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Context Statement 

This dissertation attempts to explain the cross-section of expected returns based on the 

valuation equation of Miller and Modigliani (1961) and the cumulative prospect theory of 

Tversky and Kahneman (1992). It consists of three essays on empirical asset pricing. 

The first essay proposes an alternative metric for value investing: the dividend-to-market ratio 

(DM). The book-to-market ratio (BM) which is currently used in academia and industry, is a 

noisy measure for value investing, because book value is a weak indicator of intrinsic value. 

Motivated by the valuation equation of Miller and Modigliani (1961), this paper suggests that 

DM is much more efficient in identifying undervalued stocks than BM, due to the strong link 

between expected dividends and intrinsic value. DM also provides a better estimation of 

expected stock returns compared to the linear combination of BM, profitability and investment 

used in the five-factor model of Fama and French (2015a), because it allows for non-linearities 

between expected returns and these variables. Results of cross-sectional regressions at the firm 

level and time-series regressions at the portfolio level consistently show that DM has a far 

stronger link with expected returns than BM, and it also outperforms a linear combination of 

BM, profitability and investment. 

The second essay examines the prediction of cumulative prospect theory whereby investors 

prefer lottery-like (or positively skewed) payoffs, resulting in overpricing and low expected 

returns to such assets.  Given that earnings surprises are associated with lottery-like payoffs, 

investors should be willing to pay more for stocks with a high probability of generating positive 

earnings surprises. Empirical tests in this study consistently suggest that there is a strong 

negative correlation between the predicted profitability shocks (PPS) and expected stock 

returns. This essay contributes to the literature in asset pricing by revealing the link between 

skewness preference and prominent anomalies such as BM, profitability and price momentum. 
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The explanatory power of BM and operating profitability disappears after controlling for PPS, 

which indicates that both could be noisy proxies for PPS in predicting average returns. Further, 

the price momentum effect cannot be driven out by earnings momentum once PPS is taken into 

account, which demonstrates that price momentum has incremental explanatory power for 

stock returns over that provided by  earnings momentum.   

The third essay (co-authored with Takeshi Yamada and Tariq Haque) examines if crash-risk is 

systematically priced in momentum portfolio returns. A recent paper by Daniel and Moskowitz 

(2016) documents that crashes occur in the momentum strategy, and investors may take many 

years to recover from the resulting losses. Thus, this essay asks, if crash risk exists in 

momentum portfolios, is such risk priced in the market? To this end, we develop a measure, 

tail coskewness, that focuses exclusively on how tail events (low-probability events leading to 

large gains or losses) contribute to the systematic skewness of momentum portfolios.  The 

results show that tail coskewness not only subsumes the risk premium associated with 

coskewness which may be a determinant of cross-sectional returns as shown by Harvey and 

Siddique (2000), but also that associated with firm size. The paper uses US data from 1927 as 

well as international data, where robust results are found across different time-periods and 

markets. 
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Chapter 1                                                                                                                      

Value investing with dividend-to-market ratio 

 

 

1.1. Abstract 

 

The book-to-market ratio (BM) is a noisy metric for value investing because book value is a 

weak indicator of intrinsic value. Using the dividend discount model of Miller and Modigliani 

(1961), this paper proposes an alternative metric for value investing: the dividend-to-market 

ratio (DM), where dividend is measured as profitability minus investment. Test results show 

that DM effectively distinguishes between undervalued stocks and overvalued ones, and 

substantially outperforms BM. Further, DM is a parsimonious, more efficient measure to 

estimate expected returns than a linear model consisting of BM, profitability and investment. 

An investor can increase a portfolio's Sharpe ratio by adding just the DM factor than by adding 

all the BM, profitability and investment factors. 
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1.2. Introduction 

 

A great deal of academic research has been published on value investing, which suggests to 

buy undervalued stocks and avoid overvalued ones with respect to their intrinsic value. 

Academic evidence on value investing is overwhelmingly dominated by the book-to-market 

ratio (BM), pioneered by the findings of Rosenberg, Reid, and Lanstein (1985) and Fama and 

French (1992). However, because book value is a weak indicator of intrinsic value, BM is a 

noisy metric for value investing1. Specifically, BM does not allow for a differentiation between 

a low-priced stock with a high intrinsic value, and one that its low price is consistent with its 

low intrinsic value (low expectation of future cash flows). Since the second scenario is more 

likely in a highly competitive market, BM is rather inefficient in identifying the best value 

opportunities. A high BM portfolio is heavily populated by stocks that are not undervalued by 

the market and therefore is sub-optimal for value investing.  

Using the dividend discount model of Miller and Modigliani (1961), this paper proposes an 

alternative metric for value investing: the dividend-to-market ratio (DM),    

𝐷𝑀 = 𝐷𝑖𝑣𝑖𝑑𝑒𝑛𝑑/𝑀𝑎𝑟𝑘𝑒𝑡 𝑉𝑎𝑙𝑢𝑒 = (𝑃𝑟𝑜𝑓𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 − 𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡)/𝑀𝑎𝑟𝑘𝑒𝑡 𝑉𝑎𝑙𝑢𝑒 

where dividend is defined as the maximum payable dividend (profitability minus investment), 

following the notation of Fama and French (2006). Miller and Modigliani (1961) claim that a 

firm's value is justified by its expected dividends ── the difference between the earning power 

of the firm's assets and the reinvestment of earnings required to generate future cash flows. 

Given estimates of expected dividends and current market value, we can solve the market 

discount rate on expected dividends (i.e., long-term average expected returns) (see Fama and 

                                                           
1 In fact, Graham and Dodd (1934) strongly criticize the view of equating intrinsic value to book value because 
neither the average earnings nor the average market price evinced any tendency to be governed by book value. 
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French 2006 and 2015a). Hence, it is a straightforward choice to use the ratio of expected 

dividends to market value to estimate the cross-section of market discount rate. 

Because expected dividends are a strong indicator of intrinsic value, the dividend-to-market 

ratio effectively distinguishes between undervalued stocks and overvalued ones. A high (low) 

DM indicates the firm's expected future cash flows are currently discounted at a high (low) rate, 

and hence its stocks are in the value (growth) category. If two firms are identical in market 

valuation but different in dividends, the firm with larger dividends must have a higher market 

discount rate. Likewise, if two firms are identical in dividends but different in market valuation, 

the firm with higher market valuation should have a lower market discount rate. Value investors 

could thus maximize their economic gains per dollar of investment by constructing a high DM 

portfolio, holding stocks with strong fundamentals at moderate prices, as well as stocks with 

average fundamentals at discount prices. 

Using portfolios formed by double sorts (3×3) on DM and BM, I show that 30% of high BM 

stocks have low DM value, indicating that they are the low-priced ones with low intrinsic value. 

These high BM, low DM stocks substantially underperform the market, which directly 

evidences that BM is a noisy metric for value investing. Consistent with the prediction of the 

dividend discount model, value investing with DM leads to substantial economic gains in the 

sample period July 1963 to December 2013. For zero-cost mimicking factors formed by double 

sorts (2×3) on size and DM, a $1 factor exposure delivers a cumulative profit of $28.84 for the 

DM value factor, while the cumulative profit for the BM value factor is only $4.35. The Sharpe 

ratio improves from 0.39 for the BM value factor to 0.81 for the DM value factor. Thus, DM is 

superior to BM for value investing from both theoretical justification and empirical regularity. 

This paper adds to a growing literature using the dividend discount model of Miller and 

Modigliani (1961) to enhance estimates of expected stock returns (see Fama and French 2006, 
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2015a and 2015c, Aharoni et al. 2013 and Novy-Marx 2013). The focus of those papers is to 

decompose the valuation equation of the dividend discount model into three component 

variables (BM, profitability and investment), and then combine them linearly to estimate 

expected returns. My work differs from those papers in one important way in that I take an 

integrated approach by using DM alone to estimate expected return. The dividend discount 

model indicates that DM provides a closed end solution to expected returns as an interaction 

term between expected dividends and market value(𝜌 = 𝐷𝑖𝑣𝑖𝑑𝑒𝑛𝑑/𝑀𝑎𝑟𝑘𝑒𝑡 𝑉𝑎𝑙𝑢𝑒). That is, 

the marginal effect of expected dividends depends on the level of market value, while the 

marginal effect of market value depends on the level of expected dividends. Therefore, DM 

provides a better estimate of expected stock returns than a linear combination of BM, 

profitability and investment because it automatically accounts for the economic non-linearity 

between expected returns and these variables.  

Throughout this paper, I conduct tests to assess whether DM can outperform a linear model 

consisting of BM, profitability and investment measures in predicting average stock returns. In 

Fama-Macbeth (FM) cross-sectional regressions of stock returns on firm characteristics, DM 

simultaneously subsumes the explanatory powers of BM, profitability and investment 

statistically and economically. In the extreme deciles predicted to have high (low) returns by 

the FM regression jointly controlling for BM, profitability and investment, 27% (47%) stocks 

are not associated with extreme DM value, showing no extreme returns. In time series 

regressions using 2×3 sorts to form mimicking factors, the DM value factor generates 

significant alpha relative to the five-factor model (FF5) of Fama and French (2015a) that 

includes the market, size, BM, profitability, and investment factors. In contrast, the BM, 

profitability and investment factors are fully explained by a parsimonious model that includes 

only the market, size and DM factors. Furthermore, in GRS tests to explain a set of prominent 

anomalies that are not related to the dividend discount model, the DM factor does a better job 
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in explaining stock returns than a linear combination of the BM, profitability, and investment 

factors. 

Since profitability is the source of dividends, I also conduct a horse race between DM and 

several alternative profitability measures in predicting average stock returns. These alternative 

profitability measures are the earnings-to-price ratio of Ball (1978), the cash flow-to-price ratio 

of Lakonishok et al. (1994), the gross profitability of Novy-Marx (2013), the operating 

profitability of Ball et al. (2015) and the return-to-equity ratio of Hou et al. (2014). In time 

series spanning tests based on mimicking factors, the DM factor dramatically outperforms the 

set of alternative profitability factors. In particular, none of the alternative profitability factors 

exhibits statistically reliable alpha after controlling for the DM factor. In contrast, the DM 

factor consistently produces large, highly significant alpha after controlling for alternative 

profitability factors. These results show that the DM factor is much closer to the efficient 

frontier than alternative profitability factors. 

The paper proceeds as follows. Section 1.3 provides a simple theoretical framework for the 

dividend-to-market ratio. Section 1.4 presents the DM measure and data used in this study. 

Section 1.5 compares DM with a linear combination of BM, profitability and investment using 

firm-level FM regressions. Section 1.6 presents the performance of mimicking portfolios. 

Section 1.7 conducts a horse race among the competing models to explain several prominent 

return anomalies. Section 1.8 implements robustness tests with several alternative measures of 

profitability. Section 1.9 concludes. 

1.3. Dividend discount model 

 

Based on the dividend discount model of Miller and Modigliani (1961), Fama and French 

(2006, 2008, 2015a and 2015c) and Aharoni, Grundy, and Zeng (2013) show that the market 

value of a firm is the present value of its expected dividends: 
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 𝑀𝑡 = ∑
𝐸(𝐷𝑡+𝜏)

(1+𝜌)𝜏+1
   ∞

𝜏=0                                                      (1) 

where 𝑀𝑡  is the market value of the firm at the start of period t, 𝐸(𝐷𝑡) is the expected dividends 

(expected earnings minus expected additional investment required to generate future earnings) 

for period t, and 𝜌 is the market discount rate on expected dividends or the long-term average 

expected return (these two terms are used interchangeably).   

From the perspective of market discount rate, its relation with expected dividends and current 

market value can be brought out with a bit of manipulation on equation (1): 

1 = ∑
𝐸(𝐷𝑡+𝜏)/𝑀𝑡

(1+𝜌)𝜏+1
   ∞

𝜏=0                                                   (2) 

where equation (2) reveals that the expected dividend to market ratio, 𝐸(𝐷𝑡+𝜏)/𝑀𝑡, provides a 

closed form solution for the discount factor (1/(1 + 𝜌)𝜏+1). If dividends are considered in 

perpetuity at 𝐷0, by setting 𝑡 = 0, we can algebraically simplify equation (2) into a much more 

compact equation: 

 1 = ∑
𝐷0/𝑀0

(1+𝜌)𝜏+1
∞
𝜏=0 =

𝐷0/𝑀0

𝜌
, or equivalently 𝜌 = 𝐷/𝑀               (3) 

where subscripts are dropped without leading to ambiguity in the present context. In this case, 

the dividend to market provides a closed-end solution to the market discount rate 𝜌. That is, 

given estimates of future dividends and market value, the market discount rate on dividends is 

uncovered to investors.   

In equation (2), the expected dividend to market ratio, 𝐸(𝐷𝑡+𝜏)/𝑀𝑡, can be decomposed into 

three component variables: BM, profitability and investment, when the expected dividends are 

expressed as expected earnings minus expected reinvestment of earnings: 

                 1 = ∑
[𝐸(𝑌𝑡+𝜏)−𝐸(△𝐵𝑡+𝜏)]/𝑀𝑡

(1+𝜌)𝜏+1
 = ∑

[
𝐸(𝑌𝑡+𝜏)

𝐵𝑡
−
𝐸(△𝐵𝑡+𝜏)

𝐵𝑡
]∗
𝐵𝑡
𝑀𝑡

(1+𝜌)𝜏+1
   ∞

𝜏=0   ∞
𝜏=0                 (4) 
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where 𝐸(𝑌𝑡) is the expected earnings, 𝐵𝑡 is book equity, and 𝐸(△ 𝐵𝑡) is the expected change 

in book equity. Each of BM, expected earnings-to-book equity ratio and expected growth in 

book equity alone acts as an incomplete measure of expected returns, because expected returns 

also vary with the other two variables2. To improve estimates of expected returns, Fama and 

French (2006, 2015a) linearly combine BM, profitability and investment to explain the cross 

section of average stock returns.  Equations (4), however, indicates that expected returns is 

linearly related to the term  [𝐸(𝑌𝑡+𝜏) − 𝐸(△ 𝐵𝑡+𝜏)]/𝑀𝑡, but nonlinearly related to the terms 

𝐸(𝑌𝑡+𝜏)/𝐵𝑡, 𝐸(△ 𝐵𝑡+𝜏)/𝐵𝑡 and  𝐵𝑡/𝑀𝑡 . Therefore, a linear combination of BM, OP and INV 

in asset pricing models might be misspecified. In contrast, the term 𝐸(𝐷𝑡+𝜏)/𝑀𝑡 provides a 

better description of expected returns by automatically accounting for the economic non-linear 

relation.  

1.4. Measure of dividend-to-market ratio and data 

 

One challenging task for measuring DM is to identify a reliable proxy for expected dividends. 

Graham and Dodd (1934) point out that the past financial record affords at least a rough guide 

to the future. Earlier studies find that simple proxies for expected profitability and investment 

provided by the most recent record are powerful forecasting variables for average returns. For 

equity earnings, Novy-Marx (2013) finds that gross profitability (revenue minus cost of goods 

sold,  𝑅𝐸𝑉𝑇 − 𝐶𝑂𝐺𝑆) has great power in predicting the cross section of average returns, and 

interprets this as a clean accounting measure of true economic profitability. Ball et al. (2015) 

show that operating profitability (revenue less cost of goods sold less selling, general & 

                                                           
2  Three conditional hypotheses are generated immediately by equation (5): Holding two other component 

variables fixed, a higher BM implies a higher expected return; a higher expected earning-to-book equity ratio 

implies a higher expected return; and a higher expected growth in book equity implies a lower expected return. 

These hypotheses are supported by enormous evidence in literature on the explanatory powers of BM, profitability 

and investment in expected returns. For example, Rosenberg et al. (1985) and Fama and French (1992) show that 

higher BM predicts higher average returns; Novy-Marx (2013) and Ball et al. (2015) document that profitability 

is positively correlated with average returns; Titman, Wei, and Xie (2004) and Aharoni, Grundy, and Zeng (2013) 

show that investment is negatively correlated with average returns. 
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administrative expenses excluding expenditures on research & development, 𝑅𝐸𝑉𝑇 − 𝐶𝑂𝐺𝑆 −

𝑋𝑆𝐺𝐴 + 𝑋𝑅𝐷 ) can further improve the predictive power of profitability. 3  For additional 

investment, Aharoni, Grundy, and Zeng (2013) and Fama and French (2015a) find that the 

growth of total assets (△ 𝐴𝑇/𝐴𝑇)  is negatively related to average returns.4  Together with 

equations (2) to (4), I measure the dividend-to-market ratio for each firm at the end of each 

June as 

𝐷𝑀 = [(𝑅𝐸𝑉𝑇 − 𝐶𝑂𝐺𝑆 − 𝑋𝑆𝐺𝐴 + 𝑋𝑅𝐷 − 𝑋𝐼𝑁𝑇)⏟                          
𝑃𝑟𝑜𝑓𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦

− 𝐵 ∗△ 𝐴𝑇/𝐴𝑇⏟        
𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡

]/ 𝑀⏟
𝑀𝑎𝑟𝑘𝑒𝑡 𝐶𝑎𝑝

    (5) 

Where revenue (REVT), cost of goods sold (COGS), selling, general & administrative expenses 

(XSGA), research & development (XRD), interest expense (XINT) and book equity (B) are 

measured with accounting data for the fiscal year ending in year t-1; △ 𝐴𝑇/𝐴𝑇 is the change 

in total assets from the fiscal year ending in year t-2 to the fiscal year ending in t-1, divided by 

t-1 total assets; M is the market capitalization at the end of December of year t-1, adjusted for 

changes in shares outstanding between the measurement date for B and the end of December.  

I use monthly stock returns data from the Centre for Research in Security Prices (CRSP) and 

annual accounting data from Compustat. The asset pricing tests cover July 1963 through 

December 2013. I exclude financial firms and very small firms with total assets of less than 

$25 million or book equity of less than $12.5 million.  Table 1.1 reports summary statistics for 

three sets of portfolios formed by double sorts (3×3) on DM and one second sort variable [BM, 

operating profitability (OP), and investment (INV)].  At the end of each June, stocks are 

                                                           
3 Ball et al. (2015) argue that, since the allocation of COGS and XSGA is not determined by Generally Accepted 
Accounting Principles, operating profitability that deducts both expenses is an even cleaner measure of 
profitability. 
4 Fama and French (2015a) find that the lagged growth of assets has greater power in predicting the cross section 
of average returns than the lagged growth in book equity, and argue that the lagged growth of assets is a better 
proxy for expected future growth in book equity than the lagged growth in book equity. We argue that one 
possible explanation is that the lagged growth in book equity also contains information on the change in financial 
leverage, which disturbs the relation between average returns and book equity growth.   
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independently assigned to three DM groups, and three BM, OP and INV groups using the NYSE 

30th and 70th percentiles as breakpoints. The intersections of the two classifications produce 

three sets of portfolios: DM-BM, DM-OP and DM-INV. Panel A reports portfolio market and 

size adjusted returns, which are the intercepts form time-series regression of portfolio value-

weighted returns on market value-weighted index and size factor (large minus small).  Panel 

B, C and D reports number of firms, times series average DM and second sort variable. 

Measures of BM, operating profitability (OP), investment (INV) are constructed in the same 

way as Fama and French (2015a) in order to facilitate a direct comparison.  

For DM-BM portfolios, portfolio with high BM and low DM substantially underperform most 

of other portfolios by producing an average adjusted return of -0.10%, despite it has the second 

highest averaged BM (0.42) in panel C. These high BM stocks are not undervalued by the 

market, as the low DM value indicates that their low prices are associated with low cashflows. 

Note that stocks with high BM and low DM have an average number of firms of 315 in Panel 

D, accounting for 30% of high BM stocks. On the other hand, stocks with low BM and high 

DM produce an impressive average adjusted return of 0.19%, the third highest among BM-DM 

portfolios, despite that they have a very negative averaged BM of -1.24 in Panel C. These low 

BM and high DM stocks are not overvalued by the market, accounting for 7.55% of low BM 

stocks. 

Most importantly, holding DM fixed, stocks with high BM do not significantly outperform 

stocks with low BM.  The column of H-L shows that the spread of size and market adjusted 

returns between low BM and high BM stocks is only 0.10% (t = 063), 0.07% (t = 0.62) and 

0.20% (t = 1.25) for the group of low, medium and high DM stocks, respectively. In contrast, 

the row of H-L shows that the high DM portfolio consistently outperforms the low DM stock 

by 0.39% (t = 2.46), 0.44% (t = 4.64) and 0.49% (t = 4.51) for the group of low, medium and 

high BM stocks, respectively.  
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Similarly, for DM-OP portfolios and DM-INV portfolios, controlling for DM invalids the 

predictive power of profitability and investment, except for the group of low DM stocks among 

DM-OP portfolios. In contrast, the predictive power of DM persists after controlling for 

profitability and investment. In a nutshell, these three sets of portfolios tell a consistency story 

that DM subsumes the predictive power of BM, profitability and investment in returns. 

1.5. FM regression and economic significance comparison 

 

This section studies the cross-sectional relation between individual stock returns and 

explanatory variables using FM regressions, and then compares the economic importance of 

competing variables. 

1.5.1. Firm-level cross-sectional regression 

Table 1.2 presents the time-series average slopes from FM regressions of stock monthly excess 

returns on BM, OP, INV and DM, and the corresponding Newey-West (1987) adjusted t-

statistics. In this section, I do not control other variables not implied by valuation theory, except 

for size (ME). Independent variables are trimmed at the 1% and 99% levels on a table-by-table 

basis to ensure different regressions within each table panel are based on the same observations. 

Following Fama and French (2008a), except for all stocks, I also run separate FM regressions 

for All but Micro stocks (ABM) and Microcap stocks (below the 20th percentile of NYSE 

market cap) to isolate the influence of microcap stocks in testing results. 

I first examine the explanatory powers of BM, OP and INV separately. Consistent with prior 

studies, regressions 1-4 show that all three measures help to explain the cross-section of stock 

returns.5 The average slopes for these measures are all more than 2.2 standard errors from zero 

                                                           
5  Regressions 1 and 4 correspond to the FF3, FF5 models with market beta absent in the cross-sectional 
regressions. We do not include the market beta in our cross-sectional regressions, following Fama and French 
(2008) who argue that there is little reason to expect the market beta to be correlated with anomaly variables. 
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for All stocks. The positive slopes for BM and OP say that value stocks tend to have higher 

average returns than growth stocks, and stocks of profitable firms tend to outperform stocks of 

unprofitable firms. The negative slope for INV says that higher investment is related to lower 

expected returns. These results are not unduly influenced by microcaps, as the slopes for ABM 

stocks are roughly the same as for All stocks. For microcaps, however, it is surprising to find 

that the slopes for OP are not significant (t = 0.56 in regression 2, and t = 1.26 in regression 

4).   

Our primary interest is regression 5, which uses DM to explain expected returns, with the 

assistance of ME. Regression 5 shows that DM has a strong role in explaining the cross-section 

of average returns. For All stocks, the DM slope (2.409) has an impressive t-value of 6.99, 

much larger than that of BM, OP and INV in previous regressions.  Note also that the slopes on 

DM are close in absolute value with large t-statistics for ABM (2.152, t = 5.24) and Microcaps 

(2.527, t = 7.12), indicating that the effect of DM is pervasive across the full spectrum of stocks. 

Regression 6 shows that, except for microcaps, the positive relation between DM and expected 

return persists after controlling for BM, OP and INV. The average slope for DM is 1.706 (t = 

4.47) for All stocks and 1.285 (t = 2.98) for ABM. In contrast, controlling for DM seems to 

absorb the roles of BM, OP and INV in average returns, as their t-values drop dramatically to 

non-significant levels in all sample sets. These results are in line with the prediction of the 

dividend discount model that DM has a far strong link with expected return than BM, 

profitability and investment. 

I caution that including all component variables in an interaction model increases 

multicollinearity, such that regressions may not give accurate results about any individual 

parameter or about which parameters are redundant with respect to others. For robustness, I 

use return residuals from regression 4 as a dependent variable to test the incremental 

explanatory power of DM relative to BM, OP and INV. Those residuals are by definition 
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orthogonal to BM, OP and INV. Regression 7 in Panel B shows that DM still captures 

significant variation in residual returns. For All stocks, the positive DM slope remains 2.37 

standard errors from zero. The slopes for DM in ABM and microcaps are less impressive (0.68, 

t = 1.71 for ABM stocks and 0.677, t = 1.70 for microcaps), which might be due to the small 

sample size. Next, regression 8 reverses the process by regressing return residuals from 

regression 5 on BM, OP and INV. The fact that all three variables lose significance in All 

Stocks, ABM stocks and Microcaps confirms that BM, OP and INV have no unique effects in 

average returns relative to DM. Thus, these results reconfirm the capability of DM to fully 

subsume the explanatory powers of BM, OP and INV in average returns. 

1.5.2. Economic significance 

Fama and French (2015b) show that a variable's importance can be judged by its incremental 

contribution to the average return spread for portfolios sorted by fitted values from a 

multivariate cross-sectional regression. Thus, I compute the average return spreads between 

portfolios of stocks forecasted to have high versus low return based on FM regression results. 

In particular, at the end of June each year, stocks are formed into portfolios according to their 

predicted returns, which are the fitted values of the FM regression estimated over the 50-year 

sample period. These fitted values are the average regression slopes multiplied by the value of 

explanatory variables at the end of each June. Equal-weighted portfolio monthly returns are 

then calculated from July through June of the following year. In Table 1.3, results are presented 

for the average return spreads between low and high tertiles, low and high quintiles, and low 

and high deciles in sequence.   

Table 1.3 focuses on the return spreads forecasted by regression 1 (controlling for ME and 

BM), regression 4 (controlling for ME, BM, OP and INV) and regression 5 (controlling for ME 

and DM) from Table 1.2. The differences in return spread between regression 1 and regression 
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4 show that adding OP and INV into the three-factor model of Fama and French (FF3) delivers 

substantial economic gains. Of more significance is that regression 5 generates generally larger 

return spreads than regression 4. For All stocks, the return spreads predicted by regression 5 

and regression 4 are 0.99% versus 0.83% for tertiles, 1.17% versus 1.04% for quintiles,  and 

1.42% versus 1.30% for deciles. For ABM, the return spreads predicted by regression 5 and 

regression 4 are very close in magnitude, 0.75% versus 0.69% for tertiles, 0.78% versus 0.73% 

for quintiles, and 1.06% versus 1.10% for deciles. 

A more impressive gain for the return spreads predicted by regression 5 is a substantial 

reduction in standard deviation for all partitions used. For example, in regression 5 using All 

Stocks, the standard deviation of return spreads provided by regression 4 falls from 3.60% to 

2.74% for tertile portfolios, from 4.33% to 3.11% for quintile portfolios, and from 5.28% to 

3.41% for decile portfolios. As a result, regression 5 dramatically increases the t-values and 

Sharpe ratios for return spreads relative to regression 4. The Sharpe ratios for tertile, quintile 

and decile return spreads predicted by regression 5 are 1.25, 1.30 and 1.44 respectively, while 

the corresponding values for regression 4 are only 0.80, 0.83 and 0.85, a difference of more 

than 50% in Sharpe ratio. For both ABM and Micro stocks, the difference in Sharpe ratio for 

return spreads remains large (about 40%) between regression 4 and regression 5.  Figure 1.1 

shows the probability density function for the time-series return spreads predicted by regression 

5 (solid line) and regression 4 (dot line) using tertile portfolios for All stocks. Controlling for 

DM is associated with higher peaks and shorter tails for return spreads compared to that 

controlling for BM, OP and INV. Overall, these results suggest that DM is more efficient in 

estimating expected returns compared to a linear combination of BM, OP and INV.  

1.5.3. Return spread on subset portfolios 
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Table 1.4 reports the return spreads produced by different subsets of stocks in the extreme 

expected return deciles predicted by regression 4 (controlling for ME, BM, OP and INV) and 

regression 5 (controlling for ME and DM) from Table 1.2. Subset 1 includes stocks that are 

listed in the extreme decile predicted by regression 4 but not in the extreme decile predicted by 

regression 5.  Subset 2 includes stocks that are commonly listed in the extreme deciles predicted 

by both regression 4 and regression 5. Subset 3 includes stocks that are listed in the extreme 

decile predicted by regression 5 but not in the extreme decile predicted by regression 4.  

Subset 1 shows that, in the low (high) extreme return decile predicted by BM, OP and INV, 

there are 47% (27%) of stocks that are not associated with extreme DM value. Consequently, 

among all three subsets, subset 1 produces the most unattractive average return spreads 

between stocks listed into the low and high deciles. The average monthly return spreads for 

subsets 1, 2 and 3 are 0.98% (t = 3.9), 1.51% (t = 7.27), and 1.29% (t = 7.46), respectively. 

The Sharpe ratios for subset 1 are 0.55, which are about half of that for subset 2 (1.02). The 

underperformance of subset 1 shows that extreme value for BM, OP and INV does not imply 

extreme expected returns once it is not related to extreme value for DM. In contrast, the Sharpe 

ratios on subset 3 (1.05) are nearly identical to subset 2. This says that, in the extreme deciles 

predicted by DM, portfolio performances are largely the same for stocks with or without 

showing extreme value for BM, OP and INV. In other words, stocks with extreme expected 

returns need not have extreme value for BM, OP and INV. These results reiterate that it is DM 

predicting the cross-section of expected returns, and a linear combination of BM, OP and INV 

misses out the critical interaction effect between expected dividends and market value, ending 

up as a noisy approach to estimate expected returns.   

1.6. Comparison of mimicking portfolios  
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Since investors are concerned with whether this opportunity set produced by the DM is actually 

exploitable, this section compares the performance of mimicking portfolios for DM, BM, OP 

and INV. To evaluate the pervasiveness of average return patterns, I use three sets of mimicking 

portfolios formed by the 2×3 sorts, 2×5 sorts and 2×10 sorts, where the latter two focus on 

more extreme characteristic values. Following Fama and French (1993), the 2×3 sorts for the 

value factor are constructed at the end of June of each year. I use the median NYSE size to split 

NYSE, Amex, and NASDAQ stocks into small and big stocks. Independently, I break stocks 

into three BM groups using the NYSE breakpoints for the lowest 30%, middle 40%, and highest 

30% of BM values for the fiscal year ending in calendar year t − 1. HML (high minus low BM) 

is the average return on the two value (high BM) portfolios minus the average return on the two 

growth (low BM) portfolios. The same construction process also applies to OP, INV and DM, 

where RMW (robust minus weak profitability) is the average return on the two robust operating 

profitability portfolios minus the average return on the two weak operating profitability 

portfolios; CMA (conservative minus aggressive investment) is the average return on the two 

conservative investment portfolios minus the average return on the two aggressive investment 

portfolios;  𝐷𝑀𝑟  (high minus low DM) is the average return on the two high DM portfolios 

minus the average return on the two low DM portfolios. Factor mimicking portfolios in the 2×5 

sorts and the 2×10 sorts are formed in the same way as in the 2×3 sorts and report the average 

spread between the top and bottom portfolios, except that stocks are assigned independently to 

quintile and decile portfolios for the second sort. 

Figure 1.2 shows that the cumulative returns to DMr, HML, RMW and CMA constructed by 

2×3 sorts. For a $1 factor exposure over the sample period July 1963 to December 2013, the 

cumulative profit is $28.84 for 𝐷𝑀𝑟, while it is only $4.35 for HML, $3.30 for RMW, and $4.72 

for CMA. Table 1.5 reports summary statistics for factor portfolios, including the average of 

time series returns, standard deviations, t-statistics and Sharpe ratios. In our observation period, 
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 𝐷𝑀𝑟 has the highest average return and most significant t-statistics among competing factors. 

For instance, in the 2×3 sorts of Panel A,  𝐷𝑀𝑟 has a monthly average return of 0.59% with a 

t-statistic of 5.77. By contrast, the average returns for HML, RMW and CMA are only 0.32%, 

0.28% and 0.31% per month (t = 2.74, 2.55 and 2.28), respectively. This outperformance is not 

accompanied by a large volatility, as we see that the standard deviation of  𝐷𝑀𝑟 is moderate, 

2.53%, compared with 2.86% for HML, 2.67% for RMW, and 2.28% for CMA. Consequently, 

 𝐷𝑀𝑟 has a much higher Sharpe ratio of 0.81, compared to HML, RMW and CMA (SR=0.39, 

0.36 and 0.48). Moreover, the outperformance of  𝐷𝑀𝑟 holds for extreme portfolios, as it also 

has much higher Sharpe ratios than HML, RMW and CMA in the 2×5 sorts (0.78 versus 0.38, 

0.37 and 0.52) and in the 2×10 sorts ( 0.95 versus 0.52, 0.26 and 0.60).  

I also present subperiod results where I split the overall sample before and after July 1988. 

Panels B and C show that regardless of the observation period,  𝐷𝑀𝑟 consistently outperforms 

HML, RMW and CMA.  For instance, in the 2×3 sorts, the Sharpe ratios on  𝐷𝑀𝑟 for the two 

subperiods (SR=0.94 and 0.73) are close to that for the overall period (SR=0.81). The Sharpe 

ratios on HML, RMW and CMA for the two subperiods (SR=0.46 and 0.32 for HML, 0.36 and 

0.38 for RMW, 0.53 and 0.44 for CMA) are also close to that for the overall period (SR=0.39, 

0.36 and 0.48).  The 2×5 factors and the 2×10 factors offer similar results with the 2×3 factors 

for the subperiods. The results thus confirm that  𝐷𝑀𝑟 is closest to the efficient frontier among 

the mimicking portfolios considered here. 

For portfolio management, it is critical to know whether these patterns in average returns show 

up reliably for large stocks that account for more than 90% of total market capitalization, or 

rely mostly on small stocks that are much less liquid. Table 1.6 shows separate results for small 

and big stocks. We find that the effect of DM among big stocks,   𝐷𝑀𝐵
𝑟 , is impressively strong, 

although it is weaker than that among small stocks,  𝐷𝑀𝑆
𝑟. In the 2×3, 2×5 and 2×10 sorts, the 

average returns of  𝐷𝑀𝐵
𝑟  are 0.44%, 0.50% and 0.74% per month (t = 3.54, 3.40 and 4.55), 



17 
 

while the average returns of  𝐷𝑀𝑆
𝑟 are 0.75%, 0.82% and 1.04% per month (t = 7.17, 6.81 and 

7.46). In contrast, HML, RMW and CMA for big stocks are lack consistent statistical power, 

although they are highly significant for small stocks. In the 2×3, 2×5 and 2×10 sorts, the t-

values are 1.19, 1.05 and 2.50 for 𝐻𝑀𝐿𝐵, 1.93, 2.21 and 1.15 for 𝑅𝑀𝑊𝐵, and 1.14, 1.43 and 

1.94 for 𝐶𝑀𝐴𝐵, although the t-values are 3.81, 3.83 and 3.95 for 𝐻𝑀𝐿𝑆, 2.64, 2.48 and 2.16 

for 𝑅𝑀𝑊𝑆, and 5.41, 5.53 and 5.84 for 𝐶𝑀𝐴𝑆. The results confirm the evidence in table 1.4 of 

Fama and French (2015a) that the value, profitability and investment premiums do not show 

consistent significance for big stocks, but do for small stocks. In short, for big stocks,  𝐷𝑀𝑟is 

much more reliable and exploitable for investors than HML, RMW and CMA. 

