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Abstract: Corrosion is a deterioration of a metal due to reaction with environment. The use of
corrosion inhibitors is one of the most effective ways of protecting metal surfaces against corrosion.
Their effectiveness is related to the chemical composition, their molecular structures and affinities
for adsorption on the metal surface. This review focuses on the potential of ionic liquid, polyionic
liquid (PIL) and graphene as promising corrosion inhibitors in emerging coatings due to their
remarkable properties and various embedment or fabrication strategies. The review begins with a
precise description of the synthesis, characterization and structure-property-performance relationship
of such inhibitors for anti-corrosion coatings. It establishes a platform for the formation of new
generation of PIL based coatings and shows that PIL corrosion inhibitors with various heteroatoms in
different form can be employed for corrosion protection with higher barrier properties and protection
of metal surface. However, such study is still in its infancy and there is significant scope to further
develop new structures of PIL based corrosion inhibitors and coatings and study their behaviour in
protection of metals. Besides, it is identified that the combination of ionic liquid, PIL and graphene
could possibly contribute to the development of the ultimate corrosion inhibitor based coating.
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1. Introduction

Corrosion of metal is a significant problem, costing worldwide industries more than $300 billion
annually. The inhibitors minimize the rate of corrosion by forming a thin adsorbed film on metal.
In the last decades, much attention has been focused on the need to design and develop new and
emerging materials for corrosion protection. As an example, nanomaterials, biomaterials, corrosion
inhibitors, sol-gel coatings, self-healing and smart materials. Out of these, self-healing coating and
corrosion inhibitors are an emerging and broad field.

A self-healing system is inspired from biological systems that have inherent ability to repair
damage via healing mechanisms and is categorized into three types; namely, microencapsulation,
vascular based and intrinsic materials [1]. These systems have the ability to repair the damage caused
due to mechanical stress or energy and to recover their functionality using resources inherently
available to them. On the other hand, corrosion can be inhibited or controlled by introducing a stable
protective layer of inert metals, conductive polymers, inorganic compound or monolayers of graphitic
or heterocyclic structure between a metal and a corrosive environment. A corrosion inhibitor is a
chemical constituent which, when added in small amount to the metal environment, diminishes or
controls and prevents corrosion. In the oil and chemical industry, inhibitors are considered as the first
line of defense against corrosion.
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In simpler words, corrosion can be defined as failing of materials by chemical process.
Among them the most significant is electrochemical corrosion of metals, in which oxidation process
(M→ Mn+ + ne−) is helped by the presence of a suitable electron acceptor, sometimes referred to in
corrosion science as depolarizer. In general, corrosion is a two-step electrochemical process having
both anodic and cathodic sites, with flow of charges (electrons and ions), it is conventional in both wet
and dry conditions. Wet corrosion is a major problem to tackle; it is a dominating corrosion at or near
room temperature and in presence of an electrolyte, or even in presence of water.

Since corrosion process is a surface reaction, addition of corrosion inhibitor in very small
concentration to an interfacial layer can prevent or reduce the corrosion rate of a metal exposed
in aggressive environment. Generally there are three mechanisms of the corrosion inhibition as given
below [2,3]:

• Adsorption: the inhibitor is chemically adsorbed on the surface of the metal and forms a protective
thin film with inhibitor effect.

• Surface layer: formation of an oxide film for protection of the metal surface.
• Passivation: the inhibitor reacts with corrosive elements of aqueous media, forming

protective precipitates.

Based on the above mechanism of corrosion inhibitors, they can be classified to three different
types; cathodic, anodic, and mixed or adsorption type inhibitors. Corrosion inhibitors that cause the
delay in the cathodic reaction are known as cathodic inhibitors. Similarly, the anodic inhibitors slow
down the anodic reaction. Those inhibitors that affect both the cathodic and the anodic reactions are
known as mixed inhibitors, and these inhibitors generally work by an adsorption mechanism and
known as adsorption inhibitors. In general, inorganic inhibitors have either cathodic or anodic actions,
while organic inhibitors have both cathodic and anodic actions [2] (Figure 1).
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Figure 1. Classification of corrosion inhibitors [2].

Due to the toxicity of inorganic inhibitors, a variety of organic compounds have been used as
corrosion inhibitors for the protection of steel specifically in acid medium [4]. In general, organic
corrosion inhibitors are more effective than inorganic compounds for protection of steels in acid media.
Organic inhibitors work by an adsorption mechanism in which the adsorption of the inhibitor molecule
at the metal-solution interface results in formation of a film of inhibitor molecules to protect the surface
from the corrosive environment either by physically blocking or by delaying the electrochemical
processes [5]. Organic inhibitors generally contain heteroatoms (S, O, or N) and their efficiency is
related to the presence of these atoms in the molecule as well as heterocyclic compounds and π
electrons [6,7]. This is due to the fact that O, N, and S are found to have higher basicity and electron
density and are the key active centres for the adsorption process on the metal surface.
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Adsorption inhibitors protect the metal following three possible ways: (1) physical adsorption,
(2) chemical adsorption and (3) film formation (Figure 1). Physical (or electrostatic) adsorption is
a result of electrostatic attraction between the inhibitor and the metal surface. Physically adsorbed
inhibitors interact rapidly, but they are also easily removed from the surface. The most effective
inhibitors are those that chemically adsorbed (chemisorbed). Chemisorption occurs as a result of
charge sharing or charge transfer between the inhibitor molecules and the metal surface. However,
chemisorption is slower than physical adsorption process and is not completely reversible [8].

Film formation mechanism is based on the surface reactions of inhibitor molecules and formation
of thin film on the surface with blocking both anodic and cathodic areas. Organic inhibitors are able
to form a protective hydrophobic film, adsorbed on the metal surface. In fact, the polar group of the
organic molecule is directly attached to metal and the nonpolar end is oriented in a vertical direction to
the metal surface. Thus, they can prevent diffusion of corrosive species and establish a barrier against
chemical and electrochemical attack [6].

