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Abstract 
 

Background: Multiple imputation is a widely used approach to handling missing 

data. Despite a growing evidence base for its use, implementation in practical 

settings remains challenging. This thesis considers knowledge gaps in the 

application of multiple imputation for handling missing outcome data. 

 

Research has shown that deleting observations with multiply imputed outcomes 

before analysis can be beneficial when imputation and analysis models are the 

same. However, it is unclear how this approach performs with auxiliary variables, 

which are often available in practice. Another challenge arises when the outcome 

of interest is binary. The use of log binomial regression to produce relative risks is 

common, yet standard methods for imputing binary outcomes involve logistic 

regression or a multivariate normal assumption. It is uncertain whether 

inconsistencies between imputation and analysis models in this setting lead to 

biased or inefficient estimation. Questions also remain concerning the utility of 

multiple imputation in randomised trials. Unlike observational studies, the key 

exposure in randomised trials (randomised group) is always observed and 

independent of covariates for adjustment. If extended follow-up beyond 

completion of a randomised trial is planned, there may be more missing outcome 

data than in the original trial, and the use of eligibility restrictions and separate 

consent processes for participation in extended follow-up may complicate the use 

of multiple imputation. Unfortunately little is known about the extent of missing 

outcome data in this setting. 

 

Aims: Specific aims are to: 

  

1. Evaluate the effect of deleting imputed outcomes prior to analysis in the 

presence of auxiliary variables; 

2. Investigate the performance of multiple imputation when estimating the 

relative risk; 
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3. Assess the utility of multiple imputation in randomised trials; 

4. Summarise the extent of missing outcome data and provide guidance on the 

implementation of multiple imputation in extended follow-up studies. 

 

Methods: The performance of multiple imputation was evaluated using data 

simulation and application to a real clinical trial. To summarise the extent of 

missing outcome data in extended follow-up studies, a systematic review of 

published follow-up studies was undertaken. 

 

Results: Deleting imputed outcomes prior to analysis can lead to bias when the 

imputation model contains auxiliary variables associated with missingness in the 

outcome. For relative risk estimation, standard multiple imputation methods 

introduce bias and tend to produce confidence intervals that are too wide. Multiple 

imputation performs well in randomised trials, but simpler unbiased alternative 

methods for handling missing data are often slightly more efficient. Missing 

outcome data are a considerable threat to the validity of conclusions from 

extended follow-up studies. Eligibility restrictions and separate consent processes 

for participation are commonly employed in this setting, making the 

implementation of multiple imputation more challenging. 

 

Conclusions: This thesis demonstrates the pitfalls of deleting imputed outcomes 

prior to analysis, the need for new methods of imputation when estimating the 

relative risk, and the limitations of multiple imputation for handling missing 

outcome data in randomised trials and extended follow-up studies. These findings 

will help to guide researchers on the appropriate use of multiple imputation for 

handling missing outcome data. 
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1. Introduction 
 

Missing data are a widespread problem in medical research. Defined as values 

that are not available but would have been meaningful for analysis had they been 

observed (1), missing data can result in biased and/or inefficient parameter 

estimates if inadequately handled in the statistical analysis. The validity of any 

statistical approach for handling missing data depends on the process that led to 

the data being missing, termed the "missing data mechanism". Rubin (2) 

introduced three classes of missing data mechanisms: missing completely at 

random (MCAR), missing at random (MAR), and missing not at random 

(MNAR). Data are said to be MCAR if the probability of missing data is unrelated 

to observed or unobserved data. Data are MAR if the probability of missing data 

is unrelated to unobserved data, conditional on observed data. Lastly, MNAR 

occurs when the probability of missing data depends on unobserved data, even 

after taking observed data into account. Although MCAR can be ruled out from 

the observed data, it is not possible to distinguish between MAR and MNAR 

without knowing the missing values. Hence any analysis in the presence of 

missing data relies on untestable assumptions about the missing data mechanism. 

 

1.1. Multiple imputation 
 

Introduced by Rubin (3, 4), multiple imputation (MI) is a flexible and increasingly 

popular statistical approach for handling missing data. The method involves two 

distinct stages. In the first stage, each missing value is replaced by multiple draws 

(݉ > 1) from the posterior predictive distribution of the missing data conditional 

on the observed data, resulting in ݉ complete datasets. In the second stage, the ݉ 

complete datasets are analysed identically using standard complete-data 

techniques, with resulting estimates combined across datasets using rules that 

account for the uncertainty due to missing data. Standard implementations of MI 

assume that data are MAR, although the method can also be applied under an 

assumption that data are MNAR. Provided the assumption about the missing data 
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mechanism is satisfied and models used for imputation and analysis are correctly 

specified, MI produces consistent and asymptotically efficient parameter 

estimates (4).  

 

A key task in applying MI is the specification of an appropriate method for 

generating the imputed datasets. To avoid bias, the model for imputing missing 

values should include all variables involved in the intended analysis in the 

appropriate functional form, accommodating non-linear and interaction terms as 

required (5). It can also be beneficial to include auxiliary variables, which are 

variables not involved in analysis models but added to the imputation model to 

improve estimation. Candidate auxiliary variables are correlates of analysis model 

variables that have missing data, correlates of missingness in those variables, or 

both (6). As well as decisions around the inclusion of variables in the imputation 

model, a general method for implementing MI must be chosen; a variety of 

methods are now available, each with their own strengths and weaknesses. In the 

case of missing outcome data, a choice must also be made about whether to retain 

or delete observations with imputed outcomes from imputed datasets. In the 

complex settings in which MI is typically applied, there is often no consensus in 

the literature to inform these decisions. 

 

1.2. Multiple imputation and missing outcome data 
 

Many of the challenges in implementing MI vary according to the nature of the 

missing data problem. The focus of this thesis is on the practical use of MI to 

handle missing data in outcome variables for analysis, which may or may not be 

accompanied by missing data in exposure variables. Missing outcome data are a 

common problem, particularly in randomised trials and observational studies 

involving longitudinal follow-up of participants. Indeed, in a recent systematic 

review on the use of MI in high impact medical journals, 72% of articles that 

stated which variables were included in the imputation model reported imputing 

missing outcome data (7). 
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In settings where both outcome and exposure variables are subject to missing data 

and interest concerns the estimation of regression coefficients from a generalised 

linear model, a popular alternative to the standard implementation of MI is the 

“multiple imputation, then deletion” (MID) method, proposed by von Hippel (8). 

MID entails imputing missing outcome and exposure values in the conventional 

manner, but then deleting observations with imputed outcomes prior to analysis. 

Provided imputation and analysis models are equivalent and correctly specified, 

MID can offer efficiency advantages over standard MI under a MAR assumption, 

particularly when the number of imputations is small (8). Another argument for 

MID is that it can help to minimise the bias introduced by a misspecified model 

for imputing missing outcomes, although this claim is yet to be supported by 

empirical evidence. A potential limitation of MID is its inability to incorporate 

information from auxiliary variables for the outcome. For a small number of 

imputations, von Hippel showed that the correlation between a single auxiliary 

variable and an incomplete outcome had to be fairly strong for standard MI to 

demonstrate efficiency advantages over MID (8). Unfortunately von Hippel only 

considered the efficiency of estimates in his evaluation of MID, ignoring the use 

of auxiliary variables for bias reduction. Importantly, it was unclear from this 

research whether MID could introduce bias when auxiliary variables associated 

with missing data in the outcome are included in the imputation model. 

 

Another challenge arises when MI is applied in settings where the intended 

analysis has a functional form that is difficult to replicate in the imputation model. 

An important example of this problem is the use of MI for handling missing data 

in a binary outcome when the effect measure of interest is the relative risk. For 

missing data in both outcome and exposure variables, the two standard model-

based methods of MI are fully conditional specification (FCS) (5, 9, 10), also 

known as chained equations or regression switching, and multivariate normal 

imputation (MVNI) (11). FCS involves specifying a series of univariate 

imputation models, one for each variable with missing data, with incomplete 

binary variables typically imputed using logistic regression. MVNI on the other 

hand assumes that all variables in the imputation model follow a multivariate 
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normal distribution. For analysis, the standard approach to estimating the relative 

risk is to fit a generalised linear model with a binomial error distribution and a log 

link, known as the log binomial model. This model assumes a different functional 

form for the relationship between the outcome and exposure variables than that 

involved in imputing outcomes using logistic regression in FCS, or under a 

multivariate normal assumption in MVNI. It is unknown whether inconsistencies 

between imputation and analysis models in this setting could lead to biased or 

inefficient estimation. 

  

As well as challenges in implementing MI in general settings, this thesis considers 

the use of MI in randomised trials, where missing outcome data are often a major 

threat to the validity of group comparisons (12). Unlike observational studies, the 

key exposure in randomised trials (randomised group) is always observed and 

known to be independent of baseline covariates. In addition, missing data tend to 

be restricted to outcome variables in randomised trials, although baseline 

covariates may also be subject to missing data. Under these conditions, other 

methods for handling missing data may be preferable to MI. Should MI be 

adopted, an important consideration in handling missing outcome data is whether 

imputation should be carried out across all randomised participants or whether a 

separate but identical imputation model should be fitted to each randomised 

group. If subgroup analyses are of interest, interaction terms involving 

randomised group should be accounted for during the imputation process to avoid 

biasing interaction tests towards the null (5). In this case, performing imputation 

separately by randomised group can be appealing since it avoids the need to 

specify interaction terms in the imputation model (13-15). Often, though, 

subgroup analyses are not of interest, and it is unclear whether there is any merit 

in undertaking imputation separately by randomised group in this setting. 

 

After the protocol defined completion of a randomised trial, investigators may 

choose to initiate an extended follow-up period to study longer-term impacts of 

the intervention (16). This type of study design is referred to as an “extended 

follow-up study” throughout this thesis. Missing outcome data can be a 
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considerable threat to the validity of group comparisons in this setting. As well as 

increased attrition over time, extended follow-up studies often involve additional 

eligibility restrictions and consent processes for inclusion in follow-up, which can 

further reduce participation rates. An important consideration in applying MI in 

extended follow-up studies is whether ineligible and non-consenting participants 

(where applicable) should be included in the imputation model. This decision 

could depend on the availability of auxiliary variables in the original trial to aid in 

the imputation of outcomes collected during extended follow-up, and the ability to 

satisfy an assumption about the missing data mechanism with the inclusion of 

ineligible and non-consenting participants in the analysis. The population for 

which the parameter of interest is defined (e.g. all randomised versus only those 

satisfying additional eligibility criteria) should also be taken into account when 

implementing MI in extended follow-up studies. Unfortunately discussion of these 

issues is lacking in the current literature and it is unclear how missing data are 

being handled in practice in this context. 

 

1.3. Thesis aim 
 

The overarching aim of this thesis is to address knowledge gaps in the practical 

application of MI for handling missing outcome data. Specific aims are to: 

 

1. Contrast the performance of standard MI and MID when auxiliary variables 

associated with the incomplete outcome are included in the imputation 

model. 

2. Evaluate the use of standard model-based methods of MI for handling 

missing outcome data when the analysis involves the estimation of relative 

risks. 

3. Compare MI with alternative methods for handling missing data in 

randomised trials and explore the merits of imputing separately by 

randomised group in this context. 
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4. Summarise the extent and sources of missing outcome data in extended 

follow-up studies and provide guidance on the implementation of MI in this 

setting. 

 

1.4. Thesis outline 
 

The remainder of this thesis is structured as follows. Chapter 2 provides 

background material on missing data and MI in order to introduce key concepts 

and terminology that will be used throughout the thesis. In Chapter 3, literature on 

the practical use of MI for handling missing outcome data is reviewed to identify 

knowledge gaps and motivate the four specific aims of the thesis, as described 

above. A general description of the methods used to address the thesis aims is also 

provided in this chapter. The four thesis aims are then addressed in sequence 

through Chapters 4 to 7, with publications arising from the research included in 

each chapter. Lastly, a general discussion of results, limitations, suggestions for 

further research and concluding remarks are provided in Chapter 8. 
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2. Missing data and multiple imputation 
 

In this chapter, introductory material on missing data and the MI method is 

presented in order to introduce concepts and terminology that will be used 

throughout the thesis. Section 2.1 provides a background to missing data,   

focusing on key concepts such as the missing data mechanism and the pattern of 

missing data. The MI procedure and its underlying assumptions are then described 

in Section 2.2. 

 

2.1. Missing data 
 

Missing data are defined as values that, for one reason or another, are not 

available, but would have been meaningful for analysis had they been observed 

(1). Despite the best efforts of researchers to collect complete data, missing data 

remain a common problem in medical research. In randomised trials, missing data 

can arise from participants withdrawing from the study, perhaps due to worsening 

of their disease, an adverse reaction to study procedures, or relocating to a new 

area. In longitudinal settings, participants may be lost to follow-up during the 

course of the study, preventing the collection of data at subsequent assessments. 

Individual measures could also be missing, possibly because measuring 

equipment was unavailable or not working correctly, a question was missed, or 

the participant skipped or refused a subtest. These are of course just a few of 

many reasons why missing data arise.  

 

The major concern with missing data is the threat it poses to the validity of study 

findings. In most statistical packages, the default approach for handling missing 

data is to restrict the analysis to participants with complete data on all variables in 

the analysis model, which is known as a complete case analysis. There are two 

major statistical drawbacks with this approach. First, discarding information from 

partially observed cases can lead to a loss of precision in comparison to methods 

that can incorporate this information. Second, a complete case analysis can 

introduce bias if participants with complete data systematically differ from those 
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with incomplete data (14). Statistical drawbacks aside, discarding information 

from partially observed cases is wasteful of the resources devoted to collecting 

that information in the first instance (17, 18). 

 

Given the problems associated with a complete case analysis, a broad range of 

statistical approaches have been developed to more adequately handle missing 

data. These approaches aim to provide valid inference in the presence of missing 

data, that is, to produce consistent estimates with standard errors and confidence 

intervals that appropriately account for sampling variability and uncertainty due to 

missing data (1). The validity of any statistical approach for handling missing data 

depends primarily on the process that led to the data being missing, referred to as 

the missing data mechanism, and the resulting pattern of missing data. These two 

important characteristics for describing missing data are introduced in the 

following sections. 

 

2.1.1. Missing data mechanisms 

 

Broadly, the missing data mechanism describes the process by which data become 

missing. Suppose in a study involving ݊ participants that data are intended to be 

collected on ݌ different variables, all of which will feature in the substantive 

analysis model. Let ܻ = ( ଵܻ, … , ௣ܻ) be a matrix comprising of the complete data 

(i.e. what would be observed in the absence of missing data). Note that some of 

the ݌ variables could be outcome variables and others exposure variables, 

although no distinction is made between variable types at this stage. If some 

observations are missing, ܻ can be partitioned into observed and missing 

components, denoted by ௢ܻ௕௦ and ௠ܻ௜௦௦ , respectively. Finally, let ܯ represent a 

matrix of missing data indicators for ܻ, with ܯ௜௝ = 1 if ௜ܻ௝ is missing and 0 

otherwise (for participant ݅ = 1	to	݊, and variable	݆ = 1	to	݌). The missing data 

mechanism is formally defined as the conditional probability distribution of the 

missing data indicators given the data that were intended to be collected, i.e. 

 Alternatively, to emphasise that this distribution can depend on both .(ܻ|ܯ)ܲ
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observed and missing values of ܻ, the missing data mechanism can also be 

expressed as ܲ(ܯ| ௢ܻ௕௦, ௠ܻ௜௦௦).  

 

Following the framework introduced by Rubin (2), missing data mechanisms can 

be classified into three broad categories, as described below. 

 

1. Missing completely at random (MCAR). The missing data mechanism is 

MCAR, or equivalently data are said to be MCAR, if the probability of 

missing data is unrelated to observed or unobserved data, i.e. ܲ(ܯ|ܻ) = 

 Under this mechanism, participants with complete data are .(ܯ)ܲ

representative of those with incomplete data, and so a complete case 

analysis will result in unbiased estimates. Assuming that data are MCAR is 

a strong assumption to make, however, and one that rarely holds in practice 

(1, 6, 19). 

 

2. Missing at random (MAR). The missing data mechanism is MAR if the 

probability of missing data is unrelated to unobserved data, conditional on 

observed data, i.e. ܲ(ܯ|ܻ) = ܲ(ܯ| ௢ܻ௕௦). MAR is a considerably less 

restrictive and more realistic mechanism than MCAR. Should an analysis 

approach be valid under an assumption that data are MAR, it will also 

produce valid inference when data are MCAR.  

 

3. Missing not at random (MNAR). The missing data mechanism is MNAR if 

the probability of missing data depends on unobserved data, even after 

taking observed data into account. Unlike MCAR and MAR, the missing 

data mechanism ܲ(ܯ|ܻ) needs to be explicitly incorporated into the 

analysis to ensure valid inference when data are MNAR.  

 

It is important to note that the missing data mechanism relates to both the data 

collected and the analysis undertaken. To illustrate, suppose that the probability of 

missing data in ଵܻ is unrelated to unobserved data, conditional on observed data in 

ଶܻ. Thus data in ଵܻ would be considered to be MAR in an analysis incorporating 
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all observed data on ଵܻ and ଶܻ. However, should ଶܻ be omitted from the analysis, 

data in ଵܻ would instead be MNAR. 

 

Provided missing data are unplanned rather than by design, as is assumed 

throughout this thesis, any analysis in the presence of missing data relies on 

untestable assumptions about the missing data mechanism. Although MCAR can 

be ruled out using observed data, for example by identifying predictors of missing 

data using logistic regression, it is not possible to distinguish between MAR and 

MNAR without knowing the values of the missing data. As a result, researchers 

are strongly encouraged to undertake sensitivity analyses to assess the robustness 

of findings to the assumption made about the missing data mechanism in the main 

analysis (1, 13, 17, 19-21). 

 

2.1.2. Missing data patterns 

 

The missing data pattern describes which values in the data are observed and 

which are missing, as defined by the matrix of missing data indicators ܯ. Within 

the missing data literature, a distinction is often made between univariate, 

monotone and arbitrary patterns of missing data (14, 22). Data are said to be 

missing in a univariate pattern when missing data are confined to a single 

variable. A monotone pattern of missing data occurs when the ݌ variables 

intended for collection can be ordered in such a way that, when ௝ܻ is missing for a 

participant, then ( ௝ܻାଵ, … , ௣ܻ) are also missing. The monotone pattern tends to 

arise in longitudinal settings, where drop-out at a given time-point entails missing 

data on variables collected at subsequent assessments. Lastly, if data are missing 

in more than one variable, and these variables cannot be ordered to produce a 

monotone pattern, then they are said to be missing in an arbitrary pattern. 

 

The missing data pattern is important to consider for two reasons. First, it 

determines which statistical approaches may be used, as some approaches for 

handling missing data are only applicable to certain missing data patterns. Second, 

the validity of some statistical approaches can depend both on the broad type of 
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missing data mechanism (i.e. MCAR, MAR, or MNAR) and the missing data 

pattern. For example, a complete case analysis can lead to bias and a loss of 

precision when data are MAR in an arbitrary pattern. However, when data are 

MAR in a univariate pattern in the outcome variable for analysis, a complete case 

analysis is both unbiased and fully efficient (18, 23, 24). 

 

2.1.3. Statistical approaches to handling missing data 

 

A range of alternative statistical approaches to complete case analysis have been 

developed to handle missing data, including single imputation methods, inverse 

probability weighting, likelihood-based methods, and MI. A very brief overview 

of these approaches is provided below (with the exception of MI, which is 

covered in Section 2.2). 

 

Single imputation methods describe any procedure in which missing values are 

replaced with a single imputed value. Widely used methods include mean 

imputation, hot deck imputation, and the baseline or last observation carried 

forward for longitudinal data. Although single imputation methods are easy to 

understand and allow end users to proceed with the analysis as if all data were 

observed, their validity often depends on unrealistic assumptions about the 

missing data mechanism. For example, the last observation carried forward can 

introduce bias when outcome values change following the last observed 

measurement (13). Another concern with single imputation methods is that 

analyses are often conducted as if all data were observed (i.e. by employing 

variance estimators that are only appropriate for complete data), which can lead to 

overstated precision (13, 25).  

 

Inverse probability weighting (IPW) is a modification of complete case analysis 

whereby complete cases are weighted in the analysis according to the inverse of 

the probability of being a complete case. Similar to the use of probability weights 

in the survey sample setting, the basic idea of IPW is to reweight complete 

observations so that they are representative of the entire sample. Provided the 
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model for assigning probability weights is correctly specified, IPW produces valid 

inference when data are MAR (26). However, in its standard implementation, 

IPW can be inefficient, as it discards information from partially observed cases. In 

addition, the method is difficult to apply to arbitrary missing data patterns (26).  

 

Another option for valid inference under a MAR assumption is to use an 

estimation procedure based on the likelihood function of the observed data, for 

example maximum likelihood estimation or Bayesian posterior inference. Rubin 

(2) showed that the missing data mechanism ܲ(ܯ|ܻ) drops out of the likelihood 

function, and hence can be ignored during estimation, provided that data are MAR 

(see (2) for technical details). Although this simplifies the estimation a great deal, 

the likelihood function may remain complex in the presence of incomplete 

observations (6), and so special computational techniques are often required (e.g. 

the expectation-maximisation algorithm for maximum likelihood estimation). As 

well as providing valid inference under a MAR assumption, likelihood-based 

methods are highly efficient (6). Despite their attractive statistical properties, 

likelihood-based methods can be difficult to implement in standard statistical 

software packages, particularly when incorporating information from auxiliary 

variables. Hence they are not as widely used as other approaches to handling 

missing data, most notably MI. 

 

2.2. Multiple imputation 
 

First introduced in the survey sample setting in 1978 (3), MI now has a very large 

bibliography in the medical research literature, including numerous review papers 

and texts (e.g. (4, 11, 27-29)). The popular approach involves two distinct stages. 

In the first stage, each missing value is replaced by ݉ > 1 values drawn from an 

imputation model, a process which results in the generation of ݉ complete 

datasets. The rationale for using ݉ > 1 imputations is to propagate missing data 

uncertainty, a key shortcoming of single imputation methods (without appropriate 

variance correction). In the second stage of MI, the analysis of interest is 

conducted on each complete dataset, with results appropriately combined across 
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datasets to give a single MI estimate. Standard implementations of MI provide 

valid inference when data are MAR, although the approach can also be applied 

under MNAR mechanisms (4). 

 

MI has many appealing features. Arguably the most important is the considerable 

flexibility of the method. As well as its ability to be validly implemented under 

both MAR and MNAR mechanisms for any pattern of missing data, MI enables 

end users to employ virtually any statistical technique appropriate for complete 

data, which makes it widely applicable. Another appealing feature of MI is its 

ability to incorporate information from auxiliary variables, which in the context of 

MI are defined as variables not involved in analysis models but added to the 

imputation model to improve estimation of the missing values. In practice, 

auxiliary variables can lead to noticeable gains in terms of bias reduction and 

increased efficiency (6). Finally, MI procedures are now widely available in most 

major statistical packages, including SAS, Stata and R. 

 

2.2.1. The imputation model 

 

The validity of MI depends primarily on how the imputed values are generated. 

Very broadly, an imputation method should, on average, provide reasonable 

predictions for the missing data and reflect all relevant sources of uncertainty. An 

imputation method that satisfies these conditions and leads to valid inference is 

said to be “proper” (see (4) for technical details). In practice, proper imputations 

tend to be created using Bayesian arguments. Under a MAR assumption, this 

entails drawing imputed values from the posterior predictive distribution of the 

missing data given the observed data. Let ܲ(ܻ|ߠ) denote a parametric model for 

the complete data with population parameters ߠ, and ܲ(ߠ) a prior distribution for 

݇ Independently for .(typically a non-informative prior is specified) ߠ = 1	to	݉, 

Bayesian proper MI proceeds by first drawing ߠ(௞)	from its posterior distribution 

|ߠ)ܲ ௢ܻ௕௦) (where ܲ(ߠ| ௢ܻ௕௦) ∝ )ܲ∫(ߠ)ܲ ௢ܻ௕௦, ௠ܻ௜௦௦|ߠ)݀ ௠ܻ௜௦௦ , see (29)), then 

drawing imputed values for ௠ܻ௜௦௦
(௞)  from its posterior predictive distribution 

ܲ( ௠ܻ௜௦௦| ௢ܻ௕௦,ߠ(௞)). As well as reflecting uncertainty in the imputed values due to 
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prediction error, this process also importantly acknowledges the uncertainty in the 

estimated model parameters. 

 

To ensure valid inference, the method for generating imputed values should also 

preserve associations among variables that will be the subject of subsequent 

analyses. In particular, the imputation model should be “compatible” with the 

analysis model, where compatibility is defined in statistical terms as the existence 

of a joint model that contains both the imputation and analysis models as 

conditionals (30, 31). Effectively this means that the imputation model should 

include all variables in the intended analysis in the appropriate functional form, 

accommodating non-linear and interaction terms as required (5, 11, 30). To 

illustrate the problem of incompatibility, consider an analysis involving the simple 

linear regression of an incomplete exposure on a complete outcome. Failing to 

include the outcome in the imputation model would result in imputed values in the 

exposure bearing no relationship with the outcome, which in the subsequent 

analysis would lead to the regression coefficient being biased towards the null 

(excepting the case where there truly was no association between variables). 

Although compatibility is simple to achieve in some settings (as in the example 

above with the inclusion of the outcome in the imputation model), in others it can 

be quite complex, for example in analyses involving interaction or quadratic terms 

for incomplete exposures (5, 30, 32, 33), survival outcomes (30, 34), or fractional 

polynomials (35). 

 

While the imputation model should include all variables in the intended analysis 

model, it should be noted that the converse is not required (36). As previously 

described, one of the appealing features of MI is the ability to include auxiliary 

variables in the imputation model to assist with the prediction of missing values. 

In this case incompatibility can be beneficial for estimation, both in terms of bias 

reduction and increased efficiency. Hence a general strategy when specifying an 

imputation model is that it should be at least as complex as the intended analysis 

model (6, 11).  
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2.2.2. Multiple imputation inference and Rubin’s rules 

 

Having multiply imputed the missing values from an appropriate imputation 

model, the analysis is then conducted on each of the ݉ complete datasets. Let ܳ 

denote the population parameter of interest, ෠ܳ௞ the estimate of ܳ from the ݇th 

complete dataset and ௞ܹ  the corresponding variance estimate for ෠ܳ௞. Note that 

parameter and variance estimates will differ across the ݉ complete datasets due to 

differences in imputed values. Using Rubin's rules (4), the combined MI estimate 
෠ܳெூ is calculated as the mean of the m estimates, i.e. ෠ܳெூ = 1 ݉⁄ ∑ ෠ܳ௞ .௠

௞ୀଵ  The 

estimated variance is given by var൫ ෠ܳெூ൯ = ܹ + 1)ܤ + 1 ݉⁄ ), where ܹ =

	1 ݉⁄ ∑ ௞ܹ
௠
௞ୀଵ  is the average within-imputation variance and ܤ = (݉−

1)ିଵ ∑ ( ෠ܳ௞ −௠
௞ୀଵ ෠ܳெூ)ଶ the between imputation variance. Assuming ܳ is a scalar 

quantity, for example a regression coefficient, Wald-type significance tests and 

confidence intervals can be obtained using a t-distribution with ݒ = (݉ −

1)[1 + ܹ (1 + ݉ିଵ)ܤ⁄ ]ଶ degrees of freedom. Wald-tests can also be extended to 

handle multivariate ܳ (11). Provided imputation and analysis models are correctly 

specified, estimates derived using Rubin’s rules are both consistent and 

asymptotically efficient (4). 

 

As outlined in White et al. (5), Rubin’s rules can be used to combine any statistic 

that is an estimator of a population parameter, although in some cases a 

transformation may be required to ensure the statistic is approximately normally 

distributed (e.g. for an odds ratio or a standard deviation). In contrast, statistics 

that are not estimators of a population parameter, for example p-values, cannot be 

combined using Rubin’s rules.  

 

2.2.3. Methods for conducting multiple imputation 

 

Following a decision to use MI, a method of imputation needs to be chosen. When 

data are missing in a single variable, a univariate imputation model can be applied 

with the model tailored to the variable being imputed, for example linear 

regression for a continuous variable or logistic regression for a binary variable. If 
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data are missing in a monotone pattern, imputations can be generated using a 

sequence of univariate imputation models, starting from the variable with the least 

missing data and proceeding through to the variable with the most missing data, 

conditioning at each stage on variables imputed earlier in the sequence (4). Again, 

the univariate imputation models can be tailored to the variables being imputed. 

When data are missing in an arbitrary pattern, as is typically the case in practice, 

variables need to be imputed simultaneously using iterative methods. The two 

main approaches for this are joint modelling and FCS, as detailed below. 

 

Joint modelling 

 

Joint modelling involves specifying a parametric joint model for ܻ. Available 

joint models include the multivariate normal model for continuous variables, the 

log-linear model for categorical variables and the general location model for a 

mixture of continuous and categorical variables. Due to the limited applicability 

of alternative joint models, the multivariate normal model is indisputably the most 

popular joint model in practice, with the MVNI procedure now available in most 

major statistical packages. First implemented by Schafer (11), MVNI uses a 

Markov chain Monte Carlo algorithm (known as data augmentation) for 

imputation. Initially, missing values are imputed based on assumed starting 

parameter values for the multivariate normal distribution. These are typically 

obtained from available data using the expectation-maximisation algorithm. Next, 

updated parameter values for the multivariate normal distribution are drawn from 

their posterior distribution based on the observed and imputed data. This iterative 

process of imputing missing values and drawing updated parameter values 

continues until these values converge to a stationary distribution (11, 36). 

Following these “burn-in” iterations, a set of imputed values is taken. In order to 

reduce dependence between imputations, additional iterations are performed 

before the next set of imputed values is obtained. 

 

Due to the strong theoretical underpinnings of joint modelling and the ease of 

specifying imputation models, MVNI is an appealing method when multivariate 
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normality is reasonable. Clearly such an assumption is not always realistic, 

particularly when the imputation model contains skewed or binary variables. For 

skewed data, several authors have recommended transforming variables to better 

approximate normality prior to implementing MVNI (14, 17, 36). In contrast, 

others have found that transformations have little effect on estimation (37) or can 

even increase bias (38). Recent evidence suggests that the linearity of 

relationships between variables, rather than the skewness of marginal 

distributions, is the more important factor to consider before applying a 

transformation (39). In the case of binary variables, continuous imputed values 

obtained through MVNI often need to be classified into categories so that 

statistical methods appropriate for binary data can be applied (e.g. logistic 

regression for a binary outcome). Bernaards et al. (40) investigated several 

classification methods for binary variables and found that MVNI performed well 

in most settings, particularly when an adaptive rounding threshold1 was used to 

classify imputed values. Several other authors have also reported good 

performance with MVNI for binary variables (11, 37, 41). Despite these and other 

promising findings, it remains difficult to make global statements about the 

robustness of MVNI to violations of multivariate normality, whether in the 

specific cases of skewed and binary variables or more generally. 

 

Fully conditional specification 

 

Rather than defining a full joint model for the data, FCS involves specifying a 

series of univariate models, one for each variable with missing data (5, 9, 10). The 

most appealing feature of FCS is the ability to tailor univariate models according 

to the distribution of the variable being imputed. For example, linear regression 

can be used to impute continuous variables, logistic regression to impute binary 

variables, and Poisson regression to impute count variables. Other appealing 

features of FCS include its ability to handle skip questions and, where appropriate, 

                                                
1 The adaptive rounding threshold is based on a normal approximation to the binomial distribution. 
Letting ݌௞ 	denote the mean of a binary (0/1) variable in the ݇th complete dataset and -1 the 
quantile function of the normal distribution, the threshold is given by  ݌௞ −-1(݌௞)ඥ݌௞(1−   .(௞݌
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impose bounds on imputed values by drawing them from truncated predictive 

distributions (9). It is also easy to accommodate non-linear and interaction terms 

within the univariate imputation models. 

 

For each variable with missing data, the FCS algorithm begins by replacing 

missing values with “place holder” values (42), often by way of mean imputation 

or simple random sampling from the observed data. The first variable with 

missing data, ଵܻ say, is then regressed on other variables according to its specified 

univariate model, restricted to participants with observed values of ଵܻ and using 

place holder values for other variables. Missing values in ଵܻ are then replaced by 

simulated draws from their posterior predictive distribution (allowing for 

uncertainty in model parameters). The process is then repeated for the next 

variable with missing data, for example ଶܻ, but this time incorporating imputed 

rather than place holder values for ଵܻ into the estimation. This process continues 

until all incomplete variables have been imputed, which signals the completion of 

a “cycle”. Further cycles are then performed using the most recent imputed values 

in order to stabilise the distribution of parameters governing the imputations, after 

which a single imputed dataset is generated. Additional imputed datasets are 

obtained by independently repeating this process. 

 

Despite being extremely flexible, FCS is not without limitations. One concern 

with the approach is the possibility of specifying univariate models where the 

conditional distributions implied do not correspond to a valid joint distribution. A 

potential consequence is that results could vary according to the ordering of 

regression models within the FCS procedure, which is clearly undesirable. 

Fortunately this issue seems to have little impact on results in practice (9, 10, 41, 

43). Another drawback of FCS is the modelling effort required to generate 

imputed datasets. Since regression models need to be specified for each 

incomplete variable in the imputation model, FCS can become quite time 

consuming, particularly in datasets containing a large number of variables (41). 

Finally, like MVNI, FCS can produce biased results when assumptions of the 
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imputation model are incorrect, for example when skewed variables are imputed 

using linear regression models (41). 
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3. Multiple imputation of missing outcomes and 

thesis aims 
 

Many of the practical challenges in applying MI vary according to the nature of 

the missing data problem. Having provided a general outline of the MI procedure 

in Chapter 2, the thesis now turns to specific challenges in applying MI when 

handling missing outcome data. In this chapter, literature on the practical use of 

MI for handling missing outcome data is reviewed to identify knowledge gaps and 

motivate the four specific aims of the thesis. A brief overview of the methods to 

be used to address the thesis aims is also provided. 

 

3.1. Multiple imputation, then deletion  
 

When missing data are evident in exposure as well as outcome variables, it is well 

known that the outcome should be included in the imputation model to avoid 

biasing associations towards the null (11, 14, 44). Whether imputed outcome 

values should be retained in subsequent analyses is less clear. In an influential 

article, von Hippel (8) proposed a modification to the standard implementation of 

MI that involved deleting imputed outcomes prior to analysis, an approach he 

termed “multiple imputation, then deletion” (MID). Suppose data are collected on 

an outcome variable ܻ and exposure variables ܺ = ( ଵܺ, … ,ܺ௣); note the change 

in notation from previous sections in order to now distinguish between outcomes 

and exposures. MID involves generating imputed values in the usual manner, that 

is, by including both ܻ and ܺ in the imputation model, then discarding 

observations where ܻ has been imputed prior to analysis. The resulting modified 

datasets are then analysed as intended, with parameter estimates and standard 

errors combined across datasets using Rubin’s rules.  

 

von Hippel advocated MID primarily on the grounds of efficiency. Provided that 

the imputation and analysis models are compatible and correctly specified, and 

assuming data are MAR, MID produces unbiased estimates of regression 
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coefficients with a greater precision than that of MI (8) (albeit efficiency gains 

tend to be minor unless the number of imputations is small). von Hippel also 

argued that MID can help to minimise the bias introduced by a misspecified 

model for imputing the missing outcomes, as problematic imputed values are 

removed from the analysis (8). Unfortunately this claimed advantage has not yet 

been supported by empirical evidence. 

 

The rationale for MID is that, following imputation, observations with missing 

outcomes only add noise to the estimation procedure (8, 18). Although this 

assertion is valid when imputation and analysis models are compatible and 

correctly specified, it does not hold when the imputation model contains auxiliary 

variables for improving the prediction of missing outcome values. Importantly, 

while both MI and MID benefit equally from the inclusion of auxiliary variables 

for predicting missing values in ܺ, only MI benefits from auxiliary variables for 

predicting missing values in ܻ (8). The additional information provided by 

auxiliary variables for ܻ may need to be fairly substantial, however, for MI to 

demonstrate efficiency advantages over MID. Using a simulation study, von 

Hippel found that MID was more efficient than MI, provided the correlation 

between a single completely observed auxiliary variable and an incomplete 

outcome did not exceed 0.7, 0.6, and 0.5 for 2, 5, and 10 imputations, respectively 

(8). Based on these results, and noting that auxiliary variables may be less useful 

in practice when they too are subject to missing data, von Hippel concluded that 

MID will typically be a superior strategy relative to MI. 

 

There are two major limitations with von Hippel’s investigation of MID and 

auxiliary variables. First, it is unclear whether MID would maintain similar 

efficiency advantages over MI with a larger number of imputations. Although 

early texts on MI suggest that 10 or fewer imputations are often adequate (11, 25, 

36), more recent texts recommend performing many more (5, 45), and it is not 

uncommon for 50 or more imputations to be used in practice (7). Second, von 

Hippel only considered the use of auxiliary variables for efficiency gains, ignoring 

settings where they might be used instead for reducing bias. In developing high 
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quality imputations, numerous experts have recommended incorporating auxiliary 

variables that are associated with the incomplete variables to be imputed, the 

probability of missing data, or both (5, 6, 11, 46, 47). It is the inclusion of 

auxiliary variables related to the probability of missing data that is important for 

satisfying a MAR assumption and hence for minimising bias; such auxiliary 

variables were not considered in von Hippel’s research. Consequently, it remains 

unclear whether MID could introduce bias not seen with a conventional MI 

approach when auxiliary variables associated with missing data in ܻ are included 

in the imputation model. 

 

The extent to which auxiliary variables in MI can minimise bias has been studied 

extensively. In a landmark study, Collins et al. (6) demonstrated via simulation 

that failure to incorporate information from an auxiliary variable correlated with 

an incomplete variable and with missingness in that variable led to biased 

estimates of regression coefficients following MI. Conversely, adding several 

“junk” auxiliary variables to the imputation model (that were unrelated to the 

incomplete variable) did not adversely impact estimation. Based on these results, 

Collins et al. recommended researchers adopt inclusive strategies when selecting 

auxiliary variables for imputation models. Extending this work, Graham (48) 

observed that the magnitude of bias introduced by omitting an auxiliary variable 

for an incomplete variable depended on a number of factors: the proportion of 

missing data in the incomplete variable, the proportion of missing data in the 

auxiliary variable, the strength of the association between the auxiliary variable 

and the incomplete variable, and the strength of the association between the 

auxiliary variable and missingness in the incomplete variable. As a simple rule of 

thumb, Graham suggested that overlooking an auxiliary variable would lead to 

practically meaningful bias if its correlation with the incomplete variable and with 

missingness in the incomplete variable both exceeded 0.40. Similar results have 

been observed in other studies, with the effects of auxiliary variables ranging from 

little impact on inference (37, 49) through to noticeable reductions in bias and/or 

gains in efficiency (50-53). Of course, one should take care not to incorporate too 
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many auxiliary variables, as an overfit imputation model can result in unstable 

and biased estimates (50, 51). 

 

Assuming a sensible imputation model, the literature indicates that auxiliary 

variables in MI at worst do little harm, and at best can be greatly beneficial for 

estimation. Consequently, a more thorough assessment of the relative merits of 

MID in settings where auxiliary variables for an incomplete outcome are available 

is of practical importance. 

 

Thesis aim 1 

 

The first aim of this thesis is to contrast the performance of MI and MID in 

settings where missing data are evident in both outcome and exposure variables, 

and where auxiliary variables associated with the outcome are included in the 

imputation model. Two types of auxiliary variables will be considered: those 

associated just with the outcome, and those associated with both the outcome and 

missingness in the outcome. The impact of using a large number of imputations 

on the comparison between MI and MID will also be explored. Thesis aim 1 is 

addressed in Chapter 4. 

 

3.2. Multiple imputation for estimating the relative risk 
 

As described previously, the imputation model should include all variables to be 

included in the intended analysis in the functional form required for analysis. 

Although considerable research has focused on the correct specification of 

imputation models when handling missing data restricted to exposure variables, 

for example in analyses involving interaction or quadratic terms for incomplete 

exposures (5, 30, 32, 33), less attention has been paid to challenges associated 

with imputing missing outcome data. A somewhat neglected problem is the use of 

MI for handling missing outcome data when the analysis involves a generalised 

linear model with a non-canonical link function. In this case, it may be difficult to 

replicate the functional form of the analysis model using standard model-based 
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methods of MI, particularly when exposure variables are also subject to missing 

data. An important example of this problem, and the focus of Chapter 5 of this 

thesis, is the use of MI for handling missing data in a binary outcome when 

estimating the relative risk. 

 

The relative risk is a summary measure of effect for binary outcome data that is 

often of interest in medical research (54-57). Formally, the relative risk describes 

the probability (or risk) of experiencing an outcome of interest in one group 

relative to the probability in another. Letting ݌ଵ and ݌଴ denote outcome 

probabilities in two groups for comparison, the relative risk is given by ݌ଵ/݌଴. 

Unlike the standard metric for binary outcome data, the odds ratio, defined as 

−ଵ/(1݌] [(ଵ݌ −଴/(1݌] ⁄[(଴݌ , the relative risk is simple to interpret and has the 

attractive statistical property of being collapsible across covariate strata (58). 

Another appealing feature of the relative risk is that, for clustered and longitudinal 

data, marginal (population-averaged) and conditional (subject-specific) parameter 

values are identical (59). 

 

The main drawback of the relative risk is that it can be difficult to estimate. The 

standard approach to estimating the relative risk is to fit a generalised linear 

model with a binomial error distribution and a log link, known as the log binomial 

model (60, 61). Since the log link allows predicted probabilities greater than one, 

convergence problems with this model are not uncommon, particularly for models 

containing continuous covariates or outcomes with high prevalence (60, 61). To 

address failed convergence with the log binomial model, several alternative 

approaches to relative risk estimation have been proposed, including modified 

Poisson regression using a log link and a robust error variance (62), and Cox 

regression with constant time at risk (63). For rare outcomes, where the odds ratio 

approximates the relative risk, another possibility is to estimate relative risks from 

logistic regression models (i.e. by treating the odds ratio as a relative risk). In 

cases where the log binomial model is deemed inappropriate due to apparent 

model misspecification, relative risks can also be estimated by applying marginal 
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or conditional standardisation to predicted probabilities obtained using logistic 

regression (64). 

 

Despite the popularity of the relative risk and the widespread use of MI for 

handling missing data, there has been little research on the application of MI when 

estimating the relative risk. The primary challenge in this setting is replicating the 

functional form of an appropriately specified log binomial model (or equivalent, 

in the event of failed convergence with this model) within the imputation model. 

Suppose data are missing in an arbitrary pattern in outcome and exposure 

variables. Here the use of MI would typically entail a choice between MVNI and 

FCS. As described in Section 2.2.3, MVNI assumes that all variables in the 

imputation model follow a multivariate normal distribution, which for a binary 

outcome variable implies a linear relationship between the risk and other variables 

in the imputation model. Following imputation, continuous imputed values in the 

outcome need to be classified back into categories to facilitate analysis via a log 

binomial model. For FCS, standard software uses logistic regression to impute 

binary variables, which for a binary outcome assumes a linear relationship 

between the log odds of the risk and other variables in the imputation model. 

