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Abstract 

Real time, in-situ quantitative detection of the metals is important for many applications 

such as industrial processes for the quality control, mining for the quick scan of rocks 

samples, monitoring of the heavy metal contaminations for the pollution control and real-

time analysis of the agriculture land for nutrients monitoring and fertilizer selection. Laser 

Induced Breakdown spectroscopy (LIBS) being able to offer quick response and multi-

elemental analysis without sample preparation, can meet these requirements. As most of 

the mentioned applications involve detections of the trace metallic elements, thus LIBS is 

desired to deliver quantitative measurements with high sensitivity and improved limit of 

detection. Despite of inheriting some excellent features, LIBS suffers a few limitations such 

as low Signal to Noise Ratio (SNR), weak limit of detection and low sensitivity. Several 

methods have been suggested in literature to improve the performance of conventional 

LIBS, which are based on the concept of aiding LIBS by a secondary source of energy. 

Microwave-assisted laser induced breakdown spectroscopy (MW-LIBS) is one of these 

improvement methods, which has immense potential to be considered as a reliable 

analytical technique due to high sensitivity, improved SNR and limit of detection. However, 

further improvement in the performance of MW-LIBS is desired for the reliable quantitative 

metal detections at low concentration while offering high sensitivity.   

This research is amid to investigate the improvement of MW-LIBS using two different 

approaches. This first is to improve the plasma emission detection by single elemental 

imaging and the second is to improve the microwave injection by a well-designed near field 

applicator (NFA).  

Indium in solid matrix was used to investigate the improvement in emission detection by 

single elemental imaging. A narrow bandpass filter was used to select the elemental, 

indium emission at 451.13 nm. This narrow bandpass filter was attached with an ICCD 

camera to investigate the response of imaging based detection technique at various, laser 
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and microwave powers. Variation in image intensity at several concentrations of indium 

and evolution of plasma at various microwave powers, was also investigated. Spectral 

detection was carried out simultaneously with narrow-band imaging to study the extent of 

improvement in sensitivity. Outcomes demonstrated that imaging technique offers 14-fold 

improvement in sensitivity following enhancement by microwave radiation, as compared 

to spectral detection in LIBS with no microwave enhancement. Microwave injection devices 

such as NFA, being the main component to inject the microwave radiation into the laser 

ablated plasma, is the most important part of MW-LIBS system, hence defines the 

performance of the entire MW-LIBS setup. Therefore, having an efficient NFA can 

considerably improve the signal quality and detection capabilities of MW-LIBS. Considering 

the importance of an efficient NFA, four designs of NFAs were simulated using the 

characteristics of available setup, simple isolation techniques such as quarter-wave choke 

and a finite ground plane were used. These designs were fabricated and tested in the MW-

LIBS setup for the copper detection in a solid sample. Spectral detections and broadband 

plasma imaging were carried out simultaneously to investigate the effect of various NFA 

designs on the signal quality, size of the plasma and improvement in the detection limit for 

the existing MW-LIBS setup. From the experimental results, it was concluded that the 

design D having a finite ground plane of 30 mm diameter performed better than the rest, 

using this design D a signal enhancement of 849 times was achieved. While 79–fold SNR at 

2.6 mJ/pulse laser and 1.2 kWatt microwave power, was observed. By using design D of 

NFA, ore sample having certified copper concentration of 3.38 ppm was detected with the 

166 SNR. 

The demonstrated high SNR, presents the possibility of detecting sub parts per million in 

future. 
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Chapter 1 Introduction 

1.1 Background 

In-situ and quick quantitative detection of metals is very important in many applications 

such as industrial processes, mining and environmental analysis [1-5]. In industrial process, 

it can be very important to detect the in-line compositions of various metallic elements to 

maintain the quality or continuous analysis of effluents to comply with the environmental 

regulations. Similarly, detection of precious metal such as gold in soil, or quick and remote 

detection of various other metals of interest in ores samples from mines, is also very 

important. Detection of heavy metals in soil and in water bodies is also another important 

aspect due to rising health concerns, as heavy metals being one of the major cause of soil 

and water pollutions are required to be monitored continuously. However, conventional 

metal detection methods involve sample collection, pre-treatment and laboratory 

procedure which are often costly and time consuming.  

Therefore, to meet these highly versatile analytical demands of quantitative detection of 

metals, it is highly desirable to use a quick, versatile and remote analytical method such as 

laser induced breakdown spectroscopy (LIBS). LIBS can meet these requirements due to its 

proven analytical qualities such as quick response, no sample preparation, multi-elemental 

detection and ability to analyse gas, liquid and solid samples [6, 7].  

LIBS is a branch of atomic emission spectroscopy, which is based on the creation of the 

plasma on the surface of a target substance, by using a laser source. This laser ablated 

plasma contains atoms, ions and free electrons in excited state at very high temperature in 

the range of 1000-15000K [8]. During the cooling process, these excited atoms and ions 

emit unique characteristic radiations which can be spectrally resolved by a spectrometer 

and CCD array, for qualitative and quantitative measurements. A typical LIBS set-up can 
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consist of a laser source and emission detection channel involving spectrometer, fibre 

optics cable and an ICCD camera. The collected signals are plotted as, intensity as a function 

of wavelength by the software connected to the spectrometer and CCD detector. As each 

element in the periodic table emits radiation at a specific wavelength hence constituent 

element can be identified from the emitted wavelength, following the spectra data base 

lines such as NIST [9]. The quantitative measurement can be carried out by developing 

calibration curve from the sample of known concentration using similar matrix. LIBS is being 

studied from more than 40 years, but prior to 1980’s scientists were mostly interested in 

basic physics of plasma formation [10]. A few instruments based on LIBS were developed 

but have not found widespread [10], because early LIBS systems were considered to be 

overly complicated, limited in spectral coverage, bulky and expensive with very specific 

applications in the laboratory.  

Due to advancements in spectroscopic and laser technology, LIBS operation has been 

simplified. In addition to this, availability of compact high-performance lasers, evolution of 

high-resolution and sensitive intensified-CCD arrays, development of compact, low-cost, 

high-resolution spectrometers and analytical software, LIBS systems have become more 

affordable and versatile [11]. LIBS can outperform conventional analytical techniques due 

to very promising feature such as quick response, no sample pre-treatment and multi-

elemental detection. Which means that it can generate results within fraction of seconds 

without sample collection and treatment, hence can be very helpful for in-line 

measurements, in continuous production facilities.  

Multi-elemental detection capability is the most interesting feature of the LIBS which 

enables this method to identify all constituent species of a sample without changing 

analytical setup. In addition, LIBS can also be used to analyse all sorts of samples, for 

example gas, liquid and solid, as being a contactless method switching between material is 

easy and precise without fearing chances of contamination. These feature makes LIBS a 

strong competitor for many practical applications such as: space and underwater 

exploration, heavy metal detection and ore identification in mining. 
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However, some limitations of shorter plasma life, low sensitivity for low elemental 

concentration, poor limit of detection and weak SNR, make LIBS fall behind from other 

analysing techniques. Due to these limitation, LIBS is not yet being considered as a 

mainstream analysing method. However, in recent past various improvement methods, 

double laser pulse, spark discharge, flame/torch, steady magnetic field, spatial 

confinement, and MW-LIBS [7], have been proposed basing the concept of aiding 

conventional LIBS by a secondary source of energy. The first five mentioned improvement 

techniques, either can make conventional LIBS system costly, difficult to align and control 

or may not offer significant improvement. While, the MW-LIBS is more convenient and 

cost-effective improvement technique, which relies on the idea of coupling the microwave 

radiation in the laser generated plasma.  

MW-LIBS offers a noticeable enhancement in the emission signals by a factor 1~1000 [8] 

depending on sample type however, further work is required to improve sensitivity and 

limit of detection, so that MW-LIBS can be presented as a reliable analytical technique to 

carryout qualitative metallic detection for trace concentration with high precision. Till 

present all studies are based on the concept of enhancing and retaining LIBS signal by 

adding another energy source in the conventional setup. No improvement technique based 

on the alternative emission collection method has been proposed. The microwave 

radiation influences the laser ablated plasma in two ways first, the plasma life time 

increases second, the spatial dimensions expand. The considerable enhancement in plasma 

dimensions will make emission out of focus therefore, the coupling of all emission into the 

fibre optics cable is not possible. While it is also believed that the emission signals are 

reduced as they travel from plasma to spectrometer through fibre optics bundle and series 

of other optics. Hence by reducing this signal loss and capturing all plasma emission MW-

LIBS performance can be improved. 

In addition, NFA being the main component of microwave injection system can affect the 

performance of MW-LIBS setup in many ways such as, an efficient well-designed NFA can 

impart considerable improvement through effective transmission of the supplied power 

while minimising the reflection coefficient and then efficiently radiating this transmitted 
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power by inducing a concentrated localised electric field. In this project, improvement in 

MW-LIBS system have been suggested by two separate means: I) proposing an alternative 

emission collection method such as based on narrow bandwidth imaging technique to 

minimise the emission loss II) improving microwave injection system by a well-designed 

NFA. 

1.2 Objective and Aim of the Project 

Aim of this project is to improve sensitivity and detection limit of the MW-LIBS by 

overcoming the still present shortfalls. As sensitivity and Limit of detection are the two 

maintain concern in LIBS, which are required to be addressed, to develop MW-LIBS as a 

reliable analytical method. Hence, the improvement in sensitivity has been suggested by 

improving the emission collection and microwave injection systems. An alternative 

collection method i.e. single elemental imaging has been suggested, which consists of a 

narrow band customised filter and an ICCD camera. This elemental imaging system, due to 

its large field of view offers more sensitivity and temporal elaboration, by presenting 

plasma images. This novel technique is simple, relatively cheap and compact, as its 

comprises off less optical instruments. 

Microwave injection system has been improved by designing and then testing five designs 

of microwave near field applicators, keeping the first design as reference. Spectral 

detection and broad plasma imaging was also carried out simultaneously to study the 

extent of improvement. 

Aims of the thesis are as follows: 

• To improve sensitivity and signal quality of MW-LIBS by a novel emission collection

method i.e. elemental imaging.

• To improve the sensitivity and limit of detection of MW-LIBS by developing an

efficient near field applicator for the efficient microwave injection in LIBS.
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1.3 Thesis Outline 

This thesis has been written in conventional narrative form. 

Chapter 1: Introduction: it contains introduction of the thesis containing background, 

research gaps, aim, objectives and outline of the thesis. 

Chapter 2: Literature review: This chapter contains work done so far, research gaps and 

prospects of this project. 

Chapter 3: Quantitative Metal Detections by Elemental imaging: it is the technical chapter 

which demonstrates improvement in MW-LIBS by elemental imaging of indium in solid 

samples. This chapter contains background, experimental setup, results and discussion and 

summary. 

Chapter 4: LIBS Enhancement by Efficient Microwave coupling: This chapter contains 

background, experimental setup, results and discussion and summary. 

Chapter 5: Conclusion: it contains conclusion of thesis, prospects and recommendations. 



6 

Chapter 2 Literature Review 

Analytical detection of elemental metals has very wide range of applications in industrial 

processes, mining, agriculture and environmental monitoring. Fast inline continuous 

monitoring of production process is a matter of major concern in many industrial 

applications to control and optimize the process, where a quick, versatile and contact less 

detection method such as LIBS can improve the performance of system while saving time 

and cost. Similarly, fast detection and identification of minerals from rock surface and drill 

core samples is highly desirable, LIBS being able to offer quick scan of samples for all 

constituent elements makes conventional, time consuming and costly laboratory based 

methods, a second choice in rapid decision making [2]. In addition, detection of metals 

(nutrients and heavy metals) for agriculture and environmental monitoring is very 

important, for example identification of nutrients in soil for agriculture sites is very 

important for the selection of type and strength of fertilizers. The most common process 

of soil analysis, involves sample collection by farmers, submission of those samples in 

specialized soil analysis laboratories and collection of results after 2-3 weeks. This lengthy, 

time consuming and costly procedure cannot offer real time monitoring of nutrients and 

hence optimization of fertilizer patterns is not possible, therefore application of portable 

LIBS can be very useful in this field [1]. Heavy metals on the other side are considered as a 

major cause of land and water pollution, these heavy metals also include metalloids such 

as arsenic which can cause toxicity even at very low level of exposure.  

Recently, due to increased use of these toxic metal in industrial, agriculture, domestic and 

technological applications, environmental and health concerns have increased as these 

heavy metals are ending up as contaminants in land and water bodies [5]. Pollution by 

these elemental is at elevated levels in the surroundings of mining, foundries, smelters and 

other metal processing industries. These metals also occur naturally in the earth crust 
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however most of the exposure and environmental contamination are caused by the 

aforementioned sources, therefore requires a compact, fast analysing method for better 

monitoring and control. LIBS because of, having the inherent desired qualities can be a 

potentials solution to this problem.  

2.1 Laser Induced Breakdown Spectroscopy 

Laser induced breakdown spectroscopy utilizes laser pulse as a source of excitation and 

creation of a tiny plasma on the surface of the analyte. The plasma contains atoms and ions 

of the whole matrix of the target element at very high temperature. When these elements 

cool down each of these elements, emits characteristic radiation. The radiation can be 

resolved spectrally for quantitative detections. Figure 1 presents a typical LIBS setup where 

a focussed pulsed, Nd: YAG laser beam creates plasma on the solid surface, the plasma is 

then resolved by a spectrometer and CCD detector, which is synchronized with the laser 

pulse. The captured emission intensity is plotted as a function of wavelength by the 

Figure 1: Laser Induced Breakdown Spectroscopy Setup 
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software connected to the CCD detector. Atomic emission data base such as NIST [9] can 

be used to identify the elements from the wavelengths of captured spectra.  

The emission from plasma consists of many spatial regimes as shown in fig. 2, which has 

the plasma emission lifetime plotted against optical emission intensity. The plasma 

emission just after the laser are dominated by continuum/white light and doesn’t contain 

much information about the species, as the variation in intensity with wavelength is very 

small, during this time emissions from atoms and ions also exist but small concentrations 

and trace elements are suppressed by strong continuum light. Therefore, it is necessary to 

have a gated detector such as ICCD camera with spectrometer to avoid strong light by 

delaying the detection time. The very fast gating function of the detector is also very 

important due to the short plasma life-span, which varies from a few to hundreds of micro-

seconds depending on the experimental conditions, such as laser power and nature of 

target sample [7].  
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Figure 2: Time lapse after laser firing vs optical signal intensity [10].td is the delay time 

and tb gate pulse width. 
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2.2 Instruments and Optical Components 

Performance of LIBS is very dependent on the optical components and instruments 

involved in a typical LIBS setup. For example, several diverse types of lasers with different 

properties are commercially available which can be used in LIBS, hence can affect analytical 

characteristics of LIBS, due to different laser-material interactions. In general laser power 

should be higher than the ablation threshold of the material, being tested in serval order 

of magnitude to record reasonably strong signal, since the mass of the ablated plasma is 

very important factor in this respect. As ablation threshold varies with the material being 

tested therefore, trial and error may be required in conventional LIBS to find out optimum 

laser power for a material, usually for conventional LIBS setups laser power requirement 

are high such as tens of mJ/pulse for a properly focused beam (focal diameter 1-200 μm) 

[12].  

Generally, Q-switch controlled laser beam having ns-pulse duration is considered the 

optimum selection for LIBS in terms of achieving better limit of detections(LoD). Studies of 

various laser pulses reveal that ultra-short (femto-second) laser pulse generate more 

sample ablation in stochiometric term, which consequently results in better spatial 

resolution and thus more accurate analysis [11]. The femto-second pulse can have an 

impact on the analytical capabilities of LIBS in future however, currently it is a matter of 

discussion that whether to replace the compact robust ns-laser source with heavier and 

costly fs-lasers or not as because, one of the LIBS’s development aim is to make compact 

LIBS device for in-field and remote measurements.  

Variation in laser wavelength can affect performance of LIBS therefore selection should be 

made considering the material being tested [13] for example UV is good for ceramics, 

metals and stones while for water analysis, due to strong absorption in UV and IR region, 

selection of visible wavelength would be favorable. Spectrometer being the only analytical 

component of the whole LIBS setup, outlines the measuring capabilities of the whole setup, 

hence should be robust with fast synchronizing ability. Spectrometer for LIBS should have 

a good spectral coverage for example from UV to visible section and resolution for atomic 
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spectroscopic standard. The detector in the spectrometer should be sensitive with fast 

gating function to provide good signal-to-noise (SNR) and should be able to offer analysis 

at low limit of detection. These requirements are usually closely met by charge-coupled 

detector array (CCD) spectrometer or gated intensified CCD camera(ICCD) spectrometers. 

CCD array based spectrometers are more robust, sensitive and offer better SNR but have 

poor resolution and cannot go in nano-second gating, while Echelle ICCD camera 

spectrometers are bulky with moderate SNR but offer excellent time and resolution.  

Usually ICCD camera spectrometers are used in laboratory setups for research, while CCD 

spectrometers are mostly used for remote application or for routine analysis. Other optical 

components of the LIBS setup can consist of diversion mirrors, focusing lenses, fiber optics 

bundle which make the laser focusing and signal collection channels and can be found in 

various geometric configurations in various LIBS setups, however in recent years 

introduction of fiber optical bundle in LIBS setup have become common which has 

increased the flexibility of the LIBS system [9].  

2.3 Quantitative Detections by LIBS 

LIBS’s use for analytical purpose was started in 1980[10] to analyze hazardous aerosols and 

for diagnostic in nuclear power industry, in 1992 portable units were developed for surface 

analysis in remote conditions, in 2000 LIBS was used by NASA on MARS [10]. In terms of 

analytical measurements LIBS has some excellent features such as no sample preparation, 

versatility, quick response, multi-element detection. LIBS offer impressive results in 

qualitative or comparative detections however its quantitative abilities are considered to 

be moderate and needs to be improved in various aspects which will be discussed later in 

this chapter. Quantitative detections by LIBS can be carried out by calibrating the system 

with the standard calibration curve from same material matrix. LIBS can response 

differently for different matrix due to, non-linear laser material interactions and variation 

in the ablation threshold, during ablation and vaporization process. This phenomenon is 

also called as matrix effect, which means LIBS can response differently for same elemental 
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concentration if surrounded by varied materials. Matrix effect is also a limitation for 

quantitative detections as most of the time standard calibration curves are not available 

for many practical applications, in that case calibration curve needs to be developed [14], 

by recording spectra of known concentration of elements keeping the matrix same. 

Intensities from these spectra are then plotted as a function of concentration for the 

elements of interest, to develop a calibration curve for future quantitative detections. This 

often leads to complex analytical procedure and sample preparation but once the 

calibration curve is developed for a specific application, detection becomes fast and easy.  

Various other calibration methods to minimize the matrix effect have also been proposed, 

for example C. Chaleard [15], has reduced matrix effect by normalizing the emission signals 

by vaporization mass and plasma excitation temperature. Electron density and excitation 

temperature has been used to introduce a calibration model [16]. Some other calibration 

methods like emission lines of internal reference elements [17], powder surface densities 

[18], statistical methods based on artificial neural network [19], partial least square and 

wavelet-transform hybrid model[20] and principal component analysis [21], have been 

used significantly to reduce matrix effect. Calibration free laser induced breakdown 

spectroscopy has also been proposed (CF-LIBS) [22, 23]. Recently Lijuan Zheng [24] has 

demonstrated absence of matrix effect in conventional LIBS for analysis, with the surface-

assisted solution analysis configuration.  

LIBS offers decent limit of detection in pico-femtogram range which can further be 

improved by various means, Which means that LIBS these days can offer similar 

performance as that of bulk sampling technique such as sampling (AAS, ICP-OES, XRF, and 

ICP-MS [25, 26]) or solid micro sampling (μ-XRF, LA-ICP-MS [27, 28] ) techniques while 

having the added benefits of quick results and no sample pretreatment. LIBS being a 

nondestructive, contactless technique can be very beneficial for in-line measurements in 

process industry such as for quality control, where one laser generated spark can be 

examined for all constituent elements. Being compact LIBS can be used for unconventional 

remote measurements such as space and undersea explorations. Prominent applications 
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of LIBS are in many important fields such as biomedical, environmental, agriculture, 

industrial processes and nanoparticle technologies. 

For instance, LIBS is being used widely in bio-medical and biological applications, this 

branch of LIBS is also known as  bio-LIBS [7]. The reason of this increased use in this field is 

generally because LIBS is contactless, non-destructive, reagent-less technique, which can 

also be easily coupled with microscope making it feasible and convenient to incorporate 

into medical equipment. In addition, LIBS can generate localized or mapping type analysis, 

in this field performance of LIBS is excellent as most of the analysis in biomedical field are 

of qualitative in nature. The most studied application of bio-LIBS is the identification of 

pathogens using multivariate chemometric methods. Bio-LIBS is being applied to soft tissue 

for various studies from more than 7 years, for identification of bacteria, viruses, spores, 

tissue classification, human bones, teeth and various stones in human body such as 

gallstones, cholesterol stones and kidney stones [7, 29, 30]. Bio-LIBS is also being used for 

kidney diagnostics, blood, urine, hair, fingernails and teeth analysis.  

For environmental and geological analysis, the major attraction is that the LIBS setup can 

be developed as a portable device, which can be flexible in term of sample presentation 

and can generate quick results, remotely, making LIBS a very convenient tool for rapid 

decision making. In many studies, LIBS has been employed for analysis of soil, minerals, 

aerosol and water [31].  