Most organic inhibitors contain at least one functional group. The strength of adsorption of
organic inhibitors relies on the charge of this group rather on the hetero atom present in the organic
molecule. The structure of the rest of the molecule influences the charge density on the functional
group [6]. Most common organic inhibitors belonging to different chemical families such as fatty
amides [9,10], pyridines [11,12], imidazolines [13,14], other 1,3-azoles [15,16] and polymers [17] have
showed excellent performance as corrosion inhibitors.

While a variety of different inorganic and organic compounds can be used as inhibitors,
however, the practical application of many of those inhibitors poses risk for environmental protection
standards, cost and toxicity. Thus, there is a strong need to develop efficient and environmentally
friendly corrosion inhibitors. Among various classes of compounds, ionic liquids (ILs) have attracted
considerable attention in recent years as “green material,” because of their attractive properties such as
chemical and thermal stability, nonflammability, very low or negligible vapour pressure, high ionic
conductivity, a wide electrochemical potential window. They can be used as potential inhibitors whose
specific interactions with metal can be tailored through choice of their amphiphilic structures or using
them in various forms such as microcapsule, gel, emulsion, nanoparticles or using them in synergistic
combinations. Due to high sensitivity of the metal-IL interactions, careful design and tailoring of ionic
liquid materials play a crucial role for successful corrosion inhibition application.

Another promising material, graphene a single-atom-thick sheet [18], a flat monolayer of carbon
atoms tightly packed into hexagonal honey comb lattice in which carbon atom is sp2 hybridised has
been identified as a next generation inhibitor material for shielding of metal from corrosion as it
possesses matchless properties such as excellent thermal and chemical stability, high strength, chemical
inertness, permeability to molecules and gases, extremely high aspect ratio, high theoretical specific
surface area. From the point of permeability, the hexagonal network of carbon atoms in graphene is
so dense that no known material can penetrate through it. However, there are a number of critical
challenges related to application of graphene on various metals, which needs significant attention.
To date, graphene coatings on metals have been employed using chemical vapour deposition (CVD) or
transfer techniques involving high energy consumption, special expensive tools, high temperatures,
careful treatments and multistep processes. Such techniques (CVD or transfer) are cumbersome,
uneconomical and not very practical for large scale application. On the other hand, there are significant
advantages if graphene can be deposited from preformed ink, which is reproducible, and can be used
to coat objects of any dimensions as in conventional paints or coatings.

Thus, the key focus of this review is to present and discuss some important results on the
physico-chemical properties of the emerging corrosion inhibitors based on IL and graphene to advanced
coating applications. Before the presentation of these results, a precise description of the synthesis,
characterisation, structure-properties relationship and performance of IL and graphene based inhibitors
suitable for anticorrosion applications is given below.



Coatings 2017, 7, 217 4 of 28

2. Ionic Liquid (IL) Based Corrosion Inhibitors

Among all the different types of synthetic materials, a new class of low toxicity organic compounds
known as Ionic liquids (ILs) deserves particular attention due to their rapid growth in a number of
applications, they have shown effective performance as inhibitors for various metals and alloys [19,20].
In this section, an insight into ionic liquids will be discussed in detail.

ILs are the low-melting organic salts that are composed of cations and anions that melt below
100 ◦C [21,22]. The first IL was investigated in 1914 by Paul Walden with his observation on
ethylammonium nitrate ([EtNH3][NO3]) with very low melting point of 13–14 ◦C [21]. Due to
the unique properties such as low toxicity, negligible vapor pressure, high thermochemical and
electrochemical stabilities, non-flammability, and their ability to act as catalyst, ILs have been used in
a large number of applications as an eco-friendly alternative to substitute volatile organic solvents
including catalysis [23], separation processes [24,25], analytics [26], lubricants [27], and electrochemical
applications [28]. Common ionic liquids are formed by an organic cation (i.e., ammonium, imidazolium,
pyridinium, pyrrolidinium, phosphonium, sulfonium) in combination with a complex anion
(Scheme 1) [29].
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Scheme 1. Most commonly used cations and anions in various ILs.

The common configuration of ILs consists of an amphiphilic group with a long chain, hydrophobic
tail, and a hydrophilic polar head [30]. Therefore, due to their molecular configuration, they are able
to form micelles and lowering interfacial tension of aggressive media, resulting in an enhancement
in surface wetting and adsorption [30–32]. These properties of ILs have a useful effect on surface
exposure and may be responsible for the corrosion inhibition of metals. ILs compounds are reported
to show corrosion resistant behavior on copper, mild steel and aluminum. Here some of the literature
examples will be discussed.

Espinosa et al. [31] studied the corrosion rate and surface interaction of oxygen-free high
conductivity (OFHC) copper with two protic ammonium ionic liquids and four aprotic imidazolium
species in order to investigate the best candidate for lubricant applications or as precursors of surface
coatings. The protic ILs, with no heteroatoms in their composition, are the triprotic di[(2-hydroxyethyl)
ammonium] succinate (MSu) and the diprotic di[bis-(2-hydroxyethyl)ammonium] adipate (DAd).
The four aprotic ILs contain imidazolium cations with short or long alkyl chain substituents and reactive
anions: 1-ethyl-3-methylimidazolium phosphonate ([EMIM]EtPO3H); 1-ethyl-3-methylimidazolium
octylsulfate ([EMIM]C8H17SO4); 1-hexyl-3-methylimidazolium tetrafluoroborate ([HMIM]BF4) and
1-hexyl-3-methylimidazolium hexafluorophosphate ([HMIM]PF6). As it has been depicted in summary
of results in Figure 2, the lowest corrosion rate is observed for the DAd, which gives low mass (∆m)
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and surface roughness changes (∆Sa) and forms adsorbed layers on copper, while MSu forms a dark
blue corrosion product by reaction with copper.Coatings 2017, 7, 217 5 of 28 
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Results show that DAd IL remains colourless during the corrosion tests (Figure 2a) and no
precipitates are formed on the copper surface, while MSu forms a dark blue corrosion product that
completely covers the copper surface at the end of the test. SEM observation showed more roughness
in the case of use of MSu and the presence of oxygen and carbon peaks in EDX analysis. Nevertheless,
EDX analysis of DAd shows only the presence of copper. They concluded that the presence of proton
donor and acceptor sites in the DAd molecules can form a hydrogen bonded network which as a result
will improve their lubricating performance. Moreover, all imidazolium aprotic ILs react with copper,
with different results as a function of the anion.