Clearly, both MVNI and FCS employ different assumptions than the intended 

analysis, where the log of the risk is assumed to be linearly related to exposure 

variables. It is unclear whether these differences could lead to biased or inefficient 

estimation. 

 

von Hippel’s MID approach could also be beneficial for relative risk estimation. 

Potential limitations with auxiliary variables aside, a promising feature of MID is 

that it may help to minimise bias introduced by a misspecified model for imputing 

missing outcomes (8). Should the imputation of incomplete binary outcomes 

using FCS or MVNI lead to biased estimation of the relative risk, this claimed 

strength of MID could lessen the bias. Unfortunately, little is known about the 

performance of MID when imputation and analysis models are incompatible, as in 

the current setting. 
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Thesis aim 2 

 

The second aim of this thesis is to evaluate the performance of FCS and MVNI 

for handling missing outcome data when estimating the relative risk. Should these 

methods lead to biased estimates of the relative risk, a further aim is to investigate 

the relative merits of MID in this setting. Thesis aim 2 is addressed in Chapter 5. 

 

3.3. Multiple imputation in randomised trials 
 

The randomised controlled trial (RCT) is widely regarded as the gold standard 

design for assessing the effectiveness of health interventions. Randomisation 

eliminates differential selection bias by approximately balancing prognostic 

factors between groups, which means that a direct causal link between 

intervention and health outcome may be established (19). Of course, as with other 

study designs, the validity of causal conclusions from RCTs can be severely 

affected by missing outcome data.  

 

Given the influence of evidence from RCTs on decisions concerning health policy 

and clinical practice, the topic of missing outcome data in RCTs has received 

considerable attention in the medical literature. Documents of considerable 

importance to biostatisticians include the International Conference on 

Harmonization (ICH) E9 guideline (65) and the National Research Council report 

on the prevention and treatment of missing data in clinical trials (1). Key 

recommendations in these and other guidance documents for RCTs include the 

need to pre-specify statistical methods for handling missing data, to state and 

justify the missing data mechanism assumed in the primary analysis, and to assess 

the robustness of findings to assumptions about the missing data mechanism in 

sensitivity analyses. Researchers should also detail the population parameter of 

interest, otherwise known as the estimand, by carefully defining both the outcome 

measure and the target population in which the outcome measure is defined (1, 66, 

67).  
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This thesis focuses on the performance of MI for estimating treatment effects 

according to the intention to treat (ITT) principle, or equivalently, estimating the 

ITT estimand. For a given outcome, the ITT estimand is defined as the average 

effect of randomisation, irrespective of treatment received, over all randomised 

individuals (68). The objective of ITT is to maintain the balance in prognostic 

factors achieved by randomisation, which is essential for avoiding selection bias 

and establishing causation (69, 70). Analysis under the ITT principle is generally 

recommended as the preferred approach for evaluating the effectiveness of health 

interventions. According to the 2010 CONSORT statement, “to preserve fully the 

huge benefits of randomisation we should include all randomised participants in 

the analysis, all retained in the group to which they were allocated” (70). In a 

similar vein, the European Medicines Agency states that the ITT principle “is of 

critical importance as confirmatory clinical trials should estimate the effect of the 

experimental intervention in the population of patients with greatest external 

validity and not the effect in the unrealistic scenario where all patients receive 

treatment with full compliance to the treatment schedule and with a complete 

follow-up as per protocol” (71). 

 

In evaluating the utility of MI for an ITT analysis, it is important to first consider 

whether missing outcomes should be imputed under ITT. Although some 

researchers have argued that imputation is necessary in order to include all 

randomised participants in the analysis (70, 72, 73), others have argued that an 

ITT analysis need only provide a valid estimate of the ITT estimand (1, 20, 74); 

whether or not such an analysis involves the imputation of missing outcomes is 

inconsequential. Given recent commentary on the importance of defining and 

validly estimating the estimand of interest (1), and noting that current guidance 

documents for RCTs do not strictly recommend imputing missing outcomes, it 

seems the prevailing view is that an ITT analysis need only provide a valid 

estimate of the ITT estimand. This is important as it means that the utility of MI 

must be judged solely on its ability to estimate the ITT estimand. Equivalently, 

statistical approaches that do not involve imputation, for example likelihood-
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based methods, can be recommended over MI should they demonstrate superior 

statistical properties in estimating the ITT estimand. 

 

The considerable flexibility of MI makes it an attractive option for handling 

missing outcome data in an ITT analysis. It is not uncommon for trialists to 

collect data on a large number of outcome variables. One of the key strengths of 

MI is its ability to handle missing data on a range of different variable types (e.g. 

continuous, binary, count), whether for univariate or multivariate outcomes. An 

added benefit of including all outcomes in a single imputation model is that 

observed associations between related outcomes can aid imputation. Another 

strength of MI is the ease with which auxiliary variables can be added to the 

imputation model. In RCTs, potentially useful auxiliary variables include 

measures of treatment compliance, proxy measures of the outcome, and even 

measures of the intent of participants to attend further follow-up (75). Finally, the 

ability of MI to be implemented under an assumption that data are MNAR makes 

it well suited to undertaking sensitivity analyses around a primary assumption that 

data are MAR (76), and as a primary method of analysis in RCTs where data are 

believed to be MNAR. Given the substantial flexibility of MI, it is not surprising 

that numerous research articles and guidance documents have advocated for its 

use in RCTs (e.g. (1, 12, 13, 47, 71, 77)). 

 

Conversely, some authors have expressed a preference for the use of simpler 

likelihood-based approaches in RCTs (19, 24, 78). Since missing data are more 

likely to be restricted to the outcome in RCTs, specification of an appropriate 

likelihood-based method can be more straightforward than in other research 

settings. For missing data in a continuous multivariate outcome, likelihood-based 

estimation of a linear mixed model is a popular alternative to MI for estimating 

treatment effects under a MAR assumption (79). Although not widely known, 

auxiliary variables can also be incorporated into linear mixed models through 

joint modelling with the outcome (19, 80). For missing data restricted to a 

univariate outcome, the complete case likelihood is equivalent to the likelihood 

function of the observed data, and so a complete case analysis can be viewed as a 
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likelihood-based approach in this case (81). If data in the univariate outcome are 

MAR, the complete case analysis of this outcome is unbiased and fully efficient 

(18, 23, 24). Compared to MI, likelihood-based approaches offer a number of 

advantages: they are quicker to run, more efficient, involve fewer judgements 

during model-fitting, and yield a single unique estimate for a given dataset (19, 

82). In addition, the issue of incompatibility between imputation and analysis 

models is clearly not a concern for analysis with a likelihood-based approach (82). 

 

With the use of MI in RCTs rising dramatically in recent years (7), editors and 

journal reviewers are increasingly requesting to see MI used to handle missing 

data. For missing data restricted to a univariate outcome, there may be a 

reluctance to accept results from a complete case analysis given the shortcomings 

of this approach in general regression settings. Similarly, there is sometimes a 

perception that MI is the only valid option for incorporating information from 

auxiliary variables. However, whether it is reasonable for MI to be viewed as the 

gold standard approach for handling missing outcome data in RCTs is 

questionable. Importantly, results derived in general regression settings supporting 

the use of MI may not be applicable to RCTs, where missing data tend to occur 

primarily in the outcome and where the key exposure (randomised group) is 

always observed and expected to be independent of baseline covariates. With 

limited comparisons between MI and alternatives such as likelihood-based 

methods available in the literature, particularly in the estimation of treatment 

effects according to the ITT principle, a more rigorous investigation of the utility 

of MI in RCTs is needed. 

 

Another uncertainty around the use of MI in RCTs is whether imputation should 

be carried out across all randomised participants or whether a separate but 

identical imputation model should be fitted to each randomised group. If there is 

interest in estimating the effect of treatment within a subgroup, the ICH E9 

guideline recommends the inclusion of an interaction term between the subgroup 

variable and randomised group in the analysis model (65). To avoid biasing the 

interaction test towards the null due to incompatibility between imputation and 



30 

 

analysis models, the interaction term needs to be accounted for during the 

imputation process. Rather than specifying an interaction term within the 

imputation model, several authors have recommended fitting separate but 

identical imputation models to each randomised group (13-15). Assuming the 

sample size is large enough to fit separate imputation models, this strategy is 

appealing due to both its simplicity and its ability to facilitate subgroup analyses 

for any baseline covariate included in the imputation model. Often, though, 

subgroup analyses are not of interest, and it is unclear whether there is any merit 

in undertaking imputation separately by randomised group in such settings. Of 

particular interest is the implementation of MI in settings where interaction effects 

are overlooked in the analysis model in favour of producing an estimate of the 

average effect of treatment across subgroups. 

 

Thesis aim 3 

 

The third aim of this thesis is to evaluate the performance of MI for handling 

missing outcome data in the RCT setting and to explore the merits of imputing 

overall and separately by randomised group. For feasibility, the research will 

focus on scenarios that are commonly encountered in practice, in particular for 

handling missing data in a continuous or binary outcome variable measured once 

or repeatedly over time, and for analysis implemented under a MAR assumption. 

Thesis aim 3 is addressed in Chapter 6. 

 

3.4. Multiple imputation in extended follow-up studies 
 

Extended follow-up studies based on RCTs play an important role in assessing the 

longer term impacts of health interventions. Depending on the research setting, 

investigators may choose to initiate an extended follow-up period to learn more 

about disease progression, long term safety, the maintenance of early effects, or 

effects on longer-term, more clinically meaningful endpoints (16, 83, 84). A key 

benefit of initiating an extended follow-up study after the completion of an RCT 

is the cost saving associated with using an already established cohort. Given the 
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substantial investment involved in setting up a trial cohort and providing 

treatment, it is not surprising that many RCTs do eventually transition to extended 

follow-up studies (16). 

 

Missing outcome data can pose a considerable threat to the validity of findings 

from extended follow-up studies. Compared to standard RCTs, the longer duration 

of time between randomisation and final outcome assessment in extended follow-

up studies is likely to be associated with higher levels of participant attrition. In 

addition, investigators could choose to impose extra eligibility restrictions for 

inclusion into extended follow-up, for example by only recruiting participants that 

adhered to the protocol in the original RCT, further reducing participation rates. 

Depending on the information provided to participants in the original RCT, a 

separate consent form for entry into extended follow-up may also be required. 

Some participants may be unwilling to consent at this stage. Finally, participants 

may simply fail to provide information about a particular measure during 

extended follow-up. These varied sources of missing data (attrition over time, 

ineligibility, non-consent, and item non-response) could result in a large 

proportion of the original randomised cohort having missing outcome data. 

 

An important consideration in applying MI in extended follow-up studies is 

whether ineligible and non-consenting participants (where applicable) should be 

included in the imputation model. Incorporating the full randomised cohort in the 

analysis preserves the benefits of randomisation, but this is likely to mean a large 

amount of missing data to account for and a possible mixture of missing data 

mechanisms at play, since reasons for missing data could differ between ineligible 

participants, non-consenters, and consenters. Conversely, satisfying an 

assumption about the missing data mechanism might be more feasible if the 

imputation model only included consenting participants, but then the benefits of 

randomisation would be diminished. In choosing a participant group to 

incorporate in the imputation model, important factors to consider might include 

the target population for the chosen estimand (e.g. all randomised for an ITT 

analysis) and the availability of auxiliary variables in the original RCT to aid with 
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the imputation of outcomes collected during extended follow-up. Whether other 

factors might also influence the choice of MI approach is hard to judge as there 

have been no published reports outlining the full scope of the missing data 

problem in this setting. 

 

An informal review of published extended follow-up studies shows differences 

between researchers in how MI is being implemented in this setting. Two studies 

identified in a preliminary search of PubMed (conducted in September 2014) 

failed to indicate whether eligibility restrictions or separate consent processes 

were used (85, 86), making it difficult to understand the reasons for missing data 

during extended follow-up. Among studies that detailed both eligibility 

restrictions and separate consent processes for entry into extended follow-up, MI 

approaches included imputation for consenting participants in a primary analysis 

(87), imputation for all randomised participants in a sensitivity analysis (88), and 

imputation in a sensitivity analysis without any indication of the group for which 

results were imputed (89). In the absence of guidance documents on handling 

missing outcome data in extended follow-up studies, it is possible that other 

imputation strategies would be identified in a more thorough search of the 

literature.  

 

In order to provide recommendations around the use of MI in extended follow-up 

studies, clearly a first step is to gain a better understanding of the missing data 

problem in this setting, particularly in relation to the extent and key sources of 

missing outcome data in this setting. 

 

Thesis aim 4 

 

The fourth aim of this thesis is to review the extent and common sources of 

missing outcome data in recently published extended follow-up studies. Based on 

the findings of this review, a further aim is to provide general recommendations 

around the implementation of MI in this setting. Thesis aim 4 is addressed in 

Chapter 7. 
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3.5. Methods for addressing thesis aims 
 

For thesis aims 1 to 3, the performance of MI is evaluated primarily using 

simulation studies. In these studies, model parameters and missing data 

mechanisms are specified by the researcher, which means that the performance of 

statistical methods can be judged in relation to the known truth (90). Key 

statistical properties evaluated in the simulation studies include bias, measures of 

precision, power, and the coverage of estimated confidence intervals. For thesis 

aims 3 and 4, the performance of MI is also explored through application to data 

from the Docosahexaenoic Acid for the Improvement of Neurodevelopmental 

Outcome in Preterm Infants (DINO) trial (91). In DINO, n=657 preterm infants 

born < 33 weeks gestation were randomised between April 2001 and October 

2005 to receive a high docosahexaenoic acid (DHA) or a standard DHA diet from 

within 5 days of commencing enteral feeds through to term. The initial DINO trial 

concluded following the assessment of neurodevelopmental outcomes in the 

children at 18 months corrected age; later an extended follow-up period was 

initiated to assess neurodevelopmental and growth outcomes in the children at 7 

years corrected age. Ethics approval to use DINO data in this thesis was granted 

by the University of Adelaide Human Research Ethics Committee (approval 

number H-2014-239). Lastly, for thesis aim 4, the extent and common sources of 

missing outcome data in recently published extended follow-up studies, and 

statistical approaches used to handle missing outcome data in this setting, are 

summarised using a systematic review. 

 

Further details on the methods for addressing the thesis aims, including 

descriptions of simulation parameters, additional background information on the 

DINO trial, and the search strategy for the systematic review, are provided in 

subsequent chapters. 
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4. Multiple imputation, then deletion 
 

4.1. Preface 
 

This chapter presents the first of four articles contributing to this thesis. The 

article, published in the American Journal of Epidemiology, contrasts the 

performance of MI and MID when auxiliary variables associated with an 

incomplete outcome are included in the imputation model. Previous research on 

MID only considered the use of auxiliary variables for efficiency gains, whereas 

in practice, auxiliary variables are often used to reduce bias. Another limitation of 

previous work is that comparisons between MI and MID only involved a small 

number of imputations. The purpose of this article is to provide a more 

comprehensive comparison between MI and MID in the presence of auxiliary 

variables. 
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4.3. Article 
 

In this section, I provide the text, tables, figures, and appendices from the 

published manuscript. 

 

4.3.1. Abstract 

 

Multiple imputation (MI) is increasingly being used to handle missing data in 

epidemiologic research. When data on both the exposure and the outcome are 

missing, an alternative to standard MI is the “multiple imputation, then deletion” 

(MID) method, which involves deleting imputed outcomes prior to analysis. 

While MID has been shown to provide efficiency gains over standard MI when 

analysis and imputation models are the same, the performance of MID in the 

presence of auxiliary variables for the incomplete outcome is not well understood. 

Using simulated data, we evaluated the performance of standard MI and MID in 

regression settings where data were missing on both the outcome and the exposure 

and where an auxiliary variable associated with the incomplete outcome was 

included in the imputation model. When the auxiliary variable was unrelated to 

missingness in the outcome, both standard MI and MID produced negligible bias 

when estimating regression parameters, with standard MI being more efficient in 

most settings. However, when the auxiliary variable was also associated with 

missingness in the outcome, alarmingly MID produced markedly biased 

parameter estimates. On the basis of these results, we recommend that researchers 

use standard MI rather than MID in the presence of auxiliary variables associated 

with an incomplete outcome. 

 

4.3.2. Introduction 

 

Missing data are a widespread problem in experimental and observational 

research, leading to biased and inefficient parameter estimates if they are 

inadequately handled during the analysis. Among the more rigorous statistical 

approaches to handling missing data, multiple imputation (MI) has been widely 
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adopted due to its flexibility and relative ease of implementation (17, 29). First 

introduced by Rubin (4), MI uses a statistical model fitted to the observed data to 

estimate (impute) values for the missing data. The imputation process is repeated 

many times to generate multiple complete datasets, which are then analysed 

separately using standard statistical techniques. Finally, results from the multiple 

analyses are combined using Rubin's rules, which appropriately account for the 

uncertainty in the missing data by combining variability within and between 

imputed datasets (4). In its standard implementation, MI provides valid inference 

when data are missing at random (MAR)―that is, when the probability of 

missingness depends only on observed values (2). 

 

Missing data are often evident in the outcome(s) for analysis, especially in studies 

involving participant follow-up. Although MI can be applied when missing data 

are confined to the outcome, it is most valuable when data on exposure variables 

are also missing (18, 92, 93). In addition to standard MI as proposed by Rubin (4), 

a popular method for handling missing data in outcome and exposure variables 

within the MI framework is von Hippel's "multiple imputation, then deletion" 

(MID) approach (8). As of February 11, 2015, there were 232 citations of von 

Hippel’s article in Scopus (Elsevier B.V., Amsterdam, the Netherlands), the 

majority from empirical studies (e.g. (94-101)). As an illustration of the difference 

between standard MI and MID, consider a generalised linear model with 

univariate outcome ܻ and predictors ܺ = ( ଵܺ, … ,ܺ௣), where data are missing in 

both ܻ and ܺ. Suppose also that interest lies only in estimating the parameters 

௒|௑ߠ  that govern the conditional distribution of ܻ given ܺ (e.g. regression 

coefficients). In both standard MI and MID, an imputation model is generated 

including ܻ and all components of ܺ. To ensure that imputation and analysis 

models are consistent and to avoid biasing associations towards independence, 

observed and imputed values of ܻ are used to impute missing values for all 

components of ܺ and vice versa (14, 27, 44). Following imputation, in standard 

MI all of the observed and imputed data for ܻ and ܺ are used in the analysis of 

each of the completed datasets. In contrast, MID excludes (or deletes) cases with 

imputed ܻ’s from the analysis of each of the completed datasets. In other words, 
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analysis using standard MI involves all participants in the study, whereas analysis 

under MID is restricted to participants with observed outcome data. Provided that 

the MAR assumption is valid, the deletion of observations with imputed outcomes 

in MID offers two practical advantages. Firstly, for a finite number of 

imputations, MID has been shown to produce more precise estimates of ߠ௒|௑  than 

standard MI (i.e. smaller standard errors, narrower confidence intervals), although 

efficiency gains tend to be minor unless the number of imputations is small and 

the proportion of missing data is high (8). Secondly, removing observations with 

imputed outcomes from the analysis can help to minimise the bias introduced by a 

misspecified model for imputing the missing outcomes (8). 

 

The rationale behind MID is that following imputation, cases with missing 

outcome data do not contribute any further information about the parameters ߠ௒|௑; 

hence, retaining these cases in the analysis only adds noise to the estimation 

process (8, 18). While this assertion is correct when the imputation and analysis 

models include the same variables (in an appropriate form), in practice these 

models often differ. Indeed, one of the appealing features of the MI framework is 

the ability to incorporate additional "auxiliary" variables into the imputation 

model that are not part of the substantive analysis to improve the prediction of 

missing values (14). In clinical trials, for example, post-randomisation measures 

such as treatment compliance are often used as auxiliary variables. Importantly, 

while both standard MI and MID benefit equally from the inclusion of auxiliary 

variables to improve the prediction of missing values in ܺ, only standard MI 

benefits from the inclusion of auxiliary variables to predict missing values in ܻ 

(8). However, depending on the number of imputations used, the additional 

information provided by an auxiliary variable for ܻ needs to be fairly substantial 

for standard MI to demonstrate efficiency advantages over MID. On the basis of a 

simulation study involving normally distributed variables, von Hippel found that 

MID was more efficient than standard MI when the correlation between a single 

auxiliary variable and the incomplete outcome did not exceed 0.7, 0.6, and 0.5 for 

2, 5, and 10 imputations, respectively (8). It is unclear whether MID would 
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maintain similar efficiency advantages over standard MI with a larger number of 

imputations.  

 

While important, efficiency gains are not the only consideration when identifying 

auxiliary variables for inclusion in imputation models. Arguably the more 

essential role of auxiliary variables is in helping to make the MAR assumption 

which underlies MI more plausible. In developing high quality imputations, 

numerous experts have recommended the inclusion in the imputation model of 

auxiliary variables that are associated with the incomplete variables to be imputed, 

the probability of missing data, or both (e.g.(5, 6, 11, 46, 47)). It is the inclusion 

of auxiliary variables related to the probability of missing data that is important 

for satisfying the MAR assumption. Auxiliary variables related to the probability 

of missing data were not considered in von Hippel's original paper proposing MID 

(8). In a landmark study, Collins et al. (6) demonstrated via simulation that failure 

to incorporate information from auxiliary variables that are correlated with an 

incomplete outcome and with missingness in the outcome leads to biased 

inference in estimating regression coefficients from linear regression models 

following MI. Given the potential for auxiliary variables to reduce bias and 

improve efficiency, they recommended that researchers adopt inclusive strategies 

for selecting auxiliary variables to include in imputation models. These findings 

have important implications for the use of MID in studies where auxiliary 

information is available. Since MID is unable to take advantage of auxiliary 

information for an incomplete outcome, it can be argued that the approach is not 

entirely consistent with the inclusive strategy for variable selection when setting 

up an imputation model. Further, if auxiliary variables are required to satisfy a 

MAR assumption for the outcome, it is unclear whether including these variables 

in the imputation model and then deleting imputed outcomes prior to analysis 

could introduce bias. To our knowledge, these issues have not been investigated in 

the comparison of standard MI and MID. 

 

Our aim in this paper was to evaluate the performance of standard MI and MID in 

regression settings where data are missing for both the outcome and the exposure 
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and where auxiliary variables associated with the outcome are included in the 

imputation model. We hypothesised that the efficiency advantages of MID would 

be less pronounced with a larger number of imputations, and that this approach 

would introduce bias in the estimation of ߠ௒|௑  when the imputation model 

contained auxiliary variables that were additionally associated with the probability 

of missing data on the outcome. 

 

4.3.3. Methods 

 

Simulation study 

 

We evaluated the performance of standard MI and MID in the presence of an 

auxiliary variable associated with an incomplete outcome by extending the earlier 

simulation study of von Hippel. Using the same data generation procedure, we 

investigated the consequences of using a larger number of imputations and 

allowing for missingness in the outcome to depend on an auxiliary variable. 

 

For each simulation scenario, 1,000 complete datasets of size ݊ = 200 were 

created. Initially, two predictor variables ଵܺ and ܺଶ were generated from a 

bivariate standard normal distribution with correlation ߩଵଶ. An outcome ܻ was 

then produced according to the linear regression model ܻ = ߙ + ଵߚ ଵܺ + ଶܺଶߚ +

݁, where ݁ was a normally distributed error term with mean 0 and variance ߪଶ, 

and where the regression parameters (ߚ,ߙଵ,ߚଶ) were set to (1,1,1). The proportion 

of the variance in ܻ explained by the linear regression model (ܴଶ) was fixed by 

setting the variance as ߪଶ = 2(1− ܴଶ)(1 +  ଵଶ)/ܴଶ. Next, a standard normalߩ

auxiliary variable ܼ was generated according to the equation ܼ = ߤ +

 was ߤ ௭௬ was the correlation between ܼ and ܻ and whereߩ ௭௬ܻ/var(ܻ), whereߩ

normally distributed with mean 0 and variance 1−  ௭௬ଶ. In generating completeߩ

datasets,	ܴଶ, ߩଵଶ and ߩ௭௬ were independently varied. Following the simulation 

study of von Hippel (8), we allowed ߩଵଶ and ܴଶ to take the values 0.2, 0.5, and 

0.8, while ߩ௭௬ was set to either 0.1, 0.5, or 0.9. Collectively this resulted in 27 

scenarios with complete data to investigate. 
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Following the generation of complete datasets, values of ܺଶ  and ܻ were 

independently set to missing according to one of two MAR mechanisms. In one 

setting, we replicated the "coordinated missingness" mechanism previously 

considered by von Hippel in which ܺଶ   and ܻ were set to missing independently 

with probability 2݌( ଵܺ), where  is the cumulative distribution function of the 

standard normal distribution. Hereafter we refer to this missing data mechanism as 

"auxiliary independent missingness", since missingness in the outcome is 

conditionally independent of the auxiliary variable ܼ. The motivation for 

investigating this missing data mechanism was to evaluate the efficiency of 

standard MI and MID when a larger number of imputations was used; only 2, 5, 

and 10 imputations were considered previously. In a second setting, we 

considered a new missing data mechanism in which values of ܻ were set to 

missing with probability 2݌([ ଵܺ + ܼ]/var[ ଵܺ + ܼ]). ܺଶ was again set to 

missing with probability 2݌( ଵܺ). Throughout the remainder of the paper, we 

refer to this second missing data mechanism as "auxiliary dependent 

missingness". When setting values to missing, we allowed the overall proportion 

of missing data in both ܺଶ ݌  and ܻ to equal 0.2 or 0.5. Together this resulted in 4 

missing data patterns and 108 simulation scenarios overall. 

 

Imputation and analysis methods 

 

For each simulation scenario, missing values in ܻ and ܺଶ  were imputed using a 

Markov chain Monte Carlo algorithm assuming multivariate normality (11). ܻ, 

ଵܺ, ܺଶ, and ܼ were all included in the imputation model. Under auxiliary 

independent missingness, the expected percentage of incomplete cases was 34.7% 

and 66.7% when the proportion of missing data in ܺଶ  and ܻ was equal to 0.2 and 

0.5, respectively. Based on the rule of thumb that Monte Carlo error should be 

acceptably small when the number of imputations equals the percentage of 

incomplete cases (5), the use of approximately 70 imputations is recommended 

for standard MI. However, since the efficiency advantages of MID are greater 

when the number of imputations is lower (8) and since fewer imputations are 
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common in practice, we chose 50 imputations as a reasonable compromise. 

Following imputation, the 50 complete datasets were analysed directly for 

standard MI and analysed following the deletion of observations with imputed 

outcomes for MID. Thus, for each scenario, standard MI and MID estimates were 

based on the same underlying imputed data. Each imputed dataset was analysed 

by fitting a linear regression model of the form ܻ = ߙ + ଵߚ ଵܺ + ଶܺଶߚ + ݁. Of 

interest were the standard MI and MID estimates and 95% confidence intervals 

for the parameters ߚ ,ߙଵ  and ߚଶ. Inference on individual parameters was obtained 

by combining estimates over the 50 imputed datasets using Rubin's rules (4). 

 

Comparisons 

 

For each simulation scenario, standard MI and MID parameter estimates across 

the 1,000 simulated datasets were summarised. The performance of the two 

approaches was assessed in terms of the bias (defined as the average difference 

between the parameter estimate and the true underlying value used to generate the 

data (ߙ = 	 ଵߚ = ଶߚ = 1)) and the average estimated standard error of the 

parameter estimates. We also report the coverage of the estimated 95% confidence 

intervals, defined as the proportion of 95% confidence intervals that contained the 

true value. Based on 1,000 simulated datasets and a normal approximation to the 

binomial distribution, on 95% of occasions we would expect the coverage to lie 

between 0.936 and 0.964 for a nominal level of 0.95. In addition to summaries for 

each individual simulation scenario, mean values for the bias, average standard 

error, and coverage were also calculated across simulation scenarios for the two 

missing data mechanisms to obtain an overall measure of performance. 

 

All statistical calculations were performed using SAS, version 9.3 (SAS Institute, 

Inc., Cary, North Carolina). Multiple imputation was carried out using the MI 

procedure, while analysis was performed using the GENMOD and MIANALYZE 

procedures. Starting seeds for generating variables, inducing missing data, and 

performing MI were varied across simulation scenarios and recorded so that 

results could be reproduced.  
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Binary variables 

 

To investigate whether the performance of MID depends on variable type, we also 

performed a limited simulation study involving a binary outcome, a binary 

auxiliary variable, and two binary covariates. Details of this additional simulation 

study are outlined in the web appendix (see Section 4.3.6; also available online at 

the journal website). 

 

4.3.4. Results 

 

Table 4.1 summarises the performance of standard MI and MID under the 

auxiliary independent mechanism. Across the 54 simulation scenarios, both 

standard MI and MID exhibited negligible bias (i.e. the range of biases were 

consistent with Monte Carlo error), with coverage probabilities close to nominal 

levels throughout. In most settings, standard MI demonstrated moderate efficiency 

advantages over MID, with overall average standard errors (i.e. averaged across 

the 54 scenarios × 1,000 datasets) for the estimated parameters ߚ ,ߙଵ  and ߚଶ being 

at least 3% smaller with standard MI.  

 

Table 4.1. Mean values for performance measures across 54 scenarios where 

missing data were induced under the auxiliary independent mechanism. 

Imputation method Parameter Biasa Range SE Coverage Range

Standard MI 0.016-  0.001 ߙ to 0.020 0.199 0.946  0.930 to 0.962

ଵ 0.005  -0.023 to 0.042ߚ  0.259 0.946  0.926 to 0.963

ଶ -0.006  -0.054 to 0.023ߚ  0.260 0.946  0.925 to 0.959

MID 0.020-  0.000 ߙ to 0.017 0.213 0.946  0.931 to 0.964

ଵ 0.004  -0.027 to 0.036ߚ  0.274 0.948  0.931 to 0.964

ଶ -0.006  -0.056 to 0.025ߚ  0.269 0.947  0.931 to 0.966
Abbreviations: MI, multiple imputation; MID, multiple imputation, then deletion; SE, standard error. 
a Monte Carlo error for bias in (ߙ,  ଶ)   (0.015, 0.025, 0.025) for standard MI and MID across the 54ߚ,ଵߚ
scenarios. 
 

The efficiency advantages of standard MI under the auxiliary independent 

mechanism depended most strongly on the correlation between the auxiliary 

variable and the outcome (ߩ௭௬), and on the proportion of missing values in ܻ and 

ܺଶ (݌). Table 4.2 compares the performance of the two imputation approaches for 
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different values of ߩ௭௬ when ߩଵଶ = 0.2, ܴଶ = 0.2, and 0.5 = ݌. For ߩ௭௬ = 0.1, the 

average estimated standard errors across the 1,000 imputations for the 3 

parameters were approximately 1% larger using standard MI compared to MID. 

When the correlation ߩ௭௬ was increased to 0.5, standard MI began exhibiting 

efficiency advantages over MID, particularly in estimating ߙ and ߚଵ. In this 

setting, the average estimated standard errors for ߙ and ߚଵ  were approximately 6% 

smaller using MI, and they were 2% smaller for ߚଶ. Finally, for ߩ௭௬ = 0.9, the 

average estimated standard errors were noticeably reduced with standard MI. 

Compared with MID, standard errors for ߚ ,ߙଵ, and ߚଶ were 28%, 27%, and 13% 

smaller using standard MI, respectively. A similar pattern of results was observed 

when the proportion of missing values in ܻ and ܺଶ was 0.2; however, absolute 

differences in precision were less pronounced (results not shown). 

 

Table 4.2. Performance in scenarios where missing data were induced under the 

auxiliary independent mechanism for ߩଵଶ = 0.2, ܴଶ = 0.2, and 0.5 = ݌a. 

        Standard MI           MID 

 ௭௬ Parameter Bias SE Coverage Bias SE Coverageߩ

 0.958 0.393 0.013- 0.954 0.398 0.014- ߙ 0.1

 ଵ 0.018 0.401 0.957 0.019 0.396 0.960ߚ 0.1

 ଶ -0.007 0.388 0.943 -0.007 0.384 0.946ߚ 0.1

 0.946 0.393 0.017 0.948 0.371 0.020 ߙ 0.5

 ଵ 0.012 0.375 0.954 0.009 0.398 0.955ߚ 0.5

 ଶ -0.017 0.371 0.942 -0.015 0.380 0.940ߚ 0.5

 0.956 0.392 0.001 0.951 0.283 0.003 ߙ 0.9

 ଵ 0.008 0.290 0.951 0.005 0.395 0.957ߚ 0.9

 ଶ -0.011 0.325 0.925 -0.012 0.374 0.948ߚ 0.9
Abbreviations: MI, multiple imputation; MID, multiple imputation, then deletion; SE, standard error. 
a Average values across the 1,000 simulations for each scenario. 
 

As demonstrated in Table 4.3, standard MI also performed well under the 

auxiliary dependent mechanism. The absolute bias of standard MI was at most 

0.023 across the 54 simulation scenarios for all three parameters, and the coverage 

probabilities remained close to nominal levels throughout. In contrast, MID 

showed deficiencies when the probability of missing data in the outcome variable 

depended on the auxiliary variable. The average bias and coverage for (ߚ,ߙଵ,ߚଶ) 

across the 54 simulation scenarios was (-0.207, -0.074, -0.017) and (0.812, 0.928, 
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0.947), respectively. The performance of MID suffered most when the proportion 

of missing data in ܻ and ܺଶ was high (0.5), when the correlation between the 

auxiliary variable and the outcome was high (0.9), and when the proportion of 

variance in ܻ explained by the regression model was low (0.2). Table 4.4 shows 

the performance of standard MI and MID under auxiliary dependent missingness 

for different values of ߩ௭௬ when ߩଵଶ = 0.2, ܴଶ = 0.2, and 0.5 = ݌. The bias 

associated with MID was relatively small when ߩ௭௬ = 0.1, although there was 

some evidence of undercoverage in the estimation of ߙ and ߚଶ. For ߩ௭௬ = 0.5, the 

bias in MID estimates was larger, particularly for ߙ and ߚଵ. Finally for ߩ௭௬ = 0.9, 

MID produced substantially biased estimates for ߙ and ߚଵ, with coverage 

dropping to just 0.114 for ߙ. 

 

Table 4.3. Mean values for performance measures across 54 scenarios where 

missing data were induced under the auxiliary dependent mechanism. 

Imputation method Parameter Biasa Range SE Coverage Range

Standard MI 0.014- 0.001- ߙ to 0.023 0.199 0.948 0.937 to 0.962

ଵ 0.002 -0.020 to 0.017ߚ  0.255 0.947 0.932 to 0.962

ଶ -0.004 -0.023 to 0.021ߚ  0.264 0.945 0.933 to 0.957

MID 1.329- 0.207- ߙ to -0.002 0.202 0.812 0.114 to 0.961

ଵ -0.074 -0.544 to 0.008ߚ  0.264 0.928 0.713 to 0.956

ଶ -0.017 -0.114 to 0.012ߚ  0.271 0.947 0.932 to 0.960
Abbreviations: MI, multiple imputation; MID, multiple imputation, then deletion; SE, standard error. 
a Monte Carlo error for bias in (ߙ,  ଶ)   (0.015, 0.025, 0.026) for standard MI and MID across the 54ߚ,ଵߚ
scenarios. 
 

Table 4.4. Performance in scenarios where missing data were induced under the 

auxiliary dependent mechanism for ߩଵଶ = 0.2, ܴଶ = 0.2, and 0.5 = ݌a. 

        Standard MI           MID 

 ௭௬ Parameter Bias SE Coverage Bias SE Coverageߩ

 0.935 0.360 0.137- 0.945 0.400 0.004- ߙ 0.1

 ଵ -0.020 0.376 0.943 -0.076 0.365 0.941ߚ 0.1

 ଶ -0.006 0.399 0.937 -0.008 0.395 0.934ߚ 0.1

 0.585 0.360 0.622- 0.957 0.374 0.001 ߙ 0.5

 ଵ -0.009 0.357 0.952 -0.277 0.362 0.883ߚ 0.5

 ଶ 0.001 0.384 0.945 -0.026 0.385 0.935ߚ 0.5

 0.114 0.350 1.111- 0.954 0.283 0.012- ߙ 0.9

 ଵ -0.001 0.282 0.948 -0.478 0.346 0.713ߚ 0.9

 ଶ -0.023 0.330 0.949 -0.114 0.362 0.955ߚ 0.9
Abbreviations: MI, multiple imputation; MID, multiple imputation, then deletion; SE, standard error. 
a Average values across the 1,000 simulations for each scenario. 



47 

 

To more accurately demonstrate the bias introduced by MID in the presence of an 

auxiliary variable associated with the outcome and with missingness in the 

outcome, we performed additional simulations for ߩଵଶ = 0.2 and ܴଶ = 0.2, where 

we varied the correlation between the auxiliary variable and the outcome (ߩ௭௬) in 

increments of 0.1. The performance of standard MI and MID in estimating ߙ and 

 ଵ were closeߚ ଵ are plotted in Figure 4.1. As shown in Figure 4.1A, estimates ofߚ

to the true value for both standard MI and MID when the proportion of missing 

data in ܻ and ܺଶ was 0.2. However, when the proportion of missing data in ܻ and 

ܺଶ was increased to 0.5, MID exhibited bias, even for small values of ߩ௭௬, with 

the magnitude of the bias increasing linearly with the correlation ߩ௭௬. A similar 

pattern of results was observed for ߙ (Figure 4.1B), although for this parameter 

MID also exhibited some bias when the proportion of missing data in ܻ and ܺଶ 

was 0.2. 

 

In line with results for continuous outcomes, standard MI performed well when 

missing data in a binary outcome depended on an auxiliary variable, but 

coefficient estimates in a logistic regression model were biased with MID (see 

web appendix, Table 4.5). Once again the magnitude of the bias of MID depended 

on the strength of the association between the outcome and the auxiliary variable. 
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Figure 4.1. Bias under the auxiliary dependent mechanism in the estimation of ߚଵ 

(A) and ߙ (B) for ߩଵଶ = 0.2 and ܴଶ = 0.2. Correlation on the x-axis represents the 

correlation between the outcome ܻ and the auxiliary variable ܼ. Results are for 

multiple imputation with 0.2 = ݌ (white squares), multiple imputation with 0.5 = ݌ 

(black squares), “multiple imputation, then deletion” (MID) with 0.2 = ݌ (white 

circles), and MID with 0.5 = ݌ (black circles). 
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4.3.5. Discussion 

 

In this study, we evaluated the performance of standard MI and MID when the 

imputation model was enriched by auxiliary information for the incomplete 

outcome. In line with previous results, both standard MI and MID exhibited 

negligible bias in estimating regression parameters when an auxiliary variable 

associated with the incomplete outcome, but not with missingness in the outcome, 

was added to the imputation model. We have now demonstrated that when the 

auxiliary variable is also related to missingness in the outcome and hence is 

required in the imputation model to satisfy the MAR assumption, MID produces 

biased estimates of regression parameters, whereas standard MI does not. These 

results have important implications for the use of MID in applied research. 

 

When the auxiliary variable was unrelated to missingness in the outcome, results 

demonstrated that the precision of MID was only marginally better than that of 

standard MI for a weak correlation between the auxiliary variable and the 

outcome. Conversely, standard MI was noticeably more efficient for moderate-to-

strong correlations between the auxiliary variable and the outcome. The results are 

in line with those observed previously for 10 or fewer imputations (8), however, 

in our study, the efficiency advantages of standard MI were greater with 50 

imputations. This suggests that the intended number of imputations is an 

important factor to take into account when choosing between standard MI and 

MID based solely on efficiency considerations. Although early texts on MI 

suggested that 10 or fewer imputations are usually adequate (25, 27, 36), more 

recent recommendations state that the number of imputations should be much 

larger (i.e. 20 to 100) (5, 45). Since increasing the number of imputations entails 

greater precision, standard MI with a large number of imputations should be 

preferred over MID if the primary goal is to maximise efficiency. In light of 

continuing improvements in computational power and analytical software, 

standard MI with a large number of imputations should be feasible in most 

practical settings.  
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When missingness in the outcome depended on the auxiliary variable, MID 

produced biased estimates of regression parameters, with the magnitude of the 

bias being positively associated with the amount of missing data and the 

correlation between the auxiliary variable and the outcome. Effectively, MID 

discarded the information about the outcome provided by the auxiliary variable, 

leading to the violation of a MAR assumption that was otherwise satisfied under 

standard MI. The results suggest that MID is not an optimal strategy in the 

presence of auxiliary variables that are associated with missingness in the 

outcome. In our view, failing to exploit the information offered by auxiliary 

variables and potentially introducing serious bias into the analysis for small 

potential gains (or possible losses) in precision is a poor trade-off. This leaves 

researchers with two choices for implementing MI when auxiliary information for 

an incomplete outcome is available: 1) imputing using a model that excludes 

auxiliary variables associated with the incomplete outcome and proceeding with 

MID or 2) incorporating these auxiliary variables into the imputation model and 

employing a standard MI analysis. Given the potential value of auxiliary variables 

for bias reduction and efficiency gains, we believe the latter option is preferable in 

most settings. 

 

Clearly, results based on a restricted simulation study such as this cannot be 

generalised to all applied settings. For example, in this study we did not consider 

scenarios with missingness in auxiliary variables, multiple auxiliary variables, or 

more complex regression models, all of which are common in practice. Further, in 

all simulation scenarios the association between the auxiliary variable and the 

probability of missing data in the outcome was fixed; previous research has shown 

that the strength of this association is an important determinant of the bias 

associated with failing to include an auxiliary variable in the imputation model 

(48). While the simulation study illustrates the potential for introducing bias using 

MID, the extent of this bias will depend on specific characteristics of the 

individual study. Associations involving auxiliary variables may be weaker than 

those considered in this study, and hence the bias introduced by MID may not be 

of practical importance in many settings (6, 48, 49). Alternatively, researchers 
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may have access to a large number of auxiliary variables, which collectively could 

have a dramatic influence on bias and efficiency. Thus, while the bias in 

estimating regression coefficients with 20% missing data was moderate in the 

current study, it could be larger in other settings with similar amounts of missing 

data. 

