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Thesis Abstract 

Intrauterine growth restriction (IUGR) and neonatal catch-up growth are risk factors 

for the development of metabolic disease in later life. Developmental programming of insulin 

resistance is hypothesised to underpin many of these disorders. Animal models are required to 

investigate the mechanisms underlying this programming of insulin resistance and metabolic 

disease. Therefore, the current study assessed the effects of spontaneous growth restriction due 

to natural variation in litter size in the guinea pig on programming of adult metabolic outcomes. 

Increasing litter size reduced birth weight, birth length and birth weight to length 

ratio while head dimensions at birth were relatively conserved, indicating head sparing and 

asymmetrical IUGR. Offspring from larger litters displayed faster neonatal fractional growth 

and faster absolute and fractional juvenile growth. Relative feed intake in juveniles was 

increased in offspring from larger litters, and increased neonatal growth also predicted 

hyperphagia in juveniles. Rapid neonatal growth also correlated with increased visceral 

adiposity in adult males, but not females, suggesting sex-specific programming of postnatal 

phenotype. Thus, the spontaneously IUGR guinea pig exhibits key features of human IUGR 

including neonatal catch-up growth, postnatal hyperphagia and increased fat deposition 

(Chapter 2). 

To enable further study of the effects of litter size and neonatal growth on insulin 

sensitivity, methodology for the hyperinsulinaemic euglycaemic clamp (HEC) was validated 

for use in the guinea pig. The dose-response curve for whole-body glucose uptake using 

recombinant human insulin was characterised and HECs with D-[3-3H]-glucose infusion were 

performed to characterise insulin sensitivities of whole body glucose uptake and partitioning of 

glucose metabolism in males and females at ~half maximal and near maximal insulin doses. 

Insulin infusion at 7.5 mU.min-1.kg-1 increased glucose utilisation and storage, while 

suppressing glucose production, while insulin at 30 mU.min-1.kg-1 also increased the rate of 

glycolysis. Fasting plasma glucose, metabolic clearance of insulin and rates of glucose 
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utilisation, storage and production during insulin stimulation were higher in female than male 

guinea pigs, but insulin sensitivity of these and whole body glucose uptake did not differ 

between sexes (Chapter 3).  

HEC was then used to assess whole body insulin sensitivity and partitioned glucose 

metabolism in young adult offspring from varying litter sizes. In males, insulin sensitivities of 

whole body glucose uptake and glucose utilisation correlated positively, while that of 

endogenous glucose production tended to correlate positively with birth weight, and these 

associations were independent of neonatal catch-up growth, adult adiposity and muscle mass. 

Whole body and partitioned glucose metabolism in young adult females were not related to 

birth weight, however, the insulin sensitivity of endogenous glucose production correlated 

negatively with neonatal catch-up growth independently of birth weight. These results suggest 

a contribution of intrinsic deficits in skeletal muscle and liver to sex-specific perinatal 

programming of insulin resistance in this species (Chapter 4).  

Overall, these studies demonstrate that increasing litter size in the guinea pig results 

in asymmetrical IUGR. The spontaneously growth restricted guinea pig exhibits sex-specific 

programming of postnatal growth, appetite, adiposity and insulin sensitivity, occurring 

primarily in males, not unlike that in humans and other animal models. This therefore provides 

a model for investigating the causal mechanisms and effects of ageing on the perinatal 

programming of obesity and insulin resistance in liver and skeletal muscle.  

  



xii 
 

 

 

Declaration 

 

I certify that this work contains no material which has been accepted for the award 

of any other degree or diploma in my name, in any university or other tertiary institution and, 

to the best of my knowledge and belief, contains no material previously published or written by 

another person, except where due reference has been made in the text. In addition, I certify that 

no part of this work will, in the future, be used in a submission in my name, for any other degree 

or diploma in any university or other tertiary institution without the prior approval of the 

University of Adelaide and where applicable, any partner institution responsible for the joint-

award of this degree. I give consent to this copy of my thesis when deposited in the University 

Library, being made available for loan and photocopying, subject to the provisions of the 

Copyright Act 1968. I acknowledge that copyright of published works contained within this 

thesis resides with the copyright holder(s) of those works. I also give permission for the digital 

version of my thesis to be made available on the web, via the University’s digital research 

repository, the Library Search and also through web search engines, unless permission has been 

granted by the University to restrict access for a period of time 

 

 

 

 

Signature__ __     Date: 28th of June 2017 

   Dane M Horton  



xiii 
 

 

Acknowledgements 

 
Firstly, I would like to sincerely thank Professor Julie Owens, Professor Jeffery 

Robinson and Dr Karen Kind for their academic and financial support of the project during my 

postgraduate degree. I am sincerely thankful for the academic support that Associate Professor 

David Saint, Dr Kathy Gatford and Dr Karen Kind have provided to see this through to the 

finished stage. Many thanks to all the other members of the Centre for Fetal Growth and 

Development, the University of Adelaide, Dr Prema Thavaneswaran, Dr Miles De Blasio, Dr 

Arkadi Katsman and Ms Mellisa Walker for making the years both productive and an enjoyable 

experience.  

I acknowledge the financial support of the Faculty of Science, The University of 

Adelaide for the Faculty Scholarship I received during my postgraduate years. I acknowledge 

the financial support from project grants from the Heart Foundation. I thank the Endocrine 

Society of Australia, Australia Society for Medical Research and the Scholarships Branch at 

The University of Adelaide for the support with travel grants enabling me to present my studies 

at both National and International Conferences.  

Finally, I would like to thank my dear wife Kathryn who has been my steadfast 

foundation when pressures and stressors took hold. To my parents, Michael and Marcia, my 

sisters, Claire and Mia, and friends for making all the “I think I cans” into a reality.  



1 
 

 
 

 
Literature Review 

 

 

 

 Scope of the Literature Review 

In epidemiological and geographical studies, intrauterine growth restriction (IUGR) 

and faster rates of neonatal growth, or “catch-up” growth, following perturbed growth in utero 

are risk factors for the development of numerous cardio-metabolic disease states later in life. 

This is an example of developmental programming of adult disease, the concept that events or 

exposures in early life can alter the developmental trajectory of the individual and alter their 

health and disease risk in later life. This literature review focuses on the relationship between 

IUGR and metabolic dysfunction, with specific emphasis on evidence for prenatal 

programming of insulin resistance, type 2 diabetes mellitus (T2DM), the metabolic syndrome, 

and obesity in later life in human studies and in experimental animal models. Neonatal 

accelerated or catch-up growth following IUGR in humans is an additional risk factor for 

impaired glucose homeostasis and obesity later in life and the evidence for effects of neonatal 

catch-up growth on the perinatal programming of metabolic dysfunction and obesity in humans 

and animal models is therefore also considered in this review. Because there is increasing 

evidence for sex-specific programming of metabolic disease in humans and in animal models 

with IUGR and neonatal catch-up growth, this review also assessed the evidence for sex-

specific perinatal programming of metabolic dysfunction.  
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 Concept of Developmental Origins of Health and Disease (DOHaD) 

According to the World Health Organisation Global Status Report on Non-

Communicable Disease 2010, non-communicable diseases (NCD) accounted for 63% of all 

deaths in 2008 with nearly 80% of deaths from NCDs coming from low and middle income 

countries1. With an ageing population the annual NCD death rate is likely to be the leading 

cause of death in all countries by 20301. These NCDs include cardiovascular disease, 

hypertension, stroke, metabolic diseases, hyperlipidaemia, central obesity, insulin resistance, 

glucose intolerance, T2DM, respiratory disease and some infection-related cancers1. Over the 

last several decades historical and epidemiological studies have consistently demonstrated that 

IUGR, as indicated by a low birth weight or being disproportionately short or thin for 

gestational age, is associated with an increased risk of developing NCDs later in life2-4. These 

findings led to the concept of the “Fetal Origins of Adult Disease”, also known as the “Thrifty 

Phenotype Hypothesis”5-7 or “Barker Hypothesis” as Professor David Barker was one of the 

principal pioneers of the field8. The hypothesis has since been expanded to the “Developmental 

Origins of Health and Disease” (DOHaD) hypothesis, as peri-conception environment, size at 

birth, accelerated growth trajectories after birth and subsequent exposures are now all 

recognised as contributing to the risk of NCDs8-13.  

The DOHaD hypothesis states that a fetus growing in a sub-optimal environment 

makes physiological and biochemical adaptions to survive14. This plasticity of fetal tissues 

induced by sub-optimal conditions in utero results in “programmed” changes, at a phenotypic 

level by the alteration of organs, tissues and cell signalling pathways 2, 3, 14. These adaptations 

through developmental plasticity ensure survival in the short-term; however, a mismatch 

between the in utero conditions and the individual’s postnatal life-course may expose 

dysfunction of key tissues involved in homeostatic control 2, 14-16. Therefore, the growing field 

of DOHaD investigates the programming of specific physiological and biochemical systems 

due to sub-optimal pre-conception or in utero environment, sometimes reflected by being small 
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for gestational age2, 14, 17-19. Further, the hypothesis now also considers subsequent postnatal 

exposures, including how the accelerated neonatal growth following exposure to in utero 

constraint leads to increased risk of chronic disease states, such as stroke, cardiovascular disease 

and T2DM2, 3, 14.  

 

 Intrauterine Growth Retardation (IUGR) 

According to American Congress of Obstetricians and Gynecologists guidelines and 

the World Health Organization Report 2006, IUGR is defined as a fetus with a weight below 

the 10th percentile for any given gestational age20, 21. Similarly, an IUGR infant is born with a 

birth weight below the 10th percentile for gestational age. However, this definition, which is 

also used to define small size at birth for gestational age (SGA), can overestimate IUGR 

pregnancies as infants with incorrect estimates of gestational age and those infants who are 

proportionally small, but have not suffered an insult in an adverse in utero environment will be 

included22. Low birth weight (LBW = birth weight <2500 g) is also often used as a surrogate 

marker for exposure to a restricted in utero environment, particularly in historical human 

cohorts, but is even more limited because it does not differentiate effects of IUGR from those 

of gestational age. IUGR pregnancies have a prevalence of 5–8% in the general population, 

whilst IUGR is a contributing factor in 10-15% of all pregnancies with complications20.  

IUGR has been further classified into two sub-classes based on phenotype at birth - 

symmetrical (20-30%) and asymmetrical (70-80%) growth restriction22, 23. Symmetrical, type I 

or proportionate IUGR refers to a proportionate growth restriction of all organs of the fetus, 

perhaps suggesting mild growth restriction throughout gestation, as growth potential for these 

individuals is normal22. Asymmetrical, type II or disproportionate IUGR reflects more severe 

growth restriction predominantly in late gestation where fetal growth has exceeded placental 

capacity23. This asymmetrical growth is due to fetal adaptation to the mismatched nutrient 

requirement/delivery by shifting the cardiac output to more vital organs, such as the brain and 
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adrenals at the expense of visceral organs such as the pancreas, liver and skeletal muscle as well 

as limiting long bone growth23, 24. Thus, the asymmetrical IUGR infant is indicated by being 

light, short or thin at birth, with the common phenomenon of brain sparing indicated by 

increased head circumference relative to birth weight and to abdominal circumference25, 26. 

These asymmetrical IUGR infants have a higher risk of morbidity and mortality after birth27 

throughout childhood28, 29 and later in life2, 3, 8. 

 

 Mechanisms and Risk Factors for Small Size at Birth or Clinical IUGR 

 

Although factors of fetal origin, such as intrauterine infections and congenital 

abnormalities (Table 1-1), can result in profound growth retardation, the incidences of these are 

rare at 7% and 10% of all IUGR births respectively23. Congenital malformations, genetic errors 

in metabolism or rhesus-induced anaemia account for only a small percentage of IUGR cases; 

however, approximately 30-40% of all fetuses with major structural disorders or chromosomal 

abnormalities have IUGR21, 30, 31. The sex of the fetus also influences size at birth with males 

approximately 4% heavier than females32.  

 

 

Growth in utero is largely determined by a complex interaction between the fetal 

genome and the availability of nutrients supplied to the fetus33. Although both the father and 

mother make equal contributions to the fetal genome, and hence growth potential, birth weight 

is largely determined by maternal constraints to fetal growth mediated by the in utero 

environment and maternal nutrient supply34-36. This is clearly illustrated by results of 

experiments crossing large Shire horses and Shetland ponies. Lower birth weight of Shetland-

Shire cross offspring born to Shetland mothers when compared to those born to Shire mothers, 

demonstrated the impact of maternal constraint of growth37.  
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Maternal factors (Table 1-1) may account for approximately 50% of all cases of 

IUGR in developing countries22, with most ultimately leading to a reduction in supply of 

nutrients to the fetus36. Therefore, factors that reduce available maternal nutrient availability, 

such as malnutrition and multiple concepti, account for most of the IUGR cases in developed 

countries. Severe nutrient deficiency during pregnancy, as occurs in times of famine or 

seasonally in developing countries, results in reduced weight at birth, especially if nutrient 

deficiency occurs in later gestation where fetal demand for nutrients is at its greatest38-40. 

Exposure to the famine in Holland (Dutch Famine) during World War II in the first, second or 

third trimesters decreased birth weight by 0.2%, 6.6% and 8.1% respectively, demonstrating 

the impact of inadequate nutrition in later pregnancy38. Similarly, exposure to a low protein, 

low calorie (~ 300 calories/day) diet in utero during the Leningrad siege in 1942 reduced 

average birth weights by 18% and 16% in males and females respectively41. 

Multiple gestation pregnancy is associated with a higher risk of IUGR. In humans, 

appropriate for gestational age (AGA) twins and triplets have -24% and -35% lower mean birth 

weights compared to AGA singletons42. Even in singletons regarded as SGA, twins and triplets 

are on average -4.5% and -18% lighter42. Reductions of other measures of size at birth are 

observed in AGA twins and triplets in abdominal circumference and crown to heel length 

compared to AGA and SGA singletons, while head circumference remains relatively conserved 

across all groups42. In addition to the effects of maternal constraint, individual twins within 

monochorionic twin pregnancies are at risk of IUGR due to the unequal sharing of placental 

surface area, blood flow, and therefore nutrient supply20. The growth of twins in utero deviates 

from that observed in singletons at 32 weeks31 while that of triplets deviates at 26 weeks42 

suggesting that nutrient availability, transfer or placental sufficiency in multiple births is 

impaired in late gestation. These observations suggest that offspring from multiple births 

resemble asymmetrical IUGR. 
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Maternal condition and phenotype before conception can also alter size at birth. Birth 

weight is reduced by 2.5% for every 10 kg decrease in maternal pre-pregnancy weight and by 

1-2% for every 10 cm decrease in maternal height, presumably due to maternal growth 

competing for nutrients or increased uterine constraint32. Other maternal factors that may 

contribute to small size at birth or IUGR are previous history of an IUGR pregnancy, maternal 

age less than 16 years, ethnicity and stress during pregnancy22, 25, 32, 33, 43. 

Smoking is estimated to account for 40% of growth-restricted newborns, with one 

study reporting a decrease in birth weight by 5% for each pack of 25 cigarettes smoked per day 

during gestation32. Other drug use, prescription, illicit drugs, or alcohol can also lead to a 

reduced weight at birth; however, in developed countries these do not have as great an effect as 

that of smoking22, 36 and the effects may be mediated in part by other factors such as low/poor 

nutrition or disruption of placental function33, 36. 

 

 

Uterine infections and diseases such as endometriosis limit the potential uterine 

endometrial implantation area and therefore subsequent placental function. Damage to the 

uterine endometrium can also disrupt placental function later in the pregnancy. 

The major extrinsic determinant of fetal growth is nutrient transfer by the placenta44. 

Placental factors (Table 1-1) contribute to most IUGR in developed countries where no 

pathological cause is identified21, 31, 45, 46. The placenta is the lifeline of the fetus, allowing 

oxygen, amino acids, glucose and other nutrients to be transferred from, and by-products of 

metabolism to be transferred to, the maternal circulation47. Placental growth and metabolism 

also utilises maternal nutrients, and hence is a further drain on maternal supplies48. In many 

mammalian species size at birth correlates positively with placental weight, therefore placental 

size has been suggested as an index of the placental capacity for nutrient supply46, 49. Most 
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IUGR babies have a small placenta46, 50 and placental transfer of nutrients across the placenta 

is reduced in IUGR pregnancies46.  

Pregnancy-induced hypertension (preeclampsia) can reduce placental surface area 

and therefore these pregnancies are at up to 4-fold increased risk of IUGR33, 51-53. Preeclampsia 

reduces birth weight by approximately 5% in its milder forms but the effect can be as great as 

10-12% in more severe cases22, 32, 51, 52, and in early-onset preeclampsia, birth weight is reduced 

by up to 23%52. Preeclampsia induces asymmetrical IUGR, with reductions of 4.4% in birth 

weight but less substantial effects on crown-heel length (0.8%) and ponderal index (2.6%) 

reported in one study51. 

The placenta also produces hormones and growth factors that govern metabolism of 

mother and fetus during pregnancy49, 54. Disruption to the normal functioning of the placenta 

through exposure to challenges such as low oxygen, malnutrition or toxins, or through physical 

effects, such as lesions, infarcts, abnormal placentation, or placental abruption therefore also 

have an impact on production of placental growth factors and hormones49, 54. Hence, placental 

development and function are major determinants of fetal growth and resultant size at birth.  

 

 

Most environmental factors only account for a small proportion of all IUGR. These 

include high altitude, pollution (smoking, heavy metals and other toxins), hyperthermia, quality 

of drinking water and irradiation21, 31, 55. Secondary or passive smoking decreased birth weight 

by -7.0% compared to -6.3% for maternal smoking56, indicating that environmental smoke 

exposure has as significant an impact on fetal growth as maternal smoking itself. Psychosocial 

environmental factors such as family size, education and access to health care largely impact 

fetal growth through other factors previously discussed21.  
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Table 1-1 Factors contributing to small size at birth in humans 
 

Fetal Factors Chromosomal abnormalities (Trisomy) 

 Congenital malformation 

 Genetic metabolic errors 

 Fetal infections 

 Sex of the fetus 

 Rhesus induced anaemia (hypoxia) 

  

Maternal Characteristics Race/ethnicity 

 Small/short stature 

 Pregnancy (parity, multiple conceptus, interval) 

 Low pre-pregnancy weight, body mass index 

 Overweight/Obesity at conception 

 Delivery at age <16 or >35 years 

  

Maternal Lifestyle Malnutrition (amino acids, lipids, iron, iodine) 

 Low pregnancy weight gain (2nd and 3rd trimesters) 

 Drug use (smoking, alcohol, illicit and prescription drugs) 

 Severe chronic disease, infection or anaemia 

 Socio-economic disadvantage 

 Emotional, physical stress 

  

Uterine Factors Abnormalities (fibroids, malformation) 

 Disease (intrauterine infection, endometriosis) 

  

Placental Factors Abnormal placentation 

 Small placental size 

 Low uteroplacental blood flow 

 Impaired placental transport of nutrients 

 Placental pathologies (infarcts, haematomas) 

 Antepartum haemorrhage 

 Pre-eclampsia  

  

Environmental Factors High altitude 

 Hyperthermia 

 Quality of drinking water 

 Pollutants (smoking, irradiation, heavy metals, toxicants) 

 Other (family size, education, health care support) 
Table adapted from World Health Organization 200621.  
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 Catch-Up Growth 

 

Most infants undergo accelerated growth termed “catch-up” after IUGR which 

occurs in the first few months of life57-59. This accelerated growth is primarily a gain in fat mass 

rather than long bone growth. While most IUGR children catch-up to some degree, 

approximately 15% of infants do not undergo this accelerated growth and 50% of all IUGR 

infants have short stature as adults57. Children who fail to catch-up or “fail to thrive” after IUGR 

have increased perinatal morbidity and mortality60, and neurodevelopmental delay during 

childhood61-63, compared to those with catch-up growth, which may persist into adult life. 

Despite the advantageous effects of catch-up growth following IUGR, catch-up is a risk factor 

for the development of adult metabolic disease later in life64-66. 

 

 

 

Recent studies in humans show that insulin sensitivity at 48 hours of age67 and at 1 

year of age68 is greater in IUGR/SGA children than infants born with appropriate size at birth. 

Furthermore, infant insulin sensitivity is positively associated with growth in terms of weight68, 

suggesting that increased insulin action may stimulate growth in this catch-up growth period. 

In neonatal lambs, insulin sensitivity during catch-up growth is positively associated with 

growth in terms of both birth weight, and long bones69. Insulin stimulates growth during early 

postnatal life, acting on both the chondritic growth plate in long bones and on skeletal muscles 

and other soft tissues70, 71. Therefore, high insulin sensitivity and/or secretion during early 

postnatal life following IUGR is a plausible mechanism driving the faster rates of growth in 

IUGR neonates. 
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Down-regulation of thermogenesis has been suggested as a means by which catch-

up growth, especially that of fat, can occur with or without hyperphagia, by creating a “thrifty 

metabolism”72, 73. In the longer-term, however, this thrifty metabolism and increased fuel 

conservation lead to insulin resistance and associated disease72. 

 

 

The DOHaD hypothesis states that fetal development has plasticity and therefore 

organs of higher immediate importance, like the brain and adrenals, are conserved over organs 

of lower importance for immediate survival. This redistribution of blood flow and therefore 

nutrients is achieved by the endocrine signalling of cortisol and catecholamines24, both of which 

reduce size at birth when delivered to fetuses experimentally74, 75. The reduction of blood flow 

limits glucose utilisation and growth of somatic tissues while increasing glucose uptake in 

adipose tissue and hence promoting relatively faster growth of adipose depots than skeletal 

muscle64, 76. Further insulin resistance of skeletal muscle and relative insulin hyper-

responsiveness in fat redirects storage of excess fuels to adipose tissue after IUGR which leads 

to increased fat gain during catch-up72. Consistent with these differential effects of prior 

restriction between tissues, adipose tissue has a greater insulin sensitivity than skeletal muscle 

under hyperinsulinaemic-euglycaemic clamp conditions in animal models of catch-up growth76.  
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Catch-up growth often occurs when restricted nutrient availability, as occurs in 

IUGR, is followed by hyperphagia in a relatively nutrient-rich environment. Experimental 

IUGR alters the balance of orexigenic and anorexigenic neuropeptides in the brain which tend 

to increase feed intake later in life77, 78. Later, insulin and leptin resistance also follow IUGR 

which further impairs the negative feedback for feed intake. Although evidence for this is 

limited in humans79, offspring of small animal models of maternal undernutrition, obesity and 

diabetes have altered hypothalamic control of energy balance, leading to hyperphagia and 

obesity78, 80. 

 

 

 

Systematic reviews have implicated catch-up growth following IUGR as an 

additional risk factor for the development of hypertension81, cardiovascular disease66, obesity64 

and dysfunction in glucose homeostasis such as insulin resistance65, 82, especially in individuals 

then challenged with a high caloric/fat diet as occurs in developed countries. Poor growth in 

utero and catch-up growth appear to induce adverse cardio-metabolic outcomes in adulthood, 

including insulin resistance81, 83-89, via independent mechanisms65, 82, 90. Catch-up growth may 

also be a mechanism for gender-specific programming as early life factors contributed to more 

of the total variance in insulin resistance in 49-51 year-old males than in females65. 
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 Determinants of Glucose Homeostasis: glucose effectiveness, insulin 
secretion and insulin sensitivity 

Blood glucose concentrations are controlled by insulin secretion, insulin sensitivity 

of the target tissues, and by glucose effectiveness, the intrinsic action of glucose on its own 

metabolism91. In individuals with insulin resistance, the pancreas initially hyper-secretes insulin 

to compensate for the impaired responsiveness at the target tissue92, usually due to impaired 

post-receptor signalling. Hyperglycaemia and overt T2DM occur when the pancreas can no 

longer sustain this compensatory hypersecretion of insulin92. Humans with T2DM have reduced 

glucose effectiveness in addition to their insulin resistance and impaired insulin secretion which 

together impair glucose homeostasis93, 94.  

 

 

Glucose effectiveness is the ability of glucose to auto-regulate the suppression of 

endogenous glucose production and enhance glucose uptake to control its intrinsic metabolism 

under basal insulin conditions (independent of insulin’s actions)95, 96. Increased glucose 

availability under basal or steady insulin concentrations increases glucose storage in the liver 

by the induction of glucokinase and glycogen synthase while impairing enzymes of 

gluconeogenesis96. Additionally, GLUT4 translocation in skeletal muscle can be induced by 

increased glucose concentrations, independent of insulin action96. 
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Insulin is secreted by β-cells in the pancreas in response to a high nutrient 

concentration in blood (summarised in Figure 1-1). Insulin is contained in vesicles within the 

β-cell as a prohormone containing C-peptide. After a meal, circulating concentrations of 

nutrients including glucose, amino acids and free fatty acids are high and these are taken up 

into the β-cell to stimulate insulin and C-peptide secretion. The major stimulus for the release 

of insulin is increased concentrations of glucose in blood. In rodents, glucose enters the β-cell 

through the high capacity glucose transporter type 2 (GLUT2)97; however, other glucose 

transporters may also be involved, as fetal islets of GLUT2 knockout mice do not have impaired 

insulin secretion98. In the human pancreas, GLUT1 and GLUT3 are the main glucose 

transporters in the β-cell99. Once glucose is phosphorylated to glucose-6-phosphate, it is then 

metabolised down the glycolytic, citric acid cycle to produce the high redox potential molecules 

NADH and FADH2. These enter the electron transport system leading to an increase in the 

intracellular ATP/ADP ratio. Metabolism of amino and keto acids in the citric acid cycle and 

free fatty acids (FFA) via β-oxidation also increase ATP concentrations. The increase in ATP 

activates the prohormone convertase required for the cleavage of insulin from proinsulin. This 

relative increase in ATP also deactivates (closes) the ATP sensitive potassium channels, 

resulting in a depolarisation of the β-cell. This in turn activates voltage-gated calcium channels 

allowing extracellular Ca++ to enter the cell and act as a second messenger to initiate the 

exocytosis of insulin from its vesicles. Intracellular conversion of FFA to malonyl CoA may 

also act directly on protein kinase C and diacylglycerol, which in turn act to release Ca++ from 

intracellular stores initiating the exocytosis of insulin-containing vesicles100.  
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Figure 1-1 Mechanisms of Stimulus-Secretion Coupling of Insulin in Humans 

 

GLUT 1/2/3, Glucose transporter 1/2/3 isoforms;    LPL, Lipoprotein lipase;  

NADH, Nicotinamide adenine dinucleotide (reduced form)  CoA Coenzyme A; 

FADH2, Flavin adenine dinucleotide (hydroquinone form)  FFA, Free Fatty Acids; 

ATP, Adenosine triphosphate;       Membrane Potential 

⊕ Stimulatory  ⊝	Inhibitory 

(Adapted from Fowden et al. 200198) 
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Other stimuli for insulin secretion are gastrointestinal hormones such as GLP-1101, 

acetylcholine102, 103, and drugs including the sulfonylureas104, 105. Acetylcholine and the 

sulfonylureas increase intracellular Ca++ to initiate exocytosis of insulin via differing 

mechanisms. Acetylcholine activates inositol triphosphate-dependent mobilization of 

intracellular Ca++ 99, 100 while the sulfonylureas inhibit the K+-ATP channels leading to 

activation of the voltage gated Ca++ channels and influx of Ca++ from extracellular fluid104, 105.  

Glucose supply from the diet varies substantially throughout 24-hours from low 

concentrations during periods of complete fasting to high concentrations during postprandial 

glucose loads. In the basal (fasted state) the brain is the primary user of glucose, with other 

tissues using alternative fuels such as lipids, amino acids and proteins. With high insulin 

concentrations, as occur after a meal, whole body glucose utilisation is increased with skeletal 

muscle contributing substantially to the rise in glucose utilisation106. Glucose concentrations in 

blood are controlled primarily by insulin. The diverse actions of insulin that range from growth 

and differentiation in fetal life to carbohydrate, lipid and protein metabolism in postnatal life, 

are made possible by the extensive post-receptor signalling cascades in insulin sensitive tissues 

(Figure 1-2). Insulin’s main actions are to inhibit endogenous glucose production by the liver 

and to stimulate glucose utilisation in peripheral tissues like skeletal muscle and adipose 

tissue107, 108.  
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Figure 1-2 Summary of the Insulin Signalling Pathway 
 

IRS, Insulin Receptor Substrate;    PI3K, phosphatidylinositol 3-Kinase,  

PIP3, Trisphosphorylated inositol;    AKT, product of the AKT protooncogene;  

PKC, Protein Kinase C;     GSK3, Glycogen Synthase Kinase 3;  

FKHR, Forkhead in Human Rhabdomyosarcoma;  GLUT4, Glucose Transporter 4. 

p70S6K, Ribosomal protein S6 kinase beta-1 

Solid line: stimulated by insulin.   Dashed line: Inhibited by insulin. 
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When insulin binds to its tyrosine kinase receptor, the receptor dimerises to initiate 

the phosphorylation of the tyrosines on the intracellular domain of the receptor. This in turn, 

initiates the post-receptor insulin signalling pathway by the phosphorylation of the insulin 

receptor substrate (IRS), first the protein of insulin transduction signalling (Figure 1-2). IRS 

activates the p85a and p110 subunits of phosphatidylinositol 3-Kinase (PI3K) to activate 

Product of the AKT protooncogene (AKT) or protein kinase B (Figure 1-3). This initiates the 

translocation of GLUT4 to increase glucose uptake in insulin responsive tissues like skeletal 

muscle (major, Figure 1-3) and adipose tissue (minor, Figure 1-5). Phosphorylation of AKT 

activates other downstream cascade pathways increasing protein (skeletal muscle), and 

glycogen (skeletal muscle and liver) synthesis while suppressing endogenous glucose 

production by the liver (major, Figure 1-4) and kidney (minor).  

 

 

Insulin’s primary tissue targets are skeletal muscle, adipose tissue and the liver. In 

muscle, the primary action of insulin is to activate glucose, amino acid and fat uptake to increase 

utilisation for ATP production and storage of glucose as glycogen, protein synthesis, and 

intramuscular fat deposition. In adipose, insulin acts to store glucose, FFA and amino acids as 

fats and triglycerides. In liver, insulin acts to inhibit glucose production via gluconeogensis and 

glycogenolysis while stimulating glycogen synthesis. Insulin receptors are also found in the 

brain and in the kidney.  

 

 

Skeletal muscle is one of the major target tissues of insulin (Figure 1-3). Insulin’s 

main action in muscle is to increase the rate of glucose uptake by stimulating translocation of 

the insulin sensitive glucose transporter 4 (GLUT4), increasing glucose clearance from 
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blood109. On binding to its receptor, insulin stimulates the formation of the second messenger 

phosphatidylinositol (3,4,5)-trisphosphate (PIP3) through the interaction of IRS and PI3K. PIP3 

initiates many phosphorylation cascades resulting in a net increase in glucose uptake and 

utilisation for energy and storage within the muscle cells (Figure 1-3). PIP3 activates protein 

kinase C (PKC) facilitating the translocation of intracellular vesicles containing GLUT4 to the 

cell membrane, where GLUT4 can facilitate glucose uptake into the cell. Insulin also influences 

metabolic processes within skeletal muscle through the up-regulation and/or activation of 

signalling pathways, through the dephosphorylation of key rate limiting enzymes involved in 

both storage of glucose as glycogen and utilisation of glucose for energy through glycolysis. In 

addition, other enzymes such as phosphoenolpyruvate carboxykinase (PEPCK), which is 

involved in the production of glucose-6-phosphate via gluconeogenesis, are inhibited by 

insulin. Insulin and the increased intracellular glucose-6-phosphate concentration also lead to 

activation of fatty acid synthesis and an increased intracellular pool of FFA. PIP3 also acts on 

lipoprotein lipases to cleave and facilitate the uptake of FFAs from circulating lipoproteins in 

the blood. In addition, other fatty acid transporters like fatty acid translocase/cluster of 

differentiation 36 (FAT/CD36) can be translocated to the cell membrane from intracellular 

stores in response to insulin, or exercise-induced increases in fatty acid demand110. 
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Figure 1-3 Mechanism of Insulin Action in Skeletal Muscle 
 

IRS, Insulin Receptor Substrate;   PI3K, phosphatidylinositol 3-Kinase;  

PIP3, Trisphosphorylated inositol;   LPL, Lipoprotein Lipase;  

FFA, Free Fatty Acids;    ATP, Adenosine Triphosphate; 

G-6-P, Glucose-6-Phosphate;   GLUT4, Glucose Transporter 4. 

⊕	Stimulated by the action of insulin. ⊝	Inhibited by the action of insulin. 
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Liver and kidney are the only two tissues that contain significant amounts of glucose-

6-phosphatase, the enzyme responsible for the conversion of glucose-6-phosphate to glucose111. 

Liver is also a major site of storage of glucose as glycogen. Therefore the liver is able to regulate 

the concentrations of blood glucose by its storage via glycogenesis and its release via 

gluconeogenesis and glycogenolysis97. 

Glucose transport into the liver is not controlled by insulin as the major glucose 

transporter in liver is GLUT2, and to a minor extent GLUT1, and these are not insulin 

responsive109. GLUT2 is a low affinity, but high capacity, glucose transporter making it well 

suited to a tissue such as the liver, where the role is to facilitate both uptake and efflux of glucose 

depending on hormonal and nutritional status97. Insulin increases storage of glucose as glycogen 

in the liver, by the activation of glycogen synthase and deactivation of glycogenolysis within 

the hepatocytes (Figure 1-4). Similar to skeletal muscle, insulin binding to its receptor 

stimulates the formation of the second messenger PIP3 through the interaction of the IRS and 

PI3K, which initiates many phosphorylation cascades resulting in a net increase in glucose 

storage and inhibition of glucose production by the hepatocytes. Insulin sensitive enzymes like 

fructose-1,6-phosphatase and PEPCK, the rate limiting enzyme in the gluconeogenesis 

pathway, are inhibited by insulin to reduce the conversion of amino acids to glucose-6-

phosphate111. By inhibiting glucose-6-phosphatase, insulin inhibits the formation of glucose 

and thus decreases hepatic glucose production. In addition, insulin stimulates fatty acid 

synthesis, converting glucose to FFAs, which are then mobilised to lipoproteins in the 

circulation, and transported to adipose tissue in the periphery.  
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Figure 1-4 Mechanism of Insulin Action in the Liver 
 

IRS, Insulin Receptor Substrate;    PI3K, phosphatidylinositol 3-Kinase,  

PIP3, Trisphosphorylated inositol;    FFA, Free Fatty Acids;  

GLUT2/1 Glucose transporter isoforms 2 and 1 

⊕	Stimulated by the action of insulin.  ⊝	Inhibited by the action of insulin. 
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Like the liver, the kidney contains glucose-6-phosphatase, the enzyme responsible 

for the conversion of glucose-6-phosphate to glucose, and is the main extra-hepatic site of 

gluconeogenesis111, 112. However, the kidney only produces a significant amount of glucose 

after prolonged starvation, providing about 10% of total blood glucose111, while others report 

figures from 5%-30% in the postprandial state112. Therefore, in physiological conditions the 

liver is the primary source of endogenous glucose production111. In addition, the production of 

glucose by the kidney is increased in the postprandial state when insulin and glucose 

concentrations are high, suggesting that, unlike the liver, insulin does not have a major role in 

suppressing glucose production in this tissue113.  

 

 

Insulin’s primary action in adipose tissue is to increase the rate of glucose uptake by 

the increased translocation of the insulin-sensitive GLUT4 to the cell surface109. Insulin also 

acts on lipoprotein lipases in the membrane, which increases the uptake of FFA into the cells. 

The increased intracellular glucose and FFA are stored as triglycerides in adipose cells (Figure 

1-5). The action of insulin on adipocytes leads to decreased circulating FFA, which in turn has 

an indirect effect on the liver to reduce hepatic glucose production97. 

 

 

The brain contains insulin receptors, with high concentrations reported in the 

olfactory bulbs, hypothalamus and hippocampus of the guinea pig, rat and human brain114-116. 

Insulin has many actions as a neuropeptide in the brain, including modulation of appetite, 

peripheral metabolism, and behaviour117, 118. Central administration of insulin into the 

ventricular space acts as a positive feedback for pancreatic insulin release119, 120. One important 

role of insulin in the brain is its effect on food intake, body weight and energy balance, where 
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centrally-available insulin acts to suppress appetite and therefore reduces fat mass117. In rats, 

direct infusion of an antisense oligodeoxynucleotide targeting mRNA of the insulin receptor 

into the third ventricle of the brain specifically reduces hypothalamic insulin receptor number, 

causes hyperphagia and obesity and attenuates hepatic but not peripheral insulin sensitivity121. 

Therefore, insulin resistance of the brain may also act indirectly on the liver via increased 

glucose and FFA availability in the blood leading to the accumulation of further adipose tissue 

as well as the direct central actions on nutrient intake, obesity and impaired positive feedback 

on insulin secretion.  

