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ABSTRACT 

 

Acid sulfate soils (ASS) contain the iron sulfide mineral rich in pyrite which is formed under 

waterlogged or subaqueous conditions. Upon drainage or disturbance, pyrite can be oxidised to 

produce sulfuric acid which results in soil acidification and metal release. When rewetted due 

to rainfall or irrigation, oxidised ASS release large amounts of acidity and soluble metals, 

predominantly Al and Fe, in ground and drainage water that pose a serious risk to ecosystems, 

agricultural productivity, human health and other assets.  

Organic materials have been considered as a low-cost and friendly environment absorbent to 

reduce acidity and metal concentration in leachate from mine tailings and waste water. 

However, little is known about the potential of these materials to reduce leaching of protons 

and metals from sulfuric ASS drainage water and how retention is influenced by properties of 

the organic materials and form of amendment. Eight organic materials (two plant residues, 

compost and five biochars produced from a range of food stock sources and varied in production 

temperature) were used. The aims of this thesis were i) to study the effect of different organic 

materials on leaching protons and metals from sulfuric soil, ii) to assess the ability of different 

organic materials to remove protons and metals from ASS drainage water, and iii) to determine 

maximum capacity to retain proton and metals of a biochar. 

In the first experiment, sandy sulfuric soil (pH 3.5), collected from Gilman in the Barker Inlet, 

South Australia, was used to study i) the effect of organic materials on leaching of protons and 

metals from the soil and ii) how is this influenced by properties of organic materials and 

amendment forms. The organic materials were either mixed into the soil or placed as a layer 

under the soil, at a rate of 15 g C kg-1. Then, the soil columns (30 g soil) were leached four 

times with reverse osmosis (RO) water. In the unamended soil, 60-90% of total protons, Fe and 
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Al were released in the first leaching event with only small amounts being released in the three 

subsequent leachings. Addition of organic materials to the soil increased the pH of the leachate 

from 0.2 to 2.2 units, and reduced proton and metal leaching by 50-90%. Cumulative retention 

of protons, Fe and Al was highest in soil amended with eucalypt biochar and wheat biochar 

produced at 550 ˚C and 450 ˚C, respectively, but low in wheat straw and compost. Retention of 

Fe and Al was generally greater when mixing organic materials into the soil than when placed 

as a layer underneath the soil, but there was a little difference between amendment forms in 

proton retention. Proton retention was positively correlated with C concentration of the 

material, while Al and Fe retention was positively correlated with percentage of Aryl and O-

Aryl groups and negatively correlated with percentage of O-Alkyl and Di-O-Alkyl groups.  

Synthetic acid drainage water (pH 3, Al 2 mg L-1 and Fe 28 mg L-1) based on the long term 

average of drainage water in an area dominated by ASS was used to investigate proton and 

metal retention by organic materials. In this experiment, drainage water was passed through 

cores which were filled with organic materials at a rate of 1.5 g C per core over four leaching 

events (45 ml/event). Biochar and compost increased the leachate pH by up to 4 units. Eucalypt 

and wheat biochar produced at 550 ˚C and 450 ˚C, respectively, had high retention capacity for 

protons, Al and Fe. The correlation between retention of protons, Al and Fe with properties of 

organic materials was similar as in the previous experiment. Retention was lower in organic 

materials with high release of native Al and Fe (compost, wheat straw) than those with low 

release.  

Metal and proton concentration in ASS drainage water can vary substantially. The aim of the 

third experiment was to study retention capacity at high metal concentrations and assess their 

subsequent release by uncontaminated water. Drainage water was collected in the field in 

autumn (pH 3, Al 22 mg L-1 and Fe 48 mg L-1). Cores with organic materials at 3.5 g dry wt/core 

were leached six times with drainage water followed by six leaching events with RO water. 



   

v 

 

When leached with drainage water, biochar and compost increased the leachate pH by up to 4.5 

units and retained almost 100% of added protons. Biochars retained cumulatively over 90 % of 

added Al and Fe, whereas 50-80% of added Al and Fe was retained in wheat and pea straw. 

Less than 1% of retained protons and metals were released with subsequent leaching with RO 

water.  

It is well-known that pH plays an important role in metal speciation, solubility and 

complexation. A batch experiment was conducted to assess the retention capacity of eucalypt 

biochar produced at 550 ˚C. The biochar was added at 1% (w/v) to solutions with varying 

concentrations of protons, Al and Fe and shaken for 24 h. In the absence of metals, the biochar 

had high proton retention, up to 0.035 mmol of acid was adsorbed in the material. The batch 

experiment with metals was carried out at pH 4 and pH 7 with Fe or Al at 10-6, 10-5, 10-4, 10-3, 

and 10-2 M. It showed that the biochar had a high retention capacity for Al and Fe, at high 

concentrations over 80% of soluble metals was retained.  In another experiment, both Al and 

Fe were added at different ratios, increasing concentrations of one metal did not reduce 

retention of the other. 

It can be concluded that addition of eucalypt biochar and wheat biochar produced at 550 ˚C and 

450 ˚C, respectively, can strongly reduce leaching of protons and metals from sulfuric soil and 

drainage water of acid sulfate soils. The retention of protons and metals to organic materials 

was strongly correlated with properties of organic materials. 
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      CHAPTER 1 

INTRODUCTION AND REVIEW OF LITERATURE  

 

1.1 Introduction 

Acid sulfate soils (ASS) are soils containing sulfidic materials or affected by transformations 

of iron sulfide minerals such as  pyrite (Fitzpatrick et al. 2009). Under anaerobic conditions, sulfate 

is reduced by sulfate reducing bacteria, which reacts with dissolved iron to form iron sulfides. 

Oxidation of iron sulfides results in formation of sulfuric material (containing sulfuric acid), which 

if insufficient neutralising capacity is present causes strong acidification of the soils (pH<4) and 

their leachate (Attanandana and Vacharotayan 1986; Dent 1986; Pons 1973).  

ASS can be found in coastal, inland, mine and wetland environments (Fitzpatrick and Shand 2009). 

The global extent of coastal ASS is estimated to be between 107 and 108 ha (Macdonald et al. 

2011; Wim and Mensvoort 2005), but the world extent of inland ASS is unknown. In Australia, 

the estimated area of ASS is 215,000 km2, of which coastal ASS occupy 58,000 km2 and inland 

ASS 157,000 km2 (Fitzpatrick et al. (2010). 

Acidification of ASS poses an environmental threat for the surrounding environment. Management 

options for acidified ASS typically include increasing soil pH by liming or stimulation of sulfate 

reduction. Acid drainage water can also be limed, but may require large amounts to be added, 

which is costly and can cause environmental problems. Another option for treating acidic drainage 

water is the use of permeable reactive barriers that bind protons and metals.  

In this literature review, the biogeochemistry of ASS is discussed with emphasis on acidification 

processes. This is followed by an outline of why organic materials could be used in permeable 

reactive barriers. Lastly, research aims and thesis structure are presented. 
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1.2 Biogeochemistry of acid sulfate soils 

Reduction processes in saturated ASS 

Sulfate reduction is a natural process occurring in saturated conditions in many lakes, wetlands, 

intertidal areas and coastal oceans. Prequisites for sulfate reduction are: presence of sulfate 

reducing bacteria, sulfate, organic C, iron and pH > 4.5 (Berner 1984; Dent and Pons 1995). If any 

of these factors is limiting, sulfate reduction is low or does not occur. Sulfate reducers are 

heterotrophs and require energy derived from organic matter. Initially, bacteria reduce dissolved 

sulfate to produce H2S (Berner 1970; Rickard 1973). 

2H+ +  2CH2O + SO4
2-  → 2 CO2 + H2S + H2O     (1) 

H2S then reacts with Fe2+ to precipate FeS, which can be converterted to pyrite. Pyrite formation 

consumes protons and therefore results in pH increase: 

H2S + Fe2+ → FeS + 2H+        (2) 

H2S + FeS → FeS2
 + H2        (3) 

4H2S + 2Fe3+ → 2FeS2
 + 6H2O + H2       (4) 

Monosulfides (FeS) are less stable than pyrite, but may accumulate in some ASS environments. 

Oxidation processes in dry ASS 

When exposed to oxygen upon drainage of previously waterlogged soils, pyrite can be oxidised to 

produce sulfuric acid but if insufficient acid neutralising capacity is present will result in soil 

acidification (Attanandana and Vacharotayan 1986; Dent 1986; Pons 1973). Oxidation of 

monosulfides can also lead to water acidification and can deoxygenate water bodies (Bush et al. 

2004). The low pH often induces leaching of major cations, such as Ca2+, Mg2+, dissolution of 

aluminosilicates, and release of soluble metals and metalloids causing toxicity to plants and 

microorganisms (Attanandana and Vacharotayan 1986; Dent 1986; Pons 1973; Rabenhorst and 
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Fanning 2002; Ritchie 1989). In soil with a low acid neutralising capacity (e.g. due to a low 

carbonate concentration) the pH may drop below 4 (Attanandana and Vacharotayan 1986; Dent 

1986) or 2 (Dent and Pons 1995). Pyrite oxidation rate depends on temperature, pH, Eh, surface 

area of reactant pyrite and soil texture (Bigham and Nordstrom 2000). 

Pyrite oxidation is catalysed by bacteria such as Metallogenium and Thiobacillus genus and results 

in production of H+  (Ahern et al. 2004; Otero et al. 2008).  

 FeS2 + 3.5O2 + H2O → Fe2+ + 2SO4
2- + 2H+      (5) 

2FeS2 + 7.5O2 + 7H2O → 2Fe(OH)3 + 4SO4
2- + 8H+     (6) 

When the pH drops below 4.5 or 4, Fe3+ remaining in solution acts as an oxidant to accelerate 

pyrite oxidation (Ahern et al. 2004; Otero et al. 2008):  

 FeS2 + 14Fe3+ + 8H2O → 15Fe2+ + 2SO4
2- + 16H+     (7) 

ASS materials can be classified into sulfidic and sulfuric, while the taxonomic terms, potential and 

actual ASS respectively, have been used in land management for general communication purposes 

(Fanning 2002). Sulfidic or potential ASS materials contain iron sulfides (pyrite) or monosulfides 

and are commonly found in waterlogged soil layers. More recently, sulfidic materials have been 

classified as hypersulfidic material, hyposulfidic material and monosulfidic material in the 2nd 

edition of the Australian Soil Classification (Isbell and National Committee on Soils and Terrain 

2016). When incubated at field capacity, the pH of hypersulfidic material drops substantially either 

at least 0.5 unit to below pH 4 whereas the pH remains high in hyposulfidic material. Sulfuric 

material is produced upon oxidation of sulfidic or hypersulfidic material when sulfuric acid is 

produced from pyrite resulting in acidification (soil pH < 4) (Department of Enviornment and 

Conservation (DEC) 2008; Fitzpatrick and Shand 2008; Fitzpatrick et al. 2009). Secondary Fe 

oxy-hydroxy sulfate minerals such as jarosite [KFe3(SO4)2(OH)6] and schwertmannite 

[Fe8O8(OH)8−2x(SO4)x with 1 ≤ x ≤ 1.75] are commonly found in sulfuric soil materials. 
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 1.3 Acid sulfate soils drainage water 

When sulfuric material is rewetted due to rainfall, inundation or irrigation, it can release large 

amounts of acidity, soluble metals and precipitate  iron minerals into ground water and drainage 

water (Mosley et al. 2014b). In some areas, ASS with sulfuric materials have been drained for over 

100 years and still discharging acidity into streams or waterways (Sammut and Lines-Kelly 2000). 

It was estimated that oxidation of one tonne of iron sulfide materials produces approximately one 

and half tonnes of sulfuric acid (Sammut and Lines-Kelly 2000). In floodplains in eastern 

Australia, ASS drainage exported 100 to 300 kg of sulfuric acid per ha per year (Sammut et al. 

1996; White et al. 1997). In a 110 ha tropical wetland in East Trinity, Queensland, acid discharge 

was 700 kg of acid annually (Hicks et al. 2003a).  

Drainage water from acidic ASS also contains high amounts of metals that are released due to the 

low pH. Concentrations of Al, As, Cd, Co, Cr, Cu, Ni, Pb, V and Zn in pore and drainage water 

have been shown to exceed Australian Water Quality Guidelines (ANZECC 2000) up to 100 fold 

(Hicks et al. 2003a; Mosley et al. 2014a; Simpson et al. 2008).  

Even after several years of re-flooding, previously oxidized hyposulfidic material with sulfuric 

material can release acidity because iron sulfide oxidation products such as jarosite, natrojarosite, 

gypsum, schwertmannite or basaluminite (Ahern et al. 2004; Fitzpatrick 2003) store acidity, which 

can be slowly released upon dissolution. Oxidation of ferrous ion and hydrolysis of ferric ion 

which are released from ASS oxidation in downstream can generate large amount of acid and 

cause the depletion of dissolved oxygen in water (Ahern et al. 2004; Hicks et al. 2003b).  

1.4 Impact of acid sulfate soils 

ASS may pose a serious risk to agricultural productivity, ecosystems, human health and other 

assets (Baldwin 2009; Ljung et al. 2009) due to low pH and toxicity of metals released. 
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Plants growing on affected ASS can be stunted and even die leading to loss of agriculture 

productivity (Department of Environment and Resource Management (DERM) 2011; National 

Working Party on Acid Sulfate Soils 2000). The main constrains are acidity, salinity, aluminium 

and iron toxicity, low nutrient and base element contents (Attanandana and Vacharotayan 1986; 

National Working Party on Acid Sulfate Soils 2000). For example, the elevated iron concentration 

in submerged ASS inhibited rice growth (Nhung and Ponnamperuma 1966; Ponnamperuma et al. 

1955), which was a major impediment to the expansion of rice crops (White et al. 1996). Low P 

availability can also limit crop growth in ASS (Attanandana et al. 1981). Low yield of rice 

cultivated on reclaimed ASS have been reported in Indonesia, Malaysia, Philippines, Sri Lanka, 

Thailand, and Vietnam (Bronswijk et al. 1995; Chaang T et al. 1992; Deturck P et al. 1992; Husson 

et al. 2000; LiJin 1985; Yampracha et al. 2005). Other crops may also be affected by oxidation of 

ASS such as sugarcane in Queensland, Australia (Powell and Martens 2005) or oil palm and cocoa 

seedlings in Malaysia (Auxtero and Shamshuddin 1991; Shamshuddin et al. 2004). Acidification 

of ASS can decrease animal productivity via a decrease in pasture quality and an increased uptake 

of aluminium and iron by the grazing animals (Environment Protection Authority (EPA ) 2007). 