 

A further limitation of this study is that it only considered a MAR mechanism and 

a correctly specified imputation model. Both conditions may not be met in 

practice. Although a MAR assumption is often plausible, data may instead be 

missing not at random, which occurs when the probability of missingness depends 

on unobserved values (2). Unless missingness occurs by design, it is impossible to 

tell whether data are truly MAR or missing not at random based only on observed 

values. If imputation is performed under a MAR assumption when data are in fact 

missing not at random, in general this will lead to biased inference, although 

auxiliary variables can help to mitigate this bias (6). Since MID is unable to 

incorporate information about an incomplete outcome from auxiliary variables, it 

may be that this approach would produce more biased estimates than standard MI 

when data are missing not at random, although this remains to be investigated. In 

choosing between standard MI and MID, another important consideration is the 

ability to adequately specify the imputation model. One argument for using MID 

is that removing imputed outcomes from the analysis will reduce the bias 

introduced by a misspecified model for imputing outcomes. Whether this is 

important in practice is unclear. Popular methods of imputation such as 

multivariate normal imputation and fully conditional specification are known to 

be fairly robust to model misspecification (e.g.(5, 11, 40, 43)), while ad hoc 

approaches such as predictive mean matching can be used when there is 

uncertainty surrounding relationships between variables in the imputation model 

(5, 41). Thus, even in settings where there is considerable uncertainty in 

specifying an appropriate imputation model, we would still recommend 

proceeding with standard MI when auxiliary information for an incomplete 

outcome is available. 
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In summary, MID can lead to biased estimation when auxiliary variables that are 

associated with missingness in an incomplete outcome are included in the 

imputation model. Once a decision has been made to include auxiliary variables in 

the imputation model, whether to satisfy a MAR assumption or to improve 

precision, we recommend retaining this information in the analysis and using a 

standard MI approach.  

 

4.3.6. Web appendix 

 

Methods 

 

For each simulation scenario, 1,000 complete datasets of size ݊ = 500 were 

created. A larger sample size was considered for binary outcomes to reduce the 

likelihood of observing zero-cells in cross-tabulations involving the outcome. 

Initially, two dependent binary variables ଵܺ and ܺଶ were generated with success 

probability 0.5 and with an odds ratio for their association (i.e. odds[ܺଶ = 1| ଵܺ = 

1]/odds[ܺଶ = 1| ଵܺ = 0]) of 2.25. A binary outcome ܻ was then generated 

according to the logistic regression model logit ܲ(ܻ = 1) = ߙ + ଵߚ ଵܺ +  ,ଶܺଶߚ

where the regression parameters (ߚ,ߙଵ,ߚଶ) were set to (-1, 1, 1). Next, a binary 

auxiliary variable ܼ was generated according to the equation ܲ(ܼ = 1) =  + ܻ߬, 

with values of  and ߬ chosen to give ܼ an overall success probability of 0.5 and 

an odds ratio for the association with ܻ (i.e. odds[ܼ = 1|	ܻ = 1]/odds[ܼ = 1|	ܻ = 0]) 

of either 2, 5, or 10 (three scenarios). Following the generation of complete 

datasets, values of ܺଶ  were set to missing with probability 0.2 + 0.6 ଵܺ. 

Independently values of ܻ were set to missing with probability 0.2 + 0.3 ଵܺ + 0.3ܼ 

(i.e. missing data in ܻ depended on the auxiliary variable ܼ). The missing data 

mechanism resulted in 50% missing data for both ܺଶ  and ܻ.  

 

For each of the three simulation scenarios, missing values in ܻ and ܺଶ  were 

imputed using fully conditional specification (9, 10) with 50 cycles and 50 

imputations. ܻ, ଵܺ, ܺଶ and ܼ were specified as binary variables in the imputation 

model, with ܻ and ܺଶ  imputed using logistic regression models. Following 
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imputation, the 50 complete datasets were analysed directly for standard multiple 

imputation (MI) and analysed following the deletion of observations with imputed 

outcomes for multiple imputation, then deletion (MID). Each imputed dataset was 

analysed by fitting a logistic regression model of the form logit ܲ(ܻ = 1) = ߙ +

ଵߚ ଵܺ +  ଶܺଶ. Of interest were the standard MI and MID estimates and 95%ߚ

confidence intervals for the parameters ߚ ,ߙଵ, and ߚଶ. Inference on individual 

parameters was obtained by combining estimates over the 50 imputed datasets 

using Rubin's rules (4). Performance across the 1,000 simulated datasets for each 

parameter was summarised using the bias, average estimated standard error and 

coverage. All statistical calculations were performed using SAS version 9.3 (SAS 

Institute, Inc., Cary, North Carolina).  

 

Results 

 

Table 4.5 summarises the performance of standard MI and MID for the 3 

simulation scenarios for binary outcomes. In line with results for continuous 

outcomes, standard MI performed well when missing data in the binary outcome 

depended on the auxiliary variable. Bias was negligible for all parameters across 

all scenarios, and coverage probabilities remained close to nominal levels 

throughout. In contrast, MID produced biased parameter estimates of ߙ and ߚଵ, 

with the magnitude of bias increasing with the strength of the association between 

the auxiliary variable and the outcome. Coverage probabilities and standard errors 

for these parameters also suffered with MID. Of note, MID exhibited negligible 

bias in estimating ߚଶ. This finding is not unexpected given the symmetrical 

properties of the odds ratio and the missing data mechanism considered. Since the 

probability of missing data in our example depended on ଵܺ and ܻ (via the 

auxiliary variable ܼ) but not ܺଶ, an analysis restricted to cases with complete data 

would be expected to provide an unbiased estimate of ߚଶ (102). In terms of 

precision, average standard errors for ߚଶ were larger with MID than with standard 

MI, as seen for the estimation of ߙ and ߚଵ. 
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Table 4.5. Performance in scenarios for a binary outcomea. 

       Standard MI          MID 

ܱܴ௭௬  Parameter Biasb SE Coverage Biasb SE Coverage 

2  -0.012 0.242 0.955 -0.094 0.242 0.944 

2 β1 0.013 0.304 0.946 -0.055 0.305 0.942 

2 β2 -0.004 0.362 0.955 -0.002 0.364 0.957 

5  -0.018 0.241 0.954 -0.199 0.246 0.908 

5 β1 0.017 0.294 0.956 -0.130 0.306 0.922 

5 β2 0.005 0.357 0.951 0.007 0.367 0.957 

10  -0.007 0.235 0.949 -0.252 0.246 0.868 

10 β1 0.005 0.283 0.948 -0.208 0.307 0.894 

10 β2 0.009 0.346 0.955 0.011 0.365 0.956 
Abbreviations: ܱܴ௭௬, odds ratio for the association between ܼ and ܻ; MI, multiple imputation; MID, multiple 
imputation, then deletion; SE, standard error. 
a Average values across the 1,000 simulations for each scenario. 
b Monte Carlo error for bias in (ߙ,  .ଶ)   (0.008, 0.010, 0.011) for standard MI and MID across the 3 scenariosߚ,ଵߚ

 

*** End of published article *** 

 

4.4. Additional discussion 
 

Another possible method for handling missing outcome data within the MI 

framework that was not mentioned in the published article is to delete 

observations with missing outcomes prior to fitting the imputation model, an 

approach termed “deletion, then multiple imputation” (DMI) (8). In the absence of 

auxiliary variables, von Hippel found that DMI was marginally more biased and 

less efficient than MID across a range of simulation scenarios where data were 

MAR in the outcome and exposure variables. However, in settings where 

participants with missing outcome data tended to have complete data on exposure 

variables, and vice versa, DMI performed considerably worse than MID in terms 

of bias and precision (8). Based on these results, von Hippel discouraged the use 

of DMI in practice, and subsequently this approach was not considered when the 

article in this chapter was conceived. More recently, Kontopantelis et al. (103) 

evaluated imputation strategies for handling missing outcome data and observed 

little difference in performance between DMI, MID, and MI, both in the absence 

of auxiliary variables and in settings where a single auxiliary variable was used 

for efficiency gains (but not bias reduction). Based on these results, the authors 

concluded that the choice of imputation approach makes little difference in 
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practice; the important thing is that the outcome is included in the imputation 

model. In light of this recent recommendation, an additional investigation into the 

performance of DMI in the presence of auxiliary variables for the outcome seems 

warranted. 

 

The statistical properties of DMI were evaluated via simulation using the data 

generation procedures and missing data mechanisms from the main article (see 

Section 4.3.3). Results obtained for DMI were then compared with findings for 

MID and standard MI. Under the auxiliary independent mechanism, DMI 

produced unbiased parameter estimates that were slightly less efficient than 

corresponding MID estimates (which were also unbiased). Compared to MID, 

average estimated standard errors for ߚ ,ߙଵ, and ߚଶ were approximately 2.1%, 

1.0%, and 0.4% larger with DMI, respectively. However, like MID, DMI was at 

times substantially less precise than standard MI. As illustrated in Figure 4.2 for 

the parameter ߚଵ, where ߩଵଶ = 0.2, ܴଶ = 0.2, and 0.5 = ݌, standard MI exhibited 

noticeable efficiency advantages over DMI (and MID) as the correlation between 

the outcome and the auxiliary variable (ߩ௭௬) increased to 0.9. Interestingly, 

average estimated standard errors for DMI and MID appeared invariant to ߩ௭௬, 

suggesting that these approaches were not incorporating any of the information 

provided by the auxiliary variable.  
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Figure 4.2. Average estimated standard errors for ߚଵ under the auxiliary 

independent mechanism where ߩଵଶ = 0.2, ܴଶ = 0.2, and 0.5 = ݌. Correlation on 

the x-axis represents the correlation between the outcome ܻ and the auxiliary 

variable ܼ. Results are for MI (black squares), MID (black circles), and DMI 

(white triangles). 

 

Similarities in performance between DMI and MID also extended to settings 

where the probability of missing data in the outcome depended on the auxiliary 

variable, albeit with DMI marginally more biased and less efficient than MID. 

Importantly, both DMI and MID were inferior to standard MI. As evident in 

Figure 4.3 for the parameter ߚଵ, where ߩଵଶ = 0.2, ܴଶ = 0.2, and 0.5 = ݌, the bias of 

both DMI and MID became progressively more pronounced as ߩ௭௬ increased, 

while standard MI remained unbiased. A similar pattern of results was observed 

for 0.2 = ݌, although absolute differences in bias were less pronounced (results 

not shown). 
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Figure 4.3. Bias for ߚଵ under the auxiliary dependent mechanism where ߩଵଶ = 

0.2, ܴଶ = 0.2, and 0.5 = ݌. Correlation on the x-axis represents the correlation 

between the outcome ܻ and the auxiliary variable ܼ. Results are for MI (black 

squares), MID (black circles), and DMI (white triangles). 

 

Collectively, the results from this additional simulation study do not alter the main 

message from the published article, which is that it is preferable to employ 

standard MI when the imputation model contains auxiliary variables for the 

incomplete outcome.  
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5. Multiple imputation for estimating the relative 

risk 
 

5.1. Preface 
 

This chapter presents the second article contributing to this thesis, published in 

BMC Medical Research Methodology. The primary aim of the article is to 

evaluate the performance of standard model-based methods of MI for handling 

missing outcome data when estimating the relative risk. Given the potential for 

bias due to a misspecified imputation model, a further aim is to investigate 

whether removing imputed outcome values using MID improves estimation. 

Given the findings of Chapter 4, any potential benefits of MID for relative risk 

estimation should be weighed against the limitations of this approach in the 

presence of auxiliary variables. 
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5.3. Article 
 

In this section, I provide the text, tables, and appendices from the revised version 

of the manuscript. 

 

5.3.1. Abstract 

 

Background: Multiple imputation is a popular approach to handling missing data 

in medical research, yet little is known about its applicability for estimating the 

relative risk. Standard methods for imputing incomplete binary outcomes involve 

logistic regression or an assumption of multivariate normality, whereas relative 

risks are typically estimated using log binomial models. It is unclear whether 

misspecification of the imputation model in this setting could lead to biased 

parameter estimates.  

 

Methods: Using simulated data, we evaluated the performance of multiple 

imputation for handling missing data prior to estimating adjusted relative risks 

from a correctly specified multivariable log binomial model. We considered an 

arbitrary pattern of missing data in both outcome and exposure variables, with 

missing data induced under missing at random mechanisms. Focusing on standard 

model-based methods of multiple imputation, missing data were imputed using 

multivariate normal imputation or fully conditional specification with a logistic 

imputation model for the outcome.  

 

Results: Multivariate normal imputation performed poorly in the simulation 

study, consistently producing estimates of the relative risk that were biased 

towards the null. Despite outperforming multivariate normal imputation, fully 

conditional specification also produced somewhat biased estimates, with greater 

bias observed for higher outcome prevalences and larger relative risks. Deleting 

imputed outcomes from analysis datasets did not improve the performance of 

fully conditional specification.  
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Conclusions: Both multivariate normal imputation and fully conditional 

specification produced biased estimates of the relative risk, presumably since both 

use a misspecified imputation model. Based on simulation results, we recommend 

researchers use fully conditional specification rather than multivariate normal 

imputation and retain imputed outcomes in the analysis when estimating relative 

risks. However fully conditional specification is not without its shortcomings, and 

so further research is needed to identify optimal approaches for relative risk 

estimation within the multiple imputation framework. 

 
5.3.2. Introduction 

 

The relative risk is a summary measure of effect for binary outcomes that is often 

of interest in medical research (54-57). Unlike the odds ratio, the relative risk is 

simple to interpret and collapsible across covariate strata (58). For rare outcomes, 

relative risks may be estimated from logistic regression models, since the odds 

ratio approximates the relative risk in this case (57). For more common outcomes, 

the odds ratio overestimates the relative risk and so alternatives to logistic 

regression are required to estimate the relative risk. A standard approach to 

estimating the relative risk directly is to fit a generalised linear model with a 

binomial error distribution and a log link, known as the log binomial model (60, 

61). Since the log link allows predicted probabilities greater than one, 

convergence problems with this model are not uncommon, particularly for models 

containing continuous covariates or outcomes with high prevalence (60, 61). 

Several alternative approaches to relative risk estimation have been proposed to 

address failed convergence with the log binomial model, with modified Poisson 

regression using a log link and a robust error variance (62) one of the more 

commonly used methods. 

 

A common feature of epidemiologic investigations is the occurrence of missing 

data, which can result in biased and inefficient parameter estimates if inadequately 

handled during the statistical analysis. Among the more rigorous approaches to 

handling missing data, multiple imputation (MI) (4) has been widely adopted due 
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to its flexibility and availability in statistical software packages (7). MI involves 

fitting a statistical model to the observed data to estimate values for the missing 

data. To incorporate missing data uncertainty, multiple values are imputed for 

each missing observation, producing multiple complete datasets. Following 

analysis, parameter estimates from the multiple datasets are appropriately 

combined to give a single MI estimate. Standard implementations of MI assume 

that data are missing at random (MAR), which occurs when the probability of 

missing data depends only on observed data (2). Provided this assumption is met 

and statistical models used for imputation and analysis are correctly specified, MI 

produces consistent and asymptotically efficient parameter estimates (4). 

  

For arbitrary patterns of missing data (i.e. missing data occurring in any variable, 

in any pattern across variables), the two standard model-based methods of MI are 

fully conditional specification (FCS) (5, 9, 10), also known as chained equations, 

and multivariate normal imputation (MVNI) (11). FCS involves specifying a 

series of univariate imputation models, one for each variable with missing data. 

Standard software uses logistic regression to impute incomplete binary outcomes, 

which assumes a linear relationship between the log odds of the risk and other 

variables in the imputation model. Incomplete covariates can similarly be imputed 

using appropriate univariate models (e.g. linear regression for continuous 

covariates). In contrast, MVNI assumes that all variables in the imputation model 

follow a multivariate normal distribution. For incomplete binary outcomes, an 

additional rounding step is also required following MVNI to convert continuous 

imputed values to binary values suitable for analysis (40). Although FCS and 

MVNI have been evaluated in settings where the goal is to estimate the odds ratio 

using logistic regression (9, 40, 43), little is known about their performance when 

the aim is to estimate the relative risk. Importantly, it is unclear whether imputing 

outcomes using logistic regression in FCS or under a multivariate normal 

assumption in MVNI could lead to biased or inefficient estimation when the 

analysis involves a log binomial model. 

 



64 

 

A popular alternative to the standard implementation of MI for handling missing 

data in both outcome and exposure variables is the “multiple imputation, then 

deletion” approach (MID), where observations with imputed outcomes are 

excluded from the analysis (8). Although MID is not advisable when the 

imputation model contains auxiliary variables for the outcome (i.e. variables that 

are not part of the analysis but which help to predict missing outcome values) 

(104), the approach can offer small efficiency gains over standard MI when 

imputation and analysis models are the same. Of relevance to the estimation of 

relative risks, it has been argued that removing imputed outcomes prior to analysis 

can help to minimise the bias introduced by a misspecified imputation model for 

the outcome (8). Should the imputation of incomplete binary outcomes using FCS 

or MVNI lead to biased estimation of the relative risk, this claimed strength of 

MID could lessen this bias. 

 

This article aims to (i) evaluate the performance of FCS and MVNI for handling 

missing outcome data when estimating the relative risk, and (ii) investigate 

whether deleting imputed outcomes prior to analysis improves the performance of 

FCS and MVNI in this setting. The rest of the article is set out as follows. In the 

next section, we describe the methods of FCS and MVNI in more detail, drawing 

attention to potential limitations. This is followed by an outline of the simulation 

methods used to address the article aims, and a summary of the simulation results. 

Finally, we conclude the article by discussing key findings and providing 

recommendations for practice. 

 

5.3.3. Methods 

 

Fully conditional specification 

 

FCS involves specifying a series of univariate imputation models, one for each 

variable with missing data (5, 9, 10), with models tailored according to the 

distribution of the variable being imputed. For each variable with missing data, 

the FCS algorithm begins by replacing missing values with randomly selected 
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observed values or the mean value for the same variable. Imputations are then 

generated by estimating each univariate model in turn, restricted to participants 

with observed values for the variable being considered and using imputed values 

for other variables; at each stage missing values are replaced by draws from their 

posterior predictive distribution. This process continues until all incomplete 

variables have been imputed and is repeated several times in order to stabilise the 

results, leading to the generation of a single imputed dataset. Additional imputed 

datasets are obtained by independently repeating this process. 

 

Despite its flexibility, FCS is not without limitations. One concern with the 

approach is the possibility of specifying univariate imputation models where the 

conditional distributions implied do not correspond to a valid joint distribution. A 

potential consequence of this is that results could vary according to the ordering 

of univariate imputation models within the FCS procedure. Fortunately this issue 

appears to have little impact on results in practice (9, 10, 41, 43). Another 

drawback of FCS is that it can be time consuming to implement in settings 

containing a large number of incomplete variables, since univariate imputation 

models need to be specified for each incomplete variable in the imputation model.  

 

Multivariate normal imputation 

 

MVNI is a joint modelling approach to imputation where all variables in the 

imputation model are assumed to follow a multivariate normal distribution. First 

implemented by Schafer (11), MVNI uses a Markov chain Monte Carlo algorithm 

(known as data augmentation) for imputation. Initially, missing values are 

imputed based on assumed starting parameter values for the multivariate normal 

distribution. These are typically obtained from available data using the 

expectation-maximisation algorithm. Next, updated parameter values for the 

multivariate normal distribution are drawn from their posterior distribution based 

on the observed and imputed data. This iterative process of imputing missing 

values and drawing updated parameter values continues until these values 

converge to a stationary distribution (11, 36). Following these “burn-in” 
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iterations, a set of imputed values is taken. In order to reduce dependence between 

imputations, additional iterations are performed before the next set of imputed 

values is obtained. 

 

Due to its strong theoretical underpinnings, MVNI is an appealing method when 

multivariate normality holds, but such an assumption is not always realistic, 

particularly when the imputation model contains binary variables. Although 

several authors have reported good performance with MVNI for binary variables 

(11, 37, 40, 41), it remains difficult to make global statements about the 

robustness of this approach to violations of multivariate normality, whether in the 

specific case of binary variables or more generally. 

 

Simulation study 

 

The performance of FCS and MVNI for handling missing outcome data when 

estimating the relative risk was evaluated using data simulation. In order to 

attribute any deficiencies in performance to the method of MI, rather than getting 

caught up in complexities of the data, we focused on relatively simple simulation 

scenarios. 

 

In each simulation scenario, 2000 datasets of size n = 1000 were generated from 

the log binomial model logܲ(ܻ = 1) = ଴ߚ + ଵߚ ଵܺ +  ଶܺଶ, where ଵܺ and ܺଶߚ

were binary or normally distributed exposure variables and ܻ was the binary 

outcome. A relatively large sample size was chosen to avoid zero cells in cross-

tabulations involving the outcome. Following generation of complete datasets, 

values in ܺଶ and ܻ were set to missing according to a specified MAR mechanism 

to produce an arbitrary pattern of missing data in these two variables. Missing 

values were then multiply imputed using FCS or MVNI with ݉ = 20 

imputations. For FCS, missing values in ܻ were imputed using a logistic 

regression model, while imputations for binary or normally distributed ܺଶ were 

generated from a logistic or linear regression model respectively. A total of 20 

cycles were used for each imputation, with the outcome imputed last. For MVNI, 
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missing values were imputed using a Markov chain Monte Carlo algorithm with a 

burn-in of 200 iterations. Following imputation with MVNI, imputed values in the 

outcome were rounded to binary values using adaptive rounding, which has been 

recommended over alternative rounding techniques (40). Finally, complete 

datasets either retaining or deleting imputed outcomes were analysed using log 

binomial models (or modified Poisson regression as appropriate), with parameter 

estimates for ߚଵ and ߚଶ  combined across datasets using Rubin’s rules (4). Since 

the outcome ܻ was generated under the analysis model, any deficiencies in 

performance could be attributed to the method of MI. For reference, a complete 

case analysis (CCA) restricted to participants with complete data on both ܻ and 

ܺଶ was also performed in each simulation scenario. 

 

Simulation study 1: categorical exposures 

 

In simulation study 1, ଵܺ and ܺଶ were generated as binary variables with a 

prevalence of 0.50 and a relative risk for their association (RR( ଵܺ,ܺଶ)) of 2 or 3, 

to induce moderate or strong confounding respectively. In simulating values for 

the outcome ܻ, ߚଵ and ߚଶ were both set to log(2) or log(3) to give conditional 

relative risks (i.e. RR(ܻ, ଵܺ|ܺଶ) and RR(ܻ,ܺଶ| ଵܺ)) of 2 or 3. Lastly the intercept 

 ଴ was chosen to give an overall outcome prevalence of 0.10 or 0.30. Followingߚ

generation of complete datasets, values in ܻ and ܺଶ were set to missing according 

to one of two MAR mechanisms: 

 

1) Coordinated: logit	ܲ(ܻ	missing) = logit	ܲ(ܺଶ	missing) = ߙ + ߣ ଵܺ. 

2) Opposite: logit	ܲ(ܻ	missing) = ߙ + ߣ ଵܺ, logit	ܲ(ܺଶ	missing) = ߙ + 1)ߣ −

ଵܺ). 

 

Under the coordinated mechanism, participants with missing data were often 

missing both ܻ and ܺଶ, whereas under the opposite mechanism, participants with 

missing data tended to be missing either ܻ or ܺଶ (but not both). For both 

mechanisms, the parameter ߣ was set to 1 or 2 to indicate a moderate or strong 

missing data mechanism respectively, while ߙ was chosen to produce 30% 
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missing data in ܻ and ܺଶ. Collectively this resulted in 4 missing data patterns and 

32 simulation scenarios. Following imputation, complete datasets were analysed 

using log binomial models. Provided MVNI was applied with adaptive rounding 

for imputed values in ܺଶ (in addition to ܻ), there were no convergence issues with 

the log binomial model in this setting. 

 

Simulation study 2: continuous exposures 

 

For simulation study 2, ଵܺ and ܺଶ were generated from a bivariate normal 

distribution with mean 0, variance 0.20 and correlation (corr( ଵܺ,ܺଶ)) 0.30 or 

0.70. Again ߚଵ and ߚଶ were set to log(2) or log(3) to give conditional relative risks 

of 2 or 3, while ߚ଴ was chosen to give an outcome prevalence of 0.10 or 0.30. One 

concern when simulating data under a log binomial model with unbounded 

continuous covariates is the possibility of generating ‘success’ probabilities 

greater than one. In choosing the variance for ଵܺ and ܺଶ, we sought to maximise 

the size of standardised conditional relative risks while minimising the occurrence 

of invalid success probabilities. With a variance of 0.20, invalid success 

probabilities were rare, except in settings involving an outcome prevalence of 

0.30 and conditional relative risks of 3 (where 5.4% of success probabilities 

exceeded one). Following previous simulation studies exploring the relative risk 

(e.g. (105)), ଵܺ and ܺଶ were resampled in these instances to ensure valid success 

probabilities. 

  

Letting ܼଵ = ଵܺ/ඥvar( ଵܺ), the coordinated and opposite missing data 

mechanisms were adapted for the continuous setting as follows:  

 

1) Coordinated: logit	ܲ(ܻ	missing) = logit	ܲ(ܺଶ	missing) = ߙ +  .ଵܼߣ	

2) Opposite: logit	ܲ(ܻ	missing) = ߙ + ,ଵܼߣ	 logit	ܲ(ܺଶ	missing) = ߙ −  .ଵܼߣ	

 

In line with simulation study 1, ߣ was set to 1 or 2 and ߙ was chosen to produce 

30% missing data in ܻ and ܺଶ. Again this resulted in 4 missing data patterns and 

32 simulation scenarios. As non-convergence with the log binomial model was a 
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considerable problem in this setting, often occurring for some but not all imputed 

datasets within a single simulation, we elected to analyse all complete datasets 

using modified Poisson regression. 

 

Comparisons 

 

The performance of the MI approaches in estimating parameters ߚଵ and ߚଶ was 

evaluated in terms of bias (average difference between estimate and true value) 

and the coverage of estimated 95% confidence intervals (proportion of 95% 

confidence intervals containing the true value). With 2000 simulated datasets per 

simulation scenario, on 95% of occasions the coverage is expected to lie between 

0.94 and 0.96 for a true coverage of 0.95. For each parameter, the average within-

simulation estimated standard error (denoted the average standard error), the 

standard error of parameter estimates across simulated datasets (denoted the 

empirical standard error), and the mean square error (average squared difference 

between the estimate and the true value) were also derived. All analyses were 

performed in SAS version 9.4 (SAS Institute, Inc., Cary, North Carolina). 

Multiple imputation was carried out using the MI procedure, while analysis was 

performed using the GENMOD and MIANALYZE procedures. The SAS code for 

implementing the simulation study is available in web appendix A (see Section 

5.3.6). 

 

5.3.4. Results 

 

Simulation study 1: categorical exposures 

 

Table 5.1 displays results for the categorical exposure setting in scenarios with a 

strong missing data mechanism (ߣ = 2), where RR( ଵܺ,ܺଶ) = 2 and ߚଵ = ଶߚ =

log(3). Similar results were observed for RR( ଵܺ,ܺଶ) = 3, while absolute biases 

of the imputation approaches were smaller in magnitude when ߣ = 1 and ߚଵ =

ଶߚ = log(2). Full results for all simulation scenarios are available in web 

appendix B (see Section 5.3.6). MVNI performed poorly across the 32 simulation 
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scenarios, consistently producing estimates of ߚଶ that were biased towards the null 

(bias range -0.32 to -0.10). The bias of -0.32 shown in Table 5.1 for an outcome 

prevalence of 0.30 under the coordinated mechanism equates to a relative risk 

estimate of 2.19 compared with the true value of 3; coverage was just 0.55 in this 

scenario. Bias was less of a concern for ߚଵ (bias range -0.08 to 0.07). Deleting 

imputed outcomes following MVNI led to some reduction in absolute bias for ߚଶ, 

although estimates for ߚଵ were moderately biased away from the null with this 

approach (bias range 0.02 to 0.11). Interestingly, average and empirical standard 

errors were noticeably increased by the deletion of imputed outcomes following 

MVNI. Compared to MVNI (without deletion), MVNI with deletion led to small 

increases in the mean square error for ߚଵ, but tended to decrease the mean square 

error for ߚଶ. 

 

In contrast to MVNI, FCS performed fairly well for categorical exposures, with 

absolute bias only exceeding 0.10 for the coefficient ߚଶ in scenarios involving a 

strong coordinated mechanism, an outcome prevalence of 0.30 and where ߚଵ =

ଶߚ = log(3). Excluding simulation scenarios where the bias for ߚଶ exceeded 0.10, 

the coverage of estimated 95% confidence intervals for ߚଵ and ߚଶ remained close 

to nominal levels (range 0.93 to 0.96). Compared to FCS (without deletion), FCS 

with deletion led to small reductions in absolute bias for ߚଶ under the coordinated 

mechanism for an outcome prevalence of 0.30, but slight increases in absolute 

bias under the opposite mechanism for the same outcome prevalence. There was 

little difference in average standard errors, empirical standard errors, and mean 

square errors between FCS and FCS with deletion, although both approaches were 

less precise than MVNI.  
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Table 5.1. Results for ܺଵ and ܺଶ binary, ߣ = 2, RR( ଵܺ,ܺଶ) = 2, and ߚଵ = ଶߚ = log	(3). 

Missing data 
mechanism 

Outcome 
prevalence 

Method Parameter Bias Avg 
SE 

Emp 
SE 

Coverage MSE

Coordinated 0.10 MVNI ߚଵ -0.08 0.30 0.28 0.951 0.08

ଶߚ  -0.28 0.35 0.28 0.896 0.15

MVNI + deletion ߚଵ 0.06 0.30 0.31 0.955 0.10

ଶߚ  -0.09 0.39 0.35 0.956 0.13

FCS ߚଵ 0.02 0.30 0.31 0.955 0.10

ଶߚ  0.00 0.40 0.40 0.962 0.16

FCS + deletion ߚଵ 0.02 0.30 0.31 0.948 0.09

ଶߚ  0.01 0.40 0.40 0.962 0.16

CCA ߚଵ 0.01 0.34 0.34 0.953 0.12

ଶߚ  0.03 0.40 0.40 0.964 0.16

Coordinated 0.30 MVNI ߚଵ 0.03 0.16 0.15 0.952 0.02

ଶߚ  -0.32 0.17 0.16 0.547 0.13

MVNI + deletion ߚଵ 0.05 0.16 0.16 0.948 0.03

ଶߚ  -0.15 0.20 0.19 0.872 0.06

FCS ߚଵ 0.03 0.16 0.16 0.951 0.03

ଶߚ  -0.11 0.20 0.21 0.893 0.05

FCS + deletion ߚଵ 0.02 0.16 0.16 0.955 0.02

ଶߚ  -0.06 0.21 0.21 0.932 0.05

CCA ߚଵ 0.01 0.17 0.17 0.953 0.03

ଶߚ  0.01 0.21 0.22 0.949 0.05

Opposite 0.10 MVNI ߚଵ -0.08 0.29 0.28 0.949 0.08

ଶߚ  -0.26 0.34 0.26 0.908 0.13

MVNI + deletion ߚଵ 0.05 0.30 0.30 0.955 0.09

ଶߚ  -0.07 0.37 0.33 0.964 0.11

FCS ߚଵ 0.01 0.30 0.31 0.952 0.10

ଶߚ  0.03 0.39 0.39 0.963 0.16

FCS + deletion ߚଵ 0.01 0.30 0.31 0.950 0.09

ଶߚ  0.05 0.39 0.40 0.964 0.16

CCA ߚଵ 0.03 0.39 0.41 0.956 0.17

ଶߚ  0.03 0.39 0.39 0.965 0.15

Opposite 0.30 MVNI ߚଵ 0.00 0.16 0.15 0.961 0.02

ଶߚ  -0.20 0.18 0.16 0.805 0.06

MVNI + deletion ߚଵ 0.03 0.16 0.15 0.961 0.02

ଶߚ  -0.02 0.20 0.19 0.952 0.03

FCS ߚଵ 0.00 0.16 0.16 0.951 0.02

ଶߚ  0.01 0.20 0.20 0.948 0.04

FCS + deletion ߚଵ -0.02 0.16 0.15 0.949 0.02

ଶߚ  0.07 0.21 0.21 0.947 0.05

CCA ߚଵ 0.01 0.20 0.20 0.952 0.04

ଶߚ  0.02 0.20 0.20 0.952 0.04
Abbreviations: MVNI, multivariate normal imputation; FCS, fully conditional specification; CCA, complete case 
analysis; Avg SE, average standard error; Emp SE, empirical standard error; MSE, mean square error. 
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Interestingly, CCA exhibited little bias in simulation scenarios involving 

categorical exposures, with a maximum absolute bias of 0.06 for both ߚଵ and ߚଶ. 

As expected, in discarding information from partially observed cases, CCA was 

noticeably less efficient than the MI approaches, especially for the coefficient ߚଵ 

for the fully observed exposure ଵܺ. 

 

Simulation study 2: continuous exposures 

 

To ensure that any deficiencies in performance in the continuous exposure setting 

could be attributed to the method of MI and not the use of modified Poisson 

regression for estimating relative risks, the accuracy of this method was first 

verified in complete datasets (i.e. before values in ܻ and ܺଶ were set to missing). 

Reassuringly, unbiased estimates for ߚଵ and ߚଶ were observed across all 

simulation scenarios (absolute bias ≤ 0.01), with estimated 95% confidence 

intervals demonstrating appropriate coverage (i.e. within the range 0.94 to 0.96) 

(results not shown). 

 

The performance deficits of MI were more pronounced in the presence of 

continuous exposures than categorical exposures. Table 5.2 shows results for 

scenarios with a strong missing data mechanism (ߣ = 2), where corr( ଵܺ,ܺଶ) =

0.70 and ߚଵ = ଶߚ = log(3). A similar pattern of results was observed in other 

simulation scenarios, although absolute biases were smaller in magnitude for ߣ =

1 and ߚଵ = ଶߚ = log(2). As shown in Table 5.2, MVNI produced estimates for ߚଵ 

and ߚଶ that were biased towards the null, with the largest absolute bias observed 

for ߚଵ under the opposite mechanism with an outcome prevalence of 0.10 (relative 

risk estimate of 1.68 compared with the true value of 3). Across all 32 simulation 

scenarios, the median bias of MVNI was -0.21 for ߚଵ (range -0.58 to -0.10) and -

0.12 for ߚଶ (range -0.27 to -0.06). Deleting imputed outcomes following MVNI 

reduced the bias of this imputation method, although moderate bias remained for 

 ଶ in scenarios with an outcome prevalence of 0.30. The cost of this biasߚ

reduction was substantially larger average standard errors in comparison to 

MVNI. In terms of accuracy, deleting imputed outcomes following MVNI led to 
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reductions in the mean square error relative to MVNI without deletion in 26/32 

and 12/32 simulation scenarios for ߚଵ and ߚଶ respectively. 

 

FCS also produced estimates of ߚଵ and ߚଶ that were biased towards the null, albeit 

to a lesser degree than MVNI. The bias of -0.24 shown in Table 5.2 for an 

outcome prevalence of 0.30 under the coordinated mechanism translates to a 

relative risk estimate of just 2.37 versus the true value of 3. In addition to the 

more extreme simulation scenarios, noticeable bias for ߚଶ (absolute bias > 0.10) 

was apparent in simulation scenarios with an outcome prevalence of 0.10, a 

moderate missing data mechanism or where ߚଵ = ଶߚ = log(2). Deleting imputed 

outcomes following FCS tended to decrease the bias of this imputation approach, 

with absolute bias reduced in 28/32 and 26/32 simulation scenarios for ߚଵ and ߚଶ 

respectively. The trade-off for this bias reduction was a substantial loss in 

precision. Across the 32 simulation scenarios, average standard errors were 14.4% 

larger for ߚଵ and 8.1% larger for ߚଶ with the deletion of imputed outcomes 

following FCS compared to FCS alone. A consequence of the substantial loss in 

precision with the deletion of imputed outcomes following FCS was a loss in 

overall accuracy, with the mean square error increased relative to FCS without 

deletion in 30/32 and 26/32 simulation scenarios for ߚଵ and ߚଶ respectively. 

 

Another noteworthy result from the continuous exposure setting was that average 

standard errors were consistently larger than empirical standard errors. Averaged 

across the 32 simulation scenarios, average standard errors for ߚଵ and ߚଶ were 

25.8% and 17.9% larger than empirical standard errors respectively for MVNI, 

14.4% and 11.9% larger for MVNI with deletion, 10.4% and 9.5% larger for FCS, 

and 14.3% and 12.1% larger for FCS with deletion. Discrepancies were most 

prominent in simulation scenarios with an outcome prevalence of 0.30. In 

scenarios where ߚଵ and ߚଶ were estimated with little bias, coverage probabilities 

also tended to be much higher than the nominal level of 0.95. Collectively these 

results suggest that estimated confidence intervals were too wide. 
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Table 5.2. Results for ܺଵ and ܺଶ continuous, ߣ = 2, Corr(ܺଵ,ܺଶ) = 0.70, and ߚଵ =

ଶߚ = log	(3). 

Missing data 
mechanism 

Outcome 
prevalence 

Method Parameter Bias Avg 
SE 

Emp 
SE 

Coverage MSE

Coordinated 0.10 MVNI ߚଵ -0.56 0.48 0.39 0.838 0.47

ଶߚ  -0.22 0.50 0.43 0.958 0.24

MVNI + deletion ߚଵ 0.01 0.58 0.55 0.965 0.30

ଶߚ  -0.03 0.55 0.53 0.959 0.28

FCS ߚଵ -0.08 0.51 0.49 0.961 0.25

ଶߚ  -0.14 0.50 0.48 0.950 0.25

FCS + deletion ߚଵ 0.02 0.58 0.55 0.964 0.30

ଶߚ  -0.04 0.55 0.53 0.961 0.28

CCA ߚଵ 0.01 0.66 0.67 0.943 0.45

ଶߚ  0.01 0.53 0.55 0.936 0.30

Coordinated 0.30 MVNI ߚଵ -0.26 0.26 0.20 0.890 0.11

ଶߚ  -0.27 0.25 0.20 0.859 0.11

MVNI + deletion ߚଵ 0.01 0.31 0.26 0.978 0.07

ଶߚ  -0.11 0.28 0.23 0.963 0.07

FCS ߚଵ -0.09 0.26 0.22 0.962 0.06

ଶߚ  -0.24 0.24 0.21 0.878 0.10

FCS + deletion ߚଵ 0.02 0.31 0.26 0.980 0.07

ଶߚ  -0.12 0.28 0.23 0.963 0.07

CCA ߚଵ 0.02 0.32 0.32 0.951 0.11

ଶߚ  0.00 0.25 0.26 0.950 0.07

Opposite 0.10 MVNI ߚଵ -0.58 0.47 0.37 0.830 0.47

ଶߚ  -0.17 0.48 0.42 0.961 0.21

MVNI + deletion ߚଵ 0.00 0.56 0.52 0.966 0.28

ଶߚ  0.02 0.53 0.51 0.959 0.26

FCS ߚଵ -0.08 0.48 0.46 0.961 0.22

ଶߚ  -0.07 0.49 0.47 0.959 0.22

FCS + deletion ߚଵ 0.01 0.56 0.52 0.971 0.27

ଶߚ  0.01 0.53 0.51 0.962 0.26

CCA ߚଵ 0.00 0.60 0.62 0.939 0.39

ଶߚ  0.01 0.48 0.50 0.938 0.25

Opposite 0.30 MVNI ߚଵ -0.25 0.24 0.19 0.886 0.10

ଶߚ  -0.07 0.26 0.20 0.981 0.05

MVNI + deletion ߚଵ 0.01 0.30 0.25 0.983 0.06

ଶߚ  0.06 0.29 0.23 0.980 0.06

FCS ߚଵ -0.07 0.24 0.21 0.974 0.05

ଶߚ  -0.02 0.26 0.22 0.980 0.05

FCS + deletion ߚଵ 0.02 0.29 0.25 0.983 0.06

ଶߚ  0.05 0.29 0.23 0.982 0.06

CCA ߚଵ 0.00 0.29 0.29 0.945 0.08

ଶߚ  0.01 0.23 0.22 0.949 0.05
Abbreviations: MVNI, multivariate normal imputation; FCS, fully conditional specification; CCA, complete case 
analysis; Avg SE, average standard error; Emp SE, empirical standard error; MSE, mean square error. 
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As observed for categorical exposures, CCA exhibited little bias but tended to 

produce inefficient estimates of ߚଵ in scenarios involving continuous exposures. 

Interestingly, CCA produced more precise estimates of ߚଶ than the two MID 

approaches; across the 32 simulation scenarios, average standard errors for 

 .were 9.3% smaller with CCA relative to both deletion approaches	ଶߚ

 

Sensitivity analyses 

 

In light of the relatively poor performance of the MI approaches for relative risk 

estimation, we undertook additional analyses to explore whether findings were 

sensitive to choices made during the fitting of imputation models or to the 

simulation parameters considered. First, we investigated the performance of 

simple rounding following MVNI as an alternative to adaptive rounding. While 

differences were minimal in most scenarios, MVNI introduced slightly more bias 

in both categorical and continuous exposure settings when simple rounding was 

used in place of adaptive rounding (results not shown). Next, we investigated the 

performance of FCS with the outcome imputed before rather than after the 

incomplete covariate ܺଶ. This modification made little difference to results (also 

not shown). We then explored the performance of the four MI approaches in 

scenarios involving n = 250 rather than n = 1000 observations. Excluding 

simulation scenarios with binary ଵܺ and ܺଶ where the reduced sample size 

resulted in zero cells in cross-tabulations involving the outcome (i.e. where log 

binomial analysis models would not converge), this change made little difference 

to the bias and coverage of parameter estimates (results not shown). 

 

To investigate whether biased estimation would persist if the exposures were 

independent of one another, if the outcome was unrelated to one or both 

exposures, or if data were missing completely at random (i.e. probability of 

missing data unrelated to observed or unobserved data), several “null-case” 

simulation settings were considered. Table 5.3 shows results for continuous ଵܺ 

and ܺଶ under the coordinated missing data mechanism for an outcome prevalence 

of 0.30. The reference case for comparisons in this table was the previously 
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considered simulation scenario involving a strong missing data mechanism (ߣ =

2), where corr( ଵܺ,ܺଶ) = 0.70 and ߚଵ = ଶߚ = log(3). As shown in the table, the 

four MI approaches continued to produce biased parameter estimates when the 

exposures were independent of one another (i.e. corr( ଵܺ,ܺଶ) = 0). When the 

outcome was unrelated to one of the exposures, parameter estimates remained 

biased only for the exposure that was predictive of the outcome; little bias was 

observed with any of the MI approaches when both exposures were unrelated to 

the outcome. Lastly, bias was reduced but still evident when data were missing 

completely at random. A similar pattern of results was observed with binary ଵܺ 

and ܺଶ, and for an outcome prevalence of 0.10. Full results for these sensitivity 

analyses are available in web appendix C (see Section 5.3.6).  

 

Table 5.3. Bias in scenarios with ܺଵ and ܺଶ continuous, coordinated missing data 

mechanism, and outcome prevalence = 0.30. 