 

 

Insulin action on glucose metabolism has two determinants; the amount of available 

insulin at the receptor (insulin secretion) and the sensitivity of the receptor and post-receptor 

events to initiate insulin’s actions in its target tissue (insulin sensitivity). Failure of both factors 

are known contributors to the risk of the development of T2DM122. Multiplication of insulin 

secretion and insulin sensitivity indices gives the insulin-stimulated glucose disposition index 

(DI) which is constant for individuals with the same degree of glucose tolerance. The DI can 

also be used to evaluate the efficacy of glucose homeostasis via assessment of an individual’s 

ability to increase β-cell insulin secretion as insulin sensitivity decreases123. The DI can 

determine if an individual has impaired insulin secretion relative to their insulin sensitivity, 

therefore can assess their risk of T2DM122. 
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Figure 1-5 Mechanism of Insulin Action in Adipose Tissue 
 

IRS, Insulin Receptor Substrate;   PI3K, phosphatidylinositol 3-Kinase,  

PIP3, Trisphosphorylated inositol;   LPL, Lipoprotein Lipase;  

FFA, Free Fatty Acids;    GLUT4, Glucose Transporter 4;  

Acetyl CoA, Acetyl Coenzyme A.  

⊕	Stimulated by the action of insulin. ⊝	Inhibited by the action of insulin. 
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 Failure of Glucose Homeostasis - Type 2 Diabetes Mellitus 

T2DM is an inter-organ disease where failure of insulin action (insulin resistance) at 

skeletal muscle, adipose tissue and liver, impaired insulin secretion from the pancreas and 

impaired glucose effectiveness are all involved in the loss of glucose homeostatic control107, 124, 

125. Although insulin resistance in skeletal muscle is the primary defect and may develop 

decades prior to the total failure of insulin secretion it is estimated that those with T2DM have 

a reduction in their insulin secretion output by up to 50%, independent of their current insulin 

resistance126, 127. Therefore, failure to maintain an appropriate insulin secretion response, 

relative to the sensitivity of the insulin target tissues, or the insulin disposition index, is crucial 

to the pathogenesis of T2DM122. 

Obesity due to a sedentary lifestyle and high caloric diets are the major risk factors 

for the metabolic syndrome of which T2DM is one of the primary components124, 128. FFA 

release from the increased adipose depots leads to an accumulation in skeletal muscle and liver 

which can down regulate insulin receptor numbers126. FFAs are an alternate fuel source for 

skeletal muscle and therefore high circulating FFAs impairs glucose utilisation by muscle128-

130. In addition, elevated FFAs induce apoptosis of β-cells which reduces the compensatory 

hyperinsulinaemia associated with insulin resistance128, 130, 131. FFAs further impair insulin 

sensitivity in skeletal muscle, adipose tissue and liver by impairing peripheral glucose uptake 

and inhibiting endogenous glucose production, stimulating hepatic gluconeogenesis flux rate 

and reducing glucose-induced glucose uptake in skeletal muscle, assessed during a 

hyperinsulinaemic-euglycaemic clamp132-135. In addition, adipokines such as resistin and TNF-

α, which are elevated in obesity, alter insulin signalling in target tissues perhaps via 

downregulation of tyrosine kinase activity107, 136, 137. Therefore, high adiposity especially central 

adiposity and FFA leads to a resultant systemic insulin resistance by reducing insulin secretion 

and interfering with insulin signalling107, 126, 128, 129, 136, 137. 
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Due to chronic hyperglycaemia, even in the fasted state, glucose uptake is high into 

cells that express glucose transporters that are non-insulin dependent glucose transporters (not 

GLUT4) including, smooth muscle, cardiac muscle, macrophages, and endothelium138. This 

leads to increased levels of pyruvate entering the citric acid cycle and thus over-production of 

the high redox potential molecule NADH. This in turn elevates H2O2 and other reactive oxygen 

species in the mitochondria of these tissues138. Hyperglycaemia also increases advanced 

glycation end products as up to 35% of glucose is metabolised using alternate pathways such 

as the polyol pathway138. Once oxidised, these reactive oxygen species and advanced glycation 

end products further cause oxidative stress to tissues, contributing to the mitochondrial 

oxidative stress of T2DM and the associated vascular disease, poor endothelial function and 

low immune function138. 

 

  Measuring Indices of Glucose Homeostasis in vivo 

 

Probably the simplest way to directly assess insulin action in vivo is the insulin 

tolerance test (ITT)139, which involves a bolus intravenous (i.v.) injection of insulin to induce 

glucose disappearance from the blood139, 140. The ITT has been criticised as a clinical measure 

of insulin sensitivity due to the unpleasant symptoms of hypoglycaemia, as well as the potential 

for counter-regulatory effects of the hypothalamic-pituitary-adrenal axis via the release of 

cortisol and growth hormone to suppress glucose disappearance rates139. Importantly this 

method has been modified to include intraperitoneal injections of insulin enabling its use in 

small animals such as mouse, and results show good agreement with insulin sensitivity 

measured by other methods, such as the hyperinsulinaemic-euglycaemic clamp141. 
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The hyperinsulinaemic-euglycaemic clamp (HEC) is considered the gold-standard 

method to assess insulin sensitivity in vivo. The method utilises a continuous infusion of insulin, 

either at a single or in a sequential series of infusion rates, with a variable glucose infusion rate 

(GIR) to maintain glucose levels at the basal (fasting) concentration measured prior to the 

insulin infusion. The GIR required at steady state to maintain euglycaemia during the insulin 

infusion (calculated using a previously published algorithm) provides an index of insulin 

sensitivity142.  

One advantage of the HEC over the insulin tolerance test as a method to measure 

response to insulin is that by maintaining plasma glucose concentrations during insulin 

stimulation the side effects of hypoglycaemia are alleviated142. In addition, the neuroendocrine 

homeostatic mechanisms that occur in response to hyperglycaemia are also reduced142. The 

HEC is an accurate measure to quantify insulin sensitivity and since only small blood samples 

are required for checking of euglycaemia it has been established and used extensively in a 

number of experimental animal models, including rats143-145 and mice146-148 and in non-human 

primates such as rhesus monkeys149-153 and baboons154. Continuous infusion of [3-3H]-glucose 

tracers prior to and during HEC allows assessment of rates of glucose utilisation, glycolysis and 

of storage, primarily by skeletal muscle, as well as the rate of endogenous glucose production, 

primarily by the liver, in the basal and insulin-stimulated states142, 145, 152. 

The main disadvantages of the HEC is that due to its complexity, it is a costly, labour 

and time intensive test155. When glucose tracers are used, larger blood volumes are required, 

which, when combined with the frequent blood samples required for monitoring blood glucose 

levels, can be a disadvantage for use in small animal models. In addition, surgical 

catheterisation is required therefore, experiments immediately following surgery may induce 

stress responses, or acute experiments are performed under anaesthesia both of which alter 

insulin sensitivity in rodents (reviewed in 156). 
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The hyperglycaemic clamp is similar to that of the HEC except that a bolus of glucose 

is infused acutely to achieve a rise in plasma glucose levels of 125 mg/dl above basal levels142. 

This raised glucose set point is then maintained by a variable glucose infusion throughout the 

clamp142. Because the glucose concentrations are constant during the clamp the amount of 

glucose infused is a measure of glucose metabolism142. The hyperglycaemic clamp can quantify 

the response and therefore the sensitivity of the β-cell to a rise in glucose, the early and late 

phases of insulin release can be measured independently and whole body glucose metabolism 

can be assessed142. The main disadvantages of the hyperglycaemic clamp are those of the HEC. 

The hyperglycaemic clamp like the HEC is a costly, labour and time intensive test as well as 

posing problems for small animal models as significant blood volumes may be required in 

assessing glucose metabolism over a time course142, 155.  

 

 

The glucose tolerance test (GTT) is a simple in vivo test used clinically to determine 

if an individual is glucose tolerant (x <7.8 mmol/l), intolerant (7.8 mmol/l > x < 11.1 mmol/l) 

or diabetic (x > 11.1 mmol/l) where x is the glucose concentration 2-hours post the glucose 

load157. Glucose is given as a bolus load, either intravenously (IVGTT) or orally (OGTT). 

Measurement of insulin concentrations during a GTT allows assessment of insulin secretion in 

response to a glucose challenge. This provides an index of pancreatic and therefore β-cell 

responsiveness to high circulating plasma glucose. The GTT operates on the principle that 

insulin will be released in a homeostatic manner to counter rises in blood glucose concentration.  
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The OGTT is a simple test that involves administration of an oral glucose load, 

typically of 75 g in humans, following an overnight fast158. Blood samples are collected at 0 

(basal), 30, 60, and 120 minutes to determine profiles of glucose clearance and insulin 

responsiveness158. The glucose load is sometimes given as a meal, known as a meal tolerance 

test (MTT), which mimics more closely the physiological, postprandial condition155. The oral 

minimal model is a computation method that enables the estimation of insulin sensitivity, β-

cell function and hepatic insulin extraction based on the results from the OGTT158. A 

disadvantage of the OGTT and MTT is the assumption that there is low inter- and intra- 

individual variation in the absorption of glucose159. In addition, due to variations in oral glucose 

loading regimens used experimentally between species and within the same species 

comparisons of studies that report glucose tolerance outcomes based on this test may be more 

difficult158, 160-163. 

 

 

The frequently sampled IVGTT typically involves a schedule of either fifteen 

samples to 180 minutes or twenty-six samples to 240 minutes after an i.v. bolus of glucose at 

0.3-0.5 g.kg-1164. The 15-sample schedule has become more accepted in large cohort 

experiments in humans164. The frequently sampled IVGTT utilises the glucose and insulin 

profiles over the 3 to 4-hour glucose tolerance test to indirectly calculate glucose effectiveness 

and insulin sensitivity using the minimal model technique as described by Bergman et al91, 159, 

165, 166. The main advantage of the IVGTT over the OGTT is it avoids the uncertainty of gastric 

emptying and thus reduces the effects of variable gastric/intestinal motility rates, and therefore 

glucose absorption rates, on outcome measures159. However, this test requires additional care 

due to the use of iv glucose and heparinised saline infusions as well as insertion of a catheter 

for frequent i.v. blood sampling159. 
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Fasting insulin concentration and the fasting glucose to insulin ratio are also utilised 

as measures of glucose homeostasis and insulin sensitivity in vivo91, 167. A general advantage of 

these indices is that they rely on measurement of glucose and insulin in a single blood sample 

following an overnight fast, hence they provide a simple, inexpensive assessment of insulin 

resistance especially in large clinical studies where direct measures such as the HEC may not 

be feasible. In the fasting state glucose is in homeostasis, with endogenous glucose production 

by the liver, and to a small degree by the kidney, balanced with whole-body glucose disposal. 

Therefore, the level of insulin secreted under fasting conditions reflects the sensitivity of the 

peripheral tissues for insulin dependent glucose disposal (mainly skeletal muscle). Calculation 

of fasting glucose to insulin ratio is also used as a measure of insulin resistance as it gives a 

measure of glucose control for a given insulin secretion. 

However, calculating insulin action indirectly using fasting concentrations does not 

differentiate low insulin secretion due to a relatively high insulin sensitivity of the tissues from 

individuals with failing β-cells and therefore reduced insulin secretion. Therefore, as glucose 

tolerance and insulin sensitivity decreases with ageing and the progression of β-cell exhaustion 

leads to diminished compensatory hyperinsulinemia the correlation of insulin sensitivity 

measured directly by HEC with that assessed by fasting insulin loses strength. Independent 

measures of both insulin secretion and sensitivity are required to determine relative secretion 

to sensitivity or insulin-stimulated glucose DI as calculated by the multiplication of insulin’s 

sensitivity and its secretion122.  
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The homeostatic model assessment (HOMA) or the updated HOMA2 uses paired 

fasting insulin and glucose concentrations to calculate insulin sensitivity and insulin secretion 

through a computer derived simulation based on feedback mechanisms167, 168. The HOMA 

insulin resistance (HOMA-IR) model correlates reasonably well with insulin sensitivities 

derived from HEC in adults without severe impairment of glucose homeostasis167, 168. However, 

this correlation becomes skewed when selecting those with either high insulin sensitivity or 

with severe impairment such as in T2DM155.  

 

 

The quantitative insulin sensitivity check index (QUICKI) is a computer modelled 

calculation of insulin sensitivity using the inverse of the sum of the logarithms of basal glucose 

and log of insulin concentrations169. With ageing and in diabetic patients the glucose to insulin 

ratio begins to rise due to the loss of compensatory insulin secretion. Using the inverse of the 

sum of the logarithms reduces these standard errors of the high glucose to insulin ratio measures 

in these cohorts169.  

 

 Prenatal Programming of Glucose Metabolism in Humans 

 

Historical and geographical evidence provided the initial evidence for the prenatal 

origin of impaired glucose homeostasis and subsequent disease170, 171. Offspring subjected to 

the Dutch Winter famine in late gestation, when fetal growth is at its greatest, are small at birth 

and as adults have increased risk of impaired glucose tolerance, T2DM and the metabolic 

syndrome compared to those not affected by famine or exposed in early gestation only172. This 

suggests that the timing of the insult is also crucial to the programming of metabolic dysfunction 
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later in life. These effects of famine on later glucose homeostasis have been supported by 

studies of other war-time and famine cohorts173.  

Geographical studies predominantly carried out in England and Wales have shown 

that areas of low socio-economic status, in industrial areas to the north of England and lower 

socio-economic status to the west, had the highest rates of cardiovascular disease in adults aged 

35-71 years in 1968-1978171. When compared to the infant death rate (1901-1910) in the same 

geographical zones, areas of higher rates of infantile death had higher rates of cardiovascular 

disease in later life171. This is consistent with correlation analysis of areas of high perinatal 

death rates today and mortality from stroke in the USA174, 175. This “Stroke Belt” occurs in the 

lower southern states, which are the lower socio-economic areas of the USA174, 175. 

These studies of famine and effects of socio-economic status on both perinatal 

outcomes and adult disease rates have given insight into the link between associations of early 

environment and diseases in later life171-175. Several studies since have assessed individual 

measures of size at birth in numerous cohorts around the world and have confirmed these 

associations across the normal spectra of size at birth. This has led to systematic reviews65, 176-

178 assessing the overall impact of small size at birth on later insulin sensitivity and glucose 

metabolism. Several systematic reviews have now shown that small size at birth is associated 

with increased risk of insulin resistance, T2DM and the metabolic syndrome later in life65, 176-

178.  

The systematic review carried out by Newsome et al in 2003176 showed that the link 

between low birth weight and a risk of impaired glucose homeostasis was consistent across 

multiple published studies, however, this review did not discriminate between small size at birth 

due to prematurity and that due to IUGR176.  

A systematic review by Harder et al in 2007 examined the shape of the association 

of birth weight and subsequent risk of T2DM178. Some previous studies report a linear 

relationship between small size at birth and T2DM risk implying that high birth weight offers 
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protection against such risk. However, Harder et al (2007) report a J- or U-shaped relationship 

with both extremes in birth weight having increased risk of T2DM178 and this has also been 

supported in other systematic reviews177, 178. Most recently, Whincup et al 2008 confirmed that 

the adverse effects of low birth weight on risk of T2DM persisted even after correction for 

gestational age and current socioeconomic status177.  

These systematic reviews reveal that the associations of insulin resistance, glucose 

intolerance, T2DM or the metabolic syndrome with measures of small size at birth occur across 

the normal range in size at birth, and not only in IUGR individuals176-178. The systematic 

reviews by Whincup et al 2008 and Harder et al 2007 also give information on the shape of the 

resultant J or U-shaped relationship177, 178. This implies that being at the high extreme of birth 

weight is a risk factor rather than protective against metabolic disease. Exposure to maternal 

diabetes or obesity in utero are risk factors for the development of T2DM, obesity and the 

metabolic syndrome in childhood179-182, thus being large for gestational age due to nutrient 

excess in utero may also contribute to developmental programming of T2DM and metabolic 

dysfunction. 

Other hypotheses linking low birth weight to later adult disease propose a genetic 

link. As insulin is a potent growth factor in utero, genetically determined insulin resistance 

would be expected to result in both a reduced size at birth and a predisposition to T2DM later 

in life. However, although in Pima Indians, a population “genetically” prone to T2DM, LBW 

individuals are thinner at ages 5-29 years, they are more insulin resistant relative to their body 

size than those of normal birth weight181. Studies in twins have also given some insight as to 

the genotype versus phenotype contributions to T2DM, although the use of twins in such studies 

has received some criticism183. In monozygotic twins discordant for T2DM, the twin with adult 

T2DM had a lower birth weight compared to the one without184. In dizygotic twins where both 

twins have T2DM as adults the twin with the lowest birth weight had the highest fasting plasma 

glucose concentration after OGTT184. This supports the suggestion that genetic factors do not 
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solely account for the incidence of T2DM, and that intrauterine events, in part, program glucose 

metabolism in later life. Overall, these studies demonstrate that low birth weight is an important 

contributor to the risk of developing diseases later in life. Therefore, the underlying mechanisms 

that mediate the effects of early life environmental determinants of impaired glucose 

homeostasis and T2DM require further investigation so that interventions can be developed.  

 
 

Few studies have examined the effects of IUGR on glucose effectiveness. In young 

adults, glucose effectiveness was increased in males who were light or short at birth but no 

association with size at birth was found in females185. In pre-pubertal children, glucose 

effectiveness was unaltered in short children following IUGR compared to controls186. 

Therefore, these studies suggest that reduced glucose effectiveness is not contributing to 

impaired glucose homeostasis following IUGR, at least in younger cohorts. 

 

 

Many studies to date have utilised the gold standard HEC187-199, minimal model 

techniques185, 199-208, basal plasma insulin to glucose concentrations208, 209, or the ITT210 to 

examine associations between size at birth and insulin sensitivity. Overall, systematic reviews 

have shown that in the majority of studies there is a positive correlation between adult insulin 

sensitivity and size at birth176. In individuals over 50 years of age, the development of obesity 

strengthens the association of size at birth with insulin sensitivity187, 201, 210. In the age group 

from 30-50 years, two studies have shown a reduced insulin sensitivity with decreasing size at 

birth using the minimal model202 and HEC188 techniques. Another study showed no association 

between birth weight and insulin sensitivity in this age group using the minimal model 

approach, however204. Similar associations of impaired insulin action with reduced size at birth 

have been reported in 20-30 year-old adults189, 206, 207, 209, although other studies have shown 
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associations in only females205, or only males185 or have found no effects of size at birth on 

insulin sensitivity in this age group199. Insulin sensitivity in IUGR children is enhanced after 

birth and up to 1 year of age, which may explain in part the increased rates of growth or catch-

up67, 68. After the catch-up period, a positive correlation of insulin sensitivity with size at birth 

following IUGR is also evident as early as four years of age suggesting that there is an early 

switch in insulin sensitivity85, 192, 208, 211, 212. However, one study in Indian neonates showed 

impairment in insulin sensitivity and increased adiposity present at the time of birth rather than 

a switch initiated by catch-up213. Therefore, the variability in the direction of the correlation of 

size at birth with insulin sensitivity depends on the age group of the children tested and 

ethnicity. In IUGR neonates, insulin sensitivity may still be enhanced when insulin sensitivity 

is assessed in the catch-up growth phase67, 68. In contrast when catch-up growth is complete, 

which would be the case in studies of four-year-old children, IUGR consistently predicts 

impaired insulin sensitivity directly using HEC192, 212 or indirectly using HOMA85 or insulin 

and /or glucose to insulin rations208, 211. One longitudinal study in children from birth to three 

years showed that IUGR infants transition from an insulin sensitivity to an insulin resistant state 

in their first three years of life214. This suggests that at birth and in the early catch-up growth 

phase insulin sensitivity is high in IUGR infants; however, in childhood with the effects of 

ageing and other lifestyle events, the associations are reversed such that associations between 

impaired insulin sensitivity and IUGR are enhanced. 

 

 

In young adults to 30 years, six of nine studies185, 205, 207, 215-217 describe a negative 

association between fasting insulin concentrations and size at birth, while one showed no 

relationship199 and two showed a positive relationship206, 218. One study in young adults (20-21 

years) examined males and females separately185 and showed that fasting insulin concentrations 

tended to decrease with decreasing birth weight in males, but not in females185. In addition, 
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insulin secretion was negatively correlated with birth weight and length in males but not in 

females suggesting a sex-specific onset of alterations in insulin secretion and action185. Three 

of seven studies directly measuring insulin secretion found no association with size at birth199, 

200, 217, two described a negative association189, 205 and two a positive association206, 218. Most of 

the studies measuring insulin secretion have not measured insulin resistance independently. In 

those studies where insulin sensitivity has also been measured, IUGR predicts impaired insulin 

secretion relative to insulin sensitivity195. Therefore, the variability between these studies may 

reflect changes in insulin resistance and the capacity for compensatory increases in insulin 

secretion between cohorts.  

With ageing the correlations between insulin secretion and size at birth begin to 

become more consistent. In adults with mean ages of 30 to 50 years, all five studies describe a 

negative association between fasting insulin concentrations and size at birth203, 219-222. Four 

studies assessed glucose stimulated insulin secretion in this age group (30 to 50 years) and all 

found negative associations between insulin secretion and size at birth201, 203, 223, 224, suggesting 

that the pancreas is compensating for an impaired insulin sensitivity in this age group. These 

negative associations of size at birth with basal insulin concentrations and insulin secretion after 

a glucose load in the 30 to 50-year-old age group are more consistent with prenatal 

programming of insulin resistance rather than β-cell insufficiency and reduced insulin secretion.  

Many studies have assessed both basal insulin concentrations and insulin secretion 

directly during OGTT/IVGTT to examine the associations with size at birth. In studies of adults 

with mean ages from 50 to 70 years, six of seven studies65, 184, 201, 225-227 described negative 

associations between fasting insulin concentrations and size at birth while only one228 showed 

no association. In studies where the mean age tended to be older (~65 years) the negative 

associations of birth size with fasting insulin were stronger suggesting that the 

hyperinsulinaemia was still present and that IUGR adults maintained hypersecretion of insulin, 

due to insulin resistance, later in life184, 225, 226.  
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Nevertheless, in IUGR children where insulin-stimulated glucose disposition has 

been measured, insulin secretion relative to insulin sensitivity is reduced, suggesting that the 

ability of the β-cell to compensate for the insulin resistance adds to the risk of T2DM later in 

life212, 214. Therefore, the effects of insulin resistance and relative β-cell secretory capacity 

appears early in life following IUGR and is evident even in children.  

 

 

 

Skeletal muscle is the major tissue that determines glucose uptake92 and primarily 

utilises glucose by storage to glycogen rather than oxidation to ATP with increased insulin 

stimulus106. The majority of human studies demonstrate a positive correlation between size at 

birth and whole body insulin sensitivity176. However, although IUGR reduces lean tissue, an 

index of skeletal muscle mass229, muscle mass itself does not correlate with insulin 

sensitivity230. This suggests that the effects of small size at birth on insulin sensitivity involve 

intrinsic alterations in insulin responses of skeletal muscle, rather than simply being mediated 

by changes in total muscle mass230.  

In IUGR humans, insulin sensitivity of skeletal muscle is impaired189-191, 194-199 and 

altered expression of insulin signalling genes in skeletal muscle may in part contribute to this 

decline in insulin action190, 196, 198, 229, 231-238. Genes that have reduced expression in human 

skeletal muscle following IUGR include GLUT4, and the post-receptor signalling proteins 

protein kinase C-ζ, and the p85α and p110β subunits of phosphoinositol 3-kinase190, 196, 198, 229, 

231-238. These studies further support a role for intrinsic alterations in skeletal muscle following 

IUGR leading to impaired insulin action in this tissue. 

Increased abdominal fatness in adult men is associated with restricted growth in fetal 

life239. Obesity, especially increases in central or visceral fat, increases circulating FFA, which 

impair insulin sensitivity240-242 and lead to diabetes243, 244 and the metabolic syndrome244. This 
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increased central obesity and associated rise in circulating lipids has been hypothesised to be a 

primary cause of the insulin resistance seen in centrally obese adults who were small at birth. 

However, the relationship between insulin sensitivity and size at birth is independent of 

circulating lipid levels in men and women aged 50 years245 and of the amount of visceral or 

subcutaneous fat assessed by computed tomography scanning200. In addition, insulin resistance 

is evident in younger cohorts in their twenties who were IUGR, who still have similar lean 

mass, total fat and abdominal fat mass as controls229. Reduced insulin sensitivity in the liver, 

resulting in increased endogenous glucose output, can also contribute to development of T2DM. 

However, human studies have not consistently shown impairment in insulin-suppression of 

endogenous glucose output following IUGR190, 197, 246. In young adults, endogenous glucose 

production rate was equally suppressed in both IUGR and a control AGA group during HEC 

suggesting that, at this age, reduced insulin sensitivity of liver, and perhaps kidney, are not 

major determinants of whole body insulin resistance observed following IUGR190. Conversely, 

insulin suppression of endogenous glucose production is impaired after IUGR in young 

adults197 and in the Pima Indians, a population genetically-susceptible to T2DM246 

Therefore, impaired insulin sensitivity following IUGR cannot be fully explained by 

effects on mass of the three primary insulin sensitive tissues - skeletal muscle, adipose and liver. 

In addition, the association of impaired glucose tolerance, T2DM or the metabolic syndrome 

with small size at birth is also not fully explained by genetic predisposition, decreased insulin 

secretion, altered glucose effectiveness, impaired insulin action in the liver or circulating lipid 

concentrations.  

 

 

Neonatal catch-up growth is also implicated in the programming of impaired insulin 

sensitivity, via independent mechanisms to the prenatal environment65, 82, 90. Catch-up growth 
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may also be a mechanism contributing to gender-specific programming by early life factors in 

males as it contributed to more of the total variance in insulin resistance in 49 to 51-year-old 

males compared to females65. Each of the three main mechanisms of the catch-up fat hypothesis 

potentially contribute to insulin resistance following IUGR: compensatory hyperphagic drive, 

re-partitioning of nutrients from lean to fat tissue or alteration to metabolism such that 

thermogenesis is suppressed leading to fuel accumulation72.  

 

 

Obesity is a known risk factor for the development of the metabolic syndrome, 

T2DM, cardiovascular disease, gestational diabetes and reduced life expectancy247-250. There is 

accumulating evidence that small size at birth and catch-up growth are independent risk factors 

for the development of obesity in childhood which persists into adulthood72, 251-259. This 

increased adiposity after IUGR and catch-up growth occurs primarily in visceral deposits which 

contribute greater risk for metabolic dysfunction than subcutaneous depots80. This increase in 

fat deposition may in part be due to perinatal programming of both increased feed intake and 

reduced exercise activity260.  

In addition, others show that muscle mass decreases following IUGR producing a 

“metabolically dangerous”, high adipose:muscle ratio phenotype in later life261, 262. As skeletal 

muscle is the primary tissue of glucose disposal107 and adiposity can impair whole body insulin 

action263 a high adipose to lean tissue mass would be expected to reduce insulin sensitivity. 

Hence, it is important to also consider the role of altered body composition in prenatal 

programming of insulin resistance. 

 

 

Many studies in humans have demonstrated sex-specific programming of cardio-

metabolic adult outcomes. Systematic reviews suggest that males are more susceptible to 
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perinatal programming of cardio-metabolic disease in later life compared to females176, 264, 265. 

Consistent with this, in human studies including both sexes, impaired insulin sensitivity was 

associated with declining size at birth in males but not in females65, 185, 203. Conversely, in a 

large Danish cohort which included 113,801 men and 109,298 women born between 1936-

1983, the associations differed with sex, such that in females the relationship was U-shaped 

with risk of T2DM increased at both the lower and higher birth weight ranges266. In men, the 

relationship between risk of diabetes and birth weight was near inverse throughout the birth 

weight range to 4 kg and then levelled off thereafter266. While associations with risk of T2DM 

at the extremes in birth weight were stronger in females, within any birth weight category the 

percentage risk of T2DM was higher in men compared to women, except in the highest birth 

weight range where percentage risk was comparable between the sexes266. Other studies report 

that impaired insulin action or measures of T2DM correlate with reduced size at birth in males, 

but do not report outcomes in females187, 189, 190, 193-195, 197, 198, 201, 229. When positive correlations 

between insulin sensitivity and size at birth are evident in both males and females the strength 

of the associations are approximately 2.5-fold greater in males than in females suggesting an 

increased impact or susceptibility of males to a sub-optimal intrauterine environment65, 176. In 

50-year-old men and women, both fasting plasma insulin and insulin during an OGTT 

correlated negatively with small size at birth in terms of weight and abdominal 

circumference227. Although the associations between size at birth and insulin concentrations 

were stronger in men than women, when the sexes were analysed separately no significant 

interaction of sex and size at birth was detected in multiple linear regression analyses, hence 

not providing sufficient evidence to support a difference between sexes within that cohort227.  

The increased susceptibility to prenatal programming in males may be due to the 

faster rates of growth earlier in gestation in males with less investment into placental growth 

than females267, 268. This may lead to later adaptations of the placenta to increase its overall size 

and expand surface area late in gestation. This late gestation adaptation could increase the 
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metabolic demand of the placenta at the expense of the nutrient supply available to the male 

fetus267, 268. In sheep, the cotyledons of male fetuses are larger in weight and surface area269. 

The faster rates of growth in males in utero and the greater demand for nutrients in later 

gestation may in part put them at higher risk of susceptibility to IUGR if the placental or 

maternal nutrient supply cannot meet their growth potential. Therefore, in the male fetus this 

may increase the risk of programmed future dysfunction such as insulin resistance and cardio-

metabolic disease. 

Another mechanism of the observed sex-specific difference in programmed 

metabolism of glucose homeostasis is via postnatal actions of sex steroids270, 271, however, the 

mechanisms by which sex steroids modulate insulin action are poorly understood272. 

Postnatally, oestrogen deficiency impairs insulin sensitivity and action, and hormone 

replacement therapy improves insulin sensitivity in postmenopausal women270. However, in 

premenopausal women, basal glucose and FFA concentrations do not differ in the follicular and 

luteal phases of the oestrous cycle273. Sex hormones may be acting to alter insulin sensitivity 

via the effect of testosterone to decrease adiponectin secretion, which then increases insulin 

sensitivity and lowers circulating lipids271. Women have higher adiponectin levels compared to 

men with similar body mass index and fat mass271. The absence of female sex hormones appears 

to decrease insulin-mediated whole-body glucose uptake via an impaired insulin-stimulated 

translocation of GLUT4 to the plasma membrane and by decreased protein expression of 

glycogen synthase274. Testosterone treatment further impairs whole-body insulin-mediated 

glucose uptake, presumably by additional impairment of glycogen synthase expression274 or 

testosterone’s inhibition of adiponectin271. Androgen excess in Polycystic Ovarian Syndrome 

is associated with impaired insulin sensitivity, however, IUGR does not raise androgens nor 

does impaired insulin sensitivity following IUGR correlate with androgen concentration in 

females209. Overall, this evidence does not support a role for androgens as a mediator for 

programmed insulin resistance following IUGR.  
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 Need for Animal Models to Investigate Perinatal Programming of 
Glucose Homeostasis 

Human studies have consistently shown a negative relationship of small size at birth 

with insulin resistance, T2DM or metabolic syndrome176-178. Furthermore faster rates of growth 

in the early postnatal period are positively related to these metabolic diseases65. Many human 

studies are based on size at birth as a proxy measure of in utero experience rather than being 

able to look specifically at types of exposures and their timings, however. Furthermore, the 

mechanisms that drive these pathophysiological changes before birth and in the early neonatal 

period and how they are influenced by postnatal life are not fully understood. Therefore, 

experimental models of IUGR are now utilised in a range of species to assess the effects of 

specific perturbations at critical windows of development on fetal development, size at birth, 

growth during the early neonatal period and metabolic outcomes later in life18.  

Assessment of adult outcomes in animal models of IUGR is required to control or 

reduce confounders such as incorrect estimates of gestational age, maternal diets, and other 

lifestyle factors such as smoking. Animal models allow control of maternal factors such as 

parity and maternal phenotype and assessment of insulin sensitivity in models with known size 

at birth measures and accurate postnatal growth data. Species with shorter gestations have the 

advantage of allowing transgenerational effects to be assessed, while species with longer 

gestations allow more accurate assessment of the effects of timing of gestational insults on the 

programming of adult disease18.  

 

 Animal Models of IUGR and Impaired Glucose Homeostasis 

This section focuses on experimental and naturally occurring IUGR in animal models 

that have been used to assess the perinatal programming of glucose homeostasis, and models in 

which relationships of neonatal catch-up growth, appetite and body composition with glucose 

homeostasis have been described. 
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As placental insufficiency is the most common cause of human IUGR and even in 

idiopathic IUGR it is expected that the placenta plays an important part in the reduced size at 

birth31, several animal models have been utilised to investigate the role of placental dysfunction 

in metabolic programming. 

 

 

Occlusion of the uterine arteries in small animal models of IUGR such as the rat275-

282 and the guinea pig283-286 have been achieved either by ligating (suturing)275-282, 286, diathermy 

ablation (burning)283, 284 or clamping (ameroid constrictor)285 placental blood flow and therefore 

placental nutrient supply to the fetus. This is achieved early in pregnancy and the vessels are 

occluded under general anaesthesia. 

In the guinea pig, uterine artery ligation from 30–35 days of gestation, using 

diathermy ablation of the uterine arteries in one horn also reduces size at birth, and leads to a 

disproportionate birth phenotype283. Low birth weight offspring (<80 g) combined from both 

control pregnancies and those with unilateral ablation of the uterine arteries remained smaller 

than normal birth weight offspring (>90 g) to 98 days postnatal age, but the groups did not 

differ in weight by 145 days. Offspring were weaned at day 14 and from day 16 to 60 the low 

birth weight offspring were hyperphagic compared to those of normal birth weight284. Although 

bodyweight did not differ at 145 days of age, low birth weight guinea pigs had a 

disproportionately greater epididymal white adipose tissue mass, fewer adipocytes, greater 

adipocyte diameter, and greater lipid content than the high birth weight offspring284.  

Unilateral uterine artery ligation in the rat at day 18 or 19 of gestation (term ~ 22 

days) is a commonly used model to reduce size at birth (10%-30% compared to controls) via 

reduced placental sufficiency (reviewed in275). In the rat, low birth weight offspring, following 
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control pregnancy or unilateral uterine artery ligation, have an increased brain to body weight 

ratio at 3-4 months of age, suggesting maintenance of an asymmetric IUGR phenotype into 

adult life276. Furthermore, low birth weight was associated with increased blood pressure, 

increased fasting blood glucose, impaired glucose tolerance and reduced insulin secretion 

during an IVGTT at 3-4 months276. Despite the asymmetrical IUGR following unilateral uterine 

artery ligation no postnatal catch-up growth was evident276, unlike that found following IUGR 

in humans22. Furthermore, associations between low birth weight and postnatal blood pressure 

and glucose metabolism were only found in female rat offspring, unlike the majority of human 

studies where males are at greater risk of cardio-metabolic programming65, 185, 203. 

Bilateral uterine artery ligation at 19 days gestation in the rat reduces size at birth to 

a similar degree to that observed following unilateral ligation (reviewed in275) and results in a 

“brain sparing” phenotype in the offspring275, 280-282. Bilateral uterine ligation is often associated 

with a high fetal loss (30% compared to 3% in control or sham operated)282. Some studies report 

comparable body, liver and brain weights by 7 days after birth in IUGR offspring of bilateral 

uterine artery ligated dams and controls282, while others report a delay in the acceleration of 

growth at 7-10 weeks postnatal age280. During the accelerated growth phase these restricted rat 

offspring become hyperglycaemic and hyperinsulinaemic at weeks 15 and 28280 and 

progressively more obese, especially in visceral depots, later in life at 28 weeks280. At birth, β-

cell volume, pancreatic mass and mass/kg body weight are decreased in the IUGR fetuses, and 

this reduction in β-cell number persists to adult life280, 281, 287. In a study where the 6 smallest 

pups from a ligated pregnancy were compared with the heaviest 12 control pups at 15 weeks of 

age, levels of HbA1c% were raised, suggesting poorly controlled glycaemia and by week 25 

offspring from bilaterally-ligated dams were hyperphagic compared to controls277. Therefore, 

in the rat, bilateral uterine artery ligation, which limits supply of oxygen and nutrients to the 

fetus, reduces size at birth, and is associated with accelerated postnatal growth, increased 

adiposity, and impaired glucose tolerance with compensatory hyperinsulinaemia in adults280. 
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This adverse phenotype is further amplified with ageing, perhaps in part via hyperphagia and 

increasing adiposity, leading to progressive β-cell loss, raised HbA1c% and overt T2DM275, 277, 

280-282 resembling that seen in human studies250. Therefore, restricting both oxygen and nutrients 

in gestation via restricting placental function, does produce offspring that are insulin resistant 

and glucose intolerant in this species275, 277, 280-282.  

Another study showed that in fetal life, skeletal muscle mitochondrial mRNA levels 

of NADH ubiquinone-oxidoreductase, subunit C of the F1-F0 ATP synthase and ADP/ATP 

translocator were all reduced in IUGR rats, suggesting impaired glucose utilisation278. In 28-

day old IUGR offspring, the oxidation of NADH/H+ in the electron transport system of skeletal 

muscle remains reduced278. This in turn inhibits the utilisation of glucose via the negative 

feedback of high NADH/H+ on isocitrate dehydrogenase in the citric acid cycle. Therefore, the 

programming of glucose metabolism via placental insufficiency in the rat may be due to 

impaired glucose utilisation in skeletal muscle. 