Most of the soil analysis involving LIBS are based on carbon detection, which presents 

heath and activity in soil and considered as one of the major factor affecting the global 

climate. Hence in this field, most important aspect of research is to develop a compact 

mobile technique such as compact LIBS, to measure total: organic and inorganic carbon 

and degree of humidification in soil. LIBS can also be very useful to study the toxic elements 

(heavy metal) and nutrients in soil which can be very important for farming. However, at 

present soil analysis results from LIBS indicate that due to the highly heterogeneous nature 

of soil, quantitative results often are affected by matrix effect for instance many soil 

samples are rich with iron (Fe) and aluminum (Al) hence spectral interference from these 
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components prevent use of intense carbon lines at 247.86nm and 193.03nm specially in 

case of low resolution portable spectrometers.  

LIBS is also very useful in geochemical fingerprinting, quantitative and qualitative studies 

on rock types are also available in LIBS literature. Analysis of aerosol is an important field 

in LIBS applications and is one of the oldest application, yet the complete understanding of 

the process involved was developed only in the past decade. A few important studies in 

this field are based on the development of methods for more efficient particle collection 

on a substrate [32], differentiation between gas-phase and particulate analytes [33], and a 

comparative study of heavy-metal concentrations in Asian dust and local pollution events 

[34]. 

Water analysis by LIBS for environmental purpose is also an important field however, it is 

difficult to apply LIBS on liquid samples due to presence of free surface, micro air bubbles 

and suspended particles within the liquid which cause focusing problem and emitted light 

collection is obstacle by the liquid, as plasma being within the liquid layers. In addition, 

extra quenching on plasma results in lower plasma temperature, week emission signals, 

short plasma life time and small plasma size[35]. These problems can be overcome by 

soaking water in sorbents such as paper or wood to create a solid matrix however detection 

limits are week 0.1-1mm [7], which prevent LIBS to be used for monitoring of water quality. 

However, LIBS can be used for waste water or industrial effluent analysis such as for 

continuous monitoring. Use of LIBS in industrial processes is attractive but the LIBS setups 

are required to be specialized with customized instrumentation to meet the harsh fast 

phased highly automated environment. Most of the industrial applications of the LIBS 

include analysis of alloys, plastics, waste, ceramics, glasses and detection in nuclear plants. 

Analysis of coal and fly-ash by LIBS in also an important application for coal based power 

plants. LIBS appears to be an excellent match for steal industry, where continuous 

monitoring of the constituent elements at various stages of production process, give vital 

information about the quality of the product and raw materials. An analytical system based 

on LIBS for the on-line analysis of iron ore for pelletizing plants was developed. This LIBS 

based instrument successfully performed measurements of Si, Ca, Mg, Al, and graphitic 
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carbon contents, in different iron ore slurries prior to filtration and pelletizing [36]. A 

automated computer system for fixed interval analysis was also developed and connected 

with LIBS based equipment which offered analysis in less than five minutes for each sample 

[37]. Performance of coal fired boilers is highly dependent on the properties of coal and 

combustion parameters, for optimal performance, continuous analysis of coal samples is 

required to optimize the combustion parameters. LIBS technique has been used widely for 

the compositional analysis of coal [38, 39]. A nonlinearized multivariate dominant-factor-

based partial least-squares (PLS) model was applied to coal elemental concentration 

measurement using LIBS [40]. Analysis of fly ash for the determination of unburned carbon 

is also an important application of LIBS, for the estimation of combustion efficiency. 

Software controlled system based on LIBS, has also been used in power plants for 

combustion control, by continuous monitoring of coal samples and fly ash [36, 41]. 

Automated LIBS system has also been applied in boiler control system for power plants, to 

achieve efficient and stable combustion [42].  

The nuclear power plants are a source of clean and cheap energy however, safe process is 

very important as radioactive contamination can be a very serious threat to the 

surrounding environment and human resource working, in these facilities. Radioactive 

waste from nuclear power plants, nuclear weapon testing and waste of radioactive 

substances used in research can be a serious concern, in terms of soil, water and 

atmosphere contamination [36, 43]. LIBS has been studied as a potential analytical tool to 

improve the operations and safeguards for electro refiners such as those used in processing 

spent nuclear fuel [44]. LIBS has been employed for the investigation of spatial and 

temporal evolution of uranium and other nuclear materials is laser ablated plasma.  

Optimum operating conditions for the detection of small concentration of uranium has also 

been investigated for LIBS [59]. In mining detection of rock and drill core samples for quick 

identification of elements helps rapid decision making, hence a potential application of LIBS 

can be, analysis by a compact remote LIBS system to, generate quick in-situ results. Navid 

et. al. [2] proposed a simple statistical analytical technique for mineral identification from 

the elemental results of LIBS.LIBS was used for calibration and to generate complimentary 



16 

information for the other, fast scanning method such as Laser Induced Fluorescence 

Imaging. In this study suitability of detecting multiple elements in one spectrum was 

presented and application of LIBS was discussed for sorting purposes. M.Gaft et. al. [45] 

developed a machine based on LIBS and performed on belt evolution of phosphate 

measuring Mg, Fe, Al, Bone Phosphate Lime, insoluble phase, the metal impurity ratio and 

coal analysis for ash measurement. The LIBS results, when compared with control analysis, 

a good correlation was observed. The frequent analysis data was generated by LIBS system, 

which proved to be very helpful for the optimization of processes such as, minerals 

blending, separation of materials and quality control for mineral processing. Olli et. al. [46] 

applied LIBS for on line analysis of drill core samples, drill core samples of a gold mine from 

Finland were used for analytical purpose. 

Heavy metals are considered as a potential source of soil and water pollution. The waste of 

industrial and mining process, shipping activities can cause ocean and river contamination, 

resulting negative impact on the biological life. The contamination of soil is a serious threat 

for human life and agriculture activities [3]. Continuous monitoring of heavy metal 

contamination is soil and water has many potential applications, which are as versatile in 

nature as other application involving LIBS. Anna et. al. [3] has applied LIBS for detection of 

heavy metals such as chromium, zinc, lead, and copper in sand matrix. 

LIBS is also being implemented in healthcare, food and other consumer based industries 

for quality control purposes. For example, wheat, milk powder, gelatin, breakfast-cereals, 

bakery products, hair dyes, telcum, coffee, toys and tobacco were analyzed to estimate the 

presence of toxic elements and heavy metals. Food such as rice, spinach, olive oil, apple 

was successfully tested for organic contaminations such as pesticides or salmonella [7]. A 

decent amount of publications in literature are available on the use of LIBS in nanoparticle 

monitoring, in various applications such as detection of nanoparticles in gas phase 

[47].Some portable instruments for field based detections of nanoparticles in aqueous 

solution have also been developed[48]. Even the enhancement in LIBS by nanoparticle has 

also been reported by De Giacomo et. al. [49]. The nanoparticle enhancement LIBS (NELIBS) 

is based on the concept of deposition of a nanoparticles on the surface of the solid sample 

http://www.sciencedirect.com/science/article/pii/S0584854707003485#!
http://www.sciencedirect.com/science/article/pii/S1474667016312903#!
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for analysis [49]. In this study, the signal enhancement of 1-2 orders of magnitude, in LIBS 

signals was observed by depositing sliver nanoparticles on the surface of metal samples. 

Authors purposed this technique as suitable for metal detections as concentration and size 

of nanoparticles do not affect LIBS emission signals, if within the range of around 1nm for 

diameter and 1 order of magnitude for concentration. However, no considerable 

enhancement in signal was observed for semiconductors and insulators. 

2.4 Qualities and Limitation of LIBS 

In-spite of having excellent features such as quick response, multi-element detection, 

information richness and no sample preparation. LIBS is not yet being considered as a 

mainstream analytical technique for sensitive quantitative measurements due to a few 

drawbacks such as, poor detection limit, week signal to noise ratio, low signal quality for 

low concentrations, matrix effect and loss of information due to short plasma life [6, 7, 11]. 

As most of the quantitative detections specially those involving metals, require detection 

of trace or very low concentrations in complex matrix conditions. Hence it is very important 

to improve performance and quantitative detection capabilities of LIBS by various mean, 

for the development of reliable detection equipment based on LIBS. Literature has many 

studies suggesting various methods for the improvement of conventional LIBS system, 

which are mainly based on the concept of coupling another energy source into the laser 

ablated plasma for the improvement in sensitivity and signal quality. 

2.5 LIBS Improvement methods 

Limitations of conventional LIBS can be eliminated or reduced by adopting following 

improvement techniques. 

• Double laser pulse LIBS

• Spark Discharge assisted LIBS

• Flame /Torch assisted LIBS
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• Spatial Confinement assisted LIBS

• Magnetic Confinement assisted LIBS

• Microwave assisted LIBS

2.5.1 Double Laser Pulse LIBS 

One of the proposed methods, is to improve performance of LIBS by using double laser 

pulse approach as shown in fig. 3. In this technique one pulse ablates the plasma on the 

sample surface while the second pulse enhances and retains the plasma. The purpose of 

the double pulse approach is to increase performance of conventional LIBS by achieving 

better coupling of the laser energy to the target and ablated material, leading to better 

production of the analyte atoms in an excited state. It was expected that the improvement 

in analytical capabilities of LIBS could be achieved by the double pulse laser configuration 

without any loss of reliability. The double pulse approach was first suggested by Piepmeier 

and Malmstadt in 1969 [50] and Scott and Stroheim in 1970 [51] (aluminium alloy samples 

in air). They suggested that, because a large portion of laser energy is absorbed by the 

plasma plume, the second laser pulse could lead to further excitation of species in the 

plasma. In 1984, Cremers et. al. [52] performed a detailed study of the possible applications 

of the laser double pulse technique for analytical purposes. In this study, the authors 

demonstrated the greatly increased emission intensities of elements during the bulk 

analysis of transparent liquids. The double pulse technique has been found in several 

configurations: various geometries (fig. 4) of laser beams, different collection geometries, 

different laser wavelengths and pulse durations, various pulse energies. In some studies, 

the double pulse configuration was realized with a single laser, while other studies used a 

two-laser configuration. The two-pulse technique offers more flexibility in the 

configuration arrangement, the choice of pulse energy, and the delay between pulses.  
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  Figure 3: Double laser pulse LIBS setup with two laser configuration 

Single laser based double pulse LIBS systems are simple and easy to align but offer very 

limited variation of pulse energies and the delay between laser pulses [53]. Various double 

pulse configurations are presented in fig. 4. Two main suggested beam configurations, for 

the double pulse LIBS system are collinear and orthogonal. In the collinear case (a) both 

pulses have the same axis of propagation and are directed at right angle to the sample 

surface. The orthogonal configuration has 2 further sub classifications such as orthogonal 

re-heating (b) and orthogonal pre-ablation (c). In the case of the orthogonal re-heating 

mode, the first pulse irradiates the sample and the second re-heating pulse propagates 

parallel to the target surface. For the orthogonal pre-ablation configuration, the first laser 
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pulse irradiates parallel to the target surface generating a laser induced plasma above the 

target, and the second ablative pulse is directed orthogonal to the target surface. From the 

practical point of view, the collinear configuration is the simplest approach for the  

Figure 4: a) Collinear.  b) Orthogonal re-heating. C) Orthogonal pre-ablation. d) Crossed 

beam, laser configurations. 
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realization of the double pulse technique. Currently, it represents the only geometric 

configuration for stand-off double pulse LIBS applications [53]. 

The combination of femtosecond (fs) and nanosecond (ns) laser pulses in orthogonal 

configurations was also investigated by Scaffidi et. al. [54] and possible configurations were 

studied, fs-pulse parallel to the sample surface in pre-pulse mode or in re-heating mode, 

and ns-pulse parallel to the surface in pre-pulse or re-heating mode. For the studied 

wavelengths and pulse energies, it was found that the ns-pulse is much more effective in 

the re-heating mode. Later, Scaffidi et. al. [55] reported the enhancement of both material 

removal and emission intensity in the double pulse orthogonal configuration with a 

femtosecond pre-spark pulse and a nanosecond ablation pulse. This orthogonal 

combination yields eight-fold and ten-fold increases of material removal for brass and 

aluminium, respectively. The observed increase in the emission enhancement factor was 

3–4-fold [50]. 

Double Pulse (DP)-LIBS have been used in many applications such as, reheating DP 

configuration was applied by Hai et. al. [56] for the laser cleaning process of mirror(HL-2A 

tokamak). The first laser pulse with low energy removed the surface impurities while 

second pulse was used for the analysis. Oba et. al. [57] analysed gadolinium oxide (Gd2O3) 

pallets by two orthogonal configurations of DP-LIBS. The reheating laser configuration 

demonstrated 25-fold enhancement while no enhancement was observed for pre-ablation 

configuration. Labutin et. al. [58] analyzed chlorine, sulfur and carbon in concretes with 

two collinear DP- LIBS configuration. Many environmental studies based on DP-LIBS, are 

also available in literature such as monitoring of pollutant [59], analysis of polluted soils 

samples, lead determination of soil samples and estimation of sulfur in coal samples [59] 

by collinear double pulse configuration, are some of the important environmental 

applications of DP-LIBS. Collinear DP-LIBS have also been used to improve the 

discrimination of explosives by diminishing the contribution of atmospheric oxygen and 

nitrogen to the LIBS signal[60]. Quantitative detection of Copper as impurity in silver 

jewellery has also been performed by DP-LIBS [61].  
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The existence of the various proposed geometrical configurations of lasers beam, collection 

geometries, laser wavelength, pulse durations and various pulse energies, have made this 

method overly complex and difficult to synchronize in comparison with the achieved signal 

enhancements and improved detection limits. In addition, selection of laser wavelengths, 

energies and delay time for single or double pulses to achieve optimum performance for 

every single species needs repetitions and adjustments in experimental setup, which 

eventually makes LIBS to lose its characteristic of quickness. Furthermore, adding another 

laser source makes the experimental setup difficult to align and increases the cost of the 

LIBS setup. 

2.5.2 Spark Discharge Assisted LIBS 

The enhancement of LIBS signals by a high voltage fast discharge is a relatively cheap 

improvement approach, which is based on the concept of creating a spark discharge, in the 

close vicinity of the laser ablated plasma by using two electrodes, simple capacitor and high 

voltage power supply [62]. This improvement method creates less sample surface damage 

due to the significant reduction of the required laser pulse energy. Nassef et. al. [63] 

applied the spark discharge on the laser ablated plasmas of Copper (Cu) and Aluminium 

(Al) . Two tungsten cylindrical rods were used as electrodes and high voltage between these 

two electrodes was delivered by a high voltage dc power supply. One electrode was 

attached to a 0.25 mF capacitor through a 500 kV current-limiting resistor, while the other 

electrode was grounded. By applying spark discharge an enhancement of 6-fold in signal to 

noise ratio was achieved for the investigated emission lines, as compared to that obtained 

from LIBS without spark discharge. Alexander et. al. [64] applied spark discharge for 

chemical analysis by LIBS and Laser Ablation Molecular Isotopic Spectrometry (LAMIS). By 

applying electric pulse, the enhancement in the emission intensity of atomic Calcium and 

Sodium for LIBS and molecular OH, AlO, CaF for LAMIS was demonstrated respectively. In 

other studies of soil and Silicon analysis by Zhou et. al. [65-67] a relatively different 

experimental approach was used. In these studies, small capacitance and higher discharge 

voltage were used with another difference that capacitor was directly connected to the 
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two electrodes without any resistor in circuit [65]. Enhancement of soil plasma with a nano-

second discharge was studied [66], high capacitance and circuit voltage, increased signal 

intensity and noise level. The limit of detections of various elements such as Pb, Mg, Sn in 

soil sample with 6 nf capacitor and 11kV voltage, were 1.5 mg/g, 34 mg/g and 0.16 mg/g, 

respectively. Eschlböck-Fuchs et. al. [68] applied spark discharge on laser ablated plasmas 

of solid samples of  slag, pressed Fe2O3 powder and gypsum with PTFE polymer surface 

layer. 

2.5.3 Flame/Torch Assisted LIBS 

In Flame/torch assisted LIBS, laser ablated plasma is generated in the blue outer envelope 

of a flame or in a commercial butane micro torch to improve the LIBS sensitivity [69, 70]. L. 

Liu et al. [69] used commercial butane torch and laser plasma was generated in  the blue 

flame of the torch. Fast imaging and spectroscopic analysis was carried out by LIBS with 

and without micro torch. The emission intensity and signal-to-noise ratio was studied as a 

function of delay time. The experimental results showed an improvement of 3 times, in 

signal intensity of Mn and V. By the use of micro torch, the limit of detection of Mn and V 

were reduced from 425 ppm and 42 ppm to 139 ppm and 20 ppm respectively.  

In another study L.Liu et. al. [70] created laser plasma in outer blue flame of neutral oxy-

acetylene flame. An enhancement of 4 times in signal intensity was observed. Electron 

temperature and density was also calculated which showed that elevated temperature and 

low plasma electron density was achieved before 4 µs in flame environment. Use of a 

commercial torch or flame for enhancement of LIBS, makes system cheap portable and 

compact, but this flame assisted LIBS does not offer temporal control and may need sample 

preparation for many applications. In addition, enhancement in LIBS signals and sensitivity 

may not be very impressive. By applying electric arc fluorine and sulphur was detected 

easily while these elements could not be detection by conventional LIBS.  



24 

2.5.4 Spatial Confinement Assisted LIBS 

Spatial confinement was first reported approximately a decade ago, in this technique 

plasma is created inside a confined space having a few millimetre dimensions. After the 

creation of the plasma the expanding shockwave is being reflected on plasma by cavity 

walls and transfers energy to compress plasma which increases plasma temperature and 

hence emission intensities. Confined spaces were made of varied materials such as quartz, 

metals and PTFE having various shapes such as rectangular, hemisphere, cylindrical and 

various other shapes. These confined spaces of various shapes were generally polished to 

reduce absorption by walls and were studied to see the effect. The size of cavity is also a 

vital factor in this improvement method. Li et. al. [71] studied the effect on wall distance 

on the Copper plasma. An enhancement of 5.2 times was observed for the delay time of 

11.7 ms at laser energy of 180mj and wall distance of 9 mm. Wang et. al. [72] used seven 

groups of cylindrical cavities having various diameters and depths.It was observed that 

persistence of the Cu (I) line was longer compared with that obtained by using the cavities 

with smaller diameters, with persistence longer than 30 ms. For the same diameter of 

cylindrical cavity, the depth of the cavity did not significantly influence the persistence of 

the Cu (I) line. 

Yeates et. al. [73] studied plasma volumes ablated, in the aluminum rectangular cavities of 

fixed depth of 6 mm and varying heights of 2.0, 1.5 and 1.0 mm, which were compared 

with freely expanded plasma. The influence of aspect ratio (depth/diameter) on the plasma 

parameters was investigated [67, 74]. Fused silica glass was used as the sample and silicon 

emission lines to measure temperature and electron number density. The plasma 

temperature and the electron density were the highest for the largest aspect ratio cavity. 

While with the decrease in aspect ratio, the plasma temperature and electron number 

density in the cavity approached the flat surface results [67].  
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This method is relatively cheap however, the cavity walls needs to be cleaned before each 

experiment to avoid contamination and to maintain reflection by the cavity walls. This 

drawback makes this technique somewhat unrealistic for practical applications.  

2.5.5 Magnetic Confinement Assisted LIBS 

LIBS assisted by magnetic confinement is based on the concept that when a strong external 

magnetic field either steady or pulsed is applied to laser ablated plasma in LIBS then the 

free movement of electrons and ions will be affected by Lorentz force which slows down 

the plasma expansion. This slow plasma expansion causes reduced plasma volume, 

increased electron concentration, higher collision frequency, higher plasma temperature 

resulting in stronger plasma emissions. This technique was first reported by Mason and 

Colgberg in 1991. Rai et. al. [75] studied the effect of a steady magnetic field generated by 

two rare earth (neodymium and samarium cobalt) permanent magnets on the optical 

characteristics of the laser-ablated plasma in air. When the plasma interacted with steady 

magnetic field of about 0.5 T, the enhancement factors of 2 and 1.5 for solid and liquid 

samples were achieved, respectively.  

Li et. al. [76] investigated the influence of a magnetic trap fabricated from two permanent 

magnets (NdFeB) on the laser-induced copper plasma. The temporal- and spectral-resolved 

emission spectroscopy was performed and an enhancement of spectral lines for all neutral, 

single and dual ionized species was noted in the presence of nonuniform magnetic field. 

Harilal et. al. [77] studied the dynamics and confinement of laser-produced aluminum 

plasma expanding across a 0.64 T transverse magnetic field (two neodymium magnets) by 

using fast imaging, emission spectroscopy and time of- flight spectroscopy. Changes in 

plume appearance and dynamics, enhancement in emission and ionization, and 

enhancement in velocity were observed in the presence of the magnetic field. A recent 

study, which combines spatial and magnetic confinement to analyze vanadium  (V) and 

manganese (Mn) in steel [78] demonstrates 11 and 30 ppm limit of detection for V and Mn 

respectively.  
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2.5.6 Microwaves Assisted LIBS 

Microwave assisted laser induced breakdown spectroscopy (MW-LIBS) is based on the 

concept of enhancing and retaining laser ablated plasma by induced microwave radiations. 