Aquatic organisms are particularly sensitive to any changes in water quality (Ljung et al. 2009), 

so that the export of acidity in drainage water and metals from ASS to waterway and to 

groundwater can have severe negative effects on aquatic ecosystems (Cook et al. 2000; Sammut 

and Lines-Kelly 2000; Sammut et al. 1995). Fish kills are an immediate and recognisable response 

to acidification events. Fish kills along the Finnish coast due to metals leached and acidity 

mobilised from ASS occur periodically because of seasonal discharge of acidity and metals 

(Fältmarsch et al. 2008; Nordmyr et al. 2008; Nyberg et al. 2012). As a result of large scale 

drainage in ASS areas, massive kills of fish were reported in Malaysia, Senegal, Venezuela and 

Vietnam in the 1960s (Sammut and Lines-Kelly 2000).  Leaking acid and metals into Trinity Inlet 

(Queensland, Australia) for 30 years resulted in episodic fish kills (Garrett, 1978; Russell, 1980; 
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Olsen, 1983; Russell and McDougall, 2003). Death and disease of aquatic marine organisms 

during acid events result from a combination of acidity, low dissolved oxygen and high aluminium 

concentrations, but may also be due to smothering by iron flocs (Sammut et al., 1996a, b; Cook et 

al. 2000).  

Human health may be affected by elevated metal concentrations in drinking water in areas with a 

large proportion of oxidized ASS (Fältmarsch et al. 2008; Ljung et al. 2009; Mosley et al. 2014b). 

An investigation of drinking water of the wells in large areas of oxidized ASS in the Mekong delta 

found that As and Mn concentrations in drinking water exceeded water quality guidelines 

(Buschmann et al. 2008).    

Due to the large area covered by ASS and their potential impact on the environment, management 

aimed at minimizing their negative impact is important. 

1.5 Remediation and management of acid sulfate soils 

Disturbance and oxidation of ASS materials can lead to the release of large amounts of sulfuric 

acid and soluble metals (Fältmarsch et al. 2008; Hicks et al. 2003b; Mosley et al. 2014b; Mosley 

et al. 2014c; White et al. 1997). Therefore, remediation and management of ASS preferably should 

focus on slowing or stopping oxidation of iron sulfide to avoid the formation of sulfuric materials. 

Options include keeping iron sulfide materials in saturated condition, retaining acidity and 

oxidation products of oxidised ASS materials on site using a acidity barrier or  constructed 

wetlands, or neutralising sulfuric materials by liming, bioremediation, or flood irrigation control 

(Baldwin and Fraser 2009; Fitzpatrick and Shand 2009; Hicks et al. 2003b; Johnston et al. 2005; 

Ray 1985; Sammut and Lines-Kelly 2000). 

Soil acidity in ASS with sulfuric material can be neutralized by application of chemical 

ameliorants such as hydrated lime (CaOH2) or ground limestone CaCO3 (Baldwin and Fraser 2009; 

Dear et al. 2002; Fitzpatrick and Shand 2009). However, liming may be costly and ineffective, 
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particularly when sulfuric material occurs in large areas or deep soil layers, or has a high clay 

content (Dear et al. 2002). Limestone may also become coated in gypsum and Fe minerals, 

reducing its dissolution efficiency (Dear et al. 2002; Hammarstrom et al. 2003). 

Addition of organic matter (OM) could be an alternative management technique because OM 

influences pH changes in reduced and oxidised ASS soils (LiJin 1985; Yuan et al. 2015a).  OM 

increases the pH in submerged soils by stimulating sulfate reduction and minimises acidification 

in oxidised soils (Berner 1970; Costa and Duarte 2005; Yuan et al. 2015b).  

Another management option is amelioration of acidic outflows. This may involve redesign of 

drainage systems to manage surface waters and reduce drain density or treatment of drains with 

lime (White et al. 1997). Acidity and metals can also be removed by permeable barriers placed in 

drainage channels (Regmi et al. 2009; Waite et al. 2003). Materials used in such barriers should 

have a high capacity to bind protons and metals and retain them even when leached with 

uncontaminated water, e.g. after disposal. Organic materials have properties that could make them 

effective barriers for ASS drainage water. 

1.6 Sites used in this study 

In this project, soil from Gilman, SA was used. The coastal area was previously covered by 

mangroves and sediments are rich in sulfides. The Gilman site covers approximately 1000 ha and 

was reclaimed between 1935 and 1954 when bund walls were  constructed (Thomas 2010). The 

bund walls prevent tidal inundation and enhances oxidation of hypersulfidic material, which leads 

to acidification and is exacerbated by the lack of neutralising material previously supplied by tidal 

influence. In the 1980s, drainage water pH of less than 3.5 and high concentrations of Al, As, Fe, 

Pb and Zn in groundwater were then recorded (Pavelic and Dillon 1993). The area is presently 

under pressure for commercial and industrial development as well as being used for stormwater 
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ponding basins for urban stormwater runoff, and stormwater retention basins that release 

stormwater to the Barker Inlet at low tide (Thomas 2010).  

The other site selected for this project is the Lower Murray Reclaimed Irrigation Area (LMRIA). 

The sediments in the previous floodplains are sulfide-rich. The LMRIA region occupies 5,200 ha 

of agricultural land between Mannum and Wellington, which is irrigated by water from the River 

Murray. When barrages were constructed in the 1930s to prevent seawater ingress into the 

freshwater lakes downstream, the water level of the river was regulated 1 -1.5 m above the 

floodplain and levee banks were constructed in the LMRIA. This allowed irrigation of agricultural 

land behind the levee banks (Mosley et al. 2009). However, due to long and widespread drought 

in eastern Australia from 2006 to 2010, the water levels in the River Murray fell below -1 m 

Australian Height Datum (AHD) and irrigation ceased (Fitzpatrick et al. 2012; Mosley et al. 2009). 

As a consequence, large areas of previously inundated sediments and subaqueous soils were 

exposed. Pyrite rich materials was oxidised to depths up to 4 m and became acidic (Fitzpatrick et 

al. 2009). After the end of the drought in 2010 to 2011, the water levels of this region rose back to 

normal (approx. to 0.75 m AHD). Consequently, the dried and cracked subsoils containing sulfuric 

materials became inundated and irrigation resumed. But although the soils were saturated, the pH 

in these soils below ~0.5m to 0.8 m remained low (pH < 4) and the discharged water in the drains 

had pH 2-5 across the LMRIA (Fitzpatrick et al. 2012). The drainage water also contained high 

concentrations of soluble metals that exceeded aquatic ecosystem and Australian Drinking water 

aesthetic and health guidelines (Mosley et al. 2014a). 

1.7 Organic materials 

Soil organic carbon plays a vital role in the soil system to assist in the functioning many of the 

physical, chemical and biological processes (Hoyle et al. 2011). Therefore, addition of organic 

materials in to soil has been proposed as a promising soil amendment approach to increase soil 

fertility. Organic material addition to acid soil can increase soil pH (Xu et al. 2006), enhance proton 
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binding affinities to soil humic acid (Pedra et al. 2008), and reduce metal mobility(Clemente et al. 

2006; Dias et al. 2003; Fest et al. 2008). Furthermore, organic materials have received high 

attention and are considered as a low-cost and environment-friendly absorbent to remediate waste 

water (Iakovleva and Sillanpää 2013; Park et al. 2011). Biochar and other organic material have 

been used to reduce metal concentrations in leachate from mine tailings (Hughes and Gray 2013; 

Lee et al. 2013; Lindsay et al. 2011) and wastewater (Bhatnagar and Sillanpää 2010; Wan Ngah 

and Hanafiah 2008; Zhou and Haynes 2010). 

The addition of organic materials in the form of manures, sawdust, cattle slurry and biochar has 

been used to increase the pH and remove metals from acid mine drainage and metal-contaminated 

soil (Hughes et al. 2013; Zhang et al. 2013). Single or multiple metal adsorption and desorption to 

organic materials were differed among materials and influenced by a number of factors such as 

pH environment (Choi et al. 2013; Houben et al. 2013), organic materials properties (Gai et al. 

2014; Qian and Chen 2013; Trakal et al. 2014; Uchimiya et al. 2011c), metal speciation (Zhou and 

Haynes 2010). 

Biochar is a carbon-rich product that is produced by pyrolysis of biomass at low or without oxygen 

supply (Lehmann et al. 2011; Sohi et al. 2010). Biochar composition is affected by composition 

of the feedstock and pyrolysis temperature and length. Biochar produced at low temperature (450 

or 550 ˚C) is often used as soil amendment (Sohi et al. 2010) to increase microbial activity, water 

holding capacity and nutrient availability (Gomez et al. 2014; Liang et al. 2006; Verheijen et al. 

2014). Biochar has been also considered to remediate contaminated soils and to remove heavy 

metals and others contaminats in aqueous environment (Beesley et al. 2011; Chen et al. 2011; 

Inyang et al. 2012; Liang et al. 2014; Uchimiya et al. 2010). The effect of biochar addition to soil 

on immobilization and retention of soluble metals differed among materials (Ahmad et al. 2014; 

Trakal et al. 2011) and influenced by factors such as physical structure and chemical composition 

of biochar as well as environmental conditions (Beesley et al. 2011; Chen et al. 2011; Kim et al. 
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2012; Kookana et al. 2011; Sohi et al. 2010; Trakal et al. 2011; Uchimiya et al. 2011a; Uchimiya 

et al. 2011c). For example, removal of Cd and Pb from aqueous solution was affected by 

morphology of the biochar, but more strongly correlated with solution pH (Trakal et al. 2014). 

Carboxyl and hydroxyl functional groups of biochar play an important role in metal binding 

(Elaigwu et al. 2014; Lu et al. 2012). Other properties important for metal binding include surface 

area, pore size, CEC.  Biochar produced at low temperature has a high potential for removing 

inorganic contaminants whereas high temperature biochar with high surface area effectively 

remove organic contaminants (Ahmad et al. 2014; Tang et al. 2013). Metal sorption also depends 

on metal composition and concentration (Inyang et al. 2012; Uchimiya et al. 2012; Uchimiya et 

al. 2011a; Uchimiya et al. 2011b). Thus, selection of organic materials to remediate contaminated 

soils and water must be made on a case by case basis (Uchimiya et al. 2011c). 

Drainage water seeping from adjacent acid sulfate soils (Mosley et al. 2014c; Simpson et al. 2014) 

differs from acid mine drainage (Sracek et al. 2004) with respect to acidity, sulfate concentration, 

dominant metals and metal speciation (Hughes et al. 2013; Jeen et al. 2014). Studies in acid mine 

drainage areas have shown that biochar and other organic amendments can increase the pH and 

bind metals. But little is known about the potential of these materials to reduce leaching of protons 

and metals from sulfuric materials in ASS and in adjacent drainage water. Similarly, little is known 

about how leaching is influenced by properties of the organic materials and whether the protons 

and metals will be retained on sulfuric materials following leaching with uncontaminated water. 

1.8 The aims of this study 

As outlined in this literature review, sulfuric materials in ASS can be remediated in situ by the 

application of lime or organic matter. However, these methods can be expensive or ineffective 

particularly where the sulfuric materials are in deeper soil layers. In such situations, the impact of 

the drainage water has to be minimised by retention of protons and metals within the soils and 

drainage channels by organic materials. The aims of this thesis project were: 
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i) To compare the effect of different organic materials on leaching of protons, Al and Fe from 

sandy sulfuric soil, and assess how this effect is influenced by the properties of organic 

materials and their placement in the soil (Chapter 2). 

ii) To compare the capacity of different organic materials to remove proton, Al and Fe from 

ASS drainage water (Chapter 3). 

iii) To assess their subsequent release leached by uncontaminated water (Chapter 4), and 

iv)  To assess eucalypt biochar produced at 550 ˚C for its maximum capacity to retain protons 

in the absence of metals; and to assess single and competition binding of Al and Fe in pH-

controlled solution (Chapter 5). 
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Supplementary data 

Figures S1: Pale brown to yellow jarosite mottles in sandy Gilman soil 
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Table S1: Soil profile description1 and soil classification 

Horizon Depth (cm) Description Sulfuric 

horizon/sulfidic 

material2 

Soil class2 Australian ASS 

identification key3 

Oe 0-5 Brown to greyish brown silty loam Sulfuric Typic Sulfaquept Sulfuric clayey peat 

soil 
A 5-15 Greyish brown clay loam Sulfuric  

E 15-40 Pale yellow silty clay with brown mottles Sulfuric   

B 40-110 Greyish brown sandy with pale brown mottles of 

jarosite 

Sulfuric   

1 Soil collected at site BG15 as descriped in Thomas (2010) 

2 Acid sulfate soil horizon and material (Soil Survey Staff, 2014) 

3 Australian acid sulfate soil classification (Fitzpatrick, 2013) 
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Table S2:  Carbon groups of organic materials based on NMR spectroscopy (from Dang et al. 2015). 