In addition, GLUT2 protein and mRNA levels are unaltered in the livers of IUGR rat 

offspring generated by maternal unilateral uterine ligation, compared to controls, suggesting 

that IUGR does not alter the capacity of the liver to remove glucose from circulation279. 

 

 

In the rat, reduced uterine placental pressure (RUPP) throughout the entire last 

trimester (day 14, term being 22 days) also induces changes in glucose homeostasis288. RUPP 

involves the clipping of the uterine arteries to reduce blood flow to the uterus. RUPP reduces 

size at birth by 9% and the restricted offspring exhibit accelerated growth post-weaning such 

that their weight does not differ from control by 9 weeks288. At 9 weeks, RUPP progeny had 

higher fasting glucose and insulin concentrations, impaired glucose tolerance (IVGTT) and 

were insulin resistant (HOMA-IR) compared to controls288. 
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In sheep, surgical removal of the majority of the endometrial caruncles (placental 

attachment sites) prior to pregnancy reduces total placental size and therefore the efficacy of 

oxygen and nutrient transfer269, 289, 290. Surgically induced placental restriction in the ewe 

reduces fetal growth, impairs β-cell function and insulin secretion in late gestation (day 140 of 

~ 147-150 days gestation for term) and reduces size at birth of their offspring291. Placentally 

restricted fetuses have increased abundance of insulin receptor protein in skeletal muscle, but 

reduced abundance of PKC, and GLUT4 protein292. At birth, placentally restricted offspring 

have asymmetrical IUGR with smaller size at birth in terms of weight (-21 to 25%), crown-

rump length (-7 to 9%), abdominal circumference (-10%), and body mass index (-12%), and 

relative sparing of skull width (-5%) and length (-4%)69, 293, resembling the phenotype observed 

with placental insufficiency in human studies22, 23.  

Placental restriction increased fractional growth rates of lambs in terms of weight 

(+24 to 29%) and various growths of long bone lengths (+15 to 23%), increased feed intake to 

45 days of age, increased relative visceral adiposity and reduced muscle mass69, 293. At 30 days 

of age, placentally restricted lambs have high basal glucose, higher fasting insulins, lower post-

prandial insulin secretion, assessed after an IVGTT, and are insulin resistant as assessed by 

HEC69, 294. Expression of GLUT2 is increased in the liver of placentally restricted males while 

expression of insulin receptor, IRS-1, AKT-2, GLUT4, GSK3a and GYS1 are all reduced in 

skeletal muscle of placentally restricted male and female offspring, suggesting that impairment 

to skeletal muscle signalling is the primary defect underlying whole-body insulin resistance in 

these IUGR lambs294. 

 

 

Overnourished adolescent ewes partition nutrients to the growth of the mother and 

away from the developing placenta295, 296. Therefore, placental restriction can be induced by 
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embryo transfer into young ewes, followed by overfeeding during gestation. A variable 

response is observed in this model, with approximately 50% of lambs born IUGR, with birth 

weights less than two standard deviations below the mean birth weight of lambs born to control 

pregnancies (<4 kg), and an overall reduction in birth weight in this IUGR group of 

approximately 35%295. IUGR offspring of adolescent pregnancies have increased fasting 

glucose concentration at 48 days and 6 months of age and fasting glucose is negatively 

associated with birth weight at both ages296. IUGR offspring also undergo increased neonatal 

fractional growth, which correlates positively with fasting glucose concentration at 48 days and 

6 months of age. Glucose tolerance, assessed by IVGTT, is not altered in IUGR offspring at 48 

days, but fasting glucose to insulin concentrations and insulin secretion during the first 20 

minutes of the IVGTT were reduced, suggesting attenuated insulin production when compared 

to normal-weight offspring of adolescent pregnancies295. At 6 months of age glucose tolerance 

during the IVGTT was impaired in offspring of adolescent pregnancy, compared to offspring 

of control pregnancies, however, fasting insulin, insulin area under the curve, and insulin 

secretion during the initial phase of the IVGTT did not differ between birth groups296. While 

this model provides evidence for prenatal programming of glucose metabolism, the 

overnutrition model is associated with a preterm delivery295, 296 making it difficult to 

differentiate effects of IUGR and gestational age.  

 

 

Exposing ewes to increased temperature (40°C for 12 h/day, 35°C for 12 h/day) from 

day 40 to typically day 95-120 of gestation redistributes blood away from the placenta and 

induces IUGR in the fetus297. Heat stress, from day 45 to day 120 of gestation, increases 

maternal body temperature to 40°C, 1°C higher than controls297. This reduces fetal and placental 

size by 50%, uterine blood flow by 33% and umbilical blood flow by 52% at 135 days 

gestation297.  
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At approximately 90% of term (131-138 days; term ~ 147-150 days gestation) fetuses 

of heat stressed mothers had a 58% reduction in whole pancreatic β-cell mass, and a 47% 

reduction in β-cell number, with insulin mRNA levels 66% less than controls298. In addition, 

these IUGR fetuses had increased insulin sensitivity of glucose utilisation, partitioning their 

glucose to glucose storage during a hyperglycaemic clamp299. 

Heat-induced placental restriction reduces muscle fibre size and the proportion of 

Type 1 muscle fibres in fetal skeletal muscle near term300. In vitro analysis of M. semitendinosus 

strips showed a lower glucose uptake under insulin-stimulated conditions in muscle from IUGR 

lambs of one month of age compared with controls301. If these changes to muscle fibre types 

persisted into later life the lower percentage of type I fibres in IUGR sheep may lead to insulin 

resistance, as in adult humans the percentage of type I fibres correlates positively with insulin 

sensitivity and individuals with the metabolic syndrome and T2DM have less type 1 fibres than 

controls302.300 

 

 

 

 

Maternal feed restriction has also been utilised in various species, with differing 

timing and magnitude of restrictions, to examine the fetal origins of T2DM and insulin 

resistance in a malnourished models such as rats303-307, guinea pigs308-317, sheep318-321 and 

primates154.  

In baboons, maternal feed restriction to 70% of ad libitum feeding from 30 days 

gestation (term ~184 days) and throughout lactation tended (P<0.06) to reduce birth weight (-

11%)154. At 3.5 years (juveniles), fasting plasma insulin and glucose concentrations were higher 

in the restricted offspring compared to control offspring154, suggesting insulin resistance and 

glucose intolerance. The AUCglucose in an IVGTT did not differ between the two groups; 
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however, the offspring of feed restricted mothers secreted more insulin to maintain similar 

glucose levels compared to controls154. In feed restricted offspring, the glucose disposal rate 

during the HEC was lower compared to controls suggesting insulin resistance. No sex 

differences were found in any measure of glucose homeostasis in this study154. 

Feed restriction of ewes to 50% ad libitum feeding from early to mid-gestation (day 

28-78, term ~ 147-150 days gestation), followed by ad libitum feeding to lambing did not alter 

birth weight or length of singleton male lambs (females not assessed), compared to ad libitum 

fed controls321. Feed restriction also had no effect on birth weight of twin lambs, although birth 

weight of control and restricted twins was 22% lower than that of singletons overall321. At 63 

days of age, weaned offspring of feed restricted ewes had higher basal glucose, and increased 

AUCglucose and AUCinsulin during an IVGTT compared to controls. At 250 days of age, young 

adult progeny from restricted ewes had a higher AUCglucose compared to controls suggesting 

glucose intolerance321, but AUCinsulin was lower than controls suggesting that insulin 

compensation for any given glucose load was impaired321. In addition, restricted progeny had a 

greater live weight, increased absolute and relative adiposity, and tended to have a reduced 

muscle mass at 280 days of age321. 

In contrast, feed restriction of ewes at 50% ad libitum feeding in twin pregnancies in 

the last 6 weeks of gestation reduces size at birth by 11% compared to non-restricted twins318. 

However, at 6 months of age glucose tolerance did not differ in offspring of feed restricted 

mothers, compared to non-restricted twins319. A more severe feed restriction of 0.3 MJ/d from 

day 105-115 then 0.5 MJ/d until 125 days, compared to controls fed at 13 MJ/d from day 105-

115 then 15 MJ/d until 125 days, followed by a return of both groups to pasture for lambing 

(term ~147-150 days) also reduced size at birth320. In this severe maternal feed restriction 

model, low birth weight and current weight, but not undernutrition per se, impaired glucose 

tolerance in 5-month-old lambs320. This suggests that size at birth may be part of the causal 
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pathway linking fetal nutritional environment and later adult disease. Contrasting outcomes in 

these studies may come from differences in singleton versus twin pregnancies.  

In rats, maternal feed restriction to 50% ad libitum intake from days 1 to 14 of 

gestation, followed by ad libitum feeding to term, did not alter basal glucose or insulin 

concentrations in male offspring at 15-16 weeks, while female offspring were not studied303. 

Further these male offspring did not have altered glucose tolerance or insulin secretory 

responses following an IVGTT, or impaired glucose production or glucose utilisation during 

HEC303. In contrast, maternal feed restriction to 50% ad libitum from day 15 of gestation to 

weaning reduced glucose tolerance in male rat offspring at 1 year of age compared to 

controls304. This suggests that perturbations occurring during late gestation and early postnatal 

development in the rat may have greater impact on the programming of glucose tolerance than 

those occurring during early-mid gestation. Adult female offspring of rats that were restricted 

to 50% ad libitum feeding during late gestation and throughout lactation had impaired whole 

body insulin sensitivity and impaired suppression of endogenous glucose production but 

peripheral glucose utilisation was not altered305. Therefore, in studies where endogenous 

glucose production and peripheral glucose utilisation were measured, maternal feed restriction 

reduces the insulin sensitivity of liver in female offspring with no change in skeletal muscle 

glucose utilisation305. However, these studies in offspring of maternal feed restriction in the rat 

contrast human observations where insulin resistance of skeletal muscle is the primary defect 

more generally in the pathogenesis of whole body insulin resistance and T2DM92, 236, 322.  

In the pig, unlike many other species, size at birth is not consistently affected by 

various maternal feed restriction magnitudes or timings during gestation (reviewed in323). One 

study, however, did show that reducing feed intake to one-third of ad libitum feeding in the first 

two trimesters results in offspring that tend to have increased rates of growth postnatally 

compared to controls324.  
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In the guinea pig, severe maternal feed restriction (50%) from day 30 to term (~67-

70 days) reduced birth weight (-30%), while early feed restriction from conception to day 30 

did not reduce size at birth325. Even at 8 weeks postnatal age, the restricted group remained 

smaller (-22%) than the controls suggesting catch-up had not occurred to restore growth in these 

offspring of severely feed restricted guinea pigs325. Weights of adipose depots were reduced in 

pups of restricted mothers at 8 weeks and for subcutaneous depots such as shoulder fat and 

groin fat, this decrease was proportional to the reduction in body weight325. In contrast, the 

relative weights of the interscapular and retroperitoneal fat depots at 8 weeks of age correlated 

negatively with birth weight325. This suggests that either some fat depots were programmed 

differently in utero by maternal feed restriction or different fat depots are more prone to 

deposition during catch-up following IUGR.  

Moderate global restriction, in guinea pigs, by feeding 70% ad libitum intake to day 

35 gestation followed by 90% ad libitum intake to term, reduces size at birth in male (-12%) 

but not female offspring, however, only limited numbers of female offspring from moderately 

feed-restricted mothers were examined in this study310. Maternal feed restriction did not alter 

neonatal fractional growth rate across the maternal diets or in either sex 310. Moderate feed 

restriction induced hyperphagia, increased visceral (retroperitoneal) adiposity and reduced 

relative M biceps brachii mass in young adult males but not in females. Also in males only, 

moderate feed restriction increased the fasting insulin and fasting insulin:glucose ratio 

compared to controls, but this effect was lost when birth weight was included in statistical 

analyses. This suggests that in the guinea pig growth in utero is a greater determinant of the 

programming of glucose homeostasis than maternal feed restriction treatment itself. When 

outcome data were pooled (sex and treatment) and analysed according to birth weight tertiles, 

the lowest birth weight offspring had the highest food intakes and were hyperinsulinaemic as 

adults suggesting that growth in utero may program glucose homeostasis310. 



52 
 

 
 

Mild global restriction, induced by feeding pregnant guinea pigs 85% ad libitum 

intake throughout gestation, also decreases size at birth in terms of weight (male -10 to -14%; 

female -8 to -11%), without increasing neonatal fractional growth rates from birth to weaning 

at 28 days310, 312. Young adult males from undernourished mothers had higher cholesterol levels 

prior to and post feeding a high-cholesterol diet for 6 weeks, which was not observed in 

females312. Systolic blood pressure and insulin secretion measured during an IVGTT (as area 

under the insulin profile relative to area under the glucose profile) were both higher in restricted 

male, but not female, offspring compared to controls at 100 days310, 311. This effect on insulin 

secretion was not evident when correcting for litter size or birth weight, again suggesting that 

the effect may be more strongly related to fetal growth rather than the maternal feed restriction 

itself. These studies demonstrate that IUGR induced by maternal feed restriction does in fact 

program many of the features of the metabolic syndrome in the guinea pig and in a sex-specific 

fashion309-312. Males appear to be more at risk of the adverse effects of IUGR and neonatal 

catch-up compared to females in this species, resembling findings reported in systematic 

reviews in humans65, 176-178. 

 

 

Feeding pregnant rats isoenergetic diets containing 0% glucose from day 2 of 

gestation reduces size at birth (-30%) compared to a control diet containing 60% glucose326. In 

contrast, diets containing 12 or 24% glucose did not affect weight at birth. Percentage mortality 

in offspring by postnatal day 1 was 100%, 11% and 4% for the 0%, 12% and 24% glucose diets, 

respectively326. Feeding a 12% glucose diet throughout pregnancy and lactation reduced the 

plasma insulin to glucagon ratio in the first 12-16 hours of postnatal life, due to both a marked 

reduction in insulin and raised glucagon concentration in maternal glucose-restricted offspring. 

Despite the lower insulin levels offspring from mothers whose glucose intake was restricted 

during gestation and lactation did not have enhanced glycogen mobilisation. This was most 



53 
 

 
 

likely due to an impaired activation of glycogen phosphorylase in the maternal glucose-

restricted offspring compared to the control glucose diet. Six-day-old neonates from dams fed 

a 12% glucose diet had higher expression of PEPCK mRNA compared to those from dams fed 

a 24% glucose diet suggesting that maternal diets low in glucose have the potential to increase 

gluconeogenesis in the liver326. However, by day 15 hepatic PEPCK mRNA did not differ 

between these treatment groups326. No sex effects or adult outcomes were reported in this 

study326 

 
 

 

Restriction of maternal protein intake, by feeding a 5%-8% protein diet, compared to 

15%-20% protein, throughout gestation and lactation does not consistently reduce birth weight 

of the offspring327-336. Some studies do not report size at birth327-330, others report decreases in 

fetal weight at 19 days of gestation331 with a few reporting a reduced size in a least one sex with 

maternal feed restriction332-336.  

Maternal protein restriction at 7% compared to control of 25% in the rat, throughout 

gestation but not during lactation improves glucose tolerance in offspring at 4 months of age337. 

At 9 weeks (young adults), blood glucose was normalised faster, had a smaller rise in maximum 

glucose concentration, and a more rapid glucose clearance to basal levels following an 

intraperitoneal glucose tolerance test (IGTT) in the offspring of protein-restricted dams, 

suggesting glucose tolerance was improved at this age330. In contrast, a more severe maternal 

protein restriction of 5% protein diet, compared to control diets of 15% protein in the last 

trimester of gestation, does not alter glucose tolerance in offspring of protein-restricted dams 

compared to control at 8 weeks of age (only females studied)335.  

However, glucose intolerance does develop with ageing (15-21 months) in offspring 

of protein restricted mothers in some327, 332, 338 but not (44 or 52 weeks) all studies330, 333, 334. 

Interestingly, males develop hyperglycaemia at 15 months334 while females do not develop 
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hyperglycaemia until 21 months332 suggesting males are at greater risk of developing T2DM at 

an earlier age after IUGR. Together these studies suggest that protein restriction does not result 

in an impaired glucose tolerance in young offspring but this develops with ageing in offspring 

of the maternal protein restricted rat327, 332, 338. Supporting this, glucose intolerance did not 

develop until 130 days in female offspring of maternal protein restricted dams suggesting that 

ageing is required to reveal the programmed dysfunction in insulin sensitive organs leading to 

metabolic dysfunction338. 

Severe maternal protein restriction in rats at 5% also reduced fetal pancreas weight, 

islet cell number, and insulin content in the β-cells compared to control at 21 days gestation339. 

This effect on the pancreas was still seen at postnatal 8 weeks suggesting that the impact of 

maternal protein restriction in the rat may be in part via reduced insulin secretory capacity335, 

339. Consistent with this, maternal protein restriction at 8% increased the rate of apoptosis and 

reduced the rate of proliferation of β-cells compared to control in 19.5 to 21.5-day-old fetuses 

(only females examined) which persisted 21 days after birth340. Four-month-old female 

offspring of dams that were protein restricted during pregnancy and lactation have reduced 

pancreatic islet number, islet size and overall β-cell mass, but no effects were observed in male 

offspring338. In four-month-old females, the basal insulin concentration was half that of males, 

showing that impairment in β-cell function in offspring of protein restricted mothers at this age 

is sex-specific338. Overall, insulin secretion in male and female offspring of protein restricted 

mothers also tends to be lower compared to controls at 1 year of age333. 

In the rat, some studies report that maternal protein restriction during gestation337 or 

throughout gestation and lactation331 enhances insulin sensitivity at 4 months of age. In contrast, 

others report that maternal protein restriction during gestation and lactation reduces insulin 

sensitivity in males at 4 months338. Insulin sensitivity measured by GTT in 110-day-old males, 

but not females, is enhanced by maternal protein restriction in gestation and lactation combined 

or lactation alone336. In contrast, protein restriction in gestation alone impaired insulin 
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sensitivity in 110-day-old males, but not females, compared to controls336. Restriction of 

maternal protein to 5% of the total diet, compared to 15%, in the last trimester of gestation, 

does not alter submaximal glucose utilisation or production rates in progeny at 8 weeks (only 

females studied)335.  

Although experimental in vivo studies in the rat have not consistently shown links 

between maternal protein deprivation and altered glucose homeostasis postnatally, some in 

vitro studies do report alterations in the structure and functional development of key tissues for 

insulin action, including skeletal muscle, liver and adipose tissue, in adult offspring following 

maternal protein restriction328, 331, 338, 341-347. In male rats at 130 days of age, phosphorylation of 

AKT in skeletal muscle and visceral adipose tissue increased 4-6 fold with insulin-stimulation 

in controls, but did not change in tissues from male offspring of protein restricted mothers 

suggesting peripheral insulin resistance in the signalling pathway338. Insulin-stimulated 

phosphorylation of AKT in skeletal muscle and visceral adipose tissue did not differ between 

130-day-old female offspring from control and protein restricted mothers, however, implying 

sex-specific effects of maternal protein restriction on insulin sensitivity in the peripheral 

tissues338. In vitro insulin sensitivity of skeletal muscle strips from three-month-old offspring 

of protein restricted mothers is increased in association with increased insulin-stimulated 

glucose uptake, insulin receptor concentration, and GLUT4 protein within plasma membranes 

in skeletal muscle328. These effects of maternal protein restriction differ from those observed 

following uterine artery ligation, where GLUT4 protein concentration in fetal and postnatal 

skeletal muscle were not altered348. Decreased membrane-associated GLUT4 in skeletal muscle 

after maternal protein-restriction328 is however consistent with the finding that 18-week-old 

offspring of dams fed an 8% protein diet during gestation and lactation, compared to 20% 

protein, have impaired glucose turnover and glucose utilisation in M. soleus, a slow twitch 

oxidative muscle331.  
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Protein restriction leads to reduced liver size and increased visceral fat in both 

absolute and relative terms in 130-day-old male rats, compared to controls. However, these 

effects were not observed in females at the same age338. Structural and functional development 

of the liver is altered in adult offspring of protein restricted pregnant rats. In offspring of 

mothers fed diets containing 8% protein, compared to 20% protein, insulin stimulation in vitro 

in isolated perfused liver cells increased glucose output 329. This is in contrast to the expected 

action of insulin in the liver to suppress endogenous glucose output349. This was in conjunction 

with a three-fold increase in the number of insulin receptors, increased insulin uptake and 

increased insulin degradation in the livers of protein-restricted offspring. This suggests that 

protein restriction increases hepatic insulin sensitivity, but alters the post-receptor signalling 

mechanisms 329.  

Many metabolic processes are known to be zoned within specific areas of the liver. 

Glucokinase (GK), the insulin sensitive enzyme that converts glucose to glucose-6-phosphate 

and the rate-limiting step in the glycolytic pathway, is essentially located in the perivenous 

region of liver parenchyma345. Fructose 1,6-bisphosphatase, another glycolytic and insulin 

sensitive enzyme, and phosphoenolpyruvate carboxykinase (PEPCK), an enzyme involved in 

gluconeogenesis, are predominantly located in the periportal regions343, 344. Offspring of rats 

that were protein restricted (6% protein diet) during pregnancy have 50% lower expression of 

GK in the perivenous parenchymal regions of the liver, compared to offspring of control fed 

(20% protein) animals, whereas PEPCK activity was increased by 100% in the periportal 

regions346. Therefore, there is impairment in the ability of the liver to utilise glucose as a fuel 

through glycolysis, and an increase in activity of enzymes, like PEPCK, responsible for glucose 

production, resulting in a net potential to over-produce glucose. Such changes could in part 

account for the hyperglycaemia found in humans who were small at birth. More recently, the 

lobular volume in livers of offspring from 8% protein restricted mothers was shown to be half 

that of control offspring (maternal 25% protein feed)347.  
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In the rat, adipocytes isolated from offspring from protein-restricted dams have 

significantly higher in vitro basal and insulin-stimulated glucose uptakes than controls, with a 

three-fold increase in insulin receptors and significantly higher basal and insulin-stimulated IRS 

associated PI3K activity341. In contrast, insulin-enhanced glucose uptake and inhibited lipolysis 

in adipocytes from control offspring, but not in offspring of protein-restricted mothers342. 

Chickens have also provided an alternative model in which to study the effects of 

protein restriction, independent of maternal and placental factors, through the in ovo removal 

of albumin163. Albumin removal tends to reduce weight at hatching (p<0.06)350, and reduces 

breast muscle and adipose mass in absolute but not relative terms at 25, 40 and 55 weeks163. At 

10 weeks, plasma glucose remained higher at 30 minutes after an oral glucose bolus in the 

albumin-deprived group compared to control suggesting glucose intolerance163. However, 

glucose tolerance was not altered at later ages in these protein-deprived chickens, and insulin 

sensitivity measured by ITT in older adult hens at 51 weeks also showed no effects of albumin 

removal163. 

 

 

In the rat, maternal hypoxia (10% O2 compared to 21% for control) in the last two-

thirds of gestation (day 7-21), reduces size at birth (-12%) and at 28 days of postnatal age, and 

reduces insulin sensitivity as measured by homeostatic model assessment (HOMA) without 

changes in plasma glucose or insulin concentrations351. However, levels of PEPCK protein were 

increased, and levels of GLUT2, AKT and the IRS-2 were reduced in the liver at birth and at 

28 days of age in offspring of hypoxic mothers351. At 11 weeks, triglycerides were increased 

and phosphorylated AKT (p-AKT/AKT) and AMPK (p-AMPK/AMPK) in skeletal muscle 

were reduced in the pups from the hypoxic dams352. Insulin infusion, however, did not alter 

GLUT4 translocation in maternal hypoxia-exposed pups compared to a two-fold increase seen 

in the controls suggesting a defect in signalling of glucose uptake in muscle352.  



58 
 

 
 

A shorter period of maternal hypoxia (10% O2 compared to 21% for control) 

throughout the last third of gestation (day 15-21) reduces size at birth by 12%. At 4 months of 

age, protein expression of IRS-1 and p-AKT, which are involved in glucose metabolism, was 

reduced in the liver of offspring of hypoxic mothers353. Levels of PKC, a kinase involved in 

lipid metabolism, and Akt-1 and Akt-2 were also reduced in the liver of offspring of hypoxic 

mothers, however, similar decreases were observed in offspring of mothers pair-fed during 

pregnancy, to account for the decreased feed intake during hypoxia, suggesting a contribution 

of maternal undernutrition. Protein levels of the insulin signalling molecules IRS-1, p85α, and 

Akt-1 were not altered in skeletal muscle following maternal hypoxia, but levels of Akt-2 were 

reduced. In addition, GLUT4 expression in skeletal muscle was reduced in four-month-old 

offspring of hypoxic mothers to a greater degree that observed in offspring of pair-fed 

pregnancies, suggesting reduced potential for insulin uptake in this target tissue following 

maternal hypoxia353. 

 

 

 

Naturally occurring variation in size at birth or spontaneous IUGR due to litter size 

has long been known in the pig with “runt piglets” often born to larger litters354. This natural 

variation can result in 2-3 fold variations in size at birth within the same litter and is partly due 

to the competition for space for implantation and limited growth of placentas and fetuses in 

larger litters354, 355. This reduction in placental growth impairs oxygen and nutrient transfer to 

the fetuses limiting their growth. Overall these IUGR pigs are asymmetrically growth-restricted 

and generally thin at birth354, have reduced muscle mass and fibre number, increased adiposity, 

and decreased lean-to fat-ratio compared to larger litter mates355, 356, consistent with 

observations in IUGR humans229, 239, 357.  
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Pigs that are categorised as low birth weight grow faster in the first month of age 

compared to the larger littermates suggesting neonatal catch-up growth after spontaneous 

IUGR358. Spontaneous IUGR in pigs, as indicated by thinness at birth, and fractional neonatal 

catch-up in the first month, both independently predicted increased insulin sensitivity at 3 

months in males, while thinness at birth but not fractional neonatal growth rate predicted 

impaired insulin sensitivity in females358. At 12 months of age catch-up growth predicted 

impaired insulin sensitivity in both sexes358. Other components of the metabolic syndrome such 

as raised mean atrial pressure and adiposity are also increased in spontaneous IUGR piglets359, 

360. Hence, natural variation of fetal growth induces programming of several components of the 

metabolic syndrome in this species. 

 

 

Twinning in sheep is relatively common with the majority being dizygotic361. 

Therefore, each placenta is distinct and due to reduced area of placentation the availability of 

nutrient supply is reduced. Twins are often born premature compared to singleton births and 

therefore the combination of nutrient competition and premature delivery may both contribute 

to their fetal growth restriction361. At approximately day 120 of gestation, glucose (-22%) and 

insulin (-20%) are reduced in twins compared to singletons, likely contributing to the reduction 

in fetal weight (-4%)362. In triplet lambs, fetal weight at 120 days is 23% less than that of 

singletons, although not significantly different from that of twins363. By day 140 of gestation 

(term at ~145 days), fetal twins have fewer placentomes (-35%) and reduced weight of the 

caruncular tissues (-28%) and of total placentomes (-33%), compared to singletons364. Together 

this reduces nutrient supply, especially when the demand is increased in late gestation, and 

reduces fetal weight by 16% at 140 days364. Differences in singleton and twin growth trajectory 

in utero appear to be determined early in gestation and may reflect placental capacity362-364. In 

near-term fetuses the liver:brain weight ratio is reduced in the lighter compared to the heavier 
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twin suggesting head sparing in the greater restricted of the two365. Birth weight is reduced in 

twins (-17 to 30%) compared to singletons, as are other measures of size at birth such as crown 

rump length (-8 to -10%), chest girth (-7 to -8%) and abdominal circumference (-6%); also 

consistent with asymmetrical IUGR362, 366-369, not unlike that seen in human studies23, 24.  

Despite the differences in size at birth, there is no difference in neonatal growth rates 

(0-3 months) between twin and singleton lambs368. Others show that the growth rates from birth 

to 10 months are stronger predictors of glucose and insulin responsiveness to an IVGTT than 

birth weight, however, these associations were not different in singletons or in twins 

separately367. In addition, glucose or insulin responsiveness after an IVGTT did not differ 

between the lighter and larger twin365. Similarly at 11 months, the expression of p85α and PI3K 

in perirenal fat or skeletal muscle and GLUT4 expression in skeletal muscle do not differ 

between single and twin lambs368.  

Hancock et al (2006) euthanised one twin at 42-43 days gestation (after the period of 

placental attachment in sheep) and allowed the other (“reduced” twin) to birth naturally and 

followed growth to 24 months366. These “reduced” twins had a lower birth weight compared to 

singletons (-13%) but were heavier than control twins (+9%). Growth rates from birth to 

weaning tended to be higher in the reduced twin lambs, compared to both singletons and control 

twins, whereas growth rates from weaning to 12 months were greater in control twins compared 

to singletons and reduced twin progeny366. At 12, 18 and 24 months, body weights were not 

different between the three groups, but control twins and reduced twins had increased fat mass 

(+33%, +40%) and reduced lean mass (-5%, -6%) respectively compared to singletons at 24 

months366. At 3 years of age reduced twins had a greater percentage fat mass and lower lean 

weight than singletons, whereas the control twins were intermediate between the singleton and 

reduced twins for both fat mass and lean weight369. Basal and IVGTT challenged glucose and 

insulin levels did not differ at 11 months and at 3 years between control twins, reduced twins 

or singletons or between the sexes, suggesting no impairment of glucose tolerance368, 369. 
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However, the insulin responsiveness relative to glucose levels was higher in twins compared to 

singletons suggesting that twins release more insulin for a given plasma glucose concentration 

achieved368. Further, 3-year-old sheep conceived as twins (control and reduction twins 

combined) had a lower insulin sensitivity assessed by HEC compared to singletons369. Overall 

when insulin sensitivity data for female singletons and female control twins were pooled and 

compared to the corresponding pool of males, males had a higher insulin sensitivity than 

females at 3 years of ages. This contrasts with human studies where males appear to be the most 

sensitive to the programming of metabolic disease65, 176-178. However in a more recent study in 

humans, females who were at the extremes of the birth weight range (both low and high) had 

the highest risk of T2DM compared to males perhaps suggesting that females at the ends of the 

birth weight ranges have the highest risk of insulin resistance266. In sheep, insulin sensitivity 

was not different in singletons, reduced twins or control twins at 1 year of age, suggesting that 

the impairment in insulin sensitivity does not become apparent until later life369. The loss in 

insulin sensitivity at 3 years of age was independent of current bodyweight, adiposity and lean 

mass, but was not significant when corrected for birth weight. This suggests that the effect of 

litter size on insulin sensitivity in adult sheep is due to differences in prenatal environment and 

not an indirect consequence of altered adult body composition.  

In ewes selected for their ability to conceive litters of multiple lambs (singletons to 

quintuplets), a series of experiments run by Greenwood et al 1998-2004 examined postnatal 

outcomes in male sheep of low (<2.9 kg) or high (>4.3 kg) birth weight370-373. These low and 

high birth weight male lambs were reared on milk replacer either ad libitum to enable rapid 

postnatal growth (>300 g/d), or at a feeding level sufficient for the maintenance of a slower 

growth rate of 150 g/d. Only males were studied and litter size effects were only reported for 

size at birth370-373. Although not reported, these low birth weight male lambs, appeared to come 

from ewes carrying larger litters, grew faster to 20 kg live weight, and were hyperphagic for 

any given live weight with a 13% higher total feed intake from birth to 20 kg live weight370, 371. 
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High birth weight lambs had a greater weight of M. semitendinosus, M. extensor digitorum 

lateralis and M. extensor carpi radialis muscles than offspring of low birth weight at 20 kg live 

weight371. However, the number and proportion of muscle fibre types did not differ between 

the low and high birth weight groups371. Low birth weight lambs reared on the rapid growth 

diet had higher plasma insulins than high birth weight reared slowly372. 

 

 

Small animal models have many logistical advantages for studies into the 

mechanisms that underpin the DOHaD hypothesis. These include rapid development and 

shorter lifespans such that intergenerational and ageing effects can be examined more readily 

than in humans or larger animals. To date, much of the evidence for programming of insulin 

sensitivity has been generated in rodents. These offspring of maternal feed-restricted310-312, 335, 

374 and protein-restricted mothers332, 335, 375-377 display some of the elements of programming of 

glucose homeostasis such as impaired insulin secretion and insulin resistance. However, in 

human populations, much of variance in size at birth is due to placental insufficiency rather 

than malnutrition378, 379. In addition, reducing nutrient intake of the mother does not alter oxygen 

levels, another important determinant of fetal growth46, 47. Placental restriction induced by 

uterine ligation in rats causes IUGR and programs many components of the metabolic 

syndrome276, 280, 380, 381. However, many of these IUGR models in the rat do not exhibit neonatal 

catch-up growth276, 280, 381, which is an important and independent risk factor for the 

development of cardio-metabolic disease in humans83, 382-384.  

Species differences in the timing of development also limit translation of some 

models. In the human, the endocrine pancreas develops in late gestation98. This contrasts with 

pancreatic development in the altricial species commonly used as animal models for 

programming studies, such as the rat and mouse98. In rats and mice, the pancreas continues to 

develop into the lactation period and therefore intrauterine insults are likely to produce different 
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effects on glucose homeostasis in these altricial species than those observed in the human. 

Therefore, more precocial small animal models in which the timing of organogenesis and 

pancreatic development more closely resemble the human fetus are required. In addition, 

placental restriction/insufficiency accounts for the majority of IUGR, even in under-developed 

countries where malnutrition is common31. Hence, animal models of low birth weight based on 

placental restriction of oxygen and nutrient supply, rather than maternal undernutrition, that 

more closely resemble human IUGR, are required.  

A significant gap in both the studies in IUGR humans and in animal models is that 

in most studies only one sex is assessed, often due to researchers wishing to avoid variation due 

to effects of the hormone cycle of females. There is compelling evidence that there are sex-

specific programming effects for cardiovascular and now for metabolic diseases266, 385, 386, 

indicating that consideration of both sexes is required.  

In litter bearing species, spontaneous fetal growth restriction is commonly observed 

in larger litters. Spontaneous fetal growth restriction based on litter size has advantages as a 

model as it utilises natural variation in litter size without the need for dietary or surgical 

interventions. Surgical models involve the additional stress of surgery, anaesthesia and are often 

associated with increased rates of spontaneous fetal loss (as little as 14% survival)283. Dietary 

restriction models vary in the degree, severity and timing of the restriction and can also impact 

on placental development and function387. These surgical and feed restriction models often have 

abrupt/acute onsets in mid-late pregnancy, which differs from IUGR in humans. In addition, 

animal models with smaller litter sizes have an advantage in that there is no need to cull pups 

postnatally to “standardise” the postnatal environment, which can be associated with variation 

in nutrient intake by the pups during the lactation period. 
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The guinea pig is a precocial species308, with a mean litter size of 3-4 pups388 with 

the IMVS Tri-colour strain used in this thesis having litter sizes of 1-5 pups. The guinea pig has 

a relatively long gestation period compared to other small animals such as the rat and mouse 

therefore several developmental events that occur in utero are similar to that of the human308, 

389. The fat content of guinea pig pups at birth is 10-20%325 similar to that in humans (16%), in 

contrast to other species such as the sheep (2%, in the fetus near term at 140 days), pig (1%), 

rat (2%) and mouse (1%)363, 390. Development of the pancreas, liver, kidney and skeletal muscle 

are mostly complete at, or soon after, birth in the guinea pig308, 388, 389 suggesting this species is 

an appropriate animal in which to investigate prenatal programming of metabolic dysfunction.  

In addition, uteroplacental insufficiency via unilateral uterine artery ligation in the 

guinea pig increases appetite, and increases epididymal (visceral) adiposity in young adult male 

(females not assessed) offspring284. As previously discussed, maternal feed restriction at either 

70% or 85% ad libitum feeding from day 30 to day 60 of gestation impairs cholesterol and 

glucose homeostasis, increases appetite, and increases adiposity in guinea pig progeny, 

primarily in males309-312. Therefore, maternal feed restriction309-312 and uteroplacental 

insufficiency284 in the guinea pig program much of the later dysfunction associated with the 

metabolic syndrome. However, in maternal feed restriction studies size at birth was a stronger 

predictor of many of these adult outcomes than the maternal nutritional treatment suggesting 

that the effects are programmed by size at birth rather than nutrition itself. 

 

 

In the guinea pig, with increasing litter size from one to five pups there is a decrease 

in mean birth weight in males by 31% and females by 34% in litters of five pups compared to 
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mean birth weight of singleton pups of the same sex391-394. Average placental size is decreased 

by 28% at day 65 gestation (term ~ 70 days) in litters of five compared to litters of one 

suggesting that spontaneous fetal growth restriction due to increased litter size in the guinea pig 

has a substantial placental component391-393. Like IUGR in humans, spontaneous IUGR guinea 

pig offspring from larger litters undergo neonatal catch-up growth with percentage weight gain 

from birth to day 28 (weaning) being 308% and 319% in males and females respectively in 

litters of five, compared to 267% and 247% in males and females from litters of one394. 