Figure 1.3 shows the trailing ten-year Sharpe ratios of the 2×3 sorted  𝐷𝑀𝑟, HML, RMW and 

CMA factors. The Sharpe ratios for HML, RMW and CMA fluctuate dramatically over time. 

For instance, RMW fares poorly from the late 1970s to the early 1980s, but recovers sharply 

from the late 1980s to the early 1990s, which is followed by a big loss in the late 1990s. In 

contrast, the Sharpe ratio for  𝐷𝑀𝑟 remains relatively stable around its mean of 0.94, with the 

only two significant falls occurring during the nifty fifty boom in the early 1970s and the dot-

com boom in the late 1990s. For most of the sample, the Sharpe ratios for  𝐷𝑀𝑟 dominate the 

Sharpe ratios for HML, RMW and CMA.   

In addition, Figure 1.3 also shows that the Sharpe ratio for  𝐷𝑀𝑟 is generally strongly positively 

correlated with those for HML, RMW and CMA, except for its relation with RMW in 1970s. 

The common fall in Sharpe ratio for HML, RMW and CMA in the 1990s is accompanied by a 

drop for 𝐷𝑀𝑟, and the common rise in Sharpe ratio for HML, RMW and CMA in the 2000s is 

followed by an increase for 𝐷𝑀𝑟. These high correlations provide evidence that the effects of 

DM, BM, profitability and investment are commonly derived from the dividend discount model. 
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Table 1.7 presents further details on correlations between the mimicking factors.  𝐷𝑀𝑟  has 

strong positive correlations with HML and CMA (ρ = 0.85 and 0.78) for the overall period. The 

correlations of  𝐷𝑀𝑟with HML and CMA show up consistently for both the first subperiod (ρ 

= 0.81 and 0.75) and the second subperiods (ρ = 0.89 and 0.80). Unlike its relations with HML 

and CMA,  𝐷𝑀𝑟 is only moderately correlated with RMW (ρ = 0.40) for the full sample period. 

The correlation between  𝐷𝑀𝑟  and RMW is moderate negative (ρ = -0.32) for the first 

subperiod, during which RMW exhibits exceptionally poor performance during the 1970s as 

shown in Figure 1.3. However, their correlation turns out to be strongly positive (ρ = 0.71) for 

the second subperiod.   

1.7. Explanatory powers of the FF5 and DM models 

 

This section compares the FF5 model with the DM model in explaining average stock returns 

using time-series regressions, where the FF5 model includes the market, size, BM, profitability, 

and investment factors, while the DM model includes the market, size and DM factors.  

1.7.1. Explaining mimicking factors 

Table 1.8 analyzes the performance of mimicking factors relative to the FF5 model or the DM 

model. In the regressions of  𝐷𝑀𝑟 on the FF5 model, the intercepts (0.21, 0.18 and 0.39 for the 

2x3, 2x5 and 2×10 sorts respectively) are still roughly one-third of the original monthly return 

of  𝐷𝑀𝑟 in table 1.5, with large t-statistics (t = 5.13, 3.73 and 5.00 respectively). Although 

 𝐷𝑀𝑟 loads heavily on HML, RMW and CMA, such loadings only explain about two-thirds 

of  𝐷𝑀𝑟. The finding that  𝐷𝑀𝑟 is not fully explained by the FF5 model is in line with my 

earlier findings in FM regressions that the effect of DM cannot be fully driven out by BM, OP 

and INV.  
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In contrast, when the DM model is used to explain the HML, RMW and CMA in sequence, the 

intercepts are either negative or close to zero. For example, in the HML regressions, the 

intercepts are -0.21 (t = -3.29), -0.20 (t = -2.50) and -0.13 (t = -1.04) for the 2x3, 2x5 and 2×10 

sorts respectively, as a result of heavy loadings on  𝐷𝑀𝑟. The evidence suggests that a pure 

value strategy does not add abnormal returns for investors after accounting for  𝐷𝑀𝑟. For the 

regressions of RMW and CMA, the intercepts are all close to zero and statistically insignificant. 

The result that the large returns of HML, RMW and CMA are completely absorbed by their 

exposure to 𝐷𝑀𝑟reconfirms my earlier findings that controlling for DM drives out the effects 

of BM, OP and INV in average returns.  

1.7.2. Explaining return anomalies 

One level playing field to see which model provides a better description of average returns is 

using these models to analyse prominent anomalies that are not directly associated with 

valuation theory. Following Fama and French (2015b), the set of anomalies scrutinized in this 

study includes market beta,6 net stock issues, volatility, accruals and momentum. Six sets of 

value-weighted anomaly portfolios are constructed: 25 Size-Beta (β) portfolios, formed at the 

end of each June, from independent 5×5 sorts of stocks on size and market β using NYSE 

breakpoints, where β is estimated using the most recent five years of past monthly returns (at 

least 24 past monthly observations);  25 Size-Net stock issue (NI) portfolios, formed in the same 

way as 25 Size-Beta portfolios, where the second sort variable NI is the change in the natural 

log of split-adjusted shares outstanding from the fiscal year-end in t-2 to the fiscal year-end in 

t-1; 25 Size-Variance (Var) portfolios, formed using monthly independent 5×5 sorts on size 

and the variance of daily returns in month t-1; 25 Size-Residual variance (RVar) portfolios, 

formed in the same way as 25 Size-Var portfolios, where the second sort variable RVar is the 

                                                           
6  The relationship between market beta and average return is much flatter than implied by the Sharpe-Lintner 
CAPM. 
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variance of daily residuals in month t-1 from the FF3 model; 25 Size-Accruals (AC) portfolios, 

formed at the end of each June, from independent 5×5  sorts of stocks on size and accruals 

which are the change in operating working capital from the fiscal year-end in t-2 to t-1 divided 

by book equity in t-1; 25 Size-Momentum portfolios, formed using monthly independent 5×5 

sorts on size and cumulative returns from month t-12 to t-2. 

I assess the performance of the FF3 (the three-factor model of Fama and French 1993), FF5 

and DM models by running the Gibbons, Ross, and Shanken (1989) test based on time-series 

regressions. The GRS test jointly tests whether the intercepts are different from zero. In other 

words, the GRS test asks whether the highest Sharpe ratio one can construct using both the left 

hand side portfolio (LHS) and the right hand side factors (RHS) is reliably higher than using 

RHS factors only [see Fama and French (2015b)].  

Table 1.9 provides GRS statistics, p-values, the average absolute intercepts (𝐴|𝛼|), the average 

standard errors of the intercept (SE) and the Sharpe ratios of the intercept (SR) for various 

models. Results on models 1-2 are generally in line with Fama and French (2015c).  Except for 

the Size-AC sorts, the FF5 model performs at least as well as and generally better than the FF3 

model in the GRS tests on different size-anomaly portfolios. This evidence suggests the FF5 

model that includes profitability and investment factors improves the description of average 

returns provided by the FF3 model.  However, the results on the Size-AC portfolios indicate 

that FF5 is likely to fare poorly when applied to portfolios with strong accrual tilts. 

Of primary interest to us, the results from GRS tests for model 3 show that the DM model 

consistently outperforms the FF5 and FF3 models in its ability to provide better descriptions 

of average excess returns. For each panel, the DM model delivers lower GRS-statistics than 

the FF5 and FF3 models. Panel G show that, taking the average of the 6 anomaly portfolio sets, 

the GRS-statistics for the DM, FF5 and FF3 models are 3.33, 3.63 and 3.77, respectively. For 
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model 4, where all relevant factors in the FF5 and DM models are included, the GRS-statistics 

hardly change relative to the DM model (GRS = 3.30 versus 3.33). Thus, it seems that HML, 

RMW and CMA are redundant when  𝐷𝑀𝑟 is included in the model. 

Models 5 and 6 test the augmented versions of the FF5 and DM model by adding a momentum 

factor. WML (winner minus loser) is the average return on the two high prior return portfolios 

minus the average return on the two low prior return portfolios constructed monthly using the 

2×3 sorts on size and prior (month t-12 to t-2) returns. For each panel, the GRS-statistic for the 

augmented DM model (model 6) is lower than that for the augmented FF5 model (model 5). In 

panel G, the augmented FF5 and DM models have average GRS-statistics of 3.11 and 2.81, 

respectively.  

Interestingly, in Panel E of the 25 size-AC portfolios, the DM model does not suffer the same 

problem that the FF5 model has ─ being less efficient than the FF3 model in explaining average 

returns. The GRS-statistic for the DM model (2.23) is slightly lower than the FF3 model (2.36) 

and is much lower than the FF5 model (2.93). The same outperformance also applies to the 

augmented models for the 25 size-AC portfolios. Here the GRS-statistics are 1.74 and 2.30 for 

the augmented DM and FF5 models, respectively. 

1.8. Alternative profitability measures  

 

Since profitability is the source of expected dividend, the dividend to market ratio can also be 

classified as a profitability measure. This section compares the performance of DM with 

alternative profitability measures head-to-head. These alternative profitability measures are the 

earnings-to-price ratio (E/P) of Ball (1978), the cash flow-to-price ratio (C/P) of Lakonishok 

et al.(1994), the gross profitability-to-asset ratio (GP/AT) of Novy-Marx (2013), the operating 

profitability-to-asset ratio (OP/AT) of  Ball et al. (2015) and the quarterly earnings-to-equity 

ratio (ROE) of  Hou et al. (2014).  
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Table 1.10 reports results of time-series regressions of alternative profitability factor using the 

DM factors and other control variables (Panel A), and time-series regressions of the DM factors 

using alternative profitability factor and other control variables (Panel B). All factors are 

constructed by double sorts (2×3) on size and respective measure. The regression intercepts 

reveals which of the profitability factor generate significant alpha relative to others.  For 

robustness and facilitating comparison with prior studies, all regressions control for factors on 

market, size, BM, past return in month t-1 (REV), cumulative returns for the 11 months from t-

12 to t-2 (WML) and standardized unexpected earnings (SUE). Regressions in this table cover 

January 1975 through December 2013, determined by the quarterly data requirements for 

constructing ROE and SUE measures. 

Panel A shows all of alternative profitability factors do not exhibit significant alpha (intercept) 

over the sample, with the exception of operation profitability, which retains a weak significant 

alpha of 0.18% (t = 1.78). These results indicate that investors trading the DM factor largely 

cannot enhance their performance by incorporating alternative profitability factors. These 

alternative profitability factors all exhibit large loadings (from 0.20 to 0.51) on DMr with high 

t - statistics (from 2.75 to 9.16), which indicates that these alternative profitability factors are 

substantially attenuated by the DM factor.  

The results in panel B show that controlling for alternative profitability factors does not drive 

out the DM premium, as all regressions produce large and highly significant alphas. In first 5 

regressions controlling for the earnings-price ratio, gross profitability, operating profitability 

and return on equity factors in sequence, intercepts are very similar, from 0.36 to 0.39 with t-

statistics from 5.46 to 6.02. In the final regression that control for all alternative profitability 

factors together, the DM factor is associated with a large intercept of 0.32 (t = 5.20).  This 

evidence shows that DM plays a much stronger role in explaining the cross-section of average 

returns than alternative profitability measures.  
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1.9. Conclusion 

 

For value investing, BM is a noisy measure to identify undervalued opportunities, because book 

value is a weak indicator of intrinsic value. Thus, based on the dividend discount model of 

Miller and Modigliani (1961), this paper proposes an alternative metric for value investing, the 

dividend-to-market ratio. Since expected dividend has a strong link with intrinsic value, DM is 

much more efficient in identifying undervalued stocks than BM. Furthermore, DM provides a 

better estimation of expected stock returns than a linear combination of BM, profitability and 

investment, because the latter one omits the economic non-linear relation.  Consistent with the 

prediction of the dividend discount model, my test results show that DM has a far stronger link 

with expected returns than BM, and it also outperforms a linear combination of BM, 

profitability and investment. These results persist in FM regressions using firm characteristics 

to explain stock returns, and in time series regressions using mimicking factors. Note also that, 

using DM instead of a combination of profitability, investment and BM to explain average stock 

return is also in line with the principle of parsimony, which prefers a model with fewer 

variables whenever it yields the same descriptive accuracy as the larger more complex model.  
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1.10. Appendix A 

 

A.1. Composite trading strategies 

If DM determines the cross-section of expected returns, and a linear combination of BM, 

profitability and investment can only work as a rough approximation for DM, then the DM 

factor should be able to outperform composite trading strategies that combine the effects of 

BM, profitability and investment. This section thus compares  𝐷𝑀𝑟  with two well-known 

composite trading strategies. The first strategy I implement is an equal combination of value, 

profitability and investment strategies. For each sorting algorithm (2×3, 2×5 and 2×10 sorts), 

the (HML+RMW)/2 strategy is the average return on HML and RMW, while the 

(HML+CMA)/2, (RMW+CMA)/2 and (HML+RMW+CMA)/3 strategies are formed similarly but 

based on different combination. The second strategy is a combined ranking strategy constructed 

from the 2×3, 2×5 and 2×10 sorts on size and an average ranking of particular multiple 

characteristics including BM (low to high), profitability (weak to robust) and investment 

(aggressive to conservative). Specifically, the approach is the same as for constructing factor 

mimicking portfolios in section 2.1, except that the second sort is based on the average ranking 

of characteristics: {BM & OP},  {BM & INV}, {OP & INV} and {BM & OP & INV}.  

In Panel A of Table A1, the equal combination trading strategies show substantial reductions 

in standard deviations without enhancing economic rewards. For example, the strategy of 

(HML+RMW)/2 in the 2×3 sorts reduces the standard deviation to 2.11% from an average of 

2.77% for RMW and CMA (2.86% and 2.67% in table 1.7). This results in an improved Sharpe 

ratio of 0.49 from an average of 0.38 for RMW and CMA (0.39 and 0.36 in table 1.7). However, 

such improvement is dwarfed by 𝐷𝑀𝑟, as the ratio of these Sharpe ratios to the Sharpe ratio 

for  𝐷𝑀𝑟, denoted by SR/SR*, is only 60%. The synergistic effect between CMA and HML is 

limited as CMA fares poorly in the first subperiod as seen in table 1.7,  and then strongly and 
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positively correlates with HML (ρ = 0.60) in the second subperiod as seen in table 1.9. 

Similarly, due to correlations among factors, other strategies in the 2×3 sorts do not deliver 

much improvement in performance, with SR/SR* ratios of 0.56, 0.70 and 0.67 for the 

(HML+CMA)/2, (RMW+CMA)/2 and (HML+RMW+CMA)/3 strategies. The results from the 

2×5 and 2×10 sorts show that the underperformance of these equal combination trading 

strategies relative to  𝐷𝑀𝑟 persists.  

In Panel B of Table 1.10, the combined ranking strategies slightly enhance mean returns but 

also push up standard deviations. For example, the {BM & OP} strategy in the 2×3 sorts 

produces a mean return of 0.42%, which is higher than the average of 0.30% for RMW and 

CMA (0.32% and 0.28% in table 1.7). However, its standard deviation also increases 

substantially to 3.22% from an average of 2.77% for RMW and CMA (2.67% and 2.28% in 

table 1.7), resulting in an SR/SR* ratio of 0.55.  The combined ranking strategies of {BM & 

INV}, {OP & INV} and {BM & OP & INV} in the 2×3 sorts also do not fare well as their 

Sharpe ratios are merely 50% to 58% of the Sharpe ratio for 𝐷𝑀𝑟 . The combined ranking 

strategies in the 2×5 and 2×10 sorts offer similarly poor results.  

A.2. Profitability-to-market ratio and investment-to-market ratio 

With a bit of manipulation, DM can be decomposed into a profitability-to-market ratio (PM) 

and an investment-to-market (IM) ratio, whereby equation (4) becomes 

1 = ∑
𝐸(𝑌𝑡+𝜏)/𝑀𝑡−𝐸(△𝐵𝑡+𝜏)/𝑀𝑡

(1+𝜌)𝜏+1
   ∞

𝜏=0                                                  (A) 

Equation (A) says that the cross-section of expected returns could be explained by a linear 

combination of PM and IM. Stocks with high ratios of PM tend have higher expected returns, 

while stocks with high ratios of IM tend to have lower expected returns. Following equation 

(6), PM is constructed as revenues minus cost of goods sold, minus selling, general, and 
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administrative expenses, plus expenditures on research & development, minus interest 

expense, all divided by market equity [(𝑅𝐸𝑉𝑇 − 𝐶𝑂𝐺𝑆 − 𝑋𝑆𝐺𝐴 + 𝑋𝑅𝐷 − 𝑋𝐼𝑁𝑇)/𝑀].  IM is 

constructed as the product of book equity and the percentage change in total assets, divided by 

market equity [(𝐵 ∗△ 𝐴𝑇/𝐴𝑇)/𝑀)]. 

Table A2 tests the predictive powers of PM and IM in cross-sectional returns using FM 

regressions. In panel A, regression 1 shows the predictive power of DM for observations used 

in this table. Regressions 2 and 3 show that there is a strong positive relation between average 

returns and PM (t = 5.80), and a strong negative relation between average returns and IM (t = 

-3.16). These relations remain strong when PM and IM are simultaneously included in 

regression 4 (t = 6.17 for PM and t = -3.69 for IM). In panel B, regression 5 shows that PM 

and IM have incremental explanatory power (t = 4.17 and -3.69) after controlling for ME and 

BM. Regression 6 shows that, after controlling for ME, BM, OP and INV, the incremental power 

of IM becomes insignificant (t = -0.44) but the incremental power of PM remains significant 

(t = 2.03). In regression 7, controlling for ME and DM drives out the incremental explanatory 

power of PM (t = 1.29) and the slope on IM becomes positive (t = 2.4), which indicates that 

the predictive powers of PM and IM are not incremental relative to DM. In short, these results 

implies that both PM and IM have strong predictive power for average returns, and the 

profitability measure PM is the primary predictor variable for average returns as demonstrated 

by its higher significance levels in FM regressions. 
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Figure 1.1 The density function for the time-series return spreads on tertile portfolios (All stocks) 

 For each of regression 1, 4 and 5 in Table 1.2, stocks are allocated to tertile portfolios using regression predicted 

values. The predicted values for month t are computed using the explanatory variables for month t and the average 

slopes from our Fama-Macbeth (FM) regressions. The density function of the spreads between the time-series 

returns on the top and bottom portfolios is constructed for All stocks. Reg-4 is regression 4 from Table 1.2, that 

uses the natural log of market cap (ME) and the natural log of the book to market ratio (BM), operating profitability 

(OP) and investment (INV) as independent variables. Reg-5 is regression 5 from Table 1.2, that uses ME and the 

dividend-to-market ratio (DM) as independent variables. 
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Figure 1.2 The cumulative returns to 𝑫𝑴𝒓, HML, RMW and CMA 

The plot shows the cumulative returns to 𝐷𝑀𝑟 , HML, RMW and CMA, which represent mimicking portfolios for 

the dividend-to-market ratio (DM), book-to-market ratio (BM), operating profitability (OP) and investment (INV) 

factors, and are constructed using 2×3 sorts covering July 1963 to December 2013. At the end of each June, stocks 

are assigned to two size groups using the NYSE median market cap as breakpoint. Stocks are also assigned 

independently to tertile portfolios using the NYSE 30th and 70th percentiles of the ranked DM values. The 

intersections of the two sorts produce six value-weight Size-DM portfolios. 𝐷𝑀𝑟  is the average return on the two 

high DM portfolios minus the average return on the two low DM portfolios. In the sort for June of year t, DM is 

measured as revenues minus cost of goods sold, minus selling, general, and administrative expenses, plus 

expenditures on research & development, minus interest expense, minus the product of book equity and the 

percentage change in total assets for the last fiscal year ending in t-1, all divided by market cap in December of t-

1. HML (high minus low), RMW (robust minus weak) and CMA (conservative minus aggressive) are formed in 

the same way as 𝐷𝑀𝑟 , except the second sort variable is BM, OP or INV respectively. In the sort for June of year 

t, BM is the ratio of book equity for the last fiscal year ending in t-1 divided by market cap in December of t-1; 

OP is revenues minus cost of goods sold, minus selling, general, and administrative expenses, minus interest 

expense all divided by book equity for the last fiscal year ending in t-1; INV is the change in total assets from the 

fiscal year ending in year t-2 to the fiscal year ending in t-1, divided by t-1 total assets.  
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Figure 1.3 The trailing ten-year Sharpe ratios for 𝑫𝑴𝒓, HML, RMW and CMA 

The plot shows the trailing ten-year Sharpe ratios for  𝐷𝑀𝑟, HML, RMW and CMA, which represent mimicking 

portfolios for the dividend-to-market ratio (DM), book-to-market ratio (BM), operating profitability (OP) and 

investment (INV) factors, and are constructed using 2×3 sorts over the period from July 1963 to December 2013. 

At the end of each June, stocks are assigned to two size groups using the NYSE median market cap as breakpoint. 

Stocks are also assigned independently to tertile portfolios using the NYSE 30th and 70th percentiles of the ranked 

DM values. The intersections of the two sorts produce six value-weight Size-DM portfolios. 𝐷𝑀𝑟  is the average 

return on the two high DM portfolios minus the average return on the two low DM portfolios. In the sort for June 

of year t, DM is measured as revenues minus cost of goods sold, minus selling, general, and administrative 

expenses, plus expenditures on research & development, minus interest expense, minus the product of book equity 

and the percentage change in total assets for the last fiscal year ending in t-1, all divided by market cap in 

December of t-1. HML (high minus low), RMW (robust minus weak) and CMA (conservative minus aggressive) 

are formed in the same way as 𝐷𝑀𝑟, except that the second sort variable is BM, OP or INV respectively. In the 

sort for June of year t, BM is the ratio of book equity for the last fiscal year ending in t-1 divided by market cap 

in December of t-1; OP is revenues minus cost of goods sold, minus selling, general, and administrative expenses, 

minus interest expense all divided by book equity for the last fiscal year ending in t-1; INV is the change in total 

assets from the fiscal year ending in year t-2 to the fiscal year ending in t-1, divided by t-1 total assets. 
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Table 1.1 Summary statistics; July 1963 to December 2013 

This table reports summary statistics for portfolios formed by double sorts (3×3) on DM and one second-sort variable (BM, OP and INV).   At the end of each June, stocks are 

independently assigned to three BM groups, and three  Stocks are assigned independently to three groups based on one second-sort variable. The NYSE 30th and 70th percentile 

are used as sorting breakpoints. The intersections of the two sorts produce nine portfolios. Dividend-to-market ratio (DM) is revenues minus cost of goods sold, minus selling, 

general, and administrative expenses, plus expenditures on research & development, minus interest expense, minus the product of book equity and the percentage change in 

total assets for the last fiscal year ending in t-1, all divided by market cap in December of t-1; book-to-market ratio (BM) is the ratio of book equity for the last fiscal year ending 

in t-1 divided by market cap in December of t-1; operating profitability (OP) is revenues minus cost of goods sold, minus selling, general, and administrative expenses, minus 

interest expense all divided by book equity for the last fiscal year ending in t-1; investment (INV) is the change in total assets from the fiscal year ending in year t-2 to the fiscal 

year ending in t-1, divided by t-1 total assets. The sample excludes financial firms and very small firms with total assets of less than $25 million or book equity of less than 

$12.5 million. All variables are trimmed at the 1% and 99% level. Adjusted returns are market and size factors adjusted portfolio returns, which are the intercepts form time-

series regression of portfolio value-weighted returns on market value-weighted index and size factor (large minus small).  t-stat is the test statistic. 

  BM   OP   INV 

  Low Med High H-L t-stat   Low Med High H-L t-stat   Low Med High H-L t-stat 

Panel A: Adjusted Returns (market and size factors adjusted)                        

DM-Low -0.20 -0.14 -0.10 0.10 0.63  -0.41 -0.23 -0.04 0.37 2.74  -0.13 -0.12 -0.23 -0.10 -0.58 

DM-Med 0.10 0.11 0.17 0.07 0.52  0.04 0.07 0.16 0.12 1.13  0.16 0.10 0.15 -0.01 -0.12 

DM-High 0.19 0.31 0.39 0.20 1.25  0.24 0.32 0.32 0.08 0.61  0.35 0.31 0.25 -0.10 -0.49 

H-L 0.39 0.44 0.49    0.66 0.55 0.36    0.48 0.43 0.48   
t-stat 2.46 4.64 4.51    5.46 4.55 2.52    2.66 3.62 2.60   
Panel B: Average DM                 
DM-Low -0.01 -0.05 -0.08    -0.17 -0.01 0.03    -0.19 -0.04 -0.09   
DM-Med 0.12 0.14 0.13    0.12 0.13 0.13    0.14 0.13 0.12   
DM-High 0.27 0.31 0.56    0.54 0.38 0.44    0.50 0.36 0.48   
Panel C: Average Second sort variable               

  BM      OP      INV    
DM-Low -1.47 -0.51 0.42    -0.05 0.26 0.45    -0.12 0.08 0.30   
DM-Med -1.19 -0.44 0.15    0.08 0.27 0.48    -0.05 0.07 0.19   
DM-High -1.24 -0.36 0.49    0.04 0.27 0.52    -0.12 0.06 0.21   
Panel D: Number of firms                
DM-Low 454 321 315    633 300 147    155 232 686   
DM-Med 317 454 234    281 437 286    233 525 244   
DM-High 63 280 491       278 316 241       492 269 69     



32 
 

Table 1.2  Fama and Macbeth regressions; July 1963 to December 2013 

The table shows the average slopes and their t-statistics (in parentheses) from cross-sectional regressions that predict monthly returns, for July 1963 to December 2013. Separate 

regressions are run for All stocks, All but micro stocks and Microcap stocks which are below the 20th percentile of NYSE market cap as at the end of June of each year.  In 

Panel A, the dependent variable is monthly excess returns for individual stocks. In Panel B, the dependent variable is characteristic-adjusted returns (residual returns) for 

individual stocks from either regression 4 or 5.  

 

Panel A: Regressions of stock excess returns              

  
All   All but Micro   Micro 

BM OP INV DM ME   BM OP INV DM ME   BM OP INV DM ME 

Reg-1 0.311       -0.034   0.238       -0.048   0.536       0.106 

 (3.41)    (-0.74)  (2.55)    (-1.10)  (5.42)    (0.75) 

Reg-2  0.610   -0.103   0.538   -0.088   0.197   -0.110 

  (2.22)   (-2.58)   (1.92)   (-2.12)   (0.56)   (-0.79) 

Reg-3   -1.524  -0.068    -1.465  -0.073    -1.810  -0.023 

   (-4.89)  (-1.72)    (-4.18)  (-1.86)    (-6.00)  (-0.18) 

Reg-4 0.287 1.200 -1.014  -0.064  0.207 1.028 -0.940  -0.081  0.409 0.589 -1.250  0.224 

 (3.11) (4.08) (-4.23)  (-1.67)  (2.12) (3.56) (-3.67)  (-2.08)  (3.64) (1.26) (-3.70)  (1.58) 

Reg-5    2.409 -0.081     2.152 -0.086     2.527 0.051 

    (6.99) (-2.08)     (5.24) (-2.17)     (7.12) (0.39) 

Reg-6 0.155 0.440 -0.054 1.706 -0.060  0.101 0.462 -0.261 1.285 -0.079  0.934 2.272 -3.246 -2.271 0.292 

  (1.51) (1.27) (-0.14) (4.47) (-1.57)   (0.93) (1.35) (-0.63) (2.98) (-2.03)   (0.39) (0.27) (-0.34) (-0.18) (2.05) 

 

Panel B: Regression of characteristic-adjusted returns (residual returns)          

Regression Dependent variable 
All   All but Micro   Micro 

BM OP INV DM   BM OP INV DM   BM OP INV DM 

Reg-7 Char-adj returns from reg-4: ME, 

BM,OP and INV  
   0.790     0.680     0.677 

    (2.37)     (1.71)     (1.70) 

Reg-8 Char-adj returns from reg-5: ME 

and DM 
0.098 0.228 0.411   0.060 0.327 0.291   0.151 -0.797 0.414  

  (1.09) (0.72) (1.44)     (0.61) (1.02) (0.95)     (1.36) (-1.56) (1.28)   
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Table 1.3 Average return spreads between the low and high expected return portfolios formed on regression fitted values 

At the end of June each year, stocks are allocated to equal-weight tertile, quintile or decile portfolios using regression predicted values, which are the fitted values of regressions 

1, 4 and 5 in Table 1.2. These fitted values are the average regression slopes multiplied by the value of explanatory variables at the end of each June. The average spread (Mean) 

between monthly returns to the top and bottom portfolios, and standard deviations (STD), t-statistics and annualized Sharpe ratios (SR) for those spreads are reported for All 

stocks, All but micro stocks and Microcap stocks which are below the 20th percentile of NYSE market cap. 

 

Regression # 

 from Table 1.2 

Tertile spread   Quintile spread   Decile spread 

Mean STD t-stat SR   Mean STD t-stat SR   Mean STD t-stat SR 

All  

Reg-1: ME, BM 0.64 3.04 5.15 0.72  0.72 3.56 5.00 0.70  0.84 4.27 4.86 0.68 

Reg-4: ME, BM, OP, INV 0.83 3.60 5.70 0.80  1.04 4.33 5.91 0.83  1.30 5.28 6.07 0.85 

Reg-5: ME, DM 0.99 2.74 8.90 1.25  1.17 3.11 9.22 1.30  1.42 3.41 10.25 1.44 

All but Micro 

Reg-1: ME, BM 0.51 3.02 4.16 0.59  0.44 3.69 2.93 0.41  0.70 4.14 4.14 0.58 

Reg-4: ME, BM, OP, INV 0.69 3.61 4.71 0.66  0.73 4.28 4.20 0.59  1.10 5.27 5.14 0.72 

Reg-5: ME, DM 0.75 2.79 6.62 0.93  0.78 3.27 5.89 0.83  1.06 3.52 7.39 1.04 

Micro 

Reg-1: ME, BM 0.75 3.57 5.13 0.72  0.85 4.35 4.82 0.68  1.10 5.54 4.88 0.69 

Reg-4: ME, BM, OP, INV 0.99 3.79 6.41 0.90  1.13 4.59 6.04 0.85  1.49 5.64 6.43 0.91 

Reg-5: ME, DM 1.08 3.23 8.25 1.16   1.37 3.71 9.07 1.28   1.63 4.18 9.52 1.35 
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Table 1.4 Return spreads on subsets of extreme deciles formed on regression predicted values (All stocks) 

For each of regressions 1, 4 and 5 in Table 1.2, stocks are allocated to equal-weight decile portfolios using 

regression predicted values. Subset 1 includes group of stocks that are listed in the extreme deciles (low and high) 

by regression 4 controlling for ME, BM, OP and INV, but not in the extreme deciles by regression 5 controlling 

for ME and DM.  Subset 2 includes group of stocks that are listed in the extreme deciles by both regression 4 and 

regression 5. Subset 3 includes group of firms that are listed in the extreme deciles by regression 5, but not in the 

extreme deciles by regression 4. Subset N/decile N is the percentage of stocks in a subset relative to total stocks 

in the extreme decile. The average spreads (Mean) between the returns to the top and bottom deciles, and 

corresponding standard deviations (STD), t-statistics and annualized Sharpe ratios (SR) are constructed for each 

subset. 

 

Subset 

Subset N/decile N   

Mean STD t-stat SR Low 

decile  

High 

decile 
  

1.(Reg-4: ME, BM,OP,INV)\(Reg-5: ME, DM) 47% 27%   0.98 6.17 3.9 0.55 

2.(Reg-4: ME, BM,OP,INV)∩(Reg-5: ME, DM) 53% 73%  1.51 5.13 7.24 1.02 

3.(Reg-5: ME, DM)\(Reg-4: ME, BM,OP,INV) 47% 27%   1.29 4.24 7.46 1.05 
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Table 1.5 Summary statistics for mimicking portfolio monthly returns; July 1963 to December 2013 

The table reports summary statistics for 𝐷𝑀𝑟 , HML, RMW and CMA, which represent mimicking portfolios for 

the dividend-to-market ratio (DM), book-to-market ratio (BM), operating profitability (OP) and investment (INV) 

factors. At the end of each June, stocks are assigned to two Size groups using the NYSE median market cap as 

breakpoint. Using 2×3 sorts, stocks are also independently assigned to tertile portfolios using the NYSE 30th and 

70th percentiles of ranked values for the dividend-to-market ratio (DM). The intersections of the two sorts produce 

six value-weight Size-DM portfolios. The DM factor, 𝐷𝑀𝑟 ,  is the average return on the two high DM portfolios 

minus the average return on the  two low DM portfolios. HML (high minus low), RMW (robust minus weak) and 

CMA (conservative minus aggressive) are formed in the same way as 𝐷𝑀𝑟 , except the second sort variable is BM, 

OP and INV respectively. Factor mimicking portfolios in the 2×5 sorts and the 2×10 sorts are formed in the same 

way as for the 2×3 sorts and report the average spread between the top and bottom portfolios, except that stocks 

are assigned independently to quintile and decile portfolios for the second sort. Mean is the time-series mean of 

monthly returns, STD is its time-series standard deviation, t-stat is the test statistic, and SR is the annualized 

Sharpe ratio.  

 

  2×3 factors   2×5 factors   2×10 factors 

  Mean STD t-stat SR   Mean STD t-stat SR   Mean STD t-stat SR 

Panel A: July 1963 to December 2013 (606 Monthly Observations.) 

𝐷𝑀𝑟  0.59 2.53 5.77 0.81  0.66 2.95 5.51 0.78  0.89 3.22 6.78 0.95 

HML 0.32 2.86 2.74 0.39  0.37 3.30 2.73 0.38  0.61 4.00 3.72 0.52 

RMW 0.28 2.67 2.55 0.36  0.34 3.14 2.65 0.37  0.31 4.06 1.86 0.26 

CMA 0.31 2.28 3.39 0.48  0.39 2.61 3.68 0.52  0.55 3.20 4.25 0.60 

Panel B: July 1963 to June 1988 (300 Monthly Observations.) 

𝐷𝑀𝑟  0.58 2.15 4.70 0.94  0.63 2.51 4.33 0.87  0.82 2.90 4.91 0.98 

HML 0.38 2.86 2.28 0.46  0.40 3.26 2.15 0.43  0.64 4.01 2.77 0.55 

RMW 0.19 1.87 1.80 0.36  0.19 2.12 1.57 0.31  0.08 2.86 0.50 0.10 

CMA 0.31 2.07 2.63 0.53  0.33 2.47 2.32 0.46  0.51 2.94 2.98 0.60 

Panel C: July 1988 to December 2013 (306 Monthly Observations.) 

𝐷𝑀𝑟  0.60 2.86 3.68 0.73  0.69 3.32 3.64 0.72  0.95 3.52 4.74 0.94 

HML 0.26 2.86 1.60 0.32  0.33 3.34 1.72 0.34  0.57 3.99 2.49 0.49 

RMW 0.36 3.27 1.91 0.38  0.48 3.88 2.16 0.43  0.53 4.95 1.86 0.37 

CMA 0.31 2.47 2.22 0.44   0.45 2.74 2.86 0.57   0.60 3.44 3.04 0.60 
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Table 1.6 Mimicking portfolio monthly returns for small and big stocks; July 1963 to December 2013 

The table reports summary statistics for 𝐷𝑀𝑟 , HML, RMW and CMA for small and big stocks.  