 Alkyl 

N-Alkyl/ 

Methoxyl O-Alkyl Di-O-Alkyl Aryl O-Aryl 

Amide/ 

Carboxyl Ketone 

% of organic C detected 

Wheat straw 4.8 4.3 61.3 14.1 7.4 3.2 4.1 0.7 

Pea Straw 6.8 5.6 59.4 12.8 7.2 2.8 4.7 0.6 

Compost 20.3 8.9 31.2 7.7 16.1 6.1 8.2 1.5 

Poultry 450 9.2 5.5 26.6 8.2 34.3 9.9 4.1 2.2 

Poultry 550 10.4 2.8 5.1 4.1 61.7 10.4 3.3 2.1 

Wheat 450 15.3 5.2 14.9 5.2 39.2 10.9 6.2 3.1 

Wheat 550 13.2 3.9 5.6 3.7 52.9 12.9 4.5 3.3 

Eucalypt 550 10.3 3.1 4.5 3.6 57.5 13.6 4.3 3.2 
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Table S3. pH of leachates after passing reverse osmosis water through Gillman soil with organic materials mixed into the soil or placed as a layer 

underneath the soil over 4 leaching events.  Letter indicate significant differences (Duncan analysis, P≤ 0.05) 

 
Leaching event  

 

1 2 3 4 

Mixed Layer Mixed Layer Mixed Layer Mixed Layer 

Gillman alone 3.26 ± 0.03 3.87 ± 0.03 4.21 ± 0.02 4.22 ± 0.03 

Wheat straw 3.45 ± 0.02 a 3.75 ± 0.02 cd 4.16 ± 0.07 ab 4.08 ± 0.04 a 4.64 ± 0.07 ab 4.37 ± 0.05 a 4.58 ± 0.03 ab 4.31 ± 0.07 a 

Pea Straw 3.69 ± 0.02 bc 3.76 ± 0.04 cd 4.33 ± 0.09 abc 5.73 ± 0.12 g 4.78 ± 0.03 abc 6.10 ± 0.22 hij 4.73 ± 0.04 ab 5.85 ± 0.09 f 

Compost 4.54 ± 0.03 h 4.40 ± 0.08 g 5.22 ± 0.06 f 6.22 ± 0.09 h 5.73 ± 0.10 fgh 6.62 ± 0.07 k 5.76 ± 0.13 ef 6.41 ± 0.06 g 

Poultry 450 3.84 ± 0.01 de 3.65 ± 0.01 bc 4.50 ± 0.06 bcd 4.83 ± 0.18 de 4.84 ± 0.02 abc 5.60 ± 0.27 efg 4.79 ± 0.07 abc 5.81 ± 0.34 ef 

Poultry 550 4.42 ± 0.02 g 3.94 ± 0.09 e 5.02 ± 0.05 ef 5.61 ± 0.21 g 5.34 ± 0.05 def 6.21 ± 0.38 ijk 5.32 ± 0.06 de 5.81 ± 0.36 ef 

Wheat 450 3.86 ± 0.02 de 3.75 ± 0.02 cd 4.41 ± 0.06 abc 5.05 ± 0.27 ef 4.84 ± 0.08 abc 5.85 ± 0.19 ghi 4.83 ± 0.06 bcd 5.95 ± 0.12 fg 

Wheat 550 4.08 ± 0.03 f 3.86 ± 0.03 de 4.71 ± 0.07 cde 6.09 ± 0.10 h 5.02 ± 0.05 bcd 6.37 ± 0.08 jk 5.08 ± 0.04 bcd 6.12 ± 0.25 fg 

Eucalypt 550 3.69 ± 0.02 bc 3.61 ± 0.03 b 4.37 ± 0.08 abc 4.39 ± 0.12 abc 4.65 ± 0.04 ab 5.21 ± 0.16 cde 4.65 ± 0.03 ab 5.26 ± 0.23 cd 
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Table S4. Fe concentration (mg L⁻¹) of leachates after passing reverse osmosis water through Gillman soil with organic materials mixed into the 

soil or placed as a layer underneath the soil over 4 leaching events.  Letter indicate significant differences (Duncan analysis, P≤ 0.05) 

 
Leaching event  

 

1 2 3 4 

Mixed Layer Mixed Layer Mixed Layer Mixed Layer 

  Fe concentration (mg L⁻¹) 

Gillman alone 19.59 ± 1.6 1.61 ± 0.4 2.78 ± 0.4 3.45 ± 0.6 

Wheat straw 33.5 ± 0.3 k 16.4 ± 0.2 i 1.9 ± 0.3 ab 1.6 ± 0.3 ab 2.5 ± 0.6 ab  2.5 ± 0.3 ab 2.3 ± 0.5 a 2.6 ± 0.2 a 

Pea Straw 32.2 ± 0.1 j 12.6 ± 0.1 h 2.1 ± 0.5 ab 1.7 ± 0.2 ab 2.3 ± 0.4 a 1.7 ± 0.1 a 2.8 ± 0.7 ab 2.2 ± 0.2 a 

Compost 1.2 ± 0.0 ab 8.6 ± 0.8 e 2.8 ± 0.5 bcd 1.4 ± 0.1 ab 3.7 ± 0.6 abc 7.6 ± 0.9 ef 5.0 ± 0.7 bcd 7.1 ± 1.4 de 

Poultry 450 3.6 ± 0.1 c 11.3 ± 0.5 g 3.4 ± 0.4 cd 2.5 ± 0.2 abc 3.3 ± 0.6 abc 2.6 ± 0.4 ab 3.0 ± 0.6 ab 6.2 ± 0.8 cde 

Poultry 550 0.5 ± 0.0 a 5.0 ± 0.7 d 2.0 ± 0.4 ab 1.3 ± 0.1 a 3.0 ± 0.7 abc 5.0 ± 0.4 cd 2.4 ± 0.2 a 4.9 ± 0.9 bcd 

Wheat 450 4.3 ± 0.2 cd 13.0 ± 0.8 h 1.2 ± 0.1 a 3.9 ± 0.8 d 5.8 ± 0.8 de 3.3 ± 0.8 abc 7.0 ± 1.2 de 6.0 ± 0.3 cde 

Wheat 550 2.1 ± 0.1 b 9.8 ± 0.2 f 1.7 ± 0.2 ab 1.1 ± 0.4 a 4.6 ± 1.0 bcd 9.4 ± 1.0 f 4.4 ± 0.8 abc 8.2 ± 1.1 e 

Eucalypt 550 9.3 ± 0.3 ef 12.2 ± 0.1 gh 1.3 ± 0.1 a 3.6 ± 0.8 cd 3.1 ± 1.0 abc 3.5 ± 0.7 abc 5.9 ± 0.2 cde 6.6 ± 0.2 cde 
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Table S5. Al concentration (mg L⁻¹) of leachates after passing reverse osmosis water through Gillman soil with organic materials mixed into the 

soil or placed as a layer underneath the soil over 4 leaching events.  Letter indicate significant differences (Duncan analysis, P≤ 0.05) 

 
Leaching event  

 

1 2 3 4 

Mixed Layer Mixed Layer Mixed Layer Mixed Layer 

  Al concentration (mg L⁻¹) 

Gillman alone 77.4 ± 5.7 2.3 ± 0.6 2.4 ± 0.4 3.6 ± 0.7 

Wheat straw 48.3 ± 2.4 i 51.9 ± 1.3 j 1.3 ± 0.2 ab 4.3 ± 0.6 c 2.2 ± 0.7 ab 2.5 ± 0.4 ab 2.4 ± 0.6 ab 2.8 ± 0.2 abc 

Pea Straw 32.9 ± 1.3 f 43.2 ± 1.0 gh 2.0 ± 0.6 ab 2.3 ± 0.1 ab 2.2 ± 0.5 ab 1.3 ± 0.0 a 3.3 ± 0.9 abcd 2.2 ± 0.3 a 

Compost 1.7 ± 0.1 a 24.5 ± 1.6 e 2.2 ± 0.6 ab 1.0 ± 0.1 ab 2.6 ± 0.7 ab 8.8 ± 1.0 d 5.3 ± 1.2 bcdef 8.8 ± 1.9 fg 

Poultry 450 10.1 ± 0.3 c 40.2 ± 1.6 g 2.3 ± 0.5 ab 2.6 ± 0.2 b 3.2 ± 0.8 abc 2.7 ± 0.5 ab 3.5 ± 0.8 abcd 8.0 ± 1.1 efg 

Poultry 550 1.3 ± 0.1 a 14.7 ± 1.7 d 1.9 ± 0.4 ab 1.4 ± 0.1 ab 2.4 ± 0.7 ab 5.8 ± 0.6 c 2.4 ± 0.3 ab 6.3 ± 1.2 bcdef 

Wheat 450 13.2 ± 0.7 cd 46.6 ± 0.9 hi 0.7 ± 0.1 a 4.6 ± 1.1 c 6.1 ± 1.0 c 3.8 ± 1.1 abc 8.4 ± 1.7 efg 6.9 ± 1.0 def 

Wheat 550 5.9 ± 0.2 b 32.2 ± 1.5 f 1.8 ± 0.3 ab 1.5 ± 0.5 ab 5.0 ± 1.2 bc 12.4 ± 1.6 e 4.6 ± 0.8 abcde 10.9 ± 1.6 g 

Eucalypt 550 27.0 ± 0.9 e 44.1 ± 1.2 h 1.8 ± 0.6 ab 4.2 ± 1.0 c 4.7 ± 1.7 bc 4.2 ± 1.0 abc 6.7 ± 2.1 cdef 7.8 ± 1.7 efg 
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Table S6. Proton retention (µMol g-1) in Gilman soil mixed with organic materials over four leaching events with RO water (n=4).  Values followed 

by different letters are significantly different (P≤ 0.05)  

 Leaching event Cumulative retention 

 1 2 3 4  

Organic materials Proton retention (µMol g-1) 

Wheat straw 16.3 ± 0.7 a 5.6 ± 0.4 a 2.9 ± 0.1 b 2.7 ± 0.1 b 27.5 ± 1.2 a 

Pea Straw 23.4 ± 0.4 c 6.4 ± 0.4 b 3.2 ± 0.03 c 3.0 ± 0.1 c 36.0 ± 0.7 c 

Compost 20.0 ± 0.1 b 4.9 ± 0.02 a 2.3 ± 0.01 a 2.2 ± 0.01 a 29.5 ± 0.1 b 

Poultry 450 28.2 ± 0.2 e 7.5 ± 0.2 c 3.5 ± 0.03 d 3.3 ± 0.1 d 42.5 ± 0.3 e 

Poultry 550 25.9 ± 0.1 d 6.4 ± 0.03 b 3.0 ± 0.01 b 2.9 ± 0.02 bc 38.1 ± 0.1 d 

Wheat 450 31.4 ± 0.3 g 8.0 ± 0.2 cd 3.8 ± 0.1 e 3.7 ± 0.1 d 47.0 ± 0.6 f 

Wheat 550 25.1 ± 0.3 d 6.4 ± 0.1 b 3.0 ± 0.03 b 2.9 ± 0.02 bc 37.3 ± 0.3 cd 

Eucalypt 550 29.6 ± 0.6 f 8.3 ± 0.3 d 3.8 ± 0.1 e 3.6 ± 0.1 d 45.2 ± 0.8 f 
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Table S7. Proton retention (µMol g-1) in Gilman soil with organic materials as layer over four leaching events with RO water (n=4).  Values 

followed by different letters are significantly different (P≤ 0.05)  

 Leaching event Cumulative retention 

 1 2 3 4  

Organic materials Proton retention (µMol g-1) 

Wheat straw 23.9 ± 0.4 bc 5.3 ± 0.2 a 2.3 ± 0.1 a 2.0 ± 0.3 a 33.5 ± 0.4 b 

Pea Straw 24.8 ± 0.6 c 7.8 ± 0.02 c 3.6 ± 0.01 c 3.5 ± 0.01 c 39.7 ± 0.6 d 

Compost 19.7 ± 0.2 a 5.1 ± 0.00 a 2.4 ± 0.00 a 2.3 ± 0.00 a 29.3 ± 0.2 a 

Poultry 450 24.4 ± 0.3 bc 7.9 ± 0.2 c 3.8 ± 0.1 c 3.7 ± 0.1 c 39.8 ± 0.6 d 

Poultry 550 22.8 ± 0.8 b 6.5 ± 0.1 b 3.0 ± 0.04 b 2.9 ± 0.04 b 35.3 ± 0.8 bc 

Wheat 450 29.3 ± 0.5 e 8.8 ± 0.4 d 4.3 ± 0.04 d 4.2 ± 0.02 d 46.6 ± 0.9 f 

Wheat 550 23.0 ± 0.4 b 6.9 ± 0.00 b 3.2 ± 0.00 b 3.1 ± 0.01 b 36.1 ± 0.4 c 

Eucalypt 550 27.1 ± 0.8 d 8.2 ± 0.5 cd 4.3 ± 0.11 d 4.2 ± 0.1 d 43.8 ± 1.2 e 

  



 

44 

Table S8. Fe retention (µg g-1) in Gilman soil mixed with organic materials over four leaching events with RO water (n=4).  Values followed by 

different letters are significantly different (P≤ 0.05)  

 

  

 Leaching event Cumulative retention 

 1 2 3 4  

 Fe retention (µg g-1) 

Wheat straw -318.3 ± 12.5 a 38.8 ± 9.1 b 86.3 ± 16.5 bc 132.4 ± 13.3 d -60.9 ± 33.2 a 

Pea Straw -267.3 ± 5.9 b 31.9 ± 15.4 b 97.2 ± 11.7 abc 120.6 ± 20.3 cd -17.7 ± 37.9 a 

Compost 706.5 ± 1.4 c 8.7 ± 8.9 ab 35.9 ± 11.0 c 35.3 ± 12.6 ab 786.4 ± 12.5 b 

Poultry 450 1072.3 ± 7.1 e -6.2 ± 13.6 a 73.2 ± 17.6 bc 124.3 ± 19.0 cd 1263.7 ± 45.1 e 

Poultry 550 949.1 ± 1.3 d 31.2 ± 9.9 b 62.1 ± 17.0 bc 111.7 ± 4.3 cd 1154.0 ± 21.4 cd 

Wheat 450 1147.2 ± 11.0 f 72.8 ± 5.2 c -8.9 ± 27.5 a -3.8 ± 40.8 a 1207.3 ± 48.1 de 

Wheat 550 925.8 ± 3.0 d 39.4 ± 5.0 b 24.2 ± 24.8 ab 64.8 ± 21.3 bc 1054.2 ± 38.5 c 

Eucalypt 550 935.8 ± 19.2 d 70.1 ± 3.0 c 92.0 ± 36.3 bc 35.8 ± 8.6 ab 1133.7 ± 30.2 cd 
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Table S9. Fe retention (µg g-1) in Gilman soil with organic materials as layer over four leaching events with RO water (n=4).  Values followed by 

different letters are significantly different (P≤ 0.05)  

  

 Leaching event Cumulative retention 

 1 2 3 4  

 Fe retention (µg g-1) 