Simulation scenario Parameter MVNI  MVNI + 
deletion  

FCS FCS + 
deletion 

1. Corr( ଵܺ ,ܺଶ) = ଵߚ	 ,0.70 = ଶߚ = log	(3), ߣ =  ଵ -0.26 0.01 -0.09 0.02ߚ 2

 ଶ -0.27 -0.11 -0.24 -0.12ߚ

2. As in (1.), but with Corr( ଵܺ ,ܺଶ) =  ଵ -0.27 -0.05 -0.15 -0.05ߚ 0

 ଶ -0.21 -0.06 -0.16 -0.06ߚ

3. As in (1.), but with 	ߚଵ =  ଵ -0.04 0.02 0.01 0.02ߚ 0

 ଶ -0.17 -0.03 -0.10 -0.03ߚ 

4. As in (1.), but with 	ߚଶ =  ଵ -0.24 0.00 -0.10 0.00ߚ 0

 ଶ 0.00 0.00 0.00 0.00ߚ 

5. As in (1.), but with 	ߚଵ = ଶߚ =  ଵ -0.01 -0.01 -0.01 -0.01ߚ 0

 ଶ 0.01 0.01 0.01 0.01ߚ 

6. As in (1.), but with 	ߣ = 0 (MCAR) ߚଵ -0.11 0.00 0.00 0.00 

 ଶ -0.17 -0.08 -0.08 -0.08ߚ 

Abbreviations: Corr, correlation; MCAR, missing completely at random; MVNI, multivariate normal imputation; 
FCS, fully conditional specification. 
 

Lastly, to evaluate whether the performance deficiencies of FCS could be 

attributed solely to the misspecified logistic imputation model for the outcome, we 

considered additional simulation scenarios where missing data were restricted to 

either ܻ or ܺଶ only (with logit	ܲ(missing) = ߙ + ߣ ଵܺ). Since data were missing 

in a single variable, missing values were imputed 20 times using logistic or linear 

regression as appropriate. Table 5.4 shows results for an outcome prevalence of 
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ߣ ,0.30 = 2 and ߚଵ = ଶߚ = log(3) for categorical exposures with RR( ଵܺ,ܺଶ) = 2 

or continuous exposures with corr( ଵܺ,ܺଶ) = 0.70. The results for the original 

simulation scenario for FCS under the coordinated mechanism are also presented 

for comparison. As shown in the table, estimation remained biased when missing 

data were restricted to ܺଶ. Indeed for continuous exposures, the bias for ߚଶ was 

larger when missing data were restricted to ܺଶ compared to when missing data 

were restricted to ܻ. Thus it seems that the shortcomings of FCS were at least 

partly attributable to the choice of conditional imputation model for the 

incomplete covariate ܺଶ. It is worth noting that the bias following the imputation 

of continuous ܺଶ with a univariate linear model, as shown in Table 5.4, also 

suggests that the performance deficits seen with MVNI in the continuous 

exposure setting were partly due to inappropriate imputed values in the exposure 

(and not just the outcome). 

 

Table 5.4. Bias in scenarios with ߣ = 2, outcome prevalence = 0.30, and ߚଵ = ଶߚ =

log	(3). 

Simulation scenario Parameter Coordinated missing 
data in ܻ and ܺଶ (FCS)  

Missing data in ܻ 
only  

Missing data in  ܺଶ 
only 

Categorical ଵܺ and ܺଶ, 
RR( ଵܺ ,ܺଶ) = 2 

 ଵ 0.03 0.02 0.02ߚ

 ଶ -0.11 -0.06 -0.05ߚ

Continuous ଵܺ and ܺଶ, 
Corr( ଵܺ,ܺଶ) = 0.70 

 ଵ -0.09 -0.08 -0.03ߚ

 ଶ -0.24 -0.07 -0.22ߚ
Abbreviations: RR, relative risk; Corr, correlation; FCS, fully conditional specification. 
 

5.3.5. Discussion 

 

Given the widespread use of MI and the popularity of the relative risk, the lack of 

research on the application of MI for estimating the relative risk is surprising. In 

this study we demonstrated that standard model-based methods of MI can produce 

biased estimates of the relative risk with overly wide confidence intervals when 

data are MAR. Performance deficits were particularly evident when the analysis 

included continuous exposures, and in settings with larger relative risks, stronger 

missing data mechanisms and higher outcome prevalences. These findings raise 

concerns about the use of standard MI methods for relative risk estimation. 
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The primary aim of this study was to contrast the performance of MVNI and FCS 

for handling missing outcome data when estimating the relative risk. MVNI 

performed more poorly than FCS, producing relative risk estimates that were 

often substantially biased towards the null, both for categorical and continuous 

exposures. Although MVNI has been shown to be robust to violations of the 

multivariate normal assumption across a range of other settings, for example in 

estimating odds ratios or dealing with non-normal exposure variables (40, 41), 

such robustness to imputation model misspecification was not evident here. In 

contrast, FCS performed well when the analysis involved categorical exposures, 

only introducing noticeable bias for an outcome prevalence of 0.30, a strong 

missing data mechanism and large relative risks. Performance was less 

satisfactory in the presence of continuous exposures, with noticeable bias towards 

the null also evident in settings involving moderate relative risks or an outcome 

prevalence of 0.10. Even when relative risks for continuous exposures were 

estimated with little bias, FCS produced confidence intervals that were too wide. 

While we would recommend FCS over MVNI for relative risk estimation based 

on the simulation results presented here, clearly the approach is not without its 

shortcomings. 

 

The secondary aim of this study was to evaluate whether deleting imputed 

outcomes improves the performance of MI for relative risk estimation. Focusing 

on FCS as the better performed method of MI, we observed little difference 

between FCS with and without deletion of imputed outcomes for analysis models 

involving categorical exposures. In the presence of continuous exposures, deleting 

imputed outcomes following FCS was associated with partial decreases in 

absolute bias at the expense of large increases in average standard errors; an 

interesting finding given that deletion improves the precision of estimation in 

settings where analysis and imputation models are the same (8). The lost precision 

with MID in the continuous exposure settings suggests that imputed values in the 

outcome contained information that was useful for analysis, which may be due to 

inconsistencies between the imputation and analysis models. Of course, since the 

imputation model was misspecified, this additional information could also result 
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in increased bias in a conventional MI analysis. In any case, we find it difficult to 

recommend MID for relative risk estimation based on these results, particularly 

since the approach is only advisable in settings where auxiliary variables for the 

outcome are unavailable (104). 

 

Although logistic regression is the standard choice for imputing binary outcomes 

in software for implementing FCS, evidently this model is not optimal for relative 

risk estimation. Since controlling for confounding differs between the odds ratio 

and the relative risk (106), it is perhaps unsurprising that performance deficits 

were observed with FCS in this simulation study. This raises the question of 

whether an alternative conditional imputation model for the outcome should be 

adopted with FCS when relative risk estimation of interest. Assuming the analysis 

model is appropriately specified, an obvious candidate to minimise the problems 

of imputation model misspecification is the log binomial model, however issues 

with non-convergence could be a significant limitation in the context of FCS. As 

relative risks are often estimated using modified Poisson regression, another 

possibility would be to impute outcomes using Poisson regression. One difficulty 

with this approach is that imputed outcome values would be counts and would 

thus entail the use of modified Poisson regression in the analysis or the use of a 

rounding method prior to analysis with a log binomial model. Rounding methods 

have not been developed for this purpose. Another important challenge would be 

to incorporate a robust estimate of the error variance within the imputation model, 

since ordinary Poisson regression tends to overestimate the standard error for the 

relative risk (62). Although other approaches have been proposed to estimate 

relative risks (e.g. Cox regression with constant time at risk (63)), like Poisson 

regression, they typically require the use of a robust error variance which would 

need to be accounted for during imputation. This is difficult to achieve with 

current MI software. 

 

In addition to the misspecified logistic model for imputing the outcome, 

sensitivity analyses revealed that the bias introduced by FCS could also be 

attributed to the conditional models used to impute the covariates. Imputing the 
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continuous covariate using linear regression in FCS assumed a linear relationship 

between the covariate and the outcome, which was inconsistent with the data 

generation model. A similar argument applies for the imputation of binary 

covariates using logistic regression. In a recent article, Bartlett and colleagues 

(30) proposed a modification to the standard FCS algorithm such that incomplete 

covariates are imputed from models that are compatible with the intended analysis 

model. While the approach seems promising in this context, further research is 

needed to understand its properties and suitability for relative risk estimation. 

 

Due to convergence problems with the log binomial model in the continuous 

exposure setting, we elected to analyse all imputed datasets using the popular 

modified Poisson regression approach. Simulation results demonstrated that this 

method performed well in the absence of missing data, which is consistent with 

previous investigations of the method (62, 63, 105). An interesting consideration 

that arose following imputation was whether to use modified Poisson regression 

to analyse all imputed datasets or only those datasets where the log binomial 

model failed to converge. We chose the former approach, as this was simpler to 

implement and seemed more in keeping with Rubin’s rules, however the latter 

could also be considered in future work.  

 

Given the missing data mechanisms considered in the simulation study, it is not 

surprising that CCA produced parameter estimates with little bias. For missing 

data in a univariate outcome, CCA is known to produce unbiased and fully 

efficient of regression coefficients when the probability of missing data depends 

only on fully observed covariates (18, 23, 24). For missing data restricted to a 

covariate , CCA is known to be unbiased (but not fully efficient) if the probability 

of missing data is independent of the outcome conditional on the other covariates 

in the model (92). Both of these conditions were satisfied in the simulation study, 

where the probability of missing data in ܻ and ܺଶ depended only on the fully 

observed covariate ଵܺ. Clearly these conditions do not always hold in more 

complex practical settings, and CCA can introduce considerable bias when data 

are MAR. Taking into account the potential bias and inefficiency of CCA, we do 
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not advocate its use over MI for handling arbitrary patterns of missing data when 

estimating the relative risk.  

 

Although we anticipate similar deficits with MVNI and FCS in more complex 

practical settings, it is difficult to draw definitive conclusions from a restricted set 

of simulation scenarios. Further exploration of the performance of these MI 

methods in real datasets (where the missing data mechanism is unknown) and in 

simulation scenarios with different covariate characteristics, outcome prevalences 

and missing data mechanisms would certainly be useful. A further limitation of 

the current study is that we did not evaluate alternatives to standard model-based 

methods of MI for handling missing data. Most notably we did not consider 

inverse probability weighting, a method that involves weighting complete cases in 

the analysis according to the inverse of the probability of being a complete case 

(26). We chose to focus on MI as it known to be more efficient than inverse 

probability weighting, particularly in the presence of auxiliary variables and for 

arbitrary patterns of missing data. However in light of the performance deficits of 

MI, further research could explore the use of inverse probability weighting in this 

setting. Within the MI framework, we did not consider less widely used model-

based methods such as the general location model for mixtures of continuous and 

categorical variables, or non-parametric methods such as hot deck imputation. 

Again further research might consider the use of these approaches for relative risk 

estimation. 

 

Conclusion 

 

In summary, standard model-based methods of MI can produce biased and 

inefficient estimates of the relative risk due to misspecification of the imputation 

model. Should MI be chosen to handle missing data, we recommend researchers 

avoid MVNI and instead use FCS without deletion for estimating relative risks. 

However, further research is needed to identify optimal approaches for relative 

risk estimation within the MI framework. 
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5.3.6. Web appendix 

 

Web appendix A. SAS code used in simulation studies. 

 

Simulation study 1: categorical exposures 

 
%macro categorical(seed, mvni_seed, fcs_seed, rrx, rry, intercept, 
mechanism); 
 

*see note 1 for macro variable definitions; 
 
 *1. Generate x1, x2 and y; 
 
 data temp; 
  length simulation id 5.; 
  do simulation = 1 to 2000; *number of simulations = 2000; 
   do id = 1 to 1000; *sample size = 1000; 
    output; 
   end; 
  end; 
 run; 
 
 data temp; 
  set temp; 
  uniform1 = ranuni(&seed.); 
  uniform2 = ranuni(&seed.); 
  uniform3 = ranuni(&seed.); 
  uniform4 = ranuni(&seed.); 
  uniform5 = ranuni(&seed.); 
 run; 
 
 data temp; 
  set temp; 
  if uniform1 < 0.5 then x1 = 0; 
  else x1 = 1; 
 run; 
 
 %if &rrx. = 2 %then %do; 
 
  data temp; 
   set temp; 
   prob_x2 = (1/3) + (1/3)*x1; 
  run; 
 
 %end; 
 
 %else %if &rrx. = 3 %then %do; 
 
  data temp; 
   set temp; 
   prob_x2 = (1/4) + (2/4)*x1; 
  run; 
 
 %end; 
 
 data temp; 
  set temp; 
  if uniform2 < prob_x2 then x2 = 1; 
  else x2 = 0; 
 run; 
 
 data temp; 
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  set temp; 
  prob_y = exp(&intercept. + log(&rry.)*x1 + log(&rry.)*x2); 
  *solve intercept computationally to give desired outcome  
  prevalence, see note 2 after macro; 
 run; 
 
 data temp; 
  set temp; 
  if uniform3 <= prob_y then y = 1; 
  else y = 0; 
 run; 
 
 *2. Induce missing data in y and x2; 
 
 data temp; 
  set temp; 
  prob_y_strong = exp(-2.05 + 2*x1)/(1 + exp(-2.05 + 2*x1));  
  *intercepts produce 30% missing data in y and 2; 
  prob_y_mod = exp(-1.40 + 1*x1)/(1 + exp(-1.40 + 1*x1)); 
  prob_x2_strong = exp(-2.05 + 2*x1)/(1 + exp(-2.05 + 2*x1)); 
  prob_x2_mod = exp(-1.40 + 1*x1)/(1 + exp(-1.40 + 1*x1)); 
  prob_x2_opp_strong = exp(-0.05 - 2*x1)/(1 + exp(-0.05 - 2*x1)); 
  prob_x2_opp_mod = exp(-0.40 - 1*x1)/(1 + exp(-0.40 - 1*x1));  
 run; 
 
 %if &mechanism. = "Coordinated_strong" %then %do; 
 
  data temp; 
   set temp; 
   if uniform4 <= prob_y_strong then missing_y = 1; 
   else missing_y = 0; 
   if uniform5 <= prob_x2_strong then missing_x2 = 1; 
   else missing_x2 = 0; 
  run; 
 
 %end; 
 
 %else %if &mechanism. = "Coordinated_mod" %then %do; 
 
  data temp; 
   set temp; 
   if uniform4 <= prob_y_mod then missing_y = 1; 
   else missing_y = 0; 
   if uniform5 <= prob_x2_mod then missing_x2 = 1; 
   else missing_x2 = 0; 
  run; 
 
 %end; 
 
 %else %if &mechanism. = "Opposite_strong" %then %do; 
 
  data temp; 
   set temp; 
   if uniform4 <= prob_y_strong then missing_y = 1; 
   else missing_y = 0; 
   if uniform5 <= prob_x2_opp_strong then missing_x2 = 1; 
   else missing_x2 = 0; 
  run; 
 
 %end; 
 
 %else %if &mechanism. = "Opposite_mod" %then %do; 
 
  data temp; 
   set temp; 
   if uniform4 <= prob_y_mod then missing_y = 1; 
   else missing_y = 0; 
   if uniform5 <= prob_x2_opp_mod then missing_x2 = 1; 
   else missing_x2 = 0; 
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  run; 
 
 %end; 
 
 data temp; 
  set temp; 
  observed_y = y; 
  if missing_y = 1 then observed_y = .; 
  observed_x2 = x2; 
  if missing_x2 = 1 then observed_x2 = .; 
  keep simulation id x1 x2 y missing_y missing_x2 observed_y  
  observed_x2; 
 run; 
 
 *3. Impute data; 
 
 *MVNI with adaptive rounding; 
 
 proc mi data=temp seed=&mvni_seed. nimpute=20 out=mvni; 
  by simulation; 
  mcmc chain=single initial=em; 
  var observed_y observed_x2 x1; 
 run; 
 
 proc univariate data = mvni; 
  by simulation _imputation_; 
  var observed_y observed_x2; 
  ods output BasicMeasures = bm; 
 run; 
 
 data temp1; 
  set bm; 
  where varname = 'observed_y' and locmeasure = 'Mean'; 
  rename locvalue = w_y; 
  keep simulation _imputation_ locvalue; 
 run; 
 
 data temp2; 
  set bm; 
  where varname = 'observed_x2' and locmeasure = 'Mean'; 
  rename locvalue = w_x2; 
  keep simulation _imputation_ locvalue; 
 run; 
 
 data mvni; 
  merge mvni temp1 temp2; 
  by simulation _imputation_; 
  threshold_y = w_y - (quantile('NORMAL', w_y)*sqrt(w_y*(1- 
  w_y))); 
  threshold_x2 = w_x2 - (quantile('NORMAL', w_x2)*sqrt(w_x2*(1- 
  w_x2))); 
 run; 
 
 data mvni; 
  set mvni; 
  if observed_y > threshold_y then observed_y = 1; 
  else if observed_y <= threshold_y then observed_y = 0; 
  if observed_x2 > threshold_x2 then observed_x2 = 1; 
  else if observed_x2 <= threshold_x2 then observed_x2 = 0; 
 run; 
 
 *FCS; 
 
 proc mi data=temp seed=&fcs_seed. nimpute=20 out=fcs; 
  by simulation; 
  class observed_x2 observed_y x1; 
  fcs logistic(observed_x2) logistic(observed_y) logistic(x1); 
  var observed_x2 observed_y x1; 
 run; 
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%mend; 
 
 
/* 
 
Note 1: macro variable definitions 
 
seed: starting seed for random number generation 
mvni_seed: starting seed for multivariate normal imputation 
fcs_seed: starting seed for fully conditional specification 
rrx: relative risk for association between X1 and X2 
rry: relative risk for association between Y and X1, and Y and X2 
intercept: intercept value for generating P(Y=1) (see note 2 below) 
mechanism: missing data mechanism, takes values "Coordinated_strong", 
"Coordinated_mod", "Opposite_strong", "Opposite_mod" (see article for 
mechanism definitions) 
  
Note 2: values for macro variable <intercept> used in simulation study: 
 
rry = 2, rrx = 2, prevalence = 0.10, intercept = -3.15 
rry = 2, rrx = 3, prevalence = 0.10, intercept = -3.17 
rry = 2, rrx = 2, prevalence = 0.30, intercept = -2.05 
rry = 2, rrx = 3, prevalence = 0.30, intercept = -2.07 
rry = 3, rrx = 2, prevalence = 0.10, intercept = -3.77 
rry = 3, rrx = 3, prevalence = 0.10, intercept = -3.81 
rry = 3, rrx = 2, prevalence = 0.30, intercept = -2.67 
rry = 3, rrx = 3, prevalence = 0.30, intercept = -2.71 
 
*/ 
 
 
*Example call of macro for rrx = 2, rry = 3, prevalence = 0.30, strong 
coordinated mechanism; 
 
%categorical(seed=1501, mvni_seed=1502, fcs_seed=1503, rrx=2, rry=3, 
intercept=-2.67, mechanism = "Coordinated_strong"); 
 
  
*Example analysis with MVNI;  
 
proc genmod data=mvni descending; 
 class observed_y; 
 by simulation _imputation_; 
 model observed_y = observed_x2 x1 / link=log dist=binomial type3 wald 
 covb; 
 ods output parameterestimates = _estimates covb = _cov 
 convergenceStatus = cs1; *check convergence status; 
run; 
 
data _cov; 
 length parameter $11; 
 set _cov; 
 if rowname = 'Prm1' then Parameter = 'Intercept'; 
 if rowname = 'Prm2' then Parameter = 'observed_x2'; 
 if rowname = 'Prm3' then Parameter = 'x1'; 
 drop rowname; 
 rename prm1 = Intercept prm2 = observed_x2 prm3 = x1; 
run; 
 
proc mianalyze parms=_estimates covb=_cov; 
 by simulation; 
 modeleffects Intercept observed_x2 x1; 
 ods output parameterestimates=est1; 
run; 
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Simulation study 2: continuous exposures 
 

%macro continuous(seed, mvni_seed, fcs_seed, corrx, rry, intercept, 
intercept_miss_y, intercept_miss_x2, mechanism); 
 

*see note 1 for macro variable definitions; 
 
 *1. Generate x1, x2 and y; 
 
 data temp; 
  length simulation id 5.; 
  do simulation = 1 to 2000; *number of simulations = 2000; 
   do id = 1 to 1200;  
   *sample size = 1000, allowing extra observations so that 
   out of range values for P(Y=1) can be replaced; 
    output; 
   end; 
  end; 
 run; 
 
 data temp; 
  set temp; 
  uniform1 = ranuni(&seed.); 
  uniform2 = ranuni(&seed.); 
  uniform3 = ranuni(&seed.); 
  normal1 = rannor(&seed.); 
  normal2 = rannor(&seed.); 
 run; 
 
 data temp; 
  set temp; 
  x1 = sqrt(0.2)*normal1; 
 run; 
 
 data temp; 
  set temp; 
  x2 = &corrx.*x1 + sqrt(0.2*(1-&corrx.*&corrx.))*normal2; 
  x1_std = x1/sqrt(0.2); 
 run; 
 
 data temp; 
  set temp; 
  prob_y = exp(&intercept. + log(&rry.)*x1 + log(&rry.)*x2);  
  *solve intercept computationally to give desired outcome  
  prevalence, see note 2 after macro; 
 run; 
 
 data out_of_range; 
  set temp; 
  where prob_y > 1; 
 run; 
  
 data out_of_range; 
  set out_of_range; 
  count = _n_; 
  indicator = 1; 
 run; 
 
 data out_of_range; 
  set out_of_range; 
  by indicator; 
  if last.indicator; 
  percent_out_range = 100*count/(1200*2000);  
  *calculate percentage simulated values outside of range; 
  keep percent_out_range; 
 run; 
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 data temp; 
  set temp; 
  if prob_y > 1 then delete; *exclude observations where   
  probability out of range; 
 run; 
 
 data temp; 
  retain counter; 
  set temp; 
  by simulation; 
  if first.simulation then counter = 1; 
  else counter = counter + 1; 
 run; 
 
 data temp; 
  set temp; 
  where counter <= 1000; 
  if uniform1 <= prob_y then y = 1; 
  else y = 0; 
 run; 
 
 *2. Induce missing data in y and x2; 
 
 %if &mechanism. = "Coordinated" %then %do; 
 
  data temp; 
   set temp; 
   prob_y_miss = exp(&intercept_miss_y. + 2*x1_std)/(1 +  
   exp(&intercept_miss_y. + 2*x1_std));  
   prob_x2_miss = exp(&intercept_miss_x2. + 2*x1_std)/(1 +  
   exp(&intercept_miss_x2. + 2*x1_std)); 
   *solve intercept computationally to produce 30% missing  
   data in y and x2, see note 3 after macro; 
  run; 
 
 %end; 
 
 %if &mechanism. = "Coordinated_mod" %then %do; 
 
  data temp; 
   set temp; 
   prob_y_miss = exp(&intercept_miss_y. + 1*x1_std)/(1 +  
   exp(&intercept_miss_y. + 1*x1_std)); 
   prob_x2_miss = exp(&intercept_miss_x2. + 1*x1_std)/(1 +  
   exp(&intercept_miss_x2. + 1*x1_std)); 
  run; 
 
 %end; 
 
 %if &mechanism. = "Opposite" %then %do; 
 
  data temp; 
   set temp; 
   prob_y_miss = exp(&intercept_miss_y. + 2*x1_std)/(1 +  
   exp(&intercept_miss_y. + 2*x1_std)); 
   prob_x2_miss = exp(&intercept_miss_x2. - 2*x1_std)/(1 +  
   exp(&intercept_miss_x2. - 2*x1_std)); 
  run; 
 
 %end; 
 
 %if &mechanism. = "Opposite_mod" %then %do; 
 
  data temp; 
   set temp; 
   prob_y_miss = exp(&intercept_miss_y. + 1*x1_std)/(1 +  
   exp(&intercept_miss_y. + 1*x1_std)); 
   prob_x2_miss = exp(&intercept_miss_x2. - 1*x1_std)/(1 +  
   exp(&intercept_miss_x2. - 1*x1_std)); 
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  run; 
 
 %end; 
 
 data temp; 
  set temp; 
  if uniform2 <= prob_y_miss then missing_y = 1; 
  else missing_y = 0; 
  if uniform3 <= prob_x2_miss then missing_x2 = 1; 
  else missing_x2 = 0; 
 run; 
 
 data temp; 
  set temp; 
  observed_y = y; 
  if missing_y = 1 then observed_y = .; 
  observed_x2 = x2; 
  if missing_x2 = 1 then observed_x2 = .; 
  keep simulation id x1 x2 y missing_y missing_x2 observed_y  
  observed_x2;  
 run; 
 
 *3. Impute data; 
 
 *MVNI with adaptive rounding; 
 
 proc mi data=temp seed=&mvni_seed. nimpute=20 out=mvni; 
  by simulation; 
  mcmc chain=single initial=em; 
  var observed_y observed_x2 x1; 
 run; 
 
 proc univariate data = mvni; 
  by simulation _imputation_; 
  var observed_y; 
  ods output BasicMeasures = bm; 
 run; 
 
 data temp1; 
  set bm; 
  where varname = 'observed_y' and locmeasure = 'Mean'; 
  rename locvalue = w_y; 
  keep simulation _imputation_ locvalue; 
 run; 
 
 data mvni; 
  merge mvni temp1; 
  by simulation _imputation_; 
  threshold_y = w_y - (quantile('NORMAL', w_y)*sqrt(w_y*(1- 
  w_y))); 
 run; 
 
 data mvni; 
  set mvni; 
  if observed_y > threshold_y then observed_y = 1; 
  else if observed_y <= threshold_y then observed_y = 0; 
 run; 
 
 *FCS; 
 
 proc mi data=temp seed=&fcs_seed. nimpute=20 out=fcs; 
  by simulation; 
  class observed_y; 
  fcs reg(observed_x2) logistic(observed_y) reg(x1); 
  var observed_x2 observed_y x1; 
 run; 
 
%mend; 
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/* 
 
Note 1: macro variable definitions 
 
seed: starting seed for random number generation 
mvni_seed: starting seed for multivariate normal imputation 
fcs_seed: starting seed for fully conditional specification 
corrx: correlation for association between X1 and X2 
rry: relative risk for association between Y and X1, and Y and X2 
intercept: intercept value for generating P(Y=1) (see note 2 below) 
intercept_miss_y: intercept value for generating 30% missing data in Y (see 
note 3 below) 
intercept_miss_x2: intercept value for generating 30% missing data in X2 (see 
note 3 below) 
mechanism: missing data mechanism, takes values "Coordinated_strong", 
"Coordinated_mod", "Opposite_strong", "Opposite_mod" (see article for 
mechanism definitions) 
  
Note 2: values for macro variable <intercept> used in simulation study: 
 
rry = 2, corrx = 0.30, prevalence = 0.10, intercept = -2.43 
rry = 2, corrx = 0.70, prevalence = 0.10, intercept = -2.46 
rry = 2, corrx = 0.30, prevalence = 0.30, intercept = -1.32 
rry = 2, corrx = 0.70, prevalence = 0.30, intercept = -1.34 
rry = 3, corrx = 0.30, prevalence = 0.10, intercept = -2.61 
rry = 3, corrx = 0.70, prevalence = 0.10, intercept = -2.69 
rry = 3, corrx = 0.30, prevalence = 0.30, intercept = -1.37 
rry = 3, corrx = 0.70, prevalence = 0.30, intercept = -1.36 
 
Note 3: values for macro variables <intercept_miss_y> and <intercept_miss_x2> 
used in simulation study: 
 
Moderate mechanism, intercept_miss_y = intercept_miss_x2 = -1.02 
Strong mechanism, intercept_miss_y = intercept_miss_x2 = -1.39 
 
-> Note intercept values adjusted in scenarios with an outcome prevalence of 
0.30 to maintain 30% missing data after replacing out of range values for 
P(Y=1) 
 
*/ 
 
 
*Example call of macro for corrx = 0.70, rry = 2, prevalence = 0.10, moderate 
coordinated mechanism; 
 
%continuous (seed=12601, mvni_seed=12602, fcs_seed=12603, corrx=0.70, rry=2, 
intercept=-2.46, intercept_miss_y = -1.02, intercept_miss_x2 = -1.02, 
mechanism = "Coordinated_mod"); 
 
 
*Example analysis with FCS (using log Poisson GEE to estimate the relative 
risk);  
 
proc genmod data=fcs; 
 class id; 
 by simulation _imputation_; 
 model observed_y = observed_x2 x1 / link=log dist=poisson type3 wald 
 covb; 
 repeated subject = id /type=ind;  
 ods output GEEemppest = _estimates covb = _cov; 
run; 
 
data _estimates; 
 set _estimates; 
 rename parm = parameter; 
 keep simulation _imputation_ Parm Estimate stderr; 
run; 
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data _cov; 
 length parameter $11; 
 set _cov; 
 if rowname = 'Prm1' then Parameter = 'Intercept'; 
 if rowname = 'Prm2' then Parameter = 'observed_x2'; 
 if rowname = 'Prm3' then Parameter = 'x1'; 
 drop rowname; 
 rename prm1 = Intercept prm2 = observed_x2 prm3 = x1; 
run; 
 
proc mianalyze parms=_estimates covb=_cov; 
 by simulation; 
 modeleffects Intercept observed_x2 x1; 
 ods output parameterestimates=est3; 
run; 
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Web appendix B. Full results from simulation studies 1 and 2. 

 

Table 5.5. Simulation results for ܺଵ and ܺଶ binary, coordinated mechanism, ߣ = 1. 

Outcome 
prevalence 

ଵߚ )ଶ RRߚ, ଵܺ ,ܺଶ) Method Parameter Bias Avg 
SE 

Emp 
SE 

Coverage MSE 

0.10 Log(2) 2 MVNI ߚଵ -0.04 0.26 0.24 0.961 0.06 

ଶߚ     -0.14 0.30 0.26 0.941 0.09 

   MVNI + deletion ߚଵ 0.05 0.27 0.27 0.948 0.08 

ଶߚ     -0.05 0.32 0.30 0.960 0.10 

   FCS ߚଵ 0.02 0.27 0.28 0.945 0.08 

ଶߚ     0.00 0.33 0.34 0.957 0.11 

   FCS + deletion ߚଵ 0.02 0.27 0.28 0.947 0.08 

ଶߚ     0.01 0.33 0.34 0.957 0.11 

   CCA ߚଵ 0.02 0.31 0.32 0.954 0.10 

ଶߚ     0.01 0.33 0.33 0.957 0.11 

0.10 Log(2) 3 MVNI ߚଵ -0.04 0.29 0.27 0.968 0.07 

ଶߚ     -0.14 0.33 0.28 0.957 0.10 

   MVNI + deletion ߚଵ 0.05 0.30 0.30 0.958 0.09 

ଶߚ     -0.05 0.36 0.33 0.962 0.11 

   FCS ߚଵ 0.02 0.31 0.31 0.955 0.10 

ଶߚ     0.01 0.37 0.37 0.947 0.14 

   FCS + deletion ߚଵ 0.01 0.30 0.31 0.952 0.10 

ଶߚ     0.02 0.37 0.37 0.951 0.14 

   CCA ߚଵ 0.00 0.34 0.34 0.953 0.12 

ଶߚ     0.03 0.36 0.37 0.948 0.14 

0.10 Log(3) 2 MVNI ߚଵ -0.07 0.30 0.27 0.958 0.08 

ଶߚ     -0.27 0.34 0.27 0.895 0.15 

   MVNI + deletion ߚଵ 0.08 0.30 0.32 0.951 0.11 

ଶߚ     -0.10 0.38 0.35 0.944 0.13 

   FCS ߚଵ 0.04 0.31 0.32 0.953 0.10 

ଶߚ     0.02 0.40 0.41 0.954 0.17 

   FCS + deletion ߚଵ 0.03 0.30 0.32 0.953 0.10 

ଶߚ     0.03 0.40 0.41 0.958 0.17 

   CCA ߚଵ 0.04 0.35 0.36 0.953 0.13 

ଶߚ     0.03 0.39 0.41 0.951 0.17 

0.10 Log(3) 3 MVNI ߚଵ -0.04 0.34 0.30 0.969 0.09 

ଶߚ     -0.29 0.37 0.30 0.901 0.17 

   MVNI + deletion ߚଵ 0.11 0.35 0.35 0.957 0.13 

ଶߚ     -0.11 0.42 0.38 0.954 0.16 

   FCS ߚଵ 0.05 0.35 0.35 0.955 0.13 

ଶߚ     0.02 0.44 0.45 0.957 0.21 

   FCS + deletion ߚଵ 0.05 0.35 0.35 0.948 0.13 

ଶߚ     0.03 0.44 0.45 0.958 0.21 

   CCA ߚଵ 0.04 0.39 0.39 0.954 0.16 

ଶߚ     0.04 0.44 0.45 0.959 0.21 
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Outcome 
prevalence 

ଵߚ )ଶ RRߚ, ଵܺ ,ܺଶ) Method Parameter Bias Avg 
SE 

Emp 
SE 

Coverage MSE 

0.30 Log(2) 2 MVNI ߚଵ -0.01 0.14 0.13 0.959 0.02 

ଶߚ     -0.13 0.15 0.14 0.884 0.04 

   MVNI + deletion ߚଵ 0.03 0.14 0.14 0.950 0.02 

ଶߚ     -0.07 0.17 0.15 0.941 0.03 

   FCS ߚଵ 0.01 0.14 0.14 0.949 0.02 

ଶߚ     -0.03 0.17 0.17 0.954 0.03 

   FCS + deletion ߚଵ 0.01 0.14 0.14 0.950 0.02 

ଶߚ     -0.01 0.17 0.17 0.953 0.03 

   CCA ߚଵ 0.01 0.16 0.16 0.949 0.02 

ଶߚ     0.00 0.17 0.17 0.957 0.03 

0.30 Log(2) 3 MVNI ߚଵ 0.01 0.15 0.15 0.958 0.02 

ଶߚ     -0.14 0.17 0.16 0.881 0.04 

   MVNI + deletion ߚଵ 0.05 0.16 0.15 0.949 0.03 

ଶߚ     -0.07 0.18 0.17 0.939 0.03 

   FCS ߚଵ 0.02 0.16 0.16 0.953 0.02 

ଶߚ     -0.02 0.19 0.19 0.950 0.04 

   FCS + deletion ߚଵ 0.01 0.16 0.16 0.949 0.02 

ଶߚ     -0.01 0.19 0.19 0.952 0.04 

   CCA ߚଵ 0.00 0.17 0.17 0.948 0.03 

ଶߚ     0.01 0.19 0.19 0.951 0.04 

0.30 Log(3) 2 MVNI ߚଵ -0.01 0.16 0.15 0.955 0.02 

ଶߚ     -0.26 0.17 0.15 0.682 0.09 

   MVNI + deletion ߚଵ 0.05 0.16 0.16 0.948 0.03 

ଶߚ     -0.12 0.19 0.18 0.893 0.05 

   FCS ߚଵ 0.01 0.16 0.16 0.954 0.03 

ଶߚ     -0.06 0.20 0.20 0.933 0.04 

   FCS + deletion ߚଵ 0.01 0.16 0.16 0.951 0.03 

ଶߚ     -0.03 0.20 0.20 0.946 0.04 

   CCA ߚଵ 0.01 0.18 0.18 0.954 0.03 

ଶߚ     0.01 0.20 0.20 0.955 0.04 

0.30 Log(3) 3 MVNI ߚଵ 0.03 0.18 0.18 0.948 0.03 

ଶߚ     -0.27 0.19 0.18 0.719 0.10 

   MVNI + deletion ߚଵ 0.08 0.18 0.19 0.931 0.04 

ଶߚ     -0.13 0.22 0.20 0.901 0.06 

   FCS ߚଵ 0.03 0.19 0.19 0.940 0.04 

ଶߚ     -0.06 0.23 0.22 0.934 0.05 

   FCS + deletion ߚଵ 0.02 0.18 0.19 0.938 0.04 

ଶߚ     -0.02 0.23 0.23 0.945 0.05 

   CCA ߚଵ 0.01 0.20 0.21 0.942 0.04 

ଶߚ     0.01 0.23 0.23 0.950 0.05 
Abbreviations: MVNI, multivariate normal imputation; FCS, fully conditional specification; CCA, complete case 
analysis; Avg SE, average standard error; Emp SE, empirical standard error; MSE, mean square error. 
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Table 5.6. Simulation results for ܺଵ and ܺଶ binary, coordinated mechanism, ߣ = 2. 

Outcome 
prevalence 

ଵߚ )ଶ RRߚ, ଵܺ ,ܺଶ) Method Parameter Bias Avg 
SE 

Emp 
SE 

Coverage MSE 

0.10 Log(2) 2 MVNI ߚଵ -0.07 0.26 0.24 0.954 0.06 

ଶߚ     -0.15 0.30 0.26 0.936 0.09 

   MVNI + deletion ߚଵ 0.03 0.27 0.27 0.956 0.07 

ଶߚ     -0.05 0.33 0.31 0.958 0.10 

   FCS ߚଵ 0.01 0.27 0.27 0.947 0.07 

ଶߚ     -0.00 0.34 0.34 0.957 0.12 

   FCS + deletion ߚଵ 0.01 0.27 0.27 0.950 0.07 

ଶߚ     0.00 0.34 0.34 0.955 0.12 

   CCA ߚଵ -0.01 0.32 0.32 0.954 0.10 

ଶߚ     0.01 0.34 0.34 0.953 0.11 

0.10 Log(2) 3 MVNI ߚଵ -0.05 0.29 0.28 0.951 0.08 

ଶߚ     -0.14 0.33 0.29 0.948 0.11 

   MVNI + deletion ߚଵ 0.05 0.30 0.31 0.947 0.10 

ଶߚ     -0.04 0.36 0.34 0.956 0.12 

   FCS ߚଵ 0.02 0.30 0.31 0.942 0.10 

ଶߚ     0.00 0.37 0.37 0.949 0.14 

   FCS + deletion ߚଵ 0.01 0.30 0.31 0.943 0.10 

ଶߚ     0.01 0.37 0.37 0.950 0.14 

   CCA ߚଵ -0.01 0.35 0.36 0.952 0.13 

ଶߚ     0.02 0.36 0.37 0.948 0.14 

0.10 Log(3) 2 MVNI ߚଵ -0.08 0.30 0.28 0.951 0.08 

ଶߚ     -0.28 0.35 0.28 0.896 0.15 

   MVNI + deletion ߚଵ 0.06 0.30 0.31 0.955 0.10 

ଶߚ     -0.09 0.39 0.35 0.956 0.13 

   FCS ߚଵ 0.02 0.30 0.31 0.955 0.10 

ଶߚ     -0.00 0.40 0.40 0.962 0.16 

   FCS + deletion ߚଵ 0.02 0.30 0.31 0.948 0.09 

ଶߚ     0.01 0.40 0.40 0.962 0.16 

   CCA ߚଵ 0.01 0.34 0.34 0.953 0.12 

ଶߚ     0.03 0.40 0.40 0.964 0.16 

0.10 Log(3) 3 MVNI ߚଵ -0.03 0.34 0.32 0.961 0.10 

ଶߚ     -0.28 0.39 0.32 0.893 0.18 

   MVNI + deletion ߚଵ 0.10 0.34 0.35 0.955 0.13 

ଶߚ     -0.10 0.43 0.39 0.955 0.16 

   FCS ߚଵ 0.05 0.35 0.35 0.947 0.13 

ଶߚ     -0.00 0.44 0.45 0.956 0.20 

   FCS + deletion ߚଵ 0.04 0.34 0.35 0.949 0.12 

ଶߚ     0.02 0.44 0.45 0.960 0.20 

   CCA ߚଵ 0.03 0.38 0.40 0.951 0.16 

ଶߚ     0.04 0.44 0.45 0.963 0.20 

0.30 Log(2) 2 MVNI ߚଵ 0.00 0.14 0.14 0.949 0.02 

ଶߚ     -0.16 0.16 0.14 0.836 0.04 

   MVNI + deletion ߚଵ 0.03 0.14 0.14 0.939 0.02 
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Outcome 
prevalence 

ଵߚ )ଶ RRߚ, ଵܺ ,ܺଶ) Method Parameter Bias Avg 
SE 

Emp 
SE 

Coverage MSE 

ଶߚ     -0.07 0.17 0.16 0.933 0.03 

   FCS ߚଵ 0.01 0.14 0.14 0.943 0.02 

ଶߚ     -0.05 0.17 0.17 0.940 0.03 

   FCS + deletion ߚଵ 0.01 0.14 0.14 0.946 0.02 

ଶߚ     -0.02 0.17 0.17 0.949 0.03 

   CCA ߚଵ -0.00 0.16 0.16 0.945 0.03 

ଶߚ     0.00 0.17 0.17 0.953 0.03 

0.30 Log(2) 3 MVNI ߚଵ 0.03 0.15 0.15 0.955 0.02 

ଶߚ     -0.16 0.17 0.16 0.843 0.05 

   MVNI + deletion ߚଵ 0.05 0.15 0.15 0.949 0.03 

ଶߚ     -0.07 0.18 0.18 0.927 0.04 

   FCS ߚଵ 0.02 0.16 0.16 0.948 0.03 

ଶߚ     -0.05 0.19 0.19 0.930 0.04 

   FCS + deletion ߚଵ 0.01 0.15 0.16 0.945 0.02 

ଶߚ     -0.02 0.19 0.19 0.940 0.04 

   CCA ߚଵ 0.00 0.17 0.17 0.954 0.03 

ଶߚ     0.00 0.19 0.20 0.941 0.04 

0.30 Log(3) 2 MVNI ߚଵ 0.03 0.16 0.15 0.952 0.02 

ଶߚ     -0.32 0.17 0.16 0.547 0.13 

   MVNI + deletion ߚଵ 0.05 0.16 0.16 0.948 0.03 

ଶߚ     -0.15 0.20 0.19 0.872 0.06 

   FCS ߚଵ 0.03 0.16 0.16 0.951 0.03 

ଶߚ     -0.11 0.20 0.21 0.893 0.05 

   FCS + deletion ߚଵ 0.02 0.16 0.16 0.955 0.02 

ଶߚ     -0.06 0.21 0.21 0.932 0.05 

   CCA ߚଵ 0.01 0.17 0.17 0.953 0.03 

ଶߚ     0.01 0.21 0.22 0.949 0.05 

0.30 Log(3) 3 MVNI ߚଵ 0.07 0.18 0.18 0.938 0.04 

ଶߚ     -0.31 0.20 0.18 0.640 0.13 

   MVNI + deletion ߚଵ 0.07 0.18 0.18 0.939 0.04 

ଶߚ     -0.14 0.22 0.21 0.895 0.06 

   FCS ߚଵ 0.04 0.18 0.18 0.946 0.04 

ଶߚ     -0.10 0.23 0.22 0.921 0.06 

   FCS + deletion ߚଵ 0.02 0.18 0.18 0.949 0.03 

ଶߚ     -0.04 0.23 0.23 0.939 0.06 

   CCA ߚଵ -0.00 0.19 0.20 0.952 0.04 

ଶߚ     0.02 0.23 0.23 0.942 0.06 
Abbreviations: MVNI, multivariate normal imputation; FCS, fully conditional specification; CCA, complete case 
analysis; Avg SE, average standard error; Emp SE, empirical standard error; MSE, mean square error. 
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Table 5.7. Simulation results for ܺଵ and ܺଶ binary, opposite mechanism, ߣ = 1. 