𝐷𝑀𝑆
𝑟  is the difference in average return for the small high DM portfolio and the  small low DM portfolio. 𝐷𝑀𝐵

𝑟  is 

similarly defined for portfolios of big stocks, and 𝐷𝑀𝑆−𝐵
𝑟  is the difference between 𝐷𝑀𝑆

𝑟  and 𝐷𝑀𝐵
𝑟 .  

𝐻𝑀𝐿𝑆
𝑟 , 𝐻𝑀𝐿𝐵

𝑟 , 𝐻𝑀𝐿𝑆−𝐵
𝑟  and 𝑅𝑀𝑊𝑆

𝑟 , 𝑅𝑀𝑊𝐵
𝑟 , 𝑅𝑀𝑊𝑆−𝐵

𝑟  and 𝐶𝑀𝐴𝑆
𝑟 , 𝐶𝑀𝐴𝐵

𝑟 , 𝐶𝑀𝐴𝑆−𝐵
𝑟  are formed in the same way, 

but for portfolios sorted by book-to-market ratio (BM), operating profitability (OP) and investment (INV). Mean 

is the time-series mean of monthly returns, STD is its time-series standard deviation, t-stat is the test statistic, and 

SR is the annualized Sharpe ratio. 

 

  2×3 factors   2×5 factors   2×10 factors 

  Mean STD t-stat SR   Mean STD t-stat SR   Mean STD t-stat SR 

𝐷𝑀𝑆
𝑟       0.75 2.58 7.17 1.01   0.82 2.97 6.81 0.96   1.04 3.44 7.46 1.05 

𝐷𝑀𝐵
𝑟       0.44 3.03 3.54 0.50  0.50 3.60 3.40 0.48  0.74 3.98 4.55 0.64 

𝐷𝑀𝑆−𝐵
𝑟  0.32 2.46 3.18 0.45  0.33 2.98 2.69 0.38  0.31 3.70 2.04 0.29 

               

𝐻𝑀𝐿𝑆
𝑟       0.49 3.14 3.81 0.54  0.58 3.72 3.83 0.54  0.75 4.67 3.95 0.56 

𝐻𝑀𝐿𝐵
𝑟       0.15 3.09 1.19 0.17  0.15 3.58 1.05 0.15  0.46 4.53 2.50 0.35 

𝐻𝑀𝐿𝑆−𝐵
𝑟  0.34 2.48 3.35 0.47  0.43 3.13 3.35 0.47  0.29 4.56 1.56 0.22 

               

𝑅𝑀𝑊𝑆
𝑟       0.31 2.92 2.64 0.37  0.35 3.47 2.48 0.35  0.39 4.39 2.16 0.30 

𝑅𝑀𝑊𝐵
𝑟       0.24 3.06 1.93 0.27  0.33 3.63 2.21 0.31  0.23 4.89 1.15 0.16 

𝑅𝑀𝑊𝑆−𝐵
𝑟  0.07 2.69 0.66 0.09  0.02 3.33 0.17 0.02  0.16 4.52 0.85 0.12 

               

𝐶𝑀𝐴𝑆
𝑟      0.49 2.22 5.41 0.76  0.58 2.60 5.53 0.78  0.76 3.21 5.85 0.82 

𝐶𝑀𝐴𝐵
𝑟       0.14 3.01 1.14 0.16  0.20 3.38 1.43 0.20  0.34 4.34 1.94 0.27 

𝐶𝑀𝐴𝑆−𝐵
𝑟  0.35 2.67 3.22 0.45   0.39 3.03 3.13 0.44   0.42 4.16 2.49 0.35 
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Table 1.7 Correlations between mimicking portfolios; July 1963 to December 2013 

The table reports Pearson correlations for 𝐷𝑀𝑟 , HML, RMW and CMA, which represent mimicking portfolios for 

the dividend-to-market ratio (DM), book-to-market ratio (BM), operating profitability (OP) and investment (INV) 

factors.  

 

  2×3 factors   2×5 factors   2×10 factors 

  𝐷𝑀𝑟  HML RMW CMA   𝐷𝑀𝑟  HML RMW CMA   𝐷𝑀𝑟  HML RMW CMA 

Panel A: July 1963 to December 2013 (606 Monthly Observations.) 

𝐷𝑀𝑟  1.00     1.00     1.00    
HML 0.85 1.00    0.82 1.00    0.69 1.00   
RMW 0.40 0.16 1.00   0.42 0.17 1.00   0.41 0.15 1.00  
CMA 0.78 0.74 0.06 1.00  0.76 0.70 0.02 1.00  0.65 0.62 -0.01 1.00 

Panel B: July 1963 to June 1988 (300 Monthly Observations.) 

𝐷𝑀𝑟  1.00     1.00     1.00    
HML 0.81 1.00    0.79 1.00    0.62 1.00   
RMW -0.32 -0.61 1.00   -0.25 -0.60 1.00   -0.05 -0.45 1.00  
CMA 0.75 0.76 -0.63 1.00  0.74 0.76 -0.59 1.00  0.64 0.68 -0.43 1.00 

Panel C: July 1988 to December 2013 (306 Monthly Observations.) 

𝐷𝑀𝑟  1.00     1.00     1.00    
HML 0.89 1.00    0.85 1.00    0.76 1.00   
RMW 0.71 0.60 1.00   0.69 0.59 1.00   0.63 0.50 1.00  
CMA 0.80 0.73 0.39 1.00   0.78 0.66 0.32 1.00   0.66 0.57 0.20 1.00 
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Table 1.8 Time-series regressions of mimicking portfolios using the DM and FF5 models; July 1963 to 

December 2013 

The table shows alpha (percent per month) from monthly time-series regressions using the DM and FF5 models, 

where the DM model includes the market, size and DM factors, while the FF5 model includes the market, size, 

BM, profitability, and investment factors. Mkt is the value-weight return on the market portfolio of all stocks, 

minus the one month Treasury bill rate; the size factor (SMB: small minus big) is the value-weight return on the 

small-cap portfolio minus the value-weight return to the large-cap portfolio, which are formed at the end of each 

June using the NYSE median market cap as breakpoint.  𝐷𝑀𝑟, HML, RMW and CMA are constructed as described 

in Table 1.7 using 2x3, 2x5 and 2x10 sorts. The DM model includes Mkt, SMB and 𝐷𝑀𝑟, while the FF5 model 

includes Mkt, SMB, HML, RMW and CMA as explanatory variables. 

 

  Int Mkt SMB HML RMW CMA 𝐷𝑀𝑟  R2 

Panel A: 2×3 factors        

𝐷𝑀𝑟  0.21 0.01 0.08 0.46 0.30 0.43  0.86 

 (5.13) (0.54) (4.93) (22.07) (19.49) (16.02)   
HML -0.21 -0.04 -0.01    0.93 0.72 

 (-3.29) (-2.31) (-0.35)    (35.02)  
RMW 0.07 0.01 -0.20    0.41 0.20 

 (0.70) (0.55) (-5.38)    (9.81)  
CMA -0.03 -0.07 -0.03    0.65 0.62 

  (-0.47) (-4.94) (-1.28)       (26.43)   

Panel B: 2×5 factors               

𝐷𝑀𝑟  0.18 0.01 0.08 0.41 0.33 0.50  0.84 

 (3.73) (0.44) (4.27) (19.43) (20.01) (18.73)   
HML -0.20 -0.05 0.01    0.89 0.67 

 (-2.50) (-2.32) (0.42)    (31.44)  
RMW 0.12 0.00 -0.27    0.42 0.23 

 (1.01) (0.13) (-6.20)    (10.12)  
CMA 0.01 -0.07 0.01    0.63 0.59 

  (0.07) (-4.05) (0.26)       (25.35)   

Panel C: 2×10 factors               

𝐷𝑀𝑟  0.39 -0.02 0.06 0.30 0.29 0.42  0.68 

 (5.00) (-1.21) (1.92) (12.51) (14.43) (13.64)   
HML -0.13 -0.05 0.07    0.84 0.48 

 (-1.04) (-1.84) (1.63)    (21.66)  
RMW -0.00 -0.05 -0.33    0.46 0.22 

 (-0.03) (-1.46) (-5.79)    (9.55)  
CMA 0.05 -0.09 0.04    0.61 0.44 

  (0.47) (-3.60) (0.98)       (18.74)   
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Table 1.9 Tests of FF3, FF5 and DM models using return anomalies: July 1963 to December 2013 

The table provides GRS statistics (GRS), p-values, the average absolute intercepts (A|α|), the average standard 

error of the intercepts (SE) and the Sharpe ratio of the intercepts (SR) for competing models and augmented 

versions of these models that include the momentum factor. The six sets of anomaly portfolios are: 25 Size-Beta 

(β) portfolios, formed at the end of each June, from independent 5×5 sorts of stocks on size and market β using 

NYSE breakpoints, where β is estimated using the most recent five years of past monthly returns (at least 24 past 

monthly observations);  25 Size-Net stock issue (NI) portfolios, formed in the same way as 25 Size-Beta portfolios, 

where the second sort variable NI is the change in the natural log of split-adjusted shares outstanding from the 

fiscal year-end in t-2 to the fiscal year-end in t-1; 25 Size-Variance (Var) portfolios, formed using monthly 

independent 5×5 sorts on size and the variance of daily returns in month t-1; 25 Size-Residual variance (RVar) 

portfolios, formed in the same way as 25 Size-Var portfolios, where the second sort variable RVar is the variance 

of daily residuals in month t-1 from the FF3 model; 25 Size-Accruals (AC) portfolios, formed at the end of each 

June, from independent 5×5 sorts of stocks on Size and accruals which are the change in operating working capital 

from the fiscal year-end in t-2 to t-1 divided by book equity in t-1; 25 Size-Momentum portfolios, formed using 

monthly independent 5×5 sorts on size and cumulative returns from month t-12 to t-2. Panel G show average 

statistics for the 6 anomaly portfolio sets. Mkt, SMB, HML, RMW, CMA and  𝐷𝑀𝑟  are constructed using 2×3 sorts 

as in Tables 6 and 8. The momentum mimicking factor (WML: winner minus loser) is the average return on the 

two high prior return portfolios minus the average return on the two low prior return portfolios, formed using 

monthly independent 2×3 sorts on size and prior (2-12) returns.   

  Model factors GRS p A|a| SE SR 

Panel A: 25 Size-Beta portfolios 

(1) Mkt, SMB, HML 1.66 0.02 0.11 0.09 0.27 

(2) Mkt, SMB, HML, RMW, CMA 1.68 0.02 0.08 0.08 0.28 

(3) Mkt, SMB, 𝐷𝑀𝑟  1.43 0.08 0.09 0.09 0.26 

(4) Mkt, SMB, HML, RMW, CMA, 𝐷𝑀𝑟  1.37 0.11 0.08 0.09 0.26 

(5) Mkt, SMB, HML, RMW, CMA, WML 1.31 0.15 0.07 0.08 0.25 

(6) Mkt, SMB, 𝐷𝑀𝑟 , WML 1.09 0.35 0.07 0.09 0.23 

Panel B: 25 Size-NI portfolios 

(1) Mkt, SMB, HML 3.12 0.00 0.13 0.08 0.38 

(2) Mkt, SMB, HML, RMW, CMA 2.50 0.00 0.09 0.08 0.34 

(3) Mkt, SMB, 𝐷𝑀𝑟  2.34 0.00 0.09 0.08 0.34 

(4) Mkt, SMB, HML, RMW, CMA, 𝐷𝑀𝑟  2.40 0.00 0.09 0.08 0.34 

(5) Mkt, SMB, HML, RMW, CMA, WML 2.01 0.00 0.08 0.08 0.31 

(6) Mkt, SMB, 𝐷𝑀𝑟 , WML 1.83 0.01 0.08 0.08 0.30 

Panel C: 25 Size-Var portfolios 

(1) Mkt, SMB, HML 5.15 0.00 0.17 0.09 0.48 

(2) Mkt, SMB, HML, RMW, CMA 4.87 0.00 0.12 0.08 0.48 

(3) Mkt, SMB, 𝐷𝑀𝑟  4.58 0.00 0.13 0.09 0.47 

(4) Mkt, SMB, HML, RMW, CMA, 𝐷𝑀𝑟  4.45 0.00 0.12 0.08 0.47 

(5) Mkt, SMB, HML, RMW, CMA, WML 4.55 0.00 0.12 0.08 0.47 

(6) Mkt, SMB, 𝐷𝑀𝑟 , WML 4.17 0.00 0.11 0.09 0.46 

Panel D: 25 Size-RVar portfolios 

(1) Mkt, SMB, HML 5.63 0.00 0.17 0.08 0.51 

(2) Mkt, SMB, HML, RMW, CMA 5.20 0.00 0.11 0.08 0.49 

(3) Mkt, SMB, 𝐷𝑀𝑟  5.08 0.00 0.11 0.08 0.49 

(4) Mkt, SMB, HML, RMW, CMA, 𝐷𝑀𝑟  5.13 0.00 0.11 0.08 0.50 

(5) Mkt, SMB, HML, RMW, CMA, WML 4.87 0.00 0.11 0.08 0.49 

(6) Mkt, SMB, 𝐷𝑀𝑟 , WML 4.68 0.00 0.10 0.08 0.48 

Panel E: 25 Size-AC portfolios 

(1) Mkt, SMB, HML 2.36 0.00 0.09 0.08 0.33 

(2) Mkt, SMB, HML, RMW, CMA 2.93 0.00 0.11 0.08 0.37 

(3) Mkt, SMB, 𝐷𝑀𝑟  2.23 0.00 0.10 0.08 0.33 
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  Model factors GRS p A|a| SE SR 

(4) Mkt, SMB, HML, RMW, CMA, 𝐷𝑀𝑟  2.45 0.00 0.10 0.08 0.35 

(5) Mkt, SMB, HML, RMW, CMA, WML 2.30 0.00 0.10 0.08 0.34 

(6) Mkt, SMB, 𝐷𝑀𝑟 , WML 1.74 0.01 0.09 0.08 0.30 

Panel F: 25 Size-Momentum portfolios 

(1) Mkt, SMB, HML 4.72 0.00 0.29 0.10 0.46 

(2) Mkt, SMB, HML, RMW, CMA 4.60 0.00 0.30 0.10 0.47 

(3) Mkt, SMB, 𝐷𝑀𝑟  4.29 0.00 0.31 0.10 0.45 

(4) Mkt, SMB, HML, RMW, CMA, 𝐷𝑀𝑟  3.99 0.00 0.26 0.10 0.44 

(5) Mkt, SMB, HML, RMW, CMA, WML 3.64 0.00 0.12 0.08 0.42 

(6) Mkt, SMB, 𝐷𝑀𝑟 , WML 3.33 0.00 0.12 0.08 0.41 

Panel G: Average 

(1) Mkt, SMB, HML 3.77 0.00 0.16 0.09 0.40 

(2) Mkt, SMB, HML, RMW, CMA 3.63 0.00 0.13 0.08 0.41 

(3) Mkt, SMB, 𝐷𝑀𝑟  3.33 0.01 0.14 0.09 0.39 

(4) Mkt, SMB, HML, RMW, CMA, 𝐷𝑀𝑟  3.30 0.02 0.13 0.08 0.39 

(5) Mkt, SMB, HML, RMW, CMA, WML 3.11 0.02 0.10 0.08 0.38 

(6) Mkt, SMB, 𝐷𝑀𝑟 , WML 2.81 0.06 0.09 0.08 0.36 
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Table 1.10  Spanning tests 

The table shows alphas (percent per month) from monthly time-series regressions of alternative profitability factor using the DM factor and other control variables (Panel A), 

or from time-series regressions of the DM factors using alternative profitability factor and other control variables (Panel B) for January 1975 to December 2013.  

𝐸/𝑃𝑟 , 𝐶/𝑃𝑟 , 𝐺𝑃/𝐴𝑇𝑟, 𝑂𝑃/𝐴𝑇𝑟,  𝑅𝐸𝑉𝑟 and 𝑆𝑈𝐸𝑟  are the mimicking factors for the earnings-price ratio (E/P), the cash flow to price ratio (C/P), the gross profitability-to-asset 

ratio (GP/AT), the operating profitability-to-asset ratio (OP/AT), short-term reversal and standardized unexpected earnings (SUE). These mimicking factors are formed in the 

same 2×3 sorts as 𝐷𝑀𝑟  in Table 1.7, except that the second sort variable is the respective variable. Cash flow in C/P is net income plus amortization and depreciation minus 

changes in working capital and capital expenditures. SUE is measured as the most recent year-over-year change in income before extraordinary items, deflated by the standard 

deviation of the innovations of income before extraordinary items over the last eight announcements (at least six to be included). 

 

Panel A: Alternative profitability factors as dependant variables  

  Int 𝐷𝑀𝑟  Mkt HML SMB 𝑅𝐸𝑉𝑟 WML 𝑆𝑈𝐸𝑟   R2 

𝐸/𝑃𝑟  -0.03 0.50 -0.13 0.31 -0.23 0.08 0.03 0.02 0.69 

 (-0.28) (7.97) (-6.13) (5.30) (-6.52) (3.12) (1.36) (0.42)  
𝐶/𝑃𝑟  -0.19 0.63 -0.10 -0.02 -0.20 0.11 -0.06 0.30 0.53 

 (-1.79) (9.13) (-4.30) (-0.27) (-5.21) (3.69) (-2.30) (5.18)  
𝐺𝑃/𝐴𝑇𝑟 0.07 0.2 0.01 -0.55 0.16 0.04 -0.07 0.24 0.32 

 (0.67) (2.75) (0.30) (-8.18) (3.97) (1.18) (-2.58) (4.04)  
𝑂𝑃/𝐴𝑇𝑟 0.18 0.27 -0.03 -0.62 0.05 -0.03 0.01 0.15 0.35 

 (1.78) (4.15) (-1.43) (-10.06) (1.30) (-1.17) (0.38) (2.80)  
𝑅𝑂𝐸𝑟  -0.11 0.51 -0.09 -0.32 -0.14 0.04 0.03 0.89 0.69 

  (-1.32) (9.16) (-4.61) (-6.11) (-4.69) (1.56) (1.47) (19.46)   

Panel B:The DM factor as dependant variable 
Int 𝐸/𝑃𝑟  𝐶/𝑃𝑟   𝐺𝑃/𝐴𝑇𝑟 𝑂𝑃/𝐴𝑇𝑟 𝑅𝑂𝐸𝑟  Mkt HML SMB 𝑅𝐸𝑉𝑟 WML 𝑆𝑈𝐸𝑟  R2 

0.36 0.24     0.01 0.61 0.06 -0.04 0.04 0.01 0.78 

(5.68) (7.97)     (0.40) (19.46) (2.31) (-2.30) (2.33) (0.38)  
0.39  0.24    -0.00 0.66 0.05 -0.05 0.06 -0.05 0.79 

(6.22)  (9.13)    (-0.00) (25.78) (2.12) (-2.62) (3.67) (-1.47)  
0.39   0.08   -0.03 0.81 -0.01 -0.03 0.06 0.00 0.75 

(5.82)   (2.75)   (-1.86) (30.15) (-0.36) (-1.44) (3.30) (0.04)  
0.37    0.13  -0.02 0.83 -0.00 -0.02 0.05 0.00 0.76 

(5.46)    (4.15)  (-1.53) (30.58) (-0.11) (-1.06) (2.88) (0.02)  
0.38     0.30 0.00 0.75 0.05 -0.03 0.04 -0.25 0.79 

(6.02)     (9.16) (0.12) (33.47) (1.93) (-1.81) (2.17) (-5.44)  
0.31 0.05 0.25 -0.05 0.26 0.04 0.02 0.70 0.07 -0.04 0.05 -0.12 0.82 

(5.16) (1.17) (5.84) (-1.09) (4.74) (0.89) (1.63) (22.73) (2.83) (-2.39) (2.87) (-2.55)   
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Table A1 Performance of composite trading strategies 

 

Panel A reports summary statistics for equal combinations of the value, profitability and investment strategies. For each sorting algorithm (2×3, 2×5 and 2×10 sorts), the 

(HML+RMW)/2 strategy is the average of the returns to HML and RMW.  Returns to the (HML+CMA)/2, (RMW+CMA)/2 and (HML+RMW+CMA)/3 strategies are formed 

similarly but based on different factors. Panel B reports summary statistics for combined ranking strategies constructed from the 2×3, 2×5 and 2×10 sorts on size and the average 

ranking of particular multiple characteristics including BM (low to high), profitability (weak to robust) and investment (aggressive to conservative). For example, the {BM & 

OP} strategy is formed in the same way as a mimicking portfolio, except that the second sort variable is the average of the BM & OP rankings for individual stocks. The {BM 

& INV}, {OP & INV} and {BM & OP & INV} strategies are formed in the same way as the {BM & OP} strategy but based on different characteristic combinations.  Mean is 

the time-series mean of monthly returns, STD is its time-series standard deviation, t-stat is the mean divided by its time-series standard error, and SR is the annualized Sharpe 

ratio. SR/SR* is the ratio of the Sharpe ratio on the composite trading strategy relative to the Sharpe ratio for  𝐷𝑀𝑟 . 

 

  2×3 factors   2×5 factors   2×10 factors 

  Mean STD t-stat SR SR/SR*   Mean STD t-stat SR SR/SR*   Mean STD t-stat SR SR/SR* 

Panel A: Equal combination                         

(HML+RMW)/2 0.30 2.11 3.47 0.49 0.60  0.35 2.47 3.51 0.49 0.63  0.46 3.06 3.67 0.52 0.54 

(HML+CMA)/2 0.32 2.40 3.24 0.46 0.56  0.38 2.73 3.41 0.48 0.62  0.58 3.24 4.39 0.62 0.65 

(RMW+CMA)/2 0.30 1.81 4.01 0.57 0.70  0.36 2.06 4.34 0.61 0.78  0.43 2.58 4.10 0.58 0.61 

(HML+RMW+CMA)/3 0.30 1.93 3.87 0.54 0.67  0.36 2.20 4.08 0.57 0.73  0.49 2.65 4.53 0.64 0.67 

Panel B: Combined ranking              
BM & OP 0.42 3.22 3.17 0.45 0.55  0.51 3.61 3.47 0.49 0.63  0.64 4.40 3.57 0.50 0.53 

BM & INV 0.33 2.77 2.90 0.41 0.50  0.46 3.27 3.45 0.49 0.62  0.62 3.99 3.80 0.54 0.56 

OP & INV  0.36 2.70 3.27 0.46 0.57  0.45 3.04 3.60 0.51 0.65  0.63 3.64 4.24 0.60 0.63 

BM & OP & INV 0.43 3.18 3.32 0.47 0.58   0.50 3.72 3.29 0.46 0.59   0.69 4.48 3.81 0.54 0.56 
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Table A2 Fama and Macbeth regressions of returns using profitability-to-price and investment-to-price ratios 

 

The table shows the average slopes and their t-statistics (in parentheses) from cross-sectional regressions for July 

1963 to December 2013.  In Panel A, the dependent variable is stock monthly excess returns. In Panel B, the 

dependent variable is characteristic-adjusted returns (residual returns) from cross-sectional regressions using 

residual returns from either regression 1, 4 or 5 from Table 1.2. The independent variables are defined as follows: 

the profitability-to-market ratio (PM) is revenues minus cost of goods sold, minus selling, general, and 

administrative expenses, plus expenditures on research & development, minus interest expense for the last fiscal 

year ending in t-1, all divided by market cap in December of year t-1; the investment-to-market ratio (IM) is the 

product of book equity with the percentage change in total assets for the last fiscal year ending in t-1, divided by 

market cap in December of year t-1, where the percentage change in total assets is the change in total assets from 

the fiscal year ending in year t-2 to the fiscal year ending in t-1, divided by t-1 total assets. The measures of 

dividend-to-market ratio (DM), book-to-market equity (BM) and market cap (ME) are defined as in Table 1.1.  

Panel A: Regression of excess returns    

  DM PM IM BM ME 

(1) 2.109     0.076 -0.063 

 (7.40)   (0.88) (-1.53) 

(2)  2.663  0.018 -0.068 

  (5.80)  (0.21) (-1.67) 

(3)   -1.278 0.243 -0.046 

   (-3.16) (2.62) (-1.11) 

(4)  2.752 -1.439 0.024 -0.066 

    (6.17) (-3.69) (0.28) (-1.65) 

Panel B: Regression of characteristic-adjusted returns   

  Dependent variable PM IM 

(5) Char-adj returns using reg-4: ME and BM 2.152 -1.494 

    (4.17) (-3.82) 

(6) Char-adj returns using reg-4: ME, BM,OP and INV  1.013 -0.170 

    (2.03) (-0.44) 

(7) Char-adj returns using reg-5: ME and DM  0.672 0.936 

        (1.29) (2.40) 
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Chapter 2                                                                                                             

Forecasting profitability shocks and the preference for skewness 
 

 

2.1. Abstract 

 

The strong stock price reactions to positive earnings surprises are associated with lottery-like 

payoffs. If investors have a strong skewness preference, as suggested by the cumulative 

prospect theory, they should be willing to pay more for stocks with a high probability of 

generating positive earnings surprises, leading to low subsequent returns. I find a negative and 

significant relation between predicted profitability shocks (PPS) and stock returns. The four-

factor alpha on the negative-minus-positive decile portfolio long negative PPS stocks and short 

positive PPS stocks is 0.925% (t = 5.63) per month. Further, controlling for PPS greatly 

enhances the predicting power of price momentum for stock returns, which can no longer be 

fully explained by earnings momentum as suggested by Novy-Marx (2015). In contrast, 

controlling for PPS largely subsumes the predicting power of the book-to-market ratio and 

operating profitability for stock returns.  
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2.2. Introduction 

 

A great deal of finance research documents that the preference for positively skewed payoffs 

has important pricing implications for financial assets. Following the cumulative prospect 

theory of Tversky and Kahneman (1992), Barberis and Huang (2007) model that a security 

with positive skewness can be overpriced and earn a negative average excess return because 

investors with a skewness preference opt to overweight tail events. In a similar attempt, 

Brunnermeier, Gollier, and Parker (2007) show investors with optimal expectations choose to 

be optimistic about the states associated with the most skewed assets, and that their upward 

biased beliefs cause the overinvestment and low returns of such assets. Empirically, there is 

rapidly growing evidence supporting the preference for skewness, as researchers employ the 

theory to explain the low returns on assets with lottery-like payoffs, e.g., IPO stocks (Jay Ritter 

1991), over-the-counter stocks (Eraker and Ready 2015), private equity (Moskowitz and 

Vissing-Jorgensen 2002), financial distressed stocks (Campbell, Hilscher and Szilagyi 2008) 

and high idiosyncratic volatility stocks (Bali, Cakici and Whitelaw 2011). 

A natural laboratory to understand the implications of skewness preference is the swift and 

substantial stock price adjustments during the days surrounding quarterly earnings 

announcements. Because earnings numbers convey new information to markets, stock prices 

react dramatically once firms release earnings surprises (Nichols and Wahlen 2004). It is not 

uncommon to see stock prices rise/drop more than 10% in a few working days (even a few 

hours7) due to an earnings hit/miss, and such lottery-like payoffs are eye-catching events 

dominating financial press headlines during the earnings season. The strong reactions to 

earnings surprises provide strong incentives for investors to use all sources of available 

                                                           
7 A most recent example is Netflix, whose stock price soared as much as 20% after a few hours on 18 October 

2018 as the company posted third-quarter earnings per share of 12 cents compared to 7 cents a share in the year-

earlier period. 
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information to forecast earnings changes, and investors with a strong preference for lottery-

like payoffs should be willing to pay more for stocks with a high probability of generating 

positive earnings surprises8. 

In this paper, I investigate the relation between predicted profitability shocks (PPS) for the 

coming quarter and stock returns. I focus on the change in operating profitability (OP) instead 

of bottom-line income, motivated by the finding of Ball, Gerakos, Linnainmaa and Nikolaev 

(2015) that operating profitability has a stronger link with expected returns than bottom-line 

income. I define profitability shock as the innovation of a firm's quarterly operating 

profitability that is uncorrelated with past profitability changes, i.e., the residual from a cross-

sectional regression of SUEs (standardized unexpected earnings computed with firm-level 

quarterly operating profitability) on lagged SUEs. It is well known that the measure of SUE is 

serially correlated over four lags (Ball and Bartov 1996). Without controlling appropriately for 

this autocorrelation, the pricing effect of PPS is likely to conflate with the post-earnings 

announcement drift, i.e. stock prices continue to drift in the direction of an earnings change for 

several months following an earnings announcement.  

My analysis proceeds in two stages: I firstly develop a parsimonious model to predict future 

profitability shocks, and then investigate how PPS explain the cross-section of stock returns. I 

combine various accounting and equity market variables in My benchmark model to predict 

future profitability shocks. There are three variables exhibiting substantial power in predicting 

the cross-section of future profitability shocks: the level of operating profitability (OP), book-

to-market (BM) ratio and past returns. First, Firms with a high level of profitability tend to 

have negative profitability shocks, which is consistent with Fama and French’s (2000; 2006) 

                                                           
8 Other timely sources of firm earnings-relevant information, like new product development, major contract wins, 

management forecasts and peer earnings announcements might attenuate stock price reactions on earnings 

announcements. However, such earnings-relevant information might also trigger strong price reactions with 

lottery-like payoffs by themselves, and thus do not undermine the overall price consequences of earnings changes. 
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finding that profitability is mean reverting in a competitive environment. Second, after 

controlling for OP, there is a strong negative relation between BM and future profitability 

shocks.  Intuitively, since the market value for a firm is the present value of its future cash 

flows, a low market value (high BM) must indicate a negative shift of future profitability for a 

given level of current profitability. My results provide novel evidence for the presumption of 

Fama and French (1992) that value stocks have poorer prospects than growth stocks. Third, 

firms with high past returns (winners) are more likely to generate positive profitability shocks 

than firms with low past returns (losers), which is in line with earlier literature on stock returns 

having strong predictive power with respect to future earnings changes (Beaver, Lambert and 

Morst 1980; Kothari and Sloan 1992). 

Using predicted profitability shocks (PPS) from out-of-sample predictive tests, I show there is 

a strong and negative relation between PPS and expected stock returns, as predicted by the 

cumulative prospect theory. A negative-minus-positive decile portfolio long stocks in the 

lowest PPS decile and short stocks in the highest PPS decile generates a four-factor alpha of 

0.925% per month with a t-statistic of 5.63. In bivariate portfolio analysis, the predicting power 

of PPS for stock returns is robust after controlling for various cross-sectional effects. In the 

Fama and MacBeth (1973) regression, where I control for multiple variables simultaneously, 

the average slope on the PPS is -4.934%, with a t-statistic of -5.03. Of particular interest, I 

show that the PPS effect is more pronounced among large stocks than among small stocks, 

which differs substantially from some earlier findings that showed skewness-related anomalies 

mainly manifest themselves in stocks with small market capitalization (Campbell, Hilscher and 

Szilagyi 2008; Bali, Cakici and Whitelaw 2011). 

After documenting the pricing effect of PPS, I explore the impact of PPS on three prominent 

anomalies: price momentum, operating profitability and book-to-market ratios. First, I show 

that controlling for PPS greatly enhances the power of price momentum in predicting stock 
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returns. Most recently, Chordia and Shivakumar (2006) and Novy-Marx (2015) argue that price 

momentum is merely a manifestation of the earnings momentum and show that post-earnings 

announcement drift fully subsumes the explanatory power of past returns in the cross-section 

of stock returns in their studies. I find that controlling for the PPS effect resurrects the 

predicting power of price momentum in stock returns, which cannot be driven out by post-

earnings announcement drift. Since a high past return is a strong leading indicator of positive 

future profitability shock, a negative-minus-positive portfolio based on PPS is essentially a 

contrarian strategy long past losers and short past winners. The highly negative correlation (-

0.62) between the PPS strategy and the price momentum strategy allows a combination of the 

two to perform much better than either factor alone.  My evidence thus indicates that price 

momentum has separate explanatory power for stock returns compared to earnings momentum. 

Second, I show PPS largely subsumes the explanatory power of operating profitability for stock 

returns, and thus provides a possible explanation for the pricing effect of operating profitability.  

It is a well-known and widely accepted economic assumption that profitability is mean 

reverting in a competitive environment (Fama and French 2000; 2006). My PPS measure 

captures the tendency that profitable firms are more likely to have negative profitability shocks, 

and non-profitable firms are more likely to have positive profitability shocks. Driven by the 

strong preference for lottery-like payoffs associated with profitability shocks, investors might 

thus overprice stocks of non-profitable firms and underprice stocks of profitable firms, 

resulting in the pricing effect of profitability. My empirical results show that after controlling 

for PPS, the predicting power of operating profitability largely disappears, with the exception 

of stocks in the smallest size quintile that merely account for 3.5% of market capitalization. 

Third, I show that PPS fully absorbs the roles of BM in predicting stock return, and thus the 

value effect may simply be a proxy for PPS. By fixing operating profitability, I observe that 

BM is a strong predictor of future profitability shock, and that stocks with high (low) BM are 
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more likely to have negative (positive) PPS. The preference for skewness associated with 

profitability shocks might entice investors to overprice growth stocks with high positive PPS, 

and underprice value stocks with high negative PPS.  

The paper proceeds as follows. Section 2.3 provides a prediction model of profitability shocks. 

Section 2.4 presents the relation between PPS and average returns. Section 2.5 analyses the 

impact of PPS on the predicting power of price momentum, operating profitability and BM in 

stock returns. Section 2.6 compares the performance of PPS with other skewness anomalies. 

Section 2.7 concludes the paper. 

2.3. A prediction model of profitability shocks 

 

In this section, I show how profitability shocks lead to swift price adjustments with lottery-like 

payoffs. I then develop a parsimonious model in which various accounting and equity market 

measures are used to predict future profitability shocks at firm-level. 

2.3.1. Profitability shocks and lottery-like payoffs 

Using a seasonal random walk model with trend, I construct SUE (standardized unexpected 

earnings) based on firm-level quarterly operating profitability (see Appendix A for details). 

Ball and Bartov (1996) argue that the term "unexpected" in SUE is misleading because it 

ignores that firms’ SUEs are serially correlated over four lags. Therefore, I define profitability 

shock as the innovation of firm quarterly operating profitability that is uncorrelated to lagged 

SUEs. Following the procedure of Ball and Bartov (1996), the estimator for profitability shock 

for firm 𝑖 in quarter t is the regression residual, 𝜀𝑖,𝑡, from cross-sectional regressions of current 

SUE on lagged SUEs: 

 𝑆𝑈𝐸𝑖,𝑡 = 𝑎0 + ∑ 𝑎𝑗𝑆𝑈𝐸𝑖,𝑡−𝑗
4
𝑗=1 + 𝜀𝑖,𝑡                                       (1) 
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where 𝜀𝑖,𝑡 is the current profitability shock that is supposed to be orthogonal to lagged SUEs.  

Following Ball and Bartov (1996), all values of SUEs in the regressions are replaced by their 

decile rankings and then scaled so that they range from 0 (for the lowest decile) to 1 (for the 

highest decile). 