Wheat straw 415.3 ± 6.6 a 45.3 ± 9.3 b 88.8 ± 7.5 c 123.8 ± 4.5 c 673.2 ± 12.4 b 

Pea Straw 596.7 ± 3.9 c 43.6 ± 5.8 b 113.9 ± 2.5 c 138.4 ± 7.1 c 892.5 ± 10.7 c 

Compost 495.6 ± 23.8 b 34.4 ± 2.6 b -37.8 ± 16.2 b -3.0 ± 26.0 ab 489.2 ± 34.6 a 

Poultry 450 705.6 ± 24.8 d 23.7 ± 5.6 ab 95.1 ± 12.6 c 21.1 ± 25.0 ab 845.6 ± 31.7 c 

Poultry 550 783.1 ± 24.1 e 46.9 ± 2.7 b 14.5 ± 10.8 b 48.2 ± 22.1 b 892.7 ± 29.4 c 

Wheat 450 688.8 ± 41.2 d -22.8 ± 27.6 a 80.8 ± 27.6 c 31.8 ± 12.1 b 778.5 ± 73.7 bc 

Wheat 550 626.6 ± 9.3 c 53.5 ± 10.0 b -97.7 ± 26.7 a -33.6 ± 28.7 a 548.8 ± 26.9 a 

Eucalypt 550 776.1 ± 4.9 e -14.1 ± 30.2 a 75.6 ± 25.9 c 10.7 ± 8.5 ab 848.2 ± 43.9 c 
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Table S10. Al retention (µg g-1) Gilman soil mixed with organic materials over four leaching events with RO water (n=4).  Values followed by 

different letters are significantly different (P≤ 0.05) 

 Leaching event Cumulative retention 

 1 2 3 4  

 Al retention (µg g-1) 

Wheat straw 2352.5 ± 101.5 a 93.2 ± 7.0 b 71.7 ± 18.9 b 139.8 ± 16.9 b 2657.2 ± 112.5 a 

Pea Straw 3103.3 ± 56.6 b 75.9 ± 16.2 ab 74.0 ± 15.6 b 115.1 ± 27.3 b 3368.4 ± 40.7 c 

Compost 2873.8 ± 3.0 c 45.1 ± 10.9 a 41.5 ± 12.9 ab 37.2 ± 21.7 ab 2997.6 ± 28.3 b 

Poultry 450 4434.7 ± 13.0 f 72.5 ± 16.2 ab 48.2 ± 23.9 ab 118.0 ± 25.5 b 4673.3 ±63.8 f 

Poultry 550 3776.5 ± 2.6 d 66.6 ± 10.8 ab 57.8 ± 17.0 b 119.6 ± 6.6 b 4020.4 ± 21.7 d 

Wheat 450 4737.7 ± 37.0 g 136.6 ± 4.7 c -45.9 ± 33.4 a -38.8 ± 58.7 a 4789.7 ± 76.3 f 

Wheat 550 3743.5 ± 8.5 d 72.3 ± 7.4 ab -5.1 ± 29.6 ab 67.9 ± 21.5 ab 3878.6 ± 42.8 d 

Eucalpt 550 4236.4 ± 52.2 e 102.8 ± 22.6 bc 2.7 ± 64.3 ab 21.1 ± 76.9 ab 4363.1 ± 154.5 e 
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 Table S11 Al retention (µg g-1) in Gilman soil with organic materials as layer over four leaching events with RO water (n=4).  Values followed by 

different letters are significantly different (P≤ 0.05)  

 Leaching event Cumulative retention 

 1 2 3 4  

 Al retention (µg g-1) 

Wheat straw 2197.7 ± 54.6 a 8.7 ± 18.5 ab 63.7 ± 10.1 d 127.20± 4.7 cd 2397.3 ± 54.9 ab 

Pea Straw 2648.8 ± 43.9 b 68.3 ± 2.8 bc 100.7 ± 1.5 d 149.4 ± 8.6 d 2967.2 ± 43.3 c 

Compost 2228.8 ± 46.0 a 67.1 ± 1.9 bc -76.2 ± 19.4 b -28.5 ± 35.4 ab 2191.2 ± 35.7 a 

Poultry 450 2999.1 ± 78.2 c 64.4 ± 7.6 bc 63.8 ± 16.8 d -24.7 ± 33.3 ab 3102.6 ± 80.2 cd 

Poultry 550 3277.4 ± 63.4 d 79.2 ± 3.5 c -26.9 ± 13.9 bc 24.1 ± 29.8 bc 3353.8 ± 47.5 d 

Wheat 450 2978.8 ± 46.8 c -1.2 ± 36.9 a 33.7 ± 38.8 cd 11.1 ± 35.5 ab 3022.3 ± 115.6 c 

Wheat 550 2731.2 ± 56.8 b 80.4 ± 13.4 c -195.7 ± 40.9 a -94.6 ± 40.6 a 2521.2 ± 77.7 b 

Eucalypt 550 3283.0 ± 67.2 d 15.1 ± 38.1 abc 20.7 ± 36.0 cd -18.6 ± 62.7 ab 3300.3 ± 149.8 d 
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Table S12. Correlation between proton retention in organic materials mixed with Gilman acid sulfate soil with their properties in the first and 

cumulative leaching events. 

 
1. Leaching event Cumulative retention 

Equation R square P (95%) Equation R square P (95%) 

C y = 0.0376x + 8.7299 0.4317 0.077 y = 0.0606x + 11.67 0.5806 0.028 

N y = 0.2874x + 21.052 0.1558 0.333 y = 0.2906x + 33.899 0.0824 0.490 

C/N ratio y = -0.0364x + 26.647 0.064 0.545 y = -0.0244x + 38.993 0.0149 0.774 

ANC y = 0.3071x + 23.734 0.0324 0.670 y = 0.1238x + 37.377 0.0027 0.902 

CEC y = 0.2245x + 15.066 0.3276 0.138 y = 0.2448x + 27.062 0.2015 0.564 

Surface area y = 0.0387x + 24.876 0.0004 0.961 y = -0.2265x + 38.581 0.0077 0.837 

Alkyl y = 0.1931x + 22.816 0.0359 0.653 y = 0.1123x + 36.618 0.0063 0.852 

N-Alkyl/Methoxyl y = -0.8533x + 29.187 0.1074 0.429 y = -1.3914x + 44.721 0.1479 0.347 

O-Alkyl y = -0.8533x + 29.187 0.4906 0.053 y = -0.1889x + 42.812 0.4021 0.091 

Di-O-Alkyl y = -0.8481x + 31.292 0.4852 0.055 y = -1.0559x + 45.726 0.3893 0.098 

Aryl y = 0.1542x + 19.67 0.4661 0.062 y = 0.2012x + 30.938 0.4107 0.087 

O-Aryl y = 0.9183x + 16.983 0.588 0.026 y = 1.2207x + 27.235 0.5379 0.038 

Amide/Carboxyl y = -0.4472x + 27.198 0.0193 0.743 y = -0.8995x + 42.316 0.0404 0.633 

Ketone y = 3.5823x + 17.517 0.6004 0.024 y = 4.7867x + 27.893 0.5549 0.034 
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Table S13. Correlation between proton retained on organic materials placed as a layer under Gilman acid sulfate soil with their properties in firstand 

and cumulative leaching events. 

 
1. Leaching event Cumulative retention 

Equation R square P (95%) Equation R square P (95%) 

C y = 0.031x + 10.94 0.8871 0.000 y = 0.0594x + 12.327 0.859 0.001 

N y = -0.0242x + 24.691 0.0033 0.891 y = 0.0318x + 37.588 0.0015 0.927 

C/N ratio y = 0.0257x + 23.191 0.0967 0.453 y = 0.0251x + 36.885 0.0243 0.712 

ANC y = -0.5349x + 26.556 0.2967 0.162 y = -0.7347x + 41.041 0.1478 0.347 

CEC y = -0.0125x + 24.912 0.0031 0.895 y = 0.0669x + 35.066 0.0232 0.719 

Surface area y = -0.5371x + 26.007 0.252 0.205 y = -0.8736x + 40.705 0.176 0.301 

Alkyl y = -0.1509x + 26.063 0.0662 0.537 y = -0.1944x + 40.218 0.029 0.687 

N-Alkyl/Methoxyl y = -0.6559x + 27.581 0.1916 0.278 y = -1.1546x + 43.696 0.1568 0.331 

O-Alkyl y = -0.0205x + 24.893 0.0276 0.695 y = -0.0704x + 39.859 0.0859 0.481 

Di-O-Alkyl y = -0.1098x + 25.174 0.0245 0.712 y = -0.3954x + 40.96 0.0841 0.486 

Aryl y = 0.0304x + 23.309 0.0547 0.578 y = 0.0865x + 35.035 0.117 0.407 

O-Aryl y = 0.2281x + 22.369 0.1095 0.424 y = 0.6037x + 32.757 0.2026 0.263 

Amide/Carboxyl y = -0.4377x + 26.515 0.0558 0.572 y = -0.8222x + 42.074 0.052 0.587 

Ketone y = 1.1064x + 22.049 0.1729 0.306 y = 2.653x + 32.486 0.2625 0.194 
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Table S14. Correlation between Fe retention in on organic materials mixed with Gilman acid sulfate soil with their properties in first and cumulative 

leaching events. 

 
1. Leaching event Cumulative retention 

Equation R square P (95%) Equation R square P (95%) 

C y = 1.0937x + 170.46 0.0262 0.702 y = 1.2255x + 284.64 0.0386 0.641 

N y = 56.561x - 132.21 0.4323 0.076 y = 47.703x + 160.54 0.3612 0.115 

C/N ratio y = -8.735x + 1040.4 0.2643 0.192 y = -7.3759x + 1149.9 0.2213 0.239 

ANC y = 141.99x + 60.827 0.4961 0.051 y = 129.24x + 284.41 0.4827 0.056 

CEC y = 32.432x - 790.38 0.4898 0.053 y = 28.249x - 434.18 0.4364 0.075 

Surface area y = 90.998x + 364.63 0.1717 0.307 y = 85.926x + 551.4 0.1797 0.295 

Alkyl y = 70.871x - 156.08 0.3465 0.125 y = 56.93x + 172.49 0.2626 0.194 

N-Alkyl/Methoxyl y = -32.765x + 804.84 0.0113 0.802 y = -50.477x + 1063.1 0.0316 0.673 

O-Alkyl y = -22.942x + 1242.1 0.8206 0.002 y = -21.367x + 1372.2 0.836 0.001 

Di-O-Alkyl y = -128.73x + 1599.7 0.8009 0.003 y = -118.79x + 1697.1 0.8009 0.003 

Aryl y = 20.964x - 80.17 0.6173 0.021 y = 20.216x + 116.88 0.6741 0.012 

O-Aryl y = 124.43x - 441.79 0.7735 0.004 y = 117x - 205.74 0.8032 0.003 

Amide/Carboxyl y = 40.882x + 442.53 0.0116 0.800 y = 5.5628x + 787.69 0.0003 0.97 

Ketone y = 471.74x - 340.88 0.746 0.006 y = 433.5x - 89.839 0.7398 0.006 

Proton y = 89.649x - 1596.9 0.5789 0.029 y = 55.499x - 1287.6 0.5007 0.05 

Al y = 0.593x - 1524.8 0.6807 0.012 y = 0.5753x - 1396 0.6705 0.013 
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Table S15. Correlation between Fe retained on organic materials placed as a layer under Gilman acid sulfate soil with their properties in first and 

cumulative leaching events 
 

1. Leaching event Cumulative retention 

Equation R square P (95%) Equation R square P (95%) 

C y = 0.7104x + 328.48 0.2281 0.231 y = 1.1145x + 263.7 0.3827 0.102 

N y = 4.1587x + 578.9 0.0482 0.601 y = -4.708x + 810.69 0.0421 0.626 

C/N ratio y = -0.7122x + 668.3 0.0363 0.652 y = 0.9304x + 703.85 0.0422 0.626 

ANC y = 15.316x + 573.07 0.1191 0.402 y = -19.399x + 825.75 0.1303 0.380 

CEC y = 5.1062x + 410.15 0.2505 0.207 y = -0.84x + 783.23 0.0046 0.873 

Surface area y = 16.167x + 586.36 0.1118 0.418 y = -11.618x + 781.74 0.0394 0.638 

Alkyl y = 0.7235x + 627.8 0.0007 0.949 y = -18.807x + 958.37 0.3432 0.127 

N-Alkyl/Methoxyl y = -36.652x + 816.02 0.293 0.166 y = -42.63x + 955.51 0.2702 0.187 

O-Alkyl y = -4.2525x + 746.85 0.5817 0.028 y = -0.1451x + 749.87 0.0005 0.960 

Di-O-Alkyl y = -23.409x + 809.78 0.5464 0.036 y = 0.7689x + 740.38 0.0004 0.962 

Aryl y = 4.9092x + 466.41 0.6983 0.010 y = 1.6082x + 690.55 0.0511 0.590 

O-Aryl y = 23.714x + 429.06 0.5796 0.028 y = 2.5839x + 723.54 0.0047 0.872 

Amide/Carboxyl y = -34.271x + 804.75 0.1676 0.314 y = -63.206x + 1057.4 0.3886 0.099 

Ketone y = 79.587x + 469.83 0.438 0.074 y = -5.52x + 757.61 0.0014 0.929 

Proton y = 19.864x + 152.1 0.1932 0.276 y = 17.333x + 87.028 0.3798 0.104 

Al y = 0.305x - 215.93 0.9765 0.000 y = 0.3318x - 201.83 0.8267 0.002 
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Table S16. Correlation between Al retained on organic materials mixed with Gilman acid sulfate soil with their properties in the first and cumulative 

leaching events 

 
1. Leaching event Cumulative retention 

Equation R square P (95%) Equation R square P (95%) 

C y = 5.8652x + 1118.6 0.3893 0.098 y = 5.6864x + 1382.2 0.4106 0.087 

N y = 55.717x + 2892.8 0.2167 0.245 y = 48.43x + 3179 0.1837 0.289 

C/N ratio y = -7.168x + 3982.7 0.0919 0.465 y = -6.2961x + 4129.3 0.0796 0.498 

ANC y = 66.238x + 3385.3 0.0558 0.573 y = 55.115x + 3617.2 0.0433 0.621 

CEC y = 35.712x + 2078 0.3068 0.154 y = 31.231x + 2462.4 0.2632 0.193 

Surface area y = 7.58x + 3634.1 0.0006 0.954 y = 4.1312x + 3830.9 0.0002 0.973 

Alkyl y = 35.959x + 3251.4 0.0461 0.610 y = 21.647x + 3599.2 0.0187 0.747 

N-Alkyl/Methoxyl y = -128.23x + 4287.2 0.0898 0.471 y = -137.37x + 4518.3 0.1156 0.410 