Outcome 
prevalence 

ଵߚ )ଶ RRߚ, ଵܺ ,ܺଶ) Method Parameter Bias Avg 
SE 

Emp 
SE 

Coverage MSE 

0.10 Log(2) 2 MVNI ߚଵ -0.05 0.26 0.23 0.964 0.06 

ଶߚ     -0.13 0.30 0.25 0.953 0.08 

   MVNI + deletion ߚଵ 0.04 0.27 0.26 0.958 0.07 

ଶߚ     -0.03 0.32 0.30 0.961 0.09 

   FCS ߚଵ 0.01 0.27 0.27 0.953 0.07 

ଶߚ     0.03 0.33 0.34 0.950 0.12 

   FCS + deletion ߚଵ 0.01 0.27 0.27 0.954 0.07 

ଶߚ     0.03 0.33 0.34 0.950 0.12 

   CCA ߚଵ 0.01 0.33 0.34 0.950 0.11 

ଶߚ     0.03 0.33 0.34 0.951 0.12 

0.10 Log(2) 3 MVNI ߚଵ -0.04 0.29 0.26 0.969 0.07 

ଶߚ     -0.14 0.32 0.28 0.950 0.10 

   MVNI + deletion ߚଵ 0.05 0.30 0.29 0.961 0.09 

ଶߚ     -0.04 0.35 0.33 0.957 0.11 

   FCS ߚଵ 0.00 0.31 0.30 0.951 0.09 

ଶߚ     0.04 0.37 0.38 0.949 0.15 

   FCS + deletion ߚଵ -0.00 0.30 0.30 0.951 0.09 

ଶߚ     0.04 0.36 0.38 0.946 0.15 

   CCA ߚଵ 0.01 0.36 0.37 0.950 0.14 

ଶߚ     0.04 0.36 0.38 0.947 0.14 

0.10 Log(3) 2 MVNI ߚଵ -0.08 0.30 0.26 0.956 0.08 

ଶߚ     -0.24 0.33 0.26 0.907 0.13 

   MVNI + deletion ߚଵ 0.07 0.30 0.31 0.952 0.10 

ଶߚ     -0.06 0.37 0.34 0.959 0.12 

   FCS ߚଵ 0.02 0.31 0.32 0.948 0.10 

ଶߚ     0.06 0.39 0.41 0.953 0.17 

   FCS + deletion ߚଵ 0.02 0.30 0.31 0.946 0.10 

ଶߚ     0.07 0.39 0.41 0.953 0.17 

   CCA ߚଵ 0.06 0.38 0.69 0.950 0.48 

ଶߚ     0.06 0.38 0.41 0.952 0.17 

0.10 Log(3) 3 MVNI ߚଵ -0.04 0.33 0.29 0.973 0.09 

ଶߚ     -0.27 0.36 0.28 0.907 0.15 

   MVNI + deletion ߚଵ 0.10 0.35 0.35 0.955 0.13 

ଶߚ     -0.09 0.40 0.36 0.957 0.14 

   FCS ߚଵ 0.03 0.35 0.36 0.948 0.13 

ଶߚ     0.05 0.43 0.45 0.955 0.21 

   FCS + deletion ߚଵ 0.03 0.35 0.36 0.945 0.13 

ଶߚ     0.06 0.43 0.45 0.958 0.21 

   CCA ߚଵ 0.06 0.43 0.45 0.956 0.21 

ଶߚ     0.05 0.43 0.45 0.959 0.20 

0.30 Log(2) 2 MVNI ߚଵ -0.02 0.14 0.13 0.951 0.02 

ଶߚ     -0.10 0.15 0.14 0.905 0.03 

   MVNI + deletion ߚଵ 0.02 0.14 0.14 0.945 0.02 
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Outcome 
prevalence 

ଵߚ )ଶ RRߚ, ଵܺ ,ܺଶ) Method Parameter Bias Avg 
SE 

Emp 
SE 

Coverage MSE 

ଶߚ     -0.03 0.16 0.16 0.943 0.03 

   FCS ߚଵ -0.00 0.14 0.14 0.946 0.02 

ଶߚ     0.00 0.17 0.17 0.947 0.03 

   FCS + deletion ߚଵ -0.00 0.14 0.14 0.946 0.02 

ଶߚ     0.02 0.17 0.17 0.944 0.03 

   CCA ߚଵ 0.01 0.17 0.17 0.949 0.03 

ଶߚ     0.01 0.17 0.17 0.944 0.03 

0.30 Log(2) 3 MVNI ߚଵ 0.00 0.15 0.14 0.964 0.02 

ଶߚ     -0.11 0.17 0.15 0.901 0.04 

   MVNI + deletion ߚଵ 0.04 0.16 0.15 0.949 0.02 

ଶߚ     -0.04 0.18 0.17 0.945 0.03 

   FCS ߚଵ 0.00 0.16 0.16 0.956 0.02 

ଶߚ     0.01 0.19 0.19 0.947 0.03 

   FCS + deletion ߚଵ -0.00 0.16 0.16 0.952 0.02 

ଶߚ     0.02 0.19 0.19 0.951 0.04 

   CCA ߚଵ 0.01 0.18 0.18 0.949 0.03 

ଶߚ     0.01 0.18 0.18 0.948 0.03 

0.30 Log(3) 2 MVNI ߚଵ -0.03 0.16 0.15 0.955 0.02 

ଶߚ     -0.19 0.17 0.16 0.798 0.06 

   MVNI + deletion ߚଵ 0.03 0.16 0.15 0.958 0.02 

ଶߚ     -0.05 0.19 0.18 0.942 0.04 

   FCS ߚଵ -0.01 0.16 0.16 0.952 0.02 

ଶߚ     0.00 0.20 0.20 0.954 0.04 

   FCS + deletion ߚଵ -0.01 0.16 0.16 0.947 0.02 

ଶߚ     0.04 0.20 0.20 0.952 0.04 

   CCA ߚଵ 0.00 0.19 0.20 0.949 0.04 

ଶߚ     0.01 0.19 0.20 0.955 0.04 

0.30 Log(3) 3 MVNI ߚଵ 0.01 0.18 0.17 0.960 0.03 

ଶߚ     -0.21 0.19 0.18 0.810 0.07 

   MVNI + deletion ߚଵ 0.05 0.18 0.18 0.951 0.04 

ଶߚ     -0.07 0.21 0.20 0.944 0.05 

   FCS ߚଵ -0.00 0.19 0.19 0.947 0.04 

ଶߚ     0.01 0.23 0.23 0.949 0.05 

   FCS + deletion ߚଵ -0.01 0.18 0.19 0.944 0.04 

ଶߚ     0.05 0.23 0.23 0.949 0.06 

   CCA ߚଵ 0.01 0.22 0.23 0.943 0.05 

ଶߚ     0.02 0.22 0.23 0.946 0.05 
Abbreviations: MVNI, multivariate normal imputation; FCS, fully conditional specification; CCA, complete case 
analysis; Avg SE, average standard error; Emp SE, empirical standard error; MSE, mean square error. 
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Table 5.8. Simulation results for ܺଵ and ܺଶ binary, opposite mechanism, ߣ = 2. 

Outcome 
prevalence 

ଵߚ )ଶ RRߚ, ଵܺ ,ܺଶ) Method Parameter Bias Avg 
SE 

Emp 
SE 

Coverage MSE 

0.10 Log(2) 2 MVNI ߚଵ -0.06 0.26 0.24 0.963 0.06 

ଶߚ     -0.13 0.31 0.27 0.951 0.09 

   MVNI + deletion ߚଵ 0.04 0.27 0.27 0.959 0.07 

ଶߚ     -0.03 0.33 0.32 0.960 0.10 

   FCS ߚଵ 0.01 0.27 0.27 0.959 0.07 

ଶߚ     0.03 0.34 0.36 0.955 0.13 

   FCS + deletion ߚଵ 0.01 0.27 0.27 0.959 0.07 

ଶߚ     0.03 0.34 0.36 0.946 0.13 

   CCA ߚଵ 0.02 0.34 0.34 0.962 0.12 

ଶߚ     0.02 0.34 0.36 0.954 0.13 

0.10 Log(2) 3 MVNI ߚଵ -0.05 0.29 0.27 0.959 0.08 

ଶߚ     -0.14 0.33 0.28 0.952 0.10 

   MVNI + deletion ߚଵ 0.05 0.30 0.30 0.949 0.09 

ଶߚ     -0.04 0.36 0.33 0.960 0.11 

   FCS ߚଵ 0.01 0.31 0.31 0.943 0.10 

ଶߚ     0.04 0.38 0.39 0.948 0.15 

   FCS + deletion ߚଵ -0.00 0.30 0.31 0.940 0.10 

ଶߚ     0.05 0.38 0.39 0.949 0.16 

   CCA ߚଵ 0.03 0.37 0.39 0.954 0.15 

ଶߚ     0.04 0.37 0.39 0.947 0.15 

0.10 Log(3) 2 MVNI ߚଵ -0.08 0.29 0.28 0.949 0.08 

ଶߚ     -0.26 0.34 0.26 0.908 0.13 

   MVNI + deletion ߚଵ 0.05 0.30 0.30 0.955 0.09 

ଶߚ     -0.07 0.37 0.33 0.964 0.11 

   FCS ߚଵ 0.01 0.30 0.31 0.952 0.10 

ଶߚ     0.03 0.39 0.39 0.963 0.16 

   FCS + deletion ߚଵ 0.01 0.30 0.31 0.950 0.09 

ଶߚ     0.05 0.39 0.40 0.964 0.16 

   CCA ߚଵ 0.03 0.39 0.41 0.956 0.17 

ଶߚ     0.03 0.39 0.39 0.965 0.15 

0.10 Log(3) 3 MVNI ߚଵ -0.04 0.33 0.30 0.967 0.09 

ଶߚ     -0.27 0.38 0.29 0.906 0.16 

   MVNI + deletion ߚଵ 0.09 0.34 0.32 0.965 0.11 

ଶߚ     -0.09 0.41 0.37 0.952 0.14 

   FCS ߚଵ 0.02 0.34 0.34 0.956 0.12 

ଶߚ     0.05 0.44 0.46 0.956 0.22 

   FCS + deletion ߚଵ 0.01 0.34 0.34 0.956 0.11 

ଶߚ     0.07 0.44 0.47 0.957 0.22 

   CCA ߚଵ 0.05 0.44 0.45 0.961 0.20 

ଶߚ     0.05 0.44 0.46 0.954 0.21 

0.30 Log(2) 2 MVNI ߚଵ -0.01 0.14 0.13 0.955 0.02 

ଶߚ     -0.10 0.16 0.14 0.916 0.03 

   MVNI + deletion ߚଵ 0.02 0.14 0.14 0.952 0.02 
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Outcome 
prevalence 

ଵߚ )ଶ RRߚ, ଵܺ ,ܺଶ) Method Parameter Bias Avg 
SE 

Emp 
SE 

Coverage MSE 

ଶߚ     -0.02 0.17 0.16 0.959 0.03 

   FCS ߚଵ -0.01 0.14 0.14 0.949 0.02 

ଶߚ     0.01 0.17 0.17 0.953 0.03 

   FCS + deletion ߚଵ -0.01 0.14 0.14 0.946 0.02 

ଶߚ     0.03 0.18 0.18 0.955 0.03 

   CCA ߚଵ 0.00 0.17 0.18 0.951 0.03 

ଶߚ     0.01 0.17 0.17 0.952 0.03 

0.30 Log(2) 3 MVNI ߚଵ 0.01 0.15 0.15 0.952 0.02 

ଶߚ     -0.11 0.17 0.16 0.914 0.04 

   MVNI + deletion ߚଵ 0.03 0.15 0.15 0.950 0.02 

ଶߚ     -0.03 0.19 0.18 0.953 0.03 

   FCS ߚଵ -0.01 0.16 0.16 0.941 0.03 

ଶߚ     0.01 0.19 0.20 0.954 0.04 

   FCS + deletion ߚଵ -0.02 0.16 0.16 0.938 0.03 

ଶߚ     0.04 0.19 0.20 0.948 0.04 

   CCA ߚଵ 0.00 0.19 0.20 0.935 0.04 

ଶߚ     0.01 0.19 0.19 0.951 0.04 

0.30 Log(3) 2 MVNI ߚଵ -0.00 0.16 0.15 0.961 0.02 

ଶߚ     -0.20 0.18 0.16 0.805 0.06 

   MVNI + deletion ߚଵ 0.03 0.16 0.15 0.961 0.02 

ଶߚ     -0.02 0.20 0.19 0.952 0.03 

   FCS ߚଵ -0.00 0.16 0.16 0.951 0.02 

ଶߚ     0.01 0.20 0.20 0.948 0.04 

   FCS + deletion ߚଵ -0.02 0.16 0.15 0.949 0.02 

ଶߚ     0.07 0.21 0.21 0.947 0.05 

   CCA ߚଵ 0.01 0.20 0.20 0.952 0.04 

ଶߚ     0.02 0.20 0.20 0.952 0.04 

0.30 Log(3) 3 MVNI ߚଵ 0.04 0.18 0.17 0.961 0.03 

ଶߚ     -0.22 0.20 0.18 0.809 0.08 

   MVNI + deletion ߚଵ 0.05 0.18 0.17 0.961 0.03 

ଶߚ     -0.04 0.22 0.21 0.946 0.05 

   FCS ߚଵ -0.00 0.18 0.18 0.956 0.03 

ଶߚ     0.01 0.23 0.24 0.948 0.06 

   FCS + deletion ߚଵ -0.02 0.18 0.18 0.951 0.03 

ଶߚ     0.07 0.24 0.24 0.942 0.06 

   CCA ߚଵ 0.02 0.23 0.22 0.956 0.05 

ଶߚ     0.01 0.23 0.23 0.949 0.05 
Abbreviations: MVNI, multivariate normal imputation; FCS, fully conditional specification; CCA, complete case 
analysis; Avg SE, average standard error; Emp SE, empirical standard error; MSE, mean square error. 
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Table 5.9. Simulation results for ܺଵ and ܺଶ continuous, coordinated mechanism, ߣ = 1. 

Outcome 
prevalence 

ଵߚ )ଶ Corrߚ, ଵܺ,ܺଶ) Method Parameter Bias Avg 
SE 

Emp 
SE 

Coverage MSE 

0.10 Log(2) 0.30 MVNI ߚଵ -0.18 0.29 0.24 0.952 0.09 

ଶߚ     -0.11 0.33 0.29 0.963 0.10 

   MVNI + deletion ߚଵ -0.01 0.33 0.31 0.962 0.10 

ଶߚ     -0.01 0.35 0.34 0.958 0.12 

   FCS ߚଵ -0.02 0.31 0.30 0.958 0.09 

ଶߚ     -0.02 0.34 0.33 0.955 0.11 

   FCS + deletion ߚଵ -0.00 0.33 0.31 0.964 0.10 

ଶߚ     -0.01 0.35 0.34 0.961 0.11 

   CCA ߚଵ -0.00 0.39 0.39 0.935 0.15 

ଶߚ     0.01 0.34 0.34 0.940 0.12 

0.10 Log(2) 0.70 MVNI ߚଵ -0.20 0.42 0.36 0.953 0.17 

ଶߚ     -0.11 0.45 0.40 0.971 0.17 

   MVNI + deletion ߚଵ 0.01 0.47 0.45 0.963 0.20 

ଶߚ     -0.00 0.49 0.47 0.958 0.22 

   FCS ߚଵ -0.01 0.44 0.43 0.953 0.19 

ଶߚ     -0.03 0.47 0.46 0.955 0.21 

   FCS + deletion ߚଵ 0.01 0.47 0.45 0.959 0.20 

ଶߚ     -0.01 0.49 0.47 0.963 0.22 

   CCA ߚଵ 0.00 0.51 0.52 0.935 0.27 

ଶߚ     0.01 0.47 0.48 0.943 0.23 

0.10 Log(3) 0.30 MVNI ߚଵ -0.29 0.30 0.24 0.892 0.15 

ଶߚ     -0.21 0.34 0.29 0.943 0.13 

   MVNI + deletion ߚଵ -0.01 0.35 0.32 0.969 0.10 

ଶߚ     -0.04 0.37 0.35 0.964 0.12 

   FCS ߚଵ -0.05 0.32 0.30 0.963 0.09 

ଶߚ     -0.09 0.35 0.33 0.953 0.12 

   FCS + deletion ߚଵ -0.01 0.35 0.32 0.972 0.10 

ଶߚ     -0.04 0.37 0.35 0.958 0.12 

   CCA ߚଵ 0.01 0.41 0.42 0.938 0.18 

ଶߚ     -0.01 0.35 0.36 0.940 0.13 

0.10 Log(3) 0.70 MVNI ߚଵ -0.31 0.45 0.37 0.939 0.23 

ଶߚ     -0.23 0.47 0.40 0.963 0.22 

   MVNI + deletion ߚଵ 0.03 0.50 0.47 0.970 0.22 

ଶߚ     -0.06 0.52 0.48 0.970 0.23 

   FCS ߚଵ -0.02 0.46 0.44 0.965 0.19 

ଶߚ     -0.12 0.48 0.45 0.965 0.22 

   FCS + deletion ߚଵ 0.03 0.50 0.47 0.971 0.22 

ଶߚ     -0.06 0.52 0.48 0.969 0.23 

   CCA ߚଵ 0.02 0.55 0.56 0.940 0.32 

ଶߚ     0.00 0.50 0.51 0.942 0.26 

0.30 Log(2) 0.30 MVNI ߚଵ -0.11 0.16 0.13 0.956 0.03 

ଶߚ     -0.10 0.18 0.14 0.956 0.03 

   MVNI + deletion ߚଵ -0.00 0.19 0.15 0.987 0.02 
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Outcome 
prevalence 

ଵߚ )ଶ Corrߚ, ଵܺ,ܺଶ) Method Parameter Bias Avg 
SE 

Emp 
SE 

Coverage MSE 

ଶߚ     -0.02 0.19 0.16 0.981 0.03 

   FCS ߚଵ -0.04 0.17 0.14 0.975 0.02 

ଶߚ     -0.06 0.18 0.15 0.965 0.03 

   FCS + deletion ߚଵ -0.00 0.19 0.15 0.985 0.02 

ଶߚ     -0.02 0.19 0.16 0.983 0.03 

   CCA ߚଵ 0.00 0.20 0.19 0.953 0.04 

ଶߚ     0.01 0.17 0.17 0.950 0.03 

0.30 Log(2) 0.70 MVNI ߚଵ -0.10 0.23 0.19 0.968 0.05 

ଶߚ     -0.12 0.24 0.20 0.959 0.05 

   MVNI + deletion ߚଵ 0.02 0.26 0.22 0.984 0.05 

ଶߚ     -0.04 0.26 0.22 0.986 0.05 

   FCS ߚଵ -0.02 0.23 0.21 0.976 0.04 

ଶߚ     -0.08 0.24 0.21 0.971 0.05 

   FCS + deletion ߚଵ 0.02 0.26 0.22 0.983 0.05 

ଶߚ     -0.04 0.26 0.22 0.986 0.05 

   CCA ߚଵ 0.00 0.26 0.26 0.942 0.07 

ଶߚ     0.01 0.24 0.24 0.953 0.06 

0.30 Log(3) 0.30 MVNI ߚଵ -0.22 0.17 0.13 0.820 0.07 

ଶߚ     -0.22 0.18 0.14 0.842 0.07 

   MVNI + deletion ߚଵ -0.06 0.20 0.16 0.983 0.03 

ଶߚ     -0.09 0.20 0.16 0.970 0.03 

   FCS ߚଵ -0.12 0.17 0.14 0.939 0.04 

ଶߚ     -0.16 0.18 0.15 0.906 0.05 

   FCS + deletion ߚଵ -0.06 0.20 0.16 0.981 0.03 

ଶߚ     -0.10 0.20 0.16 0.968 0.03 

   CCA ߚଵ 0.00 0.20 0.21 0.947 0.04 

ଶߚ     -0.00 0.18 0.18 0.956 0.03 

0.30 Log(3) 0.70 MVNI ߚଵ -0.17 0.24 0.19 0.946 0.07 

ଶߚ     -0.25 0.24 0.19 0.887 0.10 

   MVNI + deletion ߚଵ -0.00 0.28 0.22 0.985 0.05 

ଶߚ     -0.12 0.27 0.22 0.969 0.06 

   FCS ߚଵ -0.05 0.24 0.21 0.977 0.05 

ଶߚ     -0.19 0.24 0.21 0.921 0.08 

   FCS + deletion ߚଵ 0.01 0.28 0.22 0.987 0.05 

ଶߚ     -0.12 0.27 0.22 0.966 0.06 

   CCA ߚଵ 0.01 0.26 0.27 0.947 0.07 

ଶߚ     0.01 0.24 0.24 0.947 0.06 
Abbreviations: MVNI, multivariate normal imputation; FCS, fully conditional specification; CCA, complete case 
analysis; Avg SE, average standard error; Emp SE, empirical standard error; MSE, mean square error. 
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Table 5.10. Simulation results for ܺଵ and ܺଶ continuous, coordinated mechanism, ߣ =

2. 

Outcome 
prevalence 

ଵߚ )ଶ Corrߚ, ଵܺ,ܺଶ) Method Parameter Bias Avg 
SE 

Emp 
SE 

Coverage MSE 

0.10 Log(2) 0.30 MVNI ߚଵ -0.27 0.31 0.24 0.933 0.13 

ଶߚ     -0.13 0.33 0.28 0.965 0.09 

   MVNI + deletion ߚଵ -0.01 0.38 0.36 0.969 0.13 

ଶߚ     -0.02 0.35 0.33 0.967 0.11 

   FCS ߚଵ -0.03 0.35 0.33 0.963 0.11 

ଶߚ     -0.04 0.34 0.32 0.964 0.10 

   FCS + deletion ߚଵ -0.01 0.38 0.36 0.969 0.13 

ଶߚ     -0.02 0.35 0.33 0.966 0.11 

   CCA ߚଵ -0.01 0.45 0.45 0.945 0.20 

ଶߚ     -0.01 0.34 0.33 0.947 0.11 

0.10 Log(2) 0.70 MVNI ߚଵ -0.32 0.44 0.35 0.939 0.23 

ଶߚ     -0.13 0.45 0.40 0.969 0.17 

   MVNI + deletion ߚଵ 0.01 0.51 0.47 0.964 0.23 

ଶߚ     -0.01 0.49 0.47 0.959 0.22 

   FCS ߚଵ -0.02 0.47 0.45 0.964 0.20 

ଶߚ     -0.05 0.46 0.45 0.961 0.20 

   FCS + deletion ߚଵ 0.01 0.51 0.47 0.963 0.23 

ଶߚ     -0.01 0.49 0.47 0.962 0.22 

   CCA ߚଵ 0.02 0.57 0.58 0.941 0.34 

ଶߚ     -0.00 0.47 0.48 0.940 0.23 

0.10 Log(3) 0.30 MVNI ߚଵ -0.46 0.32 0.25 0.758 0.27 

ଶߚ     -0.21 0.35 0.31 0.934 0.14 

   MVNI + deletion ߚଵ 0.00 0.42 0.39 0.964 0.15 

ଶߚ     -0.03 0.38 0.37 0.959 0.14 

   FCS ߚଵ -0.07 0.35 0.34 0.953 0.12 

ଶߚ     -0.11 0.35 0.34 0.952 0.13 

   FCS + deletion ߚଵ 0.01 0.42 0.39 0.969 0.15 

ଶߚ     -0.03 0.38 0.37 0.958 0.13 

   CCA ߚଵ 0.03 0.50 0.51 0.944 0.26 

ଶߚ     -0.00 0.36 0.38 0.935 0.15 

0.10 Log(3) 0.70 MVNI ߚଵ -0.56 0.48 0.39 0.838 0.47 

ଶߚ     -0.22 0.50 0.43 0.958 0.24 

   MVNI + deletion ߚଵ 0.01 0.58 0.55 0.965 0.30 

ଶߚ     -0.03 0.55 0.53 0.959 0.28 

   FCS ߚଵ -0.08 0.51 0.49 0.961 0.25 

ଶߚ     -0.14 0.50 0.48 0.950 0.25 

   FCS + deletion ߚଵ 0.02 0.58 0.55 0.964 0.30 

ଶߚ     -0.04 0.55 0.53 0.961 0.28 

   CCA ߚଵ 0.01 0.66 0.67 0.943 0.45 

ଶߚ     0.01 0.53 0.55 0.936 0.30 

0.30 Log(2) 0.30 MVNI ߚଵ -0.16 0.17 0.14 0.919 0.04 

ଶߚ     -0.12 0.17 0.14 0.940 0.03 



102 

 

Outcome 
prevalence 

ଵߚ )ଶ Corrߚ, ଵܺ,ܺଶ) Method Parameter Bias Avg 
SE 

Emp 
SE 

Coverage MSE 

   MVNI + deletion ߚଵ 0.00 0.22 0.18 0.984 0.03 

ଶߚ     -0.02 0.19 0.17 0.975 0.03 

   FCS ߚଵ -0.06 0.18 0.16 0.970 0.03 

ଶߚ     -0.08 0.18 0.15 0.957 0.03 

   FCS + deletion ߚଵ 0.00 0.22 0.18 0.985 0.03 

ଶߚ     -0.02 0.19 0.17 0.978 0.03 

   CCA ߚଵ 0.00 0.23 0.23 0.947 0.05 

ଶߚ     0.00 0.17 0.17 0.949 0.03 

0.30 Log(2) 0.70 MVNI ߚଵ -0.17 0.24 0.20 0.934 0.07 

ଶߚ     -0.14 0.24 0.20 0.945 0.06 

   MVNI + deletion ߚଵ 0.02 0.29 0.25 0.977 0.06 

ଶߚ     -0.04 0.27 0.24 0.969 0.06 

   FCS ߚଵ -0.05 0.24 0.22 0.966 0.05 

ଶߚ     -0.10 0.24 0.22 0.951 0.06 

   FCS + deletion ߚଵ 0.02 0.29 0.25 0.978 0.06 

ଶߚ     -0.04 0.27 0.24 0.968 0.06 

   CCA ߚଵ -0.00 0.30 0.31 0.941 0.09 

ଶߚ     0.00 0.24 0.25 0.940 0.06 

0.30 Log(3) 0.30 MVNI ߚଵ -0.29 0.18 0.14 0.689 0.11 

ଶߚ     -0.24 0.18 0.15 0.789 0.08 

   MVNI + deletion ߚଵ -0.04 0.24 0.19 0.984 0.04 

ଶߚ     -0.08 0.20 0.17 0.970 0.03 

   FCS ߚଵ -0.16 0.18 0.15 0.909 0.05 

ଶߚ     -0.19 0.18 0.15 0.849 0.06 

   FCS + deletion ߚଵ -0.04 0.24 0.19 0.983 0.04 

ଶߚ     -0.08 0.20 0.17 0.969 0.03 

   CCA ߚଵ 0.01 0.25 0.25 0.951 0.06 

ଶߚ     0.01 0.18 0.18 0.948 0.03 

0.30 Log(3) 0.70 MVNI ߚଵ -0.26 0.26 0.20 0.890 0.11 

ଶߚ     -0.27 0.25 0.20 0.859 0.11 

   MVNI + deletion ߚଵ 0.01 0.31 0.26 0.978 0.07 

ଶߚ     -0.11 0.28 0.23 0.963 0.07 

   FCS ߚଵ -0.09 0.26 0.22 0.962 0.06 

ଶߚ     -0.24 0.24 0.21 0.878 0.10 

   FCS + deletion ߚଵ 0.02 0.31 0.26 0.980 0.07 

ଶߚ     -0.12 0.28 0.23 0.963 0.07 

   CCA ߚଵ 0.02 0.32 0.32 0.951 0.11 

ଶߚ     -0.00 0.25 0.26 0.950 0.07 
Abbreviations: MVNI, multivariate normal imputation; FCS, fully conditional specification; CCA, complete case 
analysis; Avg SE, average standard error; Emp SE, empirical standard error; MSE, mean square error. 
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Table 5.11. Simulation results for ܺଵ and ܺଶ continuous, opposite mechanism, ߣ = 1. 

Outcome 
prevalence 

ଵߚ )ଶ Corrߚ, ଵܺ,ܺଶ) Method Parameter Bias Avg 
SE 

Emp 
SE 

Coverage MSE 

0.10 Log(2) 0.30 MVNI ߚଵ -0.18 0.29 0.24 0.948 0.09 

ଶߚ     -0.09 0.32 0.29 0.962 0.09 

   MVNI + deletion ߚଵ -0.01 0.33 0.31 0.961 0.10 

ଶߚ     0.01 0.35 0.34 0.960 0.11 

   FCS ߚଵ -0.02 0.31 0.30 0.956 0.09 

ଶߚ     -0.01 0.34 0.33 0.962 0.11 

   FCS + deletion ߚଵ -0.01 0.33 0.31 0.961 0.10 

ଶߚ     0.01 0.35 0.34 0.962 0.11 

   CCA ߚଵ 0.00 0.37 0.39 0.936 0.15 

ଶߚ     0.01 0.33 0.33 0.944 0.11 

0.10 Log(2) 0.70 MVNI ߚଵ -0.20 0.41 0.35 0.961 0.16 

ଶߚ     -0.10 0.43 0.39 0.969 0.16 

   MVNI + deletion ߚଵ 0.00 0.46 0.43 0.966 0.18 

ଶߚ     0.00 0.47 0.45 0.961 0.21 

   FCS ߚଵ -0.01 0.43 0.41 0.964 0.17 

ଶߚ     -0.02 0.45 0.44 0.961 0.20 

   FCS + deletion ߚଵ 0.01 0.46 0.43 0.965 0.18 

ଶߚ     -0.00 0.47 0.45 0.960 0.21 

   CCA ߚଵ 0.00 0.47 0.48 0.946 0.23 

ଶߚ     -0.00 0.43 0.45 0.943 0.20 

0.10 Log(3) 0.30 MVNI ߚଵ -0.29 0.30 0.23 0.896 0.14 

ଶߚ     -0.15 0.33 0.28 0.958 0.10 

   MVNI + deletion ߚଵ -0.01 0.34 0.31 0.970 0.10 

ଶߚ     0.02 0.36 0.33 0.966 0.11 

   FCS ߚଵ -0.04 0.31 0.29 0.963 0.09 

ଶߚ     -0.03 0.34 0.31 0.965 0.10 

   FCS + deletion ߚଵ -0.00 0.34 0.31 0.973 0.10 

ଶߚ     0.01 0.36 0.32 0.966 0.11 

   CCA ߚଵ -0.00 0.37 0.38 0.947 0.14 

ଶߚ     0.01 0.32 0.32 0.949 0.10 

0.10 Log(3) 0.70 MVNI ߚଵ -0.34 0.42 0.35 0.922 0.24 

ଶߚ     -0.16 0.45 0.38 0.972 0.17 

   MVNI + deletion ߚଵ -0.01 0.48 0.44 0.972 0.19 

ଶߚ     0.02 0.49 0.45 0.969 0.21 

   FCS ߚଵ -0.05 0.44 0.41 0.961 0.17 

ଶߚ     -0.03 0.46 0.43 0.964 0.19 

   FCS + deletion ߚଵ -0.01 0.48 0.44 0.968 0.19 

ଶߚ     0.02 0.49 0.45 0.970 0.21 

   CCA ߚଵ -0.01 0.48 0.48 0.941 0.23 

ଶߚ     0.01 0.44 0.45 0.946 0.20 

0.30 Log(2) 0.30 MVNI ߚଵ -0.10 0.16 0.13 0.952 0.03 

ଶߚ     -0.06 0.18 0.15 0.975 0.03 

   MVNI + deletion ߚଵ -0.00 0.19 0.16 0.983 0.02 
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Outcome 
prevalence 

ଵߚ )ଶ Corrߚ, ଵܺ,ܺଶ) Method Parameter Bias Avg 
SE 

Emp 
SE 

Coverage MSE 

ଶߚ     0.02 0.20 0.17 0.976 0.03 

   FCS ߚଵ -0.03 0.16 0.15 0.971 0.02 

ଶߚ     -0.01 0.18 0.16 0.970 0.03 

   FCS + deletion ߚଵ 0.00 0.19 0.16 0.984 0.02 

ଶߚ     0.02 0.20 0.17 0.976 0.03 

   CCA ߚଵ 0.00 0.19 0.19 0.941 0.04 

ଶߚ     0.00 0.16 0.17 0.939 0.03 

0.30 Log(2) 0.70 MVNI ߚଵ -0.12 0.23 0.19 0.960 0.05 

ଶߚ     -0.06 0.24 0.20 0.977 0.05 

   MVNI + deletion ߚଵ -0.01 0.26 0.22 0.979 0.05 

ଶߚ     0.02 0.27 0.23 0.974 0.05 

   FCS ߚଵ -0.04 0.23 0.20 0.970 0.04 

ଶߚ     -0.01 0.24 0.22 0.972 0.05 

   FCS + deletion ߚଵ -0.01 0.26 0.22 0.981 0.05 

ଶߚ     0.02 0.27 0.23 0.976 0.05 

   CCA ߚଵ 0.01 0.24 0.24 0.948 0.06 

ଶߚ     -0.00 0.22 0.22 0.945 0.05 

0.30 Log(3) 0.30 MVNI ߚଵ -0.14 0.17 0.13 0.940 0.04 

ଶߚ     -0.10 0.19 0.15 0.958 0.03 

   MVNI + deletion ߚଵ 0.02 0.20 0.16 0.989 0.03 

ଶߚ     0.02 0.21 0.17 0.981 0.03 

   FCS ߚଵ -0.02 0.17 0.14 0.987 0.02 

ଶߚ     -0.03 0.19 0.16 0.979 0.03 

   FCS + deletion ߚଵ 0.02 0.20 0.16 0.989 0.03 

ଶߚ     0.01 0.21 0.17 0.986 0.03 

   CCA ߚଵ 0.01 0.19 0.19 0.943 0.04 

ଶߚ     0.01 0.17 0.17 0.951 0.03 

0.30 Log(3) 0.70 MVNI ߚଵ -0.17 0.23 0.18 0.946 0.06 

ଶߚ     -0.11 0.25 0.20 0.956 0.05 

   MVNI + deletion ߚଵ 0.01 0.26 0.21 0.983 0.04 

ଶߚ     0.02 0.27 0.23 0.979 0.05 

   FCS ߚଵ -0.04 0.23 0.19 0.981 0.04 

ଶߚ     -0.04 0.25 0.22 0.970 0.05 

   FCS + deletion ߚଵ 0.01 0.26 0.21 0.985 0.04 

ଶߚ     0.01 0.27 0.23 0.979 0.05 

   CCA ߚଵ 0.00 0.23 0.24 0.940 0.06 

ଶߚ     0.00 0.22 0.23 0.933 0.05 
Abbreviations: MVNI, multivariate normal imputation; FCS, fully conditional specification; CCA, complete case 
analysis; Avg SE, average standard error; Emp SE, empirical standard error; MSE, mean square error. 
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Table 5.12. Simulation results for ܺଵ and ܺଶ continuous, opposite mechanism, ߣ = 2. 

Outcome 
prevalence 

ଵߚ )ଶ Corrߚ, ଵܺ,ܺଶ) Method Parameter Bias Avg 
SE 

Emp 
SE 

Coverage MSE 

0.10 Log(2) 0.30 MVNI ߚଵ -0.27 0.31 0.24 0.932 0.13 

ଶߚ     -0.09 0.34 0.32 0.961 0.11 

   MVNI + deletion ߚଵ -0.00 0.38 0.36 0.966 0.13 

ଶߚ     0.02 0.37 0.37 0.948 0.14 

   FCS ߚଵ -0.02 0.35 0.33 0.959 0.11 

ଶߚ     -0.01 0.35 0.36 0.946 0.13 

   FCS + deletion ߚଵ 0.00 0.38 0.36 0.965 0.13 

ଶߚ     0.02 0.37 0.37 0.946 0.14 

   CCA ߚଵ 0.01 0.49 0.49 0.939 0.24 

ଶߚ     0.01 0.34 0.37 0.931 0.14 

0.10 Log(2) 0.70 MVNI ߚଵ -0.31 0.44 0.36 0.939 0.23 

ଶߚ     -0.12 0.46 0.41 0.963 0.18 

   MVNI + deletion ߚଵ 0.03 0.52 0.49 0.962 0.24 

ଶߚ     -0.01 0.50 0.48 0.956 0.24 

   FCS ߚଵ -0.00 0.47 0.45 0.960 0.21 

ଶߚ     -0.05 0.48 0.46 0.957 0.21 

   FCS + deletion ߚଵ 0.04 0.52 0.49 0.965 0.24 

ଶߚ     -0.01 0.50 0.48 0.962 0.23 

   CCA ߚଵ 0.03 0.59 0.59 0.942 0.35 

ଶߚ     -0.02 0.46 0.48 0.939 0.23 

0.10 Log(3) 0.30 MVNI ߚଵ -0.45 0.32 0.25 0.783 0.27 

ଶߚ     -0.18 0.35 0.30 0.952 0.12 

   MVNI + deletion ߚଵ 0.01 0.41 0.39 0.967 0.15 

ଶߚ     0.01 0.38 0.36 0.959 0.13 

   FCS ߚଵ -0.05 0.35 0.34 0.953 0.12 

ଶߚ     -0.06 0.36 0.34 0.951 0.12 

   FCS + deletion ߚଵ 0.02 0.41 0.39 0.966 0.15 

ଶߚ     0.01 0.38 0.36 0.962 0.13 

   CCA ߚଵ 0.01 0.50 0.51 0.946 0.26 

ଶߚ     -0.00 0.35 0.35 0.938 0.13 

0.10 Log(3) 0.70 MVNI ߚଵ -0.58 0.47 0.37 0.830 0.47 

ଶߚ     -0.17 0.48 0.42 0.961 0.21 

   MVNI + deletion ߚଵ -0.00 0.56 0.52 0.966 0.28 

ଶߚ     0.02 0.53 0.51 0.959 0.26 

   FCS ߚଵ -0.08 0.48 0.46 0.961 0.22 

ଶߚ     -0.07 0.49 0.47 0.959 0.22 

   FCS + deletion ߚଵ 0.01 0.56 0.52 0.971 0.27 

ଶߚ     0.01 0.53 0.51 0.962 0.26 

   CCA ߚଵ 0.00 0.60 0.62 0.939 0.39 

ଶߚ     0.01 0.48 0.50 0.938 0.25 

0.30 Log(2) 0.30 MVNI ߚଵ -0.15 0.17 0.14 0.924 0.04 

ଶߚ     -0.07 0.19 0.16 0.963 0.03 

   MVNI + deletion ߚଵ 0.01 0.22 0.18 0.981 0.03 
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Outcome 
prevalence 

ଵߚ )ଶ Corrߚ, ଵܺ,ܺଶ) Method Parameter Bias Avg 
SE 

Emp 
SE 

Coverage MSE 

ଶߚ     0.02 0.21 0.18 0.972 0.03 

   FCS ߚଵ -0.05 0.18 0.16 0.969 0.03 

ଶߚ     -0.03 0.19 0.17 0.968 0.03 

   FCS + deletion ߚଵ 0.01 0.22 0.19 0.980 0.03 

ଶߚ     0.02 0.21 0.18 0.971 0.03 

   CCA ߚଵ 0.01 0.25 0.24 0.954 0.06 

ଶߚ     -0.01 0.17 0.18 0.942 0.03 

0.30 Log(2) 0.70 MVNI ߚଵ -0.19 0.24 0.19 0.933 0.07 

ଶߚ     -0.07 0.25 0.21 0.972 0.05 

   MVNI + deletion ߚଵ -0.01 0.29 0.24 0.981 0.06 

ଶߚ     0.03 0.28 0.24 0.981 0.06 

   FCS ߚଵ -0.08 0.24 0.21 0.966 0.05 

ଶߚ     -0.03 0.25 0.22 0.970 0.05 

   FCS + deletion ߚଵ -0.01 0.29 0.24 0.982 0.06 

ଶߚ     0.03 0.28 0.24 0.978 0.06 

   CCA ߚଵ 0.00 0.29 0.29 0.945 0.09 

ଶߚ     -0.00 0.23 0.23 0.954 0.05 

0.30 Log(3) 0.30 MVNI ߚଵ -0.18 0.18 0.13 0.912 0.05 

ଶߚ     -0.09 0.20 0.16 0.962 0.03 

   MVNI + deletion ߚଵ 0.04 0.23 0.18 0.983 0.04 

ଶߚ     0.05 0.22 0.18 0.977 0.04 

   FCS ߚଵ -0.03 0.18 0.15 0.975 0.02 

ଶߚ     -0.03 0.20 0.17 0.972 0.03 

   FCS + deletion ߚଵ 0.05 0.23 0.18 0.982 0.04 

ଶߚ     0.04 0.22 0.18 0.978 0.04 

   CCA ߚଵ 0.01 0.24 0.25 0.946 0.06 

ଶߚ     0.01 0.17 0.18 0.945 0.03 

0.30 Log(3) 0.70 MVNI ߚଵ -0.25 0.24 0.19 0.886 0.10 

ଶߚ     -0.07 0.26 0.20 0.981 0.05 

   MVNI + deletion ߚଵ 0.01 0.30 0.25 0.983 0.06 

ଶߚ     0.06 0.29 0.23 0.980 0.06 

   FCS ߚଵ -0.07 0.24 0.21 0.974 0.05 

ଶߚ     -0.02 0.26 0.22 0.980 0.05 

   FCS + deletion ߚଵ 0.02 0.29 0.25 0.983 0.06 

ଶߚ     0.05 0.29 0.23 0.982 0.06 

   CCA ߚଵ -0.00 0.29 0.29 0.945 0.08 

ଶߚ     0.01 0.23 0.22 0.949 0.05 
Abbreviations: MVNI, multivariate normal imputation; FCS, fully conditional specification; CCA, complete case 
analysis; Avg SE, average standard error; Emp SE, empirical standard error; MSE, mean square error. 
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Web appendix C. Full results from null-case sensitivity analyses. 

 

Table 5.13. Bias in scenarios with ܺଵ and ܺଶ binary, coordinated missing data 

mechanism. 