The impact of profitability shock on stock prices is considerable. Table 2.1 reports 

distributional statistics on cumulative seven-day abnormal returns (CAR7) surrounding 

quarterly earnings announcements to decile portfolios sorted by profitability shocks, over the 

period 1975 to 2015.  The CAR7 for each firm is the sum of daily abnormal returns in the 7 

days (t = -5 to t = 2) relative to the earnings announcement date (t = 0). Daily abnormal returns 

are residuals from quarterly time-series regressions of individual stocks’ daily returns on the 

Carhart-four-factor model. The first column of Table 2.1 shows the average CAR7 rises 

monotonically across profitability shock decile portfolios, as the lowest profitability shock 

portfolio suffers an average loss of -1.388%, whereas the highest profitability shock decile 

portfolio yields an average gain of 1.954%. During the short window of 7 days, profitability 

shocks trigger a 3.342% difference in CAR7 between extreme profitability shock decile 

portfolios.  

The swift and significant price adjustments in the earnings announcement season are associated 

with lottery-like payoffs ─ a small chance of very substantial capital gains over a very short 

trading window. The skew column in Table 2.1 shows a monotonic relation between skewness 

and profitability shocks; CAR7 is skewed to the left (-0.204) for the lowest profitability shock 

portfolio and is highly skewed to the right (0.409) for the highest profitability shock portfolio. 

Figure 2.1 shows intuitively how profitability shocks result in lottery-like payoffs. This figure 

focuses on large gains/losses in CAR7 that are higher than 15% or lower than -15%, which is 

equivalent to a $495 million gain/loss for an average-sized firm. The highest (positive) 

profitability shock decile has a relatively higher probability of enjoying large gains than 
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suffering large losses, i.e. 4.84% versus 1.11%. For the lowest (negative) profitability shock 

decile, the profitability of suffering large losses is much higher than that of enjoying large gains, 

i.e. 4.42% versus 1.67%. This result demonstrates that stocks with positive profitability shocks 

are associated with a higher probability of lottery-like payoffs compared to stocks with negative 

profitability shocks.    

2.3.2. A model to predict profitability shocks 

In the prior section, I show that profitability shocks cause swift and significant price 

adjustments associated with lottery-like payoffs. The stock price consequences of profitability 

shocks provide enormous incentives for investors to forecast future profitability shocks. I 

develop a parsimonious model in which various accounting and equity market variables are 

used to predict future profitability shocks, as follow: 

𝜀𝑖,𝑡+1 = 𝛽 + 𝜆
′𝐴𝑖,𝑡 + 𝜇

′ 𝑀𝑖,𝑡 + 𝜔𝑖,𝑡                                       (2) 

where 𝜀𝑖,𝑡+1 is profitability shocks for the next earnings season,  𝐴𝑖,𝑡 is a vector of accounting 

variables, and 𝑀𝑖,𝑡 is a vector of market-based variables.  

The vector of accounting variables include quarterly operating profitability (OPQ), quarter-end 

book-to-market ratio (BMQ) and quarterly sale growth (SGQ). The inclusion of operating 

profitability is motivated by the standard economic argument that profitability is mean 

reverting in a competitive environment, such that changes in profitability are predictable (Fama 

and French 2000). The choice of operating profitability to measure an individual firm's earning 

power is motivated by Ball, Gerakos, Linnainmaa and Nikolaev (2015), who find that operating 

profitability better explains the cross section of average returns than gross profitability and net 

income. The use of the book-to-market ratio is motivated by Fama and French (1992), who 

extrapolate that low prices (high book-to-market ratio) is a signal of poor prospects, leading to 

high expected stock returns for value stocks as they are penalized with higher costs of capital. 
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I also include sales growth as a predictor variable since firms enjoying strengthened 

competitive positions in the market are more likely to achieve strong profits growth.    

My first market-based variable is the past monthly excess return over the market index 

(EXRET), because stock returns have significant predictive power for future earnings changes 

(Beaver, Lambert and Morst 1980; Kothari and Sloan 1992). The second market-based variable 

is the maximum daily return (MAX). Bali, Cakici and Whitelaw (2011) show that stocks with 

extreme positive returns in a given month have a great probability to exhibit extreme positive 

returns in the following month. The rest of the market-based variables are similar to those 

employed by Chen, Hong, and Stein (2001) and Boyer, Mitton and Vorkink (2010) in 

predicting idiosyncratic skewness: idiosyncratic volatility (IVOL) and idiosyncratic skewness 

(ISKEW) over the past six months t-5 to t, turnover (TURN), a NASDAQ dummy, small and 

medium-size dummies and industry dummies (49 industries as defined on Ken French's 

website). The Appendix provides more details on the construction of these variables. 

The vast majority of U.S. firms release their quarterly earnings in the earnings season, which 

is four times a year: from early January to late February, from early April to late May, from 

early July to late August, and from early October to late November. I align market-based 

variables measured at the end of each earnings season (i.e., at the end of February, May, August, 

and November) with accounting variables computed with the latest quarterly accounting data. 

This alignment ensures all information is available for investors to predict the next profitability 

shocks at the end of the current earnings season.   

Although the latest quarterly accounting data provides a timely source of information, we might 

also need lagged information to account for seasonality and transitory factors in order to get a 

clean measure of material economic events. Following the approach of Campbell, Hilscher and 
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Szilagyi (2008), I impose geometrically declining weights to lagged information for measures 

of OPQ, BMQ and SGQ, as follows: 

AVG(X)t =
1−∅3

1−∅12
(Xt +⋯+ ∅

11Xt−11)                                  (3) 

where X  is the variable of interest, and ∅ = 2−1/3  implies that the weight is halved each 

quarter9. Similarly, I also implement this procedure to adjust the market-based measures of 

EXRET and TURN, where the weight is halved each month. In the exploratory regressions, I 

find lagged monthly returns and turnover data also provide incremental information in 

predictive tests.     

2.3.3. Results from full-sample predictive tests of profitability shocks 

Table 2.2 reports the time-series averages of the slopes from the full-sample predictive tests 

for profitability shocks in the coming earnings season using quarter-by-quarter Fama-MacBeth 

(FM) regressions, over the period 1975 to 2015. I exclude very small firms with total assets of 

less than $25 million or book equity of less than $12.5 million. Following the treatment of 

SUEs in equation (1), all predictor variables in the regressions are replaced by their decile 

rankings and then scaled so that they range from 0 (for the lowest decile) to 1 (for the highest 

decile).  

Specifications (1) to (5) show that all three accounting variables help to explain the cross-

section of predicted profitability shocks. Among these three accounting variables, lagged 

profitability, AVG(OPQ), has the most impressive predicting power, with an average slope of 

-0.085 (t = -13.26) in the univariate setting of specification (1). The result that profitable firms 

tend to have negative profitability shocks is in line with standard economic arguments that 

profitability is mean reverting in a competitive environment. For the book-to-market ratio, 

                                                           
9 To avoid losing data, we replace missed lagged observations with their cross-sectional means.   
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AVG(BMQ), its predicting power does not show up clearly when it is used alone in 

specification (2). However, after controlling for operating profitability, it becomes highly 

significant in specification (3), with an average slope of -0.057 (t = -11.63). Therefore, value 

(high BM) stocks are associated with negative profitability shocks, supporting the conjecture 

of Fama and French (1992) that value stocks might have poorer prospects than growth stocks. 

As expected, specification (4) shows that sales growth is associated with positive profitability 

shocks, as the average slope on AVG(SGQ) 0.020 shows a t-statistic of 5.45. When I control 

for all three accounting variables in specification (5), operating profitability displays the 

strongest power in predicting profitability shocks, followed by the book-to-market ratio and 

sales growth.  

Specification (6) confirms that stock return is a leading indicator of future earnings changes. 

The positive and highly significant slope (0.076, t = 17.73) on AVG(EXRET) shows that 

positive profitability shocks are more likely to occur among past winners than past losers.   

Specification (7) indicates a positive and significant relation between maximum daily return 

and profitability shocks, as the average slope on MAX alone is 0.012 with a t-statistic of 2.95.  

Specification (8) is similar to the model used by Boyer, Mitton and Vorkink (2010) in 

predicting idiosyncratic skewness. I observe that idiosyncratic skewness (ISKEW), past returns 

(AVG(EXRET)) and turnover (AVG(TURN) show significant power in predicting profitability 

shocks. Thus, stocks with high idiosyncratic skewness and high past returns are associated with 

positive profitability shocks, whereas stocks with high turnover are related to negative 

profitability shocks.  

Specification (9) is the benchmark model that I focus on in the paper, combining accounting 

variables with market-based variables to predict profitability shocks. In economic terms 

indicated by average slopes, operating profitability (-0.145, t = -18.01) has the strongest 

predicting power for profitability shocks, followed by past returns (0.076, t = 19.01) and book-
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to-market ratio (-0.053, t = -14.30). Maximum daily return, idiosyncratic volatility and 

skewness, and sales growth also display considerable roles in predicting profitability shocks, 

with average slopes more than 5 standard errors from zero. Note that the average slope on 

IVOL (-0.034, t = -8.49) in specification (9) indicates that a high level of volatility is associated 

with negative future profitability shocks after accounting for other variables. Moreover, 

turnover and the NASDAQ dummy also helps predict profitability shocks, but their effects are 

trivial in economic terms. Lastly, specification (9) produces a relatively low adjusted R-square 

of 0.111, which reflects the fact that forecasting profitability shock is a difficult task. 

2.4. Predicted profitability shocks and average returns 

 

In this section, I examine the asset pricing implications of my profitability shock model based 

on out-of-sample predictive tests. I first assess how average returns vary across portfolios 

sorted by predicted profitability shocks using univariate and bivariate portfolio analysis, and 

then estimate the power of predicted profitability shocks in explaining the cross-section of 

average returns using Fama and Macbeth (FM) regressions. 

2.4.1. Portfolios sorted on predicted profitability shocks 

To alleviate the concern of look-ahead bias, predicted profitability shocks are estimated using 

only historically available data known at the end of earnings season t. At the end of each 

earnings season (i.e., at the end of every February, May, August, and November) from 

November of 1984 to November of 2015, the model of specification (9) in Table 2.2 is re-

estimated using data on an expanding window, starting from February of 1975 to November of 

198410. Predicted profitability shocks are fitted values of the predictive model, i.e., the average 

                                                           
10  The dependent variable, profitability shock (𝜀𝑖,𝑡), is also re-estimated by equation (1) at the end of each 

earnings season t, using only historically available data. 
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regression slopes multiplied by values of explanatory variable at the end of earnings season t, 

as follows:   

𝐸𝑡(𝜀𝑖,𝑡+1) = 𝛽 + 𝜆
′ 𝐴𝑖,𝑡 +  𝜇

′𝑀𝑖,𝑡                                           (3) 

We then sort stocks into decile portfolios based on predicted profitability shocks using NYSE 

breakpoints, and rebalance the portfolios quarterly at the end of each earnings season.  

Figure 2.2 graphically summarises the time-series average of realized profitability shocks for 

each decile portfolio in portfolio holding periods in the sample, from January 1985 to 

December 2015. Portfolio 1 (negative) includes stocks with the lowest predicted profitability 

shocks, and portfolio 10 (positive) includes stocks with the highest predicted profitability 

shocks.  I find that the average value of realized profitability shocks rises monotonically with 

predicted profitability shocks across deciles. The negative decile exhibits an average realized 

profitability shock of -0.092 while the positive decile exhibits an average realized profitability 

shock of 0.07, a difference of 0.162 (significant at the p < 0.001 level).  This result demonstrates 

that the model, using only historically available data, works well in predicting future 

profitability shocks.  

Table 2.3 presents the value-weighted (VW) average monthly excess returns and alphas relative 

to the four-factor (Fama-French-Carhart) model for decile portfolios, sorted by predicted 

profitability using NYSE breakpoints. The four-factor model includes a market factor (MKT), 

a size factor (SMB), a value factor (HML) and a momentum factor (WML), which are 

constructed with the same methodology employed by the Fama and French library. I observe 

that the negative-minus-positive decile portfolio earns a mean excess return of 0.469% per 

month with a t-statistic of 2.17. Returns on the negative-minus-positive portfolio are even 

higher after controlling for risk. The four-factor alpha is 0.925% per month with a t-statistic of 

5.63, which is economically and statistically significant at all conventional levels. Similarly, 



57 
 

the negative-minus-positive quintile portfolio generates a mean excess return of 0.350% per 

month (t = 1.94) and a four-factor alpha of 0.788% per month (t = 6.07).  

Of particular interest, the negative-minus-positive decile portfolio has an economically and 

statistically large negative exposure to the momentum factor WML, with an average slope of -

0.653 and a t-statistic of -17.55.  Given that positive profitability shocks are more likely to 

occur among past winners than past losers, as shown in Table 2.2, a negative-minus-positive 

portfolio based on predicted profitability shock is essentially a contrarian strategy long on past 

losers and short on past winners. Figure 2.3 shows the trailing 5-year Sharpe ratios of an NMP 

(negative-minus-positive predicted profitability shock) decile portfolio and a WML (winner-

minus-loser) decile portfolio. It is impressive to see that there is a strong negative correlation 

(-0.62) between these two strategies.  More specifically, a rise of one strategy tends to be 

closely followed by a fall of the other, and a peak of one strategy typically appears at the same 

time with a trough of the other.  Due to this strong negative correlation and the positive returns 

on its own, controlling for the WML factor substantially enhances the return spread across 

portfolios, sorted by predicted profitability shock.  

To provide a detailed picture of the composition of each portfolio, I calculate the time-series 

averages of a variety of stock characteristics for each portfolio and report the results in Table 

2.4. From negative to positive deciles ranked by predicted profitability shocks, operating 

profitability AVG(OPG) falls monotonically, from 0.057 for the negative decile to 0.015 for 

the positive decile. In contrast, the average values of AVG(BMQ) across deciles are 

approximately the same. The result on AVG(BMQ) is not a surprise, as I have shown that 

AVG(BMQ) does not help predict future profitability shock in univariate FM regressions in 

Table 2.2.  I thus construct a measure of residual BMQ by running a regression of BMQ on 

AVG(OPG). As predicted profitability shocks increase across deciles, the residual BMQ 

decreases dramatically, which demonstrates that high book-to-market ratios are associated with 
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low future profitability shocks after controlling for operating profitability.  Sales growth 

AVG(SGQ) also exhibits pronounced patterns across predicted decile portfolios, which 

indicates that stocks with fast sales growth tend to have positive future profitability shocks.  

For the group of equity-based variables, I find that high past returns (EXRET) and high 

idiosyncratic skewness (ISKEW) are associated with positive predicted profitability shocks.  In 

contrast, MAX, idiosyncratic volatility (IVOL) and turnover (TURN) display convex patterns 

across portfolios. The column of Table 2.4 for market capitalization (CAP) shows that small 

stocks are more likely to be associated with negative profitability shocks relative to other stocks. 

The last two columns of Table 2.4 present the mean and skewness of realized CAR7 for each 

portfolio in the holding periods. A portfolio with high predicted profitability shocks tends to 

yield higher CAR7 than a portfolio with low predicted profitability shocks. Moreover, 

skewness rises significantly from low decile (-0.003) to high decile (0.392).  

2.4.2. Bivariate portfolio analysis 

To examine the robustness of the results, Table 2.5 reports the four-factor alphas of the quintile 

portfolios sorted by predicted profitability shocks after controlling for various cross-sectional 

effects. These control variables include firm characteristics (size, book-to-market, operating 

profitability), measures of price movement (price momentum, Max, idiosyncratic volatility, 

idiosyncratic skewness), measures of earnings momentum (standardized unexpected 

profitability and cumulative seven-day abnormal returns) and measures of institutional holding 

and analyst coverage. I first sort stocks based on one control variable using NYSE quintile 

breakpoints, and then within each quintile portfolio I sort stocks into quintile portfolios based 

on predicted profitability shocks. For each quintile of the control variable, I report value-

weighted four-factor alphas to portfolio 1 (negative), portfolio 5 (positive), negative-minus-

positive (1-5) portfolio and their t-statistics. The second column "Ave." refers to the average 
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alphas across five quintile portfolios with different levels of the control variables but with a 

similar level of predicted profitability shocks. 

Controlling for firm characteristics (size, book-to-market, operating profitability) 

For portfolio management, it is critical to know whether the pattern in average returns appears 

reliably for large stocks that account for the vast majority of total market capitalization, or rely 

mostly on small stocks that are much less liquid. I first examine the relation between stock 

returns and predicted profitability shocks after controlling for the size effect. Panel A of Table 

2.5 shows that the negative PPS quintile outperforms the positive PPS quintile, and the 

outperformance is most pronounced among the largest stocks. The average alpha, "Ave.", on 

the negative-minus-positive portfolios across five size quintiles is 0.60% per month with a t-

statistic of 5.95, which indicates that market capitalization does not explain the negative 

relation between predicted profitability shocks and stock returns. The largest quintile has the 

largest four-factor alpha for the negative-minus-positive portfolio, 0.84% per month (t = 6.03), 

which is more than three times larger than that of the smallest quintile, 0.24% per month (t = 

1.65).   

Panel B of Table 2.5 shows the results after controlling for the book-to-market ratio.  The four-

factor alphas of the negative-minus-positive portfolios between growth (low BM) stocks and 

value (high BM) stocks are largely the same in magnitude. The average of the alphas of the 

negative-minus-positive portfolios across five BM quintiles, 0.70% per month (t = 5.80), 

indicates that stocks with negative predicted profitability shocks significantly outperform 

stocks with positive predicted profitability shocks after controlling for the value effect. 

When I control for operating profitability in Panel C, the effect of predicted profitability shocks 

on average stock returns persists, with an average alpha of 0.53% per month and a t-statistic of 

4.41 for negative-minus-positive portfolios.  However, it is worth noting that the effect does 
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not show up among stocks with the lowest level of profitability.  In particular, the quintile 1 

portfolio with low operating profitability and low predicted profitability shocks has a negative 

alpha of -0.30 (t = 1.24), as opposed to positive alphas on other quintile 1 portfolios. This 

underperformance of non-profitable firms with negative profitability outlook is in line with the 

distress risk puzzle of Campbell, Hilscher and Szilagyi (2008), which states that financially 

distressed stocks are associated with anomalously low returns.    

Controlling for measures of price movement (price momentum, Max, idiosyncratic volatility 

and idiosyncratic skewness) 

In Panel D of Table 2.5, I examine whether price momentum can account for the effect of 

predicted profitability shocks. The average of the alphas for negative-minus-positive portfolios 

remains large at 0.73% per month (t = 7.98). Thus, controlling for momentum does not correct 

the pattern of returns across stocks with different levels of predicted profitability shocks. 

Moreover, it is a surprise to see that the loser portfolio with low predicted profitability shocks 

earns an impressively large alpha of 0.97% per month (t = 5.33). This could be the result of 

investors' excessive pessimism about the prospect of this type of stocks, leading to oversold 

prices which subsequently rebound.  Consequently, the alpha on the negative-minus-positive 

portfolio is more than three times greater for loser stocks (1.40% per month, t=6.37) than for 

winner stocks (0.43% per month, t=2.33). 

We also control for MAX, idiosyncratic volatility and idiosyncratic skewness in Panels E, F 

and G, and find similar results whereby the effect of predicted profitability shock is preserved. 

The average alpha of negative-minus-positive portfolios is economically and statistically 

significant, at 0.72% (t=5.86) per month, 0.64% (t = 4.88) per month and 0.76% (t = 6.46) per 

month after controlling for max, idiosyncratic volatility and idiosyncratic skewness, 
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respectively. Moreover, there is relatively little difference in alphas for negative-minus-

positive portfolios between low and high controlling quintiles.  

Controlling for measures of earnings momentum (standardized unexpected profitability and 

cumulative seven-day abnormal returns) 

Measures of SUE and CAR7 capture the tendency of firms reporting strong earnings to 

subsequently outperform firms reporting weak earnings. When I control for SUE, negative-

minus-positive portfolios have an average alpha of 0.84%, with a robust t-statistic of 7.07.  

Controlling for CAR7 generates similar results, the average alpha of negative-minus-positive 

portfolios is still economically and statistically significant. Hence, earnings momentum cannot 

be an explanation for the effect of predicted profitability shocks on stock returns. 

Controlling for measures of institutional holding and analyst coverage 

My last set of control variables includes residual institutional holding and residual analyst 

coverage. Following Campbell, Hilscher and Szilagyi (2008), the residual institutional holding 

is the residual from a regression of institutional holding (13-F filings) on firm size with time-

fixed effects. Similarly, the residual analyst coverage is the residual from a regression of the 

log of one plus the number of analysts covering each firm (IBES) on firm size with time-fixed 

effects.   

In Panel J, controlling for residual institutional holding, I find that the effect of predicted 

profitability shocks is much stronger for stocks with low residual institutional holding 

compared to stocks with high residual institutional holding; the alpha of negative-minus-

positive portfolios for stocks with low institutional holding is 0.96% (t=4.03) per month, versus 

0.36% (t=1.96) per month for stocks with high institutional holding. The result supports the 

conclusions of Kumar (2009), who finds that individual investors have a strong preference for 

stocks with lottery-like payoffs compared to institutional investors. A similar but less 
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pronounced pattern is also found in Panel K when controlling for residual analyst coverage, 

which shows that stocks with low analyst coverage generate a larger alpha for negative-minus-

positive portfolios than stocks with high analyst coverage (1.01% and t=5.25 per month versus 

0.69 and t=3.26 per month).  

2.4.3. Fama-MacBeth regressions 

So far my analysis has been based on portfolio sorts, which makes it difficult to determine 

which anomaly variable holds unique information on average returns when we need to control 

for multiple variables simultaneously. This subsection attempts to address this issue by directly 

estimating the marginal effect of predicted profitability shocks using Fama and Macbeth 

regressions. Table 2.6 presents the time-series average slopes and their t-statistics from FM 

regressions of stock monthly excess returns on predicted profitability shocks and other control 

variables. The control variables include the log of market capitalizations (Size), the log of 

book-to-market ratio (BM), operating profitability (OP), investment (INV), standardized 

unexpected profitability (SUE), cumulative seven-day abnormal returns (CAR7), monthly 

excess returns (EXRET), the cumulative returns over months t-12 through t-2 (MOM), the 

maximum daily return over the past one month (MAX) and idiosyncratic volatility (IVOL) 

over the past six months. Following Fama and French (2015) and Ball, Gerakos, Linnainmaa 

and Nikolaev (2015), Size, BM, OP and INV are measured with annual accounting data for the 

fiscal year t-1, and updated at the end of June for the calendar year t.  Independent variables 

are trimmed at the 1% and 99% levels on a table-by-table basis to ensure different regressions 

within each table panel are based on the same observations. Except for the full example from 

January 1985 to December 2015, separate FM regressions for two subsamples using the end of 

1999 as the breakpoint are also run. 
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After a background review on the control variables in specification (1), specification (2) shows 

that predicted profitability shock (PPS) is economically and statistically significant in 

explaining average stock returns when considered alone, with an average slope of -3.081% (t 

= -2.50).  The pattern is more pronounced after controlling for other variables in specification 

(3), where the average slope on predicted profitability shock is -4.685% with a t-statistic of -

5.04. The results indicate a negative relation between predicted profitability shock and average 

stock returns after controlling for multiple variables, which is in line with Barberis and Huang’s 

(2008) finding that positively skewed securities can become overpriced and earn negative 

average returns. Results from the subsample analysis reveal that the predicting power of 

predicted profitability shocks persists over time, as the average slope on PPS for subsamples 

remains highly significant: -4.423 (t = -3.77) for the first subsample and -4.931 (t = -3.45) for 

the second subsample.     

2.5. Momentum, value and operating profitability effects 

 

The FM regressions in Table 2.6 provides interesting insight into the relation between predicted 

profitability shock and momentum, value and operating profitability effects. It appears that 

adding predicted profitability shocks to regressions drives out the significance of BM and OP, 

but drives up the significance of MOM. Specification (1) shows that when I omit the control 

for PPS, the average slopes of BM and OP are statistically significant, at 0.124% per month (t 

= 2.02) and 1.925% per month (t = 4.92), respectively.  However, after controlling for PPS in 

specification (3), the average slopes of BM and OP shrink dramatically and become statistically 

insignificant at 0.074% per month (t = 1.22) and 0.636% per month (t = 1.42), respectively. 

This result suggests both BM and OP could be noisy proxies for predicted profitability shocks 

in predicting average returns. Meanwhile, adding PPS to the regression causes the average 

slope of MOM to improve from 0.031% per month in specification (1) to 0.222% per month in 
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specification (3). This indicates that controlling for predicted profitability shocks could 

enhance the effect of price momentum. Note that the statistically insignificant average slope of 

MOM could be caused by the non-linear relation between average stock returns and MOM, 

where return difference is apparent only for stocks with extreme past returns. Such a non-linear 

relation might weaken the return effect of price momentum in multivariate FM regressions, 

which imposes a functional form on the relation between explanatory variables and returns.  

We now turn to time-series spanning tests based on mimicking factors, which alleviate the 

concern of non-linear relations between anomaly variables and average returns. Specifically, I 

regress the BM, OP and MOM factors on explanatory variables including the PPS factor, and 

regress the PPS factor on explanatory variables including the BM, OP and MOM factors. A 

significant abnormal intercept would suggest the test factor contributes to the description of 

average returns provided by the explanatory variables.   

The mimicking factors are constructed using independent 2×3 sorts as described by the Fama 

and French library. Taking the predicted profitability shock factor as an example, the 2×3 sorts 

uses the median NYSE market cap to split NYSE, Amex, and NASDAQ stocks into two 

groups, and also independently uses the 30th and 70th NYSE percentiles of PPS values to break 

stocks into three PPS groups. Thus six value-weight intersection portfolios are constructed 

quarterly at the end of each earnings season, and the NMP (negative minus positive predicted 

profitability shock) is the average return on two high PPS portfolios minus the average return 

on two low PPS portfolios. Similarly, I also construct the operating profitability factor (RMW, 

robust minus weak profitability), the investment factor (CMA, conservative minus aggressive 

investment), and the SUE factor (positive minus negative SUE), based on measures of OP, INV 

and SUE for the second sort and rebalance once the respective measure is updated.  
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Panel A shows the results of the spanning tests on WML. WML earns a significant average 

return of 0.548% (t = 2.35) per month in specification (1). This large return is fully subsumed 

by other variables in specification (2), as we see WML yields an insignificant alpha of -125% 

(t = -0.65) per month, resulting from its heavy loading on the SUE factor (1.643%, t = -14.64). 

However, after controlling for NMP in specification (3), WML retains its economically and 

statistical significance with an alpha of 0.466% (t = 3.23).  The negative loading of WML on 

NMP (-1.120%, t = -17.99) suggests that controlling for NMP significantly contributes to the 

performance of WML. The result that price momentum cannot be fully explained by SUE lends 

new evidence to the conclusion of Jegadeesh and Lakonishok (1996) that price momentum has 

distinct marginal explanatory power on average returns relative to earnings momentum. This 

result runs contrary to the findings of Chordia and Shivakumar (2006) and Novy-Marx (2015), 

i.e., that the price momentum anomaly is merely a weak expression of the earnings momentum 

— a conclusion which was drawn without controlling for predicted profitability shocks. 

Panel B of Table 2.7 shows that although HML does not earn a significant average return in 

specification (1), it earns a significant alpha (0.255% per month, t = 2.72) relative to 

explanatory variables without controlling for NMP in specification (2). After controlling for 

NMP in specification (3), the alpha shrinks to 0.126% per month and becomes statistically 

insignificant (t = 1.32), resulting from a substantial loading on NMP (0.243% per month, t = 

4.44). This result confirms the prior finding using the FM regressions that predicted 

profitability shock helps explain the BM effect in average returns. 

The results of the spanning tests on RMW are presented in Panel C. The operating profitability 

factor earns an average return of 0.277% (t = 2.41) per month in specification (1), and a highly 

reliable alpha of 0.391% (t = 4.33) per month relative to explanatory variables without controls 

of NMP in specification (2). In specification (3), resulting from its heavy loading on NMP 

(0.406% per month, t = 8.69), RMW fails to generate a significant alpha relative to explanatory 
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variables (alpha=0.131% per month, t = 1.49). This result reiterates that predicted profitability 

shock subsumes operating profitability in predicting average stock returns.  

Panel D reports the results of the spanning tests on NMP, the predicted profitability factor. In 

specification (1), the average return of NMP is not impressive at 0.206% (t = 1.50) per month.  

However, after controlling for other factors in specification (2) and specification (3), NMP 

earns a highly significant alpha of 0.528% (t = 4.48) and 0.475% (t = 5.53) per month, 

respectively. NMP loads heavily on WML and the SUE factor, suggesting the price momentum 

and SUE factors greatly enhance the performance of the predicted profitability shock factor. 

The time series correlation between NMP and WML is -74%, while for NMP and SUE, the 

correlation is -57%. The greatly enhanced performance of NMP is a direct result of integrating 

negatively correlated assets with positive returns with each other. 

However, spanning tests on mimicking portfolios do not indicate whether the result is pervasive 

across size groups or is merely dominated by a particular size group. To address this concern, 

Table 2.8 provides results of the same spanning tests within each size quintile. Specifically, I 

report the alphas of value-weighted quintile portfolios sorted by BM, OP, MOM and predicted 

profitability shock portfolios within size quintile using NYSE breakpoints. The set of 

explanatory variables for specifications (2) and (3) are defined in Table 2.7. For example, for 

portfolios sorted by BM, the alphas of specification (2) are intercepts from the spanning tests 

of quintile portfolios' excess returns on the set of explanatory variables used in specification 

(2) in panel A of Table 2.7, including RMW, WML, MKT, SMB, CMA and the SUE factors.   

For quintiles sorted by price momentum, alphas on the winner-minus-loser portfolios in 

specification (2) show there is a momentum effect for the smallest size group, but there is also 

a reversal effect for the largest size group. In specification (3), controlling for NMP brings up 

the alpha of the winner-minus-loser portfolios substantially. For the two-smallest size quintiles, 
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the momentum premium shows up positively and significantly. For the three-largest size 

quintiles, alphas of the winner-minus-loser portfolios turn into positive numbers, though they 

are statistically insignificant. Thus, the price momentum effect is greatly improved with the 

help of the NMP control, particularly among small and medium stocks.   

For quintiles sorted by BM, results on specification (2) show that the value effect is 

concentrated on size quintiles 2 to 4.  After controlling for NMP in specification (3), we do not 

find significant value effect for all size groups, as all value-minus-growth portfolios fail to 

generate significant abnormal returns. For quintiles sorted by OP, the effect of operating 

profitability is initially pervasive across all size groups, as shown by alphas of specification (2). 

From alphas of high-minus-low portfolios in specification (3), I see an additional control of 

NMP in the spanning tests removes the significance of the OP effect for all size groups, except 

for the smallest size group which merely accounts for 3.5% of market capitalization.   

Lastly, for quintiles sorted by predicted profitability shocks, the alphas of specification (2), 

without controlling for WML, and specification (3), controlling for WML, both show that the 

effect of predicted profitability shocks is pervasive across size groups. Note also that the 

negative-minus-positive portfolios earn substantially larger premiums for the largest quintile 

than for the smallest quintile, namely, 0.68% (t = 4.22) versus 0.31% (t = 1.97) per month in 

specification (2) and 0.62% (t = 4.56) versus 0.28% (t = 1.86) per month in specification (3).  

In summary, cross-sectional regressions and spanning tests provide strong corroborating 

evidence that controlling for predicted profitability shocks greatly improves the predicting 

power of price momentum in average returns, whereas it largely subsumes the effect of BM 

and OP size effects in average returns. The impact of predicted profitability shocks on the 

predicting power of BM, OP and price momentum are largely robust across all size groups.  
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2.6. MAX and expected idiosyncratic skewness  

 

My final empirical exercise is to investigate how predicted profitability shocks relate to other 

well-known measures of idiosyncratic skewness in explaining cross-sectional variation in 

average stock returns. Specifically, I assess whether the pricing effects of expected 

idiosyncratic skewness (Boyer, Mitton, and Vorkink 2010) and maximum daily return (Bali, 

Cakici, and Whitelaw 2011) can be captured by predicted profitability shocks, or the other way 

around. 

Table 2.9 reports the results of the spanning tests based on mimicking portfolios constructed 

by independent 2×3 sorts. The MAX factor is a strategy of long stocks with the lowest 

maximum daily return and short stocks with the highest maximum daily return, and the 

E(IKEW) factor is a strategy of long stocks with the lowest expected idiosyncratic skewness 

and short stocks with the highest expected idiosyncratic skewness. My estimates of expected 

idiosyncratic skewness are based on the same methodology that I use to estimate predicted 

profitability shocks in prior sections, whereby the dependent variable is the idiosyncratic 

volatility over the past three months. Accordingly, the control variable of past idiosyncratic 

volatility is also measured over a period of three months.    

Panel A of Table 2.9 shows that predicted profitability shocks substantially attenuates the 

pricing effect of MAX. Before controlling for NMP, the MAX factor generates an average 

abnormal return of 0.479% (t = 3.29) per month in specification (2). An inclusion of NMP in 

the control panel shrinks the abnormal return by a third to 0.311% (t = 2.09), resulting from its 

heavy loading on NMP (0.353%, t = 4.06). Similarly, I also find that predicted profitability 

shocks play a critical role in explaining the relation between expected idiosyncratic skewness 

and average returns. The average abnormal return of the E(IKEW) factor before and after 

controlling for NMP is 0.461% (t = 3.11) versus 0.368% (t = 2.39).  In contrast, results in Panel 
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C suggest the pricing effect of predicted profitability shock is essentially unaffected by 

additional controls for MAX and E(ISKEW). For specification (2) that does not control for the 

MAX and E(ISKEW) factors,  NMP is associated with an abnormal return of 0.475% (t = 5.53). 

The abnormal return is only slightly reduced to 0.441% (t = 5.14) after additional controls for 

both the MAX and E(ISKEW) factors in specification (3). 

Table 2.10 provides further details on the same spanning tests within each size quintile. For 

quintiles sorted by MAX, alphas of specification (2) show that the pricing effect of MAX is 

most pronounced among small stocks, and is decreasing monotonically across size quintiles. 

After controlling for NMP in specification (3), the MAX factor only exhibits significant 

abnormal returns for quintile 1 and 2, which indicates the pricing effect of MAX is limited to 

small stocks after controlling for predicted profitability shocks.  

For quintiles sorted by expected idiosyncratic skewness, the alphas of specification (2) show 

that the effect of E(ISKEW) is concentrated on medium stocks (quintiles 2 to 4).  The average 

abnormal returns to the low-minus-high strategy on quintiles 2 to 4 is 0.54% (t = 2.73), 0.58% 

(t = 3.03) and 0.51% (t = 2.64), respectively. The additional control of NMP brings down the 

average abnormal returns on quintiles 2 to 4 to 0.37% (t = 1.83), 0.55% (t = 2.77) and 0.41% 

(t = 2.03), respectively. Hence, it is medium stocks that drive the effect of expected 

idiosyncratic skewness, which constitutes about 24.5% of market capitalization.  