O-Alkyl y = -25.308x + 4317.2 0.5159 0.045 y = -22.922x + 4441.2 0.4748 0.059 

Di-O-Alkyl y = -140.23x + 4698.5 0.491 0.053 y = -125.37x + 4774.4 0.4403 0.073 

Aryl y = 25.515x + 2776.1 0.4724 0.060 y = 23.891x + 3018.4 0.4647 0.063 

O-Aryl y = 156.51x + 2291.7 0.6322 0.018 y = 143.5x + 2591.5 0.5963 0.025 

Amide/Carboxyl y = -71.93x + 4011.6 0.0185 0.748 y = -105.46x + 4362.9 0.0446 0.616 

Ketone y = 610.83x + 2382.2 0.6461 0.016 y = 549.75x + 2695.9 0.5872 0.027 

Proton y = 161.03x - 367.7 0.9598 0.000 y = 107.66x - 235.19 0.9299 0.000 
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Table S17. Correlation between Al retained on organic materials placed as a layer under Gilman acid sulfate soil with their properties in first, 

second and cumulative leaching events 

 
1. Leaching event cumulative retention 

Equation R square P (95%) Equation R square P (95%) 

C y = 2.702x + 1623.6 0.3143 0.148 y = 3.1247x + 1504.5 0.4006 0.092 

N y = 7.5738x + 2689.2 0.0152 0.771 y = -1.3756x + 2875.9 0.0005 0.959 

C/N ratio y = -0.8683x + 2832.5 0.0051 0.866 y = 0.7526x + 2822.8 0.0037 0.887 

ANC y = 34.787x + 2650.3 0.0585 0.564 y = -5.3142x + 2878.8 0.0013 0.932 

CEC y = 12.456x + 2242.3 0.142 0.358 y = 6.5x + 2569.5 0.0369 0.649 

Surface area y = 44.261x + 2657.3 0.0798 0.498 y = 10.264x + 2825.5 0.0041 0.880 

Alkyl y = -7.6314x + 2879.2 0.0079 0.834 y = -28.834x + 3182.5 0.1074 0.428 

N-Alkyl/Methoxyl y = -140.99x + 3485.7 0.413 0.086 y = -139.45x + 3542 0.3851 0.101 

O-Alkyl y = -13.09x + 3134.4 0.5251 0.042 y = -8.0371x + 3066.6 0.1887 0.282 

Di-O-Alkyl y = -70.908x + 3319.6 0.4776 0.058 y = -8.0371x + 3066.6 0.1566 0.332 

Aryl y = 15.834x + 2246.2 0.692 0.010 y = 11.59x + 2456.7 0.3534 0.120 

O-Aryl y = 75.123x + 2137.7 0.5541 0.034 y = 47.901x + 2439 0.2147 0.248 

Amide/Carboxyl y = -136.93x + 3467.5 0.2548 0.202 y = -162.56x + 3657.6 0.3423 0.128 

Ketone y = 250.28x + 2270.6 0.4127 0.086 y = 140.05x + 2564.6 0.1232 0.394 

Proton y = 75.612x + 951.25 0.2667 0.190 y = 53.15x + 835.99 0.4756 0.058 
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Supplementary data 

Table S1: leachate volume in four leaching events after addition of 45 ml synthetic drainage water to different organic materials. 

 

  

Leaching event 1 2 3 4 

 leachate volume (ml core-1) 

Wheat straw 25 20 20 20 

Pea Straw 25 20 20 20 

Compost 30 23 25 25 

Poultry 450 40 32 35 35 

Poultry 550 40 32 35 35 

Wheat 450 35 25 25 25 

Wheat 550 35 25 25 25 

Mallee 550 40 35 35 35 
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Table S2: Proton retention over four leaching events and cumulative leaching after passage of synthetic drainage water through different organic 

materials.  Values in a column followed by different letters are significantly different (P≤ 0.05). 

 

 

  

Leaching event 1 2 3 4 Cumulative  

 Protons retained (µMol g-1) 

Wheat straw 14.0 ± 0.0 d 12.9 ± 0.1 c 10.5 ± 0.2 b 7.3 ± 0.2 a 44.7 ± 0.4 b 

Pea Straw 14.4 ± 0.0 e 13.5 ± 0.0 d 13.2 ± 0.0 d 12.3 ± 0.0 d 53.5 ± 0.0 d 

Compost 9.3 ± 0.0 a 8.7 ± 0.0 a 8.5 ± 0.0 a 7.9 ± 0.0 b 34.4 ± 0.0 a 

Poultry 450 15.4 ± 0.1 f 14.2 ± 0.2 e 13.6 ± 0.4 de 12.7 ± 0.3 e 55.9 ± 1.0 e 

Poultry 550 12.2 ± 0.0 b 11.4 ± 0.0 b 11.2 ± 0.0 bc 10.4 ± 0.0 c 45.2 ± 0.0 bc 

Wheat 450 17.2 ± 0.0 g 16.3± 0.0 f 15.8 ± 0.1 f 14.8 ± 0.0 g 64.1 ± 0.0 g 

Wheat 550 12.7 ± 0.0 c 11.8 ± 0.0 b 11.5 ± 0.0 c 10.8 ± 0.0 c 46.9 ± 0.0 c 

Mallee 550 17.7 ± 0.1 h 16.0 ± 0.4 f 14.3 ± 0.8 e 13.9 ± 0.1 f 62.0 ± 1.18 f 
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Table S3: Fe retention over four leaching events and cumulative leaching after passage of synthetic drainage water through different organic 

materials.  Values in a column followed by different letters are significantly different (P≤ 0.05). 

 

 

 

 

  

Leaching event 1 2 3 4 Cumulative 

 Fe retention (µg g-1) 

Wheat straw 226 ± 5 a 309 ± 11 a 102 ± 15 a -14 ± 23 a 624 ± 20 a 

Pea Straw 274 ± 13 b 457 ± 3 c 336 ± 2 f 262 ± 13 d 1329 ± 27 d 

Compost 228 ± 1 a 304 ± 48 a 225 ± 0 c 205 ± 1 bc 962 ± 2 b 

Poultry 450 322 ± 33  c 454 ± 15 c 258 ± 20 d 225 ± 19 c 1259 ± 86 d 

Poultry 550 310 ± 11 bc 404 ± 9 b 297 ± 3 e 270 ± 2 d 1281 ± 5 d 

Wheat 450 328 ± 12 c 563 ± 2 d 382 ± 8 g 354 ± 4 e 1626 ± 7 e 

Wheat 550 321 ± 12 c 419 ± 8 b 306 ± 3 e 274 ± 6 d 1320 ± 9 d 

Mallee 550 313 ± 13 bc 400 ± 10 b 183 ± 9 b 182 ± 7 b 1078 ± 30 c 
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Table S4 Al retention over four leaching events and cumulative leaching after passage of synthetic drainage water through different organic 

materials.  Values in a column followed by different letters are significantly different (P≤ 0.05). 

 

   

Leaching event 1 2 3 4 Cumulative 

 Al retention (µg g-1) 

Wheat straw 3.1 ± 0.7 f 8.0 ± 0.4 c 0.4 ± 04 a -4.0 ± 0.7 a 7.5 ± 1.3 ab 

Pea Straw 3.7 ± 0.9 f 8.5 ± 0.3 cd 5.2 ± 0.1 de 5.7 ± 0.4 d 23.0 ± 1.0 d 

Compost -1.9 ± 0.1 d 5.2 ± 0.13 a 2.9 ± 0.1 bc 2.4 ± 0.1 bc 8.5 ± 0.3 b 

Poultry 450 -8.7 ± 0.1 ab 7.5 ± 0.1 c 3.2 ± 0.1 bc 5.0 ± 1.1 d 7.0 ± 1.8 ab 

Poultry 550 -6.4 ± 0.2 bc 6.1 ± 0.2 ab 2.3 ± 0.4 b 2.3 ± 0.1 b 4.3 ± 0.5 a 

Wheat 450 -5.8 ± 0.4 c 9.2 ± 0.4 d 5.8 ± 0.4 ef 5.1 ± 0.2 d 14.3 ± 0.8 c 

Wheat 550 -5.1 ± 0.4 c 64 ± 0.4 b 4.0 ± 0.2 cd 4.0 ± 0.2 cd 9.3 ± 0.7 b 

Mallee 550 -10.3 ± 0.5 a 11.2 ± 0.3 f 7.0 ± 1.0 f 5.2 ± 0.8 d 13.1 ± 2.0 c 
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Table S5: Correlation between proton retention in the first leaching event and cumulative retention of first and second leaching events in organic 

materials and their properties. 

 

 

 

 
1. Leaching event Cumulative retention of first and second leaching event 

Equation R2  P (95%) Equation R2 P (95%) 

C y = 0.03x + 0.52 0.99 0.00 y = 0.06x + 1.31 0.99 0.00 

N y = -0.1x + 15.49 0.06 0.55 y = -0.17x + 29.57 0.05 0.59 

C/N ratio y = 0.04x + 12.44 0.22 0.24 y = 0.07x + 24.18 0.20 0.27 

ANC y = -0.52x + 16.24 0.30 0.16 y = -0.99x + 31.30 0.31 0.15 

CEC y = -0.04x + 16.04 0.04 0.63 y = -0.08x + 30.55 0.03 0.67 

Surface area y = -0.57x + 15.87 0.31 0.15 y = -1.09x + 30.56 0.31 0.15 

Alkyl y = -0.23x + 16.72 0.17 0.31 y = -0.43x + 32.06 0.16 0.32 

N-Alkyl/Methoxyl y = -0.71x + 17.61 0.25 0.21 y = -1.33x + 33.77 0.24 0.22 

O-Alkyl y = -0.02x + 14.54 0.02 0.75 y = -0.03x + 28.00 0.02 0.75 

Di-O-Alkyl y = -0.07x + 14.65 0.01 0.80 y = -0.14x + 28.23 0.01 0.80 

Aryl y = 0.03x + 13.09 0.06 0.57 y = 0.06x + 25.29 0.06 0.57 

O-Aryl y = 0.23x + 12.12 0.12 0.40 y = 0.43x + 23.46 0.12 0.41 

Amide/Carboxyl y = -0.68x + 17.45 0.15 0.35 y = -1.26x + 33.40 0.14 0.37 

Ketone y = 0.98x + 12.08 0.15 0.35 y = 1.87x + 23.32 0.15 0.35 

Solution retained y = -0.13x + 15.57 0.09 0.47 y = -0.31x + 33.02 0.12 0.44 
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Table S6: Correlation between Fe retention in the first and second leaching event and cumulative retention of first and second leaching events in 

organic materials and their properties. 

  

 
1. Leaching event Cumulative retention of first and second leaching 

event 

Equation R2 P (95%) Equation R2 P (95%) 

C y = 0.0003x + 0.18 0.31 0.14 y = 0.87x + 327.93 0.41 0.09 

N y = 0.003x + 0.26 0.10 0.45 y = 7.05x + 607.34 0.16 0.32 

C/N ratio y = -0.0003x + 0.31 0.08 0.49 y = -1.13x + 755.11 0.11 0.43 

ANC y = 0.004x + 0.28 0.06 0.63 y = -2.01x + 712.23 0.00 0.91 

CEC y = 0.002x + 0.22 0.27 0.20 y = 4.75x + 493.99 0.26 0.20 

Surface area y = 0.003x + 0.28 0.05 0.66 y = -3.71x + 715.39 0.01 0.84 

Alkyl y = 0.0003x + 0.29 0.001 0.99 y = 0.40x + 699.52 0.00 0.97 

N-Alkyl/Methoxyl y = -0.01x + 0.35 0.28 0.18 y = -20.85x + 806.42 0.11 0.42 

O-Alkyl y = -0.001x + 0.32 0.54 0.05 y = -2.37x + 765.76 0.21 0.25 

Di-O-Alkyl y = -0.007x + 0.34 0.51 0.07 y = -13.33x + 802.98 0.21 0.25 

Aryl y = 0.002x + 0.24 0.61 0.03 y = 2.60x + 614.21 0.23 0.23 

O-Aryl y = 0.008x + 0.22 0.66 0.02 y = 15.63x + 567.61 0.30 0.16 

Amide/Carboxyl y = -0.01x + 0.34 0.15 0.33 y = -17.01x + 787.75 0.05 0.60 

Ketone y = 0.03x + 0.23 0.63 0.03 y = 66.08x + 566.05 0.36 0.12 

Proton y = 0.008x + 0.17 0.31 0.14 y = 15.15x + 291.65 0.44 0.07 

Al y = -0.006x + 0.27 0.57 0.05 y = -8.27x + 735.64 0.12 0.39 

Solution retained y = -0.005x + 0.35 0.61 0.03 y = -9.46x + 810.4 0.26 0.28 
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Table S7: Correlation between Al retention in the first and second leaching event and cumulative retention of first and second leaching events in 

organic materials and their properties. 
 