Zhang et al. [20] reported the corrosion inhibition effect of 1-butyl-3-methylimidazolium chlorides
(BMIC) and 1-butyl-3-methylimidazolium hydrogen sulfate ([BMIM]HSO4) on mild steel in 1 M
HCl. As a result, it has been concluded that the inhibiting efficiencies decreased in the order of
[BMIM]HSO4 > BMIC. Potentiodynamic polarization studies indicated that addition of both ILs affects
both anodic metal dissolution and also cathodic hydrogen evolution reactions. Thus, those ILs could
be classified as mixed type inhibitors. Also, they found that the mechanism of ILs corrosion inhibition
is following the Langmiur adsorption isotherm with the high value of adsorption equilibrium constant.
Since, the absolute values of standard free energy of adsorption (∆Gads) in presence of the studied
inhibitors were calculated to be less than 40 kJ mol−1, it has been expected the inhibitors to be physically
adsorbed on the metal surface. The corrosion inhibition properties of three different imidazoline based
ILs on aluminium in 1 M HCl and 0.5 M H2SO4 were investigated by Quraishi et al. [33] The weight
loss study indicated that the inhibition efficiency increased with increase in the concentration of the
inhibitor. Moreover, the mechanism of adsorption followed the Langmuir isotherm and behaved as
mixed type inhibitors. The most extensively studied IL is based upon the imidazolium cation [31,34,35].
It was observed that the high inhibition efficiency of such inhibitors depends on the specific interaction
between the functional groups of IL and the metal surface, due to the presence of the –C=N– group
and electronegative nitrogen in the structure of the imidazolium coating [36]. Our indepth review
of recent literatures shows that it is important to understand and establish the relation between ILs
molecular structure, the counterion, the length of substituted alkyl chains and the functional groups
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adsorbed on the metallic surface and corrosion inhibition. In next section, the effect of ILs’ structure on
the inhibition performance has been presented with literature examples.

2.1. Effect of IL Structure on Corrosion Inhibition

2.1.1. Cation Effect

Among many kinds of ionic liquid, imidazolinium and pyridinium cations based ILs have
been investigated intensively. Shi et al. [37] synthesized a series of new imidazolium ionic liquids
and investigated the relationship between the alkyl connecting with N(3) of imidazolium ring and
corrosion inhibition performance in acidic solution. The inhibition efficiency was found to increase with
increasing the carbon chain length of the alkyl connecting with N(3) of imidazolium ring. In another
study, the corrosion inhibition behaviour of three synthesized imidazolium ionic liquids with similar
chemical structure (namely 1-butyl-3-methylimidazolium chlorides, 1-hexyl-3-methylimidazolium
chlorides and 1-octyl-3-methylimidazolium chlorides) on aluminum in hydrochloric acid has been
investigated [36]. It has been reported that corrosion of aluminum in aqueous solution depends on the
concentration of anions in solution. A general mechanism for the dissolution of aluminum as reported
in the literature is [38]:

Al(s) + H2O 
 AlOHads + H+ + e− (1)

AlOHads + 5H2O + H+ 
 Al3+ + 6H2O + 2e− (2)

Al3+ + H2O 
 [AlOH]2+ + H+ (3)

In the presence of chloride ions the reaction corresponds to:

[AlOH]2+ + Cl− → [AlOHCl]+ (4)

It is well known that imidazolium group as well as nitrogen atom in heteroaromatic ring of
imidazolium compounds can be protonated in acidic solutions. Thus, the interaction of the protonated
imidazolium ionic liquid molecules on the aluminum surface competes with the interaction of the ions
in the solution. The adsorption of inhibitors on the aluminum surface removes or depletes some of the
water molecules originally adsorbed on to the surface, which blocks the formation of AlOHads. Thus,
both the oxidation reaction of AlOHads to Al3+ and the complexation reaction between the hydrated
cation [AlOH]2+ species and chloride ions can be prevented. Moreover, these protonated molecules also
compete with the hydrogen ions that can reduce hydrogen evolution. In this case, adsorption would
have occurred through polar centers of nitrogen atom in the –C=N– group. Meanwhile, the presence
of the electron donating group (Cl) on the imidazolium base IL increases the electron density on the
nitrogen of the –C=N– group, resulting in high inhibition efficiency [20]. This particular effect is
evidenced more with the increase in chain length of the alkyl connecting with N(3) of imidazolium
cationic ring.

In another study, Likhanova et al. [29] reported the inhibition action of imidazolium and
pyridinium bromide ILs on mild steel in 1 M H2SO4 at room temperature. Since these ILs affected
both anodic and cathodic reactions they are classified as mixed type inhibitor. Scheme 2 represents
the inhibition mechanism of the interaction between the ionic liquids and the metallic surface.
The adsorption of hydronium (H3O+) ion and desorption of hydrogen gas (H2) occurs on the
cathodic sites whereas the adsorption and desorption of Br− and SO2−

4 ions occurs on the anodic sites.
The protonated imidazolium or pyridinum molecules are electrostatically adsorbed on the cathodic
sites in competition with the hydronium ions available to reduce hydrogen evolution [29].