Simulation scenario Parameter MVNI  MVNI + 

deletion  

FCS FCS + 

deletion 

1. Outcome prevalence = 0.10, RR( ଵܺ ,ܺଶ) =
ଵߚ	 ,3 = ଶߚ = log	(3), ߣ = 2 

 ଵ -0.03 0.10 0.05 0.04ߚ

 ଶ -0.28 -0.10 0.00 0.02ߚ

2. As in (1.), but with RR( ଵܺ ,ܺଶ) =  ଵ -0.14 0.01 0.01 0.01ߚ 1

 ଶ -0.28 -0.08 0.01 0.03ߚ 

3. As in (1.), but with 	ߚଵ =  ଵ 0.02 0.05 0.01 0.01ߚ 0

 ଶ -0.17 -0.05 0.00 0.01ߚ 

4. As in (1.), but with 	ߚଶ =  ଵ -0.15 0.00 0.00 0.00ߚ 0

 ଶ 0.02 0.02 0.01 0.01ߚ 

5. As in (1.), but with 	ߚଵ = ଶߚ =  ଵ 0.00 0.00 0.00 0.00ߚ 0

 ଶ 0.00 -0.01 -0.02 -0.01ߚ 

6. As in (1.), but with 	ߣ = 0 (MCAR) ߚଵ -0.12 0.11 0.04 0.04 

 ଶ -0.28 -0.10 0.05 0.06ߚ 

7. Outcome prevalence = 0.30, RR( ଵܺ ,ܺଶ) =
ଵߚ	 ,3 = ଶߚ = log	(3), ߣ = 2 

 ଵ 0.07 0.07 0.04 0.02ߚ

 ଶ -0.31 -0.14 -0.10 -0.04ߚ

8. As in (7.), but with RR( ଵܺ ,ܺଶ) =  ଵ -0.07 -0.01 -0.01 -0.01ߚ 1

 ଶ -0.32 -0.16 -0.12 -0.07ߚ

9. As in (7.), but with 	ߚଵ =  ଵ 0.03 0.03 0.00 0.00ߚ 0

 ଶ -0.12 -0.05 0.01 0.01ߚ 

10. As in (7.), but with 	ߚଶ =  ଵ -0.06 0.00 0.00 0.00ߚ 0

 ଶ 0.00 0.00 0.00 0.00ߚ 

11. As in (7.), but with 	ߚଵ = ଶߚ =  ଵ 0.00 0.00 0.00 0.00ߚ 0

 ଶ 0.00 0.00 0.00 0.00ߚ 

12. As in (7.), but with 	ߣ = 0 (MCAR) ߚଵ -0.04 0.07 0.00 0.01 

 ଶ -0.21 -0.11 0.00 0.01ߚ 
Abbreviations: RR, relative risk; MCAR, missing completely at random; MVNI, multivariate normal imputation; 
FCS, fully conditional specification. 
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Table 5.14. Bias in scenarios with ܺଵ and ܺଶ continuous, coordinated missing data 

mechanism. 

Simulation scenario Parameter MVNI  MVNI + 

deletion  

FCS FCS + 

deletion 

1. Outcome prevalence = 0.10, Corr( ଵܺ ,ܺଶ) =
ଵߚ	 ,0.70 = ଶߚ = log	(3), ߣ = 2 

 ଵ -0.56 0.01 -0.08 0.02ߚ

 ଶ -0.22 -0.03 -0.14 -0.04ߚ

2. As in (1.), but with Corr( ଵܺ ,ܺଶ) =  ଵ -0.38 0.00 -0.06 0.00ߚ 0

 ଶ -0.20 -0.02 -0.08 -0.02ߚ 

3. As in (1.), but with 	ߚଵ =  ଵ -0.13 0.01 0.01 0.01ߚ 0

 ଶ -0.17 0.00 -0.04 0.00ߚ 

4. As in (1.), but with 	ߚଶ =  ଵ -0.37 0.01 -0.04 0.01ߚ 0

 ଶ 0.00 0.00 0.00 -0.01ߚ 

5. As in (1.), but with 	ߚଵ = ଶߚ =  ଵ 0.00 0.00 0.01 0.00ߚ 0

 ଶ 0.00 0.00 0.00 0.00ߚ 

6. As in (1.), but with 	ߣ = 0 (MCAR) ߚଵ -0.15 0.00 0.00 0.00 

 ଶ -0.17 -0.03 -0.03 -0.03ߚ 

7. Outcome prevalence = 0.30, Corr( ଵܺ ,ܺଶ) =
ଵߚ	 ,0.70 = ଶߚ = log	(3), ߣ = 2 

 ଵ -0.26 0.01 -0.09 0.02ߚ

 ଶ -0.27 -0.11 -0.24 -0.12ߚ

8. As in (7.), but with Corr( ଵܺ ,ܺଶ) =  ଵ -0.27 -0.05 -0.15 -0.05ߚ 0

 ଶ -0.21 -0.06 -0.16 -0.06ߚ

9. As in (7.), but with 	ߚଵ =  ଵ -0.04 0.02 0.01 0.02ߚ 0

 ଶ -0.17 -0.03 -0.10 -0.03ߚ 

10. As in (7.), but with 	ߚଶ =  ଵ -0.24 0.00 -0.10 0.00ߚ 0

 ଶ 0.00 0.00 0.00 0.00ߚ 

11. As in (7.), but with 	ߚଵ = ଶߚ =  ଵ -0.01 -0.01 -0.01 -0.01ߚ 0

 ଶ 0.01 0.01 0.01 0.01ߚ 

12. As in (7.), but with 	ߣ = 0 (MCAR) ߚଵ -0.11 0.00 0.00 0.00 

 ଶ -0.17 -0.08 -0.08 -0.08ߚ 
Abbreviations: Corr, correlation; MCAR, missing completely at random; MVNI, multivariate normal imputation; 
FCS, fully conditional specification. 
 

** End of submitted article *** 
 

5.4. Additional discussion 
 

Since the data generation models in the simulation study were known, the 

shortcomings of MI could be attributed to differences between the imputation and 

data generation models (i.e. imputation model misspecification). Alternatively, 

since the analysis models were equivalent to the data generation models, the 

shortcomings of MI could be attributed to inconsistencies between imputation and 

analysis models (i.e. imputation model incompatibility). In practice the log 
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binomial analysis model could also be misspecified, in which case performance 

deficits due to imputation model misspecification might differ to those of 

imputation model incompatibility. Which is the larger concern in practice is 

beyond the scope of this thesis. It should be reiterated that if the log binomial 

analysis model is deemed inappropriate for a given dataset due to apparent 

misspecification, relative risks can instead be estimated from a model with a 

different link function (e.g. logistic regression) by applying marginal or 

conditional standardisation to predicted probabilities (64). 
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6. Multiple imputation in randomised trials 
 

6.1. Preface 
 

This chapter presents the third article contributing to this thesis, published in 

Statistical Methods in Medical Research. The aims of the article are to evaluate 

the performance of MI for handling missing outcome data in RCTs and to explore 

the merits of imputing overall and separately by randomised group in this context. 

The article covers the common scenarios of missing data in a continuous or a 

binary outcome variable measured once or repeatedly over time, where interest 

lies in estimating the effect of treatment according to the ITT principle. The article 

also considers the use of MI for handling missing data in a baseline covariate for 

adjustment, for example a baseline measure of the outcome variable. Although not 

a missing outcome data problem, which is the focus of this thesis, the use of MI 

for handling missing data in a baseline covariate is considered in the article for the 

sake of completeness (as another common scenario encountered in the analysis of 

RCTs). Relevant literature on handling missing baseline data in RCTs is described 

within the article. 
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6.3. Article 
 

In this section, I provide the text, tables, figures, and appendices from the 

published manuscript. 

 

6.3.1. Abstract 

 

The use of multiple imputation has increased markedly in recent years, and 

journal reviewers may expect to see multiple imputation used to handle missing 

data. However in randomised trials, where treatment group is always observed 

and independent of baseline covariates, other approaches may be preferable. 

Using data simulation we evaluated multiple imputation, performed both overall 

and separately by randomised group, across a range of commonly encountered 

scenarios. We considered both missing outcome and missing baseline data, with 

missing outcome data induced under missing at random mechanisms. Provided 

the analysis model was correctly specified, multiple imputation produced 

unbiased treatment effect estimates, but alternative unbiased approaches were 

often more efficient. When the analysis model overlooked an interaction effect 

involving randomised group, multiple imputation produced biased estimates of the 

average treatment effect when applied to missing outcome data, unless imputation 

was performed separately by randomised group. Based on these results, we 

conclude that multiple imputation should not be seen as the only acceptable way 

to handle missing data in randomised trials. In settings where multiple imputation 

is adopted, we recommend that imputation is carried out separately by randomised 

group. 

 

6.3.2. Introduction 

 

Research articles and guidance documents have emphasised the role of prevention 

in minimising the impact of missing data (65, 71, 107, 108), but most randomised 

controlled trials (RCTs) have some missing data (109). Given the potential for 



114 

 

biased and inefficient treatment effect estimates, it is crucial that missing data are 

handled appropriately during the analysis. 

 

All statistical analyses involve assumptions about the mechanism responsible for 

the missing data. Rubin (4) introduced three classes of mechanisms for missing 

data: missing completely at random (MCAR), where the probability of 

missingness is unrelated to observed or unobserved data; missing at random 

(MAR), where the probability of missingness is unrelated to unobserved data 

conditional on observed data; and missing not at random (MNAR), where the 

probability of missingness depends on unobserved data conditional on observed 

data. Since MAR and MNAR cannot be distinguished from observed data, it is 

essential that the assumptions of the analytic approach are scientifically plausible 

and clearly stated (1, 20). To assess the robustness of findings to the assumption 

made about the missing data mechanism in the primary analysis of an RCT, 

additional sensitivity analyses are strongly recommended (1, 13, 19, 20, 110). 

 

Multiple imputation (MI) (4) is a statistical approach to handling missing data that 

has been widely adopted due to its flexibility and ease of implementation (17, 29). 

MI involves fitting a statistical model to the observed data and using it to estimate 

values for the missing data. To incorporate missing data uncertainty, multiple 

values are imputed for each missing observation, producing multiple complete 

datasets. Following analysis of these datasets using standard complete data 

techniques, the multiple parameter estimates are combined using Rubin's rules (4) 

to give a single MI estimate. Standard implementations of MI assume that data are 

MAR, although it can also be applied under an MNAR assumption (4). Provided 

the assumption about the missing data mechanism is met and models used for 

imputation and analysis are correctly specified, MI produces consistent and 

asymptotically efficient parameter estimates with nominal coverage (4). Of the 

various methods of imputation available, MI based on the multivariate normal 

distribution (11) and MI by chained equations (5, 9, 10) are most commonly used 

in RCTs (7). 
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With the use of MI in RCTs rising dramatically in recent years (7, 17, 111), 

editors and journal reviewers may expect to see MI used to handle missing data. 

Indeed, we are aware of several recent instances where reviewers have pushed 

with little justification for trial data to be re-analysed using MI. However, whether 

MI should be viewed as the gold standard approach for handling missing data in 

RCTs is questionable. Importantly, results derived in general regression settings 

supporting the use of MI may not be applicable to RCTs. Unlike observational 

studies, the key exposure in RCTs (randomised group) is always observed and 

known to be independent of baseline covariates. In addition, missing data occur 

primarily in the outcome variable, although baseline covariates may also have 

missing data. Under these conditions, some of the value of MI may be lost and 

other methods of analysis may be preferable.  

 

Another uncertainty around the use of MI in RCTs is whether imputation is best 

carried out across all participants or separately by randomised group. If subgroup 

analyses are of interest, it is essential that interaction terms are accounted for in 

the imputation process to avoid biasing interaction tests towards the null. Rather 

than specifying interaction terms within the imputation model, several authors 

have recommended fitting separate imputation models within each randomised 

group (13-15, 102). This strategy is appealing due to its simplicity and ability to 

facilitate subgroup comparisons for any baseline covariate included in the 

imputation model. Unfortunately its performance is not well understood, and it is 

unclear how imputation should proceed when subgroup analyses are not of 

interest and the intention is to only produce average treatment effects from main 

effects models.  

 

This article describes the performance of MI in the RCT setting, covering the 

common scenarios of missing data in an outcome measured once or repeatedly 

over time and missing data in a baseline covariate. Using a series of illustrative 

data simulations and a case study, we compare MI with other standard approaches 

for handling missing data and explore the merits of imputing overall and 

separately by randomised group. Throughout we assume that missing data are 
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unplanned rather than by design, and that interest lies in estimating the effect of 

treatment according to the intention to treat (ITT) principle. If treatment 

discontinuations occur, we therefore assume the aim is to estimate a “de facto” 

estimand (66, 112) and that data are equally available before and after treatment 

discontinuations; we consider the case where data cannot be collected after 

treatment discontinuation in the discussion (Section 6.3.9). For missing outcome 

data, we restrict attention to settings where they are assumed to be MAR, since 

this assumption is often made in the primary analysis of an RCT and corresponds 

with the standard implementation of MI. 

 

The remainder of the article is structured as follows. Section 6.3.3 describes issues 

in adhering to the ITT principle in the presence of missing data and implications 

for the use of MI in RCTs. Section 6.3.4 defines key notation and outlines general 

simulation methods for evaluating the performance of MI. Section 6.3.5 focuses 

on the performance of MI for handling missing data in an outcome measured at a 

single time point. Section 6.3.6 considers missing data in an outcome measured 

repeatedly over time and the use of auxiliary variables in MI, while Section 6.3.7 

focuses on missing data in a baseline covariate for adjustment. Section 6.3.8 

shows the application of MI to the DINO trial. Finally, conclusions and general 

recommendations are provided in Section 6.3.9. 

 

6.3.3. Intention to treat and missing data 

 

The goal of ITT, or analysing as randomised, is to maintain the balance in 

prognostic factors achieved by randomisation, which is critical for avoiding 

selection bias and establishing causation (69, 70). In addition to preserving the 

benefits of randomisation, an ITT analysis may better inform changes in 

subsequent clinical practice, where patients do not always comply with treatment. 

Following the ITT principle entails estimating the ITT estimand, which is defined 

as the average effect of randomisation, irrespective of treatment received, over all 

randomised individuals (68). Due to fluctuating use of the term ITT, this has more 

recently been described as a de facto estimand (66, 112). Interest in the ITT 
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estimand has implications both for trial conduct and analysis. First, attempts 

should be made to collect outcome data on all randomised participants, 

irrespective of adherence to the protocol (1, 20, 68). For example, outcome data 

should still be retrieved for participants that discontinue or switch treatments 

during the course of a trial. Second, all collected outcome data should be included 

in the analysis, including data from participants that deviate from the protocol (1, 

20, 68). Although there are settings where it may not be feasible to measure 

outcomes following a protocol deviation, or where exclusion of collected outcome 

data may be justifiable, we do not tackle these scenarios in this article.  

 

Despite efforts to collect data on all randomised participants, invariably there will 

be some missing data. Exactly what constitutes an ITT analysis in the presence of 

missing data has been much debated (113). Some researchers have suggested that 

missing outcome data ought to be imputed, so that the full randomised sample can 

be included in the analysis (70, 72, 73). Others have argued that imputation is 

unnecessary and that an ITT analysis need only provide a valid estimate of the 

ITT estimand (1, 20, 74). Given recent commentary on the importance of defining 

and validly estimating the causal estimand of interest (1), and noting that none of 

the current guidance documents strictly recommend imputing missing outcomes, 

we adopt the second view. In differentiating between competing statistical 

methods, we therefore focus on their capacity to provide an unbiased and precise 

estimate of the ITT estimand rather than their ability to include all randomised 

participants. 

 

6.3.4. Methods 

 

Setting 

 

Let ௜ܻ and ௜ܺ define values for the ith participant (i = 1 to ݊) on an outcome 

variable and a baseline variable, respectively. Assume the ith participant is 

randomised independently to treatment group  ௜ܶ (0 = control, 1 = new treatment) 

with probability 0.5. Let ܯ௒௜ and ܯ௑௜ denote whether ௜ܻ and ௜ܺ are missing or 
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observed (1 = missing, 0 = observed). In the absence of missing data, suppose the 

adjusted analysis model 

 

(௜ߤ)݃ = ଴ߚ + ଵߚ ௜ܶ + ଶߚ ௜ܺ       (1) 

 

is of interest, where ߤ௜ = )ܧ ௜ܻ| ௜ܶ, ௜ܺ) and ݃ is an appropriate link function. Of 

principal importance is the (adjusted) treatment coefficient ߚଵ. Note we focus 

primarily on adjusted estimates in this article, since adjustment for pre-specified 

baseline covariates is common and can lead to substantial increases in power for 

testing the effect of treatment (114, 115). As conclusions about treatment are 

typically based on main effects models (65), we also restrict attention to analysis 

models that do not include interaction terms. 

 

Multiple imputation 

 

In the first stage of MI, multiple values (݉ > 1) for each missing observation are 

independently simulated from an imputation model. For missing data restricted to 

the outcome, the imputation model would typically regress observed values of ܻ 

on ܺ and ܶ. Additional auxiliary variables that are not in the analysis model can 

also be added to the imputation model to improve the prediction of missing 

values. Let ߛො denote the parameter estimates from the imputation model and ߛ௝∗ 

(j= 1 to ݉) random draws from the posterior distribution of ߛ. For each random 

draw, missing values in ܻ are replaced by simulated values from the posterior 

predictive distribution of ܻ according to ߛ௝∗. For missing data restricted to a 

baseline covariate, the imputation model instead describes the conditional 

distribution of ܺ according to ܻ and ܶ. If MI is performed separately by 

randomised group, ܶ is omitted from the separate imputation models. 

 

In the second stage of MI, the intended analysis is performed on each of the ݉ 

complete datasets, in this case model (1). Let ߠ෠௝ denote the estimate of ߚଵ from the 

jth imputed dataset and ௝ܹ the corresponding variance estimate. Using Rubin's 

rules (4), the combined MI treatment effect estimate ߠ෠ is calculated as the mean of 
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the ݉ estimates, i.e. ߠ෠ = 1 ݉⁄ ∑ ෠௝.௠ߠ
௝ୀଵ  The variance is given by var൫ߠ෠൯ = ܹ +

1)ܤ + 1 ݉⁄ ), where ܹ = 	1 ݉⁄ ∑ ௝ܹ
௠
௝ୀଵ  is the average within-imputation 

variance and ܤ = (݉− 1)ିଵ ∑ ෠௝ߠ) −௠
௝ୀଵ  .෠)ଶ the between imputation varianceߠ

Hypothesis tests and confidence intervals can be obtained using a t-distribution 

with ݒ = (݉ − 1)[1 + ܹ (1 + ݉ିଵ)ܤ⁄ ]ଶ degrees of freedom. 

 

General simulation methods 

 

Simulation studies were undertaken to describe the performance of MI for 

handling missing data in a univariate outcome (Section 6.3.5), a multivariate 

outcome (Section 6.3.6), and a baseline covariate (Section 6.3.7). For each 

scenario, 2,000 datasets of size ݊	= 600 were generated, with 300 observations 

allocated to each group. The sample size was chosen to be similar to that of a case 

study (see Section 6.3.8) and to represent a medium-sized trial. Three statistical 

methods were considered across all settings based on the adjusted analysis model 

(1): complete case analysis (CCA), MI performed overall, and MI performed by 

randomised group. For MI, linear and logistic regression were used for the 

imputation of continuous and binary variables, respectively, with ݉ = 50 

imputations based on the rule of thumb that the number of imputations should at 

least equal the percentage of missing data (5). Completed datasets were analysed 

using linear and logistic regression as appropriate, with treatment effect estimates 

combined using Rubin's rules (4). Performance was evaluated in terms of bias, 

empirical standard error (SE), power, and the coverage of estimated 95% 

confidence intervals. Based on 2,000 simulated datasets, on 95% of occasions the 

coverage is expected to lie between 0.94 and 0.96 for a true coverage of 0.95. All 

analyses were performed in SAS version 9.3 (SAS Institute, Inc., Cary, North 

Carolina). 

 

6.3.5. Missing data in a univariate outcome 

 

When a univariate (once-measured) outcome is MAR conditional on fully 

observed covariates, a correctly specified CCA with covariate adjustment 
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produces unbiased and efficient estimates of regression parameters (18, 23, 24). It 

has also been shown that MI with a large number of imputations approximates a 

CCA in this setting, provided that imputation and analysis models are the same 

(81). Using data simulation, we verify these results for RCTs, explore the 

implications of imputing overall or by randomised group and investigate settings 

where the analysis model is misspecified. 

 

Correctly specified analysis model 

 

Data were simulated from the model ௜ܻ = 0.30 ௜ܶ + ଶߚ ௜ܺ + ݁௜, with ܺ and ݁ 

~ܰ(0,1). To assess whether model performance depended on the strength of 

association between ܺ and ܻ, ߚଶ was varied so that corr(ܺ,ܻ|ܶ) = 0.30	or	0.70. 

Since comparisons were insensitive to the treatment effect, ߚଵ was fixed at 0.30 to 

reflect a small effect size. Following generation of complete datasets, values in ܻ 

were set to missing according to three MAR mechanisms: 

 

1) MAR X: Odds of missing ܻ increase by a factor  per standard deviation 

(SD) increase in ܺ. 

 

2) MAR X+T: Odds of missing ܻ are  times higher in the control group and 

increase by a factor  per SD increase in ܺ. 

 

3) MAR X×T: Odds of missing ܻ are  times higher for treatment group 

participants with ܺ ≤ 0 and for control group participants with ܺ > 0.  

 

Each missingness mechanism was simulated using a logistic regression model, 

with  = 1.5 or 2.5 to indicate weak and strong mechanisms, respectively, and 

with the model intercept varied to produce 20% (realistic) or 50% (extreme) 

missing data. This resulted in 24 simulation scenarios (12 missing data scenarios 

and two values for ߚଶ). Supposing that ܺ is a measure of disease severity, the 

MAR X and MAR X+T mechanisms might reflect settings where participants 

with more severe disease or randomised to the control group are more likely to 
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have missing outcome data. The MAR X×T mechanism could apply in settings 

where treatment group participants with less severe disease are also more likely to 

have missing outcome data due to a perceived lack of need to continue treatment. 

 

As expected, CCA, MI overall and MI by group all produced unbiased treatment 

effect estimates across the 24 simulation scenarios, with coverage probabilities 

remaining close to 0.95 throughout (range 0.94, 0.96). Compared to CCA, 

empirical SEs were on average 0.4% and 2.7% larger with MI overall and MI by 

group, respectively, which translated to an average loss of power of 0.8% for MI 

overall and 2.6% for MI by group. Figure 6.1 shows the performance of the 

various approaches in scenarios with 50% missing data, a strong MAR 

mechanism, and where corr(ܺ,ܻ|ܶ) = 0.70; these more extreme scenarios were 

chosen to highlight differences between approaches. Results from an unadjusted 

CCA are also displayed for comparison. In all figures, note that error bars indicate 

estimation efficiency (±1 empirical SE). Unsurprisingly, MI offered no 

advantages over a CCA across the range of missingness mechanisms. Of note, 

unadjusted CCA produced biased estimates when the probability of missing data 

depended on ܺ and ܶ, with coverage dropping to 0.39 under the MAR X×T 

mechanism. 

 

Similar results were obtained from a simulation study involving a binary outcome 

(see web appendix A, Section 6.3.10; also available online at the journal website). 
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Figure 6.1. Mean treatment effect estimates for 50% missing data in a continuous 

outcome, corr(ܺ,ܻ|ܶ) = 0.70, strong MAR mechanisms, correctly specified 

analysis model. Error bars correspond to empirical standard errors (± 1 standard 

error) across 2,000 simulated datasets. 

 

Misspecified analysis model, continuous outcome 

 

We now consider settings where an interaction between ܺ and ܶ is overlooked in 

favor of producing an estimate of the average treatment effect (ATE). This 

approach is common in practice, since ATEs are commonly used to draw 

conclusions about treatment and are of greater relevance to policy-related 

questions (65, 116). Further, tests of interaction are often viewed as exploratory 

and can be underpowered (65). For effect modification by discrete ܺ, we assume 

that interest lies in estimating the ATE given by ∑ ௑௑ߙ௑ߨ , where ߨ௑ = ܲ(ܺ =  (ݔ

and ୶ denotes the ITT estimand for ܺ =   .ݔ
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Considering binary ܺ with ߨ଴ = ଵߨ = 0.5, data were generated from the model 

௜ܻ = ଵߚ ௜ܶ + 0.30 ௜ܺ + ଷߚ ௜ܺ ௜ܶ + ݁௜, where ݁~ܰ(0,1). Fixing the ATE at 0.30, we 

investigated both weak (ߚଵ = ଷߚ = 0.20 or equivalently ଴ = 0.20,ଵ = 0.40) 

and strong (ߚଵ = ଷߚ,0 = 0.60 or ଴ = 0,ଵ = 0.60) interaction effects between 

ܺ and ܶ. Following generation of complete datasets, values in ܻ were set to 

missing according to the three mechanisms described earlier. Analysis model (1), 

misspecified due to the absence of the interaction term between ܺ and ܶ, was the 

substantive model of interest.  

 

Across all simulation scenarios MI by group produced unbiased estimates of the 

ATE with nominal coverage (coverage range 0.94, 0.96). In contrast, CCA and 

MI overall produced biased estimates under the MAR X and MAR X+T 

mechanisms. Figure 6.2 illustrates performance for the MAR X mechanism in 

scenarios with 50% missing data. As seen in the figure, the bias of CCA and MI 

overall increased with the strength of the missing data mechanism and the degree 

of effect modification. For a strong missing data mechanism and a strong 

interaction, the ATE was estimated to be 0.17 (absolute bias = 0.13), with 

coverage dropping to 0.81 for both approaches. Similar results were observed 

with 20% missing data, although predictably biases were smaller in magnitude 

(absolute bias  0.06). Instead of estimating the desired ATE, CCA and MI 

overall produced an estimate that was weighted by the probability of missing data 

within strata defined by ܺ and ܶ. In particular, the estimated ATE was 

proportional to ∑ ௑ܴ଴ଡ଼௑ߙ௑ߨ ܴଵଡ଼/(ܴ଴ଡ଼ + ܴଵଡ଼), where ்ܴ௑ = ௒ܯ)ܲ = 0|ܶ =

ܺ,ݐ =  No bias was observed for these approaches for the MAR X×T .(ݔ

mechanism, since ܴ଴଴ = ܴଵଵ and ܴଵ଴ = ܴ଴ଵ under this mechanism. Although the 

bias of MI overall could be eliminated by including the interaction term in the 

imputation model (results not shown), this may not be an obvious strategy if 

subgroup analyses are not of interest. 
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Figure 6.2. Mean average treatment effect estimates for 50% missing data in a 

continuous outcome under the MAR X mechanism (odds of ܻ missing 1.5 (weak 

MAR) or 2.5 (strong MAR) times higher per standard deviation increase in ܺ), 

incorrectly specified analysis model. Error bars correspond to empirical standard 

errors (± 1 standard error) across 2,000 simulated datasets. 

 

Misspecified analysis model, binary outcome 

 

For binary outcomes, the notion of an ATE from a misspecified logistic regression 

model is more complex. Assuming effect modification by discrete ܺ, omission of 

the interaction effect from the analysis model can lead to an ATE estimate that 

differs substantially from a weighted average of stratum specific effects (on both 

odds and log odds scales). In this setting, we consider the ATE that would have 

been observed with complete data as the “least false” ATE. In the presence of 

missing data, we assume the goal is to reproduce this least false ATE. 

 

Considering binary ܺ with ߨ଴ = ଵߨ = 0.5, data were generated from the model 

logit	P( ௜ܻ = 1) = −1.77 + ଵߚ ௜ܶ + 0.69 ௜ܺ + ଷߚ ௜ܺ ௜ܶ. The intercept value was 
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chosen so that ܲ(ܻ = 1|ܶ = 0) = 0.20, while the coefficient for ܺ gives 

OR(ܻ,ܺ|ܶ = 0) = 2.0. Fixing the average of the stratum specific effects on the 

logit scale at 0.69 (OR = 2.0), we evaluated both weak (ߚଵ = ଷߚ = 0.46) and 

strong (ߚଵ = ଷߚ,0 = 1.38) interaction effects between ܺ and ܶ. Following 

generation of complete datasets, values in ܻ were set to missing according to the 

three mechanisms described earlier. 

 

Across the 24 simulation scenarios (12 missing data scenarios × 2 interactions), 

MI by group was unbiased in reproducing the least false ATE (absolute bias  

0.02), with coverage remaining close to 0.95 (range 0.94, 0.96). In contrast, CCA 

and MI overall produced biased estimates under the MAR X and MAR X+T 

mechanisms. Figure 6.3 summarises performance under the MAR X mechanism 

for 50% missing data. In parallel with results for continuous outcome data, the 

bias of CCA and MI overall increased with the strength of the missing data 

mechanism and the interaction between ܺ and ܶ. 
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Figure 6.3. Mean average treatment effect estimates for 50% missing data in a 

binary outcome under the MAR X mechanism (odds of ܻ missing 1.5 (weak 

MAR) or 2.5 (strong MAR) times higher per standard deviation increase in ܺ), 

incorrectly specified analysis model. Horizontal reference lines illustrate the least 

false average treatment effect in the absence of missing data. Error bars 

correspond to empirical standard errors (± 1 standard error) across 2,000 

simulated datasets. 

 

6.3.6. Missing data in a multivariate outcome 

 

We now consider missing data in an outcome measured at repeated intervals 

following randomisation, where interest concerns the effect of treatment at the 

final time point. Unlike the univariate case, the validity of CCA is questionable in 

this setting since it cannot incorporate information from intermediate measures of 

the outcome. Such measures may be associated with the probability of missing 

data and the value of the outcome at the final time point. By exploiting 

information in partially observed cases, MI and likelihood-based approaches have 

been favored over CCA for the analysis of multivariate outcomes (13, 19, 47, 
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117). In what follows, we briefly introduce likelihood approaches for multivariate 

outcome data, describe the link between intermediate outcome measures and 

auxiliary variables, and present results from a simulation study comparing MI 

with alternatives. 

 

Likelihood-based estimation of a linear mixed model (LMM) (79) is a popular 

alternative to MI for handling missing data in a multivariate outcome. Based on 

the multivariate normal distribution, this approach incorporates all observed 

information on the repeated measures of the outcome to produce estimates that are 

valid under a MAR assumption. No explicit imputation is involved. For outcomes 

collected at a limited number of fixed time points following randomisation, a 

LMM would typically include fixed effects for time (categorical), randomised 

group, and the interaction between randomised group and time. Within-subject 

dependence due to repeated measurements is accounted for through specification 

of a covariance structure. Several authors have recommended the unstructured 

covariance matrix since it is easily pre-specified, entails minimal power loss 

compared with more parsimonious choices (19, 118, 119) and ensures that 

estimates are approximately equivalent to and slightly more efficient than those 

obtained from a comparable MI procedure (11, 19). With a single intermediate 

measure ܼ, a LMM with adjustment for ܺ is 

 

൬ܼ௜
௜ܻ
൰~ܰቊ൬

଴ߙ + ଵߙ ௜ܶ + ଶߙ ௜ܺ
଴ߚ + ଵߚ ௜ܶ + ଶߚ ௜ܺ

൰ ,ቆ ௓ߪ
ଶ ௓௒ߪ

௓௒ߪ ௒ଶߪ
ቇቋ	.    (2) 

 

In applying MI, the repeated measurements of the outcome are usually treated as 

distinct variables in the imputation model. Where interest lies in the treatment 

effect at the final time point, the analysis model need not include the intermediate 

outcome measures; following imputation a comparison of final time point results 

is sufficient (120). In this case, the intermediate measures operate as auxiliary 

variables, assisting with the prediction of missing values at the final time point 

and making the MAR assumption more plausible. Other auxiliary variables, for 

instance measures of compliance or related outcomes, can also be added to the 
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imputation model as required. If data are collected but more likely to be missing 

following treatment discontinuation, an indicator variable for discontinuation may 

also be valuable as an auxiliary variable. The ability to incorporate auxiliary 

variables, both for univariate and multivariate outcomes, is considered one of the 

key strengths of MI (6). Less well known is that LMMs can also benefit from 

auxiliary variables through joint modelling with the outcome (19, 80). Using 

model (2) for illustration, ܼ could be an auxiliary variable rather than an 

intermediate outcome measure. By assuming an unstructured covariance matrix, 

multiple auxiliary variables are easily handled within a LMM (19). 

 

For the simulation study, intermediate (ܼ) and final (ܻ) values of a continuous 

outcome were simulated from model (2) with ߚ଴ = ଴ߙ = ଵߚ ,0 = ଵߙ = 0.30, and 

௓ଶߪ = ௒ଶߪ = 1. To evaluate whether the correlation between ܼ and ܻ impacted on 

model performance, we considered ߪ௓௒ = 0.30	or	0.70. We also examined both 

weak (0.30) and strong (0.70) correlations between ܺ and the outcome measures. 

Following generation of complete datasets, values in ܻ were set to missing such 

that the odds of missingness were  times higher per SD increase in ܼ (with  = 

1.5 or 2.5 and for 20% or 50% missing data). In addition to CCA and MI, data 

were analysed using a LMM with an unstructured covariance matrix. Treatment 

effect estimates for LMMs in this article were obtained using restricted maximum 

likelihood estimation with degrees of freedom calculated according to the 

Kenward-Roger method (121).  

 

MI overall, MI by group and the LMM produced unbiased treatment effect 

estimates across the 16 simulation scenarios (4 missing data scenarios × 4 

correlations), with coverage ≥ 0.94 throughout. Compared to the LMM, empirical 

SEs were on average 0.5% and 3.2% higher with MI overall and MI by group, 

respectively. The lost efficiency with MI by group was most noticeable in 

scenarios with 50% missing data and a strong MAR mechanism. Power was on 

average 0.3% lower for MI overall and 2.2% lower for MI by group compared to 

the LMM. By ignoring the intermediate measure of the outcome, CCA was, as 

expected, the least efficient approach. Although minimal in most settings, some 
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bias was also evident with CCA. Figure 6.4 illustrates performance in scenarios 

with 50% missing data, a strong MAR mechanism and where corr(ܺ,ܻ|ܶ) =

0.30. As seen in the figure, the relative performance of CCA was poor for ߪ௓௒ =

0.70 (bias = 0.03, empirical SE 10.7% larger than the LMM). While 

outperforming CCA, MI offered no advantages over the LMM. 

 

 
Figure 6.4. Mean treatment effect estimates for 50% missing data in a continuous 

multivariate outcome, corr(ܺ,ܻ|ܶ) = 0.30, strong MAR mechanism. Error bars 

correspond to empirical standard errors (± 1 standard error) across 2,000 

simulated datasets. 

 

Similar results were obtained from a simulation study allowing missing data to 

occur in the intermediate as well as the final measure of the outcome, although the 

shortcomings of CCA were less pronounced in this setting (see web appendix B, 

Section 6.3.10; also available online at the journal website). We did not consider a 

simulation study for binary multivariate outcome data due to complexities in 

defining the estimand (see Section 6.3.9). 

0.2

0.3

0.4

0.5
Corr(Y,Z) = 0.30 Corr(Y,Z) = 0.70

CCA MI overall m=50 MI by group m=50 Linear mixed model

Tr
ea

tm
en

t e
ffe

ct
 e

st
im

at
e



130 

 

6.3.7. Missing data in a baseline covariate 

 

Although missing baseline data can be avoided by requiring complete data 

collection before randomisation, this may not always be feasible (e.g. if a lengthy 

baseline interview is required). Unless baseline data are missing by design, it is 

implausible that missingness depends on randomised group given that baseline 

variables are measured before randomisation (19, 122). In this context, group 

comparisons based on complete cases should be unbiased, even if baseline data 

are MNAR. One potential limitation of the standard implementation of MI for 

imputing missing baseline data is that it ignores the independence of ܺ and ܶ. 

Chance imbalances in ܺ in the observed data are incorrectly extrapolated to the 

missing data, which may result in a loss of efficiency (122). In this section, we 

evaluate the efficiency of MI using simulation, both for continuous and binary 

variables, and compare performance with alternative approaches. 

 

Continuous baseline covariate and outcome 

 

The binary indicator ܯ௑௜ for missing data in the baseline covariate ܺ was first 

simulated with a probability of 0.20. Unlike other scenarios, we did not consider 

50% missing data, since this degree of missingness seems unlikely for a baseline 

covariate pre-specified for adjustment. Next, baseline and outcome data were 

simulated from the models ௜ܺ = ௑௜ܯ௑ߜ + ݁ଵ௜ and ௜ܻ = 0.30 ௜ܶ + ଶߚ ௜ܺ + ௑௜ܯ௒ߜ +

݁ଶ௜, with ݁ଵ	and	݁ଶ	~ܰ(0,1). The parameters ߜ௑ and ߜ௒ in these models allow ܺ 

and ܻ, respectively, to be associated with ܯ௑௜. Both MCAR (ߜ௑ = ௒ߜ = 0) and 

MNAR (ߜ௑ = ௒ߜ = 0.30) mechanisms were considered in separate simulation 

scenarios. In choosing values for ߚଶ, we allowed corr(ܺ,ܻ|ܶ,ܯ௑ = 0) to range 

between 0.10 and 0.90 in increments of 0.20. 

 

In addition to MI and CCA, we evaluated the performance of mean imputation, 

the missing indicator method and a LMM with baseline as an outcome. In mean 

imputation, missing baseline values are replaced with the mean of the observed 

values across both groups (i.e. ௜ܺ
∗ = തܺ௢௕௦	if	ܯ௑௜ = 1). Although mean imputation 
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for addressing missing outcome data has been widely criticised for failing to 

incorporate missing data uncertainty (1, 71), overstated precision is not a concern 

in this setting given the independence of ܺ and ܶ and interest only in the effect of 

treatment (and not the effect of the covariate) (122). The missing indicator method 

involves mean imputation and the addition of a dummy variable indicating 

missing data to the analysis model (i.e. adding ܯ௑௜). Despite being inappropriate 

for general use (123, 124), the missing indicator method has been validated for 

addressing missing covariate data in RCTs, where ܺ and ܶ are independent and 

missingness in ܺ is conditionally independent of ܻ	(122, 125). For strong 

correlations between ܺ and ܻ, White and Thompson (122) found that mean 

imputation and the missing indicator method became more efficient when 

participants with missing data were given a weight of 1− corr(ܺ,ܻ|ܶ,ܯ௑ = 0)ଶ 

in the analysis (with observed cases retaining a weight of 1). We investigated both 

unweighted and weighted approaches. For the LMM, we considered a joint model 

for ܺ and ܻ, where ܺ was assumed to be independent of ܶ, i.e. 

  

൬ ௜ܺ

௜ܻ
൰~ܰቊ൬ ଴ߜ

଴ߚ + ଵߚ ௜ܶ
൰ ,ቆ ௑ߪ

ଶ ௑௒ߪ
௑௒ߪ ௒ଶߪ

ቇቋ. 

 

Under both MCAR and MNAR mechanisms, all methods produced unbiased 

treatment effect estimates with nominal coverage throughout (range 0.94, 0.96). 

Despite this, noticeable differences in efficiency were apparent across the 

different approaches to handling missing data. Figure 6.5 summarises 

performance under the MCAR mechanism for corr(ܺ,ܻ|ܶ,ܯ௑ = 0) = 0.10, 0.50, 

and 0.90. As seen in the figure, CCA was close to optimal for a strong correlation 

between ܺ and ܻ but inefficient for weak to moderate correlations. Both mean 

imputation and the missing indicator method performed well, with weighting 

becoming important for strong correlations. MI was marginally less efficient than 

the weighted approaches and the LMM (empirical SEs on average 0.3% larger), 

with little difference seen between MI overall and MI by group. Lastly unadjusted 

CCA was highly inefficient for moderate to strong correlations between ܺ and ܻ. 

Efficiency results under the MNAR mechanism closely mirrored those of the 



132 

 

MCAR mechanism, with MI performing similarly to weighted mean imputation 

and the LMM across all values for corr(ܺ,ܻ|ܶ,ܯ௑ = 0) (empirical SEs on 

average 0.3% larger with MI overall and MI by group than mean imputation and 

the LMM). Interestingly, the missing indicator method incorporating weights held 

a slight advantage over MI under the MNAR mechanism (empirical SEs on 

average 1.1% smaller than with MI), which can be attributed to inclusion of the 

prognostic variable ܯ௑ in the analysis model. A graphical summary of 

performance under the MNAR mechanism is shown in web appendix C (see 

Section 6.3.10; also available online at the journal website); we do not present 

results here given their similarity to the MCAR setting. Given the simplicity of 

alternative approaches to handling missing data in baseline covariates, there 

appears to be little reason to adopt MI in this setting. 

 

 
Figure 6.5. Mean treatment effect estimates for 20% missing data in a continuous 

baseline covariate, MCAR mechanism. Error bars correspond to empirical 

standard errors (± 1 standard error) across 2,000 simulated datasets. 

 

 

0.1

0.2

0.3

0.4

0.5
Corr(X,Y) = 0.10 Corr(X,Y) = 0.50 Corr(X,Y) = 0.90

CCA MI overall m=50 MI by group m=50 Mean imputation Weighted mean imputation
Missing indicator Weighted missing indicator Linear mixed model Unadjusted CCA

Tr
ea

tm
en

t e
ffe

ct
 e

st
im

at
e



133 

 

Binary baseline covariate and outcome 

 

Following simulation of ܯ௑௜ with probability 0.20, baseline and outcome data 

were generated from the models logit	P( ௜ܺ = 1) = )P	௑௜ and logitܯ௑ߜ ௜ܻ = 1) =

଴ߚ + 0.69 ௜ܶ + ଶߚ ௜ܺ +  ଶ was varied so thatߚ ௑௜. The coefficientܯ௒ߜ

OR(ܻ,ܺ|ܶ,ܯ௑ = 0) =2.0, 4.0, or 8.0, while ߚ଴ was chosen to give 

ܲ(ܻ = 1|ܶ = ௑ܯ,0 = 0) = 0.20. Both MCAR (ߜ௑ = ௒ߜ = 0) and MNAR (ߜ௑ =

௒ߜ = 0.69) mechanisms were considered. We did not consider weighted methods 

or a LMM as in the continuous case, since these approaches are not applicable for 

binary outcomes.  

 

Mean treatment effect estimates and empirical SEs for the MCAR mechanism are 

displayed in Figure 6.6. The clear outlier on these performance measures was 

unadjusted CCA. Since adjustment in logistic regression has the effect of 

increasing SEs and producing odds ratios that are further from the null (126), this 

finding is not surprising. Both MI overall and MI by group produced unbiased 

treatment effect estimates (absolute bias  0.004) with nominal coverage (range 

0.95, 0.96) throughout, with little difference in empirical SEs between 

approaches. CCA produced treatment effect estimates with minimal bias, however 

empirical SEs were on average 10% larger than those of MI. For mean imputation 

and the missing indicator method, we observed a trade-off between efficiency and 

bias. For OR(ܻ,ܺ|ܶ,ܯ௑ = 0) = 8.0, both approaches exhibited modest efficiency 

advantages over MI (empirical SEs 4% smaller) at the expense of a small bias (-

0.02) towards the null. In terms of average power, there were minimal differences 

between mean imputation (93.0%), the missing indicator method (93.0%) and the 

MI approaches (92.9%). The small bias of mean imputation and the missing 

indicator method arises because the methods estimate a treatment effect that lies 

between the marginal (unadjusted) and conditional (adjusted) estimands. As the 

proportion of missing data in ܺ is increased, the methods shift from estimating the 

conditional estimand with no missing data to estimating the marginal estimand 

with no observed data (results not shown). Since for logistic regression the 

marginal estimand is always closer to the null, mean imputation and the missing 
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indicator method produce estimates of the conditional treatment effect that are 

biased towards the null. 

 

 
Figure 6.6. Mean treatment effect estimates for 20% missing data in a binary 

baseline covariate, MCAR mechanism. OR (odds ratio) refers to OR(ܺ,ܻ|ܶ). 

Error bars correspond to empirical standard errors (± 1 standard error) across 

2,000 simulated datasets. 

