To model school vacations, we followed the Australian model of a
6-week summer vacation, then a school year of four 10-week terms with a 2-
week break in between each term (apart from summer break). So if φ is the
start time of the outbreak, in years from the start of summer vacation, then
(b52 (t+ φ)c mod 52) is the week of the year; and

β(t) =

{
0.8β0 if b52 (t+ φ)c mod 52 ∈ {0, 1, 2, 3, 4, 5, 16, 17, 28, 29, 40, 41}
β0 otherwise;

(21)
where β0 = R0max(γ + µ) and R0max = 16.

For the initial condition, although we need to assume that the population is
not naive, the exact choice is not important, so long as it is reasonably realistic,
because we are looking for trends rather than solving a particular problem.
Since the deterministic minimum I value occurs when S = Se, we decided to
assume that the previous outbreak died out in the vicinity of S = Se, where Se
is the Se value corresponding to R0, the mean R0 value (so R0 = 15.2615 and
Se = N/R0). We then assumed 1.5 years of replenishment at rate µ(N − Se).
That is, we used as the initial state,

S0 = Se + (1.5)(N − Se)µ = 0.08555N ; I0 = 1.

The results for different values of N are shown in Figure 8. As in Figure 6,
we include the range of p1 values from Monte Carlo simulations, for a selection
of parameters, as a check that the method is accurate.

The maxima in Figure 8 are due to the timing of the summer vacation. If the
summer vacation coincides with the peak of the outbreak, then p1 is increased.
That is, the outbreak infects fewer individuals, so more susceptibles remain after
the initial wave, so epidemic fade-out is less likely. According to Figure 5, the
optimal time to reduce β is after about 0.1Tosc. So with an approximate 2-year
cycle, we would expect p1 to be maximised when the outbreak begins about 0.2
years before this peak; that is, at φ ≈ 0.8. In Figure 8, we observe the peaks
somewhat earlier than this, because on average the outbreak takes longer to
“start up” in the measles model, than in the flu-like model used in Figure 5.

This mean start-up time is also the reason why the timing of the peak varies
with population size. An initial infectious number of I = 1 is proportionally
lower for larger N , so the mean start-up time is longer. So as N increases, the
peak p1 occurs at a lower φ value.
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Figure 9: Effect of summer vacation modulation on p1, for measles-like parameters, for differ-
ent values of N . This uses identical parameters to Figure 8 (γ = 41, µ = 1/70, β0 = 16(γ+µ),
(S0, I0) = (0.08555N, 1)) except that β = 0.8β0 only during the first 6/52 of the year, other-
wise β = β0.

20

78



The shorter vacations have a smaller effect on the general wave shape. Fig-
ure 9 shows the effect of using a simpler model where there is only a summer
vacation, and the three shorter term breaks are not modelled; that is (21) is
modified to:

β(t) =

{
0.8β0 if b52 (t+ φ)c mod 52 < 6

β0 otherwise.
(22)

We see that, compared to Figure 8, Figure 9 is “smoother” and has a more
pronounced peak, but the overall trends are mostly the same; confirming that
the peaks in Figure 8 are due to the timing of the summer vacation.

Let β be the mean β(t) in (21); that is, β = (40β0 + 12(0.8β0))/52). The
dotted lines in Figure 8 show p1 if β is constant at β, for N = 200000 and
N = 2000000. Though it is not visually obvious because of the logarithmic
scale, the mean p1 over the year is considerably higher using the varying β,
than when using the constant β = β. So on average, seasonal forcing in β leads
to an increase in p1. That is, seasonal forcing makes epidemic fade-out less
likely to occur. So whereas epidemic fade-out might seem almost certain when
using time-invariant parameters; the use of time-varying β indicates that there
is a significant probability of the infection persisting after the first trough, if the
outbreak begins at certain times of the year.

Finally, we note that, even with this increase in p1 due to seasonal forcing,
these values of p1 are significantly lower than what is generally observed. That is,
with the classic CCS for measles in an isolated population being about 200, 000
[6], we would expect p1 > 0.5 for N ' 200, 000, but these results give lower
p1 values than that. We believe this is because the assumption of unstructured
homogeneous populations leads to an underestimation of p1. In reality, pockets
of infection (due to structure and non-homogeneity in the population) make
the probability of persistence (that is, p1) higher than our method predicts. So
while seasonal variation in a homogeneous population increases p1, it does not
entirely account for the observed values.

5. Conclusion

We have presented a numerical method for calculating p0, the probability
of epidemic fade-out (and its complement p1), when the transmission rate pa-
rameter β is time-dependent. We have done this for two different but related
models. We have confirmed that it is fast and accurate.