Since cations of ILs are bigger than hydrogen cations, alkyl chain and aromatic ring cover
a large part of the metallic surface and lead to the water molecule displacement from surface.
Both imidazolium and pyridinum based ILs show a reasonable corrosion inhibition with average
corrosion efficiency within 82%–88% at 100 ppm to protect the mild steel corrosion in the aqueous
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solution of sulphuric acid; their efficiencies are increased with the inhibitor concentration in the range
10–100 ppm. However, due to the larger steric effect of imidazolium ion in comparison to pyridinium,
which results in a higher surface coverage area during the chemical adsorption process, imidazolium
based IL provides a better inhibition effect than pyridinium.Coatings 2017, 7, 217 7 of 28 
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Scheme 2. Corrosion inhibition mechanism of imidazolium and pyridinum molecules on steel surface
in 1 M H2SO4 (Reprinted with permission from [29]. Copyright 2010 Elsevier).

2.1.2. Anion Effect

For carbon steel and aluminium, the corrosivity of IL media strongly depends on the chemical
structure of the cationic moiety and the nature of anion in the IL molecule. Specifically, the corrosion
resistance of carbon steel in water-free ILs strongly depends on the IL anion. Depending on the
type of IL, carbon steel may undergo severe corrosion in diluted IL media. Anions like tosylate and
dimethyl phosphate generally trigger higher corrosivity specifically in water-diluted ILs. In this regard,
Uerdingen et al. [39] investigated the behaviour of carbon steel, austenitic stainless steel, nickel-based
alloy, copper, brass and aluminium in presence of various diluted ILs with different concentrations
under flow conditions at temperatures up to 90 ◦C. The effect of the chemical structure of the IL cation
and the nature of anion on the corrosivity of the metals has been studied. It is observed that diluted ILs
(with water) could result in hydrolysis of IL’s anions. As a result, they can produce acids (e.g., sulfuric
acid, phosphoric acid) and, hence, cause a considerable increase of medium corrosivity, whereas in
water-free ILs, most of the metals exhibited a high corrosion resistance.

Ashassi-Sorkhabi et al. [40] studied the effect of IL anion in corrosion inhibitor behaviour of two
synthesized imidazolium ionic liquids with chlorides and hydrogen sulphate anion on mild steel in
hydrochloric acid. In the structure of the imidazolium bases, the atoms of the imidazolium ring and
the –C=N– group can form a big π bond. Then, in addition to the π electron of the imidazolium, bases
enter unoccupied orbitals of iron. The π* orbital can also accept the electrons of d orbitals of iron to
form bonds, that produce more than one center of adsorption action. Moreover, the presence of the Cl
and S on the imidazolium structure, which are electron donating groups, increases the electron density
on the nitrogen of the –C=N– group, resulting in high inhibition efficiency. Therefore, in this study
hydrogen sulphate counter-anion showed better inhibiting effect of mild steel in HCl compared with
chloride anion.

2.2. Synergistic Corrosion Inhibition Using ILs

As it has been discussed, one of the important advantages of ILs is the ability to select both the
anion and cation to have useful properties for a particular application. Due to this feature of ILs and
organic salts, they could be used as new organic inhibitors, ideally with synergistic effects. A number
of publications have investigated the use of biologically safe anions and cations to produce a salt that
could approach the performance of chromates, while being environmentally friendly.
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Recently, Somers et al. [41] described such a family of ILs and organic salts that target dual activity
by incorporating both anions and cations with proven evidence of effective inhibition. These salts
were based on the imidazolinium cation with carboxylate anions. The imidazolinium has a similar
structure to imidazolium with a difference in the C4−C5 double bond saturation on the core ring of
the imidazolinium. Depending upon the nature of the anion in the salts, these materials were found to
have interesting physical properties such as facile ion transport, as well as demonstrating synergistic
corrosion inhibition on mild steel. In this study, the influence of pH on the corrosion inhibiting
performance of the organic salt for mild steel in chloride environments has been investigated.

It has been shown that this environmentally friendly organic IL remains highly active at pH 2
and 8, which are common environments in which corrosion protection is required. Also at higher
pH, the inhibition was controlled by the anion, and the solution showed a high level of protection.
Although both the IL’s components were mainly ineffective on their own at low pH, the combined
salt still had an inhibition efficiency of 72%, indicating a strong synergy between the two ionic species
under these conditions. Figure 3 shows an optical microscope image of mild steel samples with
corrosion product intact after immersion for 24 h in salt solutions at different pH. Also, at a pH of 8,
Figure 3a,b show much less corrosion product, but still show some local attack on the sample in the
inhibitor containing solution. At a pH of 2 many bubbles have been observed due to the hydrogen gas
evolution, where the sample at pH 2 with inhibitor does not show any bubbles, suggesting a significant
reduction in the rate of reaction. The samples immersed in the neutral condition show a similar trend
to those at a pH of 8, where the inhibited solution showed much less corrosion product but still with
signs of localized attack.
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Figure 3. Optical images of the surfaces of mild steel samples after immersion for 24 h in (a) NaCl at
pH 8; (b) NaCl and inhibitor at pH 8; (c) NaCl at pH 2; (d) NaCl and inhibitor at pH 2; (e) NaCl neutral;
and (f) NaCl and inhibitor in neutral (Reprinted with permission from [41]. Copyright 2016 American
Chemical Society).
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Such synergy, however, is not always achievable due to some limitation of ILs. One main
disadvantages of ILs is unfavourable transport properties of these solvents, which generally present
higher viscosity and surface tension than conventional organic solvents [42,43]. Also, once ILs are
applied into a coating, they pose problem of miscibility with a coating formulation. For these reasons,
polymerized ionic liquids or poly (ionic liquid)s (PILs) are considered more favorable than their
monomers in the field of corrosion inhibitor. This is due to their low sensitivity to salts, high shear
and thermal stability, high resistivity to strong acid and their efficiencies at lower concentrations.
Moreover, such PIL could act as reservoir for IL with controlled release characteristics, such as the
microcapsulation of inhibitor which can prevent miscibility issue with other components of coating
formulation. Also, they act as controlled release type inhibitor. In the following section detail study of
PILs structure and chemistry will be reviewed.