Laser assisted microwave plasma spectroscopy (LAMPS) was initially developed by Ocean 

Optics and its partner company Envimetrics. A microwave cavity was used in the LAMPS 

setup and an improvement in detection sensitivity by a factor of 10 to 1000, depending on 

Figure 5: MW-LIBS setup using an antenna to induce microwave radiation 

at ambient condition. 
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the sample type, was claimed and visual enhancement in the plasma size was also observed 

[8]. Liu et. al. applied a microwave cavity for copper detection in soil sample [79] and 

reported 23 times enhancement in copper signal as compared to conventional LIBS, this 

study also  demonstrated a detection limit of  30 mg/kg of copper and 23mg/kg of silver in 

soil samples while these concentrations could not be detected by conventional LIBS, same 

group also applied microwave cavity for elemental analysis in alumina ceramic sample [80] 

and  reported upto 33-times enhancement  for various elements. In this study, it was 

claimed that enhancement was maximum when laser ablation was induced at low 

irradiance on large area and was stronger for transitions with low excitation energy. The 

authors in this work also demonstrated that enhancement is dependent of the type of 

element. In gaseous samples, Ikeda et. al. [81] studied the enhancement of laser- and 

spark-induced plasmas in air by microwave radiation induced by an antenna, while a mesh 

chamber was also introduced around the sample which acted as microwave resonator and 

shield. This study reported that by microwave, 15 times enhancement in lead (Pb) spectra 

generated by laser, was achieved while spark generated plasma was enhanced by 880 times 

at 2KWatt microwave power, as microwave radiations were accepted by both plasmas. 

Authors also declared that this technique is suitable for detection of molecules in gaseous 

samples.  

Khumaeni et. al. [82] demonstrated antenna-coupled microwave enhanced LIBS using solid 

Gd2O3 sample at lower pressure in enclosed cavity environment, where a loop antenna 

having 3mm diameter was used to deliver the microwave radiation close to the laser ignited 

plasma. This study demonstrated an enhancement of upto 32 times in Gd line due to the 

absorption of microwave radiation by laser plasma. The authors in this study also made a 

linear calibration curve of Ca contained in Gd2O3 sample and claimed 2mg/kg detection 

limit of Ca in this solid sample. In another study, Khumaeni et. al. [83] investigated the 

effect of microwave on the enhancement of the laser plasma, Nd:YAG laser was used to 

generate plasma on the surface of calcium oxide pellet, in a reduced pressure argon 

surrounding gas. A 400 watt microwave radiation was delivered by a loop antenna. The 
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results confirmed that in the presence of the electromagnetic field, induced by microwave 

radiation, the plasma lifetime was extended from 50 to 500µs, which was similar to the 

microwave pulse duration. Plasma temperature, electron density was also increased 

following microwave injection and plasma emission diameter was increased to 15mm. A 

200 times enhancement in calcium (Ca) lines was also observed following microwave 

injection [83]. Tampo et. al. [84] applied a wire antenna induced microwave assisted LIBS 

for the analysis of nuclear fuel, a 50-fold enhancement in the emission signal of gadolinium 

ions, with a 250 watt (2.45 GHz) microwave radiation was achieved. The concentration of 

europium per gadolinium ranging from 5% to 100 ppm was measured following the 

enhancement by microwave radiation and on the basis of extrapolation of the calibration 

curve, the detection limit for microwave assisted LIBS was estimated to be 40 ppm. 

Alwahabi et. al. [85] applied antenna induced microwave radiations at ambient conditions 

for the detection of low and high concentrations. Viljanen et. al. applied microwave 

radiation in ambient conditions without any cavity by using an antenna which was called 

near field applicator (NFA). This NFA was installed at a distance of 0.5 mm from laser beam 

and 1 mm from sample surface. Authors studied the effect of microwave radiation for 

copper (Cu) detection in Cu/Al2O3 solid sample, they achieved 93-fold signal improvement 

as compared to conventional LIBS and also demonstrated a detection limit of 8.1 parts per 

million (ppm) limit for copper Cu [86]. Wall et. al. applied microwave radiations through 

NFA at ambient conditions for detection of indium in aqueous solution. In this work liquid 

sample was continuously circulated, while MW-LIBS and conventional LIBS were applied on 

the liquid jet. Limit of detection of indium in water solution was demonstrated as 10.1 ppm 

for MW-LIBS and 124 ppm for  conventional LIBS, hence an enhancement of 11.5-fold was 

claimed to be achieved [87]. Hu HQ e.t al. [88] applied microwave assisted LIBS to study Cd 

in rice. Being a heavy metal Cd element is a cause of pollution hence, study of rice 

contaminated by this element is important for environmental and health concerns. Blank 

and laboratory polluted rice samples were used for analytical purpose. Emission line Cd I 

228.802 nm was used for the detection while actual concentration of Cd was measured by 

anodic stripping voltammetry. Detection limit of Cd in rice sample with conventional LIBS 
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was 13.69 µg/g while with microwave enhancement 2.16 µg/g Cd in rice sample was 

detected successfully. Compared with conventional LIBS, plasma emission intensity was 

enhanced from 9 to 27 times following microwave enhancement. 

Microwave radiation can be injected into the conventional LIBS system either by a 

microwave cavity or through a microwave antenna, such as NFA.  A typical antenna based 

MW-LIBS setup is shown in fig. 5, this enhancement method is based on the use of 

microwave radiation as a secondary source of energy to enhance and re-excite the laser 

ablated plasma [79-83, 86, 87]. The microwave radiation interacts with the low electron 

density region of the laser plasma, while the enhancement happens due to free electron, 

atom and ions collision. The plasma electron density at which absorption of microwave 

radiation starts, is termed as critical electron density. Initially the laser ablated plasma has 

higher electron density about 1017–1019 cm-3 which decreases during the de-excitation or 

relaxation process and around 1011 cm-3 (7.1010 cm-3 for a microwave radiation at 2.45 GHz) 

[80], plasma tends to accept microwave radiation and it no longer remains mirror for 

microwave radiations. At this stage, further rapid decay of the electron density stops 

because the microwave can then drive the motion of the free electrons by inducing 

concentrated electric field in the close vicinity of plasma. While the kinetic energy is 

induced by multiple electron-atom/ion collision, as a result excitation of de-excited atoms 

and ions, happens. Since excited atoms and ions in the plasma are useful emitters which 

give characteristic line emission of the constituent elements, hence more emissions, 

contributing to the stronger signal, are expected to be collected. As long as the microwave 

remains coupled, energy can be transferred to the plasma, and the emission lifetime of the 

plasma could potentially be the duration of microwave pulse. Microwave assisted LIBS can 

be very useful technique for practical applications because it doesn’t require high laser 

power, which actually is a draw back in MW-LIBS as microwave radiations cannot 

effectively couple with the plasma having high electron density, generated by the high 

energy laser pulse. Therefore, in MW-LIBS laser energy in only required to be slightly higher 

than the ablation threshold as compared to conventional LIBS, where power of laser 

required to be the 10s of the times higher than the ablation threshold. As in MW-LIBS once 
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the plasma starts absorbing the microwave, the further decay of the electron density stops 

which can supress the need of more ablation mass and electron density as required in case 

of LIBS. This low laser requirement of MW-LIBS can actually be very useful for development 

of compact light weight equipment, which is an ultimate objective of the development of 

LIBS. The low laser power requirement of MW-LIBS even further strengthens the claim of 

LIBS as being a non-destructive analytical technique. Furthermore MW-LIBS can also be 

very useful for aqueous detection by reducing the splash effect, as being able to use of low 

laser power for plasma ablation. Another advantage of the MW-LIBS technique is that the 

microwave pulse duration can be extended to 100 of millisecond which can make MW-LIBS 

very suitable for sensitive detection of molecules and isotopes [80].  

As the synchronization of the microwave radiation with laser beam is very important for 

the efficient and exact coupling of microwave radiations at the critical density of plasma. 

Therefore, usually in a typical microwave setup, microwave radiations, are induced a few 

hundred micro-second before laser pulse and are turned off after the end of gate-width of 

the detector. The experimental setup of MW-LIBS is relatively simple in terms of 

synchronizing microwave radiations with laser pulse and to control microwave power itself. 

MW-LIBS presents significant improvement in sensitivity as compared to other cost effect 

methods. Being simple and sensitive MW-LIBS can be applied to many practical applications 

for sensitive detection, however further improvement is required in limit of detection and 

sensitivity, because from the review of the publications related to MW-LIBS, it can be 

concluded that the lowest detection limit achieved with MW-LIBS was 2 ppm for Ca as 

presented in table 1, which demonstrates the limit of detection achieved in various studies, 

presenting a clear need of improvement in  
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Table 1: Limit of detection of various elements in MW-LIBS 

the performance of MW-LIBS for the application in elemental metallic detections, as most 

of the analytical applications involving metal such as, heavy metal detection for 

environmental monitoring, require detections in sub part per million with good sensitivity. 

Element Matrix Detection limit 

(ppm) 

 Reference Microwave 

Injection 

  By 

Europium (Eu) (Eu)/Gadolinium 

(Gd) 

40  Tampo et al 

[84] 

Antenna 

Calcium (Ca) Gd2O3 2  Khumaeni et al 

[82] 

Antenna 

Copper (Cu) Soil 30  Liu et al [79] Cavity 

Silver (Ag) Soil 23.3  Liu et al [79] Cavity 

Copper (Cu) Al2O3 8.1  Viljanen et al 

[86] 

NFA 

Indium (In) Aqueous solution of 

In2Cl3 

10.1  Wall et al [87] NFA 
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Chapter 3 Quantitative Detections by Elemental Imaging 

3.1 Background 

By the review of the literature of LIBS, it can be concluded that till present, all LIBS’s 

improvement works have focused to enhance the plasma life and intensity. No 

improvement method based on the improvement of the signal collection channel has been 

reported. While it is believed that in MW-LIBS enhancement tends to drops after a certain 

microwave power, when the effect of microwave power on the signal enhancement is 

studied [86], this can happen due to increased plasma volume, as emissions can become 

out of focus, resulting an inefficient detection by the conventional spectrometric detection 

channel when fibre optics is used. It is also believed that the plasma signals are reduced 

during their endeavour from plasma to spectrometer and ICCD camera, through series of 

optical components. Hence, it can be possible to further improve the sensitivity of MW-

LIBS by efficient detection of all plasma emission while reducing the signal loss. Therefore, 

it can be very attractive to develop an alternative relatively simple yet efficient signal 

collection channel, involving less optical components such as elemental imaging. This 

imaging method is based on the concept of using narrow band filter to allow only a specific 

wavelength light to pass through for the detection by an ICCD or even a simple camera. 

This alternative detection channel can be more efficient due to involvement of less optical 

components. While offering more sensitivity towards plasma enlargement in MW-LIBS due 

to its large field of view. 

This concept of broad plasma imaging, for the temporal investigation of the evolution of 

plasma, is not new in the literature of LIBS. Fast imaging of whole plasma has been carried 

out in parallel to spectroscopy for example, L. Liu et. al. [70] applied fast imaging for the 
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temporal investigation of the laser generated aluminum plasma and studied the flame 

effect on plasma evolution. In another study, L. Liu et. al. [69] applied  the imaging on the 

plasma from steel sample, to study the effect of micro torch on plasma evolution. Harilal 

et. al. [77] recorded plasma images to study the effect of magnetic field on plasma 

evolution and compared these with the images of plasma, recorded without magnetic field. 

Eschlböck-Fuchs et. al.  [68] used an ICCD camera to record the temporal images of the 

laser plasma, which was enhanced by electric arc discharge. Bob Kearton and Yvette 

Mattley [8], captured images of  laser plasma in conventional LIBS and in laser assisted 

microwave plasma spectroscopy (LAMPS), to compare the results. However, till present 

broad imaging of plasma was applied for temporal investigation of plasma evolution, the 

concept of narrow bandwidth imaging using a narrow bandpass filter, for quantitative 

detection is novel in nature. 

Recently, with to advancement in manufacturing of novel filters, it has become possible to 

achieve signal elemental imaging by using filter and camera combination for example, 

replacing the spectrometer with a filter (or a filter system) in LIBS. Novel filters with an 

ultra-narrow band pass (BP) up to 0.1 nm are commercially accessible now, e.g. filters 

manufactured by Alluxa [89]. This level of spectral resolution is comparable to small 

compact spectrometers typically used in portable applications of LIBS. Besides, both high 

transmission throughout (Ts) and high optical density (OD) are unique for these new narrow 

bandpass filters. Therefore, it is possible to replace the spectrometer in LIBS with a simple 

filter, leading to a more compact and efficient setup, but potentially also of lower cost. In 

contract to spectrometer system, this alternative detection channel may not be able to 

offer multiple elemental detections as many filters could be needed and replacement of 

the filter followed by need of focus and alignment would be required while switching 

between elements. However, this problem can be resolved by using a low-resolution cheap 

spectrometer to identify the matrix and major elements of interest can be detected by 

imaging with high sensitivity, alternatively a filtering system can also be used with the 

camera to resolve the issue. In this chapter, an efficient alternative spectrometer-free 

detection channel has been reported by using narrow band filter and ICCD camera system. 
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This novel concept of elemental detection in MW-LIBS based on imaging has been 

demonstrated by using two narrow band filters. These filters are combined, to spectrally 

select the target element emission, which is then recorded using an ICCD camera. The 

demonstrated technique is named as microwave-assisted laser-induced breakdown 

elemental imaging (MW-LIBEI). Quantitative detection of indium in solid sample, using 

elemental imaging was carried out in conjunction with conventional spectrometric 

detections in order to compare the both detection method and report the extent of 

enhancement achieved. This detection technique seems to possess several advantages, 

such as high sensitivity and large field of view (FoV), as will be outlined in detailed in this 

chapter. 

3.2  Experimental Setup and Sample Material 

Figure 6a shows the schematic diagram of MW-LIBS setup presenting the entire system 

with both detection channels. While Fig. 6b presents relative position of NFA, Laser pulse, 

solid sample and imaging camera in 3-dimesions. 

3.2.1 Laser and Microwave 

 The second harmonic output (532 nm, 6 ns pulse duration) from an Nd: YAG laser (Brilliant 

B) was used as light source to generate initial plasma as does in conventional LIBS. The laser

pulse was focused on the solid sample by a bi-convex UV fused silica lens L1 (f = 100 mm,

D = 50.8 mm) to generate plasma, while the energy of Laser was controlled by a Half wave

plate and Glan-laser polarizer and was measured in milli-joules (mJ) by ES220C Pyroelectric

Sensor. The pulsed microwave radiation, operated at 2.45 GHz, was delivered and coupled

into the laser-induced plasma. The microwave pulse was generated with a water-cooled 3

kW Sairem microwave system which is available commercially.  The microwave radiation

was delivered with a 1 m flexible coaxial cable (50 ohms NN cable) with 0.14 dB@2.45 GHz,

mailto:dB@2.45%20GHz
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connected with semi rigid cable (RG402/U) at the end. The other end of the semi rigid cable 

was attached to the NFA through SMA (SubMiniature version A) connector. Other end of 

the NFA was stripped off to expose the inner silver-plated copper steel core by ~ 25 mm to 

form a conductor. 

The end of NFA conductor was tapered with a double included angle of ~ 45° to form a 

pointed tip which was located ~ 0.5 mm horizontally and vertically away from the 

interaction point of the focused laser beam (~ 100 µm in diameter) and the solid sample 

surface. The NFA and Coaxial cable connection was supported by a three-dimensional 

adjustment system to facilitate the alignment of NFA with respect to solid sample and laser 

beam. 

 In a MW-LIBS, laser is usually fired a few hundred micro-second after the microwave and 

spectrometric detection is triggered shortly after the laser pulse. However, the gate width 

of the detector is closed just before the decay of microwave pulse otherwise decay of 

microwave can be easily confused with that of plasma. Figure 7 describes the gate-width 

of both detectors (Spectrometer and imaging), microwave and laser pulse durations and 

operation of controllers which happen in real time for every laser and microwave pulse 

during an experiment. In the current setup, controller 1 acts as a primary controller while 

controller 2 operates as secondary as shown in fig. 6a. Controller 1 executes the process by 

triggering the flash lamp of laser and secondary controller. The secondary controller 

generates microwave pulse. While after 200 micro-seconds Q-switch of laser gets activated 

and laser pulse is fired. Both detection channels i.e. spectral and imagining, are 

synchronized with laser pulse and with each other in a way that just after the triggering of 

laser pulse, both detection channels are operated simultaneously with the same opening 

time/gate-width of 800 micro-seconds for a 1 milli-second microwave pulse.   
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Figure 6a: Experimental setup of MW-LIBS including spectroscopic and imagining 

detection channel. M1&M2: mirrors, L1&L2: lenses, P: polarizer, HWP: half wave plate, 

OPAM: off-axis parabolic mirror, ARC: aromatic reflective coupler, S: sample, C: imaging 

camera, Mc: microscope, NFA: Near Field Applicator. 
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Figure 6b: A close look (3D) showing the setup of NFA, sample and imaging camera. 
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3.2.2 Imaging and Spectroscopy 

The plasma emission was simultaneously recorded through two detection channels. The 

first is a backward collection scheme that is often used in conventional LIBS set-ups. As 

shown in Fig. 6a, after the first focusing/ collimating lens (f = 100 mm) the emission was 

focused by a perforated parabolic mirror and directed by a combination of a focusing lens 

into another parabolic and then into a fiber bundle (Thorlabs, BFL200HS02). The emitted 

radiation was then channeled into a spectrometer (f = 500 mm) installed with a 2400 

lines/mm grating and an ICCD camera (iStar, Andor). The second detection channel is used 

for demonstrating the proof-of-concept of the MW-LIBEI technique. The plasma emission 

was directly filtered by a combination of two BP filters, both 50.8 mm in diameter. This is 

to select only the 451.13 nm Indium emission line following the transmission from the 

second (24,372.957 cm-1) to the first excited levels (2212.599 cm-1).  

The first filter is a standard filter with a full-width at half-maximum (FWHM) of 10 nm 

(450FS10-50, Andover), while the second is a custom-made filter with a narrower BP 

(FWHM = 1.28 nm, Alluxa) [89], centered exactly at 451.4 nm. The two filters have 

transmission of 54% and 95%, respectively, resulting in a combined transmission of 51% at 

451.13 nm. The combined Optical Density (OD) is ~ 5.6 out of the range of 450.12 – 452.68 

nm and is ~ 8 below 440 nm and above 460 nm. These high OD values are critical in (MW-) 

LIBEI to block not only strong emissions from other elements, e.g. excited atomic nitrogen 

and Oxygen from buffering air, but also the background emission integrated over the full 

spectral region. 
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Figure 7: Microwave pulse, laser pulse, gate-width of 

cameras and controllers operation 
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The combined filters were installed in front of a Nikon focusing lens (f = 50 mm and f-

number = 1.8), located at about 300 mm away from the detection volume. The emission 

signals passing the filters were recorded by a second ICCD camera (iStar, Andor), whose 

gating time and width were synchronized with those of the ICCD used in the spectroscopic 

detection channel. While it is possible to use a normal camera with a basic gate function to 

capture emission, an ICCD was used in this work to facilitate comparisons of the MW-LIBEI 

signals with those from the spectrometer-based MW-LIBS. The intensifier gain was set 

at 20 and 200, respectively, for the MW-LIBEI and MW-LIBS cameras. These values 

correspond to ~ 8% and 78% of the full available gain (255), respectively.

3.2.3 Solid Sample Preparation 

To test the quantitative nature and the response linearity of the MW-LIBEI technique, solid 

samples containing a range of indium concentration from 50 to 1400 ppm (by weight) were 

prepared. Indium chloride (InCl3) and Sodium Chloride (NaCl) salts were selected to prepare 

the solid matrix. Due to the hygroscopic nature of InCl3 solid-solid mixing was not possible, 

in addition it is very difficult to achieve homogeneous mixture in solid-solid mixing. As 

homogeneous solid sample is very important in LIBS analysis because, LIBS is a point based 

analytical technique, hence non-uniform analyte concentration within the sample can 

generate unreliable results. To achieve the homogeneity of solid samples and to overcome 

the hygroscopic nature of InCl3, both salts were dissolved in distilled water at ambient 

condition to make 1% solution of indium chloride (InCl3) and 14.25 % solution of sodium 

chloride. These solutions were mixed (Liquid-liquid mixing) under uniform well-stirred 

arrangement (by using the magnetic stirrer), to achieve uniform liquid solution. Various 

concentrations of Indium in solution were achieved by varying the stoichiometric 

composition of the solution. These solutions were dried in an oven at 250 °C under well-

stirred arrangement to evaporate the water.  
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The next step was to transform these solid mixtures into discs having identical depth and 

uniform surface. As antenna induced MW-LIBS setup is based on the creation of the strong 

electric field near the laser ablated plasma, for that purpose the antenna (NFA) has to be 

placed closer (~0.5mm) to the solid sample and laser pulse. To achieve reliable consistent 

results NFA should be exactly at the same position for each sample.  After switching the 

solid sample, the enhancement can still be achieved in case of minor variation in distance 

of NFA from the surface of the solid sample and laser pulse. However, the resulting 

intensity of the MW-LIBS signal will vary drastically, making the experimental results 

unpredictable. This intolerant behavior of MW-LIBS towards minute variation of NFA 

position can make analytical detection by MW-LIBS, very unreliable. Therefore, to cope this 

problem the solid samples were transformed in round plastic discs having identical 3.5 mm 

thickness and 21 mm diameter as presented in fig. 8. To evaporate the traces of water, 

these discs were heated slowly at 51°C for approximately 15 minutes. Alignment of  the 

NFA at the identical position after swtiching the sample for the analtyical purpose can be 

very challagning as slight variation can effect the signal strength, to overcome this isuue a 

microscope and computer arrangement was used. After the intial alignment of NFA with 

the laser pulse and solid sample for the maximum ehmancement, microscope was use to 

mark the position of solid sample and the NFA , after that all other sample were placed  
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extactly at the same position using this arrangment. In order to overcome point 

dependence of LIBS these samaples were placed on a continously rotating based. In this 

way, the whole sample surface was analysed in a small radius which can also be noted in 

some tested samples in fig. 8. Feed stock samples from the lead processing plant were also 

trasnformed into uniform discs following the sample procedure however, no prior chemical 

treatment was peroformed.  