 

Although for ߜ௒ ≠ 0 the omission of ܯ௑ from analysis models changes the 

treatment effect estimated by logistic regression, the observed changes were 

minimal across the MNAR scenarios considered. Based on complete data, the 

“least false” treatment effect from a misspecified model omitting ܯ௑ was 

approximately 0.68 for all values of OR(ܻ,ܺ|ܶ,ܯ௑ = 0). That distinction aside, 

results from the MNAR setting closely followed those of the MCAR setting (see 

Figure 6.7). In comparing MI with mean imputation, we once again observed a 

trade-off between efficiency and bias. For OR(ܻ,ܺ|ܶ,ܯ௑ = 0) = 8.0, the 

empirical SE of mean imputation was 4.7% smaller than MI, however the bias 
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was slightly more pronounced (-0.05 vs. -0.02). The missing indicator method 

performed similarly to mean imputation in terms of efficiency, however biases 

were smaller in magnitude with the missing indicator method due to correct 

specification of the analysis model. Excluding unadjusted CCA, all methods 

produced treatment effect estimates with correct coverage (range 0.94, 0.95).   

 

 
Figure 6.7. Mean treatment effect estimates for 20% missing data in a binary 

baseline covariate, MNAR mechanism. OR (odds ratio) refers to OR(ܺ,ܻ|ܶ). 

Error bars correspond to empirical standard errors (± 1 standard error) across 

2,000 simulated datasets. 

 

6.3.8. Case study 

 

The Docosahexaenoic Acid for the Improvement of Neurodevelopmental 

Outcome in Preterm Infants (DINO) trial was a blinded RCT conducted in five 

Australian hospitals between 2001 and 2007 (Australian New Zealand Clinical 

Trials Registry: ACTRN12606000327583). Preterm infants born < 33 weeks 
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gestation (n=657) were randomised to receive a high docosahexaenoic acid 

(DHA) or a standard DHA diet from within 5 days of commencing enteral feeds 

through to term. Randomisation was stratified by hospital, sex, and birth weight 

(<1250g, ≥1250g), with infants from a multiple birth randomised according to the 

sex and birth weight of the first born infant. Results for primary and key 

secondary outcomes have been published previously (91, 127, 128). In the 

primary trial publication (91), outcomes were re-analysed using MI following 

feedback from reviewers that all randomised infants had to be included in ITT 

analyses and that MI would be an appropriate approach to achieve this. To 

simplify the dataset for illustration purposes, second and subsequent born infants 

from a multiple birth and infants that died before term were ignored, resulting in 

an example dataset with 262 and 260 infants in the high and standard DHA 

groups, respectively. 

 

To illustrate approaches for handling missing outcome data, we consider 

comparisons of fat free mass (FFM) at 7 years corrected age. Excluding two 

children that died after term, FFM was missing for 65/262 (24.8%) and 46/258 

(17.8%) children in the high and standard DHA groups, respectively. Logistic 

regression analysis revealed differences between the five study centres in the odds 

of missing outcome data (global p-value = 0.03). No other predictors of missing 

data were identified. For predictors of the outcome, linear regression analysis 

revealed associations between FFM and centre, sex, and weight, height and 

systolic blood pressure at 7 years corrected age. Since centre and sex were 

baseline measures, for illustration purposes we imagine these variables were pre-

specified as covariates for adjustment. Weight, height, and systolic blood pressure 

at 7 years corrected age were treated as auxiliary variables. 

 

We estimated the effect of treatment using CCA, MI overall, MI by group, and a 

LMM. An unadjusted CCA was also conducted for comparison. Since the 

auxiliary variables contained missing data (approximately 10% for each variable), 

values were imputed using a Markov chain Monte Carlo algorithm assuming 

multivariate normality (11). Following a burn-in of 5000 iterations, ݉ = 50 
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completed datasets were created. For the LMM, the three auxiliary variables and 

FFM were jointly modelled assuming an unstructured covariance matrix, with 

adjustment for centre and sex.  

 

Treatment effect estimates are presented in Table 6.1. Although there was little 

evidence for an effect of treatment on FFM, subtle differences between the 

approaches are apparent. As expected, adjustment for prognostic baseline 

covariates in a CCA reduced the SE of the treatment effect estimate compared 

with the unadjusted analysis. By incorporating information from auxiliary 

variables, additional efficiency gains were evident for MI and the LMM, with 

similar estimates from the two approaches (as expected). However gains were 

small, perhaps because 48% of the children with a missing FFM value also had 

missing data on the three auxiliary variables. Even when fully observed, auxiliary 

variables may only have a meaningful impact on estimation when strongly 

correlated with the outcome (6, 48, 49). 

 

Table 6.1. Treatment effect estimates for fat free mass (kg) at 7 years corrected 

age from the Docosahexaenoic Acid for the Improvement of Neurodevelopmental 

Outcome in Preterm Infants trial. 

Method of analysis Mean difference Standard error 95% confidence interval

Unadjusted CCA -0.007 0.259 -0.514 to 0.500

CCA 0.048 0.238 -0.420 to 0.515

MI overall m=50 -0.104 0.233 -0.562 to 0.353

MI by group m=50 -0.118 0.227 -0.563 to 0.327

Linear mixed model -0.097 0.231 -0.551 to 0.356
Abbreviations: CCA, complete case analysis; MI, multiple imputation. 
 

For missing data in a baseline covariate, we consider group comparisons of head 

circumference (HC) at term adjusted for birth HC. To focus on the problem of 

missing baseline data, 20 infants with missing outcome data were excluded from 

the analysis. Seven of these infants were missing birth HC and hence contained no 

information for estimating treatment effects, while the remaining 13 were 

assumed to be MAR and hence could be validly excluded (as demonstrated in 

Section 6.3.5). Of the remaining infants, birth HC was missing for 39/251 (15.5%) 
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and 42/251 (16.7%) in the high and standard DHA groups, respectively. 

Treatment effects were estimated using the same methods as in Section 6.3.7 for a 

continuous baseline covariate and outcome, with 50 imputations used for MI. In 

relation to the calculation of weights for mean imputation and the missing 

indicator method, in complete cases, the correlation between birth HC and HC at 

term was 0.43.  

 

As illustrated in Table 6.2, estimates were similar across the nine statistical 

approaches. In line with simulation results for a moderate correlation between the 

baseline and outcome measure, CCA and unadjusted CCA produced the largest 

SEs for the effect of treatment. While outperforming CCA, MI did not offer any 

efficiency improvements over the remaining approaches.  

 

Table 6.2. Treatment effect estimates for head circumference (cm) at term from 

the Docosahexaenoic Acid for the Improvement of Neurodevelopmental Outcome 

in Preterm Infants trial. 

Method of analysis Mean difference Standard error 95% confidence interval

Unadjusted CCA -0.060 0.136 -0.326 to 0.206

CCA -0.058 0.134 -0.320 to 0.204

MI overall m=50 -0.023 0.125 -0.267 to 0.221

MI by group m=50 -0.027 0.125 -0.273 to 0.218

Mean imputation -0.024 0.125 -0.269 to 0.221

Mean imputation with weights -0.029 0.125 -0.274 to 0.215

Missing indicator -0.028 0.125 -0.272 to 0.217

Missing indicator with weights -0.032 0.124 -0.276 to 0.211

Linear mixed model -0.029 0.125 -0.275 to 0.217
Abbreviations: CCA, complete case analysis; MI, multiple imputation. 
 

Since the probability of missing baseline data differed across the five study 

centres, we considered additional sensitivity analyses where centre was added as a 

covariate in adjusted models and mean imputation was performed separately by 

centre. Although this resulted in small increases in precision compared to models 

ignoring centre, again MI did not outperform simpler approaches such as mean 

imputation and the missing indicator method with or without weights (SE = 0.123 

for all approaches). 
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6.3.9. Discussion 

 

In this article, we evaluated the performance of MI in the RCT setting. In line 

with theoretical results, in its standard implementation, MI produced unbiased 

treatment effect estimates when data were MAR and the analysis model was 

correctly specified. However, due to Monte Carlo simulation error, MI was often 

less efficient than alternative unbiased approaches. For missing outcome data, MI 

was less efficient than CCA for univariate outcomes and the LMM for 

multivariate outcomes. For missing data in a baseline covariate, MI failed to 

outperform methods such as mean imputation and the missing indicator method. 

As well as being less efficient, MI was generally more difficult to implement and 

took longer to run compared with alternatives. Being a stochastic analysis, it also 

had the disadvantage of not producing a unique treatment effect estimate. Given 

these limitations, we believe that MI should not be seen as the only acceptable 

way to address missing data in RCTs. 

 

Collectively, our results underline the importance of context in choosing an 

approach for handling missing data. While MI is an extremely useful general 

purpose tool, it appears most beneficial in observational settings when there are 

missing data in confounding variables (93). In RCTs some of the value of MI is 

lost, and other approaches that are not widely recommended can be employed. For 

example, our simulation results confirm that mean imputation and the missing 

indicator method, whose use is ill-advised in most settings (1, 71, 123, 124), can 

be validly applied for addressing missing covariate data in RCTs. Similarly,  

despite general recommendations against the use of CCA (1, 71), it is optimal 

when missing data are restricted to a univariate outcome and variables associated 

with missingness are included as covariates in the analysis model (18, 23, 24). 

This scenario seems most pertinent to RCTs, where missing data tend to occur in 

the outcome. Of course should post-randomisation auxiliary variables for a 

univariate outcome be available, as is often the case, we then move into the setting 

of multivariate data and approaches such as MI or a LMM should be preferred 

over CCA. 
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Regarding choice of imputation strategy, we found that MI by group was slightly 

less efficient than MI overall for a correctly specified analysis model. However, 

when the analysis model overlooked an interaction effect involving randomised 

group, only MI by group produced unbiased estimates of the ATE. Thus in 

settings where MI is adopted, we recommend imputing by randomised group; 

compared to MI overall, this approach offers greater robustness at little cost. The 

approach is also consistent with general recommendations for over- rather than 

under-specifying imputation models (6, 11). It should be noted that imputing by 

group only protects against bias in estimating the ATE if effect modifiers are 

included in the imputation model. Another possibility is to include interaction 

terms in a single imputation model, but this approach is more complex and may 

not be obvious when analysis models do not include interaction terms. Although 

not considered in this article, we agree with previous recommendations for 

performing imputation separately by randomised group in settings involving 

subgroup analyses (13-15, 102). 

 

Despite highlighting alternatives to MI in this article, we are not suggesting that it 

is inappropriate to use MI. To the contrary, we view MI as an attractive option 

given its considerable flexibility. It is not uncommon in RCTs for researchers to 

collect data on a large number of secondary outcomes. One of the strengths of MI 

is its ability to easily incorporate variables of different types (e.g. continuous, 

binary) in the imputation model, whether for univariate or multivariate data. An 

added benefit of including all outcomes in a single imputation model is that 

associations between related outcomes can aid imputation. Another appealing 

feature of MI is its ability to be implemented under an assumption that data are 

MNAR. This property makes MI well suited to undertaking sensitivity analyses 

around a primary assumption that data are MAR (76), and as a primary method of 

analysis in settings where data are believed to be MNAR. One such setting is 

RCTs where participants cannot followed up after discontinuing treatment. If all 

observed data are “on-treatment”, a MAR assumption entails estimating the effect 

of treatment had all participants remained on their assigned treatment (68). 

However, for a de facto type estimand (such as ITT), it may be more appropriate 
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to assume that data are MNAR. In this situation, reference-based sensitivity 

analyses have been proposed, which at present require the use of MI (112). 

 

A limitation of the current study is that conclusions were based on a restricted set 

of simulation scenarios. Although we only considered simple randomisation to 

two groups, we anticipate that findings would extend to RCTs involving three or 

more randomised groups, unequal allocation probabilities, and randomisation 

using stratified blocks or minimisation. We also expect that our results for 

normally distributed and binary outcome variables would apply to most other 

outcome types. Three exceptions worth noting are time to event outcomes, where 

missing outcome data can be addressed via censoring, composite (scale) outcomes 

derived from multiple items, and binary multivariate outcomes. For missing data 

in a composite outcome, MI at the item level is a particularly convenient approach 

when the individual items are partially observed. Although likelihood-based 

alternatives for composite outcomes are also available (129), they are more 

difficult to implement. For binary multivariate outcomes, complexities arise due 

to differences between population-averaged and subject-specific estimands (130). 

Generalised mixed models can be implemented in a similar manner to LMMs for 

continuous data if subject-specific estimates are of interest (19); however, these 

models can be challenging to fit given the variety of estimation procedures 

available and the computational difficulties that can arise with large numbers of 

repeated measurements (131). MI is more appealing for producing population-

averaged estimates (19). 

 

A further limitation is that we did not consider the performance of inverse 

probability weighting (IPW). This approach, which involves weighting complete 

cases by the inverse of the probability of being a complete case, requires only a 

correctly specified model for the probability of missing data to produce valid 

estimates under a MAR assumption. However, IPW tends to be less efficient than 

MI and can be difficult to implement for non-monotone missing data patterns 

(26). Of relevance to the settings considered in this article, IPW is capable of 

producing population-averaged estimates for multivariate binary outcome data 
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and unbiased estimates of an ATE from a misspecified analysis model (26). IPW 

can also be appropriate in settings where data are missing by design and hence 

where the probability of being a complete case is known. We also did not evaluate 

multiple imputation, then deletion, which is a modification to standard MI where 

participants with imputed outcomes (but not imputed covariate values) are deleted 

from analysis datasets (8). The rationale behind this approach is that following 

imputation, participants with missing outcomes only contribute noise to the 

estimation procedure (8). Whether multiple imputation, then deletion is useful in 

the RCT setting is debatable however, since it is only applicable in settings where 

both covariate and outcome data are missing. Further, the approach should be 

avoided when auxiliary variables for the outcome are included in the imputation 

model (104), as is often the case.  

 

In summary, MI is not the only option for handling missing data in RCTs. 

Although MI is appropriate in all contexts, simpler alternatives are often slightly 

superior. For missing outcome data, MI can be inferior to CCA and likelihood-

based approaches, adding in unnecessary simulation error. For missing data in a 

baseline covariate, simpler approaches such as mean imputation and the missing 

indicator method can outperform MI. Should MI be adopted, we recommend 

imputing separately by randomised group. 

 

6.3.10. Web appendix 

 

Web appendix A. Missing data in a univariate binary outcome, where there is a 

correctly specified analysis model. 

 

Considering ௜ܺ = 0	or	1 with probability 0.5, binary outcomes were generated 

from the model logit	P( ௜ܻ = 1) = ଴ߚ + 0.69 ௜ܶ + ଶߚ ௜ܺ, where the treatment effect 

of 0.69 corresponds to an odds ratio (OR) of 2.0. To explore the impact that the 

strength of association between ܺ and ܻ had on model performance, the 

coefficient ߚଶ was varied so that OR(ܻ,ܺ|ܶ) = 2.0	or	4.0. Lastly the coefficient 

ܻ)ܲ ଴ was chosen so thatߚ = 1|ܶ = 0) = 0.20. Following the generation of 
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complete datasets, values in ܻ were set to missing according to the MAR X, MAR 

X+T and MAR X×T mechanisms outlined in Section 6.3.5 (with ܺ now a binary 

variable). Once again,  (increase in odds of missing data per standard deviation 

increase in ܺ) was set to 1.5 or 2.5 to indicate weak and strong missing data 

mechanisms, respectively, and both 20% and 50% missing data were considered. 

 

CCA, MI overall and MI by group performed well in estimating the treatment 

effect for a binary outcome with missing data. Each method produced a mean 

treatment effect estimate of 0.70 across the 24 simulation scenarios (range 0.68, 

0.71), with the small bias away from the null a product of the finite sample bias of 

logistic regression. CCA was the most efficient approach in all scenarios, with 

empirical standard errors on average 0.4% and 2.9% larger with MI overall and 

MI by group, respectively; differences were more pronounced with 50% missing 

data and under the strong MAR X and MAR X+T mechanisms. Compared to 

CCA, power was on average 0.6% and 2.8% lower with MI overall and MI by 

group, respectively. Coverage for the three approaches remained close to 0.95 

throughout (range 0.94, 0.96). Figure 6.8 illustrates performance in scenarios with 

50% missing data, a strong MAR mechanism and for OR(ܻ,ܺ|ܶ) = 4.0. For 

reference, results are also displayed for unadjusted CCA. As seen in the figure, 

treatment effect estimates were noticeably different with unadjusted CCA, due 

both to inadequate handling of the missing data and the estimation of a different 

treatment effect in unadjusted logistic regression. For MI, empirical standard 

errors were marginally lower with MI overall than MI by group. As observed for 

continuous outcome data, MI offered no advantages over the simpler CCA in this 

setting.  
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Figure 6.8. Mean treatment effect estimates for 50% missing data in a binary 

outcome, OR(ܺ,ܻ|ܶ) = 4.0, strong MAR mechanisms, correctly specified 

analysis model. Error bars correspond to empirical standard errors (± 1 standard 

error) across 2,000 simulated datasets. 

 

Web appendix B. Missing data in a continuous multivariate outcome where there 

is missing data in an intermediate measure of the outcome and the final outcome. 

 

Intermediate (ܼ) and final (ܻ) values of a continuous outcome were simulated 

using the data generation model from Section 6.3.6 of the main article. Again we 

considered weak (0.30) and strong (0.70) values for ߪ௓௒ and for the correlation 

between the baseline covariate ܺ and the two outcome measures. Missingness was 

induced in a monotone pattern using two steps. In the first step, values in both ܼ 

and ܻ were simultaneously set to missing such that the odds of missingness were 

 times higher in the control group and increased by a factor  per SD increase in 

ܺ (equivalent to the MAR X+T mechanism from Section 6.3.5). In a second step, 
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additional values in ܻ were set to missing such that the odds of missingness were 

 times higher per SD increase in observed ܼ. We considered  = 1.5 or 2.5, with 

missing data proportions in (ܼ,ܻ) of (0.10, 0.20) or (0.25, 0.50). In addition to 

CCA and MI (using multivariate normal imputation), data were analysed using a 

LMM with an unstructured covariance matrix.  

 

As expected for a MAR mechanism, MI overall, MI by group and the LMM 

produced unbiased treatment effect estimates with correct coverage (range 0.94, 

0.46) across all scenarios. Compared to the LMM, empirical SEs were on average 

0.4% and 3.0% higher with MI overall and MI by group, respectively (translating 

to average power losses of 0.1% and 2.8%). Although CCA was outperformed by 

MI and the LMM, deficiencies were not as pronounced as when missing data was 

restricted to the final outcome measure, as presented in Section 6.3.6. In fact, 

CCA was only marginally less efficient than the LMM for ߪ௓௒ = 0.30 (empirical 

standard errors 0.9% larger). This is not an unexpected result, since ܼ has less 

information to contribute to estimation when it contains missing data. Figure 6.9 

shows performance in scenarios with 50% missing data in ܻ, where 

corr(ܺ,ܻ|ܶ) = 0.30 and  = 2.5. As seen in the figure, the shortcomings of CCA 

were most pronounced for ߪ௓௒ = 0.70 (bias = 0.02, empirical SE 6.6% larger than 

the LMM), with little difference between MI and the LMM.  
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Figure 6.9. Mean treatment effect estimates for 25% and 50% missing data in an 

intermediate and final measure of a continuous multivariate outcome, 

respectively, corr(ܺ,ܻ|ܶ) = 0.30, strong MAR mechanism. Error bars 

correspond to empirical standard errors (± 1 standard error) across 2,000 

simulated datasets. 

 

Web appendix C. Missing data in a continuous baseline covariate, MNAR 

mechanism. 
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Figure 6.10. Mean treatment effect estimates for 20% missing data in a 

continuous covariate for adjustment, MNAR mechanism. Error bars correspond to 

empirical standard errors (± 1 standard error) across 2,000 simulated datasets. 

 
 

*** End of published article *** 
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7. Multiple imputation in extended follow-up 

studies 
 

7.1. Preface 
 

This chapter contains the last of a series of four articles contributing to this thesis. 

The article, published in Clinical Trials, systematically reviews recently published 

extended follow-up studies of RCTs to summarise the extent and common sources 

of missing outcome data in this setting. The use of statistical approaches for 

handling missing outcome data in extended follow-up studies is also reviewed. 

Based on the findings of the systematic review, and using the DINO trial as a case 

study, some general recommendations for implementing MI in extended follow-

up studies are provided at the conclusion of the chapter (see Section 7.4). 
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7.3. Article 
 

In this section, I provide the text, tables, figures, and appendices from the 

published manuscript. 

 

7.3.1. Abstract 

 

Background/Aims: After completion of a randomised controlled trial, an 

extended follow-up period may be initiated to learn about longer term impacts of 

the intervention. Since extended follow-up studies often involve additional 

eligibility restrictions and consent processes for participation, and a longer 

duration of follow-up entails a greater risk for participant attrition, missing data 

can be a considerable threat in this setting. As a potential source of bias, it is 

critical that missing data are appropriately handled in the statistical analysis, yet 

little is known about the treatment of missing data in extended follow-up studies. 

The aims of this review were to summarise the extent of missing data in extended 

follow-up studies and the use of statistical approaches to address this potentially 

serious problem. 

 

Methods: We performed a systematic literature search in PubMed to identify 

extended follow-up studies published from January to June 2015. Studies were 

eligible for inclusion if the original randomised controlled trial results were also 

published and if the main objective of extended follow-up was to compare the 

original randomised groups. We recorded information on the extent of missing 

data and the approach used to treat missing data in the statistical analysis of the 

primary outcome of the extended follow-up study. 

 

Results: Of the 81 studies included in the review, 36 (44%) reported additional 

eligibility restrictions and 24 (30%) consent processes for entry into extended 

follow-up. Data were collected at a median of 7 years after randomisation. 

Excluding 28 studies with a time to event primary outcome, 51/53 studies (96%) 

reported missing data on the primary outcome. The median percentage of 
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randomised participants with complete data on the primary outcome was just 66% 

in these studies. The most common statistical approach to address missing data 

was complete case analysis (51% of studies), while likelihood-based analyses 

were also well represented (25%). Sensitivity analyses around the missing data 

mechanism were rarely performed (25% of studies), and when they were, they 

often involved unrealistic assumptions about the mechanism. 

 

Conclusions: Despite missing data being a serious problem in extended follow-up 

studies, statistical approaches to addressing missing data were often inadequate. 

We recommend researchers clearly specify all sources of missing data in follow-

up studies and use statistical methods that are valid under a plausible assumption 

about the missing data mechanism. Sensitivity analyses should also be undertaken 

to assess the robustness of findings to assumptions about the missing data 

mechanism. 

 

7.3.2. Introduction 

 

After a randomised controlled trial (RCT) has come to its protocol defined end, it 

may be desirable to instigate an extended follow-up period to learn about longer 

term impacts of the intervention. In prevention and treatment trials, extended 

follow-up can be important for verifying that early effects on biomarkers of 

disease activity translate to longer term effects on more clinically meaningful 

endpoints (83, 84). In perinatal trials, extended follow-up may be initiated to 

evaluate impacts on development in later childhood. In other settings, 

investigators may choose to follow up participants to learn more about disease 

progression, long-term safety, treatment-related costs, or the maintenance of early 

effects (16). The key benefit of initiating extended follow-up is the cost saving 

associated with using an already established cohort. Given the substantial 

investment required in designing a trial, recruiting participants, providing 

treatment and collecting baseline data, it is not surprising that many trials do 

eventually transition to extended follow-up studies (16). 
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Like standard RCTs, missing data can threaten the validity of findings from 

extended follow-up studies. The process of transitioning to an extended follow-up 

study may occur years after completion of the original RCT, leaving the task of 

re-contacting participants and obtaining outcome data particularly difficult. Even 

without a delay in commencing extended follow-up, the longer time between 

randomisation and final outcome assessment may be associated with greater 

participant attrition. In multicentre trials, some centres might not participate in 

extended follow-up, or investigators could impose other eligibility restrictions for 

inclusion into extended follow-up. Depending on the information provided to 

participants in the original RCT, a separate consent form for extended follow-up 

may also be necessary. Some participants may be unwilling to consent at this 

stage. Finally, participants may simply fail to provide information about a 

particular measure during extended follow-up. Taken together these varied 

sources of missing data (attrition over time, ineligibility, non-consent and item 

non-response) could result in a large proportion of the original randomised cohort 

having missing outcome data. 

 

The most effective way to minimise the impact of missing data in extended 

follow-up studies is to prevent it. In a recent review, Drye et al. (16) considered 

logistical issues in undertaking extended follow-up studies, with several of their 

recommendations focusing on the prevention of missing data. Suggestions 

included minimising the time between trial completion and follow-up study 

commencement, maintaining participant contact details at a central facility, 

informing participants about possible future contact, and attempting to contact 

participants who were unable to complete the original RCT. Even with the most 

rigorous planning, however, there will invariably be some missing data in 

extended follow-up studies. Since inadequate treatment of missing data in an 

analysis can result in substantial bias and inefficiency (1), it is critical that 

appropriate statistical methods are adopted. 

 

The validity of any statistical method used to handle missing data depends on the 

mechanism responsible for the data being missing. Using Rubin’s system (2), data 
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can be classified as missing completely at random if missingness is independent 

of observed and unobserved data, missing at random if missingness is independent 

of unobserved data given observed data, and missing not at random if missingness 

is dependent on unobserved data given observed data. Since the mechanism 

cannot be verified from observed data, researchers are encouraged to state and 

justify the assumption made about the missing data mechanism in the main 

analysis and to undertake sensitivity analyses around this assumption (1, 13, 17, 

20). 

 

A common approach to handling missing data in RCTs is to perform a complete 

case analysis (109, 132), which involves restricting the analysis to participants 

with complete data on all variables in the analysis model. Although simple to 

implement, complete case analysis is often inefficient and can introduce bias 

when data are not missing completely at random (1, 14). Single imputation 

methods, which involve replacing missing values with single imputed values, are 

also commonly used in RCTs (109, 132). A major concern with the application of 

these methods is that analyses are often incorrectly conducted as if all data were 

observed, which can lead to overstated precision (1, 13). A noteworthy single 

imputation method for longitudinal settings is the last observation carried forward, 

where missing outcomes are replaced by the last observed measurement. As well 

as concerns around overstated precision, this method can introduce bias when 

outcome values change following the last observed measurement (13).  

 

Several more principled alternatives for handling missing data are available. 

Inverse probability weighting, where complete cases are weighted by the inverse 

of the probability of being a complete case (26), and likelihood-based methods 

(e.g. mixed models for repeated measures data) (79, 117) produce valid inference 

under a missing at random assumption. Another approach typically implemented 

under a missing at random assumption is multiple imputation (4), although 

application under missing not at random mechanisms is also possible. In its 

standard implementation, multiple imputation involves replacing each missing 

observation with multiple independent draws from the posterior predictive 
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distribution of the missing data conditional on the observed data, a process that 

generates multiple complete datasets. Following analysis, results for each 

complete dataset can be combined using appropriate rules to give a single 

estimate. An alternative to multiple imputation is model-based single imputation; 

however, special methods such as the jackknife are required to obtain valid 

standard error estimates (133). 

 

Given recommendations for the use of inverse probability weighting, likelihood-

based methods, and multiple imputation in guidance documents for RCTs (1, 71), 

it seems reasonable that these methods should be preferred in extended follow-up 

studies. Yet implementation in this setting may be more complex given the 

additional sources of missing data present. Consider an extended follow-up study 

involving a separate consent process and where eligibility is restricted to 

participants who completed the original RCT, as illustrated in Figure 7.1. The 

analysis could include all randomised, all eligible, or all consenting participants. 

Incorporating the full randomised cohort in the analysis preserves the benefits of 

randomisation, but there may be a large amount of missing data to account for and 

a mixture of missing data mechanisms at play, since reasons for missing data 

could differ between ineligible participants, non-consenters, and consenters. 

Satisfying an assumption about the missing data mechanism might be more 

feasible if calculations only incorporate eligible or consenting participants, but 

then the benefits of randomisation are diminished. The population of interest for 

the chosen measure of intervention effect (e.g. all randomised participants for 

intention to treat) should also be taken into account when choosing a participant 

group to incorporate in the analysis. Discussion of these issues is lacking in the 

literature, and it is unclear how missing data in this context are being handled in 

practice. 
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Figure 7.1. Timeline of an extended follow-up study. 

 

We undertook a systematic review of the literature to investigate the treatment of 

missing data in extended follow-up studies. Although reviews on the treatment of 

missing data have been undertaken for other research designs, for example 

randomised trials (12, 109, 132) and cluster randomised trials (134, 135), to our 

knowledge, this is the first review of missing data in extended follow-up studies. 

The aims of the review were to summarise the extent of missing data in follow-up 

studies, the quality of reporting around missing data, and the use of statistical 

approaches to address this potentially serious problem. 

 

7.3.3. Methods 

 

Research articles published in English between 1 January 2015 and 30 June 2015 

were reviewed. Studies were eligible for inclusion if the original trial results were 

also published and if the main objective of extended follow-up was to compare 

the original randomised groups. Since options for handling missing data are 

limited in small sample sizes, only studies involving the randomisation of at least 

100 participants were considered eligible. Articles were excluded if the original 

trial was a pilot or dose-finding study, if extended follow-up was pre-specified in 

the original trial protocol, or if the article included multiple trial cohorts (as this 

would lead to additional complexities in handling missing data). Where multiple 

articles reporting on the same follow-up study were discovered, only the first 

published article was included in the review to avoid replicating results. 
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The search was conducted in PubMed on 18 January 2016. Search terms were 

based on the Cochrane sensitivity and precision maximising search strategy for 

identifying randomised trials (136), with additional terms for “follow-up”, 

“continuation study” and “long-term effects”. The search strategy is detailed in 

Table 7.1. Titles and abstracts of identified articles were examined and classified 

as potentially eligible or ineligible. Full texts of potentially eligible articles were 

then examined to confirm eligibility, with information from eligible articles 

transcribed to a pre-piloted data extraction form developed specifically for this 

review. Details reported in Supplementary Materials and Web Appendices were 

included in this review process. The assessment was carried out in full by one 

reviewer (T.R.S.), with a second reviewer (L.N.Y.) independently examining 20% 

of the articles. Interrater agreement for article eligilibity, as indicated by a Kappa 

statistic (137), was estimated to be 0.89. All disagreements were resolved by 

discussion. 

 

Table 7.1. Search strategy to identify extended follow-up studies (PubMed search 

date 18 January 2016). 
(randomized controlled trial[pt] OR controlled clinical trial[pt] OR randomized[tiab] OR 

randomised[tiab] OR placebo[tiab] OR clinical trials as topic [mesh: noexp] OR randomly[tiab] OR 

trial[ti]) NOT (animals[mh] NOT humans[mh]) AND ("follow-up" [ti] OR "followup" [ti] OR 

"continuation study" [ti] OR "long-term effects" [ti]) AND ("2015/01/01"[PDat] : "2015/06/30"[PDat]) 

AND English[lang] 

 

For each eligible follow-up study, key details about the original RCT were 

recorded, including the unit of randomisation (individuals vs. clusters), number of 

randomised participants, number of treatment arms, and type of intervention. 

Information on the use of separate eligibility restrictions and consent processes for 

entry into extended follow-up was then documented, including numbers eligible 

and consenting where applicable. The duration of time between randomisation or 

completion of the original RCT and completion of the extended follow-up study 

was also recorded. 
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In extracting information about the handling of missing data, the review focused 

on the analysis of a single primary outcome. If multiple primary outcomes were 

identified in the article, the primary outcome of interest was defined as the first 

primary outcome used to determine the sample size, or the first primary outcome 

identified otherwise. If no primary outcome was identified, it was taken to be the 

first outcome used to justify the sample size, otherwise the first outcome 

presented in a table or figure. With the exception of time to event outcomes, 

where missing data can, in part, be addressed through censoring, the number of 

complete cases for the primary outcome was recorded. For outcomes measured 

repeatedly over time, the number of complete cases was taken to be the number 

available at the final assessment. In studies with missing data on the primary 

outcome, the following information was extracted: measure of intervention effect 

of interest (e.g. intention to treat), statement and justification of the missing data 

mechanism assumed, and statistical method used to handle missing data in both 

the main analysis and in sensitivity analyses (if performed).  

 

7.3.4. Results 

 

The electronic search identified 420 articles, of which 274 were excluded based 

on a review of titles and abstracts. Of the remaining 146 articles, 81 satisfied 

eligibility criteria and were included in the review (Figure 7.2). The full list of 

included articles is provided in the web appendix (see Section 7.3.6; also available 

online at the journal website). 
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Figure 7.2. Flow diagram for systematic review. 

 

Characteristics of original trial 

 

Key characteristics of the original trial are presented in Table 7.2. The median 

number of randomised participants was 299, with the majority of trials having two 

treatment arms and randomising individuals rather than clusters. The most 

common type of intervention was a drug or medical device (41%), with surgical 

(12%), psychological (11%) and nutritional supplement (10%) interventions also 

well represented. Reporting of blinding was poor, with 56% of articles providing 

insufficient detail to determine the type of blinding employed. In many articles, 

readers were referred to the original RCT publication for details on trial design. 

 

  

 

Full text articles excluded (n=65) 
- not extended follow-up of a trial (n=42) 
- randomised sample size < 100 (n=7) 
- objective not to compare randomised groups (n=7) 
- initial trial a pilot study (n=1) 
- multiple follow-up studies in article (n=1) 
- follow-up study in original protocol (n=6) 
- subsequent article reporting on same study (n=1) Articles included in the review 

(n=81) 

Full text articles assessed for 
eligibility (n=146) 

Articles excluded during title and abstract review (n=274) 
- study not in humans (n=2) 
- not extended follow-up of a trial (n=141) 
- randomised sample size < 100 (n=95) 
- objective not to compare randomised groups (n=30) 
- initial trial a pilot study (n=3) 
- multiple follow-up studies in article (n=1) 
- follow-up study in original protocol (n=2) 

Articles identified in PubMed 
search (n=420) 
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Table 7.2. Characteristics of the original trialsa. 

Characteristic Number of studies (n=81) 

Number of participants: median (inter) 299 (154, 1152) [n=80] 

Number of treatment arms  

2 65 (80%) 

3 or more 16 (20%) 

Randomisation  

Individual 67 (83%) 

Cluster 8 (10%) 

Unclear 6 (7%) 

Intervention  

Drug/device 33 (41%) 

Exercise/diet/lifestyle 7 (9%) 

Nutritional supplement 8 (10%) 

Psychological 9 (11%) 

Surgical 10 (12%) 

Other 14 (17%) 

Blinding  

Unblinded 14 (17%) 

Participants blinded 1 (1%) 

Outcome assessors blinded 14 (17%) 

Both participants and outcome assessors blinded 7 (9%) 

Unclear 45 (56%) 
Abbreviations: IQR, interquartile range. 
a Values are n(%) unless otherwise indicated. 
 

Characteristics of extended follow-up study 

 

Information on the transition to extended follow-up is presented in Table 7.3. Of 

the 81 articles included in the review, 36 (44%) reported separate eligibility 

restrictions for entry into extended follow-up. The most common restriction 

concerned satisfactory adherence to the protocol in the original trial (22 studies). 

Participants were also ruled ineligible according to their enrolling centre (three 

studies), treatment arm (two studies), or other baseline (three studies) or post-

randomisation (six studies) characteristics. Across studies reporting eligibility 

restrictions, the median percentage of randomised participants eligible for follow-

up was 86%. A total of 24 studies (30%) reported using a separate consent process 

for follow-up; the median percentage of randomised participants providing 

consent was 70% in these studies. It is possible that other studies used eligibility 

restrictions and consent processes for follow-up but failed to report them. Overall, 
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the median duration of time from randomisation to completion of extended 

follow-up was 84 months, representing a median of 52 months of additional 

follow-up beyond the original RCT. 

 

Table 7.3. Characteristics of the extended follow-up studiesa. 

Characteristic Number of studies 
(n=81) 

Reported on an eligibility restriction for the follow-up study  

Yes 36 (44%) 

No 45 (56%) 

Percentage of randomised participants eligible: median (IQR) 85.6 (73.1, 91.9) [n=32]  

Reported on the use of a separate consent process for the follow-up study  

Yes 24 (30%) 

No 57 (70%) 

Percentage of randomised participants consenting: median (IQR) 70.3 (54.2, 77.2) [n=20] 

Months from randomisation to follow-up study completion: median (IQR) 84 (38, 120) [n=77] 

Months from original RCT completion to follow-up study completion: median (IQR) 52 (24, 72) [n=72] 

Same primary outcome as in original RCT but at a later time point  

Yes 17 (21%) 

No 22 (27%) 

Unclear 42 (52%) 

Type of primary outcome in follow-up study  

Continuous 36 (44%) 

Binary 14 (17%) 

Categorical 3 (4%) 

Time to event 28 (35%) 

Number of measurements on primary outcomeb  

Single 17 (32%) 

Repeated 36 (68%) 

Accounted for missing data in sample size calculationsc  

Yes 5 (10%) 

No 1 (2%) 

No calculation provided 45 (88%) 

Reported information on the amount of missing datac  

By treatment arm 47 (92%) 

Overall only 4 (8%) 

Percentage complete cases among all randomised: median (IQR)c 65.9 (53.1, 78.6) [n=48] 
Abbreviations: IQR, interquartile range; RCT, randomised controlled trial. 
a Values are n(%) unless otherwise indicated. 
b Excluding n=28 studies with a time to event primary outcome. 
c Excluding n=28 studies with a time to event primary outcome and n=2 studies that did not report missing data. 
 

Table 7.3 also provides details on the primary outcome of extended follow-up. In 

17 studies (44%), the primary outcome was unchanged from the original RCT, 

albeit measured at a later time point. The majority of studies involved either a 
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continuous (44%), time to event (35%), or binary (17%) primary outcome. 

Excluding 28 studies with a time to event primary outcome, 51/53 studies (96%) 

reported missing data on the primary outcome. In one study, all randomised 

participants had primary outcome data available, while another study provided 

insufficient details to determine if there were missing data. Of the 51 studies 

reporting missing data, only five accounted for missing data in sample size or 

power calculations; 45 did not provide any justification for the sample size in the 

extended follow-up study at all. Reporting on the extent of missing data was fairly 

rigorous, with 47/51 studies reporting some information on missing data 

proportions separately by treatment arm. Across treatment arms, the precise 

number of complete cases on the primary outcome was presented or possible to 

infer in 48/51 studies. Among these studies, the median percentage of randomised 

participants with complete data on the primary outcome was just 66% 

(interquartile range 53%, 79%). 

 

Handling of missing data in the main analysis 

 

Of the 51 studies reporting missing data on the primary outcome, 26 (51%) failed 

to identify the measure of intervention effect, or estimand, of interest (Table 7.4). 

A total of 18 studies undertook analyses according to the intention to treat 

principle and three according to a per-protocol approach. The remaining four 

studies defined some other estimand of interest. Of the 18 studies reportedly 

following the intention to treat principle, six restricted eligibility for extended 

follow-up according to adherence to the protocol in the original RCT. Only 5/51 

studies with missing data explicitly stated the missing data mechanism assumed in 

the main analysis, with just three of these providing justification for the 

assumption. In two studies, a missing at random assumption was deemed 

plausible since baseline characteristics were similar between participants with 

missing and observed outcomes (suggesting data might have been missing 

completely at random). Another study identified predictors of missing data and 

justified a missing at random assumption by incorporating these predictors into a 

likelihood-based linear mixed model. 
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Table 7.4. Analysis of the primary outcomea. 

Characteristic Number of studies (n=51)b 

Measure of intervention effect (estimand) of interest  

Intention to treat 18 (35%) 

Per protocol 3 (6%) 

Other 4 (8%) 

Not stated 26 (51%) 

Reported on missing data mechanism assumed in the analysis  

Missing at random 5 (10%) 

Not stated 46 (90%) 

Justified the assumption made about the missing data mechanism  

Yes 3 (6%) 

No 2 (4%) 

Not applicable 46 (90%) 

Statistical approach  

Complete case analysis 26 (51%) 

Single imputation 3 (6%) 

Multiple imputation 4 (8%) 

Likelihood based 13 (25%) 

Estimating equation method 4 (8%) 

Unclear 1 (2%) 

Performed a sensitivity analysis around the missing data mechanism  

Yes 13 (25%) 

No 38 (75%) 
a Values are n(%). 
b Excluding n=28 studies with a time to event primary outcome and n=2 studies that did not report missing data. 
 

The most common approach for handling missing data in the main analysis was to 

perform a complete case analysis (26/51 studies; Table 7.4). Of studies using 

complete case analysis, 17/26 (65%) involved a primary outcome that was 

measured repeatedly over time, and so analyses (final time point analysis or 

analysis of variance (ANOVA)) may have excluded participants with available 

data on earlier measurements. Among the nine studies using complete case 

analysis for a univariate (once-measured) primary outcome, only one adjusted for 

baseline covariates. A total of 13 studies used a likelihood-based approach in the 

main analysis, 10 involving a repeatedly measured outcome and 3 a univariate 

outcome with clustering in the data. Single imputation methods were used in three 

studies: two used last observation carried forward and one assumed that 

participants were disease free if data were missing. Four studies used estimating 

equations (without probability weights) to account for clustering, which relies on 

data being missing completely at random (138). In one study, the method of 
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analysis was unclear, while four studies used multiple imputation to address 

missing data. In three studies using multiple imputation, imputed datasets 

included all randomised participants. In the other, where interest concerned the 

intention to treat estimand, data were only imputed for participants who consented 

to extended follow-up, although imputation back to the full randomised cohort 

was explored in a sensitivity analysis. Regarding method of multiple imputation, 

two studies used chained equations to generate 100 imputed datasets, with 

additional predictors of the outcomes and of missing data (known as auxiliary 

variables) included in the imputation model. One study used an expectation 

maximisation algorithm to generate 20 imputed datasets, while another did not 

report any details of the imputation methodology. 

 

Sensitivity analysis 

  

Of the 51 follow-up studies with missing data, 13 (25%) reported undertaking 

sensitivity analyses where an alternative statistical method was used to address 

missing data. Methods of sensitivity analysis included complete case analysis 

(five studies), likelihood-based (three studies), multiple imputation (two studies), 

last observation carried forward (two studies), other single imputation procedure 

ignoring missing data uncertainty (two studies), and estimating the range of 

possible treatment effects for missing data in a binary outcome (one study). Of 

note, only six studies were judged to have made a less restrictive assumption 

about the missing data mechanism in sensitivity analyses, with just two 

considering missing not at random mechanisms. Eight studies presented treatment 

effect estimates along with confidence intervals or standard errors from sensitivity 

analyses, one graphically presented a range of p-values, while the remaining four 

only commented that conclusions were unchanged following sensitivity analyses.  

 

7.3.5. Discussion 

 

In this article, we reviewed the occurrence and treatment of missing data in 

recently published extended follow-up studies. With primary outcome data 
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collected at a median of 7 years after randomisation, and with many studies 

reporting separate eligibility restrictions and consent processes for entry into 

extended follow-up, it was not surprising to find high proportions of missing data. 

We found that the median percentage of randomised participants with complete 

data on the primary outcome was just 66%. In comparison, systematic reviews of 

RCTs have reported median complete data proportions in the vicinity of 90% 

(range 89 to 92%) (7, 12, 109). Despite the considerable threat of missing data, 

several weaknesses in the statistical handling of missing data were identified. 