3. Poly Ionic Liquid (PIL) Based Corrosion Inhibitor

A special type of polyelectrolytes which carry an IL species in each of the repeating units are
referred to polymerized ionic liquids or poly (ionic liquid)s (PILs), and have been proposed as
alternative inhibitor materials. Thus, PILs consist of the cationic or anionic centres on their repeating
units in the polymer chain (Figure 4) [29]. Although ILs are in a liquid state near room temperature,
PILs are in fact solid in most cases, except a couple of exceptions [44]. Nevertheless, opposite to
solid polyelectrolytes, PILs have a reportable glass transition temperature in most cases, being well
below usual ionic glasses. The major advantages of using a PIL instead of an IL are the enhanced
mechanical stability, improved processability, durability, and spatial controllability over the IL species.
The combination of properties of ionic liquids with the flexibility and properties of macromolecular
structure results in the unique properties for PILs, which can be used in various applications including
solid ionic conductor, powerful dispersant and stabilizer, absorbent, premises for carbon materials,
permeable polymers, etc. [45–47]. The initial research of PILs goes back to the 1970s. The major
design efforts towards developing novel PILs are focused on vinylimidazolium based PILs with
diverse functional substituents due to the positive charge being on an aromatic ring and adjacent
to the vinyl groups [48–51]. Intensive studies on PILs significantly expanded the research scope of
PILs. New structures, properties and applications have been spotted, which generate several valuable
branches for researchers. Meanwhile, there are numbers of reviews, which discussed the synthesis of
some PILs and introduced the application of PILs, especially imidazolium based PILs in the field of
polymer science [45,52].
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It should be noted that despite the very interesting properties of PILs and their wide range
of applications, these eco-friendly compounds have received little interest as corrosion inhibitors.
It has been reported that some ILs based on imidazolium, pyridinium and pyridazinium exhibited
corrosion inhibition properties for the corrosion of various metals [21], however; there is very limited
investigation for application of PILs as a corrosion inhibitors. Here, a few recent work in this area will
be discussed. Olivares-Xometl and co-workers reported the poly(ionic liquid)s (PILs), derived from
imidazole with different alkylic chain lengths for corrosion inhibition of aluminum alloy in diluted
sulfuric acid [53]. Figure 5 shows the likely mechanism of PILs’ interaction with both the metallic
surface and the aggressive environment. The interaction among the hydrophobic parts of the PILs
molecules could support the protective action. However, it is more likely that the main chains of
the polymer form an obstacle, which may have a supportive action on inhibition, as they hinder the
passage of water and aggressive ions, in agreement with their hydrophobic nature. When the alkyl
side chain is composed of 12 carbons, more effective steric hindrance prevalent, as it can interact with
the other lateral alkylic groups to slow molecular diffusion.
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Figure 5. Schematic representation of corrosion and inhibition of aluminum alloy before and after PIL
addition in diluted sulfuric acid [53].

However, in this study PILs displayed a short protection range for the alloy. Thus, these PILs are
not suitable to be applied in acidic media, as they are not easily adsorbed due to ionic competition,
which leads to the formation of a non-uniform corrosion inhibitor film on the aluminum alloy surface.
In another study, by Ayman et al. [54,55] PIL based on 2-acrylamido-2 methylpropane sulfonic acid,
showed an excellent corrosion inhibition performance for steel in 1 M HCl medium. The adsorption of
IL on steel surface blocked the active centers, which lowered the corrosion rate of steel. It has been
reported that introducing oxyethylene ammonium counter ion into the ionic liquid polymer system
promotes the wetting characteristics to form anticorrosion protective layer at the solid surfaces [54].
Also, it has been indicated that PIL in this system behaved as a mixed type inhibitor and acted via
adsorption on steel surface by hindering and retarding the active centers from the corrosion reaction.

3.1. PIL Structure Diversity

There have been persistent efforts devoted to the preparation of PILs in various forms and
dimension scales like spherical micro-/nanoparticles, micro-/nanogels, vesicles, nanoworms, etc. [56].
Therefore PILs have a diverse chemical structure reservoir. The most recent forms of PILs, which have
been mostly used in different applications, are PIL colloidal particles and PIL gels. An insight into
these types of PILs and their characteristic features is presented in the following section.

3.1.1. PIL Colloidal Particles

Since colloidal systems have a close connection with nature and human life, PIL colloids
are a new platform to investigate the unique properties of ILs with the rather small dimension
and the superior dispersity of colloidal particles. Moreover, they setup a powerful platform for
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a variety of studies on PIL functions and applications. A colloidal system is defined as a state
of subdivision dispersed in a medium with at least one dimension between approximately 1 nm
and 1 µm [57]. Recently, nanostructured PILs, and especially colloidal nanoparticles, have received
significant interest as functional polymer nanoparticles. This is due to the fact that small particle
sizes increase surface effects on the interfacial interaction and mass/energy transport. Moreover,
a small particle size and the charged character of PILs improve the colloidal stability in aqueous
as well as non-aqueous dispersions. So far, a few synthetic routes have been developed to prepare
PIL nanoparticles including suspension polymerization [58], water-in-oil concentrated emulsion
polymerization [59], and precipitation polymerization in water without stabilizers using ionic liquid
monomers with long alkyl chains has been recently reported [60,61]. Among PIL nanoparticles a
significant focus in this field is on the nanostructured imidazolium-type PILs [47,62]. One of the
examples of this type of applications is the work by Yang et al. [63], which reported the preparation of
the crosslinked poly(1-butyl-3-vinylimidazolium bromide) microspheres with the diameter of about
200 nm synthesized via miniemulsion polymerization for application as metal scavenging and catalysis.