For quintiles sorted by predicted profitability shocks, the alphas on the negative-minus-positive 

portfolios are highly significant for medium and large stocks, and is largely the same with and 

without controlling for the MAX and E(ISKEW) factors. For quintiles 2 to 5 of specification 

(2), stocks with low predicted profitability shocks outperform stocks with high predicted 

profitability shocks by 0.65% (t = 4.48), 0.52% (t = 3.58) , 0.56% (t = 3.91)  and 0.62% (t = 
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4.56) per month, respectively, while for specification (3), the results were 0.62% (t = 4.21), 

0.48% (t = 3.24) , 0.56% (t = 3.84) and 0.62% (t = 4.46), respectively.    

In short, these results in the spanning tests show that predicted profitability shocks play a 

substantial role in explaining the pricing effects of MAX and expected idiosyncratic skewness, 

but not vice versa. Moreover, each predicted profitability shock, MAX and expected 

idiosyncratic skewness has unique predicting power in average returns. The pricing effect of 

predicted profitability shocks is also more pronounced among large and medium stocks, 

whereas MAX is more specific to small stocks, and expected idiosyncratic skewness is 

concentred on medium stocks.  Thus, from a practical perspective on investable assets, the 

pricing effect of predicted profitability shocks appears to have the upper hand over that of 

MAX and expected idiosyncratic skewness.     

2.7. Conclusion 

 

The strong stock price reaction to earnings surprises provides strong incentives for investors to 

use all sources of available information to forecast earnings changes and allocate assets 

accordingly.  Following the cumulative prospect theory, investors with a strong preference for 

lottery-like payoffs should be willing to pay more for stocks with a high probability of 

generating positive earnings surprises, causing overinvestment and low returns. This paper 

documents that there is a negative and significant relation between predicted profitability 

shocks (PPS) and stock returns, such that stocks with low PPS outperform stocks with high 

PPS. To do this, I firstly developed a parsimonious model to predict future profitability shocks, 

in which operating profitability, book-to-market ratio and past returns displayed significant 

power in predicting the cross-section of future profitability shocks. I then investigated how 

predicted profitability shocks explain the cross-section of stock returns, using portfolio-level 

analyses and firm-level FM regressions. I find that a negative-minus-positive decile portfolio 
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long negative PPS stocks and short positive PPS stocks generate a four-factor alpha of 0.925% 

(t = 5.63) per month.  My results also show that the pricing effect of PPS is more pronounced 

among large stocks than among small stocks.  

After documenting the pricing effect of PPS, I explored the impact of PPS on three prominent 

anomalies, including price momentum, operating profitability and the book-to-market ratio.  I 

find that controlling for PPS greatly enhances the predicting power of price momentum for 

stock returns, which can no longer be fully explained by earnings momentum. In contrast, 

controlling for PPS largely subsumes the predicting power of the book-to-market ratio and 

operating profitability for stock returns. Therefore, investors with a strong preference for 

lottery-like payoffs may simply use the book-to-market ratio and operating profitability as 

noisy proxies for PPS. 
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2.8. Appendix 

 

AVG(.): Variables coined with AVG(.) are adjusted with lagged information by imposing 

geometrically declining weights, as follows: 

AVG(X)t =
1 − ∅3

1 − ∅12
(Xt +⋯+ ∅

11Xt−11) 

where X is the variable of interest, and ∅=2^(-1/3) implies that the weight is halved each quarter 

for quarterly observations or each month for monthly observations. 

Book-to-market ratio (BM): BM is measured at the end of June of year t is the ratio of book 

equity for the last fiscal year ending in t-1 divided by the market cap in December of t-1. 

Quarterly book-to-market ratio (BMQ): BMQ is measured at the end of earnings season t 

is the ratio of book equity from the quarter-end accounting data released on earnings season t, 

divided by market cap measured at the end of the earnings release month. 

Cumulative seven-day abnormal returns (CAR7): CAR7 for each firm is the sum of daily 

abnormal returns in the 7 days (t = -5 to t = 2) relative to the earnings announcement date (t = 

0). Daily abnormal returns are residuals from monthly time-series regressions of individual 

stocks’ daily returns on the Carhart-four-factor model. 

Market capitalization (CAP): CAP is the market capitalization ($109) measured at the end of 

the earnings release month. 

Monthly excess return over market index (EXRET):  EXRET is the monthly excess return 

for individual stocks relative to the value-weighted market index. 

Industry dummies: firms are allocated into 49 industries as defined on Ken French's website. 

Investment (INV): INV measured at the end of June of year t is the change in total assets from 

the fiscal year ending in year t-2 to the fiscal year ending in t-1, divided by t-1 total assets. 

Idiosyncratic volatility (IVOL): IVOL is the standard deviation of daily residuals over the 

six months finishing at the end of earnings season t, where daily residuals are from the monthly 

time-series regressions of individual stocks’ daily returns on the Carhart-four-factor model. 

Idiosyncratic skewness (ISKEW): ISKEW is the skewness of daily residuals over the six 

months finishing at the end of earnings season t, where daily residuals are from monthly time-

series regressions of individual stocks’ daily returns on the Carhart-four-factor model. 

Maximum daily return (MAX): Max is the maximum daily return for the last month of 

earnings season t. 

Momentum (MOM): MOM is the cumulative return over months t-12 through t-2.  

Operating profitability (OP):  Following Ball, Gerakos, Linnainmaa and Nikolaev (2015), 

OP is measured at the end of June of year t, based on annual accounting data for the fiscal year 
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ending in year t-1, and is revenue less cost of goods sold less selling, general and administrative 

expenses (excluding expenditure on research & development), divided by total assets. 

Quarterly operating profitability (OPQ): OPQ is measured at the end of earnings season t, 

based on quarterly accounting data released on earnings season t, with the same equation as 

OP. 

Predicted profitability shock (PPS): PPS is estimated using the model of specification (9) in 

Table 2.2, based on historically available data known at the end of earnings season t. 

Profitability shock: profitability shock is the innovation of firm quarterly operating 

profitability that is uncorrelated to lagged SUEs. The estimator for profitability shock for firm 

i in quarter t is the regression residual, εi,t, from cross-sectional regressions of current SUE on 

lagged SUEs: 

 SUEi,t = a0 +∑ajSUEi,t−j

4

j=1

+ εi,t 

Size: size is the log of market capitalization measured at the end of June of year t. 

Size dummy: firms are allocated into small, medium and large groups using 20th and 50th 

percentiles of NYSE market cap.   

Quarterly sale growth (SGQ):  SGQ is measured at the end of earnings season t and is the 

change of quarterly revenue from the quarter released on earnings season t-1 to the quarter 

released on earnings season t, divided by t-1 quarterly revenue. 

Standardized unexpected earnings (SUE): SUE is calculated with a seasonal random walk 

model with trend (Jegadeesh and Livnat 2006) based on firms' quarterly operating profitability 

(OPQ): 

SUEi,t =
𝑂𝑃𝑄𝑖,𝑡−𝑂𝑃𝑄𝑖,𝑡−4−𝐷𝑖,𝑡

𝜎𝑖,𝑡
  

where the drift, 𝐷𝑖,𝑡, and the standard error, 𝜎𝑖,𝑡, are estimated as follow: 

𝐷𝑖,𝑡 =
∑ (8
𝑗=1 𝑂𝑃𝑄𝑖,𝑡 − 𝑂𝑃𝑄𝑖,𝑡−4)

8
 

and 

𝜎𝑖,𝑡 =
1

7
√∑ (𝑂𝑃𝑄𝑖,𝑡−𝑗 −𝑂𝑃𝑄𝑖,𝑡−𝑗−4 −𝐷𝑖,𝑡)

28

𝑗=1
 

 

Turnover (TURN): TURN is the sum of trading volumes during that month divided by the 

number of shares outstanding. 
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Figure 2.1 Probability of large gain or loss in CAR7 

This plot shows the probability of a large gain or loss in CAR7 for individual stocks in decile portfolios sorted by 

profitability shocks. Stocks are allocated to decile portfolios each quarter based on profitability shocks. Large 

gains/losses are defined as CAR7 higher than 15% or lower than -15%. CAR7 for each firm is the sum of daily 

abnormal returns in the 7 days (t = -5 to t = 2) relative to the earnings announcement date (t = 0). Daily abnormal 

returns are residuals from quarterly time-series regressions of individual stocks’ daily returns on the Carhart-four-

factor model. 
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Figure 2.2 Realized profitability shocks 

The plot shows the time-series average of holding-period realized profitability shocks for individual stocks in each 

decile portfolio sorted by predicted profitability shocks. The negative decile includes stocks with the lowest 

predicted profitability shocks, and the positive decile includes stocks with the highest predicted profitability 

shocks.    
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Figure 2.3 Trailing 5-year Sharpe ratios 

The plot shows the trailing 5-year Sharpe ratios of an NMP (negative-minus-positive predicted profitability shock) 

decile portfolio and a WML (winner-minus-loser) decile portfolio over the sample period of January 1985 to 

December 2015.  
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Table 2.1 Distribution of cumulative seven-day abnormal returns surrounding earnings announcements to portfolios sorted by profitability shocks 

This table reports the distribution of cumulative seven-day abnormal returns (CAR7) surrounding earnings announcements to decile portfolios sorted by profitability shocks, 

over the period 1975 to 2015. The CAR7 for each firm is the sum of daily abnormal returns in the 7 days (t = -5 to t = 2) relative to the earnings announcement date (t = 0). 

Daily abnormal returns are residuals from quarterly time-series regressions of individual stocks’ daily returns on the Carhart-four-factor model. Profitability shock is defined 

as the innovation of a firm’s quarterly operating profitability that is uncorrelated to lagged SUEs, as the error term in equation (1). I exclude very small firms with total assets 

of less than $25 million or book equity of less than $12.5 million. The sample has 279,228 firm-quarter observations on firms from the CRSP and Compustat quarterly databases, 

with accounting and market information necessary to calculate the explanatory variables for in-sample predictive FM tests for profitability shocks.  

 

Decile Mean Median Std. Skew p1 p5 p10 p25 p50 p75 p90 p95 p99 

Low -1.388 -1.040 7.391 -0.204 -22.966 -13.878 -9.975 -4.953 -1.040 2.386 6.651 10.060 18.781 

2 -1.069 -0.921 7.251 -0.014 -21.674 -13.070 -9.482 -4.690 -0.921 2.644 6.919 10.381 19.263 

3 -0.631 -0.557 7.102 0.046 -20.267 -12.356 -8.748 -4.236 -0.557 2.984 7.247 10.807 19.551 

4 -0.265 -0.271 6.978 0.017 -19.786 -11.494 -8.164 -3.810 -0.271 3.224 7.657 11.095 19.493 

5 0.150 0.030 6.983 0.177 -19.163 -10.971 -7.611 -3.399 0.030 3.551 8.007 11.619 20.648 

6 0.504 0.282 7.135 0.239 -18.841 -10.674 -7.441 -3.185 0.282 3.970 8.697 12.403 21.460 

7 0.943 0.637 7.154 0.251 -18.302 -10.251 -6.921 -2.699 0.637 4.443 9.208 12.993 21.759 

8 1.306 0.888 7.293 0.286 -17.730 -9.904 -6.634 -2.525 0.888 4.837 9.914 13.909 23.036 

9 1.797 1.269 7.214 0.387 -16.423 -9.094 -6.025 -2.132 1.269 5.296 10.588 14.512 23.095 

High 1.954 1.337 7.226 0.409 -16.516 -8.719 -5.616 -1.985 1.337 5.453 10.643 14.646 23.674 
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Table 2.2 Firm-level full-sample predictors of profitability shocks 

The table shows the average slopes and their t-statistics (in parentheses) from full-sample predictive tests for profitability shocks using quarter-by-quarter Fama-MacBeth (FM) 

regressions, over the period 1975 to 2015. I exclude very small firms with total assets of less than $25 million or book equity of less than $12.5 million. The sample has 279,228 

firm-quarter observations on firms from the CRSP and Compustat quarterly databases. with accounting and market information necessary to calculate explanatory variables. 

Predictor variables include quarterly operating profitability (OPQ), quarter-end book-to-market ratio (BMQ), quarterly sales growth (SGQ), past monthly excess returns over 

the market index (EXRET), maximum daily returns over the past one month (MAX), idiosyncratic volatility (IVOL) and idiosyncratic skewness (ISKEW) over the past six 

months, and average daily turnover over the past month (TURN). Variables coined with AVG(.) are adjusted with lagged information by imposing geometrically declining 

weights, as defined in equation (3). All predictor variables in regressions are replaced by their decile rankings and then scaled so that they range from 0 (for the lowest decile) 

to 1 (for the highest decile). 

 

Mode

l 

AVG(OPQ

) 

AVG(BMQ

) 

AVG(SGQ

) 

AVG(EXRET

) 
MAX IVOL 

ISKE

W 

AVG(TURN

) 

NASDA

Q 

dummy 

Small 

dummie

s 

Mediu

m 

dummy 

Industry  

dummie

s 

 

A(𝑅2) 

(1) -0.085                     No 0.016 

 (-13.26)             

(2)  0.000          No 0.003 

  (0.07)            

(3) -0.119 -0.057          No 0.022 

 (-16.36) (-11.63)            

(4)   0.020         No 0.004 

   (5.45)           

(5) -0.121 -0.053 0.023         No 0.025 

 (-16.81) (-12.64) (6.64)           

(6)    0.076        No 0.012 

    (17.73)          

(7)     0.012       No 0.003 

     

(2.95

)         

(8)    0.066  0.000 0.025 -0.008 -0.001 -0.000 -0.003 yes 0.088 

    (15.31)  (0.04) (11.41) (-3.88) (-0.51) (-0.18) (-1.85)   

(9) -0.145 -0.053 0.014 0.076 0.021 -0.034 0.016 -0.007 0.004 -0.004 -0.003 yes 0.111 

  (-18.01) (-14.30) (5.16) (19.01) 

(7.05

) 

(-

8.49) (7.56) (-3.32) (2.71) (-1.48) (-1.67)     



80 
 

Table 2.3 Excess return and alpha of portfolios sorted by out-of-sample predicted profitability shocks 

The table shows the value-weighted (VW) average monthly excess returns and alphas relative to the four-factor 

Fama-French-Carhart model for decile portfolios sorted by predicted profitability using NYSE breakpoints. The 

sample starts in January 1985 and ends in December 2015. 

 

Decile 

Mean 

excess 

return 

  
Four-factor model 

  

  
a 𝛽𝑀𝐾𝑇  𝛽𝑆𝑀𝐵 𝛽𝐻𝑀𝐿 𝛽𝑊𝑀𝐿  𝐴(𝑅2) 

  

Negative 0.948  0.511 1.022 0.145 -0.154 -0.475 0.855  

2 0.861  0.437 0.959 -0.021 -0.130 -0.388 0.850  

3 0.767  0.315 0.899 -0.106 -0.065 -0.262 0.839  

4 0.733  0.194 0.885 -0.101 0.032 -0.110 0.811  

5 0.793  0.154 0.946 -0.099 0.058 -0.013 0.866  

6 0.670  0.003 0.948 -0.070 0.076 0.026 0.856  

7 0.581  -0.126 0.978 0.003 -0.031 0.073 0.871  

8 0.834  0.065 1.028 0.010 -0.086 0.136 0.885  

9 0.585  -0.244 1.083 0.048 0.072 0.128 0.900  

Positive 0.478  -0.414 1.134 -0.031 0.145 0.178 0.897  

Neg. - Pos. 0.469  0.925 -0.112 0.176 -0.299 -0.653 0.463  

(deciles) (2.17)  (5.63) (-2.95) (3.28) (-4.81) (-17.55)   

Neg. - Pos. 0.350  0.788 -0.130 0.0606 -0.279 -0.579 0.515  

(quintiles) (1.94)   (6.07) (-4.31) (1.43) (-5.68) (-19.71)     
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Table 2.4 Summary statistics of portfolios sorted by out-of-sample predicted profitability shocks 

The table shows the time-series averages of a variety of stock characteristics for stocks in decile portfolios sorted by predicted profitability using NYSE breakpoints. Reported 

characteristics include quarterly operating profitability (OPQ), quarter-end book-to-market ratio (BMQ), residual BMQ (the residuals from a regression of BMQ on 

AVG(OPG)), quarterly sales growth (SGQ), maximum daily returns over the past one month (MAX), idiosyncratic volatility (IVOL) and idiosyncratic skewness (ISKEW) over 

the past six months, past monthly excess returns over the market index (EXRET), turnover (TURN), market capitalization (CAP), mean and skewness of realized CAR7 in the 

portfolio holding period. Variables coined with AVG(.) are adjusted with lagged information by imposing geometrically declining weights, as defined in equation (3). The 

sample starts in January 1985 and ends in December 2015. 

 

Decile AVG(OPQ) AVG(BMQ) 
Residual 

BMQ 
AVG(SGQ) AVG(EXRET) MAX IVOL ISKEW AVG(TURN) CAP($109) 

Realized 

CAR7 

Mean 

Realized 

CAR7 

Skew 

Negative 0.057 -0.593 0.331 0.037 -0.037 6.401 5.432 -1.171 0.064 1.592 0.097 -0.003 

2 0.048 -0.609 0.138 0.041 -0.022 6.067 4.599 0.344 0.019 3.066 0.249 0.053 

3 0.044 -0.600 0.048 0.044 -0.012 5.774 4.225 0.857 0.006 3.447 0.363 0.126 

4 0.041 -0.586 -0.010 0.046 -0.005 5.614 4.057 1.294 0.002 3.969 0.262 0.035 

5 0.039 -0.602 -0.080 0.050 0.002 5.552 3.902 1.593 0.000 4.054 0.365 0.155 

6 0.037 -0.620 -0.154 0.054 0.008 5.531 3.862 1.809 0.004 4.515 0.403 0.086 

7 0.034 -0.626 -0.217 0.059 0.012 5.624 3.834 2.040 0.003 4.627 0.414 0.149 

8 0.030 -0.607 -0.275 0.063 0.016 5.662 3.858 2.277 0.000 4.407 0.484 0.235 

9 0.025 -0.604 -0.359 0.072 0.020 5.854 4.021 2.555 0.001 4.130 0.458 0.253 

Positive 0.015 -0.776 -0.729 0.092 0.030 6.600 4.809 3.693 0.033 3.742 0.510 0.392 
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Table 2.5 Alphas of portfolios sorted by predicted profitability shocks after controlling for various effects 

This table reports the four-factor alphas to quintile portfolios sorted by predicted profitability shocks after controlling for various cross-sectional effects. These control variables 

include firm characteristics (size, book-to-market, operating profitability), measures of price movement (price momentum, Max, idiosyncratic volatility, idiosyncratic 

skewness), measures of earnings momentum (standardized unexpected profitability and cumulative seven-day abnormal returns) and measures of institutional holding and 

analyst coverage. I first sort stocks based on one control variable using NYSE quintile breakpoints, and then within each quintile portfolio I sort stocks into quintile portfolios 

based on predicted profitability shocks. For each quintile of the control variable, I report value-weighted four-factor alphas of portfolio 1 (negative), portfolio 5 (positive), 

negative-minus-positive (1-5) portfolio and their t-statistics. The second column "Ave." refers to the average alphas across five quintile portfolios with different levels of the 

control variables but with a similar level of predicted profitability shocks. The sample starts in January 1985 and ends in December 2015. 

 

  Four-factor alpha   t-statistic 

Quintile Ave. Small 2 3 4 Large   Ave. Small 2 3 4 Large 

Panel A: Controlling for Size           

1 Negative 0.35 0.22 0.32 0.31 0.35 0.53  5.08 2.20 3.31 2.88 3.04 5.41 

5 Positive -0.26 -0.02 -0.32 -0.35 -0.28 -0.32  -4.00 -0.17 -3.08 -3.12 -2.65 -4.29 

Neg. - Pos. 0.60 0.24 0.65 0.66 0.62 0.84  5.95 1.65 4.51 4.36 4.42 6.03 

  Four-factor alpha   t-statistic 

Quintile Ave. Low 2 3 4 High   Ave. Low 2 3 4 High 

Panel B: Controlling for Book-to-Market          

1 Negative 0.44 0.56 0.55 0.74 0.14 0.19  4.71 4.24 3.68 4.65 0.82 0.97 

5 Positive -0.27 -0.07 -0.30 -0.28 -0.25 -0.43  -4.06 -0.72 -2.92 -2.28 -2.01 -3.04 

Neg. - Pos. 0.70 0.63 0.86 1.02 0.39 0.62  5.80 3.49 4.84 5.04 1.82 2.49 

Panel C: Controlling for Operating Profitability         

1 Negative 0.30 -0.30 0.33 0.46 0.38 0.63  3.21 -1.24 2.05 2.88 2.37 4.23 

5 Positive -0.23 -0.49 -0.23 -0.38 -0.10 0.05  -3.55 -3.53 -1.89 -3.13 -0.90 0.49 

Neg. - Pos. 0.53 0.19 0.56 0.84 0.49 0.58  4.41 0.68 2.59 4.35 2.40 3.05 

Panel D: Controlling for Price Momentum          

1 Negative 0.46 0.97 0.48 0.64 0.15 0.06  5.33 5.26 3.30 4.26 1.12 0.44 

5 Positive -0.27 -0.44 -0.16 -0.25 -0.14 -0.37  -3.94 -2.91 -1.27 -2.14 -1.26 -2.68 

Neg. - Pos. 0.73 1.40 0.64 0.88 0.29 0.43  6.37 5.68 3.28 4.81 1.77 2.33 

              

              



 

98 
 

Panel E: Controlling for Max           

 Four-factor alpha   t-statistic 

Quintile Ave. Low 2 3 4 High   Ave. Low 2 3 4 High 

1 Negative 0.42 0.42 0.61 0.42 0.35 0.33  4.86 2.84 4.10 2.67 2.01 1.77 

5 Positive -0.30 -0.13 -0.20 -0.23 -0.54 -0.40  -4.17 -1.16 -1.91 -2.03 -3.57 -2.19 

Neg. - Pos. 0.72 0.54 0.81 0.65 0.89 0.72  5.86 3.19 4.39 3.39 4.08 2.94 

Panel F: Controlling for Idiosyncratic Volatility         

1 Negative 0.35 0.31 0.47 0.40 0.35 0.22  3.87 2.49 3.23 2.29 2.02 1.08 

5 Positive -0.28 -0.04 -0.18 -0.47 -0.40 -0.34  -3.56 -0.38 -1.52 -3.87 -2.54 -1.70 

Neg. - Pos. 0.64 0.35 0.65 0.87 0.76 0.55  4.88 2.19 3.48 4.02 3.37 2.14 

Panel G: Controlling for Idiosyncratic Skewness         

1 Negative 0.47 0.51 0.69 0.45 0.42 0.28  5.43 3.41 4.96 3.02 2.54 1.58 

5 Positive -0.29 -0.06 -0.12 -0.25 -0.48 -0.54  -4.33 -0.50 -1.14 -2.21 -3.95 -3.70 

Neg. - Pos. 0.76 0.57 0.81 0.70 0.90 0.82  6.46 3.11 4.49 3.60 4.44 3.80 

Panel H: Controlling for SUE           

1 Negative 0.51 0.29 0.62 0.61 0.62 0.43  6.08 1.66 4.21 4.26 3.96 2.77 

5 Positive -0.33 -0.54 -0.25 -0.25 -0.27 -0.31  -5.22 -4.92 -2.01 -2.14 -2.42 -2.38 

Neg. - Pos. 0.84 0.83 0.87 0.86 0.89 0.74  7.07 3.86 4.32 4.48 4.52 3.44 

Panel I: Controlling for CAR7           

1 Negative 0.51 0.44 0.53 0.59 0.62 0.39  5.99 2.58 3.77 4.59 4.36 2.43 

5 Positive -0.32 -0.38 -0.46 -0.24 -0.25 -0.26  -4.89 -2.87 -4.19 -2.26 -2.38 -1.94 

Neg. - Pos. 0.83 0.82 0.99 0.83 0.87 0.66  6.92 3.86 5.71 4.93 4.58 3.08 

Panel J: Controlling for Institutional Holding         

1 Negative 0.28 0.78 0.61 0.60 0.03 -0.60  3.29 4.84 4.07 4.06 0.22 -3.93 

5 Positive -0.35 -0.18 -0.15 -0.25 -0.20 -0.96  -4.95 -1.22 -1.32 -2.06 -1.55 -6.87 

Neg. - Pos. 0.63 0.96 0.77 0.85 0.23 0.36  5.43 4.03 3.74 4.30 1.45 1.96 

Panel K: Controlling for Analyst Coverage         

1 Negative 0.61 1.08 0.78 0.38 0.40 0.41  7.27 7.95 5.79 2.68 2.63 2.52 

5 Positive -0.17 0.07 -0.20 -0.15 -0.29 -0.28  -2.71 0.49 -1.60 -1.33 -2.68 -2.42 

Neg. - Pos. 0.78 1.01 0.98 0.54 0.69 0.69   7.20 5.25 5.33 3.02 3.55 3.26 
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Table 2.6 Firm-level predictors of monthly stock returns 

The table shows the average slopes and their t-statistics (in parentheses) from cross-sectional regressions that predict monthly returns for January 1985 to December 2015. 

Independent variables include predicted profitability shock (PPS), the log of market capitalizations (Size), the log of book-to-market ratio (BM), operating profitability (OP), 

investment (INV), standardized unexpected profitability (SUE), cumulative seven-day abnormal returns (CAR7), monthly excess returns (EXRET), cumulative returns over 

months t-12 through t-2 (MOM), the maximum daily return over the past one month (MAX) and idiosyncratic volatility (IVOL) over the past six months.  Independent variables 

are trimmed at the 1% and 99% levels on a table-by-table basis to ensure different regressions within each table panel are based on the same observations. Except for the full 

example from January 1985 to December 2015, the table also presents results of separate FM regressions for two subsamples using the end of 1999 as the breakpoint. 

 

  Panel A: Full sample   Panel B: 01/1985 to 12/1999   Panel C: 01/2000 to 12/2015 

  (1) (2) (3)   (1) (2) (3)   (1) (2) (3) 

PPS  -3.081 -4.685   -1.915 -4.423   -4.174 -4.931 

  (-2.50) (-5.04)   (-1.37) (-3.77)   (-2.09) (-3.45) 

SIZE -0.071  -0.059  -0.009  0.006  -0.129  -0.119 

 (-2.00)  (-1.64)  (-0.19)  (0.11)  (-2.51)  (-2.29) 

BM 0.124  0.074  0.160  0.119  0.091  0.032 

 (2.02)  (1.22)  (2.21)  (1.69)  (0.93)  (0.33) 

OP 1.925  0.636  2.424  1.127  1.458  0.177 

 (4.92)  (1.42)  (3.95)  (1.75)  (2.96)  (0.28) 

INV -0.722  -0.724  -0.832  -0.838  -0.619  -0.616 

 (-4.04)  (-4.07)  (-3.31)  (-3.36)  (-2.43)  (-2.43) 

SUE 0.187  0.192  0.191  0.196  0.183  0.189 

 (11.84)  (12.18)  (8.61)  (8.83)  (8.14)  (8.40) 

CAR7 0.019  0.020  0.026  0.027  0.012  0.014 

 (6.64)  (7.23)  (5.64)  (5.94)  (3.64)  (4.20) 

MOM 0.031  0.222  0.598  0.780  -0.501  -0.301 

 (0.14)  (1.05)  (2.60)  (3.55)  (-1.36)  (-0.85) 

EXRET -3.972  -4.033  -4.756  -4.823  -3.237  -3.293 

 (-7.63)  (-7.77)  (-7.20)  (-7.31)  (-4.08)  (-4.17) 

MAX -0.028  -0.025  -0.022  -0.021  -0.033  -0.029 

 (-2.39)  (-2.20)  (-1.37)  (-1.29)  (-1.99)  (-1.81) 

IVOL 0.004  0.002  -0.013  -0.016  0.020  0.019 
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  Panel A: Full sample   Panel B: 01/1985 to 12/1999   Panel C: 01/2000 to 12/2015 

  (1) (2) (3)   (1) (2) (3)   (1) (2) (3) 

 (0.16)  (0.07)  (-0.41)  (-0.50)  (0.55)  (0.50) 

𝐴(𝑅2) 0.057 0.005 0.059   0.053 0.005 0.055   0.061 0.005 0.063 
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Table 2.7 Spanning tests for the value, operating profitability, momentum and predicted profitability shock factors 

This table reports results of time-series regressions to explain the BM factor HML (Panel A), the OP factor RMW (Panel B), the price momentum factor WML (Panel C) and 

the predicted profitability shock factor NMP (Panel D). The explanatory factors are the returns to various combinations of the market factor MKT, the size factor SMB, the 

investment factor CMA, the standardized unexpected profitability (SUE) factor, the book-to-market factor HML, the operating profitability factor RMW, the price momentum 

factor WML and the predicted profitability shock factor NMP. The sample period is from January 1985 to December 2015. 

 

  Dependent variable 

Specification 

Panel A:  WML  Panel B:  HML  Panel C: RMW  Panel D:  NMP 

(1) (2) (3)   (1) (2) (3)   (1) (2) (3)   (1) (2) (3) 

a 0.548 -0.125 0.466  0.141 0.255 0.126  0.277 0.391 0.131  0.206 0.528 0.475 

 (2.35) (-0.65) (3.23)  (1.00) (2.72) (1.32)  (2.41) (4.33) (1.49)  (1.50) (4.48) (5.53) 

𝛽𝐻𝑀𝐿  -0.069 0.200       -0.569 -0.557   0.240 0.211 

  (-0.65) (2.53)       (-13.70) (-14.71)   (3.68) (4.44) 

𝛽𝑅𝑀𝑊   0.226 0.593   -0.597 -0.669       0.328 0.423 

  (2.08) (7.27)   (-13.70) (-14.71)       (4.94) (8.69) 

𝛽𝑊𝑀𝐿       -0.017 0.086   0.052 0.214    -0.420 

      (-0.65) (2.53)   (2.08) (7.27)    (-17.99) 

𝛽𝑀𝐾𝑇   -0.146 -0.155   -0.026 -0.008   -0.074 -0.033   -0.008 -0.069 

  (-3.26) (-4.74)   (-1.15) (-0.34)   (-3.45) (-1.65)   (-0.29) (-3.41) 

𝛽𝑆𝑀𝐵  0.027 -0.106   0.057 0.080   0.051 0.086   -0.119 -0.108 

  (0.45) (-2.43)   (1.96) (2.79)   (1.81) (3.30)   (-3.28) (-4.07) 

𝛽𝐶𝑀𝐴  0.169 -0.053   0.596 0.596   0.045 0.089   -0.198 -0.127 

  (1.35) (-0.57)   (11.23) (11.52)   (0.74) (1.61)   (-2.59) (-2.27) 

𝛽𝑆𝑈𝐸  1.643 0.619   -0.213 -0.148   -0.074 0.030   -0.915 -0.224 

  (14.64) (6.21)   (-3.11) (-2.16)   (-1.08) (0.48)   (-13.30) (-3.55) 

𝛽𝑁𝑀𝑃   -1.120    0.243    0.406     

   (-17.99)    (4.44)    (8.69)     

𝐴(𝑅2) 0.000 0.440 0.704   0.000 0.624 0.643   0.000 0.465 0.557   0.000 0.393 0.679 
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Table 2.8 Spanning tests for quintile portfolios sorted by momentum, book-to-market, operating profitability 

and predicted profitability shocks within size quintiles 

This table reports results of spanning tests for value-weight quintile portfolios sorted by momentum, the book-to-

market ratio, operating profitability and predicted profitability shocks constructed within size quintiles using NYSE 

breakpoints. The alphas of specifications (2) and (3) are intercepts of the spanning tests using a set of explanatory 

variables specified in specifications (2) and (3) of Table 2.7. The sample period is from January 1985 to December 

2015. 

 

  Four-factor alpha   t-statistic 

  Small 2 3 4 Large   Small 2 3 4 Large 

Sorting by price momentum                 

Specification (2)            

1 Loser -0.38 -0.09 0.18 0.24 0.40  -1.63 -0.51 1.00 1.26 2.52 

5 Winner 0.33 -0.07 -0.13 -0.23 -0.12  2.61 -0.67 -1.11 -1.74 -1.05 

Win. - Los.  0.72 0.03 -0.31 -0.47 -0.53  2.40 0.10 -1.22 -1.72 -2.12 

Specification (3)            

1 Loser -0.85 -0.53 -0.25 -0.20 -0.04  -3.87 -3.32 -1.65 -1.17 -0.30 

5 Winner 0.55 0.14 0.11 0.06 0.13  4.54 1.50 0.95 0.51 1.29 

Win. - Los. 1.40 0.66 0.36 0.26 0.17  5.29 3.10 1.69 1.15 0.87 

Sorting by BM            

Specification (2)            

1 Growth -0.09 -0.23 -0.18 -0.09 0.05  -0.87 -2.98 -1.98 -0.98 0.63 

5 Value 0.11 0.07 0.19 0.16 0.06  0.79 0.65 1.58 1.46 0.60 

Val.- Gro. 0.20 0.30 0.38 0.25 0.01  1.24 1.94 2.18 1.73 0.08 

Specification (3)            

1 Growth -0.03 -0.16 -0.07 0.03 0.07  -0.25 -1.93 -0.68 0.34 0.92 

5 Value 0.13 -0.01 0.12 0.06 -0.03  0.85 -0.06 0.91 0.55 -0.31 

Val.- Gro. 0.15 0.15 0.18 0.03 -0.10  0.91 0.94 1.02 0.20 -0.69 

Sorting by OP           

Specification (2)            

1 Low -0.27 -0.29 -0.17 -0.22 -0.21  -2.48 -3.23 -1.76 -2.27 -1.93 

5 High 0.34 0.24 0.22 0.27 0.18  3.75 3.02 2.64 2.83 2.50 

High - Low 0.61 0.53 0.39 0.49 0.39  4.99 3.83 2.78 3.47 2.65 

Specification (3)            

1 Low -0.20 -0.12 0.02 -0.10 -0.14  -1.68 -1.29 0.17 -1.02 -1.21 

5 High 0.21 0.07 0.05 0.13 0.03  2.26 0.87 0.63 1.32 0.39 

High - Low 0.41 0.19 0.04 0.23 0.17  3.23 1.36 0.27 1.62 1.10 

Sorting by expected profitability shock       

Specification (2)            

1 Negative 0.18 0.22 0.18 0.27 0.42  1.49 1.84 1.45 1.98 3.79 

5 Positive -0.14 -0.50 -0.41 -0.36 -0.26  -1.17 -4.75 -3.53 -3.17 -3.19 

Neg. - Pos. 0.31 0.72 0.59 0.63 0.68  1.97 4.10 3.33 3.45 4.22 

Specification (3)            

1 Negative 0.14 0.17 0.13 0.22 0.38  1.33 1.80 1.30 1.95 4.04 

5 Positive -0.13 -0.48 -0.39 -0.34 -0.24  -1.13 -4.73 -3.49 -3.13 -3.15 

Neg. - Pos. 0.28 0.65 0.52 0.56 0.62   1.86 4.48 3.58 3.91 4.56 

 



 

103 
 

Table 2.9 Spanning tests for the maximum daily return, expected idiosyncratic skewness and predicted 

profitability shock factors 

This table reports the results of spanning tests for the maximum daily return MAX factor (Panel A), the expected 

idiosyncratic skewness E(IKEW) factor (Panel B) and the predicted profitability shock factor NMP (Panel C). The 

explanatory factors are the returns to various combinations of the market factor MKT, the size factor SMB, the investment 

factor CMA, the standardized unexpected profitability (SUE) factor, the book-to-market factor HML, the operating 

profitability factor RMW, the price momentum factor WML, the maximum daily return MAX factor, the expected 

idiosyncratic skewness E(IKEW) factor and the predicted profitability shock factor NMP. The sample period is from 

January 1985 to December 2015. 