3.3 Results and discussion 

To demonstrate the analytical abilities of LIBEI, several following concerns must be 

assessed. The first is to evaluate the blocking ability of the filtering system. As in LIBS the 

emission is spectrally resolved, hence the background interference if present, can often be 

Figure 8: Indium solid samples transformed into uniform round discs 
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satisfactorily evaluated and then subtracted from the spectrally resolved signal, recorded 

by spectrometric detection. However, this approach may not be applicable in case of 

analytical detection by imaging channel, because all photons at multiple wavelengths, 

transmitting through the filters and detectable by the camera, can contribute to the image 

intensity of the element being analyzed for example, interference from the emissions of 

atomic nitrogen (N) and Oxygen (O), when the sample is being tested at ambient condition. 

Figure 9 shows the MW-LIBEI signals for indium at three concentrations of 0, 50 and 200 

ppm, respectively, averaged from 200 laser shots. The gate width 

Figure 9: MW-LIBEI emission image plotted in three dimensions for samples with indium 

concentrations of 0, 50 and 200 ppm respectively, while laser and microwave was 

2mJ/pulse and 900 Watts. 
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of the camera was 800 µs, the laser and the MW pulse was 2 mJ/pulse and 0.9 kW. As 

shown in Fig. 9, the image intensity for the sample having no indium (0 ppm) is still 

detectable, but the signal strength is weak, less than 20 counts. The image peak intensity 

significantly increases to 30 and 100 counts for the samples having an indium concentration 

of 50 and 200 ppm respectively. While the leaking background influences the LoD of MW-

LIBEI, Fig. 9 evidently shows the good sensitivity of MW-LIBEI, for which a further discussion 

is given below. 

The second concern to be assessed in developing MW-LIBEI is the corresponding 

relationship between MW-LIBEI and MW-LIBS signal intensities, given that the latter holds 

quite good linear relations with the elemental concentrations. Figure 10 shows 

simultaneous results of the MW-LIBEI and MW-LIBS intensities measured in samples with 

different indium concentration (0-1400 ppm). In this measurement, all experimental 

settings were kept the same as stated in Fig. 9. The intensities of the MW-LIBEI are 

calculated by integrating area over the plasma image, while those of the MW-LIBS are 

spectrally integrated over the indium line at 451 nm, both with background subtractions. 

Figure 10a shows an excellent linear relationship between MW-LIBEI and MW-LIBS with a 

square correlation coefficient (R2) value better than 98%. Furthermore, the linearity holds 

in a large dynamical range, indicating the feasibility of using MW-LIBEI for element 

quantifications, as quantitative element measurements using MW-LIBS has already been 

demonstrated [82, 84, 86, 87]. Figure 10b shows MW-LIBEI and MW-LIBS signals against 

the indium concentration. A general good linear relationship exists in both 

measurements, noting that there can also be potential uncertainties in concentrations of 

the samples. The relatively large standard deviations, for both type of signals in Fig. 10b, 

are attributed to the fluctuation of the coupling efficiency of the microwave to plasma. 
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Figure 10: (a) Represents relationship between spectral counts (MW-LIBS) and 

image intensities (MW-LIBEI) simultaneously recorded by spectrometer and 

imaging camera.     (b) The intensities of MW-LIBS and MW-LIBEI signals as a 

function of indium concentration. 
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An important finding is that the slope of the MW-LIBEI signal curve is approximately 3.6 

times higher than that of MW-LIBS, indicating an improvement of 3 folds in signal intensity 

for the present setup using MW-LIBEI. The signal intensity of MW-LIBS may be improved 

using a low-resolution grating with higher reflection efficiency, such as that of 300 

lines/mm. However, noting the gains used for both cameras, the present work clearly 

demonstrates that the simple MW-LIBEI based on a low-cost camera can achieve higher 

signals than the MW-LIBS.  

This enhancement is particularly attractive because MW-LIBS is already more sensitive than 

conventional LIBS by a factor of ~ 1-100. Figure 11 presents the indium plasma images at 

various concentrations. This indium plasma image for each concentration is the average of 

200 single images, which were recorded for each concentration in parallel to spectroscopic 

detections. From the fig. 11, it can be noted that with the increase in indium concentration 

in solid sample, the plasma intensity tends to increase, which proves the sensitivity of 

the imaging method for variation in elemental concentration, as demonstrated in fig. 10 (b). 

A few exceptions can also be observed which corresponds to the uneven variation 

of indium intensity from imaging and spectroscopy, shown in indium intensity plots of fig. 

10 (b).  

The potential reasons of this uneven variation are already explained above. The image 

intensities presented in fig. 10 (b) are calculated from the average indium images of fig. 11 

by subtracting the background noise in MatLab. After the subtraction of background noise, 

all pixel intensities in the indium plasma image were integrated to calculate the total 

intensity of the indium plasma against each concentration. It is further added that the 

images in fig. 11 are only representing the indium concentration within the plasma, which 

means that the size of whole plasma could be larger than the presented images. In fig. 11, 

the (0,0) presents the approximate position of the laser pulse while NFA being on the right 

side, this configuration will be explained later in fig. 15, considering the categorized axis as 

presented in fig. 6(b). The LoDs of MW-LIBS and MW-LIBEI are estimated to be 16 ppm and 
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50 ppm, respectively. The LoD of MW-LIBS was estimated based on the signal-to-noise 

method. The LoD of MW-LIBEI was estimated from fig. 9 using visual evaluation method 

[90]. Considering the leakage through the filter in the absence of the indium (0 ppm) as 

shown in fig. 9, for a safe detection the acceptable signal value was assumed three times 

of this leakage, in terms of intensity counts. At this stage MW-LIBEI demonstrates poor LoD 

because even in sample without presence of indium there was still emission intensity acting 

as background interference, as shown in fig. 9.  

This leakage through filter limits the quantitative detections beyond 50 ppm, however, Fig. 

10b demonstrates that MW-LIBEI offers higher sensitivity for the smaller variation in 

concentration as compared to MW-LIBS. The background interference can potentially be 

reduced to improve LoD of MW-LIBEI. In principle, a filter with a narrower BP (i.e. that is 

less than 1.28 nm) and a higher OD can be employed since atomic emission is typically 

much narrower in spectra. Such a filter, e.g. which has a FWHM of 0.12 nm around 396 nm, 

indeed had already applied in astronomy study [91]. Another potential method is to 

introduce a second narrow BP filter that is slightly off-resonant to the target spectral line, 

installed with the resonant filter in a stereoscopic lens configuration, allowing the recording 

of the background signal simultaneously. 
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Figure 11: Indium plasma images for selected indium concentration, as indicated, recorded by 

MW-LIBEI at laser power of 2mj/pulse and microwave power of 900 watts 
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Figure 12: Typical spectrum of MW-LIBS and (b) emission imaging of MW-LIBEI recorded 

simultaneously in a feedstock sample from a lead processing plant using 2.5 mJ/pulse laser and 

900 watts microwave. In (a) the transmission band of the filters is indicted by the two red 

dashes lines. The cross section of the MW-LIBEI image (b) along the dash-dot line is shown in 

(c). 
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The third concern in developing MW-LIBEI may be the neighboring spectral interference 

from other elements. Figure 12 shows a typical MW-LIBS and MW-LIBEI recorded in a 

feedstock sample from an industrial lead processing plant. The sample contains many other 

elements including indium and, therefore, several spectral lines appear within this 10-nm 

spectral range in the MW-LIBS. However, it is still feasible to select indium signals in the 

MW-LIBEI with a quite good SNR. Also, the cross section along one-pixel array of the MW-

LIBEI image demonstrates both high intensity and great SNR ratio in the MW-LIBEI. The 

limited capability of detecting multiple elements of MW-LIBS can potentially be resolved 

by applying a cheap low-resolution spectrometer for multi-elemental identifications. 

The necessary role of the microwave source in MW-LIBEI has also been emphasized in fig. 

13. The fig. 13 presents the imaging signals recorded with and without the assistance of 

external microwave source, as well as the corresponding MW-LIBS intensities as 

comparison. Figure 13a and 13b presents single shot image intensities without and with 

microwave. Figure 13c and 13d presents averaged image intensities without and with 

microwave respectively. While Figs. 13e and 13f present a comparison of spectral and 

image intensities captured by both detection channels, i.e. LIBS and LIBEI without and with 

microwave, while operated simultaneously. All measurement settings were held the same 

as shown in Figs. 9 and 10, while without microwave the camera gate-width was only 

delayed 200 nanoseconds from the laser pulse to capture more indium signal.
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Figure 13: Indium emission images plotted in three dimensions for snapshot signals 

(a) without and (b) with microwave assistance, and signals averaged over 100 laser

shots (c) without and (d) with microwave assistance. The corresponding image and

spectral intensities of MW-LIBEI and MW-LIBS are shown in (e) and (f). 400 ppm

indium sample, 3 mJ/pulse laser, 0 and 900 watts of microwave powers were used.
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Also, a higher laser power (3 mJ/pulse) than in Figs. 9 and 10 was applied to ensure 

detectable signal in the microwave off testing. Firstly, it can be seen that the signals 

have been significantly enhanced following the microwave injection, both in spectra 

and in imaging, revealing the crucial role of microwave. Secondly, the enhancement 

of LIBEI signal is clearly larger than that of LIBS (Figs. 13e and 13f). This is another 

advantage of MW-LIBEI, i.e. its large FoV ensures that all emission signals are being 

captured and makes MW-LIBS more tolerant to the fluctuation of the plasma 

volume. This tolerance against the change of plasma volume is difficult to achieve in both 

microwave assisted and conventional LIBS. Comparison of the signal in MW-LIBEI (in Fig. 

13f) with that in conventional LIBS (in Fig. 13e), reveals a total signal enhancement of ~ 

14-fold for the present MW-LIBEI setup. 

Additionally, MW-LIBEI signal can be further enhanced by increasing the microwave 

power. In Fig. 14a, both normalized MW-LIBS and MW-LIBEI signals are shown against the 

microwave power, intensities have been normalized using the signal recorded without 

microwave (MW=0) in both detection techniques. A linear relationship is found in the MW-

LIBEI curve for the microwave power up to 1.6 kW, which potentially holds for higher 

microwave power. Contrastively, the MW-LIBS signal responses nonlinearly to the 

microwave power above ~ 1.0 kW and appears to be saturated. This non-linear response is 

attributed to the increase of the plasma volume, as illustrated in Fig. 14b showing that the 

plasma volume increases linearly with the microwave power when it is effective (> 0.4 kW) 

on the plasma. In MW-LIBEI, the enlargement of the plasma volume and the enhancement 

in signals are well detectable because of its large FoV. However, the volume enlargement 

is not detectable in MW- LIBS beyond 1.2 kW MW power, since the plasma volume 

becomes too large to be effectively coupled into the fiber optical cable, as clearly illustrated 

in Fig. 14a. It should be noted that the plasma volume was calculated based on an effective 

radius. 
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Figure 14: (a) Normalized intensities of MW-LIBEI and MW-LIBS, as a function of 

the microwave power, and (b) the corresponding plasma volume recorded in MW-

LIBEI using 2.5mJ/pulse of laser. 
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 A process of image binary was applied firstly to the recorded image based on the 1/e2 value 

of the maximum intensity to get the projected area of the plasma, from which an effective 

radius was calculated by assuming that the plasma is spherical in shape. This process was 

acceptable because that, as shown in Fig. 12b, the plasma images are reasonable 

approximated as round in the present work. In addition, it is also significant to demonstrate 

the change in physical appearance of the plasma following the microwave injection at 

various powers, to strengthen the claim of MW-LIBEI benefiting from FoV.  

 Figure 15 presents the change in the appearance and intensity of indium plasma images, 

captured at various microwave powers keeping the laser power constant. 200 single shots 

were recorded at each microwave power and plotted as an average image. X-axis in these 

figures represents the position of the sample holder. NFA is placed 1 mm from sample and 

0.5 mm from laser beam, while laser beam is propagating at 10o towards solid sample. Y-

axis represents vertical distance from the sample holder and is at right angle to the axis of 

imaging camera (Z-axis) as shown in Fig. 6b. Axis values have been presented in millimeter 

(mm) by calculating the pixels/mm from recorded image of a sample, having known length 

and width. Zero mm on the X-axis is the approximate position of the laser beam while NFA 

applicator is located on the right as shown in Fig.  15. Form this figure it can be seen that 

with the increase of microwave power, physical appearance and intensity of plasmas tend 

to increase substantially, which proves the concept of FoV in MW-LIBEI. While a few 

exceptions can also be observed at 0.9, 1.1 and 1.2 kW which are assumed to be, because 

of damaged surface of solid sample, resulted as irregular microwave coupling. In contrast 

to LIBS, MW-LIBEI is suitable for a single elemental detection. It is worth noting that a 

stereoscope in front of the camera lens can offer a second elemental detection channel, if 

needed. A low-cost spectrometer can also be used for elemental identification and or, for 

larger scans to identify the whole matrix, whereas major species of interest can be analyzed 

by elemental imagining. 
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Figure 15: Plasma images from a 1200 ppm sample at various microwave powers, 

2.5 mJ/pulse laser was used. Axis are presented in mm with the point (0,0) 

approximating the incident location of the laser beam on the sample. 
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3.4 Summary 

The objective behind the use of single elemental imaging for quantitative detection was to 

collect the maximum plasma emission following the enhancement by microwave, as the 

conventional spectroscopic detection loses emission signals, due to increased plasma 

volumes in MW-LIBS. In addition, no LIBS enhancement method based on alternative yet 

improved collection channel was reported while it is believed that vital signals are lost in 

spectroscopic detection. Hence, microwave-assisted laser-induced breakdown elemental 

imaging as a new elemental detection method has been demonstrated. MW-LIBEI offers a 

desirable high-level of intensity because of the large FoV and a negligible flight-out-of-view. 

An improvement of 14 folds in the detection intensity as compared to conventional LIBS 

was demonstrated for indium in solid samples. The demonstrated improvement in the 

intensity is because of the large FoV of the MW-LIBEI technique, which is not available in 

MW-LIBS. From the experimental results, it can be concluded that MW-LIBEI offers more 

than 3-fold enhancement in signal intensity as compared to MW-LIBS.  The detection 

intensity can be further improved by increasing the power and the pulse-duration of the 

microwave radiation. 

 However, signal quality and consistency in microwave assisted LIBEI and LIBS, is highly 

dependent on the alignment of microwave antenna with laser pulse and solid sample, slight 

variation can produce unpredictable results. Hence minor sample preparation and an 

efficient arrangement to place NFA exactly at the same position for each sample (after 

switching) is desirable. The limit of detection of the MW-LIBEI technique is higher than that 

of the MW-LIBS, 16 ppm versus 50 ppm, at this stage due to unresolved background 

interference especially for the detection at ambient conditions, but it can be potentially 

improved by using a filter (or a filtering system) with a narrower BP or higher OD. 

Furthermore, the MW-LIBEI is a spectrometer-free technique, in which only a relatively 

simple camera, with neither fast gating nor an intensifier, can be used to achieve similar 

detection capability as that of conventional MW-LIBS. The spectrometer-free MW-LIBEI 
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technique responds well to the demand for cost-effective, reliable, sensitive and real-time 

detection in remote and harsh environments including, space, defense, environment, 

chemical processing and mining industries. 
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Chapter 4 LIBS Enhancement by Efficient Microwave coupling 

4.1 Background 

Efficient coupling of the supplied microwave power, into the laser generated plasma is a 

key factor to achieve the desired enhancement in the performance of the proposed MW-

LIBS setup. Performance of the antenna based microwave assisted LIBS system depends 

majorly on the performance factors of the antenna (also known as near field applicators 

NFA) such as, efficient transmission of the supplied microwave power and then radiation 

of that transmitted power in the form of concentrated localised electric field.  A NFA being 

the central component of the microwave system, can considerably improve the coupling 

efficiency and plasma enhancement for the same supplied microwave power by two means 

i) improving the transmission of power by reducing the refraction/return power ii) efficient

radiation of supplied microwave in terms of localised electric field distribution and

strength.

 Therefore, design and optimisation of a NFA, by considering the features of the microwave 

and LIBS system in the available setup, is very crucial to achieve desired improvement. 

However, by the review of the literature it can be concluded that no performance 

enhancement study based on the improvement in design of NFA, has yet been reported in 

the literature of MW-LIBS. The development of an efficient NFA can be very attractive 

because it is already evident from the studies that MW-LIBS needs less Laser power as 

compared to conventional LIBS systems, meanwhile a well-designed NFA can also further 

reduce the microwave power requirement, suppressing the need of bulky microwave 

power sources. Hence use of cheap, robust microwave sources without compromising the 

improvement in the performance, can take MW-LIBS a step ahead towards the 

development of the compact portable commercial devices.  
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In this chapter the improvement in the performance of the MW-LIBS system have been 

investigated, following the use of 4 new designs of NFA. This development process has two 

parts 1) design of 4 NFA based on the full wave electromagnetic simulations performed 

with CST Microwave Studio (CST) [92], while considering the factors such as the influence 

of the electromagnetic environment, reflection coefficient to maximize the electric field 

strength at the location of the laser ablated plasma. These designs have minor geometrical 

variations, fifth design is considered as base design for comparison 2) Testing of these 

design in MW-LIBS setup for the evaluation of coupling, efficiency and overall improvement 

in the performance of the system.  

Using these new NFA designs, MW-LIBS was applied for copper (Cu) detection in solid 

sample, while simultaneous imaging of whole plasma was also performed. Microwave 

dependence and spatial evaluation was investigated for each design to study the final 

effect on the plasma size and emission intensity. 

4.2 Design of NFA 

The NFAs in a typical microwave-assisted LIBS setup for ambient conditions, such as 

demonstrated in chapter 3 are affixed with adjustable posts and connected to the 

microwave generator through a series of equipment and coaxial cables in a relatively open 

space. Therefore, these NFAs are more sensitive to the exterior environment compared 

with the microwave launching devices, in a relatively confined environment since the 

objects electrically connected or in proximity to them can have an impact on their 

performance and repeatability owing to electromagnetic coupling.  

This is especially critical for metallic objects such as the NFA holder and the adjustable 

posts, whose positions might change for different measurements. In order to develop the 

NFAs with a predictable performance, this type of impact must be mitigated through 

appropriate electromagnetic design. Hence, different applicator designs involving some 

well-known techniques such as a quarter-wave choke or a finite ground plane [93] are 



60 

proposed to strongly limit the return currents along the outside of the coaxial cable feeding 

the NFA. This will consequently limit the direct coupling to the outside objects in the 

system. Such an undesired coupling can drastically alter the efficiency of a NFA, and in the 

presence of a typically complicated environment, can reduce the performance parameters. 

Four designs variations of NFAs, namely designs B, C, D and E, are designed, fabricated and 

investigated in this paper by comparing them to a reference design A.  

The general schematic diagrams of the NFA designs are shown in Fig. 16, where (a) refers 

to the reference design A, while (b) shows the design B and (c) the generic geometry of 

designs C, D and E. Their dimensions are given in Table 2, as designed for operation at a 

microwave frequency of 2.45 GHz. All considered NFAs consist of a rod-shaped conductor 

fed by a standard SMA (subminiature version A) connector for radio-frequency (RF) 

connection. The rod of the applicator conductor is made of silver plated copper clad steel 

and has a radius of 0.45 mm, and is formed by stripping the inner conductor of a 50 Ω rigid 

coaxial cable, and sharpening its tip to an angle of α. In this study, design A is considered 

as a reference NFA and does not have any electromagnetic isolation to the environment.  

In contrast, the other four NFAs employ some simple but effective isolation techniques 

such as choke and ground plane to render their performance more robust and predictable. 

The main aim of those techniques is to suppress the return RF currents on the outside of 

the coaxial cable. To this end, a quarter-wave choke is soldered on the outer conductor for 

design B whereas for the other three NFAs a finite-size circular ground plane is added to 

the design. The SMA connector at the other end of the cable is connected to the waveguide 

output from the microwave generation apparatus. When excited with microwave power at 

the system frequency of 2.45 GHz, designs D and E are working at their fundamental 

resonant mode while designs B and C operate at higher-order modes, as shown in Fig. 17. 