In another work by Zhou et al. [64], a thermosensitive type ionic microgels was obtained
via the surfactant-free emulsion copolymerization of 1-vinylimidazole and 4-vinylpyridine with
thermosensitive monomer N-isopropylacrylamide. The obtained microgels were spherical in shape
with narrow size distribution and exhibited thermosensitive behaviour with unique features of PILs in
aqueous solution (Figure 6).
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One of the most common methods used for the fabrication of polymer nanoparticles with the
droplet sizes typically in the range of 20–200 nm is miniemulsion. The use of water as the dispersion
medium is one of the main advantages of this system, which makes it environmentally friendly
and also allows excellent heat dissipation during the polymerization process [65]. On the other
hand, very recently, “click” polyaddition reactions in miniemulsions, specifically thiol-mediated
chemistry (i.e., thiol-ene/yne, thiol-Michael); have attracted attention as one of the facile methods
for synthesis of polymer nanoparticles, and nanocapsules dispersion in heterophase media with high
efficiency [66,67]. For example, for the first time Jasinski and co-workers reported the preparation
of poly (thioether ester) latex nanoparticles using miniemulsion thiol-ene photopolymerization.
Their synthesis was performed in water, at ambient temperature, and without the use of any organic
solvent. The resultant linear poly (thioether ester) particles had an average diameter of 130 nm [68].
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In another recent work, sub-100 nm crosslinked polythioether nanoparticles were synthesized via
thiol-ene photopolymerization in miniemulsion using high-energy homogenization [65]. Our group
recently reported the facile preparation of cross-linked PILs based nanoparticles via thiol-ene
photo-polymerization in miniemulsion [69]. In this study, the PIL nanoparticles exhibited improved
corrosion inhibition properties to the sol-gel coating due to the interaction between the –C=N– group
and electronegative nitrogen in the PIL with the metal surface.

3.1.2. PIL Gel

As described above, PIL gels are one form of PILs which recently have been used in a number of
applications such as electrolytes for batteries and supercapacitors [70], drug delivery [71], agriculture,
and biomedical fields [72]. Indeed, they are showing a multitude of characteristics that make them very
versatile materials with tuneable properties. Gordon and co-workers pioneered the synthesis of large
PIL beads in the micron meter size scale through direct polymerizations of 1-butyl-3-vinylimidazoium
TFSI in presence of a 1,8-di(vinylimidazolium)-octane TFSI as a crosslinker. Furthermore, the resulting
gel-type beads were swelled in acetone, and loaded with palladium nanoparticles to catalyze
C–C coupling reactions [58]. The authors suggested the application of such gel beads in catalysis,
separation technology, and ion-exchange resins. Xiong and co-workers [73] reported a facile one-step
synthetic strategy for the preparation of cross-linked polymeric nanogels by the conventional radical
copolymerization of a phosphonium-based IL for use as catalysts. Recently, Rahman et al. used a
microfluidic method to fabricate monodisperse spherical PIL microgel beads [74]. The authors showed
the anion exchange can enable fine-tuning of size and swellability of these beads. By incorporating
diverse anions, they were able to impart a multitude of functionalities to these beads, ranging from
redox capabilities, controlled release of payload, magnetization, toxic metal removal and robust,
reversible pH sensing. These chemically switchable stimulus-responsive PIL beads have potential
applications in portable and preparative chemical analysis, separations and spatially addressed sensing
(Figure 7) and also have potential for use as cargo for corrosion inhibitors or slow release inhibitor.
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Figure 7. Schematics illustrating microfluidic method to generate switchable stimulus-responsive
PIL microgels. (Reprinted with permission from [74]. Copyright 2013 American Chemical Society).
(a) Stereomicroscope image of a prepolymer droplet flowing in the transparent capillary tube;
(b) Chemical structures of IL monomer and cross-linker; (c–e) Stereomicroscope images of PIL microgels
showing their monodispersity and transparency and (f) FESEM image of synthesized PIL[Br].

With the aim of using such PIL as corrosion inhibitors, we reported the novel and facile
fabrication of multifunctional PIL gel beads using vinyl imidazolium based ionic liquid through
click-type reactions (Figure 8) [75]. A detailed study into the effect of reactant ratios is examined.
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The gel formation is confirmed through fourier transform infrared spectroscopy (FTIR), thermal
analysis, and kinetic studies. These PIL gels exhibited multiple characteristics including (1) self-healing
characteristics due to their rubbery nature, (2) the ability to uptake active molecules which acts
as corrosion inhibitors, and (3) pH sensing through the incorporation of indicator molecules.
These functionalities demonstrate the potential of PIL gel family as multifunctional autonomous
platform material for the control, detection and inhibition of corrosion.
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4. Graphene as Green Corrosion Inhibitor in Anticorrosion Coating