1. Leaching event Cumulative retention of first and second leaching event 

Equation R2 P (95%) Equation R2 P (95%) 

C y = -0.02x + 5.87 0.15 0.35 y = -0.002x + 4.81 0.00 0.93 

N y = -0.24x - 0.65 0.10 0.44 y = -0.37x + 8.86 0.25 0.21 

C/N ratio y = 0.03x - 5.09 0.03 0.68 y = 0.06x + 0.97 0.19 0.28 

ANC y = -0.98x + 0.10 0.31 0.15 y = -1.38x + 9.50 0.64 0.02 

CEC y = -0.18x + 3.96 0.20 0.27 y = -0.23x + 13.83 0.33 0.14 

Surface area y = -0.58x - 2.13 0.09 0.46 y = -1.00x + 6.90 0.28 0.18 

Alkyl y = -0.31x - 0.41 0.09 0.47 y = -0.47x + 9.09 0.21 0.26 

N-Alkyl/Methoxyl y = 0.90x - 8.33 0.11 0.42 y = 0.48x + 1.49 0.03 0.67 

O-Alkyl y = 0.19x - 8.95 0.77 0.004 y = 0.19x - 1.16 0.78 0.004 

Di-O-Alkyl y = 1.05x - 11.74 0.71 0.01 y = 1.05x - 3.94 0.72 0.01 

Aryl y = -0.20x + 2.84 0.72 0.01 y = -0.19x + 10.22 0.66 0.02 

O-Aryl y = -1.13x + 5.93 0.85 0.001 y = -1.03x + 12.81 0.72 0.01 

Amide/Carboxyl y = 0.53x - 6.55 0.03 0.70 y = 0.20x + 2.82 0.00 0.88 

Ketone y = -4.02x + 4.47 0.72 0.01 y = -3.57x + 11.28 0.58 0.03 

Proton y = -0.69x + 5.76 0.14 0.37 y = -0.02x + 4.25 0.00 0.97 

Solution retained y = 0.78x - 12.68 0.94 0.000 y= 0.73x - 9.62 0.69 0.002 
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Supplementary data 

 

 

 

 

Figure. S1. Acidic (pH <4) iron rich drain water in Lower Murray Reclaimed Irrigation Area (LMRIA) near Murray Bridge, with reddish-yellow 

(orange) coloured precipitate of schwertmannite, which commonly forms in surface acid drainage waters with pH values between 3 and 4.5 

(modified from Fitzpatrick et al. 2012). 
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Table S1. Properties of organic materials (from Dang et al. 2015) 

 

 pHw C N C/N ANC CEC Surface area Acid extractable 

        Al Fe 

  (mg g-1)  (% CaCO3) cmol(+) kg-1 (m2 g-1) (mg g-1) 

Wheat straw 5.5 427.3 4.3 100 0.03 15.6 0.8 0.2 0.2 

Pea Straw 6.3 439.9 8.8 50 0.4 43.4 0.9 0.4 0.3 

Compost 8.2 282.6 20.2 14 7.5 53.9 4.0 9.4 8.9 

Poultry 450  7.7 475.0 16.8 28 4.8 44.9 1.2 2.1 2.9 

Poultry 550 9.6 372.0 16.6 22 7.1 50.9 7.9 2.9 3.7 

Wheat 450   8.4 529.2 23.4 23 2.5 54.8 1.1 1.7 2.6 

Wheat 550 9.0 385.2 14.2 27 6.7 51.0 6.1 1.8 2.2 

Mallee 550   7.5 551.6 5.6 98 3.8 39.3 2.5 3.8 19.8 
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Table S2. Carbon groups of organic materials based on NMR spectroscopy (from Dang et al. 2015) 

 

 Alkyl 

N-Alkyl/ 

Methoxyl O-Alkyl Di-O-Alkyl Aryl O-Aryl 

Amide/ 

Carboxyl Ketone 

% of organic C detected 

Wheat straw 4.8 4.3 61.3 14.1 7.4 3.2 4.1 0.7 

Pea Straw 6.8 5.6 59.4 12.8 7.2 2.8 4.7 0.6 

Compost 20.3 8.9 31.2 7.7 16.1 6.1 8.2 1.5 

Poultry 450 9.2 5.5 26.6 8.2 34.3 9.9 4.1 2.2 

Poultry 550 10.4 2.8 5.1 4.1 61.7 10.4 3.3 2.1 

Wheat 450 15.3 5.2 14.9 5.2 39.2 10.9 6.2 3.1 

Wheat 550 13.2 3.9 5.6 3.7 52.9 12.9 4.5 3.3 

Mallee 550 10.3 3.1 4.5 3.6 57.5 13.6 4.3 3.2 
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Table S3. Leachate volume in six leaching events after addition of 45 ml LMRIA drainage water to different organic materials. 

 

Leaching event 1 2 3 4 5 6 

 leachate volume (ml core-1)   

Wheat straw 20 30 30 30 30 30 

Pea Straw 20 30 25 30 25 25 

Compost 30 35 30 30 35 30 

Poultry 450 25 40 30 30 35 30 

Poultry 550 30 40 30 30 35 30 

Wheat 450 25 30 30 35 35 30 

Wheat 550 20 35 30 30 35 30 

Mallee 550 35 35 30 30 35 30 
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Table S4. Retention of protons, Al and Fe in percentage of added LMRIA drainage water for first 3 leaching events and cumulative retention 

 

 % Proton retained  % Al retained  % Fe retained 

Leaching event 1 2 3   1 2 3   1 2 3  

Wheat straw 100 99 90   87 86 58   78 74 46  

Pea Straw 100 100 100   84 99 97   77 88 96  

Compost 100 100 100   99 98 97   95 97 99  

Poultry 450 100 100 100   98 97 98   98 100 100  

Poultry 550 100 100 100   98 97 98   100 100 100  

Wheat 450 100 100 100   98 98 98   99 99 100  

Wheat 550 100 100 100   99 98 98   100 99 99  

Mallee 550 90 99 99   81 84 86   92 96 98  

 

  



 

94 

Table S5. Cumulative proton, Fe and Al retention (positive values) or release (negative values) in different organic materials after leaching six 

times with RO water (n=1).  

 

 

 

 

 

 

 

  

 Proton (µg g-1)* Al (µg g-1) Fe (µg g-1) 

Wheat straw 0.2 -0.4 -19.8 

Pea Straw 0.2 -1.4 -15.7 

Compost 0.2 -2.6 -46.0 

Poultry 450 0.2 -0.5 -14.7 

Poultry 550 0.2 -2.9 -14.7 

Wheat 450 0.2 -2.8 -28.5 

Wheat 550 0.2 -2.0 -10.6 

Mallee 550 0.2 -1.4 -14.1 

* 1 µMol H+ = 1 

µg    
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Table S6. Al concentration (mg L⁻¹) of leachate after addition of LMRIA drainage water (21. 8 mg L⁻¹) to different organic materials over 6 

leaching events. Within columns, values followed by different letters are significantly different (Duncan test, P≤ 0.05).  

 

Leaching event 1 2 3 4 5 6 

 Al concentration (mg L⁻¹) 

Wheat straw 6.3 ± 0.9 bc 4.6 ± 0.6 b 13.7 ± 0.6 c 14.2 ± 0.5 b 17.9 ± 1.1 b 15.4 ± 0.3 c 

Pea Straw 7.8 ± 0.8 c 0.4 ± 0.1 a 1.1 ± 0.0 a 1.1 ± 0.1 a 0.3 ± 0.1 a 1.6 ± 0.5 ab 

Compost 0.3 ± 0.2 a 0.6 ± 0.1 a 1.1 ± 0.0 a 1.2 ± 0.1 a 0.8 ± 0.2 a 1.1 ± 0.1 ab 

Poultry 450 0.7 ± 0.2 a 0.8 ± 0.1 a 0.8 ± 0.1 a 1.1 ± 0.1 a 0.7 ± 0.1 a 1.0 ± 0.2 ab 

Poultry 550 0.6 ± 0.1 a 0.7 ± 0.0 a 0.8 ± 0.2 a 0.8 ± 0.1 a 0.9 ± 0.1 a 1.1 ± 0.1 ab 

Wheat 450 0.8 ± 0.4 a 0.5 ± 0.0 a 0.7 ± 0.2 a 0.8 ± 0.2 a 0.9 ± 0.1 a 0.9 ± 0.2 ab 

Wheat 550 0.4 ± 0.1 a 0.6 ± 0.1 a 0.6 ± 0.1 a 0.9 ± 0.1 a 1.0 ± 0.1 a 0.9 ± 0.1 ab 

Mallee 550 5.2 ± 1.0 b 4.6 ± 0.4 b 4.5 ± 0.3 b 0.6 ± 0.1 a 0.7 ± 0.1 a 0.7 ± 0.2 b 
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Table S7. Fe concentration (mg L⁻¹) of leachate after addition of LMRIA drainage water (47.9 mg L⁻¹) to different organic materials over 6 leaching 

events. Within columns, values followed by different letters are significantly different (Duncan test, P≤ 0.05).  

 

Leaching event 1 2 3 4 5 6 

 Fe concentration (mg L⁻¹) 

Wheat straw 23.3 ± 2.5 d 18.8 ± 1.6 c 38.6 ± 1.9 c 53.5 ± 5.6 b 36.9 ± 3.6 c 33.3 ± 3.8 b 

Pea Straw 24.3 ± 0.6 d 8.3 ± 0.6 b 3.6 ± 0.1 b 3.5 ± 0.1 a 16.6 ± 2.6 b 34.6 ± 5.3 b 

Compost 3.7 ± 1.0 bc 1.9 ± 0.4 a 0.8 ± 0.2 a 0.5 ± 0.1 a 0.4 ± 0.1 a 0.9 ± 0.4 a 

Poultry 450 1.5 ± 0.5 abc 0.2 ± 0.1 a 0.3 ± 0.1 a 0.5 ± 0.2 a 0.5 ± 0.1 a 0.4 ± 0.2 a 

Poultry 550 0.4 ± 0.0 ab 0.2 ± 0.2 a 0.4 ± 0.1 a 0.3 ± 0.2 a 0.3 ± 0.1 a 0.3 ± 0.1 a 

Wheat 450 0.5 ± 0.1 ab 0.9 ± 0.1 a 0.3 ± 0.1 a 0.4 ± 0.3 a 0.3 ± 0.0 a 0.2 ± 0.1 a 

Wheat 550 0.1 ± 0.0 a 0.6 ± 0.1 a 0.4 ± 0.2 a 0.1 ± 0.0 a 0.2 ± 0.0 a 0.2 ± 0.1 a 

Mallee 550 4.7 ± 1.2 c 2.2 ± 0.3 a 1.1 ± 0.3 a 0.9 ± 0.3 a 2.6 ± 0.3 a 1.9 ± 0.1 a 
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Table S8. Al and Fe concentrations (mg L⁻¹) of leachate after addition of RO water to different organic materials over 6 leaching events  

Leaching event 1 2 3 4 5 6 

 Al concentration (mg L⁻¹) 

Wheat straw 0.02 0.01 nd 0.02 nd nd 

Pea Straw 0.16 0.02 0.01 0.01 0.02 nd 

Compost 0.04 0.13 0.06 0.01 0.02 0.02 

Poultry 450 nd 0.02 0.01 nd 0.01 0.01 

Poultry 550 0.01 0.05 0.04 0.08 0.08 0.07 

Wheat 450 0.05 0.09 0.08 0.04 0.02 0.05 

Wheat 550 0.05 0.02 0.07 0.04 0.03 0.03 

Mallee 550 0.03 0.01 0.05 0.02 0.02 0.03 

 Fe concentration (mg L⁻¹) 

Wheat straw 0.21 0.71 0.53 0.17 0.76 nd 

Pea Straw 0.26 0.96 0.11 0.31 0.36 nd 

Compost 0.46 0.92 0.42 3.17 0.05 0.20 

Poultry 450 0.21 0.25 0.48 0.23 0.40 0.03 

Poultry 550 0.42 0.04 0.01 0.63 0.46 0.06 

Wheat 450 1.19 0.79 0.41 0.40 0.32 0.28 

Wheat 550 0.15 0.09 0.27 0.10 0.31 0.30 

Mallee 550 0.13 0.18 0.09 0.37 0.26 0.52 

nd = not detectable  
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Table S9. Al concentration (mg L⁻¹) of leachate after addition of RO water to different organic materials previously treated with LMRIA water 

over 6 leaching events.  Within columns, values followed by different letters are significantly different (Duncan test, P≤ 0.05). 

 

Leaching event 1 2 3 4 5 6 

 Al concentration (mg L⁻¹) 

Wheat straw 10.26 ± 0.58 c 0.33 ± 0.08 b 0.15 ± 0.05 b 0.11 ± 0.02 c 0.06 ± 0.02 a 0.08 ± 0.02 a 

Pea Straw 4.21 ± 0.68 b 0.36 ± 0.05 b 0.23 ± 0.04 c 0.18 ± 0.02 d 0.14 ± 0.03 b 0.96 ± 0.60 b 

Compost nd a 0.01 ± 0.01 a 0.04 ± 0.1 a 0.07 ± 0.02 b 0.04 ± 0.02 a 0.07 ± 0.01 a 

Poultry 450 nd a nd a nd a nd a 0.02 ± 0.01 a 0.02 ± 0.00 a 

Poultry 550 nd a nd a 0.01 ± 0.01 a nd a nd a 0.03 ± 0.01 a 

Wheat 450 nd a nd a 0.04 ± 0.01 a 0.02 ± 0.00 a 0.03 ± 0.00 a 0.06 ± 0.02 a 

Wheat 550 nd a nd a 0.02 ± 0.00 a nd a nd a 0.07 ± 0.03 a 

Mallee 550 nd a nd a 0.02 ± 0.01 a 0.01 ± 0.00 a 0.03 ± 0.00 a 0.03 ± 0.00 a 

nd = not detectable 
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Table S10. Fe concentration (mg L⁻¹) of leachate after addition of RO water to different organic materials previously treated with LMRIA water 

over 6 leaching events.  Within columns, values followed by different letters are significantly different (Duncan test, P≤ 0.05). 