 

  Dependent variable 

 Panel A:  MAX  Panel B:  E(IKEW)  Panel C:  NMP 

Specification (1) (2) (3)   (1) (2) (3)   (1) (2) (3) 

a 0.257 0.479 0.311   0.282 0.461 0.368   0.206 0.475 0.441 

 (1.16) (3.29) (2.09)  (1.09) (3.11) (2.39)  (1.50) (5.53) (5.14) 

𝛽𝑀𝐾𝑇   -0.428 -0.403   -0.489 -0.476   -0.069 -0.025 

  (-12.44) (-11.79)   (-13.95) (-13.42)   (-3.41) (-1.00) 

𝛽𝑆𝑀𝐵  -0.600 -0.562   -0.816 -0.795   -0.108 -0.040 

  (-13.41) (-12.55)   (-17.87) (-17.11)   (-4.07) (-1.11) 

𝛽𝐻𝑀𝐿  0.466 0.391   0.370 0.329   0.211 0.155 

  (5.79) (4.84)   (4.51) (3.92)   (4.44) (3.20) 

𝛽𝐶𝑀𝐴  0.122 0.167   0.025 0.050   -0.127 -0.167 

  (1.29) (1.79)   (0.26) (0.52)   (-2.27) (-2.99) 

𝛽𝑅𝑀𝑊   0.076 -0.073   0.035 -0.048   0.423 0.438 

  (0.92) (-0.83)   (0.42) (-0.52)   (8.69) (8.91) 

𝛽𝑆𝑈𝐸  -0.233 -0.154   -0.090 -0.046   -0.224 -0.184 

  (-2.19) (-1.45)   (-0.82) (-0.42)   (-3.55) (-2.96) 

𝛽𝑊𝑀𝐿   0.218 0.366   0.403 0.485   -0.420 -0.428 

  (5.51) (6.88)   (9.99) (8.79)   (-17.99) (-16.36) 

𝛽𝑁𝑀𝑃   0.353    0.196     

   (4.06)    (2.17)     

𝛽E(IKEW)           -0.113 

           (-2.06) 

𝛽𝑀𝐴𝑋           0.083 

           (1.47) 

𝛽𝐼𝑉𝑂𝐿            0.136 

           (2.01) 

𝐴(𝑅2) 0.000 0.650 0.665   0.000 0.729 0.733   0.000 0.679 0.697 
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Table 2.10 Spanning tests for quintile portfolios sorted by maximum daily return, expected idiosyncratic 

skewness and predicted profitability shocks within size quintiles 

This table reports the results of spanning tests for value-weight quintile portfolios sorted by maximum daily return, 

expected idiosyncratic skewness and predicted profitability shocks constructed within size quintiles using NYSE 

breakpoints. The set of explanatory variables used in specification (2) and (3) are specified in Table 9. The sample 

period is from January 1985 to December 2015. 

 

  Four-factor alpha   t-statistic 

  Small 2 3 4 Large   Small 2 3 4 Large 

Sorting by MAX                     

Specification (2)            
1 Low 0.52 0.37 0.34 0.24 0.18  5.57 3.78 3.29 2.22 1.83 

5 High -0.40 -0.42 -0.15 -0.15 -0.13  -2.53 -3.90 -1.09 -1.09 -1.01 

Low - High 0.92 0.80 0.49 0.39 0.31  4.40 4.30 2.45 1.86 1.53 

Specification (3)            
1 Low 0.38 0.28 0.26 0.19 0.12  4.04 2.73 2.42 1.66 1.21 

5 High -0.31 -0.30 -0.04 0.01 -0.07  -1.88 -2.70 -0.28 0.08 -0.50 

Low - High 0.68 0.58 0.30 0.18 0.19  3.21 3.05 1.45 0.81 0.90 

Sorting by E(ISKEW)          
Specification (2)            
1 Low 0.21 0.19 0.24 0.20 0.02  2.04 1.86 2.23 1.81 0.19 

5 High -0.17 -0.35 -0.33 -0.31 -0.25  -0.82 -2.44 -2.49 -2.25 -1.98 

Low - High 0.39 0.54 0.58 0.51 0.26  1.52 2.73 3.03 2.64 1.46 

Specification (3)            
1 Low 0.10 0.16 0.25 0.21 0.06  0.91 1.47 2.24 1.77 0.64 

5 High -0.10 -0.22 -0.29 -0.20 -0.11  -0.44 -1.47 -2.12 -1.43 -0.86 

Low - High 0.19 0.37 0.55 0.41 0.17  0.74 1.83 2.77 2.03 0.89 

Sorting by Predicted profitability shock        
Specification (2)            
1 Negative 0.14 0.17 0.13 0.22 0.38  1.33 1.80 1.30 1.95 4.04 

5 Positive -0.13 -0.48 -0.39 -0.34 -0.24  -1.13 -4.73 -3.49 -3.13 -3.15 

Neg. - Pos. 0.28 0.65 0.52 0.56 0.62  1.86 4.48 3.58 3.91 4.56 

Specification (3)            
1 Negative 0.14 0.09 0.10 0.25 0.37  1.26 0.99 0.91 2.23 3.83 

5 Positive -0.07 -0.52 -0.38 -0.31 -0.25  -0.60 -5.07 -3.38 -2.82 -3.20 

Neg. - Pos. 0.21 0.62 0.48 0.56 0.62   1.40 4.21 3.24 3.84 4.46 
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Chapter 3                                                                                                                          

Tail coskewness risk in momentum portfolios 
 

 

3.1. ABSTRACT 

 

Over long sample periods, momentum portfolios exhibit negative skewness caused by extreme 

left-tail events or momentum crashes.  We use tail coskewness to capture momentum crash risk 

caused by the tendency for winners to crash following bull markets and for losers to rebound 

following bear markets.  Allowing for tail coskewness, which captures momentum crash risk, 

causes the loadings on past returns to fall by as much as 65.8% in our cross-sectional 

regressions.  Tail coskewness subsumes the well-known size effect in average returns to size 

and momentum portfolios.  
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3.2. Introduction 

 

Early studies on price momentum well recognize that past stock returns and skewness are 

negatively related, as past winners have negative skewness while past losers have less negative 

or even slightly positive skewness (Harvey and Siddique, 2000; Chen, Hong and Stein: 2001). 

A number of recent studies (Daniel and Moskowitz, 2015; Barroso and Santa-Clara: 2015) 

highlight that a winners-minus-losers strategy, though generating high average monthly returns 

can also give rise, in some months, to huge negative returns. These momentum crashes can be 

very damaging to an investor and could take many years, or even decades, to recover from even 

in the presence of offsetting positive returns. 11  In this study, we develop an empirical 

methodology for estimating the risk premium associated with momentum crashes, or left-tail 

events.  More generally, we investigate the role of tail events and skewness in explaining 

returns to momentum portfolios.   

To this end, we introduce the concept of tail coskewness derived from coskewness by Kraus 

and Litzenberger (1976) and Harvey and Siddique (2000) and apply it in a momentum context.  

These authors showed that an asset's contribution to the skewness of the market portfolio, or 

its coskewness with respect to the market portfolio, was priced. Although we confirm that this 

coskewness pricing effect also exists in our momentum portfolios, we find that such effect is 

driven almost exclusively by tail events. Therefore, we develop a measure, tail coskewness, 

that focuses exclusively on how tail events (low-probability events leading to large gains or 

losses) contribute to the systematic skewness of momentum portfolios.12  This contrasts with 

                                                           
11 Barroso and Santa-Clara (2015) note that the long-short momentum strategy experienced a crash of -91.59% 

over two months in 1932 and a crash of -73.42% over three months in 2009. 
12 Here, we measure tail events as those returns that lie in the lowest x% and the highest x% of returns based on 

the full return distribution of individual assets where we vary x from 1% to 8% in our empirical tests. 
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the coskewness metric which measures, for a given asset, the contribution of tail and non-tail 

returns, towards portfolio skewness.    

Our empirical results show that tail coskewness has strong explanatory power over the cross-

section of size/momentum returns, even allowing for size and past returns.  By our estimates, 

a two standard deviation increase in tail coskewness, based on exposure to tail events only, 

implies that average returns to size/momentum portfolios increases by 0.313% (t=-2.49) per 

month.  This is nearly two-thirds of overall average market excess returns, which are 0.46% 

per month.  Importantly, when the coskewness calculation omits tail events then its pricing 

effect usually becomes insignificant.  Our tail coskewness measure also gives rise to a larger 

implied risk premium than that associated with the existing coskewness measure.  Our results 

show that investors in momentum strategies care about skewness caused by extreme events and 

demand additional compensation for exposure to that risk.     

The ability of past returns to explain momentum profits also reduces significantly once tail 

coskewness is included.  Adding tail coskewness in our multivariate regressions causes the 

average slopes on past returns to drop by as much as 65.8% and these slopes sometimes become 

statistically insignificant.  Our paper is the first to document estimates of momentum profits 

corresponding to systematic tail coskewness risk.  Moreover, we show that the familiar size 

effect completely loses its explanatory power for average momentum returns after controlling 

for tail coskewness. 

We also show that winner portfolios have more negative tail coskewness than losers following 

both bull and bear markets because of their reduced capacity to rebound following bear markets 

and their greater potential to crash following bull markets.  In other words, the explanatory 

power of tail coskewness is attributable to the fact that it captures the two scenarios when 

momentum portfolios may crash: when the market portfolio rebounds following a bear market 
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and when the market portfolio crashes following a bull market.  Finally, we show that tail 

coskewness explains momentum returns better than asymmetric beta, i.e., the difference 

between upside and downside beta (DeBondt and Thaler, 1987; Rouwenhorst, 1998; 

Dobrynskaya: 2015).   

Our empirical methodology follows Chan and Chen (1988) and Fama and French (1992) who 

investigated the role of the Sharpe-Lintner-Black beta in cross-sectional returns.  Specifically, 

we use portfolios formed on firm size and past returns with frequent rebalancing, over the 

period July 1963 to June 2013 and compute tail coskewness for each portfolio over the full 50-

year sample period.  We then run a series of Fama-Macbeth (FM) regressions to examine the 

cross-sectional relationship between observed portfolio returns and the full-period tail 

coskewness and other variables such as size and past returns. This technique allows our 

portfolios to have the same relative exposure to tail coskewness risk over the full 50-year period, 

even if the true risk exposure of the portfolios is time-varying.  We use the full sample period 

to estimate tail coskewness since tail events are very infrequent so that the precision of our tail 

coskewness estimates can be improved.  The increased precision of the full sample estimates 

was the main reason for their use in Chan and Chen (1988) and Fama and French (1992).  We 

also follow the approach of Fama and French (2006) and Boyer, Mitton and Vorkink (2010) to 

predict tail coskewness using a two-stage regression approach which alleviates concerns that 

future information is included when tail coskewness is computed using the full sample period.  

However, we find that the use of forecast tail coskewness instead of full period tail coskewness 

does not change our main results. 

Our paper adds to a growing literature (Daniel and Moskowitz, 2015; Barroso and Santa-Clara, 

2015) describing how skewness in momentum portfolios can cause momentum crashes.  

Though the focus of those papers is on forecasting momentum crashes and reducing exposure 

to the momentum strategy accordingly, our focus is on interpreting momentum crashes as the 
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realization of tail coskewness risk and then quantifying the magnitude of that risk.  We interpret 

the high average returns associated with the momentum strategy as compensation for tail 

coskewness risk and argue that investors in the winners-minus-losers strategy would be mostly 

concerned by the small probability of large crashes that could take years to recover from.  

Investors should then demand high average returns as compensation for those negative 

outcomes.  We also expand on a growing recent literature that shows that tail risk is priced in 

the cross-section of stock returns even in the presence of coskewness (Kelly and Jiang, 2014; 

Weigert, 2015; Chabi-Yo, Ruenzi and F.Weigert, 2016) and in returns to well-diversified 

mutual funds (Xiong, Idzorek and R.Ibbotson, 2014), by showing that these tail effects are 

present in momentum returns.  

The paper proceeds as follows. Section 3.3 discusses our empirical methodology including the 

formation of portfolios in our testing procedures. Section 3.4 discusses our estimates for tail 

coskewness. Section 3.5 analyses the explanatory power of tail coskewness in the cross-section 

of average excess returns to size/momentum portfolios. In Section 3.6, we check if our findings 

hold across sub-samples and internationally. Section 3.7 concludes. 

3.3. Empirical Methodology and Data 

 

This study follows Chan and Chen (1988) and Fama and French (1992) in forming portfolios 

based on instrumental variables that are highly correlated with the risk factor of interest which 

is tail coskewness.     

The instrumental variables we use are past returns and firm size.  Harvey and Siddique (2000) 

and Chen, Hong and Stein (2001) show that winner portfolios are more likely to experience a 

substantial negative shock compared to loser portfolios as winner portfolios have lower 

skewness than loser portfolios.  Accordingly, past returns should be negatively related to future 

skewness, coskewness and tail coskewness with respect to the market portfolio. It is important 
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to note that we avoid using the skewness of individual stocks to form test portfolios since the 

skewness of individual stock returns does not persist across different periods and is not a good 

predictor of future skewness (Singleton and Wingender, 1986; Chen, Hong and Stein, 2001; 

Boyer, Mitton and Vorkink, 2010).   

We use firm size as the second instrumental variable together with past returns.  Chan and Chen 

(1991) show that portfolios of small stocks may contain a large portion of less efficient and 

highly leveraged firms that are prone to crashing in poor economic conditions while Harvey 

and Siddique (2000) and Barone-Adesi, Gagliardini, and Urga (2004) show that small firms 

tend to be more negatively skewed than large firms.  

We then investigate the cross-sectional relationship between tail coskewness estimates, 

computed from the full sample period, and observed returns to those portfolios after allowing 

for size and past returns. An advantage of this technique is that though the exposure of our 

portfolios to tail coskewness risk may vary through time, the relative strength of the exposures 

to tail coskewness risk may persist over a long period.  Using more observations then leads to 

more precise estimates of the exposures to tail coskewness risk than those obtained using 

shorter time periods.  It should be noted that using the same value for tail coskewness in each 

of our cross-sectional regressions13 does not mean that the exposure of our portfolios to tail 

coskewness risk is constant over time.  Instead we assume that the exposure to tail coskewness 

risk follows a time-varying but stationary process.  In addition, the constituent stocks 

comprising our portfolios change over time due to changes in size and past return performance 

relative to other stocks and because each constituent stock may not have constant exposure to 

tail coskewness risk. 

                                                           
13 The value of tail coskewness in our cross-sectional regressions varies slightly from month to month because, 

when calculating tail coskewness, we omit the single data point corresponding to the month of interest.  This is to 

avoid spurious correlation in our FM regressions.   
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We use four datasets in our empirical tests.  The first dataset we use comprise the 25 value-

weighted size/momentum portfolios from the Kenneth French Data Library, that incorporates 

all CRSP firms in the US and all NYSE, AMEX and NASDAQ firms with share codes 10 and 

11.  Our sample period is July 1963 through June 2013. The portfolios are constructed monthly 

based on the intersection of 5 portfolios formed on size and 5 portfolios formed on prior (2-12) 

returns. The monthly size and prior (2-12) return breakpoints are the NYSE quintile 

breakpoints. To be included in a portfolio for month t (formed at the end of month t-1), a stock 

must have had a valid return for month t-12 and for month t-2.  Each included stock also must 

have had a valid firm size as at the end of month t-1. 

The second dataset consists of 100 value-weighted size/momentum portfolios, comprising all 

CRSP firms included in the first dataset of 25 value-weighted size/momentum portfolios.  We 

implement two pass sorts to construct the 100 size/momentum portfolios, because there is some 

panel imbalance (i.e., empty cells) under the double-independent-sort procedure used for the 

25 size/momentum portfolios.  That is, we first sort stocks based on market capitalization into 

deciles and then subdivide each size portfolio into 10 momentum portfolios based on prior 

returns.  Again, our size and prior return breakpoints are the NYSE decile breakpoints. 

For the momentum component of the 100 size/momentum portfolios, we use different 

combinations of the ranking period R and the holding period H. While we keep updating the 

size decile monthly based on firm size at formation month (t=-1), momentum deciles are 

constructed with different combinations of R=5 or 11 months and H=1, 3, 6, 9 or 12 months. 

Following Jegadeesh and Titman (1993), we construct overlapping portfolios to increase the 

power of our tests. In any given month t, the portfolio monthly return is the simple average of 

H overlapping portfolios that update their momentum deciles in the preceding t-H months as 

well as in month t-1.  For example, for H=3, the monthly portfolio return for April 1970, t, is 
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the simple average of three portfolios: these are based on past returns for the R months to 

February 1970 (t-2), January 1970 (t-3), and December 1969 (t-4).    

The third dataset comprises the 25 value-weight size/momentum portfolios for developed 

markets (November 1990 to March 2014) from the Kenneth French Data Library.  This dataset 

combines 23 developed markets into four regions: (i) North America, including the United 

States and Canada; (ii) Japan; (iii) Asia Pacific, including Australia, New Zealand, Hong Kong, 

and Singapore (but not Japan); and (iv) Europe, including Austria, Belgium, Denmark, Finland, 

France, Germany, Greece, Ireland, Italy, the Netherlands, Norway, Portugal, Spain, Sweden, 

Switzerland, and the United Kingdom. The size breakpoints for each region are the 3rd, 7th, 

13th, and 25th percentiles of that region's aggregate market capitalization. For portfolios 

formed at the end of month t–1, the prior returns are a stock's cumulative returns from month 

t–12 to t–2. The momentum breakpoints for all size quintiles in a region are the 20th, 40th, 

60th, and 80th percentiles based on prior returns for the top 90% of stocks, by market 

capitalization, for that region.  

For the last dataset, taken from Datastream, we construct 25 value-weighted size/momentum 

portfolios, incorporating all United Kingdom stocks traded on the London Stock Exchange 

(LSE).  We implement two pass sorts to construct this set of portfolios for July 1975 to June 

2014.  The size breakpoints are the market capitalization breakpoints for NYSE quintiles, to 

avoid sorts dominated by the plentiful but less important tiny stocks from the LSE. For 

portfolios formed at the end of month t–1, the prior returns for a constituent stock are that 

stock's cumulative returns for months t–12 to t–2. The momentum breakpoints are the 20th, 

40th, 60th, and 80th percentiles based on prior returns to stocks within each size quintile. 

3.4. Measures of Coskewness and Tail Coskewness  
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Coskewness reflects an asset's contribution to the skewness of a well-diversified portfolio. An 

asset with positive coskewness, if included in a portfolio, makes that portfolio more positively 

skewed and vice versa for an asset with negative coskewness.  Since risk averse investors 

dislike negative skewness, coskewness and average returns should be negatively correlated. 

Thus, an asset with more negative coskewness should have a higher expected return and vice 

versa. Harvey and Siddique (2000) construct a measure of coskewness, standardized 

coskewness, as shown in Equation (1): 

𝐶𝑆i
𝑆̂ = 𝑇−1∑

𝜖𝑖,𝑡(𝑟𝑀,𝑡−𝜇𝑀̂)
2

𝜎𝜖î
𝜎𝑀
2̂

𝑇
𝑡=1                (1) 

where T denotes the total number of observations being used to compute estimates;  𝜖𝑖𝑡 = 𝑟𝑖𝑡 −

𝑎𝑖 − 𝛽𝑖(𝑟𝑀𝑡 − 𝑟𝑓𝑡) , is the residual from the regression of asset i's excess returns on the 

contemporaneous market excess return; 𝑟𝑀𝑡  and  𝜇𝑀̂  are the market return and its mean 

respectively; 𝜎𝜖𝑖̂ = √
1

𝑇
∑ 𝜖𝑖𝑡

2𝑇
𝑡=1  and 𝜎𝑀

2̂ =
1

𝑇
∑ (𝑟𝑀𝑡 − 𝜇𝑀̂)

2𝑇
𝑡=1 . 

Motivated by the finding that tail events matter most for the shape of skewness (Badrinath and 

Chatterjee, 1988; Peiro, 1999; Kim and White, 2004), we propose a new measure, tail 

coskewness, that focuses exclusively on the contribution of tail events. We define standardized 

tail coskewness as: 

𝑇𝐶𝑆i
𝑆̂ = 𝑇−1∑

𝜔𝑖,𝑡(𝑟𝑀,𝑡 − 𝜇𝑀̂)
2

𝜎𝜖î
𝜎𝑀
2̂

𝑇

𝑡=1

 

 

𝜔𝑖,𝑡 = {
𝜖𝑖𝑡, if 𝐹(𝜖𝑖𝑡) ≤ α/2 or 𝐹(𝜖𝑖𝑡)≥1 - α/2 

0,  if α/2 < 𝐹(𝜖𝑖𝑡)< 1 - α/2
       (2)   

where T is kept in the numerator to allow for comparison between tail coskewness 𝑇𝐶𝑆𝑖
𝑆 and 

coskewness 𝐶𝑆𝑖
𝑆; 𝜖𝑖𝑡 is a tail event observation lying in the extreme left or right tail of the 
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residual distribution.  Specifically we define a two-tailed α (alpha), equally divided in both tails, 

such that α/2 is in each tail as given by the cumulative distribution function for residuals, 

denoted F.  The tail coskewness of an asset represents an asset's marginal effect on the skewness 

of a well-diversified portfolio via its extreme residuals.  Our empirical tests vary the two-tailed 

α from 0.02 to 0.16 to identify which value of α helps to fully capture the risk premium 

associated with tail coskewness.   

It is worth emphasizing that the standardized coskewness will tend to be more negative 

(positive) when a portfolio has many negative (positive) CAPM residuals corresponding with 

when the market portfolio is either well above or well below its mean.  In this study, the feature 

that is most prominent is the propensity for winner portfolios to crash heavily when the market 

portfolio crashes following a bull market and the propensity for losers to rebound very strongly 

when the market rebounds following a bear market.  A more negative value for standardized 

coskewness compared to standardized tail coskewness is indicative of the fact that when the 

market portfolio crashes following a bull market then it is highly likely that the portfolio in 

question crashes even more heavily while a more positive value indicates that when the market 

portfolio rises following a bear market then it is highly likely that the portfolio rises even more 

significantly.       

We also use two non-standardized measures of coskewness.  Although the standardized 

coskewness measure makes the pricing effect of coskewness independent of the CAPM beta, 

it is well documented that the linear relationship between the CAPM beta and average returns 

does not necessarily hold in practice (Reinganum, 1981; Stambaugh, 1982; Lakonishok and 

Shapiro, 1986; Fama and French, 1992, 2004). Thus, the benefit of using the standardized 

coskewness to isolate the effect of beta on coskewness seems doubtful. More seriously, the 

residual distribution that is being used to define tail events may not resemble the original 
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distribution of tail events, which results in biased estimates of coskewness. We therefore 

construct the non-standardized coskewness: 

𝐶𝑆i
𝑁̂ = 𝑇−1∑

(𝑟𝑖,𝑡−𝜇î)(𝑟𝑀,𝑡−𝜇𝑀̂)
2

𝜎î𝜎𝑀
2̂

𝑇
𝑡=1                  (3) 

where 𝑟𝑖𝑡 is the excess return of an individual asset and  𝜇î is its full sample mean. Similarly, 

the non-standardized tail coskewness is defined as:  

𝑇𝐶𝑆i
𝑁̂ = 𝑇−1∑

𝜓𝑖,𝑡(𝑟𝑀,𝑡 − 𝜇𝑀̂)
2

𝜎î𝜎𝑀
2̂

𝑇

𝑡=1

 

𝜓𝑖,𝑡 = {
𝑟𝑖𝑡−𝜇î, if 𝐹(𝑟𝑖𝑡) ≤ α/2 or 𝐹(𝑟𝑖𝑡)≥1 - α/2 

0,  if α/2 < 𝐹(𝑟𝑖𝑡)< 1 - α/2
                     (4) 

where 𝑟𝑖𝑡 represents an individual asset's excess returns that lie in the tail areas of that asset’s 

return distribution.  When comparing the non-standardized measures of coskewness and tail 

coskewness, the tail coskewness is always less negative reflecting the fact that for both winner 

and loser portfolios the propensity for extreme negative returns outweighs the propensity for 

extreme positive returns but where the propensity for extreme negative returns is higher for 

winners relative to losers.   

In Figure 3.1, we plot on a monthly basis the contribution of each month in the sample towards 

the calculation of full-sample non-standardized coskewness.  We do this for an average loser 

portfolio and for an average winner portfolio14.  Figure 3.1 shows that both winner and loser 

portfolios suffer more extreme downside events (allied with a contemporaneous extreme 

downside event to the market portfolio) than extreme upside events.  The tail events for these 

two portfolios mainly occur during turbulent periods such as the 1970s Oil Crisis, the 1987 

                                                           
14 This analysis is based on the 25 value-weighted size and momentum portfolios from the Kenneth R. French 

data library.  Here the return to the average loser portfolio is defined as the average return to the loser portfolios 

within each of the five size quintiles.  The return to the average winner portfolio is defined as the average return 

to the winner portfolios within each of the five size quintiles. 
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Black Monday Crash, the 1998 Russian Financial Crisis, the 2000 Dot Com Bubble crash and 

the 2007 Global Financial Crisis.  These occasional crashes (particularly for winners) and sharp 

rebounds (particularly for losers) represent the spikes in the monthly components of the non-

standardized coskewness calculation and they overwhelmingly dominate other less extreme 

observations.  This provides further motivation for our emphasis on tail events in this study. 

Earlier studies show that coskewness is relevant to market valuations and that the omission of 

coskewness can lead to a misspecification of asset pricing models (Kraus and Litzenberger, 

1976; Harvey and Siddique, 2000).  Table 3.1 suggests that coskewness might provide a risk 

based explanation for the momentum effect since coskewness estimates vary systematically 

across the winner and loser portfolios within each size quintile.  In the right hand columns of 

Panel A, Table 3.1, we observe a monotonic relationship between coskewness and portfolio 

returns; for each size group the winner portfolio has lower negative coskewness (for both 

standardized: 𝐶𝑆𝑖
𝑆 and non-standardized: 𝐶𝑆𝑖

𝑁) than the loser portfolio. The high correlation 

between coskewness and portfolio mean excess return (-0.807 for 𝐶𝑆𝑖
𝑆 and -0.837 for 𝐶𝑆𝑖

𝑁 

from Panel B) also suggests that coskewness is considerably correlated with variation in excess 

returns to size/momentum portfolios.   

For tail coskewness, Panel A, Table 3.1 shows that, when the two tailed α is set to 10%, the 

patterns of tail coskewness across our portfolios closely resembles that of coskewness for both 

standardized and non-standardized measures. In the last column of Panel A, the values for non-

standardized tail coskewness estimates are very close to the corresponding coskewness 

estimates.  This suggests that coskewness estimates are mainly attributable to extreme tail 

events. Panel B shows that the correlation between coskewness and tail coskewness is 

extremely high, 0.964 for the standardized measure and 0.979 for the non-standardized measure.  

Tail coskewness estimates are also highly correlated with mean excess return (-0.796 for 
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𝑇𝐶𝑆𝑖
𝑆 and -0.821 for 𝑇𝐶𝑆𝑖

𝑁).  Tail coskewness may therefore account for much of the cross-

sectional variation in excess returns associated with coskewness.   

Interestingly, in the second last column of Panel A, we observe that coskewness estimates for 

the non-standardized measure are all negative. The uniformly negative sign can be explained 

by the asymmetric correlation reported by Longin and Solnik (2001) and Ang and Chen (2002).  

They suggest that correlations between equity portfolios and the aggregate market are much 

greater for downside moves than for upside moves, especially for extreme returns. As 

coskewness measures the correlation between equity portfolios and the square of the market, 

the magnitude of downside correlations outweighs upside correlations for all 25 

size/momentum portfolios. Thus, for portfolios such as winner portfolios that suffer more 

frequent extreme losses than gains, their tail coskewness is more negative.  Conversely, for 

loser portfolios that have more frequent extreme gains than losses compared to winners, their 

tail coskewness is less negative. 

Two other results in Panel B of Table 3.1 are noteworthy.  First, CAPM betas have weak 

correlation with coskewness and tail coskewness, ranging from 0.149 to 0.289. This finding 

alleviates concerns that the pricing effect of coskewness and tail coskewness found in our 

subsequent multivariate tests may actually be due to an omitted CAPM beta.  Second, 

coskewness and tail coskewness are both mildly correlated with size, ranging from 0.412 to 

0.506, and with past returns, ranging from -0.524 to -0.572. Hence, the issue of multi-

collinearity should not arise when we use all of size, past returns and tail coskewness (or 

coskewness) in our subsequent regressions.    

3.5. Empirical Results 

 

3.5.1. Tail Coskewness Versus Coskewness 
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Table 3.2 shows time-series averages of the slopes from Fama-Macbeth (FM) regressions of 

excess returns on size, prior return, and tail coskewness, for our 25 value-weighted 

size/momentum portfolios15.  To help understand the economic magnitude of risk premia for 

coskewness and tail coskewness, we also report, where necessary, the change in risk premia 

corresponding to a two standard deviation change in coskewness and tail coskewness 

respectively.  Following Fama and French (2008), who argue that there is little reason to expect 

the CAPM beta to correlate with anomaly variables, we do not include the CAPM beta in our 

cross-sectional regressions16.   

Column 1 of Panel A shows that the size and momentum effects (prior 2 to 12 month 

cumulative returns) help to explain the cross-section of size/momentum returns. We observe 

that the average slope on size is -0.06 with a t-statistic of -1.67.  The momentum effect is much 

stronger with an average slope of 0.951 on past returns and a t-statistic of 4.25. However, the 

average intercept of FM regression is 0.763% with a t-statistic of 2.02, which is anomalously 

high relative to the contemporaneous average market excess return of 0.46% per month.  The 

large intercept indicates that size and past returns fail to fully capture the patterns in average 

returns to our size and momentum portfolios.   

Column 2 of Panel A shows that when all returns are used to compute standardized coskewness 

then the pricing effect of coskewness is observed, albeit at a significance level of 10%.  This 

result and the fact that the standardized coskewness is always more negative for winners 

compared to losers (Table 3.1), shows that investors require significantly higher average 

returns from momentum strategies to compensate for coskewness risk.  Perhaps more 

                                                           
15 As our data set covers 600 months from July 1963 to June 2013, the Newey-West autocorrelation consistent 

covariance estimator with 5 lags is used, guided by the common practice of using a lag length of 
25.0T .  To avoid 

spurious correlation in our FM regressions, when computing our tail coskewness estimates, we leave out the single 

data point corresponding to the test month and use all other observations to compute the numerators of those 

estimators. 
16 In unreported univariate and multivariate regression results, the CAPM beta coefficients have an insignificant 

negative sign.  
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significantly, when coskewness excludes left and right-tail observations then its statistical 

significance disappears and the coefficient on past returns increases.  This shows that the higher 

average returns that investors require as compensation for coskewness risk in momentum 

strategies, is in fact compensation for the risk of extreme tail events.  

Panels B and C of Table 3.2 use standardized tail coskewness and standardized tail coskewness 

together with standardized coskewness that omits left and right-tail observations respectively, 

to explain the cross-section of size/momentum returns.  The results in Panel B show that the 

standardized tail coskewness provides a stronger description of average returns to 

size/momentum portfolios, as the average slopes on tail coskewness are always negative and 

statistically significant with t-statistics greater than 2.  Column 3 of Panel B shows for example 

that, using α =0.02, tail coskewness has an average slope of -0.481 with a t-statistic of -2.24. 

When the two-tailed α is increased to 0.08 (Column 6), the t-statistic for tail coskewness peaks 

in magnitude at 2.65 with a corresponding risk premium of 0.249% per month.  Further 

increasing the two-tailed α to 0.10 and 0.12 does not bring incremental economic gains since 

the corresponding risk premia on tail coskewness in Columns 7 and 8 (0.235% and 0.249% per 

month) are largely similar to that from Column 6.  Panel C of Table 3.2 reports the same 

regressions as for Panel B but adds robust coskewness which is coskewness calculated by 

omitting observations from the left and right tail. When the two-tailed α is set at 0.08 in Column 

6, the average slope on tail coskewness is most negative at -0.808 (t = -2.41) corresponding to 

a risk premium of 0.313% per month.  This result is consistent with a number of studies (Kelly 

and Jiang, 2014; Weigert, 2015; Chabi-Yo, Ruenzi and F.Weigert, 2016) that show that tail 

risk is priced in the cross-section of stock returns even allowing for coskewness risk.  It is also 

important to note that since winner portfolios have lower tail coskewness than loser portfolios 

(Table 3.1), our results imply that investors in momentum strategies require higher average 

returns for higher exposure to tail risk.  
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Moreover, compared with Column 1 of Panel A, controlling for tail coskewness in Panels B 

and C dramatically changes the slopes on lnME, PR and the intercept.  Here, we use Column 

6 of Panel B to illustrate the key findings. First, the relationship between firm size and excess 

returns seems to be completely absorbed by coskewness, since the slope on lnME is no longer 

significant (-0.020, t = -0.46).  This disappearing size effect confirms the result of Barone-

Adesi, Gagliardini and Urga (2004) that the explanatory power of size in the cross-section of 

returns is due to it being a proxy for omitted coskewness risk.  Second, the economic 

significance of the momentum effect falls when tail coskewness is included.  The slope on PR 

reduces from 0.951 (t = 4.25) in Column 1 (Panel A) to 0.738 (t = 3.89) in Column 6 Panel B, 

a reduction of 22.4%.  Finally, controlling for tail coskewness now makes the regression 

intercept statistically insignificant (0.567, t = 1.30), which clearly demonstrates that tail 

coskewness is a critical explanatory variable for the cross-section of size/momentum portfolio 

returns.  

Table 3.3 reports the explanatory power of non-standardized coskewness and tail coskewness.  

Column 1 of Panel A shows that the non-standardized coskewness has an average slope of -

1.165 with a t-statistic of -1.80.    Regressions 2 to 7 of Panel A then show that robust estimates 

of coskewness (trimmed estimates that discard observations in tail areas) cannot help to explain 

the cross-section of size/momentum returns.  In Column 6, after omitting 5% of observations 

belonging to the left tail and 5% of observations in the right tail for a two tailed α of 0.10, we 

find that the average slope on coskewness is now very close to zero and insignificant (-0.249, 

t=-0.34). In Panel B, using non-standardized tail coskewness, our results again imply that the 

pricing effect of coskewness is mainly attributable to tail events.  Importantly since non-

standardized tail coskewness is more negative for our winner portfolios compared to loser 

portfolios that implies that investors in momentum strategies require higher expected returns 

for the net positive exposure to tail risk.  Further, the risk premium associated with tail risk is 
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maximized when we measure tail events to be the top and bottom 5% of the return distribution 

and is equal to 0.313% per month.   