In principle, the resulting NFAs are variations of monopole antennas but the main  
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Figure 16: NFA configurations: (a) reference NFA design A (b) NFA with quarter-wave choke 

(design B) and (c) NFAs with ground plane (designs C, D and E). 
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Figure 17: NFA electric field magnitude distribution at 2.45 GHz: (A) reference NFA A, (B) 

NFA B with a quarter-wave choke, (C) NFA C with a large ground plane (R ¼ 42.5 mm) close 

to the SMA connector, (D) NFA D with a small ground plane (R ¼ 15 mm) and (E) NFA E with 

a large ground plane (R ¼ 42.5 mm) close to the start of the rod conductor. 
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Figure 18: Simulated electric field strength near the tip of the NFA as a function of the 

ground plane radius. 

NFA Design L1(mm) L2(mm) L3(mm) L4(mm) R (mm) 

A 28 68.5 ---- --- --- 

B 27.5 30.5 38 30 1.6 

C 28 61 7.5 --- 42.5 

D 33 0 68.5 --- 15 

E 28 0 68.5 --- 42.5 

Table 2: Dimensions of the NFA designs under investigation. The configuration of 

reference A is shown in Fig. 16 (a), whereas design B refers to Fig. 16 (b), and the 

parametrized geometry of designs C, D and E is shown in Fig. 16 (c). 
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difference is that they are designed for operation in the near-field through maximization of 

field strength at the end of the tip. Compared with a NFA such as design A without an added 

choke or ground structure, these devices offer higher predictability in design as well as 

enhanced system performance and stability, as it will be seen in the later sections of this 

chapter. On the one hand, the choke and ground plane enhance performance predictability 

as they act as an electrical isolation between the antenna and the physical objects behind 

it, thus suppressing return RF currents on the outside of the coaxial cable.  

More importantly, on the other hand, the electric field strength near the tip of the 

applicator increases owing to the ground plane, according to the image theory[94]. Due to 

the importance of the ground plane size, NFAs D and E are designed to have different 

ground plane sizes while varying the position of the ground plane between NFAs C and E 

provides additional information in the investigation. The proposed NFAs are designed and 

simulated using CST where the time-domain full-wave solver based on a finite integration 

of Maxwell's equations is used [92]. A 3D NFA model with realistic electrical characteristics 

for the materials involved was constructed, and a finite free-space computational domain 

truncated by perfectly-matched absorbers was considered.  

The behavior of the structure under microwave excitation of the coaxial cable was then 

calculated, and the device characteristics including a reflection coefficient, electric field 

strength, efficiency and radiation patterns can be obtained from the simulation results. For 

the present application, the critical parameters under investigation are the surface current 

density on the coaxial outside conductor behind the ground plane, reflection coefficient 

and electric field strength around the NFA tip. The length of the NFA conductor L1, as 

shown in Fig. 16, determines the resonance/operation frequency and is approximately a 

quarter of the wavelength at the operation frequency of the microwave source. For design 

B, L4 and L2 are also nearly a quarter of the wavelength which forms a very high impedance 

on the coaxial outer conductor near the choke open end, thus suppressing return RF 

currents. The longitudinal position L2 of the circular ground plane for designs D and E is 

zero since both resonate at the fundamental mode. For C, L2 is approximately twice the 

length L1, as it operates in its third order resonant mode in which its stripped conductor 
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and coaxial cable outer shell act together as an additional radiator. The length L3 is not a 

critical parameter, since it is behind the ground plane and thus does not affect markedly 

the NFA performance. In all cases, the conductor tip was tapered with an angle α=60o which 

offers a compromise between high electric field strength and acceptable durability of the 

tip during operation. The conductor bending angle Ɵ in all the NFAs is set to be 90o as this 

allows simple design and an easier comparison. However, it is noted that the designs can 

be adapted to other angles to fit specific system configurations and requirements. 

 From theoretical expectations, to minimize return currents and radiation towards the back 

of the ground plane, the ground plane radius R should be made as large as possible. This is 

confirmed by a parametric study of applicators with different ground plane sizes. As shown 

in Fig. 18, the simulated electrical field strength at a point 0.2 mm away from the NFA tip 

rises when the ground plane size increases, and it stabilizes (with minor variations) with a 

ground plane radius of around 30 mm. Nevertheless, the feasible size is limited by the 

available system space. For present system, R = 42.5 mm is the maximum feasible ground 

plane radius.  

From the simulation results, as expected, it is found that the surface current density on the 

coaxial outer conductor behind the choke or the ground plane is very small for NFAs B to 

E. This indicates that exterior electromagnetic coupling to objects in this region will not be 

insignificantly altering the operation of the devices. This also confirms that in these cases, 

removing the objects behind the ground plane, even if electrically connected or close to 

the coaxial cable, is a valid modeling simplification. In contrast, to achieve a more accurate 

simulation result, influence of the objects in proximity to the NFA tip such as the sample 

under test, should be included in the simulation. This issue will be discussed in the following 

section in conjunction with the considerations on the rejection coefficient. 
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Figure 19 (a): Schematic of the experimental setup. ARC, achromatic reflective 

coupler; OAPM, off-axis parabolic mirror; HWP, half-wave plate; P, polarizer; EM, 

energy meter; an additional imaging channel is facilitated by using a second 

intensifier camera (ICCD2). 
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4.3 Experimental 

Experimental setup of MW-LIBS is demonstrated in the fig. 19 (a), which is almost the same 

as described in chapter 3, except a few minor experimental changes. Laser, microwave, 

spectrometric and imagining detections are same. However, in contrast to the chapter 3,  

Figure 19 (b): Presentation of the relative position of the NFA, sample, the laser and imaging 

Camera (ICCD2) 
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the imaging of whole plasma was carried out in conjunction with spectroscopy of copper. 

Imaging camera which is named as (ICCD2 Andor, iStar) was fixed with a macro lens (f = 90 

mm, Tamron). A long pass filter was used instead of a narrow band filter to suppress the 

laser scattering at 532 nm. The filter has a transmission of 93.5% in the range from 600 to 

800 nm. Relative position of NFA with respect to laser, solid sample and imaging camera is 

presented in fig. 19(b). Network analyzer shown in fig. 19 (a) was used to measure the 

reflection coefficient for all geometrical configurations of NFAs under various conditions, 

as explained in 4.4.1.1. 

4.3.1 NFA Measurement 

The reflection coefficient, denoted as |S11|, is one of the most important parameters for 

microwave devices, as it provides information on the accepted input power by the device 

in frequency domain [94] for example in the present case the NFA. Therefore, at the 

beginning of the experiment, the reflection coefficients of the five NFAs were measured 

using a network analyzer (Agilent FieldFox N9916A). The measurements were performed 

in situ in the LIBS test system, both with and without a sample in proximity. Then the 

measured reflection coefficients in the frequency range of interest can be compared with 

the simulated one. 

4.4 Result and Discussion 

4.4.1 NFA Characteristics 

4.4.1.1 Reflection Coefficient 

For efficient microwave coupling, it is critical to minimize the microwave reflected power. 

The reflection coefficient |S11| resulting from electromagnetic simulations in all five NFA 

geometries are displayed in Fig. 20 and are compared with the measurement results. A 

reasonable agreement in terms of resonance frequency (indicated by the minimum of 

|S11|) is observed between simulations and the measurements. To define the NFA 
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operational bandwidth, we consider the frequency ranges where the reflection coefficient 

|S11| remains below -10 dB, indicating that more than 90% input power is accepted by the 

NFA [94]. According to the results of measurements without LIBS samples, NFAs B, C, D and 

E have an operational bandwidth of 2.38 to 2.52, 2.35 to 2.65, 2.26 to 2.72, and 2.33 to 

2.52 GHz, respectively. All of these frequency ranges contain the targeted microwave 

power source frequency of 2.45 GHz. In contrast, design A exhibits a -5.6 dB simulated 

reflection coefficient which indicates that its input power acceptance is only around 72.5%. 

In this case additionally, the rather poor qualitative agreement with simulation can be 

ascribed to the unpredictable coupling of return currents on the coaxial cable. For all cases, 

the best overall matching, i.e. the lowest reflection coefficient at the desired resonance 

frequency of 2.45 GHz, is achieved with NFA C. However, the bandwidth of operation, i.e. 

the range of acceptable frequency variations due to environmental changes, will be 

reduced in this case.  

The oscillations observed in the measured data are due to reflections from the walls of the 

LIBS system enclosure, which provide shielding from the environment and are moderately 

absorbing. Considering now the more practical case where a sample is introduced at a 

distance of only approximately 0.2 mm from the NFA, a noticeable shift towards lower 

frequencies is observed in the measured resonance frequencies, with variations from tens 

to a few hundred MHz for all NFAs. The frequency shift is attributed to the NFA impedance 

variation induced by the samples in proximity. This demonstrates the importance of 

considering at design time the impact on the NFA due to the proximity of objects such as 

LIBS samples.  

This critical factor can be taken into account by including these objects in the simulation 

and testing the robustness of the design across a realistic range of material electrical 

properties. For the case at hand with a copper sample, the reflection coefficients at 2.45 

GHz, are -3.5, -6.7, -7.7, -8.7 and -7.9 dB, which correspond to an accepted input power 

level of 55.3, 78.6, 83.0, 86.5 and 83.8% for NFA A to E, respectively. As a result, these NFAs 

are still expected to operate as efficient applicators. However, this will be confirmed 
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through experiments, although it is noted that the overall NFA performance can be further 

improved if specifically designed for predefined test configurations. 

 

4.4.1.2 Electrical Field Strength 

 

 Another indicator of the coupling power level of a NFA to the laser-induced plasma is the 

electric field strength around the conductor tip of NFA. This information can be computed 

and exported from the simulation tool. The distributions of simulated electrical field 

strength (V m-1) around all NFA tips are displayed in the five plots on the first row of Fig. 

21, with the x- and y-axes showing total spatial dimensions of 3mm x 3 mm. As illustrated 

by these simulation results, the highest electrical field strength is observed the closest to 

the tip, which suggests that the distance between the NFA and sample should be kept as 

small as possible to permit high microwave power coupling. However, this is usually limited 

by the system setup and the sample surface roughness.  

The NFAs C, D and E exhibit a comparatively high electrical field strength compared to 

designs A and B. Which means that, in free space, these three designs are expected to 

produce high microwave coupling performance to the laser-induced plasma. The minor 

advantage of design E under ideal conditions is due to the large ground plane (compared 

to D) and operation at fundamental resonance (compared to C). 

 Nevertheless, the experimental results shown in the following indicate a slightly better 

performance of D, as compared to E for the available LIBS system, which might be explained 

by small experimental uncertainties (e.g. sharpness of the tip and/or distance between the 

sample and the NFA) and minor differences in spatial field distribution, which may affect 

the matching of the local field strength to electron density in the plasma and demonstrates 

the significance of considering the environmental impacts on the design of a particular NFA. 
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Figure 20: Simulated and measured reflection coefficients 

|S11| of: (a)design A, (b) design B, (c) design C, (d) design D 

and (e) design E. 
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4.4.2 NFA Performance 

 

4.4.2.1 Plasma Dimensions 

 

To investigate the LIBS signal quality with and without the microwave coupling, it is 

essential to use a sample with low concentration of analyte. However, the concentration 

cannot be too low as it is also necessary to detect LIBS signals before using microwave 

power to establish a reference point. It was found that when using an unspecified mineral 

ore sample from a lead processing plant, a small amount of copper was detectable without 

any microwave injection.  

Therefore, copper was selected as the analyte for this investigation. The mineral ore solid 

sample was mixed with a binder and placed into a plastic disc having depth of 3.4 mm and 

diameter of 21 mm. It is worth mentioning that since the laser beam is not focused onto 

the NFA tip, there will be no induced plasma from the NFA surface. 

 The dependence of the MW-LIBS signal on copper concentration in solid samples using 

NFA, having same rod material has also been studied previously[86]. A linear dependence 

was observed confirming that the interference from the copper in the NFA tip is negligible. 

The performance of the five NFA designs was investigated firstly using four microwave 

powers ranging from 0 to 1.2 kW, while laser pulse energy, gate delay and gate width were 

kept constant. The plasma emission was recorded by ICCD 2 (imaging camera) and the 

spectrometer concurrently. The averaged plasma images obtained from 100 single shots at 

the microwave power of 0 kW (laser plasma only) and 1.2 kW are displayed in the second 

row of plots in Fig. 21. The laser focusing point is positioned at the origin of the scale. The 

laser energy per pulse and microwave power were fixed at 2.6 mJ/pulse and 1.2 kW, 

respectively. These plots clearly demonstrate that for a given microwave power, variations 

in spectral and image intensities can be observed for different geometrical designs of NFA.  
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The leftmost plot in Fig. 21 also shows the laser-induced plasma recorded when the 

microwave was off; hence the recorded signal intensity is multiplied by a factor of 100 in 

this case so that all the recorded images can be visualized using a single-color map. The 

length and the width of laser-generated plasma is approximately 1.7 and 1 mm, 

respectively. The dotted red ellipse shown in Fig. 21(a1)–(e1) illustrates the relative 

location and size of the laser-generated plasma with respect to the tip of the NFA. 

 It is noted that in these images, a part of the imaged microwave assisted plasma is 

overlapped with the tip where the strongest electrical field is formed. As the laser induced 

plasma electron density must be below the threshold of approximately 7 x1010 (cm-3)[80], 

to interact with the injected microwave power. As a result, the strength of the electrical 

field at the overlap location is critical in the microwave-assisted LIBS operation. Hence a 

matching of the electrical field strength with the local plasma electron density must be 

established for an efficient microwave injection. Fig. 21(a2) shows that the microwave-

enhanced plasma is sustained near the reference NFA tip, at (0, 1.2) location. 

 Fig. 21 (b2) and (c2) show an increase in the plasma volume and intensity, indicating a 

more efficient microwave injection than the reference design in Fig. 21(a2). We note that 

it is still possible to see the tip of the NFA in Fig. 21 (b2) and (c2). The plasma shown in Fig. 

21 (d2) and (e2) is further significantly enhanced in terms of intensity and volume, and as 

a result, in contrast to the previous cases, the NFA tip is no longer visible in these two plots: 

the plasma volume has grown large and appears to be covering the NFA.  

The images outlined in Fig. 21 suggest that the biggest plasma volume was obtained with 

NFA designs D and E whereas the reference NFA delivers the smallest plasma enhancement 

even at the highest microwave power. To investigate the life-time of the microwave-

enhanced plasma, time-resolved imaging was applied. Plasma images were recorded for 

the five NFA designs, at different gate-delay times such as 1, 250 and 500 µs, while keeping 

the gate-width and the microwave power fixed at 200 µs and 1.2 kW, respectively. The 

results are plotted in Fig. 28, and at the three gate-delay times, it is clear that the 

microwave-enhanced plasma is larger and stronger for designs C, D and E as compared to 

designs A and B. It is also clear that the plasma is sustained for a reasonably long time of 
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500 µs. It is interesting to note that although the intensity of microwave enhanced plasma 

decreases as the gate-delay increases, the recorded plasma cross section appears constant, 

for designs C to E. Based on the measured cross section, designs D and E produce a well-

sustained plasma for a reasonably longer time. 

 

 

 

 

 

 

 

Figure 21: Electric field strength (the first row) and enhanced plasma images (the second 

row) of the five NFAs proposed, with the laser focusing point and the applicator tip located 

at the origin and (0, 1.2) in the map (3 mm x 3 mm), respectively. These are two-

dimensional plasma images, averaged for 100 laser shots are recorded by ICCD2 for a 

copper bearing mineral ore solid sample. The laser energy was 2.6 mJ/pulse. The 

microwave power and pulse duration were 1.2 kW and 800 µs (after the laser pulse), 

respectively. The camera gate-width was 800 µs. Please note that the intensity of the 

laser-induced plasma image shown on the leftmost plot of the second row is multiplied 

by a factor of 100 for better visibility. The dotted red line in the first row indicates the 

spatial location of the laser-induced plasma. 
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4.4.2.2 Spectroscopic Detection 

Spectral intensities of copper transitions in microwave-assisted laser-ablated plasma for 

the mentioned solid mineral sample have also been recorded to further describe the 

performance of the NFA in operation. Microwave-assisted LIBS spectra in the range from 

324 to 328 nm were recorded at four microwave power levels, using the four designed 

NFAs. In all cases, the copper transitions at 324.754 and 327.395 nm are clearly resolved. 

Microwave power was controlled through secondary delay unit; the laser energy and gate-

width were maintained at 2.6 mJ/pulse and 800 µs. Again, 100 single laser shots were 

recorded at each microwave power, which were then averaged and plotted separately for 

each NFA design, as shown in Fig. 23 as three assorted colors curves. The figure 

demonstrates that, as expected, for all the NFAs studied, the intensity of copper spectra is 

increasing with a rise in microwave power. While analyzing this figure vertically, it is found 

that for a given microwave power (i.e. a given color or curves), spectral intensities seem to 

increase from an order of A, B, C, E and D, which is consistent with the plasma intensity 

image shown in Fig. 21. From the clear qualitative interpretation of the spectral intensities 

in Fig. 23, it can be stated that designs D and E clearly performed better than the other 3 

designs. This will be investigated quantitatively in the next paragraph. 
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Figure 22: Microwave-enhanced plasma intensity of the five NFAs recorded with 

different gate delays of 1, 250 and 500 µs. The gate-width and the microwave power 

were fixed at 200 µs and 1.2 kW, respectively. The results for 500 µs gate delay have 

been multiplied by a factor of 10 to get a better visualization. 
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Figure 23: Microwave-assisted LIBS spectra of a copper bearing mineral ore 

solid sample, averaged for 100 laser shots and recorded using three 

microwave powers of 0.3, 0.75 and 1.2 kW. The laser energy, the gate-width 

were 2.6 mJ/pulse and 800 µs respectively. Two copper lines are clearly 

seen at 327.395 and 324.754 nm. 
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4.4.2.3 Signal Enhancement and SNR Improvement 

 

Fig. 24 shows the LIBS spectra of the copper-bearing sample without and with assistance 

of 1.2 kW microwave power injected with the NFA design D. To interpret this figure 

quantitatively, we can define the signal strength for a particular line as the maximum 

intensity at the line center minus the baseline signal. In the present case, the signal at the 

327.395 nm transition is specifically chosen as an indicator of the NFA performance. Using 

the obtained signal strengths in Fig. 24 for the considered transition, we can then define 

Figure 24: Spectra of (a) design D with 1.2 kW microwave power, (b) design 

D without microwave power (multiplied by a factor of 1000). 
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the signal enhancement as the ratio between the signal with and without assistance of 

microwave power. This yields a critical measure to evaluate the absolute system sensitivity 

improvement with an injection of microwave power.  

A complete characterization has been performed through measurement of all five NFAs. 

Design D has achieved the best performance (and is thus shown in Fig. 24), with the 

exceptionally high signal enhancement of 849 times. It was noted that, however, increasing 

the microwave power is accompanied by a simultaneous increase of noise floor, as 

illustrated in Fig. 25 (a) and (b), where the noise level (counts) and signal enhancement for 

design D are depicted as a function of microwave power.  

The error bars indicate the standard deviations from 100 averaged shots. On that basis, we 

conclude that another relevant performance measure should be considered as well, 

namely the SNR improvement rising with microwave power assistance. From the plots of 

Fig. 25, we observe that the noise, signal enhancement and SNR improvement are clearly 

increasing with microwave power, and that the SNR can reach a maximum improvement 

by a factor of 76 when injecting 1.2 kW microwave power with the design D.  

The signal enhancement and SNR improvement for all five NFAs with 1.2 kW microwave 

power is plotted in Fig. 26. As mentioned, the design D achieves the highest signal 

enhancement and SNR improvement of around 849 and 76, respectively, whereas the 

lowest ones are held by the reference NFA design A. It is worth mentioning that with a 

simple electromagnetic isolation technique such as added partial ground plane, design D 

can enhance the signal by more than 9 times, further than the previously reported very 

high signal enhancement of 93.27[86]. 
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Figure 25:The (a) noise level (counts), (b) signal enhancement and 

(c) SNR improvement of design D at microwave power of 0, 0.3, 

0.75 and 1.2 kW for copper line at 324.754 nm obtained from the 

spectra. Error bars are standard deviations from 100 shots. 
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Figure 26: The signal enhancement (a) and SNR 

improvement (b) of the five NFAs at a microwave power of 

1.2 kW for copper line at 324.754 nm obtained from the 

spectra. 
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Figure 27: The LIBS spectra of a certified ore sample with copper element of 3.38 ppm 

without and with 0.57 kW microwave power. (a) Comparison of these two cases where the 

blue and the red curve correspond to the signal intensity with 0 kW and 1.2 kW microwave 

power, respectively. (b) Replotted signal intensity for 0 kW microwave power on a 

magnified scale. 
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4.4.2.4 Demonstration of the Detection Sensitivity 

The ability of elemental detection at low concentration was tested using the best 

performing NFA, namely design D. A reference material OREAS 122 (Ore Research and 

Exploration) was used for this purpose[95]. OREAS 122 is a certified reference material 

containing uniform low-concentration of copper, among many other elements, at 3.38 

parts per million (ppm). For the analytical detection, the powder sample was mixed with 

distilled water to produce a thick slurry, which was transferred into the cylindrical sample 

holder with a 21-mm diameter. A uniform solid surface was achieved by pressing these 

discs and drying them at 51oC. Fig. 27 shows the LIBS spectra recorded near 324 nm with a 

laser pulse energy of 2 mJ, without and with microwave power. The LIBS spectra recorded 

without microwave power (Fig. 27b) shows no signal of copper at the signature 

wavelengths of 324.754 nm and 327.395 nm. In contrast, when the microwave power is 

switched on at 0.57 kW, a very strong signal at 324.754 nm and 327.395 nm are clearly 

observed. The SNR of the 324.754 nm copper line is calculated to be 166. 