Therefore, these larger litters are producing offspring with IUGR with a substantial placental 

component and these offspring undergo catch-up growth in the neonatal period in both sexes391-

394. Thus, the consequences of spontaneous IUGR due to natural variation in litter size provides 

a potential model where catch-up growth and its impact on perinatal programming of glucose 

metabolism in both sexes can be examined.  
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 Hypothesis and Aims 

 

To address these gaps in knowledge the studies in this thesis were designed to test the following 

general hypothesis:  

 

Spontaneous growth restriction due to increasing litter size in the guinea pig induces neonatal 

catch-up growth, postnatal hyperphagia, and obesity and impaired insulin sensitivity in young 

adults. 

 

To test this hypothesis, studies were conducted to address the following aims: 

 

1/ To characterise the effects of natural variation of litter size on birth phenotype, 

neonatal and postnatal growth, postnatal appetite and adult body composition in male and 

female guinea pigs. (Chapter 2) 

2) To develop and validate methodology for measurement of whole body and tissue 

specific insulin action in male and female guinea pigs. (Chapter 3) 

3) To characterise the effects of natural variation in litter size, birth phenotype and 

catch-up growth on insulin sensitivity and sites of insulin action in adult male and female guinea 

pigs. (Chapter 4)  
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Spontaneous intrauterine growth restriction due to 

increased litter size in the guinea pig programs postnatal 
growth, appetite and adult body composition 

 
 
 

 

 Overview 

The following study used 68 pregnant dams to produce the offspring (n=158, males: 

n=78, females: n=80). Of these 158 animals, approximately 20 were from control pregnancies in 

another study investigating the effects of maternal feed restriction on postnatal cholesterol 

metabolism. These animals had size at birth, feed intake and postnatal growth measures recorded, 

but their body composition could not be included in the data analysis for this chapter, as they were 

fed a high-cholesterol diet as adults. I conducted all remaining animal work, including managing 

the mating program, monitoring growth and wellbeing of dams during pregnancy, assessing birth 

parameters, monitoring postnatal growth and feed intake, all tissue dissections and all data 

analysis. This enabled me to assess the first main aim of my thesis to determine the effects of 

spontaneous IUGR due to natural variation in litter size on postnatal growth, appetite and adult 

body composition in the guinea pig. This chapter has been published in the Journal of 

Developmental Origins of Health and Disease (395Appendix 1), and has been reproduced exactly 

as published according to The University of Adelaide guidelines. 
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 Abstract 

Intrauterine growth restriction (IUGR) and subsequent neonatal catch-up growth are 

implicated in the programming of increased appetite, adiposity and cardiometabolic diseases. 

Guinea pigs provide an alternate small animal model to rodents in which to investigate 

mechanisms underlying prenatal programming, being relatively precocial at birth, with smaller 

litter sizes, and undergoing neonatal catch-up growth after IUGR. The current study therefore 

investigated postnatal consequences of spontaneous IUGR due to varying litter size in this species. 

Size at birth, neonatal, juvenile (post-weaning, 30-60 d) and adolescent (60-90 d) growth, juvenile 

and adolescent food intake and body composition of young adults (120 d) were measured in 158 

male and female guinea pigs from litter sizes of one to five pups. Compared to singleton pups, 

birth weight of pups from litters of five was reduced by 38%. Other birth size measures were 

reduced to lesser degrees with head dimensions being relatively conserved. Pups from larger litters 

had faster fractional neonatal growth and faster absolute and fractional juvenile growth rates 

(P<0.005 for all). Relationships of post-weaning growth, feed intakes and adult body composition 

with size at birth and neonatal growth rate were sex-specific, with neonatal growth rates strongly 

and positively correlated with adiposity in males only. In conclusion, spontaneous IUGR due to 

large litter sizes in the guinea pig causes many of the programmed sequelae of IUGR reported in 

other species, including human. This may therefore be a useful model in which to investigate the 

mechanisms underpinning perinatal programming of hyperphagia, obesity and longer-term 

metabolic consequences.  

 

Keywords: adiposity, appetite, guinea pig, litter size, sex differences 
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 Introduction 

Small size at birth, following intrauterine growth restriction (IUGR), and/or subsequent 

neonatal catch-up growth are implicated in the initiation of permanent metabolic and/or 

physiological adaptations that persist through adult life. This “programming” may lead to 

increased appetite, adiposity (particularly of visceral depots) and cardiovascular and metabolic 

diseases including insulin resistance and glucose intolerance in adults16, 396. Therefore, animal 

models that mimic human IUGR aetiology, develop cardiovascular and metabolic sequelae with 

ageing after IUGR and/or catch growth and are comparable to the human in their relative maturity 

at birth are required so that underlying mechanisms and intervention strategies can be investigated.  

Small animal models have logistical advantages for such studies, including relatively 

rapid development, and short lifespans facilitating study of the development of progeny with 

ageing and intergenerational effects. Many small animal models of IUGR have used maternal 

feed310-312, 335, 374 or protein restriction332, 335, 375-377 to restrict fetal growth and investigate long-

term outcomes. In developed countries, however, placental insufficiency rather than maternal 

undernutrition accounts for the majority of human IUGR378, 379. Placental restriction induced by 

uterine artery ligation in rats causes IUGR and programs many components of the metabolic 

syndrome276, 280, 380, 381. These IUGR rat models often lack catch-up growth in the early neonatal 

period276, 280, 381, which is an independent risk factor for the development of adult metabolic disease 

in humans83, 382-384. 

Guinea pigs provide an alternate species in which to investigate developmental 

programming of health and disease. The guinea pig has a smaller litter size than the rat280, 374, 392, 

397, is relatively precocial at birth, and resembles the human fetus in having a body fat composition 

of around 10% at term398. In addition, and unlike the rat, the guinea pig spontaneously develops a 

phenotype resembling type 2 diabetes and including hyperglycaemia at 4 months of age399, 400 

making it a good species in which to investigate whether IUGR accelerates the development of 
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metabolic disease with ageing. Maternal feed restriction in the guinea pig at 85% or 70% of ad 

libitum intake reduces fetal and placental weights, increases visceral adiposity in late gestation 

fetuses and alters placental structure impairing function309, 401, 402. Offspring of feed restricted 

mothers do not undergo neonatal catch-up growth, but are hyperphagic post-weaning, and as adults 

have impaired glucose tolerance and cholesterol homoeostasis, increased blood pressure and 

visceral adiposity310-312, demonstrating that prenatal restriction programs metabolic dysfunction in 

this species. These adverse effects are mostly seen in males, suggesting developmental 

programming in the guinea pig is sex-specific as described in other species, including humans385. 

Similarly uterine artery ablation in the mid-gestation guinea pig produces offspring with 

disproportionate IUGR (also known as asymmetrical IUGR), IUGR, and male offspring are 

hyperphagic post-weaning and have increased epididymal adiposity (postnatal outcomes were not 

assessed in females)284, 403. Furthermore, these surgical models impose sudden restriction on 

normal fetal growth at ~0.5 of term, and induce fetal death of between ~50 and 70% of pups283. 

Interestingly, at least in the case of the maternal undernutrition studies where correlation analyses 

were reported, size at birth was a stronger predictor of adult outcomes than was nutritional 

group310-312. In the present study, we therefore chose to investigate the effects of spontaneous fetal 

growth restriction that occurs with variation in litter size in the guinea pig.	

Spontaneous variation in litter size in the guinea pig also restricts fetal and placental 

growth in larger litters391, 392. Importantly, IUGR progeny from large litters undergo neonatal 

catch-up growth394. Consequences of this spontaneous IUGR due to litter size for subsequent 

postnatal growth, appetite and adult body composition have not been assessed. We therefore 

characterized the effects of variation in litter size and hence size at birth on these outcomes in the 

guinea pig. Because developmental programming is sex-specific in other species and in the guinea 

pig following maternal feed restriction, we investigated outcomes in both male and female 

progeny. 
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 Materials and Methods 

 

All guinea pigs had ad libitum access to a commercially-prepared guinea pig and rabbit 

ration (diet L102, Milling Industries Stockfeeds, Blair Athol, SA, Australia) containing 2640 

kcal/kg digestible energy, 19.0% crude protein and 2.5% crude fat, and supplemented with an 

increased content of vitamin E (165 mg/kg). All guinea pigs had ad libitum access to tap water 

with added ascorbic acid (400 mg/l, Ace Chemical Company, Camden Park, S.A. Australia). 

Nulliparous female guinea pigs were obtained at 3-4 months of age (Institute of Medical and 

Veterinary Science Tri-coloured, Gilles Plains Resource Centre, Gilles Plains SA, Australia) and 

housed in a 12:12 h day:night cycle throughout the experiment. Females were individually housed 

in wire cages and after 2-4 weeks acclimatisation were weighed three times per week, and checked 

for oestrus daily as indicated by a rupture of the vaginal membrane404. A single male was placed 

with the female during her oestrus (2-3 days of ~15 days cycle) and pregnancy was detected by 

the presence of a copulatory plug on the following morning. Pregnancy was confirmed (n=68) if 

the animal failed to return to oestrus in the subsequent cycle. At day 60 of gestation dams were 

transferred to individual housing in plastic tubs with paper bedding.  

After spontaneous delivery at term (range 65-74 days, mean ± S.E.M. 69.7 ± 0.1 days), 

numbers, sex, weights, abdominal circumference and nose to rump lengths of all liveborn offspring 

were measured and recorded on the day of birth or following morning if delivered overnight 

(n=158 offspring, males: n=78, females: n=80). Head widths (n=148, males: n=71, females: n=77) 

and lengths (n=144, males: n=69, females: n=75) were also measured in a subset of the progeny. 

Each dam was housed with her offspring and provided with ad libitum lucerne chaff in addition to 

the standard diet. Litters were weighed at least five times per week, until weaned at days 28-30 of 

age. Absolute growth rates (AGRs) for weight were calculated from the slope of the growth curve 
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from day 10 until weaning (AGR10-28), with data from birth to day 10 excluded due to non-linear 

growth over this period (Figure 2-2). After weaning all guinea pigs were housed individually and 

were weighed at least three times per week from day 30 until post-mortem at day 115 ± 1. Puberty 

in the guinea pig occurs between day 56-60 in males, and between day 30 and day 134 in females, 

with a mean age at puberty for females of 68 ± 22 days (mean ± SD)404. AGRs were, therefore, also 

calculated for juvenile (weaning - day 60, AGR30-60), and adolescent (days 60-90, AGR60-90) 

periods. Current fractional growth rate (FGR) for weight for each stage was calculated as AGR 

divided by the animal’s weight at the beginning of that stage. Feed intakes were recorded daily 

from day 40 to day 100 (61 males, 58 females) by weighing the filled feed hopper at 9 am, and 

then again before refilling at 9 am the following day. Relative feed intakes were calculated by 

dividing daily feed intake by body weight. Average feed intakes for each animal were then 

calculated for juvenile (days 40-60) and adolescent (days 60-90) periods, and feed efficiency was 

calculated as average daily weight gain divided by average daily absolute food intake over each 

period. 

 

 

At day 115 ± 1, a subset of animals (n=41, 22 males, 19 females) selected randomly 

within each sex were humanely killed between 2 pm and 4 pm by lethal injection of sodium 

phenobarbitone. Fat depots (interscapular, omental and right side of the neck as well as bilateral 

axillary, retroperitoneal, perirenal, and groin depots) and bilateral skeletal muscles (hindlimb: M. 

biceps femoris, M. semitendinosus, M. gastrocnemius, M. plantaris, and M. tibialis; forelimb: M. 

biceps brachii) were dissected and weighed. Visceral adipose weight was calculated as the sum of 

weights of the left and right perirenal and retroperitoneal fat depots. The omental fat associated 

with the gastrointestinal tract is highly insulin resistant, drains directly into the portal vein and is 

strongly associated with hepatic insulin resistance405 and was, therefore, weighed and analysed 
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separately. Subcutaneous adipose weight was calculated as the sum of weights of left and right 

axillary and groin fat, right side of the neck fat and interscapular fat depots. Visceral and 

subcutaneous fats were summed to give a measure of combined adiposity. The weights of dissected 

skeletal muscles were summed to obtain combined skeletal muscle mass. A high adiposity to lean 

tissue ratio is a risk factor for many cardiovascular and metabolic diseases406. A ratio of the 

combined adiposity to the combined muscle mass was, therefore, calculated as an index of 

adiposity relative to lean tissue. 

 

 

Data were analysed using SPSS 23.0 for Windows (IBM, Armonk, NY, USA). The 

effects of litter size on weight before mating, weight gain during gestation and change in weight 

during lactation were analysed by repeated-measures ANOVA. Effects of litter size on proportions 

of liveborn and stillborn progeny were analysed by 2 test. The effects of litter size and sex on 

birth phenotype and postnatal outcomes were analysed by mixed models ANOVA, including the 

dam as a random variable to account for effects of a common maternal environment. Bonferroni’s 

post-hoc comparisons were used to compare differences in maternal and offspring outcomes 

between litter sizes. Where effects of litter size differed between sexes, outcomes were analysed 

separately in each sex. Relationships between size at birth and growth rates were examined by 

Pearson’s correlation analysis, separately in each sex. Because birth weight ranges overlapped 

between litter sizes, and in order to assess the effect of catch-up growth on postnatal phenotypes, 

the independent effects of birth weight and neonatal growth rate for weight on post-weaning 

outcomes were examined by multiple linear regression separately in each sex. Gestation length 

was not correlated with outcomes when included in initial models and was, therefore, excluded 

from final multiple linear regression models. A P-value of ⩽ 0.05 was accepted as statistically 

significant. All results are expressed as mean  S.E.M.  



77 
 

 
 
 
 

 Results 

 

Maternal weight at the oestrus before mating did not differ between the litters, however, 

weight over the 10 days prior to mating differed over time (P<0.001) and differed between the 

litter sizes over time (P=0.048, Figure 2-1). Dam weight on the day of mating (G0) correlated 

positively with subsequent litter size (r=0.280, P=0.025, data not shown).  

Weight increased with time over gestation, and differed between litter size groups, and 

the change in weight with time also differed between litter sizes (P<0.001 for all, Figure 2-1). The 

change in maternal weight in absolute terms from mating to day 60 of gestation (G60) increased 

with litter size (P<0.001, Table 2-1). Dams with litter size of three, four and five gained more 

weight over the first 60 days of gestation than those with litter sizes of one or two (Table 2-1). In 

contrast, change in maternal weight from mating to the day after delivery, reflecting weight of the 

dam herself, was lower in dams that delivered five pups than in all other groups (Table 2-1). 

Maternal feed intakes in mid gestation were greater in dams carrying five fetuses than in those 

with smaller litters (Table 2-1). In late gestation, dams carrying four or five fetuses ate more than 

dams carrying one or two fetuses (Table 2-1).  

Weight during lactation also differed between dams that delivered different litter sizes 

(P=0.036), changed with day (P<0.001), and the change in weight over time differed between the 

litter sizes (P=0.023, Figure 2-1). Dams that gave birth to litters of five gained more weight during 

lactation than all other litter sizes (Table 2-1).  
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Figure 2-1 Maternal weight in pregnancy and lactation according to litter size. 
Maternal weight during the first 60 days of gestation (G) and throughout lactation (L). Dams 
carrying litters of five are shown in downwards triangles, four in upward triangles, three in 
circles, two in squares and singletons in diamonds. * P< 0.05 for litter size effects at these time 
points. 
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Table 2-1 Effect of litter size on maternal weights, absolute growth rates and feed intake during pregnancy. 
 

Outcome 
  Litter Size   Significance 

One Two Three Four Five LS 
       
Number of Litters 5 18 25 15 4  
Surviving:stillborn pups at birth 5:0 36:0 71:4 49:11 10:10 <0.001 
Total Pup weight per litter (g) 120 ± 2a 221 ± 5b 295 ± 6c 367 ± 8d 384 ± 31d <0.001 
Gestation length (days) 71 ± 1a 71 ± 0a 70 ± 0 a,b 70 ± 0 a,b 68 ± 1b 0.012 
       
Maternal Weights       
 Pre-mating Weight (g) 589 ± 11 637 ± 19 630 ± 14 651 ± 15 718 ± 41 0.091 
  Weight through gestation, G0-G60 (g) 217 ± 35a 329 ± 16a 408 ± 13b 440 ± 17b 442 ± 20b <0.001 
  Maternal weight, G0-L0 (g) 128 ± 17a,b 165 ± 22a 173 ± 14a 153 ± 19a,b 42 ± 29b 0.025 
  Maternal weight, L0-L30 (g) 26 ± 20a 44 ± 13a 51 ± 7 a 21 ± 14a 117 ± 21b 0.003 
       
Maternal Feed Intake       
 Mid-gestation, G20-G40 (g/day) 31 ± 3a 40 ± 2a 41 ± 1a 43 ± 2a 59 ± 4b <0.001 
 Late-gestation, G40-G60 (g/day) 38 ± 3a 42 ± 1a 46 ± 1a,b 47 ± 1b 50 ± 3b 0.001 
       

Data are expressed as mean ± S.E.M. for dams carrying each of the litter sizes (LS). a,b,c,d Means with different superscripts differ, P<0.05.
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Gestation length differed between litter sizes, and was shorter in dams that delivered 

five pups compared to those with one or two (Table 2-1). Gestation length correlated negatively 

with the total pup weight in the litter (r= -0.268, P=0.035, n=67). The proportion of pups born 

alive decreased with increasing litter size (P<0.001), falling from 100% in litter sizes of one 

and two, to 94% in litters of three pups, 82% in litters of four pups, and 50% in litters of five 

pups. Stillbirths were unevenly distributed between litters, and were not consistently smaller 

than liveborn litter mates (data not shown). Total litter weight increased with increasing litter 

size (P<0.001), and was greater than three-fold higher in litters of four or five than in singleton 

litters (Table 2-1).  

 

 

Size at birth of liveborn pups included in later studies in terms of weight, length, 

abdominal circumference and weight:length ratio decreased as litter size increased (Table 2-2). 

Birth weight averaged 97 ± 1 g and ranged from 57 to 134 g across the cohort. Pups from 

singleton litters were all heavier than pups from litters of five, whereas some overlap in the 

range of individual birth weights was seen between pups from other litter sizes (Figure 2-2). 

Average birth weight of pups from a litter size of five was 38% lower than those from litter size 

of one, whereas other birth size measures were reduced to a lesser degree (length 18%; 

abdominal circumference 17%; weight:length 26%, Table 2-2). Head lengths and widths were 

relatively conserved in large litters (Table 2-2). Weight:length ratio and body mass index, 

measures of disproportionate growth, decreased with increasing litter size (Table 2-2).  
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Table 2-2 Effect of litter size on birth phenotype of live-born pups 
 

Outcome   Litter Size   ANOVA 
One Two Three Four Five LS Sex LS × Sex 

         
Number of litters 5 18 25 15 4    
Number of offspring 5 33 65 46 9    
Male:female Ratio 1:4 18:15 30:35 21:25 3:6    
         
Size at Birth         
 Weight (g) 121 ± 2a 111 ± 2a 96 ± 1b 90 ± 2b 73 ± 6c <0.001 NSD NSD 
 Length (mm) 173 ± 3a 163 ± 2a,b 158 ± 1a,b,c 154 ± 1c 141 ± 4d <0.001 NSD NSD 
 Abdominal circumference (mm) 117 ± 4a 111 ± 2a 104 ± 1b 103 ± 1b 96 ± 2b <0.001 NSD NSD 
 Head length (mm)e 47.1 ± 0.9a 43.8 ± 0.6a 42.2 ± 0.5 a,b 40.4 ± 0.7b 42.7 ± 0.7a,b 0.004 NSD NSD 
 Head width (mm)f 23.5 ± 0.7a 22.0 ± 0.2a,b 22.1 ± 0.2a,b 21.1 ± 0.2b 21.2 ± 0.3a,b 0.024 NSD NSD 
 Weight:length (g/mm) 0.70 ± 0.02a 0.68 ± 0.01a 0.61 ± 0.01b 0.58 ± 0.01b 0.51 ± 0.02c <0.001 NSD NSD 
 Body mass index (kg/m2) 4.05 ± 0.16a,b 4.16 ± 0.08a 3.89 ± 0.04 a,b 3.81 ± 0.06b 3.61 ± 0.13a,b 0.008 NSD NSD 
         

LS × sex, interaction between litter size and sex. NSD: not significantly different, P>0.1 
Data are expressed as actual means ± S.E.M. of offspring in each of the litter sizes (LS) for pups that survived to adulthood and were included in 
growth measures. Statistical models included dam to correct for the common intrauterine environment in multiple birth litters. 
 a,b,c,dMeans with different superscripts differ, P<0.05.  
eHead lengths were not measured in 4 offspring from litter size of three and 10 offspring from litter size of four.  
fHead widths were not measured in 4 offspring from litter size of three and six from litter size of four.
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Figure 2-2 Birth weight distribution and litter size. 
Litter size and birth weights of individual guinea pig pups included in postnatal studies. Each 
symbol indicates an individual pup that survived to young adulthood, lines and whiskers 
indicate means and S.E.M. for each litter size group.  
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Growth rates were non-linear in the first 10 days of life in both sexes (Figure 2-3A 

and B). In repeated-measures analysis of weight measures during the neonatal period, weight 

decreased with increasing litter size in both sexes, and this difference in weight amplified with 

ageing in males but not females (Figure 2-3A and Figure 2-3B). AGR10-28 did not differ between 

litter sizes. Effects of litter size on neonatal FGR differed between sexes, such that in males 

FGR10-28 increased with each increase in litter size from two to four pups (Table 2-3). In 

females, FGR10-28 was greater in pups from a litter size of four than those from litter sizes of 

two or three (Table 2-3). Neonatal AGR and FGR were higher in males than females (Table 2-

3). AGR10-28 correlated positively with birth weight across the full range of litter sizes (r=0.296, 

P<0.001) and in males and females separately (r=0.323, P=0.003; r=0.303, P=0.001, 

respectively, Figure 4A). FGR10-28 correlated negatively with birth weight overall (r= - 0.525, 

P<0.001) and in males and females separately (r= -0.522, P<0.001; r= -0.701, P<0.001 

respectively, Figure 2-4B). 

 

 

Similar to the neonatal period, body weights during the juvenile period did not differ 

between litter size groups in females (Figure 2-3D). In males, juvenile body weights increased 

more rapidly in those from larger litters during this period (Figure 2-3C). AGR and FGR of 

juvenile guinea pigs were higher in those from litter sizes of four compared to those in litter 

sizes of two, and higher in males than females (Table 2-2). AGR30-60 was not correlated with 

birth weight overall, or in males or females separately. FGR30-60 correlated negatively with birth 

weight overall (r= -0.371, P<0.001), and in males (r= -0.398, P<0.001) and females (r= -0.452, 
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P<0.001) separately. In males, AGR30-60 was independently and positively correlated with 

neonatal FGR, but not with birth weight (Table 2-4). AGR30-60 was not independently correlated 

with birth weight or neonatal FGR in females (Table 2-4). In both males and females, FGR30-60 

was negatively correlated with birth weight but not neonatal FGR (Table 2-4).  

 

 

In adolescents, the change in body weight with age differed between litter sizes in 

males (Figure 2-3E), but litter size did not affect weights in females (Figure 2-3F). During the 

adolescent period, neither AGR nor FGRs differed between litter sizes (Table 2-3). AGR60-90 

was higher in males than females, and FGR60-90 did not differ between sexes. AGR60-90 was not 

correlated with birth weight, in males or in females, and was independently and positively 

correlated with neonatal FGR in females only (Table 2-4). Similarly, FGR60-90 was not 

correlated with birth weight, in males or in females, and was independently and positively 

correlated with neonatal FGR in females only (Table 2-4). 
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Figure 2-3 Growth of progeny as neonates, juveniles and during adolescence 
 

Body weights of male (A, C, E) and female (B, D, F) progeny that survived to adulthood and 
were included in growth measures, from birth to weaning (A, B), during the juvenile period (C, 
D) and during adolescence (E, F). Males are shown in closed symbols and females in open 
symbols with offspring from litters of four in upward triangles, three in circles and two in 
squares. Bar in panels C and D indicate weaning of offspring from the dam between 28 and 30 
days after birth.
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Table 2-3 Effect of litter size and sex on postnatal growth rates and food intake.  

Outcome 
Males from Litter Size Females from Litter Size ANOVA 

Two Three Four Two Three Four LS Sex LS × sex 
Postnatal Growth Rates          
Number of Offspring 18 35 21 15 30 25    
 Neonatal          
 AGR10-28 (g/d) 10.7 ± 0.3 10.7 ± 0.2 10.2 ± 0.2 9.4 ± 0.3 9.0 ± 0.2 8.9 ± 0.2 NSD <0.001 NSD 
 FGR10-28 (%) 5.5 ± 0.1a 6.3 ± 0.1b 6.9 ± 0.2c 5.2 ± 0.2a 5.5 ± 0.1a 6.0 ± 0.1b <0.001 <0.001 <0.0081 
 Juvenile          
 AGR30-60 (g/d) 7.5 ± 0.4a 8.7 ± 0a,b 8.9 ± 0.3b 6.0 ± 0.3a 6.2 ± 0.2a 7.1 ± 0.2b 0.0052 <0.001 NSD 
 FGR30-60 (%) 1.86 ± 0.09a 2.29 ± 0.07b 2.59 ± 0.08c 1.66 ± 0.08a 1.85 ± 0.07b 2.24 ± 0.08c <0.0013 <0.001 NSD 
 Adolescent          
 AGR60-90 (g/d)  5.5 ± 0.3 6.4 ± 0.2 5.6 ± 0.2 4.9 ± 0.3 4.9 ± 0.2 5.1 ± 0.2 NSD <0.001 0.0464 
 FGR60-90 (%) 0.89 ± 0.04 1.01 ± 0.03 0.94 ± 0.04 0.92 ± 0.06 0.95 ± 0.03 0.97 ± 0.04 NSD NSD NSD 

Feed Intakes          

Number of Offspring 15 28 16 12 21 17    
 Juvenile (40-60 days)          
  Absolute (g/day) 40 ± 2 43 ± 1 43 ± 1 34 ± 1 36 ± 1 37 ± 1 NSD <0.001 NSD 
  Relative (g/kg/day) 73 ± 2 78 ± 1 78 ± 1 70 ± 2a 77 ± 2b 79 ± 1b 0.0035 NSD NSD 
 Adolescent (60-90 days)          
 Absolute (g/day) 45 ± 2 50 ± 1 50 ± 2 41 ± 3 40 ± 1 42 ± 2 NSD <0.001 NSD 
 Relative (g/kg/day) 65 ± 2 70 ± 1 72 ± 3 70 ± 3 68 ± 2 69 ± 2 NSD NSD NSD 

Feed Efficiency          
 Juvenile (40-60 days) 0.184 ± 0.008 0.197 ± 0.005 0.204 ± 0.006 0.163 ± 0.008 0.177 ± 0.006 0.186 ± 0.008 0.0606 <0.001 NSD 
 Adolescent (60-90 days) 0.177 ± 0.010 0.189 ± 0.006 0.168 ± 0.008 0.155 ± 0.007a 0.179 ± 0.004b 0.173 ± 0.002a,b 0.0407 NSD NSD 

LS × sex , interaction between litter size and sex; AGR, absolute growth rate; NSD: not significantly different, P>0.1; FGR, fractional growth rate.  
Feed efficiency was calculated as average daily weight gain over each period divided by average daily feed intake. Data are expressed as means ± S.E.M. Statistical models included dam to 
correct for common intrauterine environment in multiple births. a,b,c Means with different superscripts differ, P<0.05.  
1In males, neonatal FGR10-28 differed between all litter sizes (P<0.01 for all), while in females, offspring of litters of four grew faster than litter of two and three only (P<0.02 for both).  
2Overall, juvenile AGR30-60 was greater in offspring from litters of four compared to litters of two (P=0.004) only.  
3Overall, juvenile FGR30-60 differed between all litter sizes (P<0.02 for all). 4Adolescent growth rates did not differ between litter sizes in males or females analysed separately.  
5Relative juvenile feed intake was greater in offspring from litters of three and four than in offspring from litters of two (P<0.02 for both).  
6 Juvenile (40-60 days) feed efficiency did not differ between litter sizes in males or females analysed separately. 7 Adolescent feed efficiency was greater in females, and tended to be greater 
overall, in progeny from litters of three pups than in those from litters of two pups (females: P=0.013, overall: P=0.066), and did not differ between litter sizes in males.
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FIGURE 2-4 RELATIONSHIPS BETWEEN ABSOLUTE AND FRACTIONAL NEONATAL GROWTH 

RATE AND BIRTH WEIGHT IN MALE AND FEMALE GUINEA PIGS. 

 
Relationships between absolute (A) and fractional (B) neonatal growth rates from days 10-28 
and birth weight for male (n=78 closed symbols, solid regression line) and female (n=80, open 
symbols, dashed regression line) guinea pigs. A. Absolute neonatal growth rate correlated 
positively with birth weight in males (r=0.323, P=0.003) and females (r=0.303, P=0.006). B. 
Fractional neonatal growth rate correlated negatively with birth weight in males (r=-0.522, 
P<0.001) and females (r=-0.701, P<0.001). Offspring from litters of five are shown in 
downwards triangles, four in upward triangles, three in circles, litters of two in squares and 
singletons in diamonds. 
  



88 
 

 
 
 
 

 

Feed intake in juvenile progeny did not differ between litter sizes, and was greater in 

males than females, in absolute terms (Table 2-3). In contrast, relative feed intake in juveniles 

differed between litter sizes (Table 2-3). Overall, and in females, progeny from litters of three 

or four pups ate more in relative terms than those from litters of two pups (Table 2-3). Feed 

efficiency (weight gain per intake) in juvenile guinea pigs did not differ between litter sizes and 

was higher in males than in females (Table 2-3). In males, absolute juvenile feed intake was 

independently and positively predicted by birth weight and neonatal FGRs; these correlations 

were not significant in females, or for relative feed intake in the juvenile period (Table 2-4). 

Feed efficiency was correlated negatively with birth weight in juveniles of both sexes (Table 2-

4).  

Feed intake of adolescent progeny did not differ between litter size groups, and was 

higher in absolute but not relative terms in males than females (Table 2-3). Feed efficiency 

(weight gain per intake) in adolescent guinea pigs varied with litter size and was higher in 

progeny from litters of three than those from litters of two in females, with a similar trend 

overall, but not in males (Table 2-3). In males, adolescent absolute feed intake was predicted 

independently and positively by neonatal FGR, but not by birth weight (Table 2-4). In females, 

adolescent absolute feed intake was predicted by the overall model and independently and 

positively by both birth weight and neonatal FGR (Table 2-4). Relative adolescent feed intake 

was not correlated with birth weight or neonatal growth rate in males. In females, however, 

relative adolescent feed intake was predicted independently and positively by neonatal FGR, 

but not by birth weight (Table 2-4). Feed efficiency in adolescent males was not correlated with 

either birth weight or neonatal FGR (Table 2-4). Feed efficiency in adolescent females was 

correlated independently and negatively with birth weight (Table 2-4).
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Table 2-4 Relationships between birth weight and neonatal FGR and subsequent postnatal growth rates and food intake 
 
 Overall and Partial Correlation (r, P) 
 Males Females 

Measure Overall Birth Weight FGR10-28 Overall Birth Weight FGR10-28 
       
Postnatal Growth Rates  n=76   n=80  
 Juvenile       
 AGR30-60 (g/day) 0.240, 0.115 0.099, 0.397 0.238, 0.040* 0.128, 0.531 0.008, 0.944 0.097, 0.396 
 FGR30-60 (%) 0.412, 0.001* -0.297, 0.010* 0.114, 0.330 0.452, 0.001* -0.334, 0.003* 0.010, 0.929 
 Adolescent       
 AGR60-90 (g/day)  0.208, 0.204 0.047, 0.693 0.193, 0.093 0.408, 0.001* 0.189, 0.099 0.390, 0.001* 
 FGR60-90 (%) 0.272, 0.063 -0.185, 0.115 0.081, 0.494 0.494, 0.001* -0.052, 0.650 0.344, 0.002* 
       
Feed Intakes  n=61   n=58  
 Juvenile (40-60 days)       
 Absolute (g/day) 0.396, 0.007* 0.350, 0.006* 0.354, 0.006* 0.253, 0.161 0.188, 0.162 0.289, 0.057 
 Relative (g/kg/day) 0.221, 0.234 -0.025, 0.850 0.176, 0.178 0.351, 0.027* -0.159, 0.236 0.127, 0.347 
 Adolescent (60-90 days)       
 Absolute (g/day) 0.344, 0.026* 0.255, 0.055 0.336, 0.009* 0.434, 0.004* 0.327, 0.014* 0.434, 0.001* 
 Relative (g/kg/day) 0.282, 0.090 -0.100, 0.445 0.180, 0.168 0.507, 0.001* 0.124, 0.361 0.445, 0.001* 
       
Feed Efficiency       
 Juvenile (40-60 days) 0.295, 0.072 -0.281, 0.021* -0.072, 0.587 0.323, 0.049* -0.269, 0.043* -0.056, 0.679 

 Adolescent (60-90 days) 0.106, 0.729 -0.021, 0.878 -0.100, 0.457 0.339, 0.037* -0.285, 0.033* -0.063, 0.645 

       

n: Total number of offspring from all litters. FGR10-28, fractional growth rate for weight in neonates from 10-28 days of age. AGR, absolute growth rate 
*Significant correlations (P < 0.05) are shown in bold and trends (P < 0.1) in italics.  
Feed efficiency was calculated as average daily weight gain over each period divided by average daily feed intake.  
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Adult body size did not differ between litter size groups in males or females (Table 

2-5). Males were heavier, longer and had a higher weight:length ratio than females, but body 

mass index did not differ between sexes (Table 2-5). In males, adult body weight and 

weight:length ratio correlated independently and positively with neonatal FGR with similar 

trends for birth weight (Table 2-6). In females, adult body weight correlated independently and 

positively with birth weight with a similar trend for neonatal FGR (Table 2-6). Other measures 

of adult size were not correlated (P>0.05 for all) with size at birth or neonatal FGR in either 

sex.  

 

 

Relative weights of subcutaneous, visceral, omental and total dissected fat depots and 

absolute weight of visceral and omental fat differed between litter sizes overall, with similar 

trends for absolute weights of subcutaneous and total dissected fat depots, and effects of litter 

size were similar in each sex (Table 2-5). Nevertheless, absolute weight of visceral and total 

dissected fat and relative weights of subcutaneous and visceral depots did not differ between 

any two litter sizes. Overall, offspring from litters of three had higher absolute and relative 

omental fat weights (P=0.049 and P=0.013 respectively) and higher relative total dissected fat 

(P=0.038) than those from litters of two; absolute and relative weights of fat depots did not 

differ between litter size pairs in sex-specific analyses. Absolute but not relative weights of 

subcutaneous, visceral and total dissected fat depots were greater in males than females (Table 

2-5). Skeletal muscle weights did not differ between litter sizes, whilst absolute skeletal muscle 

weights were higher in males than females (Table 2-5). The ratio of dissected fat:skeletal 

muscle weights did not differ between litter size groups or sexes (Table 2-5). In males, absolute 
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and relative weights of multiple fat depots, but not absolute or relative skeletal muscle weights, 

were independently and positively correlated with birth weight and neonatal FGR (Table 2-6). 