 

Leaching event 1 2 3 4 5 6 

 Fe concentration (mg L⁻¹) 

Wheat straw 15.91 ± 1.37 c 6.91 ± 1.52 b 1.94 ± 0.32 c 1.80 ± 0.32 c 1.23 ± 0.17 c 1.23 ± 0.31 b 

Pea Straw 3.32 ± 0.57 b 1.40 ± 0.18 a 1.02 ± 0.12 b 0.53 ± 0.12 b 0.42 ± 0.03 b 0.13 ± 0.01 a 

Compost 0.19 ± 0.04 a 0.22 ± 0.06 a 0.19 ± 0.04 a 0.24 ± 0.04 ab 0.20 ± 0.10 a 0.16 ± 0.06 a 

Poultry 450 0.24 ± 0.17 a 0.08 ± 0.05 a 0.02 ± 0.00 a 0.03 ± 0.00 a 0.06 ± 0.03 a 0.10 ± 0.04 a 

Poultry 550 0.11 ± 0.03 a 0.04 ± 0.02 a 0.04 ± 0.01 a nd a 0.02 ± 0.00 a 0.02 ± 0.01 a 

Wheat 450 0.15 ± 0.05 a 0.08 ± 0.03 a 0.15 ± 0.03 a 0.13 ± 0.01 a 0.17 ± 0.05 a 0.16 ± 0.04 a 

Wheat 550 0.10 ± 0.03 a 0.07 ± 0.04 a 0.01 ± 0.00 a 0.01 ± 0.00 a 0.01 ± 0.00 a 0.05 ± 0.01 a 

Mallee 550 0.15 ± 0.04 a 0.04 ± 0.01 a 0.03 ± 0.02 a 0.02 ± 0.01 a 0.03 ± 0.01 a 0.10 ± 0.04 a 

nd = not detectable 
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Abstract 

Previous studies have shown that biochar can retain large amounts of protons and metals in the 

drainage water from oxidised hypersulfidic material in acid sulfate soils and mine sites. Metal 

sorption can, however, be influenced by many factors, such as pH and metal composition. The 

aim of this study was to investigate proton, Al and Fe retention capacity of eucalypt biochar (at 

concentration of 1% w/v) at different pH and metal concentrations. The pH buffering capacity 

of the biochar in the absence of metals was tested by titration and showed that the biochar had 

a high proton binding capacity, (up to 0.035 mmol of H+), whereas its capacity to retain 

hydroxide ions was limited. A batch experiment was carried out at pH 4 and pH 7 with 10-6, 10-

5, 10-4, 10-3, and 10-2 M of added Fe or Al. A large proportion of added Al and Fe precipitated 

prior to addition of the biochar except that Al remained highly soluble at pH 4. Thus the 

concentration of soluble Al and Fe only ranged from 10-6 to 6 x 10-3 – 10-6 M and 4.9 x 10-4 – 

10-6 M, respectively. The biochar had a high retention capacity for Al and Fe, at high (> 1 mM) 

concentrations over 80% of soluble metals were retained.  To study metal competition for 
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binding sites, both Al and Fe were added at different ratios, but increasing concentrations of 

one metal did not reduce retention of the other. The results confirm that biochar has a high 

metal binding capacity under both acidic and neutral conditions. 

5.1 Introduction 

Upon rewetting due to rainfall or flood irrigation, oxidised hypersulfidic material in acid sulfate 

soils (ASS) release large amounts of acidity and soluble metals (particularly Al and Fe) to 

ground and drainage water (Cook et al. 2000; Simpson et al. 2008). Some ASS have been 

drained for over hundred years and are still discharging acidity into streams or waterways 

(Sammut and Lines-Kelly 2000). White et al. (1997) predicted that ASS in floodplains 

containing rich iron sulfide materials may be continuously oxidised for thousands of years. It 

is estimated that one tonne of sulfide produces approximately one and a half tonnes of sulfuric 

acid (Sammut and Lines-Kelly 2000). ASS in floodplains of the Tweed river discharged 

proximately 110 kg of sulfuric acid per hectare in a few days of rain (Macdonald et al. 2007). 

Drainage water seeping from sulfuric material (pH <4) in ASS also contains high amounts of 

metals that are released due to the low pH. Concentrations of Al, As, Cd, Co, Cr, Cu, Ni, Pb, V 

and Zn in pore and drainage water have been shown to exceed Australian Water Quality 

Guidelines (ANZECC 2000) up to 100 fold (Hicks et al. 2003; Simpson et al. 2008). 

We showed previously that organic materials such as plant residues, composts and biochar 

retained large amounts of protons and Al and Fe from ASS drainage water and released less 

than 1 % of that retained  when subsequently leached with pure water  (Dang et al. 2016a, b). 

Among the materials tested, retention was greater in biochars and composts than in plant 

residues. Biochar has received considerable interest as a low cost and sustainable biosorbent to 

remove metal contamination such as As, Cd, Pb, Zn from waste water or acid mine drainage 

water (Beesley et al. 2014; Elaigwu et al. 2014; Houben et al. 2013; Lu et al. 2012; Mohan et 
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al. 2014; Trakal et al. 2014). Metal adsorption efficiency varied however, and is affected by 

factors such as functional groups, surface area and environmental conditions (Kołodyńska et al. 

2012; Lu et al. 2012; Uchimiya et al. 2012). Metal retention on organic materials is strongly pH 

dependent (Bulut and Baysal 2006; Zhou and Haynes 2010). As pH increases, there is less 

competition for cation binding sites with protons (Zhou and Haynes 2010). Additionally, 

dissolved metals may precipitate as pH increases (e.g. Bigham and Nordstrom 2000). 

Acidity of ASS drainage water varies over time (Creeper et al. 2015a; Creeper et al. 2015b; 

Mosley et al. 2014b; Santos and Eyre 2011; Simpson et al. 2014). It is well-known that pH 

plays an important role in metal speciation, solubility and complexation.  For example, ferrous 

ions are often dominant in acidic reducing environments (Johnston et al. 2011; Mosley et al. 

2014a). Under acidic oxidising conditions, ferric species in the form of iron oxyhydrosulfate 

(e.g. Schwertmannite, Jarosite minerals) are precipitated (Mosley et al. 2014a). The effect of 

pH on aluminium speciation is quite complex (Hicks et al. 2009; Krstic et al. 2012). At pH 

above 4, aluminium is present as mononuclear species AlOH2
+, Al(OH)2

+, Al(OH)3, and 

Al(OH)4
+, or forms soluble complexes with e.g., sulfate or fluoride (Krstic et al. 2012). Between 

pH 3 and 5 such as commonly found in areas impacted by oxidised hypersulfidic material in 

ASS, Al3+ species are dominant (Hicks et al. 2009). At pH 7, insoluble Al(OH)3 or polynuclear 

aluminium species are formed (Krstic et al. 2012). pH is likely to influence metal binding to 

biochar through its effect on cation exchange capacity, surface complexation, metal 

solubilisation and precipitation. More systematic studies are needed to better understand proton, 

Al and Fe binding to biochar to optimise its use in semipermeable barriers for ASS drainage 

water.  

The main objective of this study was to evaluate the proton and Al and Fe retention capacity of 

a eucalypt biochar that had high Al and Fe retention in our earlier studies (Dang et al. 2016). 

Proton sorption to biochar was tested firstly by acid-base titration in the absence of metals. A 
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series of batch experiments was conducted at either pH 4 or 7 to investigate individual binding 

of Al and Fe to biochar. Further a competition experiment with Al and Fe was conducted at pH 

7.   

5.2 Materials and Methods 

5.2.1 Experimental design 

Mallee biochar used in this study was produced by pyrolysis of eucalyptus wood in a low-

oxygen environment at 550 ˚C and ground and sieved to less than 0.5 mm. The biochar then 

was washed four times with reverse osmosis (RO) water at a 1:10 ratio (w/v) to remove salts 

until the conductivity of the leachate was low and stable. The washing protocol was amended 

from a pre-treatment method for measuring exchangeable cations (Rayment and Lysons 2011). 

The biochar was then dried at 40 ˚C. 

For the experiment of proton binding to biochar, titration procedures were amended from the 

pH buffer capacity measurement protocol developed by Aitken and Moody (1994). The biochar 

(0.25 g) was added to 20 ml of 0.1 M KNO3 background pH electrolyte solution. The solutions 

were titrated to pH 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 9 and 10 with standardized 0.04 M 

HNO3/KOH. There were 3 replicates of each pH solution. Then, 0.1 M KNO3 solution was 

added to reach a final volume of 25 ml. The suspensions were equilibrated for 24 h on an end-

over shaker at room temperature followed by further addition of standardized 0.04 M 

HNO3/KOH until the desired pH was reached. The volume of standardized 0.04 M HNO3/KOH 

added was recorded. 

For the experiments of single metal binding to biochar, Al and Fe adsorption isotherms were 

determined at constant pH 4 or pH 7 in a batch approach in accordance with Weber et al. (2006). 

Biochar (0.25 g) was added to a 50ml tube containing 20 ml of 0.1 M KNO3 background pH 

electrolyte solution. Different amounts of Al(NO3)3 and Fe(NO3)3 stock solutions were added 
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to the tubes to give metal concentrations of 10-6, 10-5, 10-4, 10-3, and 10-2 M. The control was 

0.25 g biochar in 25 ml of 0.1 M KNO3 solution. The pH of the suspensions was adjusted to 4 

or 7 by standardised 0.04 M HNO3 or KOH. The suspensions were equilibrated for 24 hours on 

a horizontal shaker after which the pH was again adjusted to either 4 or 7. After another 24 

hours on the shaker, the pH was again re-adjusted to the desired pH if necessary. Then 0.1 M 

KNO3 solution was added to reach the final volume of 25 ml. Concentrations of soluble Fe and 

Al were measured as described below. There were 3 replicates per metal and pH combination. 

For the Al/Fe competition experiment the pH was adjusted to 7 as described above. Iron 

concentrations (added as Fe(NO3)3) of 10 x 10-3, 5 x 10-3, and 1 x 10-3 M) were combined with 

Al concentrations (added as Al(NO3)3) of 10 x 10-3, 5 x 10-3, and 1 x 10-3 M). There were 3 

replicates per combination.  

In addition, to test the influence of metal precipitation on the concentration of soluble Al and 

Fe at pH 4 and 7, soluble metal concentrations in the absence of biochar were measured using 

the same metal concentrations and procedures described above. 

5.2.2 Analyses 

The pH of the biochar was measured in water at a 1:1 ratio (w/w). Total organic C and total N 

were measured by dry combustion using a LECO Trumac CN analyser.  

Acid neutralising capacity (ANC) expressed as CaCO3 equivalent was determined by the rapid 

titration method as described in Ahern et al. (2004). Briefly, 1 g of finely ground biochar was 

placed into a 250 ml flask with 50 ml of deionised water and 25 ml of standardised 0.1 M HCl. 

The suspensions were boiled on a hotplate for 2 min and then allowed to cool to room 

temperature. The unreacted acid in the flask was titrated with standardised 0.1 M NaOH to pH 

7. 
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Surface area was analysed by a nitrogen gas adsorption method and calculated as described by 

Brunauer et al. (1938). The biochar was degassed overnight at a vacuum of 10−5 kPa prior to 

measuring nitrogen adsorption. Biochar was degassed at 200 °C. Nitrogen gas adsorption was 

measured at 77K using a Belsorp-max gas adsorption apparatus. Ultra high purity (>99.999 %) 

helium and nitrogen were used for dead space measurements and adsorption experiments, 

respectively. 

Cation exchange capacity (CEC) was determined after Rayment and Lysons (2011). The 

biochar was extracted with 0.1 M NH4Cl at a 1:30 w/w ratio in an end-over-end shaker for 1 h. 

The extracts were centrifuged at 3000 rpm for 10 min, the supernatant filtered through 

Whatman #42 filter paper. The solution was analysed by inductively coupled plasma optical 

emission spectroscopy (ICP-OES).  

Acid extractable Al and Fe in the biochar were determined after aqua regia (1:3 concentrated 

HNO3:HCl) acid dissolution (Zarcinas et al. 1996). The extracts were filtered through Whatman 

#42 filter paper and analysed for Al and Fe by ICP-OES. 

Chemical groups of biochar were measured by solid-sate 13C nuclear magnetic resonance 

(NMR) spectroscopy as described in McBeath et al. (2014). 

The amount of standardised HNO3 and KOH added to the solution containing 1% (w/v) of 

eucalypt biochar were expressed as mmol of acid and base to obtain the titration curve. 

The solutions from the precipitation experiment were filtered onto 0.025 µm nitrocellulose 

membrane filters, the soluble Al and Fe in the filtrates were then measured by ICP-MS. The 

soluble metal concentrations were expressed as µg per tube. 

The solutions of single metal binding or metal binding competition experiments were 

centrifuged for 30 minutes at 4000 rpm. The supernatants were then removed and filtered 

through 0.025 µm nitrocellulose membrane filters before measuring metal concentrations by 
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ICP-MS. Binding of Al and Fe to biochar (µg metal/g biochar) was calculated as follows: 

[added soluble metal concentration per tube – (concentration of metal in filtrate (µg/l) * volume 

(l) of filtrate solution per tube)]/ amount of biochar (g) per tube. 

Data was analysed by one way ANOVA. Differences between means were compared by 

Duncan analysis (P≤ 0.05) using GenStat 15th edition (GenStat 2013). 

5.3 Results 

The properties of mallee biochar produced at 550 ˚C was presented in Table 1. The biochar had 

pH 7.5, high organic C concentration, low total N concentration (551 mg g-1) therefore high 

C/N ratio. The ANC (3.8 % CaCO3), CEC (39 cmolc kg-1) and surface area of (2.5 m2 g-1) 

contents of the biochar were moderate, whilst the extractable metal concentrations, Al and Fe, 

were high. The dominant functional groups were Aryl and O-Aryl C.  

The biochar had a high proton binding capacity whereas its capacity to bind OH- was limited 

(Figure 1).   

At pH 4, all of the added Al remained soluble up to an Al concentration of 0.1 mM. At higher 

concentrations, about two-thirds of the added Al remained soluble (Table 2). At pH 7 on the 

other hand, only about one third of the added Al was soluble up to Al concentrations of 0.1 

mM. At higher concentrations, less than 10% of the added Al was soluble. Less than 1% of 

added Fe remained soluble at pH 4 and pH 7 except at the lowest addition rate (Table 3). Soluble 

Fe concentrations were lower at pH 7 than pH 4.  

Because of release of native Al from the biochar, no binding could be detected at the lowest Al 

addition rate (3 µg Al/g biochar) (Table 4). At pH 4 and 7 and the three highest Al addition 

rates (27017210 µg Al/g biochar), more than 90% of added soluble Al was bound to the 

biochar. 
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Table 1: Properties of mallee biochar 550 ˚C 

pHw  7.5 

C mg g-1 551.6 

N mg g-1 5.6 

C/N  98 

ANC % CaCO3 3.8 

CEC cmol(+) kg-1 39.3 

Surface area m2 g-1 2.5 

Acid extractable Al mg g-1 3.8 

Acid extractable Fe mg g-1 19.8 

Chemical functional groups % C detected  

Alkyl  10.3 

N-Alkyl/Methoxyl  3.1 

O-Alkyl  4.5 

Di-O-Alkyl  3.6 

Aryl  57.5 

O-Aryl  13.6 

Amide/Carboxyl  4.3 

Ketone  3.2 
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Figure 1: The effect of addition of acidic (-ve)/base (+ve) on 1% (w/v) mallee biochar 

Table 2: Soluble Al in solution (no biochar present) at different concentrations after adjusted to 

pH 4 and pH 7   

 

Table 3: Soluble Fe in solution (no biochar present) at different concentrations after adjusted to 

pH 4 and pH 7   

 

At pH 7 and lower Al addition rates (327 µg Al/g biochar), between 60 and 75% of added 

soluble Al was bound to the biochar. At pH 4, 50% of the 27 µg Al/g biochar was bound, 

whereas no binding was measured in the 3 µg Al/g biochar treatment. 