4.5  Summary 

The enhancement in the performance of LIBS following microwave injection has been 

demonstrated by optimizing the microwave system for efficient transmission and radiation 

of supplied microwave power. An efficient microwave system can reduce the microwave 

power requirement without compromising the achieved improvement in LIBS. Hence low 

microwave power requirement in MW-LIBS along-with less laser power requirement can 

eventually take MW-LIBS system a step ahead towards development of the compact and 

portable commercial devices for the remote and field detections. Microwave antenna 

named as near field applicator (NFA) being one of the main components of the antenna 

coupled MW-LIBS system, can improve the performance of the entire system by efficiently 

transmitting and radiating the supplied microwave power. Considering the importance of 
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NFA to achieve better performance for same microwave power, four designs of NFAs were 

developed based on full-wave electromagnetic simulations and were experimentally 

investigated with respect to a reference design. Compared with the reference device, these 

four NFAs take into account critical factors such as the influence of the electromagnetic 

environment and the reflection coefficient, with the aim to maximize the electric field 

strength at the location of the plasma and predictably enhancing the results. The 

experimental results, including NFA reflection coefficients, plasma imaging and 

spectroscopy, show that NFAs designed in a systematic way leads to a significant 

improvement in the overall system performance, with very good stability and repeatability 

as observed during our measurement operation. The best SNR enhancement was achieved 

with the design having a 30-mm diameter ground plane located close to the rod conductor 

(design D), which leads to a 849-fold signal enhancement and a 76-fold SNR improvement 

at 1.2 kW microwave power, respectively, compared to measurements without microwave 

assistance. This is, to the author’s best knowledge, the highest reported SNR in the 

literature. To illustrate the enhanced system performance, a very strong copper spectral 

line was recorded with a SNR of 166 for a microwave power of 0.57 kW on a certified ore 

sample with uniformly distributed copper elements of a very low concentration of 3.38 

ppm. Such a high level of SNR suggests that a detection limit in the sub-ppb range can 

become a real possibility. 
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Chapter 5 Conclusion 

This research was aimed to improve the analytical capabilities of LIBS for quick, in-situ, 

remote analytical measurements such as trace metal detection in many applications such 

as mining, agriculture and environmental monitoring. LIBS being the contactless, quick and 

multi-elemental detection technique has the potential to meet the desired analytical 

requirements in numerous applications, if signal quality, sensitivity, signal to noise ratio 

and limit of detection is improved. Inducing microwave radiation in the LIBS plasma can 

noticeably improve the mentioned analytical features of LIBS. However, further 

optimization of the microwave-assisted LIBS system is required to match the desired 

performance. In this research optimization of MW-LIBS system has been suggested by two 

separate approaches such as emission detection by narrow band-width elemental imaging 

for quantification and efficient injection of microwave radiation by well-designed NFA.  It is 

believed that plasma emission is reduced when it travels through the spectroscopic 

components. While studies have shown that all emission from plasma cannot be captured 

by spectrometer due to increased plasma volume and dimensions, following the 

enhancement by microwave. Hence sensitivity and performance of MW-LIBS can further 

be increased by minimizing this signal loss. A custom made narrow bandpass filter coupled 

with an ICCD camera was used to present a simple yet sensitive, alternative 

detection channel which has the ability of capturing whole plasma emission, due to its 

large field of view. To study the quantitative nature of imaging technique, indium in the 

solid matrix was used for the experimental estimation. Spectroscopic detection was 

performed in conjunction with the indium elemental imaging to study the improvement 

in LIBS system. Experimental results demonstrated that an overall improvement of 14-fold 

as compared to conventional LIBS without microwave enhancement. While narrow band 

imaging detection technique was 3 times sensitive than spectroscopic detection in MW-

LIBS. However, limit of detection of spectroscopic detection was better (16 ppm) 

than imaging technique 
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(50ppm) due to unresolved background interference, this issue can be resolved by using 

better narrowband pass filters or filtering system. As imaging technique cannot offer multi-

elemental detection hence, a low resolution spectrometer would still be needed to 

identify the surrounding matrix. It was also observed that the microwave antenna/NFA 

based ambient MW-LIBS is highly dependent on the relative position of NFA with respect 

to solid sample and laser pulse, minor variation can generate highly unpredictable results 

therefore, sample preparation is required to achieve identical smooth sample surfaces. 

Extreme care and precise alignment would also be needed while switching between the 

samples.   

The NFA being the vital component of the microwave injection system can influence the 

performance of the whole microwave system by several means. A well-designed NFA can 

generate predicable performance consistently by efficiently transmitting the supplied 

microwave power while reducing the reflection coefficient. It can further improve the 

enhancement through efficient radiation of the transmitted microwave power by 

developing localized concentrated electric field at the tip of the NFA conductor, in the close 

vicinity of laser ablated plasma. Considering the importance of this device, 4 designs of 

NFAs were simulated in CST studio, accounting the specialties of the available MW-LIBS 

system. These designs were fabricated and assessed in the MW-LIBS system for detection 

of Copper in mining sample using the 5th design and reference, the broad plasma imaging 

was also carried out simultaneously to study the effect of improvement on the plasma 

dimensions and intensity. Experimental results revealed that Design D with finite ground 

plane of 30 mm diameter (used for isolation of return power), performed better than the 

rest and demonstrated a signal enhancement of 849-fold with 76-fold improvement in SNR. 

These both optimization techniques have not yet been applied in-conjunction to 

investigate a collective improvement in analytical capabilities of MW-LIBS. However, it is 

logical to believe that these improvement techniques can collectively offer considerable 

improvement in LIBS system following microwave injection, the demonstrated 

enhancement presents a good possibility of the detections in parts per billion but the 
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enhancement can be different for various elements due to the different transitions 

energies.  

These novel improvement approaches open many prospects of vital future research 

involving MW-LIBS. One aspect may involve the collective implementation of these 

techniques to investigate the improvement in analytical capabilities of MW-LIBS. New 

design of NFA presents the possibility of detections in sub part per million therefore 

detection of heavy metals in soil for pollution control or monitoring of nutrients in 

agriculture lands, can also be investigated by MW-LIBS using new design of NFA. As MW-

LIBS offers different enhancement for various elements due to different transition state 

energies hence future work may also involve the investigation of enhancement for various 

important elements using these novel improvement techniques.  One important inherent 

limitation of LIBS i.e. matrix effect has not yet been studied using MW-LIBS, this could be 

an interesting topic for future work as different matrices are believed to influence LIBS 

signals at the plasma generation stage, due to different ablation threshold energies and 

laser-material interactions. Enhancement by microwave being a post plasma generation 

phenomenon, can minimize or eliminate matrix effect specially when these new 

improvement approaches can impart such a considerable enhancement in MW-LIBS signal. 

Analytical capabilities of MW-LIBS for aqueous solution has already been demonstrate, 

hence further investigation of MW-LIBS performance using these detection and 

enhancement approaches can also be a vital topic for future work, as because real time 

analysis of water bodies for pollution control and of drinking water for quality control, can 

also become a very important field for LIBS application. Furthermore, investigation of single 

element plasma in aqueous samples by narrow bandwidth imaging for temporal 

elaboration, following microwave enhancement can also be an interesting future work. In 

addition, use of a cheap low-resolution spectrometer and simple camera without fast 

gating function for the analytical detection can become an important branch of future 

research in MW-LIBS, for the development of cost effective portable devices. 

Implementation of improved narrow bandpass filters to suppress the background 
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interference for better limit of detection and use of multi-element filtering system for 

minimizing the need of spectrometer may also be a focus of future work in MW-LIBEI. The 

good point about the MW-LIBS is that it needs less laser energy such as a few times 

higher than the ablation threshold which makes MW-LIBS convenient for the portable 

application as small robust laser source can be used. In addition, this research can 

contribute to suppress the need of high microwave power without compromising the 

enhancement. A compact cheap microwave source ~ 0.7 kWatt would be sufficient for 

many applications. Hence compact laser and microwave source coupled with simple and 

robust plasma detection based on single elemental imaging, can make a perfect 

combination for a robust, light weight commercial analytical device based on MW-LIBS. 
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This study reports a sensitive spectroscopic method for quantitative elemental detection by manipulating the

temporal and spatial parameters of laser-induced plasma. The method was tested for indium detection in solid

samples, in which laser ablation was used to generate a tiny plasma. The lifetime of the laser-induced plasma

can be extended to hundreds of microseconds using microwave injection to remobilize the electrons. In this

novel method, temporal integrated signal of indium emission was significantly enhanced. Meanwhile, the

projected detectable area of the excited indium atomswas also significantly improved using an interference-, in-

stead of diffraction-, based technique, achieved by directly imaging microwave-enhanced plasma through a

novel narrow-bandpass filter, exactly centered at the indiumemission line. Quantitative laser-induce breakdown

spectroscopy was also recorded simultaneously with the new imaging method. The intensities recorded from

bothmethods exhibit very goodmutual linear relationship. The detection intensitywas improved to 14-folds be-

cause of the combined improvements in the plasma lifetime and the area of detection.

Crown Copyright © 2017 Published by Elsevier B.V. All rights reserved.
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1. Introduction

Laser induced breakdown spectroscopy (LIBS) is an analytical tech-

nique, which has great capabilities of quick response, multi-detection,

no sample pre-treatment and analyzing solid, liquid and gaseous sam-

ples [1,2]. LIBS can effectively be applied to many fields such as heavy

metal detection, space and underwater explorations and ore identifica-

tion in mining [3–5]. Despite being equipped with excellent features,

LIBS has a few limitations such as low sensitivity, poor limit of detection

(LoD), weak signal-to-noise ratio (SNR) and surface dependence, which

limit its application as a reliable detection method. Significant research

has been carried out to overcome these limitations by developing vari-

ous improved techniques thatmainly relay on the concept of aiding LIBS

by another energy source. For example, second longer laser pulse [6–8],

spark discharge [9], stable flame [10], torch [11], steady magnetic field

[12] and microwave (MW) [13–17], are well known secondary sources

that induce additional energy into the conventional LIBS to retain and/

or re-excite the laser ablated plasma, hence imparting essential im-

provement in sensitivity, LoD and SNR of LIBS.

As one of these signal enhancement techniques, microwave-assisted

LIBS is based on the concept of coupling MW radiations to the plasma

regimes with low electron density. For a typical 2.45 GHz MW source,

electron density of plasma should be less than the critical density of 7

× 1010 (cm−3) to achieve efficient coupling [14]. The initial laser-in-

duced plasma has a high electron density on the order of 1017–

1019 cm3, but during its relaxation and at its periphery, the electronden-

sity decreases to be lower than the critical density. At this stage, MW ra-

diations can be coupled into the plasma for re-excitation and signal

enhancement [14]. MW radiations can retain and re-excite laser-in-

duced plasma for the whole duration of the MW source by creating

localised electric field near to the plasma and delivering kinetic energy

to free electrons. These free electrons keep exciting the plasma through

atoms, ions and electrons collisions within plasma till the MW remains

coupled. MW radiations prevent further decay of plasma density, while

the volume and emission intensity of plasma can increase substantially,

resulting in stronger emission signals and an improved detection

sensitivity.

Several works of MW-LIBS have been reported previously, laser

assisted microwave plasma spectroscopy (LAMPS) was initially devel-

oped by Ocean Optics and its partner company Envimetrics [3]. A MW

cavity was used in the LAMPS setup and an improvement in detection

sensitivity by a factor of 10 to 1000, depending on the sample type,

was demonstrated [3]. Liu et al. applied a MW cavity for copper detec-

tion in soil sample [16] and elemental analysis of ceramic samples [14]

in these works, 23 and 33 times enhancement in detection sensitivity

was achieved respectively. In gaseous samples, Ikeda and Tsuruoka

studied the characteristics of laser- and spark-induced plasmas with
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an external antenna-coupled MW power, where a 15 times enhance-

ment in lead (Pb) spectra was reported [13]. Khumaeni et al. demon-

strated antenna-coupled MW enhanced LIBS using solid samples at

lower pressure in enclosed cavity environment [15], where a loop an-

tenna was used to deliver MW radiation close to laser ignited plasma

and the authors observed a loss of signal intensity with the increase in

surrounding pressure. Viljanen et al. applied MW-LIBS in ambient con-

ditions by using a near field applicator (NFA), which was placed at

0.5 mm from laser beam and 1mm from sample surface. They achieved

93 folds signal improvement and LoD of 8.1 ppm, for copper detection in

Cu/Al2O3 solid samples [18]. Wall et al. demonstrated LoD of 10.1 ppm

for indium detection in aqueous solution by using a NFA for MW injec-

tion at ambient conditions [19]. Furthermore, Eschlbock-Fuchs et al.

[20] re-excite the laser induced plasma by a pulsed electric discharge.

This results in the extension of the plasma life-time to several millisec-

ond. In these previous studies, it was noticed that the plasma volumes

were also enlarged with the presence of MW sources. Therefore, it

was highly possible that not all emission signals had been captured

using the detection systems which are usually fiber-coupled spectrom-

eters. Equally, it is also possible to further enhance the emission signals

in MW-LIBS if the whole plasma volume can be captured. Besides, it is

also believed that LIBS signal is being lost significantly as it travels

from the plasma to the detector through all the spectrometer compo-

nents, resulting in a relatively low collection efficiency. To our best

knowledge, no alternative detection method has yet been proposed to

improve detection efficiency by minimizing the signal loss. So far, all

the work has been done to retain and enhance plasma. In addition, the

long persisting time of MW-LIBS signal also mitigates the requirement

of a fast gating function for the detector used in LIBS to temporally sup-

press the strong continuum emissions with and shortly after the laser

pulse.

While simultaneous analysis of dominant composition is beneficial

in LIBSmeasurements, detection of a single target element is also neces-

sary in many practical application, such as selection of ore in mining in-

dustry where reliable, quick and sensitive detections are required.

Meanwhile, owing to the advancement in manufacturing of novel fil-

ters, it has become possible to achieve signal imaging, i.e. replacing

the spectrometer with a filter (or a filter system) in LIBS. Novel filters

with an ultra-narrow band pass (BP) up to 0.1 nm are commercially ac-

cessible now, e.g. filters manufactured by Alluxa [21]. This level of spec-

tral resolution is comparable to small compact spectrometers typically

used in compact LIBS. Besides, both high transmission throughout (Ts)

and high optical density (OD) are unique for these new narrow

bandpass filters. Therefore, it is attractive to replace the spectrometer

in LIBS with a simple filter, leading to a more compact and efficient

setup, but potentially also of lower cost.

In the present work, we report a novel concept of elemental detec-

tion in MW-LIBS based on imaging. Two narrow band filters are com-

bined to spectrally select the target element emission, which is then

recorded using a camera. The demonstrated technique, namely micro-

wave-assisted laser-induced breakdown elemental imaging (MW-

LIBEI), possesses several advantages, such as high sensitivity and large

field of view (FoV), as will be outlined in detailed in this work.

2. Experimental setup

Fig. 1 shows the schematic diagramofMW-LIBEI. The harmonic out-

put (532 nm, 6 ns pulse duration) from an Nd:YAG laser (Brilliant B)

was used as light source to generate initial plasma as does in conven-

tional LIBS. The laser pulse was fired at 200 μs after the starting time

of MW. The pulsed MW radiation, operated at 2.45 GHz, was delivered

and coupled into the laser-induced plasma. The MW pulse duration

was set to 1 millisecond (ms) and was generated with a water-cooled

3 kW Sairem MW system which is available commercially. The adjust-

able MW power was typically set to 1.2 kW, of which ~50% was finally

coupling into the plasma. The MW radiation was delivered with a 1 m

flexible coaxial cable (50Ω NN cable) with 0.14 dB@2.45 GHz, connect-

edwith semi rigid cable (RG402/U) at the end. The other endof the semi

rigid cable was stripped off to expose the inner silver-plated copper

steel core by ~25 mm to form a NFA. The end of NFA was tapered

with a double included angle of ~45° to form a pointed tip which was

located ~0.5 mm horizontally and vertically away from the interaction

point of the focused laser beam (~100 μm in diameter) and the solid

sample surface.

The plasma emission was simultaneously recorded through two de-

tection channels. The first is a backward collection scheme that is often

used in conventional LIBS set-ups. As shown in Fig. 1, after the first fo-

cusing/collimating lens (f = 100 mm) the emission was focused by a

perforated parabolic mirror and directed by a combination of a focusing

lens into another parabolic and then into a fiber bundle (Thorlabs,

BFL200HS02). The emitted radiation was then channeled into a spec-

trometer (f = 500 mm) installed with a 2400 lines/mm grating and

an ICCD camera (iStar, Andor).

Fig. 1.Outline of themicrowave-assisted, laser-induced breakdown elemental imaging, i.e. MW-LIBEI. The two filters are attached in front end of the camera lens in the actual set-up. Also

shown is a second detection channel, representing the spectrometer based detection used in microwave-assisted laser-induced breakdown spectroscopy (MW-LIBS). The spectrometer

and the intensified camera used in MW-LIBS are not shown.
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The second detection channel is used for demonstrating the proof-

of-concept of theMW-LIBEI technique. The plasma emissionwas direct-

ly filtered by a combination of two BP filters, both 50.8 mm in diameter.

This is to select only the 451.13 nm Indium emission line following the

transmission from the second (24,372.957 cm−1) to the first excited

levels (2212.599 cm−1). The first filter is a standard filter with a full-

width at half-maximum (FWHM) of 10 nm (450FS10-50, Andover),

while the second is a custom-made filter with a narrower BP (FWHM

= 1.28 nm, Alluxa) [21], centered exactly at 451.4 nm. The two filters

have transmission of 54% and 95%, respectively, resulting in a combined

transmission of 51% at 451.13 nm. The combinedOptical Density (OD) is

~5.6 out of the range of 450.12–452.68 nm and is ~8 below 440 and

above 460 nm. These high OD values are critical in (MW-) LIBEI to

block not only strong emissions fromother elements, e.g. excited atomic

N and O from buffering air, but also the background emission integrated

over the full spectral region. The combined filters were installed in front

of a Nikon camera lens (f = 50 mm and f-number = 1.8), located at

about 300 mm away from the detection volume. The emission signals

passing the filters were recorded by a second ICCD camera (iStar,

Andor), whose gating time and width were synchronized with those

of the ICCD used in the spectroscopic detection channel. While it is pos-

sible to use a normal camera with a basic gate function to capture emis-

sion, an ICCDwas used in thiswork to facilitate comparisons of theMW-

LIBEI signals with those from the spectrometer-basedMW-LIBS. The in-

tensifier gain was set at 20 and 200, respectively, for the MW-LIBEI and

MW-LIBS cameras. These values correspond to ~8% and 78% of the full

available gain (255), respectively.

To test thequantitative nature and the response linearity of theMW-

LIBEI technique, solid samples containing a range of indium concentra-

tion from 50 to 1400 ppm (by weight) were in-house prepared by

mixing 1% solution of indium chloride (InCl3) with 14.25% solution of

sodium chloride with various stoichiometric ratios. The additional

water was then evaporated at 250 °C. Solid mixtures were transformed

into uniform surface discs of 3.5 mm in thickness and 21mm in diame-

ter, which were then dried at 51 °C for 15 min.

3. Results and discussion

In developing LIBEI, several following concerns must be assessed.

The first is to evaluate the blocking ability of the filtering system. This

is because in LIBS the emission is spectrally resolved; hence the back-

ground interference, if presented, can often be satisfactorily evaluated

and then subtracted from the spectrally resolved signal. However, this

approach may not be applicable in MW-LIBEI. All photons at multiple

wavelengths, transmitting through the filters and detectable by the

camera, can contribute to the image intensity, e.g. atomic N and O emis-

sion,when the sample is in air. Fig. 2 shows theMW-LIBEI signals for in-

dium at three concentrations of 0, 50 and 200 ppm, respectively,

averaged from 200 laser shots. The gate width of the camera was 800

μs and delayed 10 μs from the laser pulse of 2 mJ/pulse. As shown in

Fig. 2, the image intensity for the non indium (0 ppm) sample is still de-

tectable, but already too weak, b20 counts. The image peak intensity

significantly increases to 30 and 100 counts in the 50 and 200 ppmsam-

ples.While the leaking background influences the LoD ofMW-LIBEI, Fig.

2 evidently shows the good sensitivity of MW-LIBEI, for which a further

discussion is given below. It is also worth noting that in MW-LIBEI the

image is integrated over the plasma image to present the signal intensi-

ty that corresponds to elemental concentration, leading high SNR (also

see Fig. 4).

The second concern to be assessed in developing MW-LIBEI is the

corresponding relationship betweenMW-LIBEI andMW-LIBS signal in-

tensities, given that the latter holds quite good linear relations with the

elemental concentrations [18,19]. Fig. 3 shows simultaneous results of

the MW-LIBEI and MW-LIBS intensities measured in samples with dif-

ferent indium concentration (0–1400 ppm). In this measurement, all

experimental settings were kept same as stated in Fig. 2. The intensities

of the MW-LIBEI are calculated by integrating area over the plasma

image, while those of theMW-LIBS are spectrally integrated over the in-

dium line at 451 nm, both with background subtractions. Fig. 3a shows

an excellent linear relationship betweenMW-LIBEI andMW-LIBSwith a

square correlation coefficient (R2) value better than 98%. Furthermore,

the linearity holds in a large dynamical range, indicating the feasibility

of using MW-LIBEI for element quantifications, as quantitative element

measurements using MW-LIBS has already been demonstrated [19].