These correlations were strongest for weights of visceral fats and with the ratio of dissected fat 

to skeletal muscle weights (Table 2-6). In females, in contrast, absolute skeletal muscle weight 

was independently and positively correlated with birth weight but not neonatal FGR, and fat 

depot weights were not correlated with either birth weight or neonatal FGR (Table 2-6).  
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Table 2-5 Effect of litter size and sex on adult size and body composition  
 

 Males from Litter Size Females from Litter Size ANOVA 
 Two Three Four Two Three Four LS Sex LS × Sex 
          

Number of litters 6 5 3 2 5 3    
Number of offspring 8 7 7 2 9 3    
          

Adult Phenotype          
 Weight (g) 763 ± 37 838 ± 32 782 ± 34 676 ± 26 679 ± 18 674 ± 41 NSD 0.001 NSD 
 Length (mm) 342 ± 4 344 ± 10 339 ± 3 330 ± 6 318 ± 4 315 ± 7 NSD 0.001 NSD 
 Weight:length (kg/m) 2.2 ± 0.1 2.4 ± 0.1 2.3 ± 0.1 2.1 ± 0.1 2.1 ± 0.1 2.1 ± 0.2 NSD 0.021 NSD 
 Body mass index (kg/m2) 6.5 ± 0.3 7.1 ± 0.3 6.8 ± 0.2 6.2 ± 0.5 6.7 ± 0.2 6.8 ± 0.7 NSD NSD NSD 
          

Adult Body Composition          
 Subcutaneous fat (g) 34 ± 4 42 ± 3 33 ± 5 26 ± 2 32 ± 2 28 ± 4 0.096 0.028 NSD 
 Subcutaneous fat (%) 4.3 ± 0.3 5.1 ± 0.2 4.2 ± 0.4 3.8 ± 0.1 4.6 ± 0.3 4.1 ± 0.4 0.0351 NSD NSD 
 Visceral fat (g) 15 ± 2 19 ± 1 13 ± 2 10 ± 2 14 ± 1 12 ± 3 0.0471 0.026 NSD 
 Visceral fat (%) 1.9 ± 0.1 2.2 ± 0.1 1.7 ± 0.2 1.5 ± 0.2 2.1 ± 0.1 1.7 ± 0.4 0.0261 NSD NSD 
 Omental fat (g) 15 ± 1 17 ± 1 15 ± 1 12 ± 1 16 ± 1 14 ± 2 0.0372 0.098 NSD 
 Omental fat (%) 1.9 ± 0.1 2.1 ± 0.1 2.0 ± 0.1 1.8 ± 0.1 2.3 ± 0.1 2.0 ± 0.1 0.0132 NSD NSD 
 Total dissected fat (g) 63 ± 7 78 ± 4 62 ± 8 48 ± 4 62 ± 4 53 ± 9 0.0501 0.029 NSD 
 Total dissected fat (%) 8.1 ± 0.5 9.5 ± 0.2 7.8 ± 0.7 7.0 ± 0.3 9.1 ± 0.4 7.8 ± 1.0 0.0172 NSD NSD 
 Skeletal muscle (g) 21 ± 1 22 ± 1 21 ± 1 19 ± 3 18 ± 0 19 ± 1 NSD 0.024 NSD 
 Skeletal muscle (%) 2.7 ± 0.1 2.6 ± 0.1 2.7 ± 0.1 2.6 ± 0.0 2.7 ± 0.1 2.9 ± 0.2 NSD NSD NSD 
 Total dissected fat:  
 Skeletal muscle 

3.0 ± 0.2 3.6 ± 0.1 3.0 ± 0.3 2.6 ± 0.2 3.5 ± 0.2 2.8 ± 0.5 0.060 NSD NSD 

          

LS × sex, interaction between litter size and sex. NSD: not significant different, P>0.1.  
Data are expressed as mean ± S.E.M. Mean age ± S.E.M. at post mortem was 115 ± 1 days. Statistical models included dam to correct for common intrauterine 
environment in multiple births.  
1Relative subcutaneous, absolute and relative visceral, and absolute total dissected fat weights did not differ (P>0.05) between any two litter sizes.  
2Overall, offspring from litters of three had higher absolute and relative omental fat and relative total dissected fat than those from litters of two (P<0.05 for all).  
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Table 2-6 Relationships between birth weight, neonatal FGR and adult phenotype in the guinea pig. 
 
 Overall and Partial Correlation (r, P) 
 Males n=22 Females n=19 

Measure Overall Birth Weight FGR10-28 Overall Birth Weight FGR10-28 
Adult size       
 Weight (g) 0.542, 0.037* 0.428, 0.053 0.528, 0.014* 0.522, 0.079 0.517, 0.028* 0.444, 0.065 
 Length (mm) 0.244, 0.558 0.186, 0.420 0.234, 0.307 0.119, 0.899 0.051, 0.846 0.112, 0.668 
 Body mass index (kg/m2) 0.405, 0.183 0.308, 0.175 0.392, 0.079 0.370, 0.332 0.369, 0.144 0.255, 0.322 
 Ponderal index (kg/m3) 0.268, 0.493 0.197, 0.391 0.259, 0.256 0.287, 0.526 0.282, 0.273 0.164, 0.528 
 Weight:length (kg/m) 0.524, 0.048* 0.407, 0.067 0.510, 0.018* 0.465, 0.160 0.464, 0.060 0.368, 0.146 
Adult body composition       
 Subcutaneous fat (g) 0.496, 0.079 0.436, 0.054 0.455, 0.044* 0.396, 0.255 0.339, 0.169 0.389, 0.111 
 Subcutaneous fat (%) 0.452, 0.128 0.410, 0.073 0.398, 0.082 0.322, 0.416 0.240, 0.337 0.322, 0.192 
 Visceral fat (g) 0.619, 0.010* 0.571, 0.007* 0.563, 0.008* 0.396, 0.255 0.396, 0.104 0.292, 0.239 
 Visceral fat (%) 0.611, 0.012* 0.579, 0.006* 0.532, 0.013* 0.346, 0.361 0.344, 0.162 0.224, 0.371 
 Omental fat (g) 0.656, 0.005* 0.486, 0.025* 0.652, 0.001* 0.398, 0.252 0.396, 0.103 0.262, 0.293 
 Omental fat (%) 0.620, 0.010* 0.397, 0.078 0.620, 0.002* 0.323, 0.414 0.307, 0.215 0.145, 0.566 
 Total dissected fat (g) 0.564, 0.032* 0.490, 0.028* 0.529, 0.016* 0.397, 0.254 0.384, 0.116 0.351, 0.153 
 Total dissected fat (%) 0.542, 0.044* 0.482, 0.031* 0.497, 0.026* 0.316, 0.431 0.306, 0.216 0.273, 0.267 
 Skeletal muscle (g) 0.217, 0.633 0.112, 0.434 0.198, 0.389 0.657, 0.011* 0.537, 0.022* 0.021, 0.934 
 Skeletal muscle (%) 0.348, 0.294 -0.204, 0.376 -0.348, 0.123 0.477, 0.126 0.452, 0.059 0.212, 0.399 
 Total dissected fat: skeletal muscle 0.604, 0.017* 0.511, 0.021* 0.580, 0.007* 0.323, 0.415 0.203, 0.420 0.320, 0.195 

n, Number of offspring. FGR10-28: fractional growth rate for weight in neonates from 10-28 days of age. 
Adult body composition is expressed as an absolute weight (g) and as a percentage of the body weight at the time of postmortem (%).  
Age at postmortem was 115 ± 1 days. *Significant correlations (P < 0.05) are shown in bold and trends (P < 0.1) in italics. 
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 Discussion 

In the current study, increasing litter size in the guinea pig induced disproportionate 

IUGR which was followed by catch-up growth commencing in neonatal life and which 

persisted post-weaning but not into adolescence. Concomitant with this accelerated growth, 

offspring from large litters had increased relative feed intakes as juveniles. Increased neonatal 

growth also predicted hyperphagia in juveniles, which persisted into adolescent life in both 

sexes. Interestingly, perinatal growth was correlated with adult body composition differently in 

males and females, predicting visceral adiposity in males, but not females, and consistent with 

sex-specific relationships between neonatal growth and adiposity in children12. Spontaneous 

fetal growth restriction induced by large litter sizes in the guinea pig, therefore, induces sex-

specific programming of postnatal phenotype. As the guinea pig also develops diabetes mellitus 

spontaneously in adulthood399, 400, this provides a model in which to investigate developmental 

programming of susceptibility to metabolic diseases of ageing. 

 

 

Mothers who were larger at conception tended to have the larger litter sizes, 

consistent with previous reports of a positive relationship between weight and number of 

corpora lutea at conception397, and suggesting that their greater litter sizes reflect higher 

ovulation rates. In the present study, the proportions of stillborn pups increased in large litters, 

particularly in litters of five pups. This may reflect their earlier gestational age at delivery, 

which is negatively correlated with stillbirth rates in this species407. Small size at birth relative 

to gestational age is also a predictor for stillbirth in the guinea pig407. Restricted nutrient supply 

in utero due to competition for maternal nutrients and/or restricted delivery due to placental 

growth and/or function may, therefore, also have contributed to poorer neonatal outcomes in 

large litters in the present study, as these pups were substantially smaller at birth401, 402. Not 

surprisingly, mothers carrying larger litters gained more weight during gestation than those with 
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smaller litters. Nevertheless, the change in maternal weight from conception to the start of 

lactation, reflecting growth of the mother herself, was lowest in dams that gestated five pups. 

Guinea pigs give birth to relatively mature pups that account for a significant part of their own 

weight398, and pregnancy appears to reduce maternal energy stores in late gestation, reflected 

in lighter adipose depots408. Together with these previous studies, our results suggest that high 

fetal demand for nutrients plus inability to further increase feed intake in late gestation limits 

maternal growth in dams carrying the largest number of pups. Compensatory hyperphagia may, 

therefore, contribute to the subsequent faster lactation growth rates that we observed in dams 

that gave birth to large litters. It is also likely that nutrient flow to milk production was lower 

in these mothers that gestated litters of five pups than in those that delivered three or four pups 

due to lower perinatal survival of pups and/or earlier weaning. Previous studies have reported 

that although mothers produce higher yields of milk in larger litters the milk yield per pup is 

reduced, suggesting pups in larger litters may be “force” weaned earlier in comparison to those 

from smaller litters409. Interestingly, dams in all litter size groups gained weight in lactation in 

the present study, in contrast to a previous report410.  

 

 

Although there was some overlap in ranges of individual birth weights between litter 

size groups, mean birth weight decreased consistently with increasing litter size and singleton 

pups were 38% heavier than pups from litters of five. This birth weight difference is of a similar 

magnitude as that reported for weights of pups in late gestation in multiparous females391. Most 

measures of size at birth decreased with increasing litter size in the present study, including 

weight to length ratio (an index of thinness), and head width to birth weight ratio (an index of 

head sparing). Thus, spontaneous fetal growth restriction in guinea pigs from large litters 

induces disproportionate IUGR, which in human epidemiological studies is associated with 

greater increases in risks in cardiovascular and metabolic diseases than those associated with a 
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proportionate reduction in size at birth210, 411. Asymmetrical growth restriction resulting in a 

thin neonate and characterised by head sparing usually reflects restriction predominantly in late 

gestation26, and is also observed following maternal famine exposure in late gestation in 

humans172 and in experimental models of restricted placental capacity in sheep293. 

Increased litter size may reduce fetal nutrient availability and hence size at birth via 

a reduction in placental size and function and/or competition for maternal nutrients together 

with physical limitations on maternal feed intake392, 394, 397. Fetal weight in guinea pigs diverges 

between litter sizes from ~55 days of gestation391, consistent with progressively increasing 

limitation of nutrient/oxygen supply in large litters through late gestation. Limited maternal 

nutrient intake may also contribute to reduced fetal growth in large litters, with similar mean 

birth weights in litters of four and five in the present study as those induced by feed restriction 

of guinea pigs throughout gestation to either 85% or 70% of ad libitum feed intake310. Shorter 

gestation lengths may also contribute to reduced size at birth. Gestation length is reduced in 

guinea pig litters with high total fetal weights394, which may have contributed to the 3-4 day 

reduction in gestation lengths in litters of five compared to those in litters of one or two pups 

in the present study, and may in turn have contributed at least in part to smaller sizes at birth in 

this group. Weight of fetal guinea pigs increases by ~10% over the last 3-4 days of gestation, 

although interestingly weight gain during this period is markedly lower in large litters than in 

litters with only one or a few pups391. Differences in gestation length are thus unlikely to explain 

the majority of difference in size at birth that we observed in large litters. In recent studies of 

neuroactive steroids in this species, preterm delivery at 62-63 days of gestation (~12% reduction 

in gestation length) reduced birth weight by only 17%412, considerably less than the 38% 

difference in average birth weight between pups from litters of one and five. In the present 

study, the negative relationship between size at birth and litter size in most parameters was 

observed across the full range of litter sizes, further implying that additional factors contribute 

to small size at birth in pups from large litters.  
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Offspring of larger litters grew faster in fractional terms as neonates, indicating a 

change in partitioning of nutrient intake towards growth in these spontaneous IUGR guinea 

pigs. Increased appetite may also contribute to accelerated neonatal growth after IUGR, as 

occurs in other species including humans79, 293, 413, but neonatal feed intakes have not as yet 

been reported in IUGR guinea pigs. Accelerated neonatal growth may program adverse later 

outcomes in these guinea pigs from large litters, as this is an independent risk factor for the 

development of cardiovascular and metabolic disease in humans83, 382-384. Interestingly, despite 

the more rapid relative neonatal growth in pups from larger litters, these pups exhibited less 

growth check after weaning at 28 days than those from smaller litters (Figures 3C and 3D), 

suggesting that they may have changed their intake from milk to solid feed earlier. This may 

reflect lower milk production per pup, reported previously in large guinea pig litters409, and 

competition between litter mates for the two available teats in this species which only allows 

pups to suckle periodically404. Guinea pigs have been successfully weaned at birth or 8 days of 

age409, indicating that there is not an absolute requirement for suckling in this species. 

 

 

Interestingly, the accelerated relative growth in guinea pigs from large litters 

persisted after the neonatal period, and was also observed in juveniles at 30-60 days of age, but 

this did not continue subsequently to adolescence. The accelerated juvenile growth does appear 

to reflect continued catch-up growth following removal of prenatal constraint, since juvenile 

relative growth rates were negatively correlated with birth weight in both males and females, 

as were relative growth rates in the neonatal period. The relative duration of catch-up in IUGR 

guinea pigs thus appears to be somewhat longer than in IUGR humans, where the majority of 

catch-up growth occurs in the first 6 months of life, and is largely complete in infancy by 2 
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years of age57, 414-416. Juvenile growth rates in guinea pigs from large litters were greater than 

those from smaller litters, not only in relative, but also in absolute terms. Increased appetite and 

feed intake probably underlies the accelerated juvenile growth rates of these spontaneously 

growth-restricted guinea pigs, at least in part, since we also observed increased food intake 

relative to body size in these animals. This role for increased appetite as a mechanism for early 

catch-up growth after IUGR is further supported by a lack of difference in absolute or relative 

feed intakes between litter sizes during adolescence, when the litter sizes also had similar 

growth rates. Feed efficiency did not differ between litter sizes in the juvenile period in either 

sex, and was improved in female offspring from litters of three compared to two as adolescents. 

Although this may suggest decreased relative fat deposition in these adolescent females, since 

fat has a greater energy content per weight than muscle, this did not reduce fatness in adulthood. 

Juvenile but not adolescent feed efficiency was negatively correlated with birth weight in both 

sexes, indicating improved efficiency of conversion of food to weight gain, and thus suggesting 

greater relative lean tissue deposition in the juvenile period. This pattern of post weaning 

accelerated growth may also lead to adverse health consequences, since accelerated growth 

after IUGR in rats; particularly when allowed increased caloric feed intake or fed Western-style 

diets as adults; is associated with obesity, cardiovascular complications and early death374, 375, 

417, 418. Despite the fact that effects of litter size on growth were similar in both sexes in the 

present study, relationships between perinatal growth and both post-weaning growth and feed 

intake were sex-specific. Relative juvenile growth rates correlated negatively with birth weight 

in both sexes, as discussed above, but absolute juvenile growth rates were not correlated with 

size at birth in either sex, and correlated positively with neonatal growth in males only. Juvenile 

feed intake in absolute terms correlated positively with size at birth and neonatal FGR, but in 

males only, and may reflect effects of perinatal growth on body size, since relative feed intakes 

did not correlate with perinatal growth in either sex. In contrast to these largely male-specific 

relationships in juveniles, the majority of relationships between perinatal growth and adolescent 
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growth were observed only in females, where rapid neonatal growth predicted faster growth 

and higher feed intakes in adolescence. These results suggest that programming of postnatal 

appetite and nutrient partitioning by prenatal and early life exposures is sex-specific in guinea 

pig, and furthermore that the sex-specific nature of these effects depend on age. Sex-specific 

programming of later outcomes has been also reported in humans and in animal models, 

particularly for adult metabolic and body composition outcomes385. These results further 

reinforce the need to study progeny of both sexes in future studies investigating developmental 

programming of metabolic and other outcomes in the guinea pig. 

 

 

In the present study, progeny of large litters, despite their smaller size of birth, 

attained similar adult size as those from small litters who were subject to less restriction in 

utero. This is consistent with findings of human studies, where ~85-90% of individuals who 

were born IUGR attain a final height within 2 S.D. of their peers57, 415, 416. Accelerated neonatal 

growth was a major determinant of adult size, particularly in male guinea pigs, again consistent 

with human studies where failure of early catch-up growth is a strong predictor of shorter adult 

height57, 415. Few differences were seen in adult body composition between litter size groups, 

although we were not able to include progeny of litters of one or five pups in these litter size 

comparisons due to low numbers of adult pups of each sex available as young adults. We did 

observe greater weights of omental and total dissected fat in offspring from litters of three than 

in those from either two or four pups. We would have expected greater fatness with increasing 

litter size, given that increasing litter size was associated with progressive decreases in size at 

birth and increases in neonatal growth rates. Interestingly, IUGR induced by chronic maternal 

ethanol consumption throughout guinea pig pregnancy, a model for fetal alcohol syndrome, is 

followed by neonatal catch-up growth and increased visceral and subcutaneous adiposity in 

young adults of both sexes419. Thus, sex-specific effects of fetal growth patterns differ between 
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these causes of IUGR. In male IUGR rats catch-up growth after weaning is followed by 

development of increased visceral adiposity by 7 weeks and obesity by 26 weeks280. IUGR 

induced by uterine artery ablation in guinea pigs is also associated with increased visceral 

adiposity in male offspring, although in this model progeny do not undergo catch-up growth, 

and body composition outcomes in females were not reported284. Small size at birth and catch-

up growth in early life are independent risk factors for obesity in human adults382 and similar 

effects might explain the greater omental and total adiposity we observed in progeny from litters 

of three compared to two male pups. The reason why these effects were not even more 

pronounced in progeny from litters of four pups, which had similar fatness as those from litters 

of two pups, is not clear, given that these pups also experienced catch-up growth and grew faster 

than progeny of litters of two or three pups during the neonatal and juvenile periods. It is 

possible that these progeny of litters of four pups will develop central adiposity with further 

ageing beyond young adulthood, as these animals achieved similar weights to those of pups 

from litters of two nearly a month later than the pups from litters of three, particularly in males. 

Across the entire range of litter sizes, the relationships between size at birth, neonatal 

growth and adult body composition were sex-specific, as also seen for predictors of post-

weaning growth and feed intake. The increased adiposity, particularly visceral adiposity, 

observed in adult male guinea pigs who had grown rapidly as neonates is likely to be associated 

with adverse metabolic outcomes in these animals. Visceral fat is insulin resistant and in 

humans, visceral fat mass is a stronger predictor of cardiovascular and metabolic dysfunction 

than subcutaneous fat405, 406. The association between early life catch-up growth and later 

adiposity seen here in male guinea pigs is consistent with reports in humans and other species239, 

258, 293, 374, 382, 420. Interestingly, our results are consistent with reports from several of these 

studies where the independent associations of small size at birth and neonatal catch-up growth 

with adult adiposity were investigated, and neonatal catch-up growth was more predictive of 

adult adiposity than small size at birth258, 293, 420. 
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 Conclusion 

Spontaneous fetal growth restriction due to litter size in the guinea pig gives rise to 

offspring with disproportionate IUGR and these offspring undergo catch-up growth which 

persists from neonatal life post-weaning into the juvenile period. Further programmed adult 

outcomes described here in progeny of large litters whose growth was restricted in utero, such 

as increased visceral adiposity and hyperphagia, are similar to effects of small size at birth 

induced in other models of IUGR in guinea pig310, rat374 and in humans421. The spontaneous 

IUGR guinea pig may, therefore, be a useful model in which to investigate the mechanisms 

underpinning perinatal programming of hyperphagia and obesity. Because many of these 

relationships are sex-specific, it will be critical to include progeny of both sexes in future 

studies. Further studies are required to determine if the spontaneously growth restricted guinea 

pig develops insulin resistance and other metabolic and cardiovascular pathologies with ageing.  
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Insulin sensitivity of glucose metabolism in young adult 

guinea pigs - validation of the hyperinsulinaemic 
euglycaemic clamp method 

 
 Overview 

The following study was designed to characterise the hyperinsulinaemic-

euglycaemic clamp in the chronically catheterised, non-anaesthetised guinea pig. A dose 

response study for whole body glucose uptake using human insulin was conducted, followed 

by clamp experiments at two insulin infusion rates; 30 mU.min-1.kg-1 (n=53, males: n=31, 

females: n=22) and 7.5 mU.min-1.kg-1 (n=38, males: n=19, females: n=19). Animals studied in 

this chapter were bred and monitored by myself during pregnancy, postnatal growth and post-

surgery for insertion of vascular catheters. I independently performed >80% of the 

hyperinsulinaemic-euglycaemic clamps, performed the majority of the assays for plasma 

human insulin and [3-3H]-glucose 3H2O, was involved in all post-mortems for the collection of 

body composition data, and analysed all of the data.. Dr Arkadi Katsman is acknowledged for 

the dose response studies and Dr Arkadi Katsman and Ms Melissa Walker assisted with 

catheterisation surgeries, post-mortem tissue collection, human insulin and [3-3H]-glucose 

3H2O assays. I would like to acknowledge Prof. C.C. Yip (University of Toronto, Canada) for 

donation of the purified guinea pig insulin and rabbit anti-guinea pig insulin for the 

measurement of guinea pig insulin in a subset of these animals and Ms Patricia Grant for 

performing the assays. 

Since thesis assessment, the data in Chapter 3 has been published in combination with 
comparative data (not described in the thesis) and the first page of this manuscript is shown in 
Appendix 2. The chapter included here is the original version from thesis assessment, with 
minor revisions as suggested by assessors. 
Horton D.M., Saint D.A., Owens J.A., Gatford, K.L. Kind K.L. (2017) Use of the 
hyperinsulinemic euglycemic clamp to assess insulin sensitivity in guinea pigs: dose response, 
partitioned glucose metabolism, and species comparisons. American Journal of Physiology – 
Regulatory, Integrative and Comparative doi:10.1152/ajpregu.00028.2017  
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 Abstract 

The guinea pig is an alternate small animal model for the study of metabolic disorders 

and for investigating the mechanisms underlying prenatal programming of such disorders, 

including insulin sensitivity. However, only one study to date has reported the use of the 

hyperinsulinaemic-euglycaemic clamp (HEC) to assess glucose metabolism in anaesthetised 

animals in this species, and the dose-response has not been reported. We therefore characterised 

the dose-response curve for whole-body glucose uptake using recombinant human insulin in 

the adult guinea pig. In subsequent studies, we used concomitant D-[3-3H]-glucose infusion to 

characterise insulin sensitivities of whole body glucose uptake, glucose utilisation, production, 

storage and glycolysis in young adult guinea pigs at infusion rates of human insulin that produce 

~half maximal and near maximal whole body responses. Clamps were successfully performed 

in 84% of catheterised guinea pigs. Human insulin infusion at 7.5 mU.min-1.kg-1 increased rates 

of glucose utilisation (P<0.001) and storage (P<0.01), while suppressing that of glucose 

production (P<0.001). Insulin infusion at 30 mU.min-1.kg-1also increased the rate of glycolysis 

in females (P<0.01). Fasting plasma glucose, metabolic clearance of insulin and rates of glucose 

utilisation, storage and production during insulin stimulation were higher in female than male 

guinea pigs (P<0.05), but insulin sensitivity of these and whole body glucose uptake did not 

differ between sexes. This study establishes a method for measuring partitioned glucose 

metabolism in chronically catheterised conscious guinea pigs, providing the basis for further 

investigation of developmental programming of insulin sensitivity in this species. 
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 Introduction 

Guinea pigs provide an alternate small animal species to rat and mouse in which to 

investigate developmental programming of health and disease. The guinea pig has a smaller 

litter size than the rat280, 374, 392, 397, is relatively precocial at birth, and resembles the human fetus 

in having ~10% body fat at term398. Restriction of fetal growth in the guinea pig by maternal 

feed restriction increases visceral adiposity and blood pressure, impairs glucose tolerance and 

alters cholesterol homoeostasis in adult offspring310-312, indicating that prenatal restriction can 

perturb metabolic function in this species. Size at birth was a stronger predictor of adult 

outcomes than maternal nutritional group in these studies310-312, suggesting the need for further 

study of developmental programming in a model of spontaneous fetal growth restriction in this 

species. Studies described in Chapter 2 demonstrated that increased litter size in the guinea pig 

is associated with decreases in birth weight, and IUGR progeny from these larger litters exhibit 

neonatal catch up growth, as well as increased central adiposity as adults, particularly in 

males395. Hence, fetal growth restriction due to increasing litter size in the guinea pig may be a 

suitable model in which to further study mechanisms underpinning the programming of 

impaired metabolic function. 

In human populations, increased risks of insulin resistance after IUGR have been 

reported in children and in young and older adults187, 189, 190, 192-199, and development of insulin 

resistance in skeletal muscle is suggested as a primary initiating mechanism in the programmed 

development of diabetes126. Animal models enable study of whole body, hepatic and peripheral 

insulin sensitivity, as well as investigation of the specific tissue and molecular changes that may 

underlie altered functionality of insulin action in key target tissues. While impaired glucose 

tolerance has been reported in IUGR guinea pig offspring of feed-restricted mothers310, the 

effects of fetal growth restriction on insulin sensitivity have not been reported in this species. 

The hyperinsulinaemic-euglycaemic clamp (HEC) is the “gold standard” method for 

measurement of insulin sensitivity91, 142, 155. Concomitant administration of radiolabelled 
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glucose during the HEC also allows the metabolic fate of glucose and insulin actions in 

individual tissues in vivo to be characterised. This approach has been used extensively in small 

mammalian species, such as the mouse and rat, to investigate the insulin axis under normal and 

pathophysiological conditions143, 144, 147, 422, 423. However, to date, use of the HEC has only been 

reported in a single study in guinea pigs, investigating the effects of the chemotherapeutic agent 

cisplatin on insulin sensitivity424. Only males were used in this study and were assessed at a 

single insulin dose and under general anaesthesia424, which is known to reduce whole body and 

hepatic insulin sensitivity in the rat425. Validation of the methodology for the HEC and 

characterisation of both whole body and partitioned insulin action on glucose metabolism in 

conscious animals of both sexes is required to enable further study of the programming of 

metabolic function in this species. Hence, the aim of this study was to characterise the insulin 

dose-response curve for whole body glucose metabolism in chronically catheterised guinea pigs 

using the HEC. Secondly, we measured whole body glucose utilisation, production, glycolysis 

and storage, and their responsiveness to human insulin in chronically catheterised young adult 

guinea pigs and compared these between males and females. Validation of this methodology 

will provide the basis for further studies into the programming of insulin resistance following 

fetal growth restriction in the guinea pig. 

 

 Materials and Methods 

 

All animal studies were approved by the Animal Ethics Committee of the University 

of Adelaide (Approval number M56/96). Adult male guinea pigs (n=8, 3-4 months of age, 

Institute of Medical and Veterinary Science Tri-coloured, Gilles Plains Resource Centre, Gilles 

Plains South Australia) were used for the initial insulin dose response study. For all additional 

experiments, animal management was as described in Chapter 2395. Nulliparous female guinea 

pigs (3-4 months of age) were entered into a mating program, and their progeny were studied 



107 
 

 

at 100 days of age. All animals were housed under 12:12 hour light:dark conditions and had ad 

libitum access to a commercial guinea pig/rabbit ration modified with an increased content of 

vitamin E (165 mg.kg-1), except when fasted for HEC studies as described below, and free 

access to tap water supplemented with ascorbic acid (400 mg.L-1). 

 

 

For these studies, a total of 84 guinea pigs underwent surgery for the insertion of 

vascular catheters. Body weight in the males ranged from 678 g to 942 g (Mean  SEM, 806  

11 g, n=45) and in the females from 562 g to 806 g (686  10 g, n=39). Catheters were inserted 

into the right jugular vein (silastic, 0.51 mm ID, 0.94 mm OD, softened in chloroform, sleeved 

onto polyvinyl, 0.5 mm ID, 1.00 mm OD) and right carotid artery (polyvinyl, 0.4 mm ID, 0.8 

mm OD, sleeved into polyvinyl, 0.58 mm ID, 0.96 mm OD) under general anaesthesia induced 

by ketamine (75 mg.kg-1 body weight, intraperitoneal) and xylazine (6 mg.kg-1 body weight, 

intramuscular). Both carotid and jugular catheters were successfully implanted in 80 animals 

(95%). Catheters were maintained by flushing daily with heparinised saline (500 U.ml-1). Patent 

carotid and jugular catheters were present in 78% of the guinea pigs at 5 days after surgery, 

68% at 7 days after surgery, 58% at 10 days after surgery and 40% at 14 days after surgery. 

HECs, which commenced a minimum of 5 days after surgery, were successfully completed in 

66 of the 80 catheterised guinea pigs.  

 

 

Guinea pigs were fasted for 16 h prior to the HEC. Extension lines, made from 

polyvinyl tubing, were attached to the catheters and exteriorised through the top of the cage 

allowing guinea pigs to remained unrestrained during the experiment.  

Recombinant human insulin (Actrapid, Novo Nordisk, A/S, Denmark) was diluted in 

0.9% NaCl to the required concentration and infused intravenously at a rate of 25 l.min-1 for 
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120 minutes. In a subset of eight males, the effect of increasing the rate of insulin infusion was 

examined by performing HECs at insulin infusion rates of 7.5 (n=8), 15 (n=8), 30 (n=3) and 60 

(n=4) mU.min-1.kg-1. At least 3 days recovery was allowed between each HEC. Remaining 

HECs were then performed using insulin infusions of either 7.5 mU.min-1.kg-1 (n=31 male, 

n=22 female) or 30 mU.min-1.kg-1 (n=16 male, n=19 female). Twenty-five of the animals had 

HECs performed at both 7.5 and 30 mU.min-1.kg-1 insulin infusion rates.  

Blood glucose was measured by glucometer (HemoCue AB, Sweden) in fasting 

samples collected 20, 15, 10, 5 and 0 minutes prior to the start of the insulin infusion, and in 

blood samples (50 - 100 l) collected every 5 minutes throughout the HEC. Intravenous 

infusion of glucose (10% glucose, Baxter Healthcare, NSW, Australia) commenced 15 minutes 

after the start of the insulin infusion. The glucose infusion rate (GIR) was adjusted based on the 

blood glucose measurements to restore and maintain euglycaemia, defined as the mean fasting 

blood glucose concentration, using a modified version426 of the algorithm described by De 

Fronzo et al.142.  

A subset of the animals were co-infused with D-[3-3H]-glucose (Amersham 

Pharmacia Biotech, Buckinghamshire, England) to determine insulin sensitivity of individual 

components of whole body glucose metabolism (peripheral glucose utilisation and endogenous 

glucose production). D-[3-3H]-glucose was administered as a priming bolus (14.5 Ci.kg-1) and 

as a continuous intravenous infusion (0.45 Ci.min-1.kg-1) for two hours prior to and during 

clamps at insulin doses of 7.5 (n=19) or 30 (n=19) mU.min-1.kg-1. 

Larger blood samples (500 l) were collected at the -20, -15, -10, -5, 0, 60, 75, 80, 

85, 90, 95, 105 and 120 minutes from the start of the insulin infusion for subsequent analysis 

of radiolabelled metabolites, and human and guinea pig insulin. Blood was centrifuged at 3000 

rpm for 15 minutes and plasma was removed and stored at -20°C. The total blood volume 

removed from each guinea pig during the experiment was approximately 7.5 ml (~12% of blood 

volume in a young adult guinea pig). The average fluid volume infused throughout the 2 hours 
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of the experiment was 9 ml in the 7.5 mU.min-1.kg-1 clamps and 11.5 ml for the 30 mU.min-

1.kg-1 clamps. 

 

 

 
Human insulin concentrations were analysed in samples collected prior to and at 60, 

75, 90, 105 and 120 minutes of the insulin infusion by radioimmunoassay using a commercially 

available kit (Insulin-CT, CIS Bio International, France). Cross-reactivity of guinea pig insulin 

in this assay was <2%. 

Guinea pig insulin concentrations were measured by radioimmunoassay, as described 

previously310, 427. In brief, guinea pig insulin was measured in plasma samples collected prior 

to (-10, -5, 0) and at 60, 75, 90, 105 and 120 minutes of insulin infusion during the dose response 

studies. Purified guinea pig insulin and rabbit anti-guinea pig insulin were provided by 

Professor C.C. Yip (University of Toronto, Canada). Guinea pig insulin was iodinated with Na 

125I (Amersham Pharmacia-Biotech, Sydney, NSW, Australia) and chloramine T to specific 

activities of 35-50 Ci.g-1, and separated from reaction components by chromatography on 

Sephadex G50 (Amersham Pharmacia-Biotech, Sydney, NSW, Australia). Guinea pig insulin 

was measured in duplicate samples of guinea pig plasma and standards (0.1225 to 31.25 ng.ml-

1). The amount of guinea pig insulin that inhibited radioligand binding by 50% averaged 485 

pg, while the CV for the same sample assayed on different occasions was 9.6% within assays, 

and 5.3% between assays. 

 

 

The specific activities of D-[3-3H]-glucose and of 3H2O were measured in plasma 

samples collected prior to and during the HEC (-20, -15, -10, -5, 0, 60, 75, 80, 85, 90, 95, 105, 

120 minutes), using methods based on previous studies in the rat428, 429. To deproteinise the 

samples, 100 l 0.3N Ba(OH)2 (Sigma Aldrich, St Louis) was added to 50 l of plasma, 
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followed by 30 minutes incubation on ice, and addition of 100 L of 0.3N ZnSO4 (Sigma 

Aldrich). Samples were incubated on ice for a further 30 minutes, centrifuged at 4C for 15 

minutes at 3500 rpm, and the supernatant removed and weight determined. Forty l was assayed 

in quadruplicate in 10 ml scintillation vials, two samples of which were dried uncovered in an 

oven at 55ºC for 60 minutes. Water, 0.34 ml and 0.3 ml was added to each of the dried and 

undried vials respectively. In addition, to each vial 1 ml of Tissue Solubilizer (NCS-II Tissue 

Solubilizer 0.5N Amersham International Arlington Heights, IL) and 10 ml Ready Organic 

Scintillant (Beckman Coulter Inc., Fullerton CA) was added. Vials were capped and covered 

with aluminium foil, and equilibrated at room temperature overnight before counting for 10 

minutes using a -counter (Beckman Coulter Inc.). The activity of the dried (radioactivity of 

D-[3-3H]-glucose) vials was subtracted from that of the undried vials (radioactivity of D-[3-

3H]-glucose + 3H2O) to give the activity of 3H2O alone.  

 

 

Basal plasma glucose and FFA concentrations were calculated as the mean ± SEM of 

the five samples collected in the last 20 minutes (-20, -15, -10, -5, 0 minutes) of the 2-hour 

saline infusion prior to commencing the HEC. Steady-state plasma concentrations of guinea pig 

and human insulin were calculated as the average of concentrations measured every 15 minutes 

throughout the final hour of the HEC (60-120 minutes). Steady state glucose infusion rate 

(ssGIR) was calculated as the average GIR during the final hour of the clamp. Whole body 

insulin sensitivity was calculated by dividing ssGIR by steady-state plasma concentrations of 

human insulin. The post-hepatic metabolic clearance rate (MCR) of human insulin was 

calculated as the insulin infusion rate during the HEC divided by steady-state plasma 

concentrations of human insulin.  
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Plasma D-[3-3H]-glucose specific activity plateaued during the last 20 to 40 minutes 

of D-[3-3H]-glucose infusion in the basal state and during HEC at insulin infusion of 

7.5mU.min-1.kg-1. This is similar to that seen in hyperinsulinaemic-euglycaemic clamp studies 

in the rat145. During this steady-state period, the rate of glucose utilisation or disappearance of 

glucose (Rd) was calculated (Equation 1) by dividing the D-[3-3H]-glucose infusion rate 

(dpm.min-1) by the steady-state plasma D-[3-3H]-glucose specific activity (dpm.mol-1) as 

previously described428, 429. 

 

EQUATION 1: Calculating glucose utilisation in the basal and insulin-stimulated state (Rd): 

 
 
 
 
 

 

In the basal state, the rate of glucose appearance (Ra) is equal to the basal rate of 

endogenous whole body glucose production (Rd), which can be calculated as the D-[3-3H]-

glucose infusion rate (dpm.min-1) divided by the steady-state plasma D-[3-3H]-glucose specific 

activity (dpm.mol-1) as previously described 428, 429(Equation 2) 427, 428.  

 

EQUATION 2: Calculating basal endogenous glucose production (Ra):  

 

 

 

 

 

Rdbasal  = ( 
D-[3-

3
H]-glucose infusion rate (dpm.min

-1
)  

D-[3-
3
H]-glucose specific activity (dpm.mol

-1
) ) 

Rabasal  = 

Rdbasal  = ( 
D-[3-

3
H]-glucose infusion rate (dpm.min

-1
)  

D-[3-
3
H]-glucose specific activity (dpm.mol

-1
) ) 
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In the insulin-stimulated state, the rate of whole body glucose utilisation equals the rate of 

endogenous glucose production plus the exogenous glucose infusion. Therefore, endogenous 

glucose production was calculated as the rate of whole body glucose utilisation minus 

exogenous glucose infusion (Equation 3) 428, 429. 