Finally, Panel C provides further strong evidence that the pricing effect of coskewness is 

attributable to tail events since the simultaneous presence of tail coskewness and coskewness 

measured without the extreme left and right tails, shows that tail coskewness is priced but not 

trimmed coskewness.  

In summary, the evidence from Tables 2 and 3 suggests that investors are concerned with tail 

risk when implementing momentum strategies, requiring higher average returns as 

compensation for this risk.  This risk premium is because of their fear of severe momentum 

crashes as captured by the tail coskewness measure and is present even in the presence of past 

returns and size.  For any level of two tailed α, the non-standardized measure gives a higher 

risk premium than that implied by its standardized counterpart and also more significantly 

reduces the slope on past returns.  Non-standardized tail coskewness therefore seems to have 

stronger ability to explain the cross-section of size/momentum returns than does standardized 

coskewness.  It is important to recognize that tail risk and past returns are correlated in the 

sense that past returns do imply some probability of a subsequent tail event.  By excluding tail 

risk, the implied risk premium associated with past returns mistakenly includes a tail risk 

premium.  We demonstrate this by showing that the risk premium implied by past returns is 

reduced once tail risk is allowed for. 

3.5.2. Tail Coskewness Versus the Momentum Effect 

To fully examine the relationship between tail coskewness and the momentum effect, we 

construct 100 size/momentum portfolios based on different ranking and holding periods. In this 

section, we use only non-standardized tail coskewness with a two-tailed α=0.10 since, from 

earlier, this estimator gives the largest implied risk premium for tail coskewness.  We 
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implement the overlapping procedure introduced by Jegadeesh and Titman (1993) to reduce 

the estimation errors in tail coskewness.  Specifically, we first compute tail coskewness for 

each of the H overlapping portfolios based on the full sample period and take the simple 

average of these H values as an explanatory variable in our FM regressions.  If the errors in tail 

coskewness estimates for our H overlapping portfolios are less than perfectly positively 

correlated, this averaging approach can greatly improve estimation precision. 

Table 3.4 shows the average slopes and intercepts for the FM regressions of portfolio excess 

returns on size, momentum and tail coskewness.  In Panel A, the results of bivariate regressions 

of excess returns on size and past returns show that past returns have a strong role in explaining 

the cross-section of size/momentum returns. In Panel B, using multivariate regressions, adding 

tail coskewness significantly reduces the explanatory power of past returns in all portfolio sets.  

In particular, the average slope for past returns becomes statistically insignificant after holding 

periods extend to 9 or 12 months.  For example, the average slope on past returns for the 

R=5/H=12 portfolio set declines from 2.5 (t=4.71) in Panel A to 0.855 (t=1.51) in Panel B, and 

the average slope on past returns for the R=11/H=12 portfolio set declines from 0.637 (t=2.05) 

in Panel A to 0.267 (t=0.96) in Panel B.  In contrast, the corresponding average slopes on tail 

coskewness are highly significant, t=-4.43 for the R=5/H=12 portfolio set and t=-3.32 for the 

R=11/H=12 portfolio set.  This is a strong result as it shows that excess returns to some 

commonly implemented momentum strategies are consistently and strongly explained by the 

possibility of future crashes as well as by past returns and in some cases the tail risk is strong 

enough to cause the statistical significance of past returns to disappear.  

To illustrate the economic significance of tail coskewness, we further decompose momentum 

profits into that part explained by tail coskewness and that part that remains unexplained. The 

last row of Panel B, Table 3.4 shows that tail coskewness explains a larger and larger fraction 

of momentum profits as the length of the holding period H increases.  Figure 3.2 shows that, 
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although tail coskewness (orange region) accounts for only a relatively small fraction of 

momentum profits for short holding periods, it accounts for an increasing fraction of 

momentum profits as H increases.  Eventually, 65.8% of momentum profits for the R=5/H=12 

strategy, and 58.1% of momentum profits for the R=11/H=12 strategy, are explained by tail 

coskewness.  In addition, if we exclude the R=5/H=1 and R=5/H=3 portfolios, then the last 

row of Panel B, Table 3.4, shows that a two standard deviation increase in tail coskewness 

causes the expected return to momentum strategies with R=5 to increase by between 0.240% 

and 0.383% per month.  For R=11, the expected return to momentum strategies increase by 

between 0.257% per month and 0.368% per month.  This is our estimate of the risk premium 

associated with tail coskewness, allowing for size and past returns, for longer horizon 

momentum strategies. 

An intuitive explanation for the higher explanatory power of tail coskewness in momentum 

profits, as H increases, is that momentum portfolios are increasingly exposed to tail risk as in 

any given month, there are now H constituent portfolios that could suffer a tail event and not 

one only as in our earlier analysis. However, it could also be the result of improvements in 

measurement precision from the use of overlapping portfolios.  In particular, measurement 

errors in the tail coskewness estimate for each overlapping portfolio tend to cancel each other 

out during the averaging process, resulting in greater precision.  

In short, Table 3.4 and Figure 3.2 show that, after controlling for tail coskewness, past returns 

now often have significantly reduced explanatory power in the cross-section of size/momentum 

returns. This is strong evidence that the high average returns to momentum strategies may be 

compensation for exposure to tail coskewness risk, the risk of winners being exposed to 

extreme downside events and losers being exposed to extreme upside events.  This result is 

also consistent with recent literature on the significance of tail risk in the cross-section of stock 

returns, even in the presence of coskewness risk.    
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3.5.3 Expected Tail Coskewness and Returns to Size/Momentum Portfolios 

Using the full-period tail coskewness raises a concern about whether expected tail coskewness 

conditional on information at time t, as opposed to future information, has predictive power in 

average returns.  Using a two-stage regression approach similar to Fama and French (2006) 

and Boyer, Mitton and Vorkink (2010), we first form estimates as at the end of each month t 

of expected tail coskewness for each portfolio for month t+1.  We then test the cross-sectional 

relationship between average returns and expected tail coskewness, computed using 

information up to and including month t, valid for month t+1.  We run the two-stage regression 

as follows.  At the end of each month t from June 1963 to May 2013, we separately run the 

following first-stage cross-sectional regression to explain tail coskewness: 

𝑇𝐶𝑆𝑝,𝑇 = 𝑎0,𝑇 + 𝑎1,𝑇𝑙𝑛𝑀𝐸𝑝,𝑇 + 𝑎2,𝑇𝑃𝑅𝑝,𝑇 + 𝑎3,𝑇𝜎𝑝,𝑇 + 𝜔𝑝,𝑇     (5) 

where 𝑇𝐶𝑆𝑝,𝑇 is the tail coskewness estimated for portfolio p for window T, which is an initial 

sample of 210 observations from January 1945 to June 1963 that expands by one month each 

time and ends at month t; 𝑙𝑛𝑀𝐸𝑝,𝑇(𝑃𝑅𝑝,𝑇) is the time-series average of firm size (prior returns) 

for portfolio p in the expanding window T; 𝜎𝑝,𝑇 is the time-series average of volatility (the 

standard deviation of daily returns computed each month) to portfolio p in the expanding 

window T.  The monthly returns to the 25 size/momentum portfolios and daily returns used in 

the calculation of monthly portfolio volatility, are from the Kenneth French library.  The slopes 

obtained from the first stage regression using the most recent expanding window are then used 

in the estimation of expected tail coskewness:  

𝐸[𝑇𝐶𝑆𝑝,𝑡+1] = 𝑎0,𝑇 + 𝑎1,𝑇𝑙𝑛𝑀𝐸𝑝,𝑡 + 𝑎2,𝑇𝑃𝑅𝑝,𝑡 + 𝑎3,𝑇𝜎𝑝,𝑡    (6) 
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where 𝐸[𝑇𝐶𝑆𝑝,𝑡+1] is the expected tail coskewness of portfolio p for month t+1; 𝑙𝑛𝑀𝐸𝑝,𝑡 , 

𝑃𝑅𝑝,𝑡 and 𝜎𝑝,𝑡 are the average values of firm size, prior return and volatility over the most 

recent expanding window which ends at month t for portfolio p.  

We then run the following second-stage FM cross-sectional regressions to explain excess 

returns to our 25 size/momentum portfolios, for July 1963 to June 2013: 

𝑟𝑝,𝑡+1 = 𝛾0 + 𝛾1𝐸[𝑇𝐶𝑆𝑝,𝑡+1]+𝛾2𝑙𝑛𝑀𝐸𝑝,𝑡 + 𝛾3𝑃𝑅𝑝,𝑡 +  𝜀𝑖,𝑡+1  (7) 

where 𝑟𝑝,𝑡+1 is the monthly return for portfolio p observed at the end of month t+1; 𝑙𝑛𝑀𝐸𝑝,𝑡 is 

the natural logarithm of firm size for portfolio p at the end of month t and 𝑃𝑅𝑝,𝑡 is past returns 

to portfolio p from month t-12 to t-2.  This approach provides feasible estimates of expected 

tail coskewness each month, which are time varying, and which assumes that the long-run 

relationship between expected tail coskewness and returns remains unchanged over time. 

Panel A of Table 3.5 reports results from the first-stage regressions to predict tail coskewness.  

For the full sample result, there are 600 monthly cross-sectional regressions using expanding 

windows from {January 1945 - June 1963} to {January 1945 - May 2013} to estimate the 

dependent variable of tail coskewness based on our explanatory variables that include the time-

series average of firm size, prior returns and volatility.  Consistent with our hypothesis that 

prior returns and size work as proxies for future tail coskewness, the average slopes on prior 

return are positive and significant in all of the monthly regressions, and the average slopes on 

size are negative and significant in 69.9% of the monthly regressions.  Volatility, 𝜎𝑝,𝑇, also has 

strong explanatory power for tail coskewness, since its average slopes are significant in 73.2% 

of the monthly regressions. The positive relationship between volatility and tail coskewness 

shows that higher volatility leads to higher tail coskewness.  In addition, the average F-stat 

(33.309) shows that the model has statistically significant predictive capability for future tail 

coskewness.  
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We also report subsample results where each subsample adds 120 extra monthly observations 

relative to the previous subsample and where the first subsample uses an initial expanding 

window of {January 1945 - June 1963} that expands to {January 1945 - June 1973}. The 

subsample results show that the explanatory power of size and volatility only become highly 

reliable (100% and 80% of point estimates are statistically significant) in the third subsample, 

where the expanding window covers at least 480 monthly observations {January 1945 - June 

1983}.  The adjusted 𝑅2 also increases from 0.448 in the first subsample to 0.84 in the third 

subsample.  These results support our argument that increasing sample size enhances the 

precision of tail coskewness estimation for size/momentum portfolios. 

Panel B of Table 3.5 presents the results of the second-stage cross-sectional regressions 

examining the relationship between expected tail coskewness and excess returns to 

size/momentum portfolios for July 1963 to June 2013.  Regression 1 is a baseline regression 

controlling for size and past returns only.  Regression 2 uses estimates of expected tail 

coskewness based on the results of the relevant first-stage cross-sectional regression, i.e. the 

cross-sectional regression implemented at the end of month t.  The slope on 𝐸[𝑇𝐶𝑆𝑝,𝑡+1] is 

highly significant (-5.623, t = -5.65), which indicates that expected tail coskewness has strong 

predictive power in the cross section of average returns to size/momentum portfolios. After 

controlling for size and past returns in regression 3, the predictive power of expected tail 

coskewness is still statistically significant (-5.173, t = -2.66).  The reduced but still highly 

significant coefficient on expected tail coskewness reflects the fact that expected tail 

coskewness is correlated with size and past returns.  In addition, adding expected tail 

coskewness to our regressions increases the adjusted 𝑅2 from 0.472 in regression 1 to 0.565 in 

regression 3.  In summary, the results of Table 3.5 indicate that expected tail coskewness helps 

to explain the cross-sectional variation in returns to size/momentum portfolios.  The concern 
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that our earlier use of the full sample period to compute tail coskewness uses future returns 

currently unknown to investors is therefore significantly reduced. 

3.5.4 Tail Coskewness Versus Time-varying Beta of Momentum Portfolios  

A well-documented result in the momentum literature is the time-varying beta of momentum 

strategies (Grundy and Martin, 2001). If the return on the market is low over the ranking period 

(bear market), the loser portfolio will tend to include high market beta assets, and the winner 

portfolio will tend to include low market beta assets.  Thus the beta of the momentum strategy 

is likely to be negative following bear markets and positive following bull markets.  Daniel and 

Moskowitz (2015) additionally show that, when the market recovers sharply after bear markets, 

losers experience much stronger gains than do winners.  These infrequent but strong gains 

generate relatively high but still negative tail coskewness for the loser portfolio.  It is therefore 

important to ask whether the pattern of tail coskewness for momentum portfolios observed in 

the previous sections is largely attributable only to bear market states or whether it also applies 

to bull markets. To address this issue, we examine the risk characteristics of our 25 value-

weighted size/momentum portfolios following both bull and bear markets.  We define the 

market as a bull market when the market cumulative prior return for months t-12 to t-2, is 

positive, and as a bear market otherwise.  

Table 3.6 shows that losers have less negative tail coskewness exposure than winners following 

both bear markets (Panel A) and bull markets (Panel B). However, following bear markets, 

none of the loser portfolios displays significant tail coskewness at the 10 percent level for any 

size group.  Following bull markets, the negative tail coskewness for all portfolios is much 

more significant than the corresponding values in bear markets and winners still have more 

negative tail coskewness than losers.  The difference in tail coskewness between winners and 

losers is larger following bull markets than following bear markets. For example, tail 
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coskewness in the small size group after bull markets has a spread of 0.133 (-0.328 for the 

losers less -0.461 for the winners), while the spread after bear markets is 0.082 (-0.091 for the 

losers less -0.173 for the winners).  Our result therefore suggests that crash risk in momentum 

strategies, as proxied by the difference in TCS values for winners versus losers, is likely to be 

more severe following bull markets.      

We further investigate the cause of the observed pattern of tail coskewness for momentum 

portfolios and momentum crash risk using the concept of upside beta and downside beta by 

Bawa and Lindenberg (1977). The upside beta,  𝛽+ , is computed over periods when the excess 

market return is above its mean, and the downside beta 𝛽− is computed over periods when the 

excess market return is below its mean: 

𝛽𝑖
+ =

𝐶𝑜𝑣(𝑟𝑖,𝑟𝑀|𝑟𝑀>𝜇𝑚)

𝑉𝑎𝑟(𝑟𝑀|𝑟𝑀>𝜇𝑚)
                                                        (8)     

𝛽𝑖
− =

𝐶𝑜𝑣(𝑟𝑖,𝑟𝑀|𝑟𝑀<𝜇𝑚)

𝑉𝑎𝑟(𝑟𝑀|𝑟𝑀<𝜇𝑚)
                                                        (9) 

Where 𝜇𝑚 is the average market excess return.  Figure 3.3 shows intuitively how the upside 

beta and downside beta are related to momentum returns.  In this figure the analysis is based 

on our 25 size/past return portfolios where the winner (loser) portfolio is defined as the average 

of the 5 winner (loser) portfolios within each size quintile.  This figure shows that following 

bear markets losers have greater upside beta than downside beta while winners have greater 

downside beta than upside beta.  Following bull markets, the figure shows that winners, 

particularly, have greater downside beta than upside beta17.  Both of these results suggest the 

                                                           
17 In Figure 3, the upside beta and the downside beta: (𝛽+, 𝛽−), for the loser portfolio following bear markets is 

1.814 and 1.439 respectively.  For the winner portfolio, following bear markets, (𝛽+, 𝛽−)  = (0.630, 1.050).  For 

the loser portfolio, following bull markets, (𝛽+, 𝛽−) = (1.079, 1.081).  For the winner portfolio, following bull 

markets, (𝛽+, 𝛽−)  = (1.141, 1.439).  
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possibility of momentum crashes when loser stocks rebound strongly following bear markets 

and winner stocks crash heavily following bull markets.    

Table 3.6 provides summary statistics on upside and downside betas for our 25 size/past return 

portfolios and confirms the intuition provided in Figure 3.3.  In every size quintile, following 

bear markets, Panel A, 𝛽+ is three times larger for losers compared to winners.  This indicates 

that momentum crash risk is present in all size quintiles following a bear market, particularly 

most pronounced in large stocks where the difference in 𝛽+ between losers and winners is 

1.413 (2.028 for losers versus 0.615 for winners).  Overall, Panel A shows that losers tend to 

rebound strongly when the market recovers from losses, giving rise to less negative tail 

coskewness. 

Following bull markets, Panel B, for every size quintile, 𝛽− is larger for winners compared to 

losers while 𝛽+ is similar for winners and losers.  Thus momentum crash risk is present in all 

size quintiles following a bull market and this crash risk is again most acute for the large size 

group where the difference in  𝛽− between winners and losers is 0.465 (1.244 for winners 

versus 0.779 for losers).  Taken together, the results in Panel B suggest that large negative tail 

coskewness is driven by large negative betas following bull markets, particularly for winner 

portfolios.    

In sum, our tail coskewness measure captures the extreme tail events following both bull and 

bear markets that give rise to momentum crashes. Table 3.6 extends the results of Grundy and 

Martin (2001) by examining betas following both bear and bull markets, to enable a better 

understanding of the momentum crashes of Daniel and Moskowitz (2015) and Barroso and 

Santa-Clara (2015).   

3.5.5 Tail Coskewness versus Asymmetric Beta 
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As described in the previous section, tail coskewness is closely related to asymmetric beta, 

which is the difference between upside beta and downside beta,  𝛽𝑖
+ − 𝛽𝑖

−. Ang, Chen and Xing 

(2006) show that stock returns are negatively related to asymmetric beta. More recently, 

Dobrynskaya (2015) demonstrates that asymmetric beta helps to explain the cross-section of 

momentum returns.  Since asymmetric beta and (tail) coskewness reflect asymmetry in return 

distributions, it is possible that they are different measures reflecting the same underlying risk 

factor. Thus, it is necessary to investigate which of asymmetric beta, coskewness and tail 

coskewness best explains the momentum effect.  

The data used for this test are the 25 value-weighted size/momentum portfolios from July 1963 

to June 2013.  Panel A, Table 3.7 shows that asymmetric beta falls monotonically from losers 

to winners, which is very similar to the patterns observed for both coskewness and tail 

coskewness with respect to size/momentum portfolios.  Asymmetric beta is highly correlated 

with coskewness and tail coskewness with correlations of 0.94 and 0.92, respectively. 

Panel B, Table 3.7 presents the results from FM regressions of excess returns on asymmetric 

beta, coskewness, tail coskewness, size and prior returns. We first examine the explanatory 

power of asymmetric beta, coskewness and tail coskewness in univariate regressions.  

Regressions 1-3 reveal that all three measures help to explain the cross-section of 

size/momentum returns with t-statistics on the average slopes all less than -4.5.  In regressions 

4-6, adding size and past returns as independent variables results in tail coskewness and 

coskewness remaining significant, but asymmetric beta is now insignificant.  The average slope 

on asymmetric beta (-0.177, t=-0.42) indicates that the role of asymmetric beta in explaining 

size/momentum returns might be weaker than that of coskewness and tail coskewness.  Finally, 

the results from regression 7 confirm that there is considerable collinearity between asymmetric 

beta and tail coskewness.  After both are included together as explanatory variables, the average 

slope on asymmetric beta becomes positive (1.307, t=2.78) whereas theoretically the slope 
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should be negative.  This abnormal slope is a typical sign of collinearity when the correlations 

among independent variables are very strong.  Our results here suggest that while asymmetric 

beta and tail coskewness capture similar risk, tail coskewness has stronger explanatory power.  

This may be because extreme momentum crashes tend to occur when market variance is high 

(Barroso and Santa-Clara, 2015; Daniel and Moskowitz, 2015) and coskewness becomes larger 

in magnitude when market variance is high, when compared with asymmetric beta18.  

To examine how much asymmetric beta captures tail events, we compute the simple correlation 

between asymmetric beta and trimmed non-standardized coskewness, i.e. the non-standardized 

coskewness metric based on the middle 90% of return observations.  We find a correlation of 

0.55, whereas the correlation between asymmetric beta and non-standardized coskewness, 

which includes all returns, is significantly higher at 0.94.  This result suggests that the 

explanatory power of asymmetric beta in explaining the cross-section of size/momentum 

returns, at least in a univariate sense, seems likely to be driven by the impact of tail events.  

This is consistent with the pricing impact of tail events in the cross-section of stock returns 

shown by Kelly and Jiang (2014), Weigert (2015) and Chabi-Yo, Ruenzi and F.Weigert (2016). 

3.6. Robustness 

 

3.6.1 Subperiod analysis 

To investigate the robustness of tail coskewness, we examine the 25 size/momentum portfolios 

from the Kenneth French Data Library in three separate sub-periods (January 1927 to June 

1963; July 1963 to June 1983; July 1983 to June 2013). 

                                                           
18  Dobrynskaya (2015) also shows the explanatory power of asymmetric beta over the cross-section of 

size/momentum returns. However, she does not relate her analysis to momentum crashes or examine the impact 

of different market states.      
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Like our basic result for July 1963 to June 2013, our results for all three sub-periods confirm 

that tail coskewness is statistically and economically important.  The first two panels of Table 

3.8 show that the average slopes for tail coskewness are significantly negative for July 1963 – 

June 1983 and July 1983 – June 2013 (-0.944, t=-2.07 for the first sub-period; -1.140, t=-1.71 

for the second sub-period) in our multivariate FM regressions.  The use of tail coskewness also 

significantly reduces the slopes and t-statistics on size, past returns and the intercept. Table 3.8 

also shows that the effect of coskewness is weak in the 1983-2013 sub-period, with a t-statistic 

of -1.36.  Asymmetric beta is also insignificant in the 1983-2013 (t=-0.47) and the 1963-1983 

(t=0.96) sub-periods.  The sub-period results thus support the conclusion that tail coskewness 

has a stronger role than asymmetric beta in explaining average returns to size/momentum 

portfolios. 

The last panel of Table 3.8 shows the results for the pre-1963 sub-period (1927-1963).  In FM 

regressions controlling for size, momentum and tail coskewness, the average slope for tail 

coskewness is -0.482, with a t-statistic of -2.03.  The effect of tail coskewness is thus also 

significant in the pre-1963 period.  Note also that tail coskewness completely subsumes the 

explanatory power of past returns as its t-statistic falls to 1.00 compared with 1.88 in FM 

regressions controlling for size and past returns.  In the regressions controlling for coskewness, 

the average slope on coskewness (-0.496, t=-2.12) is very close to that observed for tail 

coskewness in previous FM regressions.  This result is consistent with our previous finding 

that the explanatory power of coskewness in average returns is driven mainly by tail events.  

Finally, the last regression in Table 3.8 shows that asymmetric beta has a positive average slope 

(0.540, t=1.96), which is contrary to our theoretical prediction. Overall, extending our tests to 

the pre-1963 sub-period provides further evidence that tail coskewness has consistent 

explanatory power over the cross-section of size/momentum returns. 

3.6.2. Value, Profitability, Investment and Industry Momentum Effects 
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We have also calculated the coskewness and tail coskewness measures and implemented FM 

regressions for 25 size/book-to-market, 25 size/operating profitability, 25 size/investment and 

25 size/industry-momentum portfolios in the spirit of Moskowitz and Grinblatt (1999).  For 

brevity, the descriptive statistics for these value-weighted portfolios are not reported.  They 

show no clear relationship between coskewness or tail coskewness and any of book-to-market, 

operating profitability and investment.  There is, however, a relationship between coskewness 

and industrial momentum such that winner industries have more negative coskewness or tail 

coskewness than their loser counterparts.   

Table 3.9 presents the results from our FM regressions. They show that tail coskewness has 

significant incremental explanatory power over the cross-section of size/book-to-market 

(lnBM), size/operating profitability (OP), size/investment (INV) and size/industry-momentum 

returns.  However, tail coskewness does not significantly impact the point estimates of lnBM, 

OP and INV in the respective regressions, suggesting that tail coskewness is not significantly 

related to these risk factors.  Our result suggests that inclusion of these additional factors in our 

earlier FM regressions would not significantly affect our estimates of the risk premium 

corresponding to momentum crash risk. 

3.6.3 International Market 

We now examine whether tail coskewness is important in explaining returns to size/momentum 

portfolios in international data.  We first examine the 25 value-weighted size/momentum 

portfolios for developed markets (Global, North America, European, Japan and Asia Pacific) 

from the Kenneth French data library.  Two limitations arise from using these data. The first is 

the lack of past returns to use as an explanatory variable in our FM regressions.  The second is 

the relatively short sample period from November 1990 to March 2014. To mitigate these 
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problems, we separately construct 25 value-weighted size/momentum portfolios for the United 

Kingdom for a longer period, from July 1975 to June 2014.  

Table 3.10 demonstrates that the pricing effect of tail coskewness is pervasive across all 

developed markets except Japan.  Excluding Japan, the average slopes on tail coskewness are 

always more than two standard errors from zero.  For the global market, tail coskewness has 

an average slope of -5.158 (t=-5.30) showing that tail coskewness is important in explaining 

cross-sectional variation in size/momentum returns.  An important question is why tail 

coskewness shows no explanatory power over Japanese size/momentum portfolios.  It is worth 

noting that Japan is the only developed market where the momentum effect does not exist (Chui, 

Titman and Wei, 2010; Fama and French, 2012; Moskowitz and Pedersen, 2013)19.  This 

simultaneous absence of the momentum anomaly and the pricing effect of tail coskewness 

might provide indirect evidence that tail coskewness is the genuine risk factor that underlies 

the momentum effect.  

Table 3.11 shows that the UK equity market delivers similar results to the US equity market.  

Again, there exists a reward for exposure to tail coskewness and the momentum effect becomes 

subsumed by tail coskewness.  In regressions 1-3, of Table 3.11, all of the average slopes on 

tail coskewness, coskewness and asymmetric beta are statistically significant with t-statistics 

exceeding four.  Regression 4 says that the momentum effect shows up strongly in the UK 

equity market, since past returns have an average slope of 1.102 with a t-statistic of 2.71.  

However, in regression 5, adding tail coskewness reduces the average slope on past returns to 

0.572 with a t-statistic of 1.26 whereas the average slope for tail coskewness is statistically 

                                                           
19 Asness (2011) argues that momentum does exist in Japan in that the returns adjusted for the Fama and French 

(1993) three factor model are significantly positive.  However the raw momentum returns are not significantly 

different from zero.  We also calculate tail coskewness for 25 size/momentum portfolios in Japan, covering the 

period from 1990-2014, and find that the tail coskewness for all of these portfolios is positive.  This is a striking 

result as the tail coskewness for almost all of the corresponding portfolios for the Global, North America, Europe 

and Asia-Pacific regions, is negative.   
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significant with a t-statistic of -4.58 that exceeds the t-statistics observed for coskewness and 

asymmetric beta in regressions 6 and 7.  Thus average returns to the 25 UK size/momentum 

portfolios seem to be more explained by exposure to tail coskewness risk compared than by 

exposure to coskewness risk or asymmetric beta. 

3.7. Conclusion 

 

We provide robust evidence to support a risk-based explanation for the momentum effect.  

Using size/momentum portfolios from the US, UK and other major developed markets, we 

show that momentum returns are associated with tail coskewness and interpret this as a 

systematic risk factor.  This is the risk of a momentum crash due to a more significant downside 

event to winners relative to losers following a bull market or due to a more significant upside 

event occurring to losers relative to winners following a bear market.  We estimate the risk 

premium corresponding to tail coskewness or momentum crash risk to be 0.313% per month.  

The effective risk premium is even higher as the slope on past returns reduces significantly, by 

as much as 65.8%, in the presence of tail coskewness.  We also show that the familiar size 

effect completely loses its explanatory power for size/momentum portfolios after controlling 

for tail coskewness.  Our risk-based explanation for momentum and size effects sheds light on 

how risk-averse investors use portfolio characteristics, such as size and past returns as simple 

proxies to identify and price tail risk.  This would otherwise be very difficult to estimate due 

to the infrequency of tail events.  Finally, our results for momentum portfolios, are consistent 

with recent literature (Kelly and Jiang, 2014; Weigert, 2015 and Chabi-Yo, Ruenzi and 

F.Weigert, 2016) that shows that tail risk is priced in the cross-section of stock returns. 
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Figure 3.1 Time-series monthly components of non-standardized coskewness for two portfolios: average winners and 
average losers 

This analysis is based on the 25 value-weighted size and momentum portfolios from the Kenneth R. French data 

library.  The return to the average loser portfolio is the average return to the loser portfolios within each of the 

five size quintiles.  The return to the average winner portfolio is the average return to the winner portfolios within 

each of the five size quintiles. The monthly component of non-standardized coskewness for portfolio i for each 

month t, from July 1963 to June 2013 is defined as  
(𝑟𝑖,𝑡−𝜇î)(𝑟𝑀,𝑡−𝜇𝑀̂)

2

𝜎î𝜎𝑀
2̂     where 𝑟𝑖,𝑡 , 𝑟𝑚,𝑡 , 𝜇î, 𝜇M̂ are the return to 

portfolio i, the return to the market portfolio in month t, the mean return to portfolio i and the mean return to the 

market portfolio based on T=600 monthly observations,  and 𝜎î = √
1

𝑇
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2  are the standard deviation and variance of returns to portfolio i and the market portfolio.  The average of 

these monthly components from July 1963 to June 2013 is the value of the non-standardized coskewness defined 

as  𝐶𝑆i
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Figure 3.2 Decomposition of momentum profits for 100 size/momentum portfolios for different momentum strategies 

In this analysis, momentum profits refers to the amount of excess returns explained by past returns in FM 

regressions of excess returns to 100 size/momentum portfolios, and is measured as the product of a two standard 

deviation change in past returns with the average regression slope on past returns. The height of the graph 

represents the amount of momentum profits explained by past returns in FM regressions controlling for size and 

past returns (see Panel A Table 3.4). The bottom (blue) region represents the amount of momentum profits 

explained by past returns in FM regressions with an additional control of tail coskewness (see Panel B Table 3.4). 

The top (orange) region represents the portion of the momentum profits that is subsumed by tail coskewness, 

measured as the difference of momentum profits between FM regressions with and without tail coskewness. The 

dashed line represents the lower confidence bound for the 95% confidence interval associated with remaining 

profits. The left (right) graph represents results for size/momentum portfolios with a ranking period of 5 months 

(11 months), and different holding periods of 1, 3, 6, 9 or 12 months for the momentum component.
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Figure 3.3 Time-varying beta for average winners and average losers  

This figure shows the upside beta (β+) and downside beta (β−) for average winners and average losers for 25 

value-weighted size/momentum portfolios following bull and bear markets, respectively. The return to the 

average loser portfolio is the average return to the loser portfolios within each of the five size quintiles. The 

return to the average winner portfolio is the average return to the winner portfolios within each of the five size 

quintiles.  β+ is the upside beta in equation (8), and  β−  is the downside beta in equation (9). A bull market 

occurs when the market cumulative prior return over months t-12 to t-2, is positive, and is a bear market 

otherwise. 
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Table 3.1 Summary statistics for 25 value-weighted size/momentum portfolios (July 1963 to June 2013) 

This table summarizes the 25 value-weighted size/momentum portfolios, incorporating all CRSP firms in the US 

listed on the NYSE, AMEX, or NASDAQ. The sample period of July 1963 through June 2013 yields 600 

observations. The 25 equal-weighted size/momentum portfolios are constructed monthly from the intersection of 

five size portfolios with five portfolios formed on prior (2-12) returns. The monthly size and prior (2-12) return 

breakpoints are the corresponding NYSE quintile values.   

Mean excess return is the average monthly return of 25 size/momentum portfolios in excess of the one-month 

Treasury bill rate. CAPM betas are the average slopes from univariate regressions of the portfolio excess returns 

on the excess return to the value-weighted market index. lnME is the logarithm of average firm size. PR is the 

cumulative prior (2-12) return. Standardized 𝐶𝑆𝑖
𝑆  is the standardized coskewness defined in equation (1), 

computed with orthogonalized residuals from the CAPM model. Standardized 𝑇𝐶𝑆𝑖
𝑆,𝛼=0.1

 is the standardized tail 

coskewness defined in equation (2) with a two-tailed α=0.10. Non-standardized 𝐶𝑆𝑖
𝑆  is the non-standardized 

coskewness defined in equation (3), computed with equity returns directly. Non-standardized 𝑇𝐶𝑆𝑖
𝑁,𝛼=0.1

 is the 

non-standardized tail coskewness defined in equation (4) with a two-tailed α=0.10. Coskewness is significant at 

the 10% level and at the 5% level if its absolute value exceeds 0.16 and 0.20 respectively based on a simulation 

process using a bivariate normal distribution with a correlation coefficient of 0.5. 