Fig. 2. MW-LIBEI emission imaging plotted in three dimensions for samples with indium concentration of 0, 50 and 200 ppm while laser and MWwas 2 mJ/pulse and 900 W.

Fig. 3. (a) Represents the relationship between spectral counts (MW-LIBS) and image

intensities (MW-LIBEI) simultaneously recorded by spectrometer and imaging camera.

(b) The intensities of MW-LIBS and MW-LIBEI signals as a function of indium

concentration. The first three data in the MW-LIBEI signal curve correspond to the three

images shown in Fig. 2. Laser andMWwas 2mJ/pulse and 900W in these measurements.
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Fig. 3b shows MW-LIBEI and MW-LIBS signals against the indium

concentration. General good linear relationships exist in both measure-

ments, noting that there are also potential uncertainties of concentra-

tions of the samples. The relatively large standard deviations, for both

type of signals in Fig. 3b, are attributed to the fluctuation of the coupling

efficiency ofMW to plasma. An important finding is that the slope of the

MW-LIBEI signal curve is approximately 3 times larger than that ofMW-

LIBS, indicating an improvement of 3 folds in signal intensity for the

present setup. The signal intensity of MW-LIBS may be improved

using a low-resolution grating with higher reflection efficiency, such

as that of 300 lines/mm. However, noting the gains used for both cam-

eras, the present work clearly demonstrates that the simple MW-LIBEI

based on a low-cost camera can achieve higher signals than the MW-

LIBS. This enhancement is particularly attractive becauseMW-LIBS is al-

ready more sensitive than conventional LIBS by a factor of ~1–100 [18,

19].

The LoDs ofMW-LIBS andMW-LIBEI are estimated to be 16ppmand

50 ppm, respectively. The LoD of MW-LIBS was estimated based on the

signal-to-noisemethod. The LoD ofMW-LIBEI was estimated from Fig. 2

using visual evaluation method [22].Considering the leakage through

the filter in the absence of the indium (0 ppm) as shown in Fig. 2, for

a safe detection the acceptable signal value was assumed three times

of this leakage, in terms of intensity counts. MW-LIBEI demonstrates

poor LoD because even in sample without presence of indium there

was still emission intensity acting as background interference, as

shown in Fig. 2. This leakage through filter limits the quantitative detec-

tions beyond 50 ppm, however, Fig. 3b demonstrates that MW-LIBEI of-

fers higher sensitivity for the smaller variation in concentration as

compared to MW-LIBS. The background interference can potentially

be reduced to improve LoD of MW-LIBEI. In principle, a filter with a

narrower BP (i.e. that is b1.28 nm) and a higher OD can be employed

since atomic emission is typically much narrower in spectra. Such a fil-

ter, e.g. which has a FWHM of 0.12 nm around 396 nm, indeed had al-

ready applied in astronomy study [23]. Another potential method is to

introduce a second narrow BP filter that is slightly off-resonant to the

target spectral line, installed with the resonant filter in a stereoscopic

lens configuration, allowing the recording of the background signal

simultaneously.

The third concern in developing MW-LIBEI may be the neighboring

spectral interference from other elements. Fig. 4 shows a typical MW-

LIBS and MW-LIBEI recorded in a feedstock sample from an industrial

leadprocessing plant. The sample containsmanyother elements includ-

ing indium and, therefore, several spectral lines appear within this

10 nm spectral range in the MW-LIBS. However, it is still feasible to se-

lect indium signals in the MW-LIBEI with a quite good SNR. Also, the

cross section along onepixel array of theMW-LIBEI image demonstrates

both high intensity and great SNR ratio in theMW-LIBEI. The limited ca-

pability of detecting multiple elements of MW-LIBS can potentially be

resolved by applying a cheap low-resolution spectrometer for multi-el-

emental identifications.

We also emphasize the necessary role of the MW source in MW-

LIBEI. Fig. 5 presents the imaging signals recorded with and without

the assistance of external MW source, as well as the corresponding

MW-LIBS intensities as comparison. Fig. 5a and b presents single shot

image intensitieswithout andwithMW. Fig. 5c and d presents averaged

image intensitieswithout andwithMWrespectively.While Fig. 5e and f

presents a comparison of spectral and image intensities captured by

both detection channels, i.e. LIBS and LIBEI without and with MW,

while operated simultaneously. All measurement settings were held

the same as shown in Figs. 2 and 3, while without MW the camera

gate-width was only delayed 200 ns from the laser pulse to capture

more indium signal. Also, a higher laser power (3 mJ/pulse) than in

Figs. 2 and 3was applied to ensure detectable signal in theMW-off test-

ing. Firstly, it can be seen that the signals have been significantly en-

hanced following the MW injection, both in spectra and in imaging,

revealing the crucial role of MW. Secondly, the enhancement on LIBEI

signal is clearly larger than that of LIBS (see Fig. 5e and f). This is another

advantage of MW-LIBEI, i.e. its large FoV ensures that all emission sig-

nals are being captured and makes MW-LIBS more tolerant to the fluc-

tuation of the plasma volume. This tolerance against the change of

plasma volume is difficult to achieve in both MW assisted and conven-

tional LIBS. Comparison of the signal in MW-LIBEI (in Fig. 5f) with that

Fig. 4. (a) Typical spectrum ofMW-LIBS and (b) emission imaging ofMW-LIBEI recorded simultaneously in a feedstock sample from a lead processing plant plate using 2.5 mJ/pulse laser

and 900 WMW. In (a) the transmission band of the filters is indicted by the two red dash lines. The cross section of the MW-LIBEI image (b) along the dash-dot line is shown in (c).
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in conventional LIBS (in Fig. 5e), reveals a total signal enhancement of ~

14-fold for the present MW-LIBEI setup.

Additionally,MW-LIBEI signal can be further enhanced by increasing

theMWpower. In Fig. 6a, both normalizedMW-LIBS andMW-LIBEI sig-

nals are shown against the MW power. A linear relationship is found in

theMW-LIBEI curve for the MW power up to 1.6 kW, which potentially

holds for higher MW power. Contrastively, the MW-LIBS signal re-

sponses nonlinearly to the MW power above ~1.0 kW and appears to

be saturated. This non-linear response is attributed to the increase of

the plasma volume, as illustrated in Fig. 6b showing that the plasma vol-

ume increases linearly with the MW power when it is effective

(N0.4 kW) on the plasma. In MW-LIBEI, the enlargement of the plasma

volume and the enhancement in signals are well detectable because of

its large FoV. However, the volume enlargement is not detectable in

MW-LIBS beyond1.2 kWMWpower, since the plasma volumebecomes

too large to be effectively coupled into the fiber optical cable, as clearly

illustrated in Fig. 6a. It should be noted that the plasma volumewas cal-

culated based on an effective radius. A process of image binary was ap-

plied firstly to the recorded image based on the 1/e2 value of the

maximum intensity to get the projected area of the plasma, from

which an effective radius was calculated by assuming that the plasma

is spherical in shape. This process was acceptable because that, as

shown in Fig. 4b, the plasma images are reasonable approximated as

round in the present work.

In addition, it is also significant to demonstrate the change in phys-

ical appearance of the plasma following the MW injection at various

powers, to strengthen the claim of MW-LIBEI benefiting from FoV. Fig.

7 presents the change in the appearance and intensity of indium plasma

images, captured at various MW powers keeping the laser power con-

stant. 200 single shots have been recorded at eachMWpower and plot-

ted as an average image. X-axis in these figures represents the position

of the sample holder. NFA is placed 1mm from sample and 0.5mm from

Fig. 6. (a) Normalized intensities of MW-LIBEI andMW-LIBS, as a function of theMWpower, and (b) the corresponding plasma volume recorded inMW-LIBEI using 2.5mJ/pulse of laser.

Fig. 5. Indium emission imaging plotted in three dimensions for snapshot signals (a) without and (b) with MW assistance, and signals averaged over 100 laser shots (c) without and (d)

with MW assistance. The corresponding image and spectral intensities of MW-LIBEI and MW-LIBS are shown in (e) and (f). Solid samples containing 400 ppm indiumwere used with a

laser energy of 3 mJ/pulse laser and microwave power of 0 and 900 W.
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laser beam,while laser beam is propagating at 10° towards solid sample.

Y-axis represents vertical distance from the sample holder and is at

right angle to the axis of imaging camera (Z-axis) as shown in Fig. 1.

Axis values have been presented in millimeter (mm) by calculating

the pixels/mm from recorded image of a sample, having known length

and width. Zero mm on the X-axis is the approximate position of the

laser beam while NFA applicator is located on the right as shown in

Fig. 7. From this figure it can be seen that with the increase of MW

power, physical appearance and intensity of plasmas tend to increase

substantially, which proves the concept of FoV in MW-LIBEI. While a

few exceptions can also be observed at 0.9, 1.1 and 1.2 kWwhich are as-

sumed to be, because of damaged surface of solid sample, resulted as ir-

regular MW coupling.

In contrast to LIBS, MW-LIBEI is suitable for a single elemental detec-

tion. It is worth noting that a stereoscope in front of the camera lens can

offer a second elemental detection channel, if needed. A low-cost spec-

trometer can also be used for elemental identification and or, for larger

scans to identify the whole matrix, whereas major species of interest

can be analyzed by elemental imagining

4. Conclusions

Microwave-assisted laser-induced breakdown elemental imaging as

a new elemental detection method has been demonstrated. MW-LIBEI

offers a desirable high-level of intensity because of the large FoV and a

negligible flight-out-of-view. An improvement of 14 folds in the detec-

tion intensity was demonstrated for indium in solid samples. The dem-

onstrated improvement in the intensity is because of the large FoV of

the MW-LIBEI technique, which is not available in MW-LIBS. The

detection intensity can be further improved by increasing the power

and the pulse-duration of the MW radiation. The limit of detection of

the MW-LIBEI technique is higher than that of the MW-LIBS, 16 ppm

versus 50 ppm, but it can be potentially improved by using a filter (or

a filtering system) with a narrower BP or higher OD. Furthermore, the

MW-LIBEI is a spectrometer-free technique, in which only a relatively

simple camera, with neither fast gating nor an intensifier, can be used

to achieve similar detection capability as that of conventional MW-

LIBS. The spectrometer-free MW-LIBEI technique responds well to the

demand for cost-effective, reliable, sensitive and real-time detection in

remote and harsh environments including, space, defense, chemical

processing and mining industries.
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Design and application of near-field applicators for
efficient microwave-assisted laser-induced
breakdown spectroscopy

Shengjian Jammy Chen, †a Adeel Iqbal,†b Matthew Wall,b Christophe Fumeauxa

and Zeyad T. Alwahabi *b

Laser-induced breakdown spectroscopy (LIBS) can benefit from sustaining laser generated plasma with

microwaves to enhance elemental detection sensitivity. To achieve efficient microwave coupling, critical

factors, such as the electromagnetic environment and reflection coefficient of the coupling device, need

to be considered to quantitatively predict the electric-field strength in the plasma location. 3D full-wave

electromagnetic simulations were used to design near-field microwave applicators suitable to maximize

microwave coupling into the short-lived laser-induced plasmas. The simulations pointed out to four

effective and practical designs containing varieties of isolation techniques. The four developed

microwave applicators were then used to improve the detection of copper present in a mineral ore solid

sample, using LIBS and imaging techniques simultaneously. It was found that, with 1.2 kW microwave

power, an applicator design with a 30 mm diameter ground plane can significantly boost the signal of

copper line 324.754 nm with a factor of 849, which is, to the authors' best knowledge, the highest

reported value. Furthermore, an outstanding signal to noise ratio of 166 was recorded in a solid sample

containing a certified 3.38 mg g�1 copper concentration.

1 Introduction

Laser-induced breakdown spectroscopy (LIBS) is a relatively

simple and powerful technique for spectrochemical analysis.1–3

Since the signal strength and signal to noise ratio (SNR) are

crucial for achieving high sensitivity in LIBS, several methods

including nano-particle deposition,4 double-pulsed excita-

tion,1,5,6 spatial connement,7–9 resonance enhancement,10–12

and coupling to external energy sources13–27 have been devel-

oped. For this last method in particular, microwave is one of the

most popular external energy sources14,18–20,23–27 leading to

techniques generally referred as microwave-assisted LIBS.

Additionally, microwave technologies have been also exploited

to launch or generate plasma in various applications.28–30

Compared with the other mentioned techniques such as

double-pulsed excitation and spatial connement, microwave-

assisted methods can be less intrusive to the sample and can

conveniently create localized plasma enhancement. The

external energy supplied via the microwave sustains the free

electrons present within the short-lived laser-induced plasma.

These energized free electrons will then act as an excitation

source leading to a signicant extension of the life-time of the

laser-induced plasma.

The life-time of themicrowave assisted laser-induced plasma

can reach ms time scale and it is usually determined by the

pulse-length of the microwave source. The life-time extended

plasma will provide higher signal counts by allowing the use of

a longer detection window gate. The challenge, however, is the

ability to supply the microwave power into the laser-induced

plasma at an appropriate time and precise spatial location.

This is because if the plasma electron density of the laser-

induced plasma is above a critical value of approximately 7 �

1010 (cm�3),15,20 the microwave will not interact with the laser-

induced plasma. Therefore, to efficiently and effectively

improve the sensitivity and detectability of LIBS systems, well-

designed near-eld applicators (NFAs) which have a predict-

able microwave radiation performance and are optimized based

on the specicities of LIBS systems are critical. Firstly, a well-

designed NFA should provide an efficient microwave localized

application obtained by minimizing the reection in the

microwave power transmission path, which needs to take the

NFA and the surrounding environment into account during the

design process. Secondly, it should have predictable microwave

radiation characteristics such electric eld distribution and

strength, which can be obtained and optimized from electro-

magnetic simulation soware. As a result, a well-designed NFA

can lead to an efficient and effective microwave-assisted LIBS,
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by increasing the interaction of the plasma with concentrated

microwave power.

Most recently, Wall et al.26 and Viljanen et al.27 reported that

a NFA can be used for LIBS signal enhancement at atmospheric

pressure in ambient air. The signal enhancement factors for

copper in a solid matrix and for indium in aqua solution were

found to be 100 and 60, respectively. In these studies, the NFA

was designed and empirically tuned to produce satisfactory

microwave injection without systematically optimizing the

coupling, which thus did not necessarily lead to the most effi-

cient NFA. However, NFAs with high efficiency are strongly

desired as they are extremely important for LIBS system sensi-

tivity and operation at lower microwave power. Therefore,

designing NFAs in a more systematic way can lead to a better

performance.

In this paper, we demonstrate how relatively small changes

in the geometry of the NFA can lead to signicant improvement

of the microwave-assisted LIBS overall system performance. To

this end, four NFAs are designed based on full-wave electro-

magnetic simulations (performed with CST Microwave Studio,31

referred to as CST in this paper), taking into account critical

factors, such as the inuence of the electromagnetic environ-

ment and the reection coefficient, to maximize the electric

eld strength at the location of the laser-induced plasma. The

coupling efficiency of the resulting designs was assessed by

experimental comparison with a reference design, involving

simultaneous imaging of the enhanced plasma and spectro-

scopic detection of copper in the solid sample. This allowed us

to evaluate the entire system sensitivity by monitoring the

plasma spatial and temporal dimensions and by measuring the

microwave-assisted signal enhancement for copper lines.

2 NFA designs

The NFAs in a typical microwave-assisted LIBS setup for

ambient conditions, such as demonstrated in ref. 26 and 27 are

affixed with adjustable posts and connected to the microwave

generator through a series of equipment and coaxial cables in

a relatively open space. Therefore, these NFAs are more sensi-

tive to the exterior environment compared with the microwave

launching devices in a relatively conned environment,15,18,20,24

since the objects electrically connected or in proximity to them

can have an impact on their performance and repeatability

owing to electromagnetic coupling. This is especially critical for

metallic objects such as the NFA holder and the adjustable

posts, whose positions might change for different measure-

ments. In order to develop NFAs with a predictable perfor-

mance, this type of impact must be mitigated through

appropriate electromagnetic design. Hence, different applicator

designs involving some well-known techniques such as

a quarter-wave choke or a nite ground plane32 are proposed

here to strongly limit the return currents along the outside of

the coaxial cable feeding the NFA. This will consequently limit

the direct coupling to the outside objects in the system. Such

undesired coupling can drastically alter the behaviour of a NFA,

and in the presence of a typically complicated environment, can

render the performance prediction unreliable.

Four designs variations of NFAs, namely designs B, C, D and

E, are designed, fabricated and investigated in this paper by

comparing them to a reference design A. The general schematic

diagrams of the NFA designs are shown in Fig. 1, where (a)

refers to the reference design A, while (b) shows the design B

and (c) the generic geometry of designs C, D and E. Their

dimensions are given in Table 1, as designed for operation at

a microwave frequency of 2.45 GHz. All considered NFAs consist

of a rod-shaped conductor fed by a standard SMA (Subminia-

ture version A) connector for radio-frequency (RF) connection.

The rod of the applicator conductor is made of silver plated

copper clad steel and has a radius of 0.45 mm, and is formed by

stripping the inner conductor of a 50 U rigid coaxial cable, and

sharpening its tip to an angle of a. In this study, design A is

considered as a reference NFA and does not have any electro-

magnetic isolation to the environment. In contrast, the other

four NFAs employ some simple but effective isolation tech-

niques such as choke and ground plane to render their

performance more robust and predictable. The main aim of

those techniques is to suppress the return RF currents on the

outside of the coaxial cable. To this end, a quarter-wave choke is

soldered on the outer conductor for design B whereas for the

other three NFAs a nite-size circular ground plane is added to

the design. The SMA connector at the other end of the cable is

connected to the waveguide output from the microwave gener-

ation apparatus. When excited with microwave power at the

system frequency of 2.45 GHz, designs D and E are working at

Fig. 1 NFA configurations: (a) reference NFA design A (b) NFA with

quarter-wave choke (design B) and (c) NFAs with ground plane

(designs C, D and E).
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their fundamental resonant mode while designs B and C

operate at higher-order modes, as shown in Fig. 2. In principle,

the resulting NFAs are variations of monopole antennas but the

main difference is that they are designed for operation in the

near-eld through maximization of eld strength in the vicinity

of the tip. Compared with an NFA such as design A without an

added choke or ground structure, these devices offer higher

predictability in design as well as enhanced system perfor-

mance and stability, as it will be seen in the later sections. On

the one hand, the choke and ground plane enhance perfor-

mance predictability as they act as an electrical isolation

between the antenna and the physical objects behind it, thus

suppressing return RF currents on the outside of the coaxial

cable. More importantly, on the other hand, the electric eld

strength near the tip of the applicator increases owing to the

ground plane, according to the image theory.33 Due to the

importance of the ground plane size, NFAs D and E are designed

to have different ground plane sizes while varying the position

of the ground plane between NFAs C and E provides additional

information in the investigation.

The proposed NFAs are designed and simulated using CST

where the time-domain full-wave solver based on a nite-

integration of Maxwell's equations is used.31 A 3D NFA model

with realistic electrical characteristics for the materials involved

was constructed, and a nite free-space computational domain

truncated by perfectly-matched absorbers was considered. The

behavior of the structure under microwave excitation of the

coaxial cable was then calculated, and the device characteristics

including a reection coefficient, electric eld strength, effi-

ciency and radiation patterns can be obtained from the simu-

lation results. For the present application, the critical

parameters under investigation are the surface current density

on the coaxial outside conductor behind the ground plane,

reection coefficient and electric eld strength around the NFA

tip.

The length of the NFA conductor L1, as shown in Fig. 1,

determines the resonance/operation frequency and is approxi-

mately a quarter of the wavelength at the operation frequency of

the microwave source. For design B, L4 and L2 are also nearly

a quarter of the wavelength which forms a very high impedance

on the coaxial outer conductor near the choke open end, thus

suppressing return RF currents. The longitudinal position L2 of

the circular ground plane for designs D and E is zero since both

of them resonate at the fundamental mode. For C, L2 is

approximately twice the length L1, as it operates in its third-

order resonant mode in which its stripped conductor and

coaxial cable outer shell act together as an additional radiator.

The length L3 is not a critical parameter, since it is behind the

ground plane and thus does not affect markedly the NFA

performance. In all cases, the conductor tip was tapered with an

angle a ¼ 60� which offers a compromise between high electric

eld strength and acceptable durability of the tip during oper-

ation. The conductor bending angle q in all the NFAs is set to be

90� as this allows simple design and an easier comparison.

However, it is noted that the designs can be adapted to other

angles to t specic system congurations and requirements.

From theoretical expectations, to minimize return currents and

radiation towards the back of the ground plane, the ground

plane radius R should be made as large as possible. This is

conrmed by a parametric study of applicators with different

Table 1 Dimensions of the NFA designs under investigation. The
configuration of reference A is shown in Fig. 1(a), whereas design B

refers to Fig. 1(b), and the parametrized geometry of designs C, D and E

is shown in Fig. 1(c)

Parameters (mm) L1 L2 L3 L4 R

Design A 28 68.5 N/A N/A N/A
Design B 27.5 30.5 38 30 1.6
Design C 28 61 7.5 N/A 42.5
Design D 33 0 68.5 N/A 15
Design E 28 0 68.5 N/A 42.5

Fig. 2 NFA electric field magnitude distribution at 2.45 GHz: (A)

reference NFA A, (B) NFA B with a quarter-wave choke, (C) NFA C with
a large ground plane (R ¼ 42.5 mm) close to the SMA connector, (D)

NFA Dwith a small ground plane (R¼ 15mm) and (E) NFA E with a large

ground plane (R ¼ 42.5 mm) close to the start of the rod conductor.
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ground plane sizes. As shown in Fig. 3, the simulated electrical

eld strength at a point 0.2 mm away from the NFA tip rises

when the ground plane size increases, and it stabilizes (with

minor variations) with a ground plane radius of around 30 mm.