Graphene is a nanofiller with one-atom-thick planar sheet of two-dimensional carbon with
sp2 bonded carbon atoms that are densely packed in a honeycomb crystal lattice or an unrolled
single-walled carbon nanotube [76]. Different approaches for preparing graphene sheets have been
investigated like graphite exfoliation, including mechanical cleavage of graphite, chemical exfoliation
of graphite, thermal-induced exfoliation, and direct synthesis, such as epitaxial growth, and bottom-up
organic synthesis. Prasai et al. [77] studied the corrosion inhibition effect of copper and nickel by either
growing graphene on these metals by chemical vapor deposition (CVD) method, or by mechanically
transferring multilayer graphene onto them (Figure 9). Graphene grown by chemical vapour deposition
(CVD) technique has shown superior anticorrosion coating but it is also demonstrated that these coating
cannot be used over a long-term duration. It has been reported that transferring multiple graphene
layers onto the metal surfaces will increase the degree of protection with building thicker and more
robust films.
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High thermal conductivity, better gas barrier, extraordinary electronic transport properties, superior
mechanical stiffness combined with a wide set of other unusual properties of graphene-based composites
made them promising and cheaper alternative to carbon nanotubes-based composites [78–81]. Graphene
and graphene derivatives (e.g., graphene/graphite oxide, functionalized graphene, etc.) could be
used in various applications such as hydrogen storage [82], sensors [83], transparent conductive
films [84], batteries [85,86], super capacitors [87], solar cells [88] and nanocomposites coatings [89–91].
Due to the high surface area of graphene sheet (2630 m2/g), improvement of mechanical, thermal,
and electrical properties of composite graphene based coating could be achieved with very low
loading [92]. Chang et al. [93] applied polyaniline/graphene composites (PAGCs) for corrosion
inhibition of steel. The composites display outstanding barrier properties against O2 and H2O.
Figure 10 depicts the corrosion inhibition behaviour of bare steel and PAGCs coated steel with
different amount of graphene loading in a corrosive medium (3.5 wt % aqueous NaCl electrolyte)
under potentiodynamic polarization conditions. As it can be observed, as the PAGCs loading was
increased further, the corrosion inhibition ability was enhanced evidenced by the highest Ecorr and
lowest Icorr values (which corresponds to a lower corrosion rate). In fact, using graphene in coating
matrix could increase the length of the diffusion pathways for reactive gases such as oxygen and
water vapour in polymer coatings and lead to a remarkable improvement of the corrosion inhibition of
metallic substrate compared to normal polymer coating.
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Wang et al. [79] suggested that incorporation of graphene sheets into the epoxy polymer composite
improved thermal conductivity and reduced coefficients of thermal expansion (CTEs). Their results
also indicate that due to the high thermal-stability of graphene, they can be used in microelectronics
coating applications. Since it is easy to obtain the graphene precursor, graphite, as it is naturally
abundant, and the functionalized graphene can serve as a conductive nanofiller for other polymers
(such as epoxy, polyimide, polyurethane, etc.), polymer/graphene based composite coatings will
emerge as a new area of corrosion inhibition technology.

Stronger interface have been achieved using graphene platelets (GP) comprising one or more
layers of a graphene plane. Yasmin et al. [94] have developed epoxy/graphite nanocomposites by
mixing epoxy with graphite in solvent; 4 wt % graphite increases Young’s modulus by 10% and
glass transition temperature (Tg) marginally from 143 to 145 ◦C. Better results have been obtained
using sonication and shear mixing, 1 wt % GP increasing modulus 15%, but leads to a reduction of



Coatings 2017, 7, 217 15 of 28

tensile strength. The mechanical properties of epoxy/GP nanocomposites have been investigated by
Koratkar et al. [95] showing improvement in epoxy fracture toughness from 0.97 to 1.48 MPa m1/2 at
0.1 wt % filler fraction. Therefore, it could be used as toughening agent for coating.

Despite the tendency of graphene nano-sheets to re-aggregate and stack due to their high surface
area and strong van der Waals force has limited their applications in polymer nanocomposites.
However, several studies have focused on improving the dispersion and interface interaction of
graphene in a polymeric matrix using functionalised graphene. Novel method for functionalization
of GP has been presented by Miller [96] using a coupling agent to form covalent bonding between
fillers and soft matrix (0.78 GPa Young’s modulus), resulting in 50% modulus improvement at 1 wt %
filler fraction. Chiang and Hsu [97] have improved the fire resistance of epoxy/GP nanocomposite
following a similar method. Martin-Gallego et al. [98] studied the effect of functionalized graphene
sheets (FGS)/epoxy coatings which are prepared using cationic photopolymerization on mechanical
properties of coating. Their results indicate increased stiffness and Tg values of the cured epoxy
network with better storage modulus properties in higher temperature.

Jeong and co-workers [99] investigated the effect of graphene content on structures and electrical
properties of graphene/epoxy composite films which are prepared by solution casting and following
thermal curing of diglycidyl ether of bisphenol-A with an amine-functionalized agent mixed on a
polyimide film. The graphene/epoxy composite films can be utilized as high performance electric
heating elements in various applications. They found that the graphene content as well as the applied
voltage are two key elements in controlling the maximum temperatures of the composite films.
Bao et al. [100] enhanced the mechanical, electrical and thermal properties of the epoxy nanocomposites
utilizing functionalized graphene oxide. In situ thermal polymerization has been used to functionalize
graphene oxide (FGO) via surface modification by hexachlorocyclotriphosphazene and glycidol.
Strong interfacial interaction between FGO and epoxy matrix improved the thermal stability, storage
modulus and hardness in a polymeric matrix.

Thus, graphene as an anti-corrosive agent is very attractive as it may protect metals by keeping
their intrinsic properties, which cannot be achieved using three dimensional protective paints, oxides
or polymers. In the field of using graphene as corrosion protective material the biggest hurdle is
that the graphene sheets synthesised using current methods still contain too many defects. So the
main challenge in near future is to improve the quality of sheet produced, the poor quality of sheet
drastically reduces the performance as an anti-corrosive material. The keys factors affecting the quality
of sheets are defects or abnormalities in graphene sheets like:

• Missing bonds;
• Pentagonal and hexagonal lattices;
• Lattice distortion;
• Local thickness variations;
• Presence of impurities.