Only half the included articles reported the estimand of interest, less than 10% 

explicitly stated the missing data mechanism assumed in the analysis and just 25% 

undertook sensitivity analyses around the missing data mechanism. Further, 

roughly 60% of studies performed the main analysis under the strong assumption 

that data were missing completely at random. Clearly there is room for 

improvement. 

 

Complete case analysis was the most popular statistical approach in this review, 

despite criticism in guidance documents for RCTs (1, 71). It is possible that 

researchers remain unclear about the underlying assumptions required to 

guarantee the validity of this approach. Indeed, one study employing complete 

case analysis claimed they made “no assumptions about missing data” (139). For 

outcomes measured repeatedly over time, there is little justification for complete 

case analysis. Even in the unlikely scenario that repeated measures data are 

missing completely at random, complete case analysis tends to be inefficient since 

participants with intermediate measures on the outcome can be excluded from the 

analysis. For univariate outcomes, complete case analysis may be more 

defensible. Research has shown that complete case analysis with covariate 

adjustment produces unbiased and efficient estimates of regression parameters 

when univariate outcome data are missing at random conditional on covariates 

(18, 23, 24). In the context of extended follow-up studies, this means that 

inference can be improved by identifying and subsequently adjusting for baseline 

predictors of missing data. Unfortunately we only observed one study where 
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baseline variables were adjusted for in a complete case analysis of a univariate 

outcome. 

 

Encouragingly, likelihood-based approaches or multiple imputation were used in 

33% of the included studies, which is higher than usage rates of around 25% 

observed in recent systematic reviews of RCTs (109, 132). It was also promising 

to find only two studies that used last observation carried forward in the main 

analysis. This method relies on the questionable assumption that responses remain 

stable beyond the last observed measurement. Even in settings where this 

assumption is plausible, the approach tends to produce confidence intervals that 

are too narrow (1, 13, 110). 

 

As well as choosing and justifying a sensible method of analysis in the presence 

of missing data, it is critical that researchers explicitly state the estimand of 

interest (1). Since discussion on the topic is still evolving (66, 68, 140), we avoid 

trying to define here exactly what constitutes an estimand, yet it remains clear that 

one must know what is being estimated to judge the appropriateness of a 

statistical approach. Unfortunately less than half of the included studies stated the 

estimand of interest. Among studies where it was stated, the majority focused on 

the intention to treat estimand. Interestingly, three studies undertaking intention to 

treat analyses used a complete case analysis for repeated measures data, and so 

may have excluded participants with available outcome data at earlier time points. 

In addition, six studies restricted eligibility for entry into extended follow-up 

according to adherence to the protocol in the original RCT. Both these approaches 

ignore recommendations for undertaking intention to treat analyses, which 

specifically advocate using all available outcome data in the analysis and 

attempting to collect outcome data on all randomised participants (1, 20, 68). 

 

Another major shortcoming identified in the review concerned the use of 

sensitivity analyses around the missing data mechanism. Sensitivity analyses were 

infrequently performed, and when they were, they often involved strong 

assumptions about the missing data mechanism. Only two studies considered 
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missing not at random mechanisms in sensitivity analyses. Guidance documents 

for RCTs have emphasised the need to consider plausible alternative assumptions 

about the missing data in sensitivity analyses (1, 20, 71), typically by relaxing the 

assumption about the missing data mechanism. Given the high levels of missing 

data observed in this review, we believe these recommendations are especially 

relevant in extended follow-up studies. 

 

Contrary to expectations, we did not find any discussion on the merits of 

incorporating the full randomised cohort in the analysis compared with a sub-

sample in follow-up studies involving separate eligibility restrictions and/or 

consent processes. Although one study employing multiple imputation included 

consenting participants in the main analysis and the full randomised sample in a 

sensitivity analysis, the rationale for this approach was not described. In 

encouraging researchers to adopt principled approaches such as inverse 

probability weighting, likelihood-based methods and multiple imputation, some 

guidance around the choice of participant group to incorporate in such an analysis, 

and factors that might influence this decision, would be a welcome contribution. 

 

A limitation of this review is that for feasibility we extracted information only 

from published follow-up studies and associated supplementary materials. Further 

details could have been obtained from the original RCT publication, in published 

protocols or by contacting authors. Other approaches to addressing missing data 

may have been implemented but not reported due to journal space constraints. It is 

also possible that the search strategy missed a number of studies, since there is no 

current standard for identifying extended follow-up studies in titles or abstracts. 

Finally, our review only considered studies where the main objective of extended 

follow-up was to compare the original randomised groups. Extended follow-up 

may be initiated to answer other types of research questions.  

 

Conclusion 
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Extended follow-up studies of RCTs can provide vital information about the long-

term impacts of an intervention and are an effective use of established trial 

cohorts. However, the validity of findings from extended follow-up studies relies 

on appropriate handling of missing data. In this systematic review, we found that 

a majority of recently published follow-up studies failed to adequately account for 

missing data in the analysis. This is particularly concerning given the high levels 

of missing data observed. We encourage researchers working on extended follow-

up studies to adhere to recommendations for RCTs by stating the estimand of 

interest and adopting statistical methods that are valid under a stated assumption 

about the missing data mechanism. In justifying this assumption, researchers 

should carefully detail all sources of missing data, including any additional 

consent processes and eligibility restrictions employed. Sensitivity analyses 

should also be undertaken to assess the robustness of findings to the assumption 

made about the missing data in the main analysis. For extended follow-up studies 

planning an intention to treat analysis, we recommend researchers attempt to 

collect outcome data on all participants, not just those that adhered to the protocol 

in the original trial.  
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*** End of published article *** 

 

7.4. Guidance on the use of multiple imputation 
 

The systematic review presented in Section 7.3 provides an overview of how 

missing outcome data are handled in published extended follow-up studies. A 

further aim of this thesis is to provide guidance on the implementation of MI in 

this setting. Although MI was rarely used in the extended follow-up studies 

included in the systematic review, valuable information on the extent and 

common sources of missing outcome data in this setting was obtained. In 

particular, the systematic review indicated that the amount of missing data in 

extended follow-up studies tends to be high and that eligibility restrictions and 
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separate consent processes are often used. The implications of eligibility 

restrictions and separate consent processes on the implementation of MI are now 

considered in more detail. 

 

It is assumed throughout this section of the thesis that the goal of analysis is to 

provide an unbiased and efficient estimate of the estimand of interest in the 

extended follow-up study, hereafter referred to simply as the estimand. 

Importantly, to focus on issues in implementing MI, the appropriateness or 

otherwise of specific estimands is not evaluated in this section. Suppose for 

example the estimand relates to the effect of treatment in participants that 

complied with their allocated intervention in the original trial. Since randomised 

groups are unlikely to be comparable once non-compliant participants are 

excluded from consideration, such an estimand provides a measure of association 

rather than causation. Rather than questioning the merits of the estimand, we 

consider only the implementation of MI for best estimating it. Attention is also 

restricted to settings where the design of the extended follow-up is consistent with 

its estimand. Most notably, we do not tackle the case in which an eligibility 

restriction based on adherence to the protocol in the original trial is employed, yet 

where interest in the extended follow-up study concerns the ITT estimand. 

 

7.4.1. Multiple imputation and eligibility restrictions  

 

Before detailing common eligibility restrictions in extended follow-up studies and 

their implications for the use of MI in this setting, it is useful to clarify what was 

intended by the term “eligibility restriction” in the systematic review. Broadly, an 

eligibility restriction was taken to be any rule that prevented individuals who 

otherwise could have taken part in the extended follow-up from participating in 

this phase of the trial. In addition to eligibility restrictions, individuals could be 

precluded from participating in extended follow-up for the following reasons: 

 

 death; 

 loss to follow-up; 
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 withdrawal from the original RCT preventing further contact; 

 non-selection in a random sample chosen for extended follow-up; and 

 non-consent to extended follow-up. 

 

While some studies included in the systematic review stated that loss to follow-up 

or non-consent to extended follow-up rendered a participant ineligible, for 

consistency in this discussion the reason for not participating in extended follow-

up in these cases was taken to be loss to follow-up or non-consent, respectively 

(rather than ineligibility). Conversely, withdrawal from the original RCT was 

classified as an eligibility restriction if a study both described it as such, and did 

not explicitly detail whether the withdrawal process prevented further contact with 

participants. 

 

Of the 81 articles included in the review, 36 (44%) reported eligibility restrictions 

for entry into extended follow-up. The most common class of eligibility restriction 

concerned adherence to the protocol in the original RCT (22 studies), typically 

defined according to satisfactory completion of outcome assessments and/or 

sufficient compliance with the allocated intervention. Studies where withdrawal 

from the original RCT was taken to be an eligibility restriction according to the 

criteria given above were also included in this eligibility restriction class, as 

withdrawing from a study generally entails incomplete outcome assessments 

and/or non-compliance with the intervention. Studies in the systematic review 

also ruled participants ineligible according to their enrolling centre (three studies), 

randomised arm (two studies, both involving three arms in the original RCT), 

geographic availability (three studies), or other baseline (three studies) or post-

randomisation (three studies) characteristics. Across studies reporting eligibility 

restrictions, the median percentage of participants randomised in the original trial 

that were eligible for extended follow-up was 86%.  

 

An important function of eligibility restrictions, as identified in the systematic 

review, is to limit entry into the extended follow-up to participants contained 

within the target population of the estimand. Should the intention of the extended 
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follow-up be to estimate the effect of treatment in individuals who complied with 

their allocated intervention, for example, then it is logical to restrict participation 

to compliers. Likewise, if the goal of extended follow-up is to estimate the effect 

of treatment in participants with particular baseline characteristics, only 

participants with these characteristics need to be included in the follow-up study. 

Using the Normoglycemia in Intensive Care Evaluation-Survival Using Glucose 

Algorithm Regulation (NICE-SUGAR) study as a specific example, excluding 

participants without traumatic brain injury at baseline was consistent with the aim 

of this extended follow-up study to “compare the effect of intensive versus 

conventional blood glucose control in patients with traumatic brain injury” (139). 

Another function of eligibility restrictions is to ensure the logistical feasibility of 

successfully completing the extended follow-up study. For example, in 

multicentre trials it may only be feasible to recruit participants randomised at 

some of the centres (e.g. (141, 142)), or, for international trials, to centres within 

particular countries (e.g. (143)). Alternatively, participation could be restricted to 

individuals living within reasonable geographic proximity of the research team at 

the time of the extended follow-up (e.g. (144-146)).  

 

Although not observed in the systematic review, it is also conceivable that 

eligibility restrictions could be employed based on statistical power 

considerations. In particular, if the sample size required to achieve the desired 

power for the primary outcome of the extended follow-up study is substantially 

less than the sample size of the original trial, then an additional eligibility 

restriction could be applied to reduce the sample size. For an estimand defined for 

all randomised individuals, ideally the chosen eligibility restriction would not lead 

to systematic differences between eligible and ineligible participants. Candidate 

eligibility restrictions in this case could be based on enrolling centre (if eligible 

centres are considered representative of all participating centres) or the 

chronological order of participants in the randomisation sequence (e.g. restricting 

entry to the first 100 participants randomised, assuming that the characteristics of 

participants did not change over time). Rather than applying an eligibility 

restriction, where the ability to participate in extended follow-up is decided 
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according to a deterministic rule, the reduced sample size might instead be 

achieved by randomly selecting a sample of participants to take part in extended 

follow-up. This latter situation is slightly different to an eligibility restriction as 

each participant has some chance of taking part in the extended follow-up study, 

which has implications for analysis. This situation is considered separately in 

Section 7.4.3.  

 

An important consideration when implementing MI in extended follow-up studies 

with eligibility restrictions is whether participants deemed ineligible for extended 

follow-up should be included in the imputation model. In practice, a useful way to 

approach this question is to first identify whether ineligible participants are 

contained within the target population of the estimand. Importantly, if there is no 

interest in the effect of treatment in participants ruled ineligible, then clearly there 

is no need to impute missing outcome data in these participants. Again using the 

extended follow-up of the NICE-SUGAR study as an example (139), there is no 

reason to impute missing outcome data in participants ruled ineligible due to not 

having a traumatic brain injury at baseline, if interest lies only in the effect of 

treatment in those with traumatic brain injury. A general recommendation then is 

that ineligible participants should not be included in the imputation model when 

the function of the eligibility restriction is to limit participation to individuals 

contained within the target population of the estimand.  

 

In settings where eligibility restrictions are used to ensure the feasibility of the 

extended follow-up study or to reduce the sample size according to a power 

calculation, it may be the case that participants ruled ineligible are contained 

within the target population of the estimand. Indeed, the systematic review 

identified several extended follow-up studies that employed eligibility restrictions 

for the sake of feasibility while also reporting interest in the ITT estimand (i.e. the 

effect of randomisation over all randomised individuals). In studies such as these, 

a general recommendation is to include ineligible participants in the imputation 

model if this is likely to lead to improved estimation of the estimand. As well as 

the ability to satisfy an assumption about the missing data mechanism, the 
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decision of whether or not to include ineligible participants in the imputation 

model could be influenced by the availability of auxiliary variables in the original 

RCT. Importantly, if there is little auxiliary information to aid with the imputation 

of outcomes collected during extended follow-up, then including ineligible 

participants in the imputation model may simply add noise to the estimation 

process. 

 

Clearly eligibility restrictions could be employed for reasons other than those 

identified in the systematic review, and so the above recommendations are limited 

to the scenarios encountered in this review. It is also possible that multiple 

eligibility restrictions could be applied within a single extended follow-up study, 

in which case it may be reasonable to impute missing outcome data for some 

ineligible participants and not others. In light of this, ultimately the choice of 

whether to impute missing outcome data for ineligible participants is perhaps best 

evaluated on a case by case basis, with careful justification for the decision made. 

 

7.4.2. Multiple imputation and separate consent processes 

 

Depending on the information provided to participants in the original RCT and the 

specifics of the extended follow-up study in question, it may be necessary to 

obtain informed consent from participants prior to initiating the extended follow-

up (16). In the systematic review, 24 of the 81 included studies (30%) reported the 

use of a separate consent process for entry into the extended follow-up. The 

median percentage of participants randomised in the original trial providing 

consent in these studies was 70%. It is possible, of course, that additional studies 

employed separate consent processes for extended follow-up but failed to report 

them. 

 

A key consideration when applying MI in extended follow-up studies with 

separate consent processes is whether missing outcome data should be imputed 

for participants who were approached but failed to provide consent to the 

extended follow-up. Arguably this problem is more straightforward than in the 
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corresponding case for eligibility restrictions. Unlike eligibility restrictions, which 

are often applied to limit recruitment to those participants contained in the target 

population of the estimand, separate consent processes function only to educate 

individuals about study processes so they can make an informed decision about 

participating. As a result, there is typically interest in the effect of treatment in 

non-consenting participants. Indeed, of those studies included in the systematic 

review that explicitly defined the estimand and reported the use of a separate 

consent process (11 studies), not one excluded non-consenting participants from 

the target population of the estimand. 

 

Assuming the goal of the analysis is to estimate the effect of treatment in a 

population that includes non-consenting participants, the decision of whether to 

include non-consenting participants in the imputation model can be based on the 

expected bias and efficiency of the treatment effect estimate. Factors that could 

influence this decision once again include the availability of auxiliary variables to 

assist with the imputation of missing outcomes, and the ability to satisfy an 

assumption about the missing data mechanism. Ultimately it is recommended that 

non-consenting participants be included in the imputation model if this is likely to 

lead to improved estimation of the estimand. 

 

7.4.3. Multiple imputation and other sources of missing data  

 

As described previously, individuals could be precluded from participating in 

extended follow-up due to death, loss to follow-up, withdrawal from the original 

RCT preventing further contact, or non-selection in a random sample chosen for 

extended follow-up. Participants recruited into the extended follow-up phase of 

the trial could also fail to contribute outcome data. With the exception of non-

selection in a random sample, these potential sources of missing outcome data are 

common to standard RCTs, hence recommendations for their handling in this 

context can also be applied to extended follow-up studies. In particular,  missing 

outcome data should be imputed in an analysis involving MI for participants 

contained within the target population of the estimand (1). As with ineligible or 
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non-consenting participants, one difficulty in imputing missing outcome data in 

participants who withdraw or are lost to follow-up before the commencement of 

extended follow-up is that there will be no information collected during the 

extended follow-up to aid imputation. Although ideally these participants would 

be included in the imputation model, the lack of auxiliary information to impute 

the missing values may simply add noise to the estimation procedure. In the case 

of non-selection in a random sample chosen for extended follow-up, the 

probability of selection will be known to researchers, hence a weighting approach 

might be applied in place of MI to handle missing outcome data.  

 

Although not a focus of this thesis, the issue of how to handle unobserved 

outcome data due to participant death warrants brief mention here. Importantly, if 

an outcome variable is not considered meaningful in participants that died, then 

the outcome should be considered undefined rather than missing in these 

participants and MI should not be applied (1). Several statistical approaches have 

been proposed to address undefined outcome data due to death. If death is known 

to be unrelated to treatment, the effect of treatment can simply be estimated using 

data from surviving patients (1). Could death be related to treatment, it may be 

possible to include death as a component of a composite outcome, or to attribute 

to death a utility score on the same scale as the outcome (66). Alternatively, 

principal stratification could be used to estimate the effect of treatment in the 

subset of participants who would have remained alive on either treatment (147). 

For further discussion on these and other techniques for addressing undefined 

outcome data due to death, see (1, 66). 

 

7.4.4. Inverse probability weighting and multiple imputation 

 

Assuming interest in the effect of treatment over all randomised participants, as 

with an ITT analysis, a concern with implementing MI is that a substantial 

proportion of randomised participants could be missing data on all variables 

collected during the extended follow-up. Since the imputation model describes the 

joint distribution of all variables subject to missing data, a greater number of 
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variables requiring imputation is likely to mean an increased risk of imputation 

model misspecification. In turn, any deficiencies in the imputation model will 

have a proportionately larger effect on estimation when larger amounts of data 

require imputation. Ultimately this could lead to serious bias. Another concern is 

that participants with missing data on a large number of variables might simply 

add noise to the imputation process, which could result in reduced efficiency. 

 

In settings where data are missing on many variables in many participants, as is 

often the case in extended follow-up studies, IPW may be an appealing alternative 

to MI. Whereas MI requires appropriate specification of a joint (i.e. multivariate) 

model for the missing data conditional on the observed data in order to produce 

valid inference, IPW only requires an appropriately specified univariate model for 

the probability that an individual has complete data. Of course, as with any 

approach to handling missing data, IPW is not without limitations. In its standard 

implementation, IPW can be inefficient relative to MI, as it discards information 

from partially observed cases. Further, the approach can be difficult to implement 

for non-monotone patterns of missing data (26). 

 

Another possibility for handling missing outcome data, as introduced in Seaman 

et al. (148), is to combine IPW and MI. The basic idea of this approach, termed 

“IPW/MI”, is to use MI to account for missingness in participants with few 

variables subject to missing data, and IPW to account for participants with larger 

blocks of missing data. In this way, IPW/MI could acquire some of the efficiency 

advantages of MI while minimising potential bias due to imputing large blocks of 

missing data. A key precursor in applying IPW/MI is the determination of a rule 

for when to include a participant in the imputation model. In the context of 

extended follow-up studies, a sensible rule might be to impute results for 

individuals who participate in extended follow-up but have sporadic missing data 

in outcomes collected during this phase of the trial, and to use IPW to handle 

individuals who did not participate in the extended follow-up. After defining the 

inclusion rule for imputation, missing values in included participants are multiply 

imputed using standard MI techniques. Resulting completed datasets are then 
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analysed separately using IPW, that is, with included participants weighted in the 

analysis according to the inverse of the probability of satisfying the inclusion rule, 

and with a robust error variance calculated to account for the weights. Finally, 

results from the weighted analyses are then combined using Rubin’s rules, which 

have been shown to perform well following IPW/MI (see Seaman et al. (148) for 

details).  

 

Arguably the IPW/MI approach is best reserved for extended follow-up studies 

where data are missing on many variables in many participants, and where there is 

concern over the appropriate specification of the imputation model. In these 

settings, IPW/MI could be employed as a primary method of analysis, as a form of 

sensitivity analysis, or as a diagnostic check for MI. Should IPW/MI and standard 

MI produce similar results, this might offer reassurance that the imputation model 

is appropriately specified. Conversely, should the results of IPW/MI and standard 

MI differ greatly, this might highlight ways in which the imputation model could 

be improved. 

 

7.4.5. Case study 

 

To illustrate some of the challenges in implementing MI in extended follow-up 

studies, and how IPW/MI can be used as a diagnostic check for MI in this setting, 

once again the DINO trial was considered (91). As described previously, in DINO 

n = 657 preterm infants born < 33 weeks gestation were randomised to receive a 

high docosahexaenoic acid (DHA) or a standard DHA diet from within 5 days of 

commencing enteral feeds through to term-equivalent age. Randomisation was 

stratified by centre (5 centres), sex, and birth weight (<1250g, ≥1250g), with 

infants from a multiple birth randomised according to the sex and birth weight of 

the first born infant. The initial DINO trial concluded following the assessment of 

neurodevelopmental outcomes in the children at 18 months corrected age. Later 

an extended follow-up period was initiated to assess neurodevelopmental and 

growth outcomes in the children at 7 years corrected age. Consent to participate in 

the extended follow-up phase of the trial was obtained from a parent or guardian 
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prior to the initiation of extended follow-up. No eligibility restrictions were 

employed for entry into extended follow-up. To illustrate the application of MI to 

this study, once again the primary ITT analysis of fat free mass (FFM) at 7 years 

corrected age was considered. To simplify the dataset for illustration purposes, 

second and subsequent born infants from a multiple birth and infants that died 

before the extended follow-up were ignored, resulting in an example dataset with 

262 and 258 infants in the high and standard DHA groups, respectively. 

 

The flow of children through the original DINO trial and its extended follow-up 

phase is summarised in Table 7.5. As shown in this table, only 25 of the 520 

randomised children (4.8%) failed to enter the extended follow-up phase of the 

trial; 9 were lost to follow-up, 9 were withdrawn during the original trial and 

could not be re-contacted, and 7 had families that were approached but failed to 

consent to extended follow-up. This remarkably high retention rate was attributed 

partly to the families of the preterm children, who were keen for their child’s 

development to be monitored, and partly to the efforts of the research team in 

keeping in regular contact with families prior to the commencement of extended 

follow-up. Of the 495 children who entered the extended follow-up phase of 

DINO, 10 later withdrew consent and a further 11 were unable to secure an 

appointment for an outcome assessment (and hence had no outcome data in the 

extended follow-up study).  

 

Table 7.5. Flow of children through the DINO extended follow-up studya.  

Group High 
DHA 

Standard 
DHA 

Total

Number of children randomised in original trial 262 258 520

Number of children not entering extended follow-up phase 16 9 25

Loss to follow-up 5 4 9

Withdrawal from original RCT preventing further contact 6 3 9

Family approached but did not consent to extended follow-up 5 2 7

Number of children whose families consented to extended follow-up 246 249 495

Number of children providing some outcome data during extended follow-up 237 237 474

Number of children who did not complete any assessments during extended follow-up 9 12 21

Withdrawal during extended follow-up 5 5 10

Unable to secure appointment 4 7 11
a Numbers exclude second and subsequent born infants from a multiple birth and infants that died before the 
commencement of the extended follow-up study 
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As described previously (see Section 6.3.8), FFM was missing for 65/262 (24.8%) 

and 46/258 (17.8%) children in the high and standard DHA groups, respectively. 

Key predictors of FFM that could potentially be useful for imputation included 

centre, sex, and weight, height and systolic blood pressure at 7 years corrected 

age. Since centre and sex were baseline measures, these variables were treated as 

covariates for adjustment in the analysis models. In contrast, the post-

randomisation measures of weight, height, and systolic blood pressure at 7 years 

corrected age were treated as auxiliary variables in analyses involving MI. 

 

Table 7.6 summarises the patterns of missing data on FFM and the three auxiliary 

variables used for imputation. As displayed in this table, 403 of the 520 

randomised children (77.5%) provided complete data on all of these variables. 

Conversely, 53/520 children (10.2%) failed to contribute any data on these 

extended follow-up measures. Another common pattern was to have complete 

data on all variables except for the outcome variable FFM (pattern 3, n = 35). 

 

Table 7.6. Missing data patterns for fat free mass and key auxiliary variables. 

Pattern Frequency (%) Fat free mass Weight Height Systolic blood 
pressure 

1 403 (77.5) + + + + 

2 6 (1.2) + + + - 

3 35 (6.7) - + + + 

4 11 (2.1) - + + - 

5 1 (0.2) - + - + 

6 11 (2.1) - - + + 

7 53 (10.2) - - - - 
+ indicates observed data, - indicates missing data 
 

In estimating the effect of treatment on FFM, the following three MI strategies 

were considered: 

  

1. MI including all n = 520 randomised children; 

2. MI restricted to the n = 467 children who contributed at least some data on 

FFM and the three auxiliary variables; and 
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3. IPW/MI, with MI applied to the n = 467 children who contributed at least 

some data on FFM and the three auxiliary variables, and IPW used to 

recover the sample size to the 520 randomised children.  

 

For each MI strategy, missing values in FFM and the three auxiliary variables 

were imputed using a Markov chain Monte Carlo algorithm assuming multivariate 

normality (11). Each imputation model involved a burn-in of 5000 iterations, with 

݉ = 50 complete datasets created. Imputation was performed separately by 

randomised group according to the findings of Chapter 6, with the fully observed 

baseline covariates centre and sex also added to imputation models to ensure 

consistency with the intended analysis. For IPW/MI, logistic regression analysis 

revealed that the odds of failing to contribute any data during extended follow-up 

was higher in one of the five study centres (odds ratio vs. coordinating centre = 

2.37; 95% CI 1.08 to 5.21; p = 0.03) and decreased with the age of the child’s 

mother at randomisation (odds ratio = 0.92; 95% CI 0.88 to 0.97; p = 0.001). As 

centre and mother’s age at randomisation were both fully observed, weights were 

calculated directly from a logistic regression model involving these two 

predictors. It is worth noting that weights can also be calculated using incomplete 

predictors of missing data, although the statistical procedure is more complex than 

with complete predictors (see (26) for details).  

 

Treatment effect estimates from the three methods for handling missing outcome 

data are presented in Table 7.7. Results from a complete case analysis, both 

unadjusted and adjusted for centre and sex, are also presented for comparison. As 

shown in the table, treatment effect estimates and corresponding 95% confidence 

intervals were very similar for the three MI approaches. Evidently the decision of 

whether to incorporate the 53 children with missing data on FFM and the three 

auxiliary variables made little difference to estimation. This finding might be 

attributable both to the small number of children accounted for in this group 

(10.2% of the randomised sample), and the small amount of information on the 

effect of treatment provided by these children. Perhaps these children might have 

contributed more information about the treatment effect had useful auxiliary 
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variables for FFM been available from the original DINO trial. Comparing MI to 

all randomised children (n = 520) with IPW/MI, the similar estimates of the 

treatment effect suggests that any bias due to imputing large blocks of missing 

data was likely minimal. This demonstrates the usefulness of IPW/MI as a 

diagnostic check for MI. 

 

Table 7.7. Treatment effect estimates for fat free mass (kg) at 7 years corrected 

age from the DINO extended follow-up study. 

Method of analysis Mean 
difference 

Standard 
error 

95% confidence 
interval

Unadjusted CCA (n = 409) -0.007 0.259 -0.514 to 0.500

CCA (n = 409) 0.048 0.238 -0.420 to 0.515

MI to full randomised group (n = 520) -0.118 0.227 -0.563 to 0.327

MI to those with some data at follow-up (n = 467) -0.104 0.229 -0.553 to 0.346

MI to those with some data at follow-up (n = 467) + IPW (n = 53) -0.108 0.230 -0.559 to 0.344
Abbreviations: CCA, complete case analysis; MI, multiple imputation; IPW, inverse probability weighting. 
 

Although the treatment effect estimate was stable across the different MI 

strategies in this example, such a pattern of results might not be seen in other 

extended follow-up studies. Importantly, unlike many of the extended follow-up 

studies included in the systematic review, DINO did not involve eligibility 

restrictions for participation in the extended follow-up. In addition, the overall 

percentage of randomised participants with complete data on FFM was 78.7%, 

quite a bit higher than the median value of 65.9% observed in the systematic 

review. Finally, the imputation model employed in this case study was relatively 

simple, involving just the four variables with missing data, and so was unlikely to 

be substantially misspecified. All of these factors may have contributed to the 

similar performance of the MI strategies in the current example. 

 

7.4.6. Conclusions 

  

When implementing MI to handle missing outcome data in extended follow-up 

studies, a key task is to identify which participants are contained in the target 

population for the estimand. Importantly, if there is no interest in the effect of 

treatment in participants with particular characteristics, then there is no need to 
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include these participants in the imputation model. Often participants ruled 

ineligible for extended follow-up will not be of interest for analysis, while 

participants that have missing outcome data for other reasons will be. Having 

established the group of participants of interest for analysis, it may be the case 

that a large proportion have missing data on a range of variables due to not 

partaking in the extended follow-up. In this case, it can be useful to contrast the 

results of a standard MI analysis (i.e. involving all participants in the target 

population) with an MI analysis restricted to those participants who commenced 

extended follow-up, and/or with IPW/MI. Should these approaches produce 

similar results, this would offer reassurance that results are robust to the decision 

regarding the handling of the missing data. Conversely, differences between the 

approaches would highlight the sensitivity of results to the assumption made 

about the missing data, and potentially suggest ways in which the imputation 

model might be refined. As with any other research setting subject to missing 

data, additional sensitivity analyses in which the assumption about the missing 

data mechanism is relaxed should also be undertaken. 
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8. Summary and conclusions 
 

This thesis has explored several issues in the practical application of MI for 

handling missing outcome data. In particular, the thesis has addressed specific 

aims concerning the imputation of missing outcome data (1) in the presence of 

auxiliary variables, (2) for estimating relative risks, (3) in RCTs, and (4) in 

extended follow-up studies based on RCTs. New contributions from this thesis to 

the field are timely given the increasing popularity of MI and the widespread 

occurrence of missing outcome data in the medical literature. In this final chapter, 

key findings and contributions are summarised, limitations of the work are 

discussed, and suggestions for further research are highlighted. 

 

8.1. Key findings and contributions 
 

8.1.1. Thesis aim 1 

 

The first aim of this thesis was to compare the performance of MI and MID in 

settings where missing data are evident in both outcome and exposure variables, 

and where auxiliary variables associated with the outcome are included in the 

imputation model. Two types of auxiliary variables were of interest in this 

investigation: those associated just with the outcome, which would be included for 

efficiency gains, and those associated with both the outcome and missingness in 

the outcome, which would be included for efficiency gains and bias reduction. 

 

As described in Chapter 4, the performance of MI and MID in the presence of an 

auxiliary variable for the outcome was evaluated using data simulation. In 

simulation settings where the auxiliary variable was associated with the outcome, 

but not missingness in the outcome, both MI and MID exhibited negligible bias in 

estimating regression parameters when data were MAR. In terms of precision, 

MID performed marginally better than standard MI when there was a weak 

correlation between the auxiliary variable and the outcome, while MI was 

noticeably more efficient than MID for moderate-to-strong correlations. In 
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simulation settings where the auxiliary variable was associated with both the 

outcome and missingness in the outcome, it was shown for the first time that MID 

produces biased estimates of regression parameters when data are MAR, whereas 

standard MI does not. The magnitude of the bias with MID increased with the 

amount of missing data and with the strength of the correlation between the 

auxiliary variable and the outcome. 

 

The practical implications of this research are that if the imputation model 

includes auxiliary variables for the outcome, then it is important that imputed 

outcomes are kept in the analysis. MID is better reserved for settings where 

auxiliary variables for the outcome are unavailable.  

 

8.1.2. Thesis aim 2 

 

The second major aim of this thesis was to assess the performance of standard 

model-based methods of MI for handling missing data in outcome and exposure 

variables when estimating the relative risk. While relative risks are typically 

estimated using log binomial models, standard model-based methods for imputing 

incomplete binary outcomes involve logistic regression or an assumption of 

multivariate normality. It was unclear whether inconsistencies between imputation 

and analysis models in this setting could result in biased and/or inefficient 

estimates of the relative risk. A supplementary aim was to evaluate whether 

deleting imputed outcomes prior to analysis improves the performance of MI in 

this setting. 

 

The performance of standard model-based methods of MI for handling missing 

data when estimating the relative risk was evaluated in Chapter 5 using data 

simulation. The investigation considered the performance of MVNI and FCS with 

a logistic imputation model for the outcome, with both MI approaches applied 

with or without the deletion of imputed outcomes prior to analysis. Results 

indicated that MVNI is likely to be a poor choice for handling missing data when 

interest concerns the relative risk, with the approach consistently producing 
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estimates of the relative risk that were biased towards the null. Deleting imputed 

outcomes following MVNI tended to reduce the bias of this imputation method, 

but this came at the expense of decreased efficiency. Although outperforming 

MVNI, FCS was also associated with biased estimates of the relative risk, with 

the magnitude of the bias positively associated with the outcome prevalence and 

the size of the relative risk. Deleting imputed outcomes following FCS did not 

improve the performance of this imputation approach. 

 

As the first study to explore the performance of standard model-based methods of 

MI for estimating the relative risk, this work has important practical implications. 

Most notably, the research shows that FCS with a logistic imputation model for 

the outcome, despite its shortcomings, should be preferred over MVNI for 

handling an arbitrary pattern of missing data in outcome and exposure variables 

when estimating the relative risk. Further, imputed outcomes should be retained 

for analysis in this setting. In demonstrating performance deficits with both MVNI 

and FCS when estimating the relative risk, these findings reinforce the importance 

of appropriately replicating the functional form of a chosen analysis within the 

imputation model. Ultimately, it is hoped that this research will lead to the 

development of new approaches within the MI framework for more suitably 

handling missing outcome data when estimating the relative risk. 

 

8.1.3. Thesis aim 3 

 

The third aim of this thesis was to evaluate the performance of MI for handling 

missing outcome data in RCTs, and to explore the merits of imputing overall and 

separately by randomised group in this context. Of interest was the utility of MI 

for estimating treatment effects according to the ITT principle. There were two 

primary motivating reasons for undertaking this work. First, editors and journal 

reviewers are increasingly requesting the use of MI to handle missing outcome 

data in RCTs, despite limited evidence that MI outperforms alternative statistical 

approaches in this setting. Second, MI is often implemented separately by 

randomised group in RCTs in order to facilitate subgroup analyses, however 
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whether this approach might also offer benefits in settings where subgroup 

analyses are not of interest had not been previously investigated. 

 

In line with theoretical results in the literature, MI was observed to produce 

unbiased treatment effect estimates in simulation settings where outcome data 

were MAR and where imputation and analysis models were correctly specified 

(see Chapter 6). However, MI was often less efficient than alternative unbiased 

approaches for handling missing data in RCTs. For example, MI was less efficient 

than a CCA for univariate outcomes with missing data and the likelihood-based 

LMM for continuous multivariate outcomes with missing data. In settings where 

the analysis model overlooked an interaction effect involving randomised group, 

MI only produced unbiased estimates of the average treatment effect when 

implemented separately by randomised group. 

 

A key contribution of this research to the literature is that it demonstrates that MI 

should never be seen as the only acceptable option for handling missing outcome 

data in RCTs. In many cases a simpler approach to missing data can be preferable. 

The work also indicates that where MI is employed in the analysis of an RCT, 

imputation should be performed separately by randomised group. Compared to 

including all randomised participants in a single imputation model, imputing 

separately by randomised group offers greater robustness against imputation 

model misspecification at little cost. It is hoped that the publication from this 

work will be a useful reference for researchers involved with the analysis of RCT 

data, and for editors and journal reviewers tasked with judging the appropriateness 

of statistical methods for handling missing outcome data in reports of RCTs.  

 

8.1.4. Thesis aim 4 

 

The fourth and final aim of this thesis was to review the extent and common 

sources of missing outcome data in recently published extended follow-up studies, 

and to provide general recommendations around the implementation of MI in this 

setting. This aim was developed in response to the potentially serious threat to 
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inference posed by missing outcome data in extended follow-up studies, and to 

the scarcity of literature on this type of study design. 

 

As described in Chapter 7 of the thesis, a systematic review of recently published 

extended follow-up studies was undertaken to characterise the nature and handling 

of missing outcome data in this setting. High rates of missing outcome data were 

observed in the review, an unsurprising finding given that primary outcomes in 

included studies were collected at a median of 7 years after randomisation in the 

original trial. As well as attrition over time, eligibility restrictions and consent 

processes for entry into extended follow-up were common reasons why 

randomised participants failed to contribute outcome data during this phase of the 

trial. Despite the serious threat to inference presented by missing outcome data, 

the statistical approaches used to address this problem in the studies reviewed 

were often inadequate. Importantly, only half of the included studies defined the 

estimand of interest, less than 10% stated the missing data mechanism assumed in 

the analysis, and just 25% undertook sensitivity analyses around the missing data 

mechanism. In addition, more than half the included studies performed the main 

analysis under the strong and often unrealistic assumption that outcome data were 

MCAR. 

 

Findings from the systematic review were used to develop recommendations 

around the implementation of MI as a primary method of analysis in extended 

follow-up studies. The main recommendations were to include participants in the 

imputation model when (a) they were of interest for analysis, and (b) where their 

inclusion would likely lead to improved estimation of the chosen estimand. It was 

also suggested that IPW/MI and/or MI restricted to participants who commenced 

extended follow-up could be used as a form of sensitivity analysis or diagnostic 

check for a standard MI analysis involving all participants of interest. 

 

As the first study to quantify the considerable threat posed by missing outcome 

data in extended follow-up studies, it is hoped that this research will raise 

awareness of this problem and lead to the adoption of more suitable statistical 
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approaches when analysing such studies. It is also hoped that recommendations 

from this research will simplify the process of applying MI in the analysis of 

extended follow-up studies, particularly around how to address missing outcome 

data resulting from the use of eligibility restrictions and separate consent 

processes. 

 

8.2. Limitations and future directions 
 

The limitations of each individual study contributing to this thesis have been 

described in the relevant chapter discussions. In this section, the limitations of the 

thesis as an overall body of work are discussed, and areas for future research are 

identified. 

 

This thesis has relied heavily on data simulation to evaluate the performance of 

MI for handling missing outcome data. In order to attribute any deficiencies in 

performance to the method of MI, only simple simulation scenarios were 

considered throughout the thesis. In particular, attention was restricted to main 

effects models involving at most two covariates, where individual variables in the 

analysis model followed either a normal or a Bernoulli distribution. In practice, 

interest might concern more complex relationships (e.g. containing interaction 

terms) involving a larger number of variables from a variety of different 

distribution types. Although similar performance might be anticipated with MI in 

more complex practical settings, additional simulation studies are needed to 

determine whether the findings of this thesis extend to such settings. In addition to 

the focus on simple analysis models, this thesis considered only a narrow 

assortment of missing data mechanisms. In particular, data in outcome and 

exposure variables were set to be missing according to simple logistic regression 

models or, following previous simulation work on the MID method, according to 

the cumulative distribution function of the normal distribution. In settings where 

bias and precision losses were evident with a given method of MI, it is possible 

that performance deficits could be quite sensitive to the functional form of the 
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MAR mechanism. Hence it would be beneficial for future research to expand 

upon the range of missing data mechanisms considered. 

 

Another limitation of this thesis is that it only considered the application of MI 

under an assumption that data were MAR. Although this corresponds with the 

standard implementation of MI, in any given analysis data may instead be MNAR, 

which occurs when the probability of missing data depends on unobserved values.   

Although the implementation of MI under an MNAR assumption is an active area 

of research, there is little indication that this research extends to problems such as 

the estimation of relative risks or the handling of missing outcome data in 

extended follow-up studies. Given the utility of MI under an MNAR assumption, 

this is an area for future research. 

 

This thesis focused predominantly on the application of MI in settings where 

observations were independent. Yet many datasets in medical research involve 

some form of clustering, where observations can be classified into a number of 

distinct groups or “clusters”, such that observations within the same cluster are 

likely to be more similar than observations in different clusters. Common 

examples include repeated measurements on the same participant over time (i.e. 

longitudinal data), students within schools, or studies within a meta-analysis. 

Another example of clustering is provided by the DINO case study, where infants 

from a multiple birth were clustered within families. For illustration purposes the 

clustering in DINO was removed by excluding second and subsequent born 

infants from a multiple birth from the analysis dataset; such an approach would 

not be recommended in practice. Since ignoring clustering can lead to biased 

standard errors for parameter estimates (149), it is important that clustering is 

accounted for in the analysis. When the analysis model allows for clustering, for 

example in a mixed effects model or using generalised estimating equations, the 

imputation model should also account for the clustering. Excluding the case of 

longitudinal data, where missing data can be imputed by treating the different 

measurements over time as different variables in the dataset (i.e. data in wide 

format), accounting for clustering in the imputation model can be a challenging 
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process. Potential approaches include treating cluster as a fixed effect within the 

imputation model, imputing separately by cluster, or fitting a multilevel 

imputation model (5, 15). Although it is expected that the main findings of this 

thesis apply to these more complex types of imputation models, this is a topic for 

future research. 

 

Another limitation of this thesis is that the missing data problem in the DINO case 

study was not severe. As described in chapters 6 and 7 of the thesis, treatment 

effect estimates for fat free mass at 7 years corrected age were similar regardless 

of how MI was implemented, whether performed overall, separately by 

randomised group, in combination with IPW, or restricted to children who 

provided outcome data during the extended follow-up phase of the trial. Further, 

despite the inclusion of auxiliary variables in the imputation model, treatment 

effect estimates did not substantially differ between MI and a simple adjusted 

CCA. Although in one sense it was reassuring to note that treatment effect 

estimates were consistent across approaches, it would be informative to consider 

case studies where results are more sensitive to the choice of approach for 

handling missing outcome data. 

 

8.3. Concluding remarks 
 

As highlighted at the beginning of this thesis, MI is a flexible and increasingly 

popular statistical approach for handling missing data. Despite a growing 

evidence base for its use, implementation in practical settings remains 

challenging, and in many cases there is no consensus in the literature to guide 

decisions around how to best generate imputed datasets for analysis. This thesis 

has focused on knowledge gaps in the application of MI for handling missing 

outcome data, which is a common problem in medical research. In particular, this 

thesis has explored the use of MI for handling missing outcome data in the 

presence of auxiliary variables for the outcome, when estimating relative risks, 

and in RCTs and extended follow-up studies based on RCTs. The research has 

demonstrated the benefits of retaining imputed outcomes for analysis, the 
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shortcomings of standard model-based methods of MI for estimating the relative 

risk, and the limited utility of MI in some RCT settings. In addition, this thesis has 

offered guidance on how imputation models should be specified in the context of 

RCTs and extended follow-up studies. Findings and recommendations from this 

work will enable researchers to make more informed decisions about the 

appropriate implementation of MI for handling missing outcome data in applied 

settings. 
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