Nevertheless, the feasible size is limited by the available system

space. For our system, R ¼ 42.5 mm is the maximum feasible

ground plane radius.

From the simulation results, as expected, it is found that the

surface current density on the coaxial outer conductor behind

the choke or the ground plane is very small for NFAs B to E. This

indicates that exterior electromagnetic coupling to objects in

this region will not be insignicantly altering the operation of

the devices. This also conrms that in these cases, removing the

objects behind the ground plane, even if electrically connected

or close to the coaxial cable, is a valid modeling simplication.

In contrast, to attain a more accurate simulation result, inu-

ence of the objects in proximity to the NFA tip such as the

sample under test, should be included in the simulation. This

issue will be discussed in the following section in conjunction

with the considerations on the reection coefficient.

3 Experimental arrangement
3.1 Optical and microwave setup

An experiment verifying the performance of the NFAs has been

conducted with a setup consisting of four sections: (I) laser

ablation, (II) microwave injection, (III) emissions recording by

spectrometer and (IV) imaging of plasma. Fig. 4 shows the

schematic diagram of the entire setup. A Q-switch Nd:YAG laser

(Quantel, Brilliant B), operated at 532 nm wavelength with

10 Hz repetition rate and 5–6 ns pulse duration was used as the

ablation source. The energy of the laser was controlled by using

a half-wave plate and a Glan-laser polarizer, and measured by

using a pyroelectric sensor (Thorlabs, ES220C). The laser beam

was focused on the solid sample by using a plano-convex UV

fused silica lens Lens1 (f1 ¼ 100 mm, D1 ¼ 50.8 mm) to generate

a tiny plasma on the solid target. The spectral resolution of the

spectrometer with the 2400 lines per mm grating is 0.031 nm at

Fig. 3 Simulated electric field strength near the tip of the NFA as

a function of the ground plane radius.

Fig. 4 Schematic of the experimental setup. ARC, achromatic reflective coupler; OAPM, off-axis parabolic mirror; HWP, half-wave plate; P,

polarizer; EM, energy meter; an additional imaging channel is facilitated by using a second intensifier camera (ICCD2).
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320–332 nm, with a resolving power of 10 000. A water cooled 3

kW Sairem Microwave system was used as the source of pulsed

microwave power at 2.4 GHz. A WR340 waveguide directed the

microwave power through a 3-stub impedance tuner to a wave-

guide-to-coaxial adapter (WR340RN), aer passing through

a quartz window. A 1 m exible coaxial cable (50 U cable) with

0.14 dB insertion loss at 2.45 GHz was attached to this

waveguide-to-coaxial adapter. Each NFAs was individually and

sequentially attached to the end of this coaxial cable and xed

to a 3-stages positioner. The position of the NFA was adjusted

with respect to the laser beam and solid samples in order to

achieve maximum coupling of microwave power. A microscope

connected to a computer was used to align the location of all

ve NFA designs exactly at an identical position. This alignment

procedure minimizes the risk of experimental variations in

coupling due to inaccurate positions of the NFA tip. For safety

reasons, the system is enclosed in an aluminum microwave

shielding box with a door at the front for LIBS sample loading. It

is still very simple and easy to load and upload samples, even

when compared to an open LIBS setup.

3.2 NFA measurement

The reection coefficient, denoted as |S11|, is one of the most

important parameters for microwave devices, as it provides

information on the accepted input power by the device in

frequency domain,33 for example in the present case the NFA.

Therefore, at the beginning of the experiment, the reection

coefficients of the ve NFAs were measured using a network

analyzer (Agilent FieldFox N9916A). The measurements were

performed in situ in the LIBS test system, both with and without

a sample in proximity. Then the measured reection coeffi-

cients in the frequency range of interest can be compared with

the simulated ones.

3.3 Spectroscopic detection and plasma imaging

For the spectroscopic detection, the plasma emission was

captured by the focusing/collimating lens Lens1, focused by the

off-axis parabolic mirror on to a second lens Lens2 (f2 ¼ 20 mm,

D2 ¼ 12.54 mm). Lens2 directed emission to a second parabolic

mirror, which nally coupled the emission into a round-to-

linear 7 ber bundle (Thorlabs, BFL200HS02). The emission

was then channeled into the slit of the spectrometer (Andor,

Shamrock using 2400 lines per mm diffraction gratings)

equipped with an ICCD (ICCD1) camera (Andor, iStar). The

enhanced plasma images were simultaneously recorded by

a second ICCD camera (ICCD2) (Andor, iStar) using a macro

lens (f ¼ 90 mm, Tamron), as shown in Fig. 5. A long pass lter

was used to suppress the laser scattering at 532 nm. The lter

has a transmission of 93.5% in the range from 600 to 800 nm.

Both cameras were synchronized with the pulsed laser and the

pulsed microwave source through primary and secondary

external delay units to carry out spectra recording and plasma

imaging simultaneously.

4 Results and discussion
4.1 NFA characteristics

4.1.1 Reection coefficient. For efficient microwave

coupling, it is critical to minimize the microwave reected

power. The reection coefficient |S11| resulting from electro-

magnetic simulations in all ve NFA geometries are displayed in

Fig. 6 and they are compared with the measurement results. A

reasonable agreement in terms of resonance frequency (indi-

cated by theminimum of |S11|) is observed between simulations

and the measurements. To dene the NFA operational band-

width, we consider the frequency ranges where the reection

coefficient |S11| remains below �10 dB, indicating that more

than 90% input power is accepted by the NFA.33 According to the

measurement results without LIBS samples, NFAs B, C, D and E

have an operational bandwidth of 2.38 to 2.52, 2.35 to 2.65, 2.26

to 2.72, and 2.33 to 2.52 GHz, respectively. These frequency

ranges all contain the targeted microwave power source

frequency of 2.45 GHz. In contrast, design A exhibits a �5.6 dB

simulated reection coefficient which indicates that its input

power acceptance is only around 72.5%. In this case addition-

ally, the rather poor qualitative agreement with simulation can

be ascribed to the unpredictable coupling of return currents on

the coaxial cable. For all cases, the best overall matching, i.e. the

lowest reection coefficient at the desired resonance frequency

of 2.45 GHz, is achieved with NFA C. However, the bandwidth of

operation, i.e. the range of acceptable frequency variations due

to environmental changes, will be reduced in this case. The

oscillations observed in the measured data are due to reec-

tions from the walls of the LIBS system enclosure, which

provide shielding from the environment and are moderately

absorbing. Considering now the more practical case where

a sample is introduced at a distance of only approximately 0.2

mm from the NFA, a noticeable shi towards lower frequencies

is observed in the measured resonance frequencies, with vari-

ations from tens to a few hundred MHz for all NFAs. The

frequency shi is attributed to the NFA impedance variation

induced by the samples in proximity. This demonstrates the

importance of considering at design time the impact on the NFA

due to the proximity of objects such as LIBS samples. This

critical factor can be taken into account by including these

objects in the simulation and testing the robustness of the

design across a realistic range of material electrical properties.Fig. 5 A close look showing the setup of NFA, sample and ICCD2.
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In future work, this important aspect will be more specically

investigated. For the case at hand with a copper sample, the

reection coefficients at 2.45 GHz, are �3.5, �6.7, �7.7, �8.7

and�7.9 dB which correspond to an accepted input power level

of 55.3, 78.6, 83.0, 86.5 and 83.8% for NFA A to E, respectively.

As a result, these NFAs are still anticipated to operate as efficient

applicators. This will be conrmed through experiments,

although it is noted that the overall NFA performance can be

further improved if specically designed for predened test

congurations.

4.1.2 Electrical eld strength. Another indicator of the

coupling power level of a NFA to the laser-induced plasma is the

electric eld strength around the conductor tip. This informa-

tion can be computed and exported from the simulation tool.

The distributions of simulated electrical eld strength (V m�1)

around all NFA tips are displayed in the ve plots on the rst

row of Fig. 7, with the x- and y-axes showing total spatial

dimensions of 3 mm� 3 mm. As illustrated by these simulation

results, the highest electrical eld strength is observed the

closest to the tip, which suggests that the distance between the

NFA and sample should be kept as small as possible to permit

high microwave power coupling. However, this is usually

limited by the system setup and the sample surface roughness.

The NFAs C, D and E exhibit a relatively high electrical eld

strength compared to designs A and B. That is, in free space,

these three designs are expected to yield high microwave

coupling performance to the laser-induced plasma. The slight

advantage of design E under ideal conditions is due to the large

ground plane (compared to D) and operation at fundamental

resonance (compared to C). Nevertheless, the experimental

results shown in the following indicate a marginally better

performance of D over E for our LIBS system, which might be

explained by small experimental uncertainties (e.g. sharpness of

the tip and/or distance between the sample and the NFA) and

ne differences in spatial eld distribution, which may affect

thematching of the local eld strength to electron density in the

plasma. This is indicative of the signicance of considering the

environmental impacts in the NFA design.

4.2 NFA performance

4.2.1 Plasma dimensions. To investigate the LIBS signal

quality with and without the microwave coupling, it is essential

to use a sample with low concentration of analyte. However, the

concentration cannot be too low as it is also necessary to detect

LIBS signals before using microwave power to establish a refer-

ence point. It was found that when using an unspecied

mineral ore sample from a lead processing plant, a small

amount of copper was detectable without any microwave

injection. Therefore copper was selected as the analyte for this

investigation. The mineral ore solid sample was mixed with

a binder and placed into a plastic disc 3.4 mm thick and 21 mm

in diameter. It is worth mentioning that since the laser beam is

not focused onto the NFA tip, there will be no induced plasma

from the NFA surface. The dependence of the MW-LIBS signal

on copper concentration in solid samples using NFA with the

same rod material was studied previously.27 A linear depen-

dence was observed conrming that the interference from the

copper in the NFA tip is negligible. The performance of the ve

NFA designs was investigated rstly using four microwave

powers ranging from 0 to 1.2 kW, while laser pulse energy, gate

delay and gate width were kept constant. The plasma emission

was recorded by ICCD 2 (imaging camera) and the spectrometer

concurrently.

The averaged plasma images obtained from 100 single shots

at the microwave power of 0 kW (laser plasma only) and 1.2 kW

are displayed in the second row of plots in Fig. 7. The laser

focusing point is positioned at the origin of the scale. The laser

energy per pulse and microwave power were xed at 2.6 mJ and

1.2 kW, respectively. The microwave pulse duration, the gate-

delay and the gate-width were identical for all the recorded

images, namely at 800 ms, 1 ms and 800 ms, respectively. These

plots clearly demonstrate that for a given microwave power,

variations in spectral and image intensities can be observed for

different geometrical designs of NFA. The lemost plot in Fig. 7

also shows the laser-induced plasma recorded when the

Fig. 6 Simulated and measured reflection coefficients |S11| of: (a)

design A, (b) design B, (c) design C, (d) design D and (e) design E.
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microwave was off; hence the recorded signal intensity is

multiplied by a factor of 100 in this case so that all the recorded

images can be visualized using a single color map. The length

and the width of laser-generated plasma is approximately 1.7

and 1 mm, respectively. The dotted red ellipse shown in

Fig. 7(a1)–(e1) illustrates the relative location and size of the

laser-generated plasma with respect to the tip of the NFA. We

note that in these images, a part of the imaged microwave-

assisted plasma is overlapped with the tip where the strongest

electrical eld is formed. As mentioned before, the laser-

induced plasma electron density must be below the threshold

of approximately 7 � 1010 (cm�3), to interact with the injected

microwave power. As a result, the strength of the electrical eld

at the overlap location is critical in the microwave-assisted LIBS

operation. Hence a matching of the electrical eld strength with

the local plasma electron density must be established for an

efficient microwave injection.

Fig. 7(a2) shows that the microwave-enhanced plasma is

sustained near the reference NFA tip, at (0, 1.2) location.

Fig. 7(b2) and (c2) show an increase in the plasma volume and

intensity, indicating a more efficient microwave injection than

the reference design in Fig. 7(a2). We note that it is still possible

to see the tip of the NFA in Fig. 7(b2) and (c2). The plasma

depicted in Fig. 7(d2) and (e2) is further signicantly enhanced

in terms of intensity and volume, and as a result, in contrast to

the previous cases, the NFA tip is no longer visible in these two

plots: the plasma volume has grown large and appears to be

engulng the NFA. The images outlined in Fig. 7 suggest that

the biggest plasma volume was obtained with NFA designs D

and E whereas the reference NFA delivers the smallest plasma

enhancement even at the highest microwave power.

To investigate the life-time of the microwave-enhanced

plasma, time-resolved imaging was applied. Plasma images

were recorded for the ve NFA designs, at different gate-delay

times, namely 1, 250 and 500 ms, while maintaining the gate-

width and the microwave power xed at 200 ms and 1.2 kW,

respectively. The results are plotted in Fig. 8, and at the three

gate-delay times, it is clear that the microwave-enhanced

plasma is larger and stronger for designs C, D and E

compared to designs A and B. It is also clear that the plasma is

sustained for a reasonably long time, approaching 500 ms. It is

interesting to note that although the intensity of microwave-

enhanced plasma decreases as the gate-delay increases, the

recorded plasma cross section appears constant, for designs C

to E. Based on the measured cross section, designs D and E

produce a well-sustained plasma with a volume of 87 mm�3

approximately.

4.2.2 Spectroscopic detection. Spectral intensities of

copper transitions in microwave-assisted laser-ablated plasma

for the mentioned solid mineral sample have also been recor-

ded to further characterize the performance of the NFA in

operation. Microwave-assisted LIBS spectra in the range from

324 to 328 nm were recorded at four microwave power levels,

using the four designed NFAs. In all cases, the copper transi-

tions at 324.754 and 327.395 nm are clearly resolved. Microwave

power was controlled through secondary delay unit; the laser

energy and gate delay were maintained at 2.6 mJ and 800 ms.

Again, 100 single laser shots were recorded at each microwave

power, which were then averaged and plotted separately for

each NFA design, as shown in Fig. 9 as three different colors

curves. The gure demonstrates that, as expected, for all the

NFAs studied, the intensity of copper spectra is increasing with

a rise in microwave power. While analyzing this gure vertically,

it is found that for a given microwave power (i.e. a given color or

curves), spectral intensities seem to increase from an order of A,

B, C, E and D, which is consistent with the plasma intensity

Fig. 7 Electric field strength (the first row) and enhanced plasma images (the second row) of the five NFAs proposed, with the laser focusing
point and the applicator tip located at the origin and (0, 1.2) in the map (3 mm x 3 mm), respectively. These are two-dimensional plasma images,

averaged for 100 laser shots, recorder using a 633 nm long pass filter by microwave-assisted LIBS in a copper bearing mineral ore solid sample.

The laser energy was 2.6 mJ. The microwave power and pulse duration were 1.2 kW and 800 ms, respectively. The camera gate-width and the

gate-delay were 800 ms and 1 ms, respectively. Please note that the intensity of the laser-induced plasma image shown on the leftmost plot of the
second row is multiplied by a factor of 100 for better visibility. The dotted red line indicates the spatial location of the laser-induced plasma.
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image shown in Fig. 7. From the clear qualitative interpretation

of the spectral intensities in Fig. 9, it can be stated that designs

D and E clearly performed better than the other 3 designs. This

will be investigated quantitatively in the next paragraph.

4.2.3 Signal enhancement and SNR improvement. Fig. 10

shows the LIBS spectra of the copper-bearing sample without

and with assistance of 1.2 kW microwave power injected with

the NFA design D. To interpret this gure quantitatively, we can

dene the signal strength for a particular line as the maximum

intensity at the line center minus the baseline signal. In the

present case, the signal at the 327.395 nm transition is specif-

ically chosen as an indicator of the NFA performance. Using the

obtained signal strengths in Fig. 10 for the considered transi-

tion, we can then dene the signal enhancement as the ratio

between the signal with and without assistance of microwave

power. This yields a critical measure to evaluate the absolute

system sensitivity improvement with an injection of microwave

power. A complete characterization has been performed

through measurement of all ve NFAs. Design D has achieved

Fig. 8 Microwave-enhanced plasma intensity of the five NFAs

recorded with different gate delays of 1, 250 and 500 ms. The gate-

width and the microwave power were fixed at 200 ms and 1.2 kW,

respectively. The results for 500 ms gate delay have been multiplied by
a factor of 10 to get a better visualization.

Fig. 9 Microwave-assisted LIBS spectra of a copper bearing mineral

ore solid sample, averaged for 100 laser shots and recorded using
three microwave power of 0.3, 0.75 and 1.2 kW. The laser energy, the

gate-width and the gate-delay were 2.6 mJ, 800 ms, and 1 ms,

respectively. Two copper lines are clearly seen at 327.395 and

324.754 nm.
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the best performance (and is thus shown in Fig. 10), with the

exceptionally high signal enhancement of 849 times, which we

believe is the highest value to date.

It was noted that, however, increasing the microwave power

is accompanied by a simultaneous increase of noise oor, as

illustrated in Fig. 11(a) and (b), where the noise level (counts)

and signal enhancement for design D are depicted as a function

of microwave power. The error bars indicate the standard

deviations from 100 averaged shots. On that basis, we conclude

that another relevant performance measure should be consid-

ered as well, namely the SNR improvement arising with

microwave power assistance. From the plots of Fig. 11, we

observe that the noise, signal enhancement and SNR improve-

ment are monotonously increasing with microwave power, and

that the SNR can reach a maximum improvement by a factor of

76 when injecting 1.2 kW microwave power with the design D.

The signal enhancement and SNR improvement for all ve

NFAs with 1.2 kW microwave power is plotted in Fig. 12. As

mentioned, the design D achieves the highest signal enhance-

ment and SNR improvement of around 849 and 76, respectively,

whereas the lowest ones are held by the reference NFA design A.

It is worth mentioning that with a simple electromagnetic

isolation technique, namely an added partial ground plane,

design D can enhance the signal by more than 9 times, further

than the previously reported very high signal enhancement of

93.27

4.2.4 Demonstration of the detection sensitivity. The

ability of elemental detection at low concentration was tested

using the best performing NFA, namely design D. A reference

material OREAS 122 (Ore Research and Exploration) was used

for this purpose. OREAS 122 is a certied reference material

containing uniform low-concentration of copper, among many

other elements, at 3.38 parts per million (ppm), equivalent to

3.38 mg g�1. The powder sample was mixed with distilled water

to produce a thick slurry, which was transferred into the

cylindrical sample holder with a 21 mm diameter. A uniform

solid surface was achieved by pressing these discs and drying

them at 51 �C. Fig. 13 shows the LIBS spectra recorded near

Fig. 10 Spectra of (a) design D with 1.2 kW microwave power, (b)

design D without microwave power (multiplied by a factor of 1000).

Fig. 11 The (a) noise level (counts), (b) signal enhancement and (c)

SNR improvement of design D at microwave power of 0, 0.3, 0.75 and

1.2 kW for copper line at 324.754 nm obtained from the spectra. Error
bars are standard deviations from 100 shots.

Fig. 12 The signal enhancement (a) and SNR improvement (b) of the

five NFAs at a microwave power of 1.2 kW for copper line at

324.754 nm obtained from the spectra.
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324 nm with a laser pulse energy of 2 mJ, without and with

microwave power. The LIBS spectra recorded without micro-

wave power (Fig. 13(b)) shows no signal of copper at the

signature wavelengths of 324.754 nm and 327.395 nm. In

contrast, when the microwave power is switched on at 0.57 kW,

a very strong signal at 324.754 nm and 327.395 nm are clearly

observed. The SNR of the 324.754 nm copper line is calculated

to be 166.

5 Conclusion

Four NFA designs developed based on full-wave electromagnetic

simulations have been experimentally investigated with respect

to a reference design. Compared with the reference device,

these four NFAs take into account critical factors such as the

inuence of the electromagnetic environment and the reec-

tion coefficient, with the aim to maximize the electric eld

strength at the location of the plasma and predictably enhance

the results. The experimental results, including NFA reection

coefficients, plasma imaging and spectroscopy, show that NFAs

designed in a systematic way leads to a signicant improvement

in the overall system performance, with very good stability and

repeatability as observed during our measurement campaign.

The best SNR enhancement was achieved with the design

having a 30 mm diameter ground plane located close to the rod

conductor (design D), which leads to a 849-fold signal

enhancement and a 76-fold SNR improvement at 1.2 kW

microwave power, respectively, compared to measurements

without microwave assistance. This is, to the authors' best

knowledge, the highest reported SNR in the literature. To

illustrate the enhanced system performance, a very strong

copper spectral line was recorded with an SNR of 166 for

a microwave power of 0.57 kW on a certied ore sample with

uniformly distributed copper elements of a very low concen-

tration of 3.38 ppm. Such a high level of SNR suggests that

a detection limit in the sub-ppb range can become a real

possibility in the near future.
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