No Fe binding was detected at pH 4 at the three lower addition rates due to release of native Fe 

(Table 5). At higher Fe addition rates, 83-91% of added soluble Fe was bound to the biochar. 

Added Al Amount of soluble Al after adjusted pH (µg per tube) 

(mM) (µg per tube)  pH 4  pH 7 

0.001 0.7 0.7 0.7 

0.01 6.7 6.7 2.3 

0.1 67.5 67.5 15.9 

1 674.5 562.6 21.3 

5 3372.5 2177.8 29.8 

10 6745.0 4302.5 36.7 

Added Fe Amount of soluble Fe after adjusted pH (µg per tube) 

(mM) (µg per tube) pH 4 pH 7 

0.001 1.4 1.3 1.3 

0.01 14.0 2.1 1.6 

0.1 139.6 9.1 6.7 

1 1396.3 43.5 47.7 

5 6981.3 229.0 339.9 

10 13962.5 685.2 415.8 
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At pH 7 and 5−6 µg Fe/g biochar addition, about 70% of added soluble Fe was bound to biochar. 

At higher Fe addition rates (271663 µg Fe/g biochar), 87-99% of added soluble Fe was bound.  

Table 4: Al binding to biochar at pH 4 and pH 7 

pH 4 pH 7 

Soluble 

added (µg/g) 

binding 

(µg/g) 

binding (%) Soluble 

added (µg/g) 

binding 

(µg/g) 

binding (%) 

0 -20 0 0 -1 0 

3 -9 0 3 2 60.5 

27 14 51.0 9 7 74.7 

270 243 90.1 64 61 95.9 

2250 2096 93.1 85 80 93.9 

17210 16990 98.7 147 140 95.4 

 

Table 5: Fe binding to biochar at pH 4 and pH 7 

pH 4 pH 7 

Soluble 

added (µg/g) 

binding 

(µg/g) 

binding (%) Soluble 

added (µg/g) 

binding 

(µg/g) 

binding (%) 

0 -18 0 0 -1 0 

5 -13 0 5 4 74.6 

8 -13 0 6 4 64.2 

37 31 83.7 27 25 93.3 

174 153 88.0 191 189 98.8 

2741 2489 90.8 1663 1438 86.5 

 

Table 6: Al and Fe binding to biochar at pH 7 in mixtures of different metal concentrations 

Soluble Added  Al binding Fe binding 

Fe (µg/g) Al (µg/g) Al (µg/g) % Fe (µg/g) % 

191 85 82.5 89.5 190.3 99.7 

119 113.1 96.7 188.3 98.7 

147 140.7 99.5 188.4 98.7 

1360 85 83.2 97.8 1358.2 99.9 

119 113.4 95.3 1356.2 99.8 

147 120.6 97.5 1355.5 99.7 
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1663 85 84.9 95.7 1662.6 100 

119 115.4 94.8 1660.7 99.9 

147 131.5 96.8 1658.8 99.7 

In the Fe/Al competition experiment, 99% of the added soluble Fe was bound to the biochar 

(Table 6). Iron reduced the percentage of bound Al only at the lowest Al addition rate (85 µg 

soluble Al g-1) combined with the lowest Fe addition rate (191 µg soluble Fe g-1). At the higher 

Al addition rates more than 95% of added soluble Al was bound to the biochar.  

5.4 Discussion  

This study showed that the mallee biochar had a high proton, Al and Fe binding capacity. 

Biochar can contain humification products (fulvic acid- and humic acid-like materials), which 

contribute to their proton binding capacity (Milne et al. 1995; Zhang et al. 2014). The mallee 

biochar had 4% CaCO3 (Table 1). Therefore protons may also be neutralised by carbonates 

(Mosley et al. 2015; Qian and Chen 2013b). Humic acids are important components of 

decomposed organic matter which have high proton affinity and metal binding (Milne et al. 

1995). Non-Ideal Competitive Adsorption (NICA) model as well as NICA-Donnan or NICA-

EPN models can predict proton and metal binding to humic acids (Milne et al. 1995; 

Montenegro et al. 2014). However, the data of this study could not be expressed with these 

models suggesting that several properties contributed to proton and metal binding.  

Speciation of Al and Fe is complex and controlled by pH (Hicks et al. 2009; Krstic et al. 2012). 

In this study a large proportion of added Al and Fe precipitated prior to adding biochar, even at 

pH 4, possibly due to hydrolysing and oxidizing conditions during shaking of the suspension. 

However, at low pH (pH 4) and highest addition rate (10 mM) concentrations of remaining 

soluble Al (172 mg L-1) and Fe (28 mg L-1) rate were higher than in drainage water from 

oxidised ASS (Al: 2 mg L-1; Fe: 28 mg L-1) (Mosley et al. 2014a). As 90% or more of the 

dissolved Al and Fe were bound, even at high concentrations, the maximum binding capacity 

of biochar is greater than 17,000 µg Al and 2700 µg Fe per g of biochar. The lack of competition 
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between Fe and Al when both metals were added may also be due to their being sufficient 

binding sites for both metals at the concentrations used. 

We had expected binding to be lower at pH 4 than at pH 7 because of the lack of negatively 

charged binding sites at pH 4 (Bulut and Baysal 2006; Zhou and Haynes 2010). However, the 

reverse was true; more Al and Fe were bound at pH 4 than at pH 7 which can be explained by 

the higher soluble metal concentration at the lower pH.  The release of native Al and Fe from 

the biochar resulted in no apparent binding at low Al and Fe addition rates. Al and Fe may be 

bound to biochar via oxygen-containing (carboxylic -COO− and phenolic R-O−) functional 

groups (Cao et al. 2009; Uchimiya et al. 2011), surface adsorption and co-precipitation of Al 

with silicate particles (Qian and Chen 2013a, b; Qian et al. 2013).  Further, carbonates may 

have induced precipitation within the biochar.  This suggests that biochar has a potential to be 

used for metal removal in drainage channels of sulfuric ASS which is in agreement with our 

previous studies (Dang et al. 2016a, b). Pilot scale field trials are required to confirm this. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE RESEARCH 

1 Conclusions 

Oxidized hypersulfidic material in ASS can release large amounts of protons and metals into 

surrounding environments (e.g. Fältmarsch et al. 2008). Remediation, for example by liming, 

may be ineffective and/or too costly. To minimize the impact of oxidized ASS on the 

environment, the released protons and metals have to be retained in situ and/or within drainage 

channels. Organic materials have been shown to bind protons and metals (Pedra et al. 2008; 

Rees et al. 2014) and have the added benefit of promoting sulfate reduction in flooded ASS 

(Jayalath et al. 2015; Yuan et al. 2015). However, the composition of organic materials can 

vary, which may influence their ability to bind protons and metals. In this project, the 

remediation potential of a range of organic materials was tested using two approaches: (i) 

addition to soil and (ii) as a permeable reactive barrier for drainage water.  

In the experiment reported on in Chapter 2 the in situ remediation potential was tested by 

amending a sulfuric sandy soil with organic materials either placed as a layer under the soil or 

mixed within the soil. The soil was leached several times to induce release of protons and 

metals. In the first leachate, 67, 71 and 90% of the total leached protons, Fe and Al respectively 

were released in the unamended soil. Amendment with organic materials reduced proton and 

metal leaching by 50-90%, particularly in the first leaching event. We had assumed that organic 

materials placed as a layer under the soil would be more effective in retaining protons and 

metals than mixing them in the soil. However, amendment forms differed little in retention. In 

the field, placing organic materials as a layer under the soil would be too expensive and 

disruptive whereas mixing them in the soil is a more practical approach. However, mixing could 

also increase oxidation and thus promote acidification. The type of organic material had a strong 
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effect on retention because eucalypt biochar and wheat biochar had the highest cumulative 

retention, wheat straw and compost the lowest. Differences in retention were related to chemical 

composition as proton retention positively correlated with C concentration of organic material, 

while Fe and Al retention was positively correlated with percentage of Aryl and O-Aryl groups 

and negatively correlated with percentage of O-Alkyl and Di-O-Alkyl groups. 

Sulfuric ASS release large amounts of protons and metals into drainage water which can be  a 

hazard for the surrounding areas. Therefore, proton and metal retention in drainage water from 

sulfuric materials in ASS by addition of organic materials was investigated in Chapters 3 and 

4. In the study in Chapter 3, synthetic drainage water based on the long term average of acid 

drainage in the LMRIA was used. In the long term average, metal concentrations were lower 

than those that may occur after a period with little rain and thus leaching. To study retention 

capacity at high concentrations, drainage water collected in autumn was used in the experiment 

in Chapter 4, which also investigated if retained metals and protons could be released when 

leached with RO water. The experiment with the synthetic drainage water (Chapter 3) 

confirmed the high retention capacity for protons, Fe and Al of eucalypt biochar and wheat 

biochar. The correlations between retention of protons, Fe and Al with organic material 

properties was also similar as in the experiment with the sulfuric sandy soil. Additionally, the 

organic materials were leached with RO water to determine release of native Fe and Al which 

also influenced apparent Fe and Al retention when synthetic drainage water was applied.  

In the experiment described in Chapter 4, the organic materials were leached six times with 

LMRIA drainage water followed by 6 leaching events with RO water to assess if retained 

protons, Fe and Al could be released. Compost and biochars increased the leachate pH by up to 

4.5 units and had a high retention capacity for metals whereas pH increase and metal retention 

were low with wheat straw. The metal and proton release during subsequent leaching with RO 

water was very small, cumulatively less than 1% of retained metals and protons. These results 
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suggest that permeable reactive barriers comprising compost and biochars could be used in ASS 

drainage channels and would retain protons and metals even if leached with water. This is 

particularly important after removal of the organic materials from the barriers, which may be 

necessary when the organic materials are strongly decomposed or have reached their sorption 

capacity. The results indicate that the risk of proton and metal leaching upon exposure to rain 

(e.g. if used organic materials were subsequently spread on or mixed into soils) is likely to be 

low.  

The capacity to retain metals by biochar may be limited which would in turn influence how 

effective biochar can be used as barrier in ASS drainage channels. In Chapter 5, eucalypt 

biochar produced at 550 ̊ C was tested for its capacity to retain protons Al and Fe. In the absence 

of metals, biochar had a high proton retention capacity whereas its capacity to retain hydroxide 

ions was limited. The single metal binding experiment showed that the biochar had a high 

retention capacity for Al and Fe, at high concentrations > 80% of soluble metals was retained.  

In the competition experiment, increasing concentrations of one metal did not reduce retention 

of the other. Metal retention mechanisms could include binding to organic matter functional 

groups and/or surface precipitation.  

The experiments showed that organic materials, particularly biochars have great potential to be 

used in ASS drainage water to minimize the impact of oxidized ASS on the surrounding 

environment. However, further pilot-scale field research is needed before they can be used on 

a large scale in the field. 

2 Future research 

2.1. Sorption capacity of other metals to organic materials 

In this thesis, the experiments focused on the binding of Al and Fe to organic materials because 

these metals are dominant in ASS drainage water and are a risk for aquatic environments (Hicks 
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et al. 2009; Johnston et al. 2010), including in our study area (Mosley et al. 2014a). However, 

oxidised hypersulfidic material in ASS may also release other toxic soluble metals. For 

example, Zn concentrations in soil, discharge and receiving water at East Trinity were up to 40 

fold higher than water quality guidelines (WQG). Sulfuric material in ASS can also release high 

concentrations of dissolved metals such as As, Cd, Co, Cr, Cu, Ni, Pb and Zn, which exceeded 

WQG up to 100 fold (Simpson et al. 2008). Therefore, further studies are needed to assess the 

capacity of organic materials to retain other dissolved metals. Similar to this study, retention 

could be studied with synthetic drainage water as well as drainage water from the field.  

2.2 Binding mechanisms 

The organic materials used in the experiments had high proton and metal retention. The 

retention was strongly correlated with organic material properties and certain chemical 

functional groups. However, an understanding of the mechanisms underlying retention is 

limited. Adsorption to organic materials may involve exchange of metals cations or anions with 

surface ligands, covalent bonds, ion exchange or chelation with surface functional groups (Zhou 

and Haynes 2010). Retention could also be due to surface precipitation as oxides, hydroxides, 

sulfides (Apak 2002). Metal retention mechanisms could be studied by examination of 

functional groups of the treated organic materials with FTIR spectroscopy, while scanning 

electron microscopy (SEM) coupled with electron dispersive X-ray analyser (EDX) analyses 

could be used for the precipitated phases (Trakal et al. 2014).  

2.3 Flow rate 

In the experiments in this thesis, the flow rate of the drainage water was quite low and only a 

small amount of drainage water was applied at a given time. In the field, flow rates may be 

quite variable and reach high rates after strong rainfall. Flow rate will influence the time of 

contact between metals and protons in the drainage water and the organic materials and thus 
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retention. Experiments could be conducted to study metal and proton retention at flow rates in 

the range found in the field.  

2.4 Using organic materials as permeable reactive barriers for drainage water treatment in the 

field 

Eucalypt biochar and wheat biochar produced at 550 ˚C and 450 ˚C respectively, had high 

proton and metal retention capacity of which very little was released by leaching with water. 

These organic materials could therefore by used in permeable reactive barriers (PRB). The 

barriers are passive, in situ water treatment constructions that are considered to be an 

economical remediation approach, with little maintenance and suitable for small areas (Waite 

et al. 2003). For acid mine drainage environments permeable reactive barriers are commonly 

filled with limestones or crushed recycle concrete. However precipitation of iron and 

aluminium oxides may limit their reactivity and longevity (Regmi et al. 2009; Waite et al. 

2003). Maximum metal retention and longevity of barriers with organic materials would also 

have to be studied before they can be used on a larger scale.  
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