Unravelling polymetamorphism in east Antarctica using evidence from the Cape Denison Moraines, Terre Adélie Craton, and Gawler Craton, South Australia

Thesis submitted in accordance with the requirements of the University of Adelaide for an Honours Degree in Geology

Megan Alice Williams November 2015

UNRAVELLING POLYMETAMORPHISM IN EAST ANTARCTICA USING EVIDENCE FROM THE CAPE DENISON MORAINES, TERRE ADÉLIE CRATON, AND GAWLER CRATON, SOUTH AUSTRALIA

RUNNING TITLE: POLYMETAMORPHISM IN EAST ANTARCTICA

ABSTRACT

Polymetamorphic signatures in rocks can be difficult to deconvolve, especially where events have similar metamorphic grade. In situ and erratic samples from the Terre Adélie Craton, Antarctica, and in situ samples from the formerly contiguous Gawler Craton, South Australia, are examined to deconvolve microstructural, pressuretemperature and geochronological evidence of terrane-scale polymetamorphism. In situ monazite U-Pb geochronology shows that coastal and erratic samples record c. 1700 Ma and c. 2420 Ma ages, consistent with known ages of the Kimban and Sleafordian events, respectively. In situ samples from the Antarctic coast record exclusively c. 2420 Ma ages whereas most erratic samples from the glacial moraines at Cape Denison record only c. 1700 Ma ages. Phase equilibria forward modelling for the c. 2000 Ma Redbanks Charnockite uniquely constrains peak metamorphic conditions of the c. 1700 Ma Kimban Orogeny to 5.0-7.2 kbar and 700-860 °C. Peak metamorphic conditions of the c. 2420 Ma event are ~5-8.7 kbar and 690-1000 °C, as constrained by in situ samples from the Terre Adélie coast. As the peak pressure-temperature conditions for the two events are similar and the record of polymetamorphism is cryptic and spatially variable in the rock record, Antarctic samples that only record Kimban ages are interpreted as reflecting either a record of complete overprinting of the older (c. 2420 Ma) event, or that the rocks are younger than the c. 2420 Ma event. In such a situation polymetamorphism at a terrane scale may only be detected by differences in geochronological data. This study serves to highlight the careful approach required when investigating polymetamorphic terranes and argues that a spatially variable record of overprinting metamorphism is possibly related to locations of retrogression occurring either in the waning/exhumation stages of the earlier event or between events.

KEYWORDS

polymetamorphism; Antarctica; Mawson Craton; high-grade metamorphism; U–Pb geochronology; pseudosection; Cape Denison

TABLE OF CONTENTS

List of Figures and Tables	2
Introduction	3
Geological setting	6
Analytical Methods	11
Geochronology	11
Bulk-rock and mineral chemistry	12
Bulk-rock chemistry	12
Mineral chemistry	13
Phase equilibria modelling	13
Results	16
Metamorphic petrography and sample selection	16
In Situ samples	19
Redbanks Charnockite	
Erratic samples	
Monazite LA-ICP-MS U-Pb geochronology	
Bulk-rock chemistry	
Element maps	
Pressure-temperature forward models	
Discussion	42
Geochronology	
Polymetamorphism – age constraints	
Polymetamorphism – Metamorphic constraints	
Reworking of granulite facies rocks	
Conclusions	53
Acknowledgments	54
References	54
Appendix A: LA-ICP-MS monazite U-Pb geochronology standard analyses	60
Appendix B: Mineral chemistry	77
Appendix C: T–X forward models	80
Appendix D: LA-ICP-MS monazite U-Pb geochronology sample analyses	86
Appendix E: Bulk-Rock Geochemistry	

LIST OF FIGURES AND TABLES

Figure 1: Reconstruction of the Mawson Craton	. 5
Figure 2: Time-space plot of the Mawson Craton	. 9
Figure 3: Ice flow and geophysical interpretation maps of the eastern part of the	
Mawson Craton, Antarctica, and the Phanerozoic Ross–Delamerian Orogen	10
Table 1: Summary of mineralogy and analyses for all samples	16
Figure 4: Hand sample and field photographs	18
Figure 5: Photomicrographs of key petrological relationships	23
Table 2: Summary of results from monazite LA-ICP-MS U-Pb geochronology	26
Figure 6: In situ monazite LA-ICP-MS U-Pb geochronology for in situ samples	27
Figure 7: In situ monazite LA–ICP–MS U–Pb geochronology for erratic samples	
AAE100, AAE162A, AAE526, AAE526A and AAE612	28
Figure 8: In situ monazite LA–ICP–MS U–Pb geochronology for erratic samples	
AAE801, AAE813, AAE907 and AAE1233	29
Figure 9: In situ monazite LA-ICP-MS U-Pb geochronology.	30
Table 3: Bulk-rock chemistry used for phase equilibria forward modelling	31
Figure 10: Electron microprobe elemental X-ray maps of AAE784	33
Figure 11: Electron microprobe elemental X-ray maps of AAE907	34
Table 4: Summary of results from <i>pressure-temperature</i> forward models	35
Figure 12: Calculated <i>P</i> – <i>T</i> forward model for sample AAE784 from the Cape Gray	
Gneiss.	36
Figure 13: Calculated P-T forward model for sample AAE980 from the Stillwell Islan	ıd
Metapelite	37
Figure 14: Calculated $P-T$ forward model for sample RB2012-02 from the Redbanks	
Charnockite	38
Figure 15: Calculated $P-T$ forward model for sample RB2012-03 from the Redbanks	
Charnockite	39
Figure 16: Calculated <i>P</i> – <i>T</i> forward model for sample AAE907, erratic from Cape	
Denison	40
Figure 17: Calculated <i>P</i> – <i>T</i> forward model for sample AAE1233, erratic from Cape	
Denison	41
Figure 18: Shoal Point geological map	46
Figure 19: Schematic diagram showing potential problems with inferring P-T paths in	1
reworked terranes.	48
Figure 20: Summary of <i>P</i> – <i>T</i> constraints from forward models	50