 

EQUATION 3: Calculating insulin-stimulated endogenous glucose production (Ra):  

 

 

 

 
 

The 3H in the C-3 position of D-[3-3H]-glucose is lost selectively to H2O during 

glycolysis430. Rates of whole body glycolysis were determined from the rate of increase in 3H2O 

(dpm.min-1) multiplied by the total body water mass and divided by the D-[3-3H]-glucose 

specific activity (dpm.mol-1) in both the basal and insulin-stimulated states. Plasma H2O was 

assumed to be 93% of plasma volume, and the mass of H2O in the body was assumed to be 65% 

of total body weight, based on estimates in rodents (Equation 4) 428, 429. The rate of whole body 

glycolysis was determined during the last 15 minutes of D-[3-3H]-glucose infusion in the basal 

state, and the last 60 minutes of insulin infusion. Glucose storage in each state was calculated 

as the difference between total glucose utilisation and glycolysis (Equation 5) 427, 428. 

 

EQUATION 4: Calculating basal and insulin-stimulated whole body glycolysis:  

 

 

  

D-[3-
3
H]-glucose infusion rate (dpm.min

-1
)  RdInsulin  = 

D-[3-
3
H]-glucose specific activity (dpm.mol

-1
) 

- GIR ( ) 

D-[3-
3
H]-glucose infusion rate (dpm.min

-1
)  

Rate of Glycolysis  = ( 
Rate of increase of 

3
H2O (dpm.min

-1
) x 0.93 x 0.65 ) 
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EQUATION 5: Calculating basal and insulin-stimulated whole body glucose storage: 

 

 

 

 

Data were analysed using SPSS 24.0 for Windows (IBM, Armonk, USA). For 

comparison between sexes, due to inclusion of different animals in studies at each insulin dose, 

the effect of sex was determined by analysis of variance separately at each dose. The effect of 

recombinant human insulin infusion on fasting plasma guinea pig insulin levels, and on 

components of glucose metabolism was determined using a paired two-tailed t-test. 

Significance was accepted at P ൏	0.05, and results are expressed as mean  S.E.M.  

 

 Results 

 

Blood glucose levels during the steady state period of insulin infusion were similar 

to the fasting blood glucose levels at all doses of insulin studied (Table 3-1). The coefficient of 

variation of blood glucose during the 60-120 minute period of the clamp ranged from 6.5% to 

10.5% at differing insulin doses (Table 3-1). Circulating human insulin concentration and 

steady state glucose infusion rate increased with increasing infusion rate of human insulin up 

to doses of 30 mU.min-1.kg-1 (Table 3-1, Figure 3-1). Compared to fasting values, the circulating 

concentrations of guinea pig insulin were reduced by infusion of human insulin at doses of 7.5 

and 60 mU.min-1.kg-1 (P<0.05, Table 3-1) and a similar trend was observed at 15 mU.min-1.kg-

1 (P<0.1, Table 3-1). Insufficient samples were available for analysis of guinea pig insulin in 

the animals infused with 30 mU.min-1.kg-1 insulin. Infusion rates of 7.5 and 30 mU.min-1.kg-1 

were chosen for further study to measure insulin responses at around half and near maximal 

human insulin doses. 

Rd  - Rate of Glucose Storage = 
D-[3-

3
H]-glucose infusion rate (dpm.min

-1
)  

( 
Rate of increase of 

3
H2O (dpm.min

-1
) x 0.93 x 0.65 ) 
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Table 3-1 Metabolic responses to differing infusion rates during the hyperinsulinaemic euglcaemic clamp in young adult guinea pigs 
 
 

 Insulin infusion rate (mU.min-1.kg-1) 

Outcomes 7.5 15 30 60 

Number (n) 8 8 3 4 

Bodyweight (g) 698  27 695  29 795  53 685  25 
Fasting state outcomes (20 min prior to HEC)     

 Fasting whole blood glucose (mmol.l-1) 7.02  0.29 7.51  0.22 7.22  0.48 7.60  0.46 

 Fasting plasma guinea pig insulin (ng.ml-1) 5.91  0.96 6.06  1.51 nd 6.73  0.88 
Steady state outcomes (60-120 min)     

 Blood glucose (mmol.l-1) 7.06  0.34 7.41  0.23 7.15  0.54 7.50  0.45 

 Blood glucose %CV 6.5  1.4 6.4  0.8 10.5  6.0 8.1  1.6 

 Glucose infusion rate (mol.min-1.kg-1) 53.7  3.9 69.4  8.7 82.9  11.1 88.1  12.0 
 Glucose infusion rate %CV 20.3  5.6 19.5  2.6 23.5  13.4 23.3  6.6 

 Plasma human insulin (U.ml-1) 291  33 1419  175 10557  2124 15724  1897 

 Plasma guinea pig insulin (ng.ml-1) 4.16  0.49* 3.60  0.48 nd 3.74  0.29* 

 Whole body insulin sensitivity (mol.ml.U-1.min-1.kg-1) 0.211  0.037 0.064  0.020 0.0086  0.002 0.0057  0.0007 
 

Values are Mean  SEM. Steady state outcomes are averaged from 60-120 minutes of insulin infusion.  
*P<0.05 compared to fasting levels.  
nd= not determined. 
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Figure 3-1 Insulin dose response curve for glucose infusion rates during 
hyperinsulinaemic-euglycaemic clamps in the guinea pig.  
Plasma human insulin concentration (log U.ml-1) and glucose infusion rate are mean values 
for 60-120 minutes of insulin infusion, with the insulin infusion dose in mU.min-1.kg-1 shown 
next to each data point. Data are mean ± S.E.M. 
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In the cohort of guinea pigs in which whole body insulin sensitivity was assessed at 

7.5 mU.min-1.kg-1 (n=53), fasting plasma glucose was higher in females than males (P<0.05, 

Table 3-2). The co-efficient of variation of blood glucose averaged 5.9% during 60-120 minutes 

of insulin infusion at 7.5 mU.min-1.kg-1. Steady state human insulin concentrations achieved 

during insulin infusion at 7.5 mU.min-1.kg-1 averaged 238 ± 13 U.ml-1 overall, and were higher 

in males than females (P<0.007, Table 3-2), whereas metabolic clearance rate of human insulin 

was higher in females (P<0.02, Table 3-2). Steady state glucose infusion rates averaged 47.8 ± 

2.5 mol.min-1.kg-1 during the HEC and both ssGIR and whole body insulin sensitivity did not 

differ between males and females (Table 3-2). 

In the cohort of animals in which partitioned glucose metabolism was measured at 

7.5 mU.min-1.kg-1 (n=19), fasting blood glucose was similarly higher in females than males 

(P<0.001, Table 3-2), but no sex differences were observed in steady state human insulin 

concentrations or ssGIR (Table 3-2).  

Basal rates of glucose production and utilisation tended to be higher in females 

compared to males prior to the 7.5 mU.min-1.kg-1 clamp (P<0.075 for both). Insulin infusion at 

7.5 mU.min-1.kg-1 suppressed endogenous glucose production (both P<0.001, Table 3-2) and 

enhanced whole body glucose utilisation in both males and females (P<0.001, Table 3-2). The 

insulin-stimulated rates of glucose utilisation at half-maximal insulin dose were higher in 

females than males (P<0.03, Table 3-2), and glucose production under insulin-stimulated 

conditions tended to be higher in females than males (P=0.08, Table 3-2). 

Basal levels of whole body glycolysis and glucose storage did not differ between 

sexes prior to the 7.5 mU.min-1.kg-1 clamps. Insulin infusion at 7.5 mU.min-1.kg-1 tended to 

enhance the rate of whole body glycolysis in males (P<0.08), but did not alter whole body 

glycolysis in females (Table 3-2). Whole body glucose storage was increased by insulin 
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infusion in males (P<0.001) and females (P<0.005), and insulin-stimulated rates of glucose 

storage were higher in females than males (P<0.05, Table 3-2). 

Overall, glycolysis accounted for 43 ± 6% (males: 50  9%; females: 35  7%) of 

glucose utilisation in the fasting state and 37 ± 4% (males: 43  7%; females: 32  4%) during 

infusion of human insulin at 7.5 mU.min-1.kg-1 (n=19). Therefore, glucose storage accounted 

for 57 ± 6% (males: 50  9%; females: 65  7%) of glucose utilisation in the fasting state, and 

63 ± 4% (males: 58  7%; females: 68  4%) during infusion of 7.5 mU.min-1.kg-1 human 

insulin. The proportions of glucose utilisation accounted for by glycolysis and glucose storage 

did not differ between males and females. 

 

 

In the cohort of guinea pigs in which whole body insulin sensitivity was assessed at 

30 mU.min-1.kg-1 (n=38), fasting plasma glucose was higher in females than males (P<0.05, 

Table 3-3). The co-efficient of variation of blood glucose averaged 6.7% during 60-120 minutes 

of insulin infusion at 30 mU.min-1.kg-1. Steady state human insulin concentrations achieved 

during insulin infusion at 30 mU.min-1.kg-1 averaged 3199 ± 156 U.ml-1 overall, and were 

higher in males than females (P<0.01, Table 3-3); however, metabolic clearance rate of human 

insulin during near maximal insulin infusion did not differ between sexes. Steady state glucose 

infusion rates averaged 65.4 ± 3.0 mol.min-1.kg-1 during this HEC and both ssGIR and whole 

body insulin sensitivity did not differ between males and females (Table 3-3). 

In the animals in which partitioned glucose metabolism was measured at 30 mU.min-

1.kg-1 (n=19), fasting blood glucose was also higher in females (P<0.05, Table 3-3), but no 

differences were observed in steady state human insulin concentrations or glucose infusion rate 

between sexes (Table 3-3).  
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Table 3-2 Whole body insulin sensitivity and partitioned glucose metabolism at half-
maximal insulin dose in the guinea pig (7.5 mU.min-1.kg-1). 

 
 Male Female 
Whole body insulin sensitivity measures   
Number 31 22 

Bodyweight (g) 796  15 661  12*** 

Fasting blood glucose (mmol.l-1) 6.77  0.13 7.31  0.19* 

Glucose infusion rate (60-120 min) (mol.min-1.kg-1) 48.7  3.6 46.6  3.2 

Plasma human insulin (60-120 min) (U.ml-1) 266  18 195  14** 

Whole body insulin sensitivity (mol.ml.U-1.min-1.kg-1) 0.204  0.019 0.261  0.031 
MCR human insulin (60-120 min) (ml.min-1.kg-1) 32.9  2.7 43.7  3.9* 
   
Partitioned glucose metabolism   

Number 10 9 

Glucose infusion rate (60-120 min) (mol.min-1.kg-1) 36.6  3.4 40.2  4.3 

Fasting blood glucose (mmol.l-1) 6.41  0.22 7.52  0.18** 

Plasma human insulin (60-120 min) (U.ml-1) 203  21 162  11 
Whole body glucose production   

Basal (mol.min-1.kg-1) 53.7  5.9 69.3  5.7§ 

Insulin stimulated (mol.min-1.kg-1) 39.6  5.7††† 55.2  6.3††† § 

Insulin-stimulated decrease (mol.min-1.kg-1) 14.1  2.4 14.1  2.6 
Whole body glucose utilisation   

Basal (mol.min-1.kg-1) 53.7  5.9 69.3  5.7§ 

Insulin stimulated (mol.min-1.kg-1) 74.7  7.3††† 96.3  5.3††† * 

Insulin-stimulated increase (mol.min-1.kg-1) 21.0  4.3 27.0  6.3 
Whole body glycolysis   

Basal (mol.min-1.kg-1) 23.5  3.7 25.7  4.9 

Insulin stimulated (mol.min-1.kg-1) 29.9  4.4 30.1  3.6 

Insulin-stimulated increase (mol.min-1.kg-1) 6.3  3.3 4.4  4.9 
Whole body glucose storage   

Basal (mol.min-1.kg-1) 30.2  7.3 43.6  4.6 

Insulin stimulated (mol.min-1.kg-1) 44.8  8.2††† 66.2  5.4†† * 

Insulin-stimulated increase (mol.min-1.kg-1) 14.6  3.2 22.6  6.0 
 
Values are mean  SEM. Glucose infusion rate, human insulin and metabolic clearance rates 
(MCR) are averaged from 60-120 minutes of insulin infusion. For whole body insulin 
sensitivity, human insulin concentrations were available for n=30 males and 20 females.  
§P<0.10, *P<0.05, **P<0.01, ***P<0.001 compared to males.  
† P<0.05, †† P<0.01, ††† P<0.001 compared to basal level prior to the clamp. 
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Insulin infusion at 30 mU.min-1.kg-1 suppressed endogenous glucose production in 

males (P<0.001, Table 3-3) and females (P<0.05, Table 3-3) and enhanced whole body glucose 

utilisation to a similar degree in both sexes (P<0.001 for both, Table 3-3). Glucose production 

during insulin stimulation at 30 mU.min-1.kg-1 was higher in females than males (P<0.04), but 

there was no difference in the insulin-stimulated decrease in endogenous glucose production 

between the sexes. 

Insulin infusion at 30 mU.min-1.kg-1 did not alter whole body glycolysis in males, but 

enhanced glycolysis in females (P<0.01, Table 3-3), and therefore the insulin-stimulated change 

in glycolysis from basal levels was higher in females (P<0.04, Table 3-3). Insulin-stimulated 

rates of glycolysis during the clamp also tended to be higher in females than males (P<0.06, 

Table 3-3). Prior to the 30 mU.min-1.kg-1 HEC, basal rates of glucose storage were higher in 

females than males (P=0.05). Insulin infusion at 30 mU.min-1.kg-1 increased whole body 

glucose storage in males (P<0.001) and females (P<0.04, Table 3-3), and insulin-stimulated 

glucose storage was similar in males and females.  

In the fasting state, prior to insulin infusion at 30 mU.min-1.kg-1, glycolysis accounted 

for 43  6% of glucose utilisation and glucose storage accounted for 57 ± 6%. Glycolysis 

accounted for a higher percentage of glucose utilisation in males than females (males: 54  9%; 

females: 31  6%, P<0.04) and conversely glucose storage accounted for a lower percentage of 

utilisation in males (males: 46  9%; females: 69  6%, P<0.04). In the insulin infused state, at 

30 mU.min-1.kg-1 insulin, glycolysis accounted for 38 ± 3% of glucose utilisation (males: 36  

4%; females: 40  5%) and glucose storage accounted for 62 ± 3% (males: 64  4%; females: 

60  5%), and there were no differences between males and females. 
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Table 3-3 Whole body insulin sensitivity and partitioned glucose metabolism at 
maximal insulin dose in the guinea pig (30 mU.min-1.kg-1). 

 

 Male Female 
Whole body insulin sensitivity measures   
Number 19 19 

Bodyweight (g) 785  19 658  15*** 

Fasting blood glucose (mmol.l-1) 6.7  0.2 7.3  0.2* 

Glucose infusion rate (60-120 min) (mol.min-1.kg-1) 66.7  4.3 63.9  3.7 

Plasma human insulin (60-120 min) (U.ml-1) 3644  289 2878  128** 

Whole body insulin sensitivity (mol.ml.U-1.min-1.kg-1)  0.022  0.0044 0.023  0.0019 

MCR Human insulin (60-120 min) (ml.min-1.kg-1) 9.4  1.3 10.8  0.5 
   
Partitioned glucose metabolism   

Number 10 9 

Glucose infusion rate (60-120 min) (mol.min-1.kg-1) 66.0  6.3 61.5  4.5 

Fasting whole blood glucose (mmol.l-1) 6.3  0.3 7.0  0.2* 

Plasma human insulin (60-120 min) (U.ml-1) 3679  451 3008  205 
Whole body glucose production   

Basal (mol.min-1.kg-1) 51.9  5.8 65.1  6.0 

Insulin stimulated (mol.min-1.kg-1) 24.3  6.1††† 50.2  9.9† * 

Insulin-stimulated decrease (mol.min-1.kg-1) 27.6  5.5 14.9  6.1 
Whole body glucose utilisation   

Basal (mol.min-1.kg-1) 51.9  5.8 65.1  6.0 

Insulin stimulated (mol.min-1.kg-1) 89.7  7.0††† 109.3  9.9††† 

Insulin-stimulated increase (mol.min-1.kg-1) 37.8  8.0 44.2  8.2 
Whole body glycolysis   

Basal (mol.min-1.kg-1) 25.6  2.5 19.6  4.0 

Insulin stimulated (mol.min-1.kg-1) 30.7  3.1 41.6  4.5†† § 

Insulin-stimulated increase (mol.min-1.kg-1) 5.1  3.9 22.0  6.7* 
Whole body glucose storage   

Basal (mol.min-1.kg-1) 26.3  6.7 45.5  6.3* 

Insulin stimulated (mol.min-1.kg-1) 59.1  7.2††† 67.7  9.4† 

Insulin-stimulated increase (mol.min-1.kg-1) 32.7  6.2 22.2  8.7 
 
Values are mean  sem. Glucose infusion rate, human insulin and metabolic clearance rates are 
averaged from 60-120 minutes of insulin infusion. For whole body insulin sensitivity, human 
insulin concentrations were available for n=13 males and 18 females. For partitioned glucose 
metabolism, human insulin concentrations were available for n=6 males and 5 females.  
§P<0.10, *P<0.05, **P<0.01, ***P<0.001 compared to males.  
† P<0.05, †† P<0.01, ††† P<0.001 compared to basal level prior to the clamp.  
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 Discussion 

This study has characterised whole body glucose metabolism and its response to 

insulin in the euglycaemic state in the chronically catheterised guinea pig. Human insulin 

increased glucose utilisation and suppressed endogenous glucose production in the guinea pig, 

although sensitivity to the actions of human insulin particularly for suppression of endogenous 

glucose production was lower in the guinea pig than reported previously in human431-434, or in 

other small experimental species, such as rats and mice143, 144, 147, 422, 423. Nevertheless, these 

studies have demonstrated that HEC using human insulin can be used for quantitative assessment 

of insulin sensitivity in the guinea pig. As the guinea pig resembles the human in its susceptibility 

to diabetes435, 436, atherosclerosis and in aspects of cholesterol homeostasis312, 437, this establishes 

methodology that will allow this species to be used for further investigation of the mechanistic 

basis underlying perturbations of glucose metabolism and insulin action. 

Perturbations of fetal growth and development in the guinea pig impair postnatal 

growth, visceral adiposity (Section 2.5.6), and feed intake (Section 2.5.5)395, and cholesterol312 

and glucose metabolism310, therefore also establishing it as an excellent animal model for further 

investigations into the underlying causes of the developmental origins of metabolic disease. 

While the HEC is well established and used in rats and mice143, 144, 147, 422, 423, the volume of blood 

that can be sampled, and the number of experiments and analyses possible is limited in these 

species, particularly in younger animals. The guinea pig, in contrast, ranges in weight from 60 to 

140 g at birth and attains a body weight of 400 g by 3-4 weeks of age, thus avoiding some of the 

limitations related to size and body weight in other small animal models. In particular, in the 

present study, we have demonstrated the capacity to perform repeat HEC studies in the 

chronically catheterised young adult guinea pig.  

Glucose concentrations were successfully clamped during the last hour of the HEC in 

the guinea pig with a covariance of blood glucose of 5.9%  0.3% and 6.7%  0.7% during the 

7.5 and 30 mU.min-1.kg-1 insulin infusions respectively. This is comparable to the glucose 
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variability seen during HEC in rats (5-8%;143-145), young lambs (2.6%;69), dogs (7%;438), baboons 

(~5%;154) and humans (4-6%;142). In the guinea pig, circulating insulin concentrations and GIR 

required to maintain glycaemia increased with increasing insulin dose up to 30 mU.min-1.kg-1, 

but were similar at insulin doses of 30 and 60 mU.min-1.kg-1. At near-maximal insulin dose (30 

mU.min-1.kg-1), plasma human insulin concentrations averaged 3199 U.ml-1 and required a 

ssGIR of 65 mol.min-1.kg-1 for maintenance of euglycaemia. In contrast, in young adult humans, 

dose response studies of whole body insulin sensitivity indicate an insulin ED50 of 54U.ml-1 

and near maximal actions at >500 U.ml-1 insulin, with glucose infusion rates of 62 and 65 

mol.min-1.kg-1 required to maintain euglycaemia at plasma insulin concentrations of 168 and 

666 U.ml-1 respectively439. In the rat, ssGIRs of 22 and 68 mol.min-1.kg-1 are required to 

maintain glycaemia at human insulin concentrations of 39 and 120U.ml-1 during HEC440, and 

similar results are observed with porcine insulin (ssGIRs of 74 mol.min-1.kg-1at plasma insulin 

of 100U.ml-1)143, 144. The mouse is more sensitive to insulin compared to these species, as an 

ssGIR of 227 mol.min-1.kg-1 is required to maintain euglycaemia in mice at a human plateau 

insulin concentration of only 37U.ml-1 146. Furthermore, circulating insulin concentrations 

reported during HEC in other species represent combined levels of infused and endogenous 

insulin, due to strong cross-reactivity between insulins from different species. In the current 

study, it was possible to specifically analyse human insulin concentrations, exclusive of the 

endogenously produced guinea pig insulin, since the assays do not cross-react between these 

species. These observations in the present study suggest that the insulin responsiveness of the 

guinea pig to human insulin is low, in comparison with the human, and to other small 

experimental species, particularly the mouse. However, one other study that utilised HEC in male 

guinea pigs, with infusion of human insulin at 3 mU.kg-1, required glucose infusion rates of 

approximately 72-83 mol.min-1.kg-1 to maintain euglycaemia at a plateau plasma insulin 

concentration of 100  5 U.ml-1 in their control groups424. These ssGIR resemble the rates of 
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65.4 mol.min-1.kg-1 required to maintain glycaemia at human insulin concentrations of ~3200 

U.ml-1 in the current study. A number of factors may have contributed to the discrepancies in 

apparent insulin sensitivity between these two studies. Guinea pigs were anaesthetised during the 

HEC in the previous study424; however, in rats anaesthesia reduces insulin sensitivity425, 

suggesting that anaesthesia may not explain the differences. In the previous study, although 

control groups did not receive the treatments (capsaicin or cisplatin) they were treated with the 

solvent used to administer these drugs (75 mg.kg-1 mannitol i.p) for 9 days prior to HEC 

testing424. In addition, body weight of animals studied by Szilvassy et al (2006)424 ranged from 

350-400 g, a considerably lighter weight than the male guinea pigs in the current study, and 

animals were fasted for 24 hours, compared to 16 hours used in this study. In mice, fasting time 

can influence insulin sensitivity assessed by HEC, with insulin sensitivity increasing following 

an 18 hour compared to a 5 hour fast146. This is consistent with the greater insulin sensitivity of 

muscle but not in liver following a 16 hour compared to a 5 hour fast using HEC with D-[14C]-

glucose and 2-deoxy-D-[3H]-glucose reported in mice441. Insulin sensitivity similarly increases 

following an overnight fast in humans442. Therefore, the use of a 24 h fast by Szilvássy424, 

compared to a 16 h fast in our study, may contribute to the higher insulin sensitivity that they 

observed. The effects of mannitol on insulin sensitivity have not been reported, however the 

sugar-alcohol is poorly absorbed through the gut443 so mannitol per se is unlikely to act 

systemically to alter insulin sensitivity. Similarly, although repeated i.p. injections for 8 d prior 

to HEC may induce mild chronic stress, this is associated with decreased rather than increased 

insulin sensitivity in rats444, and therefore also seems unlikely to contribute to the greater insulin 

sensitivity of guinea pigs reported by Szilvássy424,  compared to the present study. Furthermore, 

details of the assay used to measure plasma insulin in the previous study were not provided424. It 

is therefore not clear why a higher ssGIR at a lower steady-state insulin concentration was 

observed in this previous guinea pig study424 compared to our findings.  
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Guinea pig insulin has a low affinity for many mammalian insulin receptors, including 

its own, and also has lower affinity for its own receptor when compared to insulins of other 

species445. Previous studies have reported that guinea pig insulin is not as potent as bovine insulin 

in lowering blood glucose in the guinea pig446. The guinea pig appears to compensate for this 

through an increased plasma insulin concentration310, 427, 445-447 and possibly an increased tissue 

abundance of insulin receptors445. This study provides evidence that human insulin can bind and 

act through the guinea pig insulin receptor, as previously reported for insulins from several other 

species, including bovine and porcine445.  

Use of concomitant radioactively labelled glucose infusion during HEC allows 

determination of basal and insulin-stimulated rates of glucose utilisation, production, storage and 

glycolysis. In the guinea pig, as in other species, glucose is utilised for oxidative purposes and 

carbon dioxide production, with much of the remainder directed to hepatic glycogen storage in 

the fasted state or to lipid storage in adipose tissue in the fed state448. Basal rates of endogenous 

glucose production in the guinea pig were high (e.g. average of 61 mol.min-1.kg-1 prior to the 

7.5 mU.min-1.kg-1clamps) when compared to rates reported for healthy adult humans (11-12 

mol.min-1.kg-1)431-434 and rats (27-38 mol.min-1.kg-1)428, 449, 450. Infusion of human insulin 

suppressed glucose production and stimulated glucose utilisation and storage in the guinea pig, 

consistent with actions on both hepatic and peripheral glucose metabolism. Overall, human 

insulin infusion at 7.5 mU.min-1.kg-1 suppressed glucose production by 20% and stimulated 

glucose utilisation by 39% in the guinea pig and infusion of human insulin at 30 mU.min-1.kg-1 

suppressed glucose production by an average of 23% and increased glucose utilisation by 68%. 

In contrast, in humans, maximal suppression of endogenous production is achieved at lower 

insulin concentrations than those required to stimulate maximal rates of glucose utilisation. In 

humans, dose response studies using porcine insulin 433 show that the plateau insulin 

concentrations required to achieve half-maximal effects are lower for hepatic glucose production 

(29  2U.ml-1) than for glucose utilisation (55  7 U.ml-1) . Similar results are reported in 
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the rat, with lower plasma insulin concentrations required to achieve maximal suppression of 

hepatic glucose production, compared to those required for stimulation of glucose utilisation 428, 

434. Furthermore, in rats, hepatic glucose production is suppressed by >90% and glucose uptake 

is stimulated ~5-fold at insulin concentrations of 124 U.ml-1 during HEC with porcine insulin434. 

Similarly, in humans, maximal and complete suppression of glucose production occurs at an 

insulin concentration of 57 U.ml-1 and a ~5-fold increase in glucose utilisation occurs at plateau 

plasma insulin levels of 678 U.ml-1 433. In the guinea pig, a 37% suppression of glucose 

production and 68% increase in glucose utilisation during the 30 mU.min-1.kg-1 HEC were 

observed at human insulin concentrations of >3000U.ml-1, suggestive of lower activity of 

human insulin in guinea pig liver and peripheral tissues, when compared to its actions in human 

tissues. 

Sex-specific differences in glucose metabolism were observed in the current study. 

Compared to males, female guinea pigs had higher fasting plasma glucose, metabolic clearance 

of insulin and rates of glucose utilisation, storage and production during insulin stimulation. 

Whole body insulin sensitivity and the insulin sensitivity of glucose production and utilisation 

did not differ between the sexes, although the insulin-stimulated increase in glycolysis was 

greater in females than males at high-dose insulin. Numerous studies have examined sex-specific 

differences in insulin sensitivity in humans273, 451-455. Metabolic clearance of insulin is greater in 

women than men456, in agreement with the sex-differences observed in guinea pigs. Greater 

endogenous glucose production in women than men, per kilogram body weight, has been 

reported in some studies273, 454, however, others report no differences in glucose production 

between sexes273, 453. Suppression of endogenous glucose production is greater in women than 

men at low, but not at high, doses of insulin273, 454. This contrasts with the results seen here in 

guinea pigs, where glucose production was higher in females than males during insulin 

stimulation at the high insulin dose. Greater skeletal muscle sensitivity to insulin has also been 

observed in women than men273, 451. Differences in relative adiposity and lean muscle mass, and 
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the potential actions of steroid hormones are suggested as potential factors contributing to the 

sex-specific differences in insulin sensitivity and glucose metabolism271, 273, 455. Although insulin 

sensitivity, measured as the change from basal to insulin-stimulated states, did not differ between 

young adult male and female guinea pigs in the current study, some measures of glucose 

metabolism in the fasting and insulin-stimulated states did differ between sexes. The potential 

for sex-specific effects should be therefore considered in studies investigating perturbations of 

insulin sensitivity of glucose metabolism in the guinea pig. 

 

 Conclusion 

In conclusion, this study has validated the HEC in chronically catheterised male and 

female guinea pigs, and has confirmed that concomitant tracer infusions can also be utilised to 

investigate partitioned glucose metabolism in an unanaethetised guinea pig model. Human 

insulin stimulated glucose utilisation and suppressed endogenous glucose production in the 

guinea pig, although the relative magnitude of these changes differed from those reported during 

HEC in the human and rat. Nevertheless, this study demonstrates that quantitative assessment of 

insulin action is possible in the guinea pig, indicating the guinea pig as a useful model species in 

which determinants of insulin resistance and diabetes can readily be investigated and from early 

in life. 
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Sex-specific perinatal programming of insulin sensitivity in 

the guinea pig.  

 

 

 

 Overview 
The following study aimed to characterise the effects of natural variation in litter size, 

birth phenotype and catch-up growth on insulin sensitivity and sites of insulin action in adult 

male and female guinea pigs. This utilised the same cohort of animals as described in Chapter 3, 

and I performed the additional statistical analysis of data for this chapter. 
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 Abstract 

Fetal growth restriction and subsequent neonatal catch-up growth have been 

implicated in the programming of insulin resistance later in life. Spontaneous fetal growth 

restriction due to litter size in the guinea pig gives rise to offspring with disproportionate IUGR 

and these offspring undergo catch-up growth. We therefore hypothesised that spontaneous IUGR 

due to natural varying litter size and subsequent fractional neonatal growth (FGR10-28) or catch-

up growth would impair insulin sensitivity in young adult male and female guinea pigs. Insulin 

sensitivity of glucose metabolism was determined by hyperinsulinaemic-euglycaemic clamp 

(HEC) in 38 (male=21, female=17) young adult guinea pigs from litter sizes of two to four pups. 

A subset (male=10, female=8) were infused with D-[3-3H]-glucose two hours prior to and 

throughout the HEC to determine rates of basal and insulin-stimulated glucose utilisation, 

storage, glycolysis, and endogenous glucose production. In males, the insulin sensitivities of 

whole body glucose uptake (r=0.657, P=0.002) and glucose utilisation (r=0.884, P=0.004) 

correlated positively and independently with birth weight, and a similar trend was observed with 

the insulin sensitivity of endogenous glucose production (r=0.621, P=0.074), whereas no 

associations were observed with FGR10-28. In females, whole body glucose uptake and partitioned 

glucose metabolism were not related to birth weight, but the insulin sensitivity of endogenous 

glucose production correlated negatively (r= -0.815, P=0.025) and independently with FGR10-28. 

Effects of perinatal growth on whole body and partitioned glucose metabolism in the guinea pig 

are sex-specific, with evidence of impaired insulin action including of glucose utilisation after 

IUGR in males, and for impaired hepatic insulin sensitivity after rapid neonatal growth in 

females. Therefore both small size at birth and rapid neonatal growth are independent and sex-

specific risk factors for the development of insulin resistance in the guinea pig. 

 

Keywords: guinea pig, insulin sensitivity, glucose uptake, glycolysis, endogenous glucose 

production, glucose storage, catch-up growth   
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 Introduction 

 

Numerous epidemiological studies have implicated intrauterine growth restriction 

(IUGR), as indicated by being light, short or thin at birth, in the initiation of permanent 

physiological and/or metabolic adaptations2. These adaptations induced by sub-optimal 

conditions in utero result in “programmed” changes in determinants of insulin action at the tissue 

and molecular level, which may alter metabolic signalling, leading to insulin resistance, 

particularly in skeletal muscle189, 190, 196, 198, 229, 231, 234, 236. A mismatch between the environmental 

conditions experienced in utero and those experienced later in the individual’s life course may 

expose these programmed changes and lead to the development of type 2 diabetes mellitus 

(T2DM) and the metabolic syndrome2, 13, 65, 176, 457. Human studies using the hyperinsulinaemic-

euglycaemic clamp (HEC), the “gold standard” method to assess insulin sensitivity, have directly 

demonstrated increased risks of insulin resistance after IUGR, in children and in young and older 

adult males187, 189, 190, 192-199.  

In human infants, IUGR is often followed by accelerated, or catch-up, growth in the 

first few months of life57. Neonatal catch-up growth following IUGR has been identified as an 

additional risk factor for the development of insulin resistance65, 82 Poor growth in utero and 

catch-up growth are independently associated with adverse cardio-metabolic outcomes in 

adulthood83-89, including insulin resistance 65, 90. Catch-up growth often occurs when restricted 

nutrient availability, as occurs in IUGR, is followed by hyperphagia in a relatively nutrient-rich 

environment80, 374. Down-regulation of thermogenesis, and a redistribution of glucose towards 

adipose tissue, associated with limited uptake of glucose and growth of skeletal muscle, are also 

suggested as potential mechanisms contributing to increased risk of obesity and T2DM following 

catch-up growth72, 73, 76.  

Insulin sensitivity, assessed using the HEC, is variably affected by IUGR in rodent 

models, including uterine artery ligation and maternal feed or protein restriction303, 305, 306, 417, 458-
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461. Maternal feed restriction in rodents has been associated with impaired 305, 417, unchanged303 

or even improved306 insulin sensitivity. Similarly, maternal protein restriction in the rat appears 

to induce variable changes in insulin sensitivity of the offspring, with studies reporting no 

change459 or improved insulin sensitivity460, 461. 

Evidence from studies of T2DM in humans suggest skeletal muscle as the key site of 

adult insulin resistance432, 462. The increase in glucose uptake in skeletal muscle accounts for 

approximately 70% of total whole body glucose disposal in the insulin-stimulated state, and the 

primary fate of this increased muscle glucose uptake is for storage as glycogen106. Studies in 

IUGR humans and animal models of IUGR demonstrate altered tissue development and gene 

expression which may impair insulin action within skeletal muscle190, 196, 198, 229, 231-238. The liver 

is also involved, as in rats, experimental IUGR permanently reduces its growth and programs 

reduced hepatic expression of genes in the insulin signalling pathway232, 326, 377, 463. In adipose 

tissue, insulin receptor numbers and glucose uptake are increased after IUGR in humans and in 

progeny of undernourished rats, suggesting a mechanism for increased adiposity, in turn 

contributing to increased risks of T2DM following IUGR189, 341. This suggests that these tissues 

are plausible targets for perinatal programming of altered insulin sensitivity later in life. 

Guinea pigs provide an alternate species in which to investigate developmental 

programming of insulin resistance. After spontaneous growth restriction due to increasing litter 

size, pups are smaller at birth391, 392 and these IUGR progeny from large litters undergo neonatal 

catch-up growth394 (Chapter 2)395. Previously we have shown that spontaneous growth restriction 

in the guinea pig also induces catch-up growth in both absolute and fractional terms that persists 

post weaning, as well as increased central adiposity in adults (Chapter 2)395. In addition, and 

unlike the rat, the guinea pig can develop a phenotype resembling T2DM and including 

hyperglycaemia at 4 months of age399, 400 making it a good species in which to investigate whether 

IUGR accelerates the risk of development of metabolic disease. Restricted fetal growth in the 

guinea pig induced by maternal feed restriction programs visceral adiposity, impaired glucose 
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tolerance, increased blood pressure and altered cholesterol homoeostasis in adult offspring310-312. 

These studies demonstrate that prenatal restriction can perturb metabolic function in the guinea 

pig; however, insulin sensitivity was not assessed. Furthermore, size at birth was suggested as a 

stronger predictor of adult outcomes than was maternal nutritional group310-312, suggesting that 

further studies should focus on a model of spontaneous fetal growth restriction. In addition, 

adverse effects of exposure to maternal nutrient restriction were mostly seen in males, suggesting 

developmental programming of metabolic dysfunction in the guinea pig is sex-specific as 

described in other species, including humans65, 185, 336, 464-466.  

We therefore hypothesised firstly that small size at birth and spontaneous IUGR due 

to natural variation in litter size would be associated with reduced whole body, peripheral and 

hepatic insulin sensitivity. Our secondary hypothesis was that accelerated neonatal growth in 

terms of weight would independently predict impaired whole body, peripheral and hepatic insulin 

sensitivity. We therefore measured these outcomes in chronically catheterised young adult guinea 

pigs from litters of two, three or four pups by HEC with concomitant infusion of D-[3-3H]-

glucose tracer. Because developmental programming of glucose metabolism is sex-specific in 

IUGR humans185, and other species including the guinea pig310, 464, we investigated outcomes in 

both male and female progeny. 

 

 Materials and Methods 

 

 

The Animal Ethics Committee of The University of Adelaide approved all animal 

studies (Approval number M56/96). Animal management was as described previously; the 

present cohort with insulin sensitivity measures are a subset of the animals described previously 

(Section 2.4.1)395. In brief, the present cohort were progeny of ad libitum–fed nulliparous female 

guinea pigs, which were timed-mated and spontaneously delivered pups in litter sizes of two, 
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three of four pups at term (range 67-71 days, mean ± S.E.M: 69.5 ± 0.3 days). Litter size, sex, 

weights, abdominal circumference, nose to rump lengths and head dimensions of all offspring 

were measured and recorded on the day of birth or following morning if delivered overnight. The 

cohort in which insulin sensitivity was measured in adulthood consisted of 38 pups (males: n=21, 

females: n=17). Each dam was housed with her offspring and provided with ad libitum lucerne 

chaff in addition to the standard diet. Litters were weighed at least 5 times per week until weaning 

at days 28-30 of age and absolute and fractional growth rates from day 10 until weaning (AGR10-

28, FGR10-28), were calculated as described previously (Section 2.4.1, 395.  