 

** and * denote t-statistics significant at the 5 percent and 10 percent levels, respectively.

Panel A: Time-series average characteristics 

 

Mean 

Excess 

return 

lnME PR 
CAPM 

𝛽 

Standardized 
 

Non-standardized 

𝐶𝑆𝑖
𝑆 𝑇𝐶𝑆𝑖

𝑆,𝛼=0.1
  𝐶𝑆𝑖

𝑁 𝑇𝐶𝑆𝑖
𝑁,𝛼=0.1

 

Size small 

     Loser -0.001 3.123 -0.299 1.365 -0.029 0.050  -0.415** -0.379** 

     Mom-2 0.653 3.372 -0.041 1.052 -0.157 -0.053  -0.511** -0.472** 

     Mom-3 0.890 3.430 0.093 0.987 -0.258** -0.142  -0.574** -0.525** 

     Mom-4 1.032 3.461 0.244 1.004 -0.327** -0.272**  -0.615** -0.574** 

     Winner 1.388 3.475 0.836 1.218 -0.307** -0.172*  -0.602** -0.595** 

Size 2 

     Loser 0.112 4.835 -0.263 1.454 0.050 0.045  -0.402** -0.386** 

     Mom-2 0.636 4.856 -0.039 1.119 -0.057 -0.029  -0.473** -0.458** 

     Mom-3 0.787 4.862 0.094 1.027 -0.180** -0.097  -0.543** -0.503** 

     Mom-4 0.991 4.865 0.244 1.056 -0.278** -0.213**  -0.591** -0.569** 

     Winner 1.213 4.862 0.787 1.286 -0.271** -0.152  -0.586** -0.526** 

Size 3 

     Loser 0.237 5.672 -0.245 1.367 0.173* 0.223**  -0.332** -0.321** 

     Mom-2 0.585 5.692 -0.037 1.097 0.044 -0.003  -0.441** -0.389** 

     Mom-3 0.684 5.698 0.094 1.012 -0.095 -0.023  -0.509** -0.444** 

     Mom-4 0.767 5.697 0.243 1.005 -0.311** -0.212**  -0.605** -0.540** 

     Winner 1.187 5.683 0.730 1.225 -0.242** -0.173**  -0.573** -0.495** 

Size 4 

     Loser 0.161 6.567 -0.226 1.338 0.231** 0.260**  -0.294** -0.260** 

     Mom-2 0.563 6.591 -0.036 1.105 0.131 0.134  -0.405** -0.386** 

     Mom-3 0.624 6.594 0.095 0.998 0.002 0.032  -0.476** -0.430** 

     Mom-4 0.771 6.592 0.243 0.996 -0.069 0.026  -0.510** -0.464** 

     Winner 1.024 6.583 0.680 1.151 -0.261** -0.086  -0.583** -0.524** 

Size large 

     Loser 0.116 8.185 -0.199 1.240 0.268** 0.186*  -0.268** -0.257** 

     Mom-2 0.432 8.386 -0.034 0.934 0.327** 0.227**  -0.272** -0.244** 

     Mom-3 0.349 8.422 0.096 0.900 0.006 0.003  -0.477** -0.440** 

     Mom-4 0.520 8.461 0.242 0.883 0.088 0.102  -0.441** -0.385** 

     Winner 0.741 8.324 0.564 1.026 -0.085 -0.069  -0.496** -0.398** 
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Panel B: Cross-sectional correlation 

  Mean 

Excess 

return 

lnME PR 
CAPM 

beta 

Standardized  Non-standardized 

  𝐶𝑆𝑖
𝑆 𝑇𝐶𝑆𝑖

𝑆,𝛼=0.1
  𝐶𝑆𝑖

𝑁 𝑇𝐶𝑆𝑖
𝑁,𝛼=0.1

 

Mean 1         

lnME -0.263 1        

PR 0.719 0.006 1       

Beta -0.277 -0.277 -0.139 1      

Standardized 
𝐶𝑆𝑖

𝑆 -0.807 0.506 -0.545 0.149 1     

𝑇𝐶𝑆𝑖
𝑆,𝛼=0.1

 -0.796 0.448 -0.526 0.232 0.964 1    

Non-standardized 
𝐶𝑆𝑖

𝑁 -0.837 0.412 -0.572 0.289 0.973 0.949  1  

𝑇𝐶𝑆𝑖
𝑁,𝛼=0.1

 -0.821 0.481 -0.524 0.232 0.961 0.933  0.979 1 
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Table 3.2  Fama-MacBeth regressions on measures of standardized coskewness and tail coskewness  

The table shows the average slopes and their t-statistics (in parentheses) from monthly cross-sectional regressions to predict excess returns to 25 value-weighted size/momentum 

portfolios using measures of standardized coskewness and tail coskewness (defined in Equations [1] and [2]), for July 1963 to June 2013. Two-tailed α (alpha) represents the 

total proportion of observations from the left and right tails of the residual distribution that are excluded in calculating standardized coskewness and that are included in 

calculating standardized tail coskewness and ranges from 0.02 to 0.12. Residuals are from a regression of an asset's monthly excess returns on the contemporaneous market 

excess return. lnME is the logarithm of average firm size. PR is the cumulative prior (2-12) return; _cons is the average intercept. 𝑇𝐶𝑆𝑆(𝐶𝑆𝑆) risk premium is the change in 

excess return corresponding to a two standard deviation change in standardized tail coskewness and coskewness measures across 25 size/momentum portfolios, calculated as 

twice the product of the average slope on 𝑇𝐶𝑆𝑆 (𝐶𝑆𝑆) from FM regressions with the average cross-sectional standard deviation of standardized TCS (CS) calculated over the 

25 size/momentum portfolios.   

 

Two-tailed 
α(alpha) 
Trimmed 

(1) 
N/A 

(2) 
α=0.00 

(3) 
α=0.02 

(4) 
α=0.04 

(5) 
α=0.06 

(6) 
α=0.08 

(7) 
α=0.10 

(8) 
α=0.12 

Panel A:  ri = λ0 + λ1lnMEi + λ2PRi + λ3𝐶𝑆𝑖
𝑆 + ei 

lnME -0.060* -0.019 -0.044 -0.052 -0.053 -0.062* -0.059 -0.059 

 (-1.67) (-0.42) (-1.09) (-1.33) (-1.37) (-1.65) (-1.55) (-1.59) 

PR 0.951*** 0.747*** 0.835*** 0.893*** 0.885*** 0.966*** 0.947*** 0.946*** 

 (4.25) (4.05) (4.32) (4.44) (4.35) (4.52) (4.44) (4.49) 

𝐶𝑆𝑆  -0.591* -0.500 -0.265 -0.241 0.049 -0.055 -0.042 

  (-1.89) (-1.58) (-1.11) (-0.97) (0.28) (-0.27) (-0.24) 

_cons 0.763** 0.565 0.695* 0.745* 0.749* 0.793** 0.769* 0.773** 

 (2.02) (1.20) (1.65) (1.84) (1.86) (2.03) (1.95) (1.97) 

𝐶𝑆𝑆 Risk Premium  0.225 0.122 0.065 0.056 -0.011 0.012 0.01 

Panel B: ri = λ0 + λ1lnMEi + λ2PRi + λ3𝑇𝐶𝑆𝑖
𝑆 + ei 

lnME   -0.044 -0.040 -0.028 -0.020 -0.024 -0.020 

   (-1.16) (-1.03) (-0.66) (-0.46) (-0.56) (-0.46) 

PR   0.875*** 0.848*** 0.797*** 0.738*** 0.741*** 0.726*** 

   (4.15) (4.07) (4.04) (3.89) (3.96) (3.83) 

𝑇𝐶𝑆𝑆   -0.481** -0.533** -0.769** -0.873*** -0.812** -0.836** 

   (-2.24) (-2.41) (-2.32) (-2.65) (-2.42) (-2.47) 

_cons   0.673* 0.650 0.605 0.567 0.603 0.580 
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   (1.68) (1.60) (1.41) (1.30) (1.38) (1.31) 

𝑇𝐶𝑆𝑆 Risk Premium   0.116 0.144 0.204 0.249 0.235 0.249 

Panel C: ri = λ0 + λ1lnMEi + λ2PRi + λ3𝐶𝑆𝑖
𝑆+λ4𝑇𝐶𝑆𝑖

𝑆 + ei 

lnME   -0.022 -0.023 -0.023 -0.023 -0.027 -0.023 

   (-0.48) (-0.51) (-0.52) (-0.52) (-0.60) (-0.50) 

PR   0.736*** 0.751*** 0.755*** 0.772*** 0.766*** 0.746*** 

   (4.06) (4.18) (4.16) (4.22) (4.18) (4.10) 

𝐶𝑆𝑆   -0.558 -0.396 -0.175 0.068 0.041 0.016 

   (-1.53) (-1.28) (-0.70) (0.38) (0.21) (0.09) 

𝑇𝐶𝑆𝑆   -0.531* -0.581** -0.708** -0.808** -0.752** -0.773** 

   (-1.96) (-2.02) (-2.12) (-2.41) (-2.27) (-2.28) 

_cons   0.598 0.617 0.621 0.622 0.639 0.616 

      (1.26) (1.32) (1.35) (1.36) (1.40) (1.34) 
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Table 3.3  Fama-MacBeth regressions on measures of non-standardized coskewness and tail coskewness  

The table shows the average slopes and their t-statistics (in parentheses) from monthly cross-sectional regressions to predict excess returns to 25 value-weighted size/momentum 

portfolios using measures of non-standardized coskewness and tail coskewness (defined in equations [1] and [2]) for July 1963 to June 2013.  Two-tailed α (alpha) trimmed 

represents the proportion of total observations from the left and right tails of the return distributions that have been discarded from the calculation of non-standardized 

coskewness and included in the calculation of non-standardized tail coskewness, and ranges from 0.02 to 0.12.  lnME is the logarithm of average firm size. PR is the cumulative 

prior (2-12) return. _cons is the average intercept.  𝑇𝐶𝑆𝑁(𝐶𝑆𝑁) risk premium is the change in excess return corresponding to a two standard deviation change in standardized 

tail coskewness and coskewness measures across 25 size/momentum portfolios, calculated as twice the product of the average slope on 𝑇𝐶𝑆𝑁 (𝐶𝑆𝑁) from FM regressions with 

the average cross-sectional standard deviation of non-standardized TCS (CS) calculated over the 25 size/momentum portfolios. 

  

Two-tailed 
α(alpha) 
Trimmed 

(1) 
a=0.00 

(2) 
a=0.02 

(3) 
a=0.04 

(4) 
a=0.06 

(5) 
a=0.08 

(6) 
a=0.10 

(7) 
a=0.12 

Panel A:  ri = λ0 + λ1lnMEi + λ2PRi + λ3𝐶𝑆𝑖
𝑁 + ei 

LnME -0.023 -0.058 -0.061* -0.068* -0.065* -0.062* -0.061* 

 (-0.52) (-1.58) (-1.69) (-1.94) (-1.86) (-1.75) (-1.69) 

PR 0.709*** 0.946*** 0.894*** 0.817*** 0.870*** 0.944*** 0.949*** 

 (3.80) (4.30) (4.55) (4.87) (4.72) (5.03) (4.42) 

𝐶𝑆𝑁  -1.165* -0.774 -0.900* -1.423* -1.121 -0.249 0.121 

 (-1.80) (-1.35) (-1.76) (-1.69) (-1.64) (-0.34) (0.19) 

_cons 0.088 0.629 0.718* 0.775* 0.759* 0.811** 0.781** 

 (0.13) (1.49) (1.77) (1.87) (1.88) (2.04) (2.03) 

𝐶𝑆𝑁  Risk Premium 0.244 0.058 0.101 0.159 0.106 0.02 -0.005 

Panel B: ri = λ0 + λ1lnMEi + λ2PRi + λ3𝑇𝐶𝑆𝑖
𝑁 + ei 

lnME  -0.039 -0.026 -0.003 -0.010 -0.008 -0.012 

  (-0.96) (-0.60) (-0.07) (-0.23) (-0.16) (-0.26) 

PR  0.793*** 0.777*** 0.722*** 0.712*** 0.668*** 0.664*** 

  (3.93) (3.66) (3.46) (3.46) (3.39) (3.53) 

𝑇𝐶𝑆𝑁   -0.768* -1.130* -1.685** -1.494** -1.601** -1.481** 

  (-1.81) (-1.88) (-2.27) (-2.39) (-2.49) (-2.25) 

_cons  0.419 0.149 -0.201 -0.086 -0.164 -0.065 
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  (0.82) (0.24) (-0.28) (-0.13) (-0.24) (-0.09) 

𝑇𝐶𝑆𝑁  Risk Premium  0.167 0.202 0.288 0.28 0.313 0.308 

Panel C: ri = λ0 + λ1lnMEi + λ2PRi + λ3𝐶𝑆𝑖
𝑁+λ4𝑇𝐶𝑆𝑖

𝑁 + ei 

lnME  -0.021 -0.026 -0.031 -0.023 -0.011 -0.011 

  (-0.47) (-0.58) (-0.73) (-0.54) (-0.24) (-0.25) 

PR  0.702*** 0.698*** 0.709*** 0.704*** 0.712*** 0.678*** 

  (3.86) (3.77) (3.88) (3.77) (3.95) (3.63) 

𝐶𝑆𝑁   -1.650* -1.068* -1.004 -0.764 0.287 0.536 

  (-1.79) (-1.87) (-1.36) (-1.26) (0.46) (0.92) 

𝑇𝐶𝑆𝑁  -1.124* -1.088 -1.025* -1.191** -1.512** -1.484** 

  (-1.81) (-1.65) (-1.66) (-2.11) (-2.49) (-2.28) 

_cons  0.002 0.112 0.164 0.077 -0.061 -0.050 

    (0.00) (0.16) (0.25) (0.12) (-0.09) (-0.07) 
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Table 3.4  Fama-MacBeth regressions for 100 value-weighted size/momentum portfolios (July 1963 to June 2013) 

The table shows the average slopes and their t-statistics (in parentheses) from the monthly cross-sectional regressions to predict excess returns to 100 value-weighted 

size/momentum portfolios, for July 1963 to June 2013. For the momentum component of the 100 size/momentum portfolios, we use different combinations of the ranking 

period R and the holding period H. While we keep updating the size decile monthly based on firm size at formation month (t=-1), momentum deciles are constructed with 

different combinations of R=5 or 11 months and H=1, 3, 6, 9 or 12 months. Following Jegadeesh and Titman (1993), we construct overlapping portfolios to increase the power 

of our tests. In any given month t, the portfolio monthly return is the simple average of H overlapping portfolios that update their momentum deciles in the preceding t-H 

months as well as in month t-1.  TCS is the non-standardized tail coskewness defined in equation (4), with a two-tailed α=0.10. Fraction of momentum profit explained is the 

portion of the average slope on past returns that is reduced after controlling for tail coskewness in FM regressions. TCS risk premium is the average change in excess returns 

corresponding to a two standard deviation change in TCS across 100 size/momentum portfolios, computed as twice the product of the average slope on TCS in FM regressions 

with the average cross-sectional standard deviation of TCS across 100 size/momentum portfolios. 

Portfolio Holding 

Month 

5-month ranking (6-2)   11-month ranking (12-2) 

1 3 6 9 12   1 3 6 9 12 

Panel A: ri = λ0 + λ1lnMEi + λ2PRi + ei 

lnME -0.04 -0.039 -0.045 -0.048 -0.048  -0.056 -0.056 -0.058 -0.061 -0.061 

 (-1.10) (-1.09) (-1.24) (-1.32) (-1.31)  (-1.48) (-1.50) (-1.56) (-1.63) (-1.63) 

PR 0.957*** 1.164*** 1.911*** 2.575*** 2.500***  0.869*** 0.824*** 0.772*** 0.717** 0.637** 

 (3.51) (3.69) (4.50) (5.20) (4.71)  (3.85) (3.49) (3.00) (2.57) (2.05) 

_cons 0.649* 0.615 0.596 0.589 0.61  0.706* 0.711* 0.742* 0.772** 0.772** 

 (1.65) (1.58) (1.52) (1.49) (1.53)  (1.79) (1.81) (1.89) (1.97) (1.98) 

Panel B:  ri = λ0 + λ1lnMEi + λ2PRi + λ3𝑇𝐶𝑆i + ei 

lnME -0.039 -0.033 -0.021 0.003 0.020  -0.028 -0.017 -0.001 0.003 -0.001 

 (-0.98) (-0.83) (-0.52) (0.07) (0.44)  (-0.63) (-0.37) (-0.01) (0.05) (-0.01) 

PR 0.887*** 0.955*** 1.137*** 1.122** 0.855  0.676*** 0.526*** 0.389* 0.375 0.267 

 (3.34) (3.21) (2.79) (2.22) (1.51)  (3.47) (2.60) (1.72) (1.50) (0.96) 

TCS -0.160 -0.456 -1.386*** -2.669*** -3.390***  -1.356*** -1.913*** -2.796*** -3.074*** -2.916*** 

 (-0.49) (-1.23) (-3.29) (-4.65) (-4.43)  (-2.76) (-3.06) (-3.50) (-3.60) (-3.32) 

_cons 0.583 0.416 -0.063 -0.731 -1.129  0.058 -0.215 -0.666 -0.802 -0.706 

 (1.18) (0.81) (-0.11) (-1.16) (-1.54)  (0.10) (-0.32) (-0.88) (-1.04) (-0.90) 

TCS  Risk Premium 0.016 0.051 0.110 0.153 0.157  0.129 0.153 0.162 0.146 0.126 

Fraction of Momentum  Profit Explained         

  0.073 0.179 0.405 0.565 0.658   0.223 0.362 0.496 0.478 0.581 
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Table 3.5  The relationship between portfolio returns and expected tail coskewness 

Panel A reports time-series average slopes and the percentage of slopes that are statistically significant at the 5% 

level (in parentheses), from monthly cross-sectional regressions to predict tail coskewness (a first-stage 

regression):  

𝑇𝐶𝑆𝑝,𝑇 = 𝑎0 + 𝑎1𝑙𝑛𝑀𝐸𝑝,𝑇 + 𝑎2𝑃𝑅𝑝,𝑇 + 𝑎3𝜎𝑝,𝑇 +𝜔𝑝,𝑇 

where 𝑇𝐶𝑆𝑝,𝑇  is the tail coskewness estimated for portfolio p based on an expanding window, T, with initial 

sample of January 1945-June 1963 that expands by one month at a time; 𝑙𝑛𝑀𝐸𝑝,𝑇(𝑃𝑅𝑝,𝑇) is the time-series 

average of firm size (prior return) for portfolio p in the expanding window T;  𝜎𝑝,𝑇 is the time-series average of 

the standard deviation of daily returns to portfolio p, computed monthly, in the expanding window T. The daily 

returns and monthly returns to 25 size/momentum portfolios are from the Kenneth French data library. The slopes 

obtained from the first stage regression using the most recent expanding window (ending at month t) are then used 

in the calculation of expected tail coskewness: 

𝐸[𝑇𝐶𝑆𝑝,𝑡+1] = 𝑎0 + 𝑎1𝑙𝑛𝑀𝐸𝑝,𝑇 + 𝑎2𝑃𝑅𝑝,𝑇 + 𝑎3𝜎𝑝,𝑇 

where 𝐸[𝑇𝐶𝑆𝑝,𝑡+1] is the expected tail coskewness of portfolio p for month t+1;  𝑙𝑛𝑀𝐸𝑝,𝑇, 𝑃𝑅𝑝,𝑇 and 𝜎𝑝,𝑇 are 

time-series averaged values based on the most recent expanding window (ending at month t) . 

Panel B reports time-series average slopes and their t-statistics (in parentheses) from monthly FM cross-sectional 

regressions to predict excess returns to 25 size/momentum portfolios, for July 1963 to June 2013,  

𝑟𝑝,𝑡+1 = 𝛾0 + 𝛾1𝐸[𝑇𝐶𝑆𝑝,𝑡+1]+𝛾2𝑙𝑛𝑀𝐸𝑝,𝑡 + 𝛾3𝑃𝑅𝑝,𝑡 +  𝜀𝑖,𝑡+1 

where 𝑟𝑝,𝑡+1 is the monthly excess return for portfolio p; 𝑙𝑛𝑀𝐸𝑝,𝑡 and 𝑃𝑅𝑝,𝑡 are the values of firm size and prior 

returns for portfolio p as at the end of month t. 

 

Panel A: First-stage regression predictors of tail coskewness  

  𝑃𝑅𝑝,𝑇   𝑙𝑛𝑀𝐸𝑝,𝑇   𝜎𝑝,𝑇   F-stat R-square 

Full sample: T={January 1945 - June 1963} To T={January 1945 - May 2013} 

 -0.232 (100%) 0.019 (69.9%) 0.297 (73.2%) 33.309 0.712 

1st subsample: T={January 1945 - June 1963} To T={January 1945 - May 1973} 

 -0.156 (100%) 0.006 (13.3%) 0.195 (51.7%) 8.659 0.448 

2nd subsample: T={January 1945 - June 1973} To T={January 1945 - May 1983} 

 -0.188 (100%) 0.008 (35.8%) 0.118 (34.2%) 15.981 0.560 

3rd subsample: T={January 1945 - June 1983} To T={January 1945 - May 1993} 

 -0.309 (100%) 0.028 (100%) 0.367 (80.0%) 43.534 0.840 

4th subsample: T={January 1945 - June 1993} To T={January 1945 - May 2003} 

 -0.303 (100%) 0.030 (100%) 0.480 (100%) 49.718 0.858 

5th subsample: T={January 1945 - June 2003} To T={January 1945 - May 2013} 

  -0.205 (100%) 0.024 (100%) 0.327 (100%) 48.528 0.854 

 

Panel B: Second-stage regression predictors of returns to size/momentum portfolios 

Reg. 𝐸[𝑇𝐶𝑆𝑝,𝑡+1]   𝑃𝑅𝑝,𝑡   𝑙𝑛𝑀𝐸𝑝,𝑡   _cons   R-square 

1     0.951*** (4.24) -0.060* (-1.67) 0.763** (2.02) 0.472 

2 -5.623*** (-5.65)     -0.828*** (-1.95) 0.224 

3 -5.173** (-2.66) 0.252 (0.87) 0.003 (0.06) -0.837*** (-0.82) 0.565 
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Table 3.6  Time-varying beta for 25 value-weighted size/momentum portfolios (July 1963 to June 2013) 

This table reports the risk characteristics of the 25 value-weighted size/momentum portfolios following bear (Panel A) and bull (Panel B) markets, respectively. A bull market 

occurs when the market cumulative prior return over months t-12 to t-2, is positive, and is a bear market otherwise. TCS is the non-standardized tail coskewness defined in 

equation (4), with a two-tailed α=0.10. 𝛽 is the average slope from univariate regressions of the portfolio excess returns on the excess return to the value-weighted market 

index. 𝛽+ is the upside beta  in equation (5), and  𝛽−  is the downside beta in equation (6). Upside extreme event# (Downside extreme event#) is defined as the number of 

monthly excess return observations which are 3.158 or more standard deviations above (below) the mean, which occurs in one out of every 600 observations for a normal 

distribution. 

  Panel A: Following Bear Markets   Panel B: Following Bull Markets 

  

TCS 𝛽 𝛽+ 𝛽− 

Upside 

Extreme 

Event# 

Downside 

Extreme 

Event# 

 TCS 𝛽 𝛽+ 𝛽− 

Upside 

Extreme 

Event# 

Downside 

Extreme 

Event# 

Small      Loser -0.091 1.717** 1.662** 1.450** 5 1  -0.328** 1.172** 1.013** 1.338** 0 1 

      Mom-2 -0.144 1.201** 1.122** 1.226** 2 3  -0.381** 0.969** 0.804** 1.111** 1 2 

      Mom-3 -0.163* 1.012** 0.846** 1.124** 2 2  -0.429** 0.977** 0.799** 1.161** 1 4 

      Mom-4 -0.163* 0.876** 0.643** 1.043** 1 3  -0.473** 1.082** 0.845** 1.285** 1 4 

      Winner -0.173* 0.956** 0.544** 1.173** 0 1  -0.461** 1.373** 1.094** 1.594** 2 4 

 Size 2      Loser -0.095 1.840** 1.828** 1.499** 3 2  -0.321** 1.238** 1.099** 1.285** 0 2 

      Mom-2 -0.135 1.304** 1.287** 1.279** 2 2  -0.369** 1.018** 0.966** 1.082** 0 2 

      Mom-3 -0.141 1.024** 0.968** 1.048** 2 2  -0.435** 1.032** 0.937** 1.135** 1 4 

      Mom-4 -0.158 0.953** 0.805** 1.055** 1 2  -0.466** 1.119** 0.959** 1.267** 1 4 

      Winner -0.184* 1.028** 0.658** 1.195** 0 2  -0.456** 1.437** 1.163** 1.527** 2 4 

Size 3      Loser -0.092 1.735** 1.696** 1.354** 5 1  -0.271** 1.161** 1.147** 1.085** 0 1 

      Mom-2 -0.119 1.286** 1.314** 1.138** 2 2  -0.356** 0.991** 0.971** 1.033** 0 2 

      Mom-3 -0.141 1.096** 1.058** 1.096** 2 2  -0.409** 0.968** 0.876** 1.020** 0 3 

      Mom-4 -0.149 0.902** 0.827** 0.983** 1 1  -0.502** 1.068** 0.904** 1.206** 0 4 

      Winner -0.170* 0.948** 0.696** 1.060** 0 1  -0.472** 1.386** 1.188** 1.470** 1 4 

Size 4      Loser -0.115 1.825** 1.859** 1.447** 4 2  -0.214** 1.060** 1.052** 0.920** 0 1 

      Mom-2 -0.112 1.361** 1.416** 1.243** 3 2  -0.333** 0.962** 0.987** 0.921** 0 2 

      Mom-3 -0.146 1.079** 1.027** 1.023** 2 2  -0.382** 0.955** 0.952** 0.938** 0 2 

      Mom-4 -0.131 0.937** 0.942** 0.970** 1 1  -0.440** 1.033** 0.984** 1.051** 1 4 

      Winner -0.198* 0.890** 0.637** 1.053** 0 1  -0.464** 1.301** 1.156** 1.359** 1 4 

Large      Loser -0.119 1.735** 2.028** 1.446** 5 4  -0.187* 0.952** 1.081** 0.779** 0 0 

      Mom-2 -0.100 1.212** 1.434** 1.129** 2 3  -0.212** 0.777** 0.874** 0.610** 0 0 

      Mom-3 -0.148 0.955** 0.929** 0.923** 1 2  -0.400** 0.870** 0.919** 0.872** 0 2 

      Mom-4 -0.121 0.766** 0.847** 0.791** 1 1  -0.409** 0.950** 0.994** 0.940** 2 3 

      Winner -0.140 0.736** 0.615** 0.770** 0 0  -0.448** 1.193** 1.106** 1.244** 2 4 

** and * denote t-statistics significant at the 5 percent and 10 percent levels, respectively. 
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Table 3.7  Time-varying beta for 25 value-weighted size/momentum portfolios (July 1963 to June 2013) 

Panel A reports the asymmetric betas, 𝛽+ − 𝛽−, which are the difference between upside and downside betas as 

defined in equations (5) and (6), for our 25 size/momentum portfolios. Panel B shows the average slopes and their 

t-statistics from the monthly cross-sectional regressions to explain excess returns to 25 size/momentum portfolios. 

CS is the non-standardized coskewness defined in equation (3). TCS is the non-standardized tail coskewness 

defined in equation (4), with a two-tailed α=0.10. lnME is the logarithm of average firm size. PR is the cumulative 

prior (2-12) return; _cons is the average intercept from the monthly cross-sectional regressions.  

 

Panel A: Asymmetric beta (𝛽+ − 𝛽−) 

  Loser 2 3 4 Winner All 

Small -0.020 -0.178 -0.282 -0.381 -0.502 -0.272 

2 0.087 -0.004 -0.115 -0.257 -0.415 -0.141 

3 0.232 0.073 -0.062 -0.225 -0.312 -0.059 

4 0.277 0.164 0.045 -0.028 -0.304 0.031 

Big 0.406 0.313 0.047 0.044 -0.171 0.128 

All 0.196 0.073 -0.073 -0.169 -0.341 -0.063 

Panel B: FM regressions  

Regression 1 2 3 4 5 6 7 

(𝛽+ − 𝛽−)   -1.329***   -0.177 1.307*** 

   (-4.57)   (-0.42) (2.78) 

CS  -2.932***   -1.163*   

  (-4.62)   (-1.80)   

TCS -3.144***   -1.601**   -2.771*** 

 (-4.87)   (-2.49)   (-3.45) 

lnME    -0.008 -0.023 -0.045 -0.070 

    (-0.16) (-0.52) (-0.87) (-1.37) 

PR    0.668*** 0.709*** 0.976*** 1.197*** 

    (3.39) (3.80) (4.24) (5.40) 

_cons -0.749** -0.770* 0.575** -0.164 0.088 0.811 -0.184 

 (-2.02) (-1.92) (2.41) (-0.24) (0.13) (1.55) (-0.26) 

 



 

152 
 

Table 3.8  Sub-period and early period analysis using Fama-MacBeth regressions for 25 value-weighted size/momentum portfolios 

The table shows the average slopes and their t-statistics from the monthly cross-section regressions to predict excess returns to 25 size/momentum portfolios, for two separate 

sub-periods (July 1963-June 1983 and July 1983 to June 2013) and one early sub-period (January 1927 to June 1963). The asymmetric beta 𝛽+ − 𝛽− is the difference between 

the upside beta 𝛽+ in equation (5) and the downside beta  β− in equation (6). CS is the non-standardized coskewness defined in equation (3). TCS is the non-standardized tail 

coskewness defined in equation (4), with a two-tailed α=0.10. lnME is the logarithm of average firm size. PR is the cumulative prior (2-12) return; _cons is the average intercept 

from the cross-sectional regressions. 

 

 July 1983 to June2013 (360 Months)  July 1963 to June1983 (240 Months)  January 1927 to June 1963 (438Months) 

(𝛽+ − 𝛽−)       -0.252        0.337         0.540* 

        (-0.47)        (0.96)         (1.96) 

CS     -0.892        -0.974*         -0.496**  

      (-1.36)        (-1.96)         (-2.12)  

TCS   -1.140*        -0.944**         -0.482**   

    (-1.71)        (-2.07)         (-2.03)   

lnME -0.002 0.030 0.027 0.020 

 

-0.148** -0.110 -0.115 -0.173**   -0.180** 

-

0.210*** 

-

0.210*** -0.116** 

  (-0.05) (0.62) (0.55) (0.31)  (-2.25) (-1.50) (-1.63) (-2.54)   (-2.46) (-2.73) (-2.75) (-2.10) 

PR 0.607* 0.430* 0.446* 0.612***  1.468*** 1.251*** 1.193*** 1.732***   0.914* 0.616 0.612 1.493*** 

  (1.95) (1.74) (1.87) (2.73)  (5.38) (4.39) (4.63) (5.58)   (1.88) (1.00) (1.01) (3.92) 

_cons 0.489 -0.368 -0.223 0.468  1.173* 0.997 0.992 1.422**   1.256** 1.529** 1.543** 1.027** 

  (1.07) (-0.39) (-0.23) (0.66)  (1.80) (1.42) (1.43) (2.11)   (2.22) (2.48) (2.50) (2.16) 
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Table 3.9 Fama-MacBeth regressions for 25 size/book-to-market, 25 size/operating profitability, 25 size/investment and 25 size/industry momentum value-weighted 

portfolios  

The table shows the average slopes and their t-statistics (in parentheses) from monthly cross-sectional regressions to predict excess returns to 25 size/book-to-market portfolios 

(regressions 1&2), 25 size/operating profitability portfolios (regressions 3&4), 25 size/investment portfolios (regressions 5&6), and 25 size/industry momentum portfolios 

(regressions 7&8). The first three sets of portfolios are value-weighted and taken from the Kenneth French Data Library, and the 25 size/industry momentum portfolios are the 

value-weighted intersection of five portfolios formed on size and five portfolios formed on prior industry returns (using a 6-month ranking period and a 6 month holding period 

following Moskowitz and Grinblatt: 1999). The sample period is July 1963 to June 2013. lnME is the logarithm of average firm size; lnBM is the logarithm of the book-to-

market ratio; OP is operating profitability; INV is annual growth in total assets; PR is the 6-month cumulative industry return to which the stock belongs; TCS is the non-

standardized tail coskewness defined in equation (4), using a two-tailed α=0.10. 

  

25 size/lnBM    25 size/profitability    25 size/investment    25 size/industry momentum 

  (1) (2)   (3) (4)   (5) (6)   (7) (8) 

lnME -0.056 -0.020   -0.080** -0.038   -0.065 -0.027   -0.051 -0.031 

 (-1.40) (-0.43)  (-2.02) (-0.90)  (-1.49) (-0.54)  (-1.51) (-0.87) 

lnBM 0.241*** 0.216**  -0.002 0.007  0.144 0.125    

 (2.77) (2.54)  (-0.02) (0.06)  (0.89) (0.76)    

OP    0.443** 0.440**  0.049 0.013    

    (2.07) (2.01)  (0.16) (0.04)    

INV    -1.387** -1.445***  -0.504*** -0.540***    

    (-2.58) (-2.64)  (-2.62) (-2.81)    

PR          2.338*** 1.877*** 

          (3.44) (2.89) 

TCS  -1.667***   -1.763**   -1.750***   -1.382** 

  (-2.78)   (-2.58)   (-2.74)   (-2.15) 

_cons 1.084*** 0.060  1.239*** 0.128  1.141*** 0.069  0.697** 0.255 

 (2.72) (0.10)  (3.17) (0.22)  (2.64) (0.11)  (1.97) (0.66) 

r2 0.460 0.504   0.484 0.509   0.497 0.530   0.476 0.548 
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Table 3.10 Fama-MacBeth regressions for 25 international value-weighted size/momentum portfolios (November 1990 to March 2014) 

The table shows the average slopes and their t-statistics from monthly cross-section regressions to predict excess returns to 25 international size/momentum portfolios. This 

dataset for developed markets, for November 1990 to March 2014, is taken from the Kenneth French data library. The 23 developed markets are combined into four regions: 

(i) North America, which includes the United States and Canada; (ii) Japan; (iii) Asia Pacific, including Australia, New Zealand, Hong Kong, and Singapore (but not Japan) 

and (iv) Europe, including Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, and 

the United Kingdom. The size breakpoints for a region are the 3rd, 7th, 13th, and 25th percentiles of that region's aggregate market capitalization. For portfolios formed at the 

end of month t–1, the prior returns are a stock's cumulative return for months t–12 to t–2. The momentum breakpoints for all size quintiles in a region are the 20th, 40th, 60th, 

and 80th percentiles of the prior return for big (top 90% by market cap) stocks in that region. The US one month T-bill rate is used as the risk-free rate; lnME is the logarithm 

of average firm size; TCS is the non-standardized tail coskewness defined in equation (4), with a two-tailed α=0.10; _cons is the average intercept from our cross-sectional 

regressions. 

 

 Global  North America Europe  Japan  Asia Pacific  

 (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) 

lnME -0.067** 0.002 -0.094** -0.048 -0.011 0.054 -0.062 -0.055 -0.028 0.026 

 (-2.21) (0.05) (-2.39) (-1.04) (-0.37) (1.62) (-1.00) (-0.87) (-0.57) (0.51) 

TCS  -4.972***  -2.446***  -4.875***  -0.757  -1.647** 

  (-4.12)  (-2.68)  (-4.82)  (-0.52)  (-2.21) 

_cons 1.093** -2.322** 1.622*** -0.076 0.782 -2.372** 0.448 0.626 1.060 0.161 

 (2.49) (-2.09) (3.06) (-0.07) (1.64) (-2.51) (0.65) (0.94) (1.60) (0.20) 
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Table 3. 11 Fama-MacBeth regressions for 25 UK value-weighted size/momentum portfolios (July 1975 to 

June 2014) 

The table shows the average slopes and their t-statistics from the monthly cross-section regressions to predict 

excess returns to 25 UK value-weighted size/momentum portfolios, taken from the Kenneth French data library. 

This dataset incorporates all stocks traded on the London Stock Exchange from July 1975 to June 2014. The size 

breakpoints are the market caps for NYSE quintiles. For portfolios formed at the end of month t–1, the lagged 

momentum return is a stock's cumulative return for months t–12 to t–2. The momentum breakpoints are the 20th, 

40th, 60th, and 80th percentiles for lagged momentum based on all stocks. The UK three-month Treasury bill rate 

(from The Bank of England) is the risk-free rate.  Asymmetric beta, 𝛽+ − 𝛽−, is the difference between the upside 

beta, β
+

, in equation (5) and the downside beta,  β− , in equation (6). CS is the non-standardized coskewness 

defined in equation (3). TCS is the non-standardized tail coskewness defined in equation (4), with a two-tailed 

α=0.10. lnME is the logarithm of average firm size. PR is the cumulative prior (2-12) return; _cons is the average 

intercept from our cross-sectional regressions. 

 

Regression 1 2 3 4 5 6 7 

(𝛽+ − 𝛽−)   -2.669***    -0.929* 

   (-4.49)    (-1.86) 

CS  -3.619***    -2.399***  

  (-5.27)    (-4.20)  

TCS -3.899***    -2.483***   

 (-5.93)    (-4.58)   

lnME    0.002 0.003 0.006 0.017 

    (0.07) (0.13) (0.26) (0.75) 

PR    1.102*** 0.572 0.559 0.742 

    (2.71) (1.26) (1.23) (1.47) 

_cons 0.009 0.151 0.128 0.009 -0.113 -0.022 -0.130 

 (0.04) (0.66) (0.56) (0.04) (-0.44) (-0.08) (-0.52) 

 

 

 