We have presented results for a number of models of time dependence. For
a model which only modifies β for a single block of time (Section 4.2), we see
that an increase in β causes a decrease in p1 during the peak of an infection,
while an increase in β has the opposite effect during the trough of an infection.
This agrees with previous results.

For influenza-like models (Section 4.3), we observed that p1 is much more
seasonally dependent for low values of R0 (near 2) than higher values. This
seasonal dependence means that outbreaks with low R0 have a higher proba-
bility of persisting than those with slightly higher R0 values. While with no
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modulation there is a local minimum in p1 in the region of R0 = 2, the point of
this local minimum increases as the seasonal variation in R0 increases, to about
R0 = 4 when there is 20% modulation.

For measles-like models (Section 4.4), we see that the timing of the intro-
duction of the infection, relative to the summer vacation, can increase p1; and
that the average p1 increases, bringing it closer to matching the observed data
for measles.
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6 Software

An important part of the work was the choice of software to use for simulations

and calculations. The three main choices were Matlab, Julia and Cython.

Matlab [45] is designed for scientific use and, of the three, probably has the

most complete set of mathematical libraries. However it has (in our opinion) a

relatively clumsy syntax compared to the other two options. Also, unlike Julia

and Cython, it is commercial software, and that limited how much it could be

used off-site.

Julia is a relatively new language, first released in 2012 [16]. Its syntax is

quite similar to Matlab, but avoids many of Matlab’s idiosyncrasies, and has

the advantage that it is free. One main drawback was that, at least when this

work began in 2014, its collection of libraries was quite small.

Cython is a third party enhancement to the Python language [14], and is

also free. Python is a very popular general purpose language, and there exist

well supported third party packages for scientific and mathematical functions,

called NumPy [58] and SciPy [33]. Python itself is not a very fast language,

but Cython considerably speeds Python code up, if the user adds a few well

chosen directives to the critical parts of the program.

Numba, which is another package to accelerate the speed of Python [40],

was also considered, and on one test case it ran faster than any of Matlab,

Julia and Cython. But at the time of testing, it was incompatible with some

parts of SciPy. This made it unusable, so it had to be rejected.

Between the other three, the choice for each stage of the project was based

on performance, as detailed below.
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6.1 Paper 1

An early version of the numerical algorithms used in Paper 1 [6] was run in

Matlab, Julia and Cython, with the results shown in Tables 3 and 4.

Population size (N) Cython Julia Matlab

1,000 3 65 15

2,000 9 not tested 60

Table 3: Evaluation times in seconds, for an early version of the “exact model”
in Paper 1 [6, Section 3.3.1].

Population size (N) Cython Julia Matlab

200,000 5 75 13

500,000 13 526 33

1,000,000 (case a) 38 2200 105

1,000,000 (case b) 356 15850 805

Table 4: Evaluation times in seconds, for an early version of the “approximate
model” in Paper 1 [6, Section 3.3.2].

As a result of these tests, it was concluded that Cython was both the fastest,

and the one which was able to handle the largest data arrays (and hence,

could simulate up to the largest population size). Therefore all algorithms

were written in Cython.

For random (Monte Carlo) simulations (which were run as a check on some

of the results), Cython and Julia were of comparable speed, and somewhat
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faster than Matlab. Cython was chosen over Julia as a matter of convenience,

so that all tests could be run in the same environment.

6.2 Paper 2

As noted at the start of Section 3.3 of Paper 2 [7], the Markov decision process

calculations described in this paper required very large probability transition

matrices: a population size N has a truncated state space of approximately

N2, requiring an approximately N2×N2 matrix. These matrices are also very

sparse: each state has transitions to at most 4 other states, so each row has at

most five non-zero entries.

Matlab, Julia and Cython (via the SciPy package) all have provision to ef-

ficiently represent such matrices, with data structures known as sparse arrays.

However the SciPy implementation was quite complicated and so, in the in-

terests of keeping the code simple, Cython was eliminated from consideration.

So Matlab and Julia were tested for speed, with the results in Table 5.

Population size (N) Julia Matlab

100 1 3

300 15 57

600 383 4990

800 983 test abandoned

Table 5: Evaluation times in seconds, for solving the Linear Program algorithm
in Section 4.2 of Paper 2 [7]. For a population size of N , the truncated state
space is about N2, so the Markov decision process algorithms require a sparse
array of about size N2 ×N2.
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Based on these results, it appeared that Julia had the more efficient imple-

mentation of sparse arrays. Therefore Julia was used for the Markov decision

process evaluations in Sections 3.2, 4.2 and 5.1 of Paper 2.