 

 

A total of 38 guinea pigs underwent surgery at 100.1  0.4 days of age for the insertion 

of vascular catheters. Catheters were inserted into the right jugular vein and carotid artery, as 

described in Section 3.4.2, under general anaesthesia induced by ketamine (75 mg.kg-1 body 

weight, intraperitoneal) and xylazine (6 mg.kg-1 body weight, intramuscular)312. Catheters were 

kept patent by daily flushing with heparinised saline, with patency success as described in the 

larger cohort (Section 3.4.2). 

 

 

Six days post-surgery animals were fasted for 16 hours and a HEC was performed to 

determine whole body insulin sensitivity of glucose metabolism in conscious, unrestrained 

guinea pigs as previously described (Section 3.4.3). In brief, human insulin was continuously 

infused at 7.5 mU.min-1.kg-1, for 2 hours. Prior to insulin infusion, blood samples (800 l) were 

collected at -20, -15, -10, -5 and 0 minutes to determine basal glucose concentration in whole 

blood measured by glucometer (HemoCue AB, Sweden). These samples were also collected for 

basal concentrations of free fatty acids (FFA). Blood samples (50-100 l) were taken every 5 

minutes throughout the insulin infusion. Intravenous infusion of glucose (as 10% dextrose 
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solution) commenced 15 minutes after the start of the insulin infusion. The glucose infusion rate 

(GIR) was adjusted, based on the blood glucose measurements, to restore and maintain 

euglycaemia, defined as the mean fasting blood glucose concentration, using a modified 

version426 of the algorithm described previously142. The mean blood glucose concentration 

achieved during the last 60 minutes of the HEC was 6.69 ± 0.12 mmol.l-1 with co-efficient of 

variation of 5.9 ± 0.3%.  

A subset of the animals (n = 18, males = 10; females = 8) were infused with D-[3-3H]-

glucose (Amersham Pharmacia Biotech, Buchinghamshire, England) as a priming bolus (14.5 

Ci.kg-1) followed by a continuous infusion (0.45 Ci.min-1.kg-1) for 2 hours prior to and then 

throughout the HEC in order to determine rates of glucose utilisation, storage, glycolysis, and 

endogenous glucose production, in the fasting and insulin-stimulated states428, 429. Larger blood 

samples were collected (800 l) at 60, 75, 80, 85, 90, 95, 105 and 120 minutes after the start of 

the insulin infusion, centrifuged and plasma stored at -20C for analysis of radiolabelled 

metabolites and human insulin. 

 

 

Plasma concentrations of glucose (Glucose HK, Roche) and free fatty acids (FFA C, 

Wako Pure Chemical Industries, Japan) were measured by colorimetric enzymatic analysis on a 

COBAS Mira automated centrifugal analyser. Human insulin concentrations were analysed by 

radioimmunoassay using a commercially available assay with <2% cross-reactivity with guinea 

pig insulin (Insulin-CT, CIS Bio International, France).  

 

 

The specific activity of D-[3-3H]-glucose and of 3H2O was measured exactly as 

described in Section 3.4.5. In brief, samples were deproteinised using 0.3N Ba(OH)2 and 0.3N 

ZnSO4, and the 3H content of dried and undried aliquots of supernatant was measured by -
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scintillation counting. The DPM of the dried (radioactivity of D-[3-3H]-glucose) vials was 

subtracted from that of the undried vials (radioactivity of D-[3-3H]-glucose + 3H2O) to give the 

DPM of 3H2O alone.  

 

 

Steady-state plasma concentrations of human insulin were calculated as the average of 

concentrations every 15 minutes throughout the final hour of the HEC. Steady state glucose 

infusion rate (ssGIR) was calculated as the average GIR during the final hour of the clamp. Whole 

body insulin sensitivity was calculated by dividing ssGIR by steady-state plasma concentrations 

of human insulin. The post-hepatic metabolic clearance rate (MCR) of human insulin was 

calculated as the insulin infusion rate during the HEC divided by steady-state plasma 

concentrations of human insulin. Rates of partitioned components of glucose metabolism in 

fasting and insulin-stimulated states (endogenous glucose production, glucose utilisation, 

glucose storage and glycolysis) were calculated based on kinetics of D-[3-3H]-glucose 

metabolism in the steady-state (last 20-40 minutes) for each condition, as described in detail 

previously Section 3.4.6, 428, 429. 

 

 

The subset of animals that underwent tracer studies (n=18, 10 male, 8 female) were 

humanely killed between 2 pm and 4 pm by lethal injection of sodium phenobarbitone 

immediately after the HEC and a post mortem was performed (age: 115 ± 2 days). Fat depots 

(interscapular, omental, right side of the neck and bilateral axillary, retroperitoneal, perirenal, 

and groin depots) and bilateral skeletal muscles (hindlimb: M. biceps femoris, M. semitendinosus, 

M. gastrocnemius, M. plantaris, and M. tibialis; forelimb: M. biceps brachii) were dissected and 

weighed as described previously Section 2.4.2, 395. Visceral adipose weight was calculated as the 

sum of weights of the left and right perirenal and retroperitoneal fat depots. Subcutaneous adipose 
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weight was calculated as the sum of weights of left and right axillary and groin fat, right side of 

the neck fat and interscapular fat depots. Visceral and subcutaneous fats were summed to give a 

measure of combined adiposity. The weights of dissected skeletal muscles were summed to 

obtain combined skeletal muscle mass. The ratio of the combined adiposity to the combined 

muscle mass was calculated as an index of relative adiposity. 

 

 

Data were analysed using SPSS 23.0 for Windows (IBM, Armonk, USA). The effect 

of litter size on total pup weight and gestational length was assessed by ANOVA. Effects of litter 

size on proportions of liveborn and stillborn progeny were analysed by chi-squared test. The 

effects of litter size and sex on birth phenotype, neonatal growth and whole body insulin 

sensitivity and postnatal outcomes were analysed by mixed models ANOVA, including the dam 

as a random variable to account for effects of a common maternal environment. Bonferroni’s 

post-hoc comparisons were used to compare differences in maternal and offspring outcomes 

between litter sizes. Insulin sensitivity had not been measured previously by HEC in the guinea 

pig nor was tracer analysis to determine the partitioned glucose metabolism assessed therefore a 

priori power analysis was not possible in this instance. Where effects of litter size differed 

between sexes, outcomes were analysed separately in each sex. Due to limited numbers of 

animals and therefore power for tracer studies of components of glucose metabolism and post-

mortem body composition measures within each litter size group and sex, mixed models analyses 

could not be performed for these outcomes. The independent effects of birth weight and neonatal 

growth rate for weight on outcomes were assessed by multiple linear regression separately in 

each sex for both whole body and partitioned glucose metabolism. As neonatal growth did not 

affect the insulin sensitivity of whole body glucose uptake, effects of birth weight on this outcome 

were therefore also subsequently examined by Pearson’s correlation analysis, separately in each 
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sex. A P-value of < 0.05 was accepted as statistically significant. All results are expressed as 

mean  S.E.M.  

 
 

 Results 

 

In the litters that generated the animals in which insulin sensitivity was measured, 

gestation length did not differ between litter sizes (overall mean 69.4 ± 0.2 days, Table 4-1). The 

proportion of pups born alive tended (P=0.054) to decrease as litter size increased from 2 (100% 

survival) to three (97% survival) or four (82% survival), and total litter weight increased with 

increasing litter size (P<0.001, Table 4-1).  

 
 

Table 4-1 Effect of litter size on litter outcomes 
 

Outcome  Litter Size  Significance 
Two Three Four LS 

     

Number of litters 5 13 7 - 

Surviving:Stillborn pups at birth 10:0 35:1 23:5 0.054 

Total pup weight per litter (g) 230 ± 7a 286 ± 5b 374 ± 11c <0.001 

Gestation length (days) 69.6 ± 0.7 69.5 ± 0.3 69.6 ± 0.6 NSD 

     
Data expressed as means ± SEM of dams carrying each of the litter sizes (LS).  
a,b,cMeans with different superscripts differ, P<0.05. NSD: not significantly different, P>0.1.  
 

 

Average birth weight of pups from a litter size of four was 17% lower than those from 

litter size of two, while other measures of size at birth were reduced to a lesser degree (Table 4-

2). Birth weight and length were higher in males from litters of two when compared to males 

from litters of three or four pups (P=0.001 for both, Table 4-2). In females, birth weight, length 

and head length did not differ between litter sizes. Abdominal circumference was higher in males 

from litters of two compared to those from litters of four pups (P=0.034) and tended to be higher 
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compared to litters of three pups (P=0.051). Abdominal circumference was higher in females 

from litters of two compared to litters of three pups (P=0.039), but not compared to offspring of 

litters of four pups. The weight:length ratio was higher in males of litters of two pups compared 

to litters of three and four pups (P=0.004 and P=0.003 respectively). Weight:length ratio did not 

differ with litter size in females. Body mass index at birth was not altered by litter size overall or 

within each sex.  

Neonatal absolute growth rates (AGR10-28) were higher in males (10.5 ± 0.2 g.day-1) 

than females (8.9 ± 0.2 g.day-1) (P<0.001) but did not differ with litter size (Table 4-2). Neonatal 

fractional growth rates (FGR10-28) were also higher in males (6.3 ± 0.2%) than females (5.4 ± 

0.1%), whilst effects of litter size on FGR10-28 differed between sexes (P=0.027, Table 4-2). In 

males, FGR10-28 differed between litter sizes (P=0.002), with litters of four growing faster than 

litters of two (P=0.003) or three (P=0.011) pups. In females, FGR10-28 did not differ between litter 

sizes. AGR10-28 tended to correlate positively with birth weight overall (r=0.292, P=0.068, n=38), 

and in males alone (r=0.431, P=0.051, n=21), but not in females. FGR10-28 correlated negatively 

with birth weight overall (r= -0.431, P=0.007, n=38) and in males (r= -0.578, P=0.006, n=21) 

and females (r= -0.501, P=0.04, n=17) separately. 
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Table 4-2 Effect of litter size and sex on birth phenotype and neonatal growth rates 

Outcome Males from Litter Size Females from Litter Size Significance 
 Two Three Four Two Three Four LS Sex LS × sex 
          
Number of Offspring 4 10 7 2 11 4    
          
Size at Birth          
 Weight (g) 119 ± 3a 94 ± 3b 91 ± 4b 106 ± 22 94 ± 2 101 ± 5 0.008 NSD 0.0701 
 Length (mm) 172 ± 3a 156 ± 3b 155 ± 2b 155 ± 16 157 ± 2 161 ± 5 NSD NSD 0.0492 
 Abdominal circumference (mm) 114 ± 5a 103 ± 2a,b 101 ± 2b 118 ± 7a 100 ± 2b 111 ± 3a,b 0.007 NSD NSD 
 Head-length (mm)† 47 ± 1a 40 ± 2a,b 39 ± 2b 42 ± 1 40 ± 1 41 ± 3 NSD NSD 0.0163 
 Head-width (mm)‡ 23 ± 1 21 ± 1 21 ± 1 22 ± 2 22 ± 0 21 ± 0 NSD NSD NSD 
 Weight:length (g.mm-1) 0.69 ± 0.01a 0.60 ± 0.01b 0.59 ± 0.02b 0.67 ± 0.07 0.60 ± 0.02 0.63 ± 0.03 0.028 NSD NSD 
 Body mass index (kg.m-2) 4.0 ± 0.1 3.9 ± 0.1 3.8 ± 0.2 4.3 ± 0 3.8 ± 0.1 3.9 ± 0.3 NSD NSD NSD 
          
Neonatal Growth Rates          
 AGR10-28 (g.day-1) 11.1 ± 0.4 10.2 ± 0.2 10.6 ± 0.3 8.8 ± 0.3 8.8 ± 0.3 9.2 ± 0.3 NSD <0.001 NSD 
 FGR10-28 (%) 5.7 ± 0.1a 6.1 ± 0.2a 7.0 ± 0.2b 5.3 ± 0.8 5.5 ± 0.2 5.3 ± 0.1 NSD <0.001 0.0274 
          

Data expressed as actual means ± SEM of offspring in each of the litter sizes (LS).  
a,b,c,Means with different superscripts differ, P<0.05. NSD: not significantly different, P>0.1.  
LS × sex = interaction between litter size and sex. Statistical models included dam to correct for common intrauterine environment in multiple births.  
†Head lengths were not measured in 1 male from litter size of three and 2 males and 1 female from litter size of four. 
‡Head widths were not measured in 1 male from litter size of three.  
1In males, birth weight differed across the litter sizes (P=0.001) with litters of two being larger than litters of three and four (P=0.001 for both) while birth weights of 
offspring of litters three and four were not significantly different. In females, there were no differences in birth weight found across the litters.  
2In males, birth length differed across the litter sizes (P=0.029) with litters of two being larger than litters of three and four (P<0.05 for both) while birth lengths of 
offspring of litters three and four did not differ. In females, there were no differences in birth length found across the litters.  
3In males, birth head-length tended to differ across the litters (P=0.066), with litters of two tending to have larger head-length than litters of three (P=0.097) while 
birth head-lengths of offspring of litters three and four did not differ. In females, there were no differences in birth head-length found across the litters.  
4In males, fractional neonatal growth rate differed between litter sizes (P=0.002) with litters of four growing faster than litters of two (P=0.003) and three (P=0.011), 
whereas in females, fractional neonatal growth rate did not differ between litter sizes.
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Fasting plasma glucose and FFA were not altered by litter size or sex (Table 4-3). 

Effects of litter size on steady-state plasma concentrations of human insulin differed between 

sexes, with males (255 ± 23 U.ml-1) having a higher steady state plasma insulin than females 

(212 ± 15 U.ml-1) overall (Table 4-3). Nevertheless, when the sexes were analysed separately 

steady-state plasma concentrations of human insulin did not differ between litter sizes in either 

sex. The MCR for human insulin was ~13% lower in males (34 ± 3 ml.kg-1.min-1) than females 

(39 ± 3 ml.kg-1.min-1, P=0.011), and effects of litter size differed between sexes (Table 4-3). In 

males, the MCR of human insulin differed between litter sizes (P=0.036) with males from litters 

of two pups having a higher MCR than those from litters of three pups (P=0.036), whereas in 

females MCR was not affected by litter size (Table 4-3). Although effects of litter size on insulin 

sensitivity of whole-body glucose metabolism differed between sexes (P=0.021), the effects of 

litter size were not significant in either sex analysed separately (Table 4-3).  
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Table 4-3 Effect of litter size and sex on whole body glucose metabolism.  
Outcome 

Males from Litter Size Females from Litter Size Significance 

Two Three Four Two Three Four LS Sex LS × Sex 
          
Number of Offspring 4 10 7 2 11 4    
 Weight (g) 829 ± 29 801 ± 16 790 ± 27 670 ± 20 652 ± 17 692 ± 21 NSD <0.001 NSD 
          
Fasting Plasma Concentrations          
 Glucose (mmol.l-1) 6.7 ± 0.2 6.7 ± 0.2 6.7 ± 0.4 6.6 ± 1.1 7.3 ± 0.2 7.2 ± 0.2 NSD NSD NSD 
 Free fatty acids (meq.l-1) 2.5 ± 0.1 2.1 ± 0.2 2.5 ± 0.2 1.8 ± 0.3 2.3 ± 0.1 2.4 ± 0.4 NSD NSD NSD 
          
Steady State Outcomes          
 Glucose infusion rate (mol.min-1.kg-1) 41.1 ± 3.9 41.5 ± 5.1 47.4 ± 9.3 33.9 ± 7.9 43.9 ± 3.9 45.7 ± 6.0 NSD NSD NSD 
 Plasma human insulin (U.ml-1) 155 ± 22 297 ± 40 252 ± 18 273 ± 2 199 ± 20 216 ± 23 NSD NSD 0.0031 
 MCR human insulin (ml.kg-1.min-1) 52 ± 8a 30 ± 4b 30 ± 2ab 28 ± 0 42 ± 5 36 ± 4 NSD 0.011 <0.0012 
 Whole body insulin sensitivity 
 (mol.ml.U-1.min-1.kg-1) 

0.29 ± 0.06 0.15 ± 0.02 0.20 ± 0.04 0.12 ± 0.03 0.24 ± 0.03 0.22 ± 0.03 NSD NSD 0.0213 

          

Data expressed as actual means ± SEM of offspring in each of the litter sizes (LS). a,b,cMeans with different superscripts differ, P<0.05. NSD: not significantly different, 
P>0.1. LS × Sex = interaction between litter size and sex. Statistical models included dam to correct for common intrauterine environment in multiple births.  
1Plasma human insulin during steady state in the last hour of the HEC did not differ between litter sizes in males or females analysed separately.  
2In males, the metabolic clearance rate (MCR) of human insulin differed between litter sizes (P=0.036) with litters of two having a higher MCR than litters of three 
(P=0.045) and tending to have a higher MCR than litters of four (P=0.090), whereas in females, MCR did not differ between litter sizes.  
3In males, whole body insulin sensitivity tended to differ between litter sizes (P=0.083) with litters of three tending to have a lower insulin sensitivity of whole body 
glucose metabolism than litters of two (P=0.077), whereas in females, whole body insulin sensitivity did not differ between litter sizes 
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In multiple linear regression analyses, fasting plasma glucose concentrations did not 

correlate with birth weight or FGR10-28 in males or females separately. In males, fasting plasma 

FFA concentrations did not correlate with FGR10-28 or birth weight, whereas in females FFA 

levels tended to correlate negatively with FGR10-28, but not with birth weight (Table 4-4).  

In males, birth weight was independently and positively associated with the MCR of 

insulin and with whole body insulin sensitivity, and tended to correlate negatively with plasma 

human insulin concentrations (P<0.07), while FGR10-28 was not associated with any of these 

measures (Table 4-4).  The ssGIR60-120, in contrast was positively associated with FGR10-28, but 

not with birth weight, in males (Table 4-4). In females, whole body insulin sensitivity, ssGIR, 

plasma human insulin and MCR insulin did not correlate with birth weight or FGR10-28 (Table 

4-4). These relationships were also evident in simple correlation analyses, such that the whole-

body insulin sensitivity of glucose uptake (Figure 4-1) correlated positively with birth weight 

overall (r=0.417, P=0.007, n=38), and in males (r=0.606, P=0.004, n=21) but not in females 

(r=0.128, NS, n=17).  
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Table 4-4 Whole body metabolic outcomes before and during HEC at 7.5 mU insulin.min-1.kg-1 in the guinea pig  
 
 Overall and Partial Correlation (r, P) 
 Males n=21 Females n=17 

Whole Body Measure Overall Birth weight FGR10-28 Overall Birth weight FGR10-28 
Fasting Plasma Concentrations       
 Glucose (mmol.l-1) 0.057, 0.972 0.048, 0.841 0.051, 0.832 0.234, 0.674 0.112, 0.680 -0.079, 0.770 
 Free fatty acids (meq.l-1) 0.246, 0.607 0.023, 0.927 -0.199, 0.429 0.476, 0.165 0.338, 0.200 0.476, 0.062 
       
Steady State Outcomes       
 Glucose infusion rate (mol.min-1.kg-1) 0.479, 0.096 0.359, 0.120 0.465, 0.037* 0.491, 0.145 -0.086, 0.769 -0.423, 0.102 
 Plasma human insulin (U.ml-1) 0.554, 0.037* -0.413, 0.070 0.175, 0.460 0.466, 0.180 -0.296, 0.266 -0.462, 0.071 
 MCR human insulin (ml.kg-1.min-1) 0.646, 0.008* 0.544, 0.013* 0.126, 0.598 0.362, 0.374 0.185, 0.494 0.353, 0.180 
 Whole body insulin sensitivity 
(mol.ml.U-1.min-1.kg-1) 

0.661, 0.006* 0.657, 0.002* 0.332, 0.152 0.130, 0.888 0.080, 0.769 -0.022, 0.937 

       
n, Number of offspring. FGR10-28: fractional growth rate for weight in neonates from 10-28 days of age. 
Age at HEC was 115 ± 1 days. *Significant correlations (P < 0.05) are shown in bold and trends (P < 0.1) in italics.  
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Figure 4-1 Correlation between whole body insulin sensitivity and birth weight in male and female guinea pigs 

Relationship of the insulin sensitivity of whole body glucose metabolism and birth weight in males, closed symbols, solid regression 
line (r=0.606, P=0.004, n=21) and females in open symbols (r=0.128, NS, n=17). Offspring of (■ males = 4; □ females = 2) litters of 
two are shown in squares, (● males = 10; ○ females = 11) litters of three in circles and (▲ males = 7; ᇞ females = 4) litters of four in 
triangles
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 Endogenous glucose production 

In males, basal and insulin-stimulated rates of endogenous glucose production were 

not associated with birth weight or FGR10-28 (Table 4-5), but the insulin sensitivity of 

endogenous glucose production tended to correlate positively with birth weight, but not with 

FGR10-28, in males (Table 4-5). In females, basal endogenous glucose production was not related 

to birth weight or neonatal growth rates. However, the insulin-stimulated rate, the insulin 

stimulated decrease and the insulin sensitivity of endogenous glucose production were all 

positively and independently correlated with FGR10-28 in females (Table 4-5). Birth weight was 

not associated with the insulin stimulated decrease or insulin sensitivity of glucose production 

in females, but did tend to correlate positively with the insulin stimulated rate of endogenous 

glucose production (Table 4-5).  

 

 Glucose utilisation 

In males, the basal and insulin-stimulated rates of whole-body glucose utilisation and 

the insulin-stimulated increase in whole-body glucose utilisation did not independently 

correlate with birth weight or FGR10-28 (Table 4-5), whereas the insulin sensitivity of whole-

body glucose utilisation correlated independently and positively with birth weight, but not with 

FGR10-28 (Table 4-5). In females, basal and insulin-stimulated rates of whole body glucose 

utilisation and its insulin sensitivity were not related to birth weight or neonatal FGR (Table 4-

5). 

 

 Glucose storage 

Basal and insulin-stimulated rates of whole-body glucose storage and its insulin 

sensitivity were not related to birth weight or FGR10-28 in males or females (Table 4-5).  
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 Glycolysis 

In males, basal and insulin-stimulated rates of whole body glycolysis and its insulin 

sensitivity did not independently correlate with birth weight nor with FGR10-28 (Table 4-5). In 

females, the basal rate of glycolysis correlated independently and positively with birth weight 

and with FGR10-28 (Table 4-5), whereas the insulin-stimulated rate of glycolysis correlated 

positively with FGR10-28, but not with birth weight (Table 4-5). In females, the insulin-

stimulated increase and the insulin sensitivity of the rate of glycolysis did not independently 

correlate with birth weight or with FGR10-28 (Table 4-5).
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Table 4-5 Relationships of perinatal growth and partitioned glucose metabolism at 7.5 mU insulin.min-1.kg-1 insulin infusion in the guinea pig. 

 Overall and Partial Correlation (r, P) 
Partitioned Glucose Metabolism Measure  Males n=10   Females n=8  

Overall Birth weight FGR10-28 Overall Birth weight FGR10-28 
Endogenous glucose production       
 Basal (mol.min-1.kg-1) 0.153, 0.920 0.084, 0.830 -0.067, 0.864 0.621, 0.296 0.604, 0.151 0.564, 0.187 
 Insulin stimulated (mol.min-1.kg-1) 0.260, 0.783 -0.170, 0.662 0.086, 0.826 0.813, 0.067 0.750, 0.052 0.807, 0.028* 
 Insulin-stimulated decrease (mol.min-1.kg-1) 0.332, 0.152 0.130, 0.888 0.080, 0.769 0.948, 0.003* -0.556, 0.195 -0.941, 0.002* 
 Insulin sensitivity (mol.ml.U-1.min-1.kg-1) 0.746, 0.058 0.621, 0.074 -0.198, 0.610 0.821, 0.061 -0.597, 0.157 -0.815, 0.025* 
       

Whole body glucose utilisation       
 Basal (mol.min-1.kg-1) 0.153, 0.920 0.084, 0.830 -0.067, 0.864 0.621, 0.296 0.604, 0.151 0.564, 0.187 
 Insulin stimulated (mol.min-1.kg-1) 0.396, 0.550 0.233, 0.546 -0.176, 0.647 0.598, 0.330 0.598, 0.156 0.433, 0.331 
 Insulin-stimulated increase (mol.min-1.kg-1) 0.604, 0.205 0.393, 0.295 -0.296, 0.439 0.473, 0.530 0.254, 0.582 -0.163, 0.727 
 Insulin sensitivity (mol.ml.U-1.min-1.kg-1)  0.918, 0.002* 0.884, 0.004* -0.537, 0.136 0.459, 0.554 0.320, 0.483 -0.057, 0.904 
       

Whole body glycolysis       
 Basal (mol.min-1.kg-1) 0.234, 0.821 0.050, 0.898 -0.172, 0.659 0.834, 0.051 0.770, 0.043* 0.830, 0.021* 
 Insulin stimulated (mol.min-1.kg-1) 0.184, 0.886 0.165, 0.672 0.014, 0.971 0.904, 0.013* 0.454, 0.306 0.883, 0.009* 
 Insulin-stimulated increase (mol.min-1.kg-1) 0.305, 0.710 0.259, 0.502 0.278, 0.278 0.533, 0.433 -0.461, 0.297 -0.091, 0.846 
 Insulin sensitivity (mol.ml.U-1.min-1.kg-1)  0.228, 0.830 0.198, 0.610 0.202, 0.602 0.539, 0.424 -0.516, 0.235 -0.244, 0.598 
       

Whole body glucose storage       
 Basal (mol.min-1.kg-1) 0.075, 0.980 -0.014, 0.972 0.056, 0.886 0.228, 0.875 0.201, 0.666 0.056, 0.905 
 Insulin stimulated (mol.min-1.kg-1) 0.227, 0.756 0.075, 0.848 -0.195, 0.616 0.649, 0.255 0.543, 0.208 0.031, 0.948 
 Insulin-stimulated increase (mol.min-1.kg-1) 0.587, 0.228 0.173, 0.656 -0.453, 0.221 0.644, 0.262 0.508, 0.245 -0.041, 0.930 
 Insulin sensitivity (mol.ml.U-1.min-1.kg-1)  0.737, 0.064 0.503, 0.168 -0.435, 0.242 0.670, 0.225 0.594, 0.159 0.120, 0.798 
       

n, Number of offspring. FGR10-28: fractional growth rate for weight in neonates from 10-28 days of age. Age at HEC was 115 ± 1 days.  
*Significant correlations (P < 0.05) are shown in bold and trends (P < 0.1) in italics.  
Basal: prior to insulin infusion, Insulin-stimulated: during insulin infusion, insulin stimulated decrease/increase: change between the basal and insulin-
stimulated states: Insulin sensitivity: change between the basal and insulin-stimulated states divided by the steady-state plasma insulin concentration. 
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Overall males had a greater adult weight, longer length and a greater weight:length 

than females, while body mass index was not different between the sexes (Table 4-6). Absolute 

weights of subcutaneous, visceral and total dissected fat were greater in males compared to 

females (P<0.007 for all), while the absolute weight of omental fat did not differ between sexes 

(Table 4-6). The relative weight of subcutaneous fat tended to be greater in males compared to 

females, however, all other measures of adiposity in relative terms did not differ between the 

sexes. 

In males, fasting plasma metabolites were not correlated with adult body weight or 

body composition. In females, fasting plasma glucose concentration correlated positively with 

the relative weight of omental fat (r=0.727, P=0.041), but was not related to any other measures 

of body composition. In males, insulin sensitivity of whole body glucose metabolism was not 

correlated with adult body weight or body composition. In females, the insulin sensitivity of 

whole body glucose metabolism correlated positively with the relative weight of omental fat 

(r=0.731, P=0.039) but was not related to any other measures of body composition. In males, 

basal rates of glucose utilisation and endogenous glucose production correlated negatively with 

relative omental fat mass (r= -0.699, P=0.024 for both). In males, the insulin sensitivity of the 

endogenous glucose production tended to correlate negatively with the relative omental fat mass 

(r= -0.601, P=0.066) and the total dissected fat to muscle ratio (r= -0.630, P=0.051). In females, 

the insulin sensitivity of glucose utilisation correlated positively with both the absolute and 

relative mass of omental and of total dissected fat (P<0.05 for all). Similarly, in females, the 

insulin sensitivity of glucose storage correlated positively with both the absolute and relative 

omental fat mass (P<0.025 for both). No correlations were found between the insulin sensitivity 

of glucose utilisation or of storage and adult weight or body composition in males. No 

correlations were found between the insulin sensitivity of the rate of glycolysis and adult weight 

or body composition in either sex.  
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Table 4-6 Effect of sex on adult size and body composition 
 
Outcome   Significance 

Males (n=10) Females (n=8) Sex 
    
Age at Post Mortem 116 ± 3 113 ± 1 NSD 
    
Adult Size    
 Weight (g) 840 ± 28 680 ± 22 <0.001 
 Length (mm)§ 349 ± 6 320 ± 5 0.002 
 Weight:Length (g.mm-1) § 2.41 ± 0.07 2.13 ± 0.08 0.021 
 Body Mass Index (kg.m-2) § 6.9 ± 0.2 6.7 ± 0.3 NSD 
    
Adult Body Composition    
 Subcutaneous fat (g) 43 ± 3 30 ± 3 0.002 
 Subcutaneous fat (%) 5.1 ± 0.2 4.4 ± 0.3 0.079 
 Visceral fat (g) 19 ± 1 13 ± 1 0.007 
 Visceral fat (%) 2.2 ± 0.1 1.9 ± 0.2 NSD 
 Omental fat (g) 17 ± 1 15 ± 1 NSD 
 Omental fat (%) 2.05 ± 0.05 2.22 ± 0.09 NSD 
 Total dissected fat (g) 79 ± 4 58 ± 5 0.006 
 Total dissected fat (%) 9.3 ± 0.3 8.5 ± 0.5 NSD 
 Skeletal muscle (g) 22 ± 1 18 ± 1 0.01 
 Skeletal muscle (%) 2.64 ± 0.08 2.74 ± 0.09 NSD 
 Total dissected fat: skeletal muscle 3.5 ± 0.1 3.2 ± 0.2 NSD 
    

Data expressed as means ± SEM of dams carrying each of the litter sizes (LS). NSD: not significantly different, P>0.1.  
Weights of all measures of adult body composition are expressed in absolute terms (g) and as a percentage of adult body weight (%). 
§Adult lengths were only measured in n=7 females. 
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 Discussion 

 

We have found for the first time that spontaneous IUGR due to variable litter size in 

the guinea pig is associated with impaired whole body insulin sensitivity in young adult males. 

This is consistent with sex-specific programming of insulin sensitivity following IUGR in 

young adult human males in their twenties185, 194, 195, 198, 229, 328. This impaired whole body insulin 

sensitivity in the spontaneously IUGR male guinea pig appears to reflect primarily impaired 

insulin sensitivity of glucose utilisation, which decreased with decreasing size at birth. These 

observations are also consistent with findings in IUGR humans and animal models of IUGR 

demonstrating impaired insulin signalling in skeletal muscle primarily of glucose uptake190, 231, 

237, 328, 329, 467-469. The insulin sensitivity of glycolysis, in contrast, was not related to size at birth 

in young adult guinea pigs of either sex.  

While effects of birth weight on whole body insulin sensitivity were not observed in 

female offspring, rapid neonatal growth predicted impaired hepatic insulin sensitivity but 

improved basal and insulin-stimulated rates of glycolysis in young adult females only. Thus, in 

the guinea pig, spontaneous IUGR impairs whole body and peripheral insulin sensitivity in 

young adult males, with similar trends for hepatic insulin sensitivity, which may lead to overt 

diabetes and other cardio-metabolic pathology with ageing in this species.  

 

 Perinatal Growth and Whole Body Insulin Sensitivity 

In the present study, small size at birth was associated with impaired whole body 

insulin sensitivity in young adult male guinea pigs. Consistent with this relationship, insulin 

sensitivity tended to be lower in males from litters of three, compared to two pups. In contrast 

to the larger cohort described in Chapter 2395, males from litters of three and four pups were of 

similar weight and size at birth within the subset of animals in which insulin sensitivity was 

measured, which may explain their similar whole body insulin sensitivity. The negative 
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association between insulin sensitivity in young adult guinea pigs and their size at birth is 

consistent with studies in the IUGR human and in other species measured using the HEC154, 187, 

189, 194, 464. In contrast, IUGR induced by maternal protein restriction in the rat does not 

consistently impair insulin sensitivity of young adult offspring, also measured by HEC335, 460. 

We found that fasting glucose levels in adult guinea pig offspring were not related to size at 

birth, and did not differ between litter sizes, in either sex. These observations suggest that the 

impairment in insulin sensitivity in male guinea pigs who were small at birth precedes any 

impairment of glucose tolerance or hyperglycaemia. This is consistent with previous reports of 

insulin resistance without hyperglycaemia in young adulthood in humans after small size at 

birth or IUGR185, 189, 217. Previously we have shown that catch-up following spontaneous IUGR 

is associated with increased adiposity in visceral compartments in young adult guinea pigs, 

primarily in males (Chapter 2, 395). Neonatal growth rates did not predict whole-body insulin 

sensitivity in young adult guinea pigs. We hypothesise that with further ageing a progressive 

increase in visceral adiposity, particularly in males after IUGR and rapid neonatal growth, 

would exacerbate impaired insulin sensitivity, leading to compensatory failure, glucose 

intolerance and hyperglycaemia. Consistent with this, many studies in humans only report 

correlations between IUGR and impaired glucose tolerance and overt diabetes in aged 

cohorts187, 201, 202. 

 

 Perinatal Growth and Components of Glucose Metabolism 

Insulin resistance in the male guinea pig of low birth weight was apparent for whole-

body glucose utilisation with a tendency for impairment in endogenous glucose production. 

Impaired glucose utilisation and storage largely reflect impaired insulin action in skeletal 

muscle106. In humans, skeletal muscle is the primary tissue for glucose disposal in the insulin-

stimulated state, accounting for approximately 70% of the increase in glucose uptake106. 

Skeletal muscle is also the primary site of insulin resistance in humans with T2DM, reinforcing 



151 
 

  

the physiological importance of this tissue432. Our findings in guinea pig are consistent with 

those of previous studies in humans where small size at birth reduces expression of key targets 

in the insulin signalling pathway leading to insulin resistance in young adults. This includes 

reduced expression of GLUT4 and reduced glucose uptake, as well as decreased expression of 

the post-receptor signalling protein kinase C-ζ and p85α and p110β subunits of phosphoinositol 

3-kinase190, 196, 198, 229, 231-238.  

In the current study, we also observed a tendency for a positive independent 

correlation between the insulin sensitivity of endogenous glucose production and birth weight 

in males only. This suggests that both skeletal muscle and liver contribute to the whole-body 

insulin resistance associated with small size at birth in males in this species. This hepatic 

contribution is also consistent with studies in humans where insulin suppression of endogenous 

glucose production is impaired after IUGR197, 246. Similarly, insulin signalling in liver is 

impaired in several animal models of IUGR326, 329, 346, 463, 470. Additional studies will be required 

to determine the underlying mechanisms for insulin resistance in muscle and liver in the 

prenatally growth restricted guinea pig.  

In contrast to previous reports in humans and other species358, neonatal catch-up 

growth was not associated with impaired insulin sensitivity of whole-body glucose uptake in 

either sex in the young adult guinea pig. This lack of relationship is consistent, however, with 

previous reports in the control and placentally-restricted sheep, where measures of neonatal 

growth were not correlated with adult insulin sensitivity of whole-body glucose uptake in either 

sex464. The lack of correlation between neonatal growth and insulin sensitivity in the young 

adult male guinea pigs is particularly interesting given the positive correlations observed 

between neonatal growth and visceral adiposity (Chapter 2, 395).  

Intriguingly, the insulin sensitivity of endogenous glucose production was correlated 

negatively with neonatal fractional growth rate but not with birth weight in female guinea pigs 

only. This implies that in female guinea pigs, fast rates of growth following IUGR may 
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contribute to the sequelae of insulin resistance later in life. Females in this species also tend to 

have a higher basal endogenous glucose production rates than males (Section 3.5.2), consistent 

with reports of higher basal endogenous glucose production rates in women than men of similar 

age, and suggesting a sex-specific hepatic handling of glucose454. Fast neonatal growth also 

correlated with high circulating FFA in adult female guinea pigs, and elevated FFAs are known 

to impair insulin action in the liver which leads to increased hepatic glucose production471. This 

suggests that elevated FFA might contribute to the impaired suppression of endogenous glucose 

production under HEC conditions after accelerated neonatal growth in the female guinea pig.  

In females, basal rates of glycolysis correlated positively with birth weight perhaps 

suggesting a reduced capacity for glycolysis in low birth weight female guinea pigs. The rates 

of basal and insulin-stimulated glycolysis increased with increasing neonatal fractional growth 

rate without an increase in the insulin sensitivity of glycolysis with neonatal catch-up. This 

suggests that neonatal catch-up may enhance the rate limiting step in glycolysis but does not 

alter the overall insulin sensitivity of the entire pathway. In humans, IUGR indicated by thinness 

at birth is associated with reduced rates of glycolysis during exercise, measured by 31P magnetic 

resonance spectroscopy234. In these IUGR humans, there was no association between insulin 

sensitivity and thinness at birth and previous findings suggest insulin mediated glucose uptake 

into muscle is not the rate limiting step of glycolysis 472. The observation of reduced glycolytic 

potential during exercise in IUGR humans did not report effects of sex. Hence, further 

investigation is required to determine if the impaired rate of basal glycolysis following IUGR 

is sex-specific in a larger cohort in guinea pigs, other animal models of IUGR and in humans. 

 

 Impaired Insulin Sensitivity in the Low Birth Weight Male is not 
Related to Body Composition 

Insulin sensitivity was not correlated with adult body composition in young adult 

male guinea pigs, suggesting that the insulin resistance in male guinea pigs who were small at 

birth is not due to central adiposity or reduced lean tissue. This is consistent with studies in 
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young adult humans showing that adiposity does not explain reductions in insulin sensitivity 

with small size at birth200, 206. In turn, these findings suggest that impaired insulin sensitivity is 

due to changes in the function of insulin sensitive tissues, rather than the absolute or relative 

amounts of these.  

 

 Sex Differences 

In the current study, prenatal programming of insulin resistance was evident 

primarily in male guinea pigs. This male-specific programming by IUGR was of whole body 

insulin sensitivity and glucose utilisation, with a similar trend for the suppression of endogenous 

glucose production. Consistent with this, studies in humans report impaired insulin sensitivity 

in males but not in females after IUGR65, 185. Others report that impaired insulin action or 

measures of T2DM correlate positively with size at birth in males and do not report outcomes 

in females187, 194, 195, 201, 229. Systematic reviews of the literature suggest that when positive 

correlations between insulin sensitivity and size at birth are evident in both males and females 

the strength of the associations are approximately 2.5-fold greater in males than in females 

suggesting an increased impact or susceptibility of males to a sub-optimal intrauterine 

environment65, 176. In contrast, other studies in humans have not shown sex-specific 

programming of insulin sensitivity of glucose metabolism154, 227. It is possible that greater 

numbers of progeny and inclusion of the full range of litter sizes, including progeny of the less 

common extreme litter sizes of one and five pups, might allow us to observe subtler effects of 

prenatal restriction on insulin sensitivity in female as well as male guinea pigs. In the rat, insulin 

sensitivity is impaired in male but not female offspring of maternal protein restricted dams305, 

336, 465, 466. Conversely another study using the same model did report reduced insulin sensitivity 

in both male and female offspring305. One limitation to this study is that because females were 

age matched, they were not all measured at a specific stage of the oestrous cycle. In rats, glucose 

tolerance is greatest and plasma insulin concentrations are highest during pro-oestrus (~10%) 
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and oestrus (~15%) where oestrogen is the major circulating steroid hormone and lower at 

diestrus where progesterone from the corpus luteum is the dominant steroid hormone 473. In 

humans, insulin sensitivity derived from the tolbutamide-modified intravenous glucose 

tolerance test (IVGTT) is higher in the follicular phase when circulating 17-oestradiol is high 

compared to the luteal phase474, and consistent with this, glucose uptake during hyperglycaemic 

clamp is also higher in the follicular than luteal phase, despite similar circulating insulin 

concentrations475. Direct measures of whole-body and hepatic insulin sensitivity by HEC in 

women did not, however, differ between follicular and luteal phases in another study476. 

Glucose tolerance measured by oral glucose tolerance test also did not differ between follicular 

and luteal phases in healthy, non-obese, regularly menstruating women477. Effects of the 

oestrous cycle on glucose tolerance and insulin sensitivity have not, as yet, been reported in 

guinea pig, but could potentially have added variability to these outcome measures in the 

females in this study. Our results do however suggest that sex differences in the impact of 

prenatal restriction on insulin sensitivity are probably not due to postnatal effects of sex steroids 

acting indirectly via altered body composition, since fat and lean tissue proportions were not 

correlated with insulin sensitivity in these animals. Nevertheless, sex steroids may contribute 

to sex differences in programming and may protect female offspring from insulin resistance, as 

oestrogen replacement in postmenopausal women increases insulin clearance and sensitivity270. 

 

 Conclusion 
Spontaneous IUGR in the guinea pig provides a model for investigating the causal 

mechanisms for insulin resistance in muscle and in liver. The associations between spontaneous 

IUGR and impaired insulin sensitivity of whole body glucose metabolism and utilisation, are 

sex-specific occurring primarily in males, which is consistent with studies in humans and other 

animal models. We suggest that further studies in ageing adults are merited, to determine 

whether the impairments in insulin sensitivity observed in low birth weight young adults, lead 

to compensatory failure, glucose intolerance and hyperglycaemia with ageing in the guinea pig.  
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General Discussion 

 
 
 
 
 

 Summary 

Studies in humans have shown that small size at birth is associated with NCD 

including metabolic diseases such as insulin resistance, T2DM and the metabolic syndrome in 

later life2-4. A fast rate of growth or catch-up growth that often follow times of constraint or 

nutrient deprivation, as occurs in IUGR, is also an independent risk factor for the development 

of these NCD later in life2, 3, 14. This has brought about the hypothesis of the Developmental 

Origins of Health and Disease or DOHaD8-13. Several small animal models of IUGR have been 

utilised to investigate the mechanisms underlying the perinatal programming of metabolic 

disease, however, many models do not undergo catch-up growth immediately after birth or do 

not induce all the programmed adult outcomes seen in human studies. Therefore, the studies 

described in this thesis were designed to investigate spontaneous IUGR due to natural variation 

in litter size in the guinea pig as a potential model of perinatal programming of insulin 

resistance.  

Firstly, I investigated the birth phenotype to determine if guinea pigs of larger litters 

are disproportionately growth restricted (Chapter 2)395. Secondly, we examined their postnatal 

growth to determine if guinea pigs from larger litter sizes undergo catch-up as both IUGR and 

neonatal catch-up are independent risks for insulin resistance later in life in humans (Chapter 

2)395. We also examined if these spontaneous IUGR guinea pigs became hyperphagic and had 

increased adiposity as young adults (Chapter 2)395, the latter being a known contributor to 

T2DM in humans 123, 127. Both hyperphagia and increased adiposity are early events following 

IUGR and/or catch-up growth in SGA humans and some experimental animal models of IUGR. 

I then validated the HEC, the gold standard method of assessing insulin sensitivity with D-[3-
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3H]-glucose tracer to determine partitioned glucose metabolism, in unanaesthetised, 

unrestrained male and female guinea pigs (Chapter 3). Finally, I used an insulin infusion rate 

of 7.5 mU.kg-1.min-1 that was an approximately half maximal insulin doses, determined through 

a dose response study in Chapter 3, to determine whole body and partitioned insulin sensitivities 

of male and female guinea pigs of known size at birth and neonatal growth rates (Chapter 4) to 

determine if these measures of insulin sensitivity are programmed in early life.  

In addition to comparisons between groups based on litter size, all outcomes in 

Chapters 2, 3 and 4 were assessed by multiple linear regression against size at birth and neonatal 

fractional growth rate to determine independent contributions of pre- and early postnatal 

growth. These dual approaches allowed me to examine both effects of litter size and how 

perinatal growth predicts adverse outcome across the entire spectrum. This is important as 

systematic reviews in humans show the relationship of insulin resistance, the primary defect in 

syndrome X, with size at birth, is U- or J-shaped177, 178. This suggests that both ends of the birth 

weight spectrum may have risks for the development of metabolic disease via different 

mechanisms.  Others have investigated effects of IUGR in litter-bearing species such as pigs 

and in sheep selected for variable litter size by comparing outcomes in growth-restricted (runt) 

or low birth weight littermates to those of littermates in the normal birth weight range 359, 360, 

370-373, 478. These approaches select a more extreme IUGR phenotype, but only allows inclusion 

of a limited subset of progeny per litter, and does not permit analyses across the birth weight 

range as used throughout this thesis.  

This final chapter summarises the context of the key findings of these studies, 

discusses the strengths and weakness of the studies conducted as well as the future directions 

for the guinea pig as a model in further studies into the perinatal programming of metabolic 

disease. 
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 Effects of Litter Size, Spontaneous IUGR and Neonatal Growth on 
Postnatal Phenotype (Chapters 2 and 4) 

Pups from larger litter size were not only of low weight at birth, but also exhibited 

disproportionate growth restriction. This is consistent with multiple births in human42 and other 

spontaneous IUGR animal models due to multiple births in sheep362, 366-369 and pigs358-360, 479. 

Spontaneous IUGR in the guinea pig gave a large natural variation in birth weight where 

animals from larger litters are thin at birth and have relative sparing of head/brain size and 

length in relation to soft tissue mass (Section 2.7.3)395. This was indicated by a conserved head 

width across the litter sizes and low birth weight to length ratio an index of thinness at birth 

(Section 2.7.3)395. Disproportionate size at birth is a known risk factor for metabolic disease 

later in life in human studies66, 252, 253. Spontaneous growth restriction in the guinea pig due to 

larger litter size has a substantial contribution originating from placental insufficiency391-394. It 

is also possible that intrinsic maternal differences that contribute to differences in ovulation and 

conception rates contribute to differences in progeny phenotypes associated with litter size. 

Heavier maternal weight rather than age or parity at conception is the greatest predictor for 

large litter sizes in the guinea pig 397. Litter size was similarly associated with maternal size in 

guinea pigs in the present study (Chapter 2)395, creating the possibility that dams with larger 

litters also have greater potential food intake and/or maternal nutrient reserves, potentially 

increasing lactational capacity. Consistent with this hypothesis, in goats, litter size is positively 

associated with total milk production, nevertheless volume per kid is lower in large litters480. 

We suggest that pups in large litters in the present study may have responded to limited milk 

availability by earlier commencement of solid feeding on pellets available within the dam’s 

cage, explaining the smaller “check” in their growth trajectories at weaning, compared to guinea 

pig pups from small litters (Chapter 2)395. Altered feed composition in early postnatal life may 

therefore also have contributed to programming effects associated with litter size. Litter size 

also increases with maternal age and parity in guinea pig 397, but as all dams were of similar age 

and first parity in the present study this cannot have contributed to progeny differences here. 
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Other animal models that specifically induce placental restriction, such as uni- or bi-lateral 

uterine artery ligation in the rat275, 276, 280-282, surgical carunclectomy in the sheep69, 293, and heat-

induced placental restriction300 also produce offspring with disproportionate IUGR. We expect 

that in IUGR due to large litter size in guinea pigs, relative placental insufficiency will worsen 

with advancing gestation as fetal size increases rapidly and demand exceeds placental capacity 

for nutrient supply391. In larger litters although fetal weight gain is slower compared to that of 

smaller litters in late gestation the gain in length is comparable481 which gives rise the greater 

weight to length ratio at birth in larger litters compared to smaller litters in this species (Chapter 

2)395. 

In late gestation when nutrient requirement for the fetuses is high, dams carrying litters 

of three and four pups increased their feed intake in late gestation (40-60 days) compared to 

mid gestation (20 to 40 days) with no changes in maternal intake over gestation in dams 

pregnant with one or two pups (Chapter 2)395. Paradoxically, litters of five pups had a 15% 

reduction (ns) in feed intake in late gestation compared to mid-gestation. This suggests that 

total pup volume in these largest litters interferes with maternal feeding and gastric filling and 

emptying, and may further reduce nutrient supply to the growing fetuses especially in late 

gestation. In feed-restricted dams, 60-day-old offspring have reduced liver and muscle weights 

with heavier adipose tissue deposits compared with progeny of ad libitum-fed dams 309, 

demonstrating programming via maternal feed intake. 

Guinea pigs from larger litter sizes were IUGR and underwent neonatal catch-up which 

persisted after weaning into the juvenile period in both sexes. Catch-up growth is a phenomenon 

observed in IUGR humans57-59 and animal models of IUGR in sheep69, 293, 295, pigs358, rats77, 282, 

288 and guinea pigs394 where faster rates of growth occur soon after birth. The IUGR male and 

female guinea pig offspring were hyperphagic after weaning suggesting that altered appetite 

regulation is one of the early sequelae of spontaneous IUGR in the guinea pig similar to that 
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seen in IUGR sheep293 and following maternal feed restriction in the guinea pig310 and in the 

rat77, 374. 

 Both neonatal catch-up growth and larger size at birth in males independently predicted 

increased adiposity, especially in visceral depots, and increased the fat to muscle ratio in 

adolescence which was not evident in females. Catch-up growth in early life has been associated 

with increased adiposity in many human studies covered in systematic reviews66, 252, 253 and this 

increase in adiposity with catch-up growth is replicated in many IUGR animal models259, 482, 

483. 

Small size at birth predicted insulin resistance of whole body glucose uptake 

independent of neonatal catch-up growth, adiposity and muscle mass in males but not in females 

in the young adult (Section 4.5.3 and 4.5.4). Many in vivo studies in humans have shown, using 

the HEC, that insulin sensitivity is positively associated with size at birth187-199. In the studies 

described in this thesis programming of insulin resistance due to small size at birth was sex-

specific, occurring in males and not in females. This is consistent with reports in young adult 

humans, where insulin sensitivity correlated positively with birth weight in males but not 

females65, 185. In humans, impaired insulin action or measures of T2DM also correlate positively 

with size at birth in males; however, outcomes in females are often not reported187, 194, 195, 201, 

229. In animal models, IUGR in sheep295, 464, maternal protein restriction in the rat336, 465, 466 and 

maternal feed restriction in the guinea pig also program impaired glucose homeostasis in a sex-

specific manner, and primarily in males. 

Here we have shown for the first time that glucose utilisation was positively 

correlated with birth weight, independent of neonatal fractional growth rate, adult adiposity and 

muscle mass in males, while a similar trend was observed for endogenous glucose production. 

In contrast, no associations of insulin sensitivity of whole body glucose uptake or partitioned 

glucose metabolism with birth weight were found in young adult females. The impaired insulin 

sensitivity of glucose utilisation in males predominantly reflects insulin resistance of skeletal 
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muscle. Skeletal muscle is responsible for approximately 70% of the glucose disposal under 

insulin stimulation92 and primarily utilises glucose by storage to glycogen rather than oxidation 

to ATP with increased insulin stimulus106. This relationship is consistent with the majority of 

in vivo and in vitro studies in LBW/IUGR humans which show impaired skeletal muscle 

uptake189-191, 194-199, and altered expression of components of the insulin signalling pathway in 

skeletal muscle that would be expected to result in reduced insulin action in this tissue190, 196, 

198, 229, 231-238. Consistent with this, IUGR in sheep and in rats, altered the expression of insulin 

signalling proteins such as PKC, IRS-1, AKT-2, GSK3a and GYS1 and GLUT4 in skeletal 

muscle, explaining impairing insulin action in this tissue231, 292, 294, 328, 338, 353.  

The current studies also provided evidence of perinatal programming of hepatic 

insulin sensitivity. Although human studies197, 246 and other animal models have shown there is 

programming of the liver in terms of growth377, insulin sensitivity329 and insulin signalling326, 

329, 346, 463, 470, 484 these studies either examined one sex only, did not report differences between 

males and females, or did not find differences between the sexes. In the young adult guinea pig, 

perinatal programming of hepatic insulin sensitivity, as indicated by the impaired suppression 

of endogenous glucose production during HEC was sex-specific. Insulin sensitivity of 

endogenous glucose production tended to correlate positively with birth weight in males, but 

not in females, as young adults. In contrast, in females the insulin sensitivity of endogenous 

glucose production correlated negatively with neonatal fractional growth rate. This impaired 

responsiveness to insulin in the liver after IUGR or neonatal catch-up growth may also add to 

the risk of hyperglycaemia and overt T2DM later in life, as observed in both LBW/IUGR 

humans and animal models of IUGR.  

Although we showed that spontaneous IUGR and/or neonatal catch-up growth were 

associated with increased adiposity, reduced muscle mass or a metabolically adverse high 

adipose to muscle weight ratio, we did not find consistent associations between insulin 

resistance of whole body glucose disposal, or peripheral or hepatic glucose action with adult 
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body composition. This suggests that in male guinea pigs of small size at birth, impaired insulin 

sensitivity is due to intrinsic alterations in the structure or protein expression within insulin 

sensitive tissues, particularly skeletal muscle and liver. This is consistent with numerous studies 

in humans and animal models where IUGR alters, mostly down-regulating, the expression of 

insulin signalling proteins in liver197, 246, 326, 329, 346, 463, 470, skeletal muscle190, 196, 198, 229, 231-238, 278, 

294, 485, and in adipose tissue332, 341, 342, 486, 487 which may ultimately lead to impaired insulin 

action.  

 

 Sex-Specific Outcomes (Chapters 2, 3 and 4) 

The numerous sex-specific programmed outcomes demonstrated in the current thesis 

highlights the need for both sexes to be assessed in future studies of metabolic programming. 

It has long been established that there are sex differences in size at birth with males generally 

having higher birth weights but higher neonatal mortality and morbidity488. The very fact that 

the fetal placenta is derived from the trophoblast cells of the blastocyst which carries the XY or 

XX sex chromosomes gives the placenta a degree of “sex” and this may induce differing 

responses to a suboptimal environment 488, 489  

Sex-specific programming by in utero events may result from differential adaptations 

and plasticity at the timing of insult at conception, the placenta and how the fetal and therefore 

early postnatal growth responds to acute or chronic perturbations of maternal nutrient 

deprivation, oxidative stress, overnutrition, glucocorticoid and sex steroid supplementation15, 

467, 488-492.   

Male embryos are more likely to form at the extremes of the fertility window of the 

ova than female embryos490. This may account for the higher incidence in spontaneous 

abortions in males suggesting lower viability and notion of the “fragile male embryo” 490. This 

may explain the fact that the 5 of 10 surviving guinea pigs in the litters of five were all female 

in the current study (Chapter 2)395.  
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Recent reviews suggest that the placentas of each sex have differing biochemistry 

which may alter growth in utero in sub-optimal conditions488, 489. The male fetus continues to 

grow despite a sub-optimal uterine environment as the male-specific placenta is glucocorticoid 

resistant and therefore does not allow elevated glucocorticoids, which usually inhibit glucose 

uptake and fetal growth during maternal or fetal stress, to activate the expression of genes of 

the glucocorticoid-sensitive IGF axis488. Therefore, male fetuses continue to grow and develop 

during periods of environmental insult in utero such as undernutrition and hypoxia through 

signalling of increased placental growth allowing increased blood flow489. During times of sub-

optimal nutrient supply, a male fetus ensures short-term survival by increasing placental size 

and therefore supply of nutrients to the fetus. In later gestation when growth is accelerated the 

increased placental size of males results in increased competition for nutrients resulting in an 

asymmetric phenotype at birth489. In contrast, the placenta of a female fetus is responsive to 

glucocorticoid changes in the mother and therefore the IGF-axis, glucose metabolism and 

growth is inhibited leading to a slowing down of growth in sub-optimal conditions. This ensures 

in late pregnancy that the placental:fetal ratio is optimal for survival in the female fetus488. 

Nevertheless, in the current study (Chapter 2)395 we did not see any effect of sex on birth 

phenotype in the guinea pig. Therefore, the contributions of the uterine environment on the sex-

specific programming in this species remains unclear.  

Reduced maternal nutrient intake, oxidative stress in utero or paternal obesity at the 

time of conception, can lead to sex-specific alterations in expression of genes postnatally or 

epigenetic programming, which leads to greater susceptibility to perturbations in males than in 

female fetuses 15, 467, 488, 489, 491. This does not alter the overall DNA base sequence itself but can 

silence the expression of genes in early and in postnatal life. Offspring from obese fathers have 

hypomethylation, or the loss of suppression of the IGF-2 gene which results in increased 

growth, insulin secretion and obesity in these offspring491. Similarly DNA methylation of 

corticosteroid 11-beta-dehydrogenase isozyme 2 (11-HSD-2) gene, the enzyme that 
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metabolises glucocorticoids from the placenta and therefore the fetus can be silenced by 

methylation in the placenta467. This	decreased	 clearance	 of	 glucocorticoids	may	 also	 act	 as	 a	

mechanism	 for	metabolic	 dysfunction	 in	 later	 life467.	There is increasing evidence that DNA 

methylation accounts for a significant proportion of sex-specific programmed events in utero 

15, 489. Based on these studies, approaches to increase fetal nutrition and oxygenation, such as 

maternal nutrient supplementation, development of anti-epigenetic therapeutics or epigenetic 

markers to determine fetuses at risk may merit investigation as intervention approaches.  

Programming of the HPA axis is also an important mechanism likely contributing to 

sex-specific disease outcomes in later life. Hypercortisolaemia is associated with increased 

risks of development of cardio-metabolic disease in later life493. In fetal sheep males have a 

higher cortisol response, despite similar adrenocorticotrophic hormone responses to an acute 

hypoxic stress compared to females 494. Consistent with this, in humans, adult males have a 

higher cortisol release response to psychological stress compared to females 495.  This suggests 

that sensitivity of the HPA to the environment differs between sexes.  

In rats, maternal feed restriction causes IUGR and when ad libitum feeding is allowed 

postnatally rapid catch-up occurs which can be normalised if nutrients are restricted 496, 497. 

Further rapid catch-up growth in these studies resulted in impaired metabolic function which 

was rectified in females but not males when postnatal growth was slowed with undernutrition 

following IUGR496, 497.  In the guinea pigs studies reported in Chapter 2, adult adiposity was 

strongly positively correlated with neonatal FGR in males, but not females. Together, this 

suggests that catch-up growth in males has more serious consequences in males than females.  

Many of the programmed adult outcomes observed in IUGR guinea pigs in the 

current study, such as adiposity, whole body, peripheral (skeletal muscle: glucose utilisation) 

and central (liver: endogenous glucose production) insulin resistance, occurred in males but not 

in females. This is consistent with systematic reviews, where males are at greater risk of 

developing cardio-metabolic disease than females later in life176, 264, 265. Many studies have 
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assessed insulin sensitivity in males only and shown strong associations between size at birth 

and insulin resistance later in life65, 185. In sheep models of IUGR based on surgical placental 

restriction or adolescent mothers, male but not female offspring exhibit impaired glucose 

homeostasis in later life295, 464. This male-specific insulin resistance after IUGR in guinea pigs 

is also consistent with observations following protein-restriction during gestation and lactation 

in the rat. Protein-restricted male but not female rat offspring were insulin resistant as assessed 

by IVGTT and HOMA338. The insulin-stimulated activation of phosphorylation of AKT was 

impaired in skeletal muscle and adipose tissue of male offspring of protein-restricted mothers, 

males compared to controls, however the phosphorylation of AKT did not differ between the 

protein-restricted or control female progeny338. Therefore, in males only both spontaneous 

IUGR in guinea pigs (Section 4.5.3) and protein-restriction during gestation and lactation in the 

rat338, leads to peripheral insulin resistance. In the current thesis, several sex-specific postnatal 

programmed outcomes were also found such as an association of increased obesity with 

neonatal catch-up in males, but not females, and reduced muscle mass in IUGR females. 

 Early postnatal factors that may contribute to altered homeostasis later in life either via 

prenatal events or as independent factors require further investigation. In females, rapid 

neonatal growth predicted impaired insulin sensitivity of endogenous glucose production but 

higher rates of basal and insulin-stimulated rates of glycolysis. In females, rapid neonatal 

growth also tended to predict raised plasma FFAs (Section 4.5.2), suggesting that circulating 

concentrations of FFA may contribute to the sex-specific association of neonatal growth with 

hepatic insulin sensitivity. In males, faster rates of neonatal growth although predicting 

increased adiposity especially in visceral deposits (Section 2.7.6.2)395 did not predict higher 

FFAs or impaired insulin sensitivity of the liver or skeletal muscle (Sections 4.5.2 and 4.5.3). 

Investigation of the insulin sensitivity of FFAs in male and female guinea pigs following IUGR 

and neonatal catch-up growth is required to assess this further. However, the combined 

contributions of the added visceral adiposity due to neonatal catch-up and the effects of aging 
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on metabolic insulin resistance and overt T2DM needs to be elucidated in this species as in 

older humans catch-up growth accounted for a large variance in insulin sensitivity in males but 

not in females65.  

These data demonstrate that spontaneous IUGR and neonatal catch-up growth 

programmed glucose metabolism in a sex-specific manner. Therefore, could be utilised as a 

model but to assess the sex-specific mechanisms of insulin resistance and it’s cardio-metabolic 

sequalae known to be programmed by perinatal growth in humans. 

 

 Strengths and Limitations 

The spontaneous growth restricted guinea pig is a small animal model of IUGR which 

has logistical advantages over larger species, such as the sheep and pigs. The guinea pig has 

smaller litter sizes than rodents but still has a significant spread of mean birth weight across the 

litter sizes of one (121 ± 2 g) to five (73 ± 6 g) pups and here had a range 57 g to 134 g or a 

235% difference between the lightest to the heaviest pup within the total cohort (Chapter 2) 

allowing for sufficient power to detect programming effects of variable prenatal growth. The 

guinea pig is also a precocial species, therefore, unlike altricial species like the rat and mouse, 

most of the development of fat, pancreas, muscle and liver have already occurred at the time of 

birth when measures of IUGR are assessed325, 388. In addition, nutrient gain during lactation 

impacts the growth and development of organs in species where organogenesis continues 

through early life. Most of the studies to date in rats have restricted food or protein during both 

pregnancy and lactation, therefore impacting the early neonatal period which is known to be a 

contributor to later disease via catch-up growth12, 65. 

We have characterised the HEC in the chronically catheterised, un-anesthetised 

guinea pig using human insulin (Chapter 3) and demonstrated that the guinea pig responds to 

human insulin, albeit with lower sensitivity compared to human, rat and mouse, thus validating 

this method for use in the guinea pig. In the current study, insulin lines were pre-filled with 
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infusates for at least 20 minutes prior to each clamp commencing, and new lines were used for 

each clamp. Although it is possible that some insulin may not reach the animal due to adsorption 

of insulin to the PVC infusion line, this would not affect results, as calculations of insulin 

sensitivity were based on circulating concentrations of human insulin measured in guinea pig 

plasma throughout the clamp. Insulin sensitivity of whole body, glucose utilisation and 

endogenous glucose production was sex-specific such that the associations with birth weight 

only occurred in males (Chapter 4). In contrast in females, rapid neonatal growth rates predicted 

impaired endogenous glucose production independent of birth weight. Therefore, the HEC 

could be used in this model of spontaneous IUGR and subsequent neonatal catch-up for further 

investigations into the perinatal programming of metabolic disease such as the sequelae of 

insulin resistance, T2DM and the metabolic syndrome. 

One of the limitations of the studies described in Chapter 4 that assessed the 

associations of size at birth and insulin sensitivity was a smaller range in birth weights in 

females compared to males. This may not have allowed a significant enough birth weight 

spectrum to detect changes in insulin sensitivity in this cohort. Additional studies including the 

full range of birth weights in both sexes are required to confirm the sexual dimorphism in the 

programming of insulin resistance in this model. In addition, the subset of females in this group 

did not undergo catch-up growth in the larger litters of four pups. This again may have reduced 

power at the extremes of birth weight and postnatal growth. Due to the significant restriction in 

the larger litters, especially that of litters of five, still births were more common than in smaller 

litters. Therefore, in some of the larger litters the postnatal environment was changed with 

mothers that had carried larger litter feeding smaller litters during lactation. Whether this 

impacted our results may need further investigation.  

Because insulin sensitivity in the guinea pig using HEC with or without D-[3-3H]-

glucose tracer had not been assessed before the studies reported in this thesis, an a priori power 

analysis was not possible to determine required numbers. Low numbers in the analyses of 
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partitioned glucose metabolism in Chapter 4 (10 males, 8 females) may not have been sufficient 

to detect with enough power other sex-specific programming effect of prenatal and postnatal 

growth on partitioned glucose metabolism. Nevertheless, the observed sex-specific outcomes 

in this cohort were consistent with the fact that impaired insulin sensitivity of whole-body 

glucose uptake in individuals of low birth weight was only seen in males and not females in the 

larger cohort (21 males,18 females). Another potential contributing factor to the lack of 

observed effects of litter size or size at birth on insulin sensitivity in females may be variability 

due to different oestrous stages when insulin sensitivity was measured. Because outcomes were 

measured at a set age, females were likely at variable points in their cycles, and there is some 

evidence from human studies that glucose tolerance and insulin sensitivity vary throughout the 

cycle by up to 2-fold 474, 475, although these outcomes do not differ with cycle stage in all studies 

476, 477, as discussed in Chapter 4. 

Guinea pig insulin differs from other mammalian insulins in various key amino acid 

sequences in the chain which allow dimerisation of the insulin molecule441, 478. These changes 

in the amino acid structure impair the cross reactivity of guinea pig insulin with the insulin 

receptor of other species and guinea pig insulin also binds with low affinity to its own 

receptor446, 498. Guinea pig insulin has a lower efficacy to reduce blood glucose compared to 

other mammalian insulins such as bovine insulin446. The guinea pig appears to compensate for 

this through an increased secretion310, 427, 445-447 and therefore insulin abundance at the receptors 

on the target tissues or increased tissue abundance of insulin receptors themselves445. Despite 

the unique differences in guinea pig insulin and its receptor and the lower affinity of the guinea 

pig receptor for most mammalian insulins, this study provides evidence that human insulin can 

bind and act through the guinea pig insulin receptor. Human insulin increased whole body 

glucose disposal and glucose utilisation and enhanced the rate of glycolysis when used at a near 

maximal dose. Human insulin also suppressed endogenous glucose production in the guinea 

pig, although total suppression of glucose production was not achieved at a near maximal dose. 
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In conclusion, despite guinea pig insulin and its receptor having unique pharmacokinetics to 

many other small animal models, human insulin still increased glucose disposal, utilisation and 

glycolysis and therefore is a viable model for HEC studies using human insulin. 

 

 Future Directions 

The findings from this thesis suggest that the spontaneous growth restricted guinea 

pig due to natural variation in litter size is a potential model for future studies into the metabolic 

programming of insulin resistance and its sequelae in the development of the metabolic 

syndrome with ageing. The sex-specific findings highlight the need for all animal model studies 

to assess programming events in both sexes. The spontaneous growth restricted guinea pig 

should be further investigated as a model with significant merit to determine the underlying 

perinatal programmed mechanisms for altered appetite regulation, obesity and insulin resistance 

in muscle and liver.  

Glucose utilisation was impaired in low birth weight male but not female guinea pigs, 

and endogenous glucose production also tended to be reduced impaired in these IUGR males. 

Therefore, this would be a good model to investigate insulin signalling pathways in muscle, 

liver and adipose tissue in both sexes to determine if sex-specific dimorphisms exist in the 

programming of expression of key proteins in these pathways. Glucose transporters in liver and 

pancreas, and specifically GLUT4 in skeletal muscle and adipose tissue and its insulin 

stimulated translocation to the membrane, need to be measured in the spontaneous IUGR guinea 

pig as this is a feature of many molecular defects associated with small size at birth in humans190, 

198, 231 and other IUGR models231, 292, 294, 353. Other signalling proteins such as the insulin 

receptor, PKC, and the p85α and p110β subunits of phosphoinositol 3-kinase, and the 

phosphorylation of AKT, AMPK and IRS should also be determined for comparisons with the 

human 190, 196, 198, 229, 231-238 and other animal models of IUGR 294, 328, 331, 338, 346, 347, 351, 352. This 

will help determine the likely defects in the signalling pathway so that interventions targeting 
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these specific pathways can be trialled. Ideally, the effects of 17-oestradiol and oestrous 

cycling would need to be controlled as expression and activation of many of these insulin 

signalling proteins are positively regulated by oestrogen 473, 499. 

Once glucose has entered the muscle cell it essentially has two fates: storage as 

glycogen or the synthesis of ATP with the first pathway that of glycolysis. The accumulation 

of a tracer of 3H-glucose into glycogen can also be determined in specific muscles of differing 

fibre composition. Similarly, the accumulation of 3H-glucose and conversion to glycogen in 

specific zones of the liver could also be examined. This would give detailed measures of 

glycogenesis in muscles of differing composition to determine if skeletal muscle fibre types or 

liver zones are programmed differently in utero. IUGR lambs due to maternal heat-induced 

placental restriction have reduced insulin sensitive Type 1 muscle fibres which may predispose 

to insulin resistance later in life300 consistent with the muscle fibre changes seen in humans with 

T2DM and those with metabolic syndrome302. In animal models of IUGR the intralobular 

distribution of periportal enzyme, PEPCK (gluconeogenesis) is increased while perivenous 

enzyme glucokinase is suppressed following IUGR such that the liver tends to become more 

proficient at producing rather than storing glucose347, 500, 501. In humans, FFA concentrations are 

known to impair hepatic insulin sensitivity and are a risk factor in the pathogenesis of T2DM471. 

In the current thesis, rapid neonatal growth tended to predict higher fasting FFA in females but 

not males (Section 4.5.3). The assessment of accumulated fat in the livers of both male and 

female guinea pigs that were small at birth and/or underwent neonatal catch-up may help 

determine if hepatic insulin resistance is mediated via increased visceral adiposity, circulating 

FFAs and/or intrinsic changes to enzyme activity in the lobes of the liver itself. Therefore, the 

mechanisms by which rapid neonatal or catch-up growth impairs the insulin sensitivity of the 

liver also requires further investigation. 

Studies using 2-deoxy-D-[1-14C]-glucose should also be done in this model to 

determine the uptake of glucose in specific muscles and adipose tissue. Labelled 2-deoxy-D-
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[1-14C]-glucose is a non-metabolisable analogue of glucose that can be taken up by muscle, 

liver and fat, but cannot be utilised as an energy source502. Therefore, a dose of 2-deoxy-D-[1-

14C]-glucose during the fasting (no clamp) or insulin stimulated-state during HEC would enable 

measurement of glucose uptake in specific skeletal muscles, adipose depots and the liver in the 

basal or insulin-stimulate state. Glucose uptake is one of the rate limiting steps of the signalling 

pathway so direct measurement with 2-deoxy-D-[1-14C]-glucose will assist in determining 

location of the site of impairment in these low birth weight males from larger litters. 

Cross fostering experiments to control litter size during lactation could help to 

address any effects of potential differences in feed availability during lactation due to varying 

litter sizes and stillbirths, as this may also impact on growth rates during the immediate neonatal 

period. This may be a useful intervention in this model to determine the independent effects of 

growth in utero and postnatal catch-up growth on metabolic outcomes.  

 

 Interventions 

 

Intervention studies are the primary goal of future research into the field of DOHaD 

with increasing placental function a major target503. Several interventions in both humans and 

animal models of IUGR have already investigated possible pharmaceutical agents to increase 

placental blood flow via increased placental growth, angiogenesis and/or vasodilation to 

alleviate IUGR. These include the use of maternal IGF-1 and IGF-2 504-506, VEGF antagonists, 

Sidenefil 507, 508 and similar PDE5A specific antagonists which block the breakdown of cGMP 

reducing the clearance of nitric oxide, and L-arginine infusion to increase nitric oxide synthesis 

507 in the placenta. 

Studies utilising leptin509, the glucagon-like peptide 1 (GLP-1) analogue exendin-

4510, 511, exercise/training512, and dietary supplementation (taurine)513 are examining these 
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interventions as possible counter-measures for the cardiometabolic consequences of IUGR in 

animal models.  

These interventions could also be examined in the spontaneous growth restricted 

guinea pig to determine if insulin resistance can be alleviated in this model of IUGR. Studies 

manipulating individual aspects of the intra-uterine environment suggest that maternal nutrient 

deprivation or specific nutrient deficiency, oxidative stress with hypoxia (via experimental 

uteroplacental insufficiency) and exposure to excess glucocorticoids may each impact fetal 

tissue development directly467, 514-516 or via epigenetic pathways15, 467, 488, 489, 491. Many of these 

perturbations disrupt placental development especially when severe and chronic, therefore 

interventions to enhance placental growth and blood flow would be a prime target to elevate 

programmed metabolic disease. Given sex-specific outcomes after prenatal adversity, efficacy 

of interventions is likely to differ between sexes and it will be important to include both males 

and females in such studies. 

 

 Conclusion 

In conclusion, spontaneous IUGR due to larger litters in the guinea pig produces a 

disproportionate fetal growth restriction, which is followed by catch-up growth in the neonatal 

and juvenile periods in both male and females. Pups from larger litters or with low birth weights 

exhibit increased feed intake, obesity, and insulin resistance of whole body glucose disposal, 

utilisation and endogenous glucose production as young adults. This programming due to low 

birth weight is sex-specific with adverse adult outcomes primarily in male offspring. In contrast, 

in females, neonatal catch-up growth predicted impaired insulin sensitivity of endogenous 

glucose production. The primary dysfunction of insulin resistance in young adult guinea pigs 

that were IUGR and/or underwent rapid growth postnatally may lead to overt T2DM and the 

metabolic syndrome with ageing. The effects of ageing warrants further investigation in this 

species. 
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