The p0 evaluations (in Sections 5.2 and 5.3) used the approximate algorithm

of Paper 1 [6, Section 3.3.2], which was written in Cython.

6.3 Paper 3

The slowest part of the algorithm in Paper 3 was the semi-continuous approx-

imation described in [8, Section 3.2]. This was designed to work with any

DE (differential equation) solver, so this was originally implemented in Mat-

lab, whose “ode45” DE solver [46] was more robust than anything available in

Python or Julia.

However, for very large population sizes (over N = 100, 000), this began

to run out of memory and run extremely slowly. On the other hand, a simple

Euler method DE solver ran comfortably up to the N = 2, 000, 000 used in the

paper. This was implemented in Cython, because the code was related to the

code used in [6, Section 3.3.2], which had been shown in Table 4 to perform

best in Cython. So Cython was used for the results presented in Paper 3 [8].

As with the Paper 1 [6], all random simulations were also run in Cython.

6.4 Summary

So in summary, almost all algorithms were written in Cython, because that

was tested to run the fastest and handle the largest population sizes. The only

exceptions were the Markov decision processes in Paper 2, which were written

in Julia, because Julia had the best handling of large sparse arrays.

All plotting was done in Python, using the Python Matplotlib package [32].
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6.5 Software online

A tar file has been created containing the source code for the algorithms de-

scribed in these papers. It is available online at:

https://figshare.com/s/b2c0f0adf76ff078448b
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7 Conclusion

We have presented three papers on the subject of the probability of epidemic

fade-out, particularly in the Markovian SIR-with-demography model, and we

believe we have made significant contributions in a number of areas.

First, we provided a definition of p0, the probability of epidemic fade-out

[6, Section 3.1], which appears not to have been done before.

In Paper 1 [6], we devised a novel, efficient, numerical evaluation method for

p0. We verified that it was more accurate than previously published estimates,

and faster than other methods.

This allowed p0 to be tested across a range of parameters. As a result of

that testing, we made the unexpected observation that p0 has a non-monotonic

relationship with β, the transmission rate parameter; and that p0 has a local

maximum in the region of R0 ≈ 2. We also provided an explanation for this.

This explanation tied with previous observations that epidemic fade-out is

related to the depletion of susceptibles, and we explained why this effect is

maximised in the region of R0 ≈ 2.

In Paper 2 [7], we used this non-monotonicity, and showed how to maximise

p0 if an intervention to control β is available. We showed how an almost optimal

policy can be distilled to a single formula – reduce β when (γ+µ)I < µ(N−S)

– which is both simple, and independent of the values of β. We also showed

that this policy is robust, in that a close-to-maximum p0 is obtained even if

this policy is only followed approximately.

Then in Paper 3 [8], we extended the techniques of the first paper, to ac-

count for time dependence in β; and applied this to influenza-like and measles-

like parameters. In particular, we noted that the local maximum in p0 occurs

at a larger value of R0, perhaps in the region of R0 ≈ 4 for realistic amounts
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of seasonal variation.

For future work, it would be good to extend both the method of calculating

p0, and the properties of p0, to more complex models. For instance, both the

inclusion of an “exposed” state (the SEIR model), and the modelling of the

infectious time with an Erlang distribution, produce more realistic epidemic

models [61]. These models have state spaces with more than two dimensions,

so it is likely that further approximations would be required, to extend the

techniques used in Papers 1 [6] and 3 [8]. If such extensions cannot be found, it

should still be possible to examine these models using Monte Carlo simulations.

It should also be possible to extend the optimisation work of Paper 2 [7].

There are at least two directions this may take. One would be to extend it to

more complex models such as those described above. It should be possible to

modify the almost-optimal policy formula for these models.

Another possibility would be to optimise a quantity other than p0, such as

the final epidemic size, with or without with some form of time discounting.

That is, are there circumstances under which one can withhold an intervention

(such as antivirals) and have the effect of reducing the final epidemic size? This

could have implications for the optimal response to an infectious outbreak. Or

even in cases where treatment cannot be ethically withheld, the techniques

could be used to analyse the reasons behind the size of an outbreak.

In conclusion, we have used mathematical, computational and modelling

techniques to extend our knowledge about epidemic fade-out. We believe these

analyses have enhanced the understanding of the processes behind epidemic

fade-out, and how to control it. We also believe it lays the ground for future

work in this area, towards the ultimate goal of people knowing how best to

respond to outbreaks of infectious diseases.
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