All these factors can represent the centre of damage accumulation also, other than altering the
properties of graphene. Local defects can lead to accumulation of oxygen which ruins the chemical
properties of sheet. Presently the functionalization of GO via non-covalent and covalent route with
organic compounds has become a matter of rigorous research for production of innovative hybrid
nano composites with new advanced functions and applications.

Quantum Chemical Methods as Efficient Tools to Study Corrosion Inhibitors

Quantum chemical methods are seen to be very effective in determining the molecular structures
as well as explaining the electronic structures and reactivity’s of molecules. Computational chemistry
is considerably used to assess the efficiency of corrosion inhibitors, this method helps to search
compounds of desired property employing computational modelling. Quantum chemical method and
molecular modelling techniques help in defining a large number of molecular parameters illustrating
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the reactivity, shape, and binding properties of complete molecules as well as of individual molecular
fragments and substituents. The prominent quantum chemical parameters are atomic charges,
molecular orbital energies (EHOMO, ELUMO and ∆Egap), dipole moment, charge distribution. Density
functional theory has successfully been applied to explain the importance of structure of corrosion
inhibitors and their adsorption efficiency on the metal surfaces, however the properties of corrosion
inhibitors like EHOMO, ELOMO, ∆Egap, dipole moment (µ), electronegativity (
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5. Emerging Embedment Methods of Corrosion Inhibitors

Corrosion inhibitors can be incorporated into the coating formulation through different ways.
One of the most commonly used methods is the direct addition of inhibitors in the primer or topcoat.
However, a too high concentration or low solubility of the inhibitors often results in a deterioration of
the integrity and physical barrier properties of the matrix of the protection system [101]. In addition,
the existing interaction of the inhibiting agents with the protective matrix often leads to significantly
reduced stability of the protective layer and the deactivation of the inhibitors. Recently, different new
methods for inhibitor incorporation have emerged to prevent the direct interaction of inhibitor with
the matrix. One of the most common methods is application of inhibitor loaded coatings. Coatings
based on inhibitor loaded containers protect the metal by releasing corrosion inhibitor in response to
changes in the coating integrity (cracks) or local environment (pH shift) caused by corrosion attack.
These systems have been extensively investigated, because they are potential replacements for the
banned chromate-based coatings [102]. Out of these, self-healing coating is an emerging and broad
field to replace the chromate for corrosion control and autonomic repair of coatings (self-healing),
which is discussed in this section.

5.1. Self-Healing Coating

Coating with self-healing properties is an advanced application of emerging corrosion inhibitors.
The concept of self-healing which is initiated in the nineties by Dry [103] and Sottos [104] is the known
phenomena seen in the nature and refers to self-repair. Self-healing coatings can be classified into
two main classes’ namely (1) extrinsic and (2) intrinsic self-healing systems. In extrinsic self-healing
systems such as capsule-based and vascular systems, the healing agents are added as a separate
phase into the matrix, while intrinsic systems such as ionomers, hydrogen-bonded systems, etc.,
are those which are free from healing agent and do not require any external energy to trigger the
response [105,106]. They can repair the mechanical damage spontaneously due to the architecture
of the molecules themselves and avoiding rupture and corrosion of underlying substrate. Extrinsic
technique possesses several advantages over intrinsic, which will be discussed in this section.

In contrast to conventional anticorrosion coating, emerging corrosion inhibitor embedded in
self-healing coating can act in response to corrosion attack, decrease the corrosion rate thereby
enabling less maintenance and durability of the coating. For achieving this goal, the coatings have
to provide release of the active and repairing material rapidly after integrity changes in coating.
The main idea is to load active agents (e.g., corrosion inhibitors) into nanocontainers surrounded
by a shell which controlled the permeability and then to introduce them into the coating matrix.
Consequently, nanocontainers are keeping corrosion inhibitor in a “trapped” state and distributing
uniformly in the passive matrix. Thus, the undesirable interaction between the corrosion inhibitor
(active material) and the passive matrix which leads to spontaneous leakage could be prevented.
When the local environment undergoes changes or if the active surface is affected by the outer impact,
the nanocontainers respond to that signal and release encapsulated inhibitor. Various methods to
add the self-healing properties to coatings have been investigated including encapsulation, reversible
chemistry, microvascular networks, nanoparticle phase separation, polyionomers, hollow fibres,
and monomer phase separation [107]. Microvascular is a strategy in which material with interconnected
series of network channels has been designed. In this approach, circulatory system continuously
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transports the necessary chemicals and building blocks of healing to the site of damage. Therefore,
coating on a substrate containing a micro channel network is healed. This is the most biomimetic
approach and it is difficult to achieve practically and at large scales in synthetic materials. Nanotubes
are another approach that may be able to deliver larger amounts of liquid healing agent to the
crack plane. Halloysites (aluminosilicate nanotubes) which are one of the most abundant natural
nanotubes have recently been applied as containers in the automotive and maritime industries for
corrosion protection. They have been developed as an entrapment system for loading, storage,
and controlled release of corrosion inhibitor in coatings [108]. The drawbacks of using nanotubes lie in
its poorly defined composition and its narrow particle size [107]. So far the most successful approach
in self-healing the polymeric component of organic coatings is microencapsulation. This approach
has significant advantages including protection of reactive materials (inhibitors) from corroding
environment, controlled evaporation of inhibitors, safe handling of toxic inhibitors and controlled
release of the inhibitors for delayed release or long acting release [109].

5.1.1. Encapsulated Type Self-Healing

Corrosion inhibitors can be easily embedded into the capsules through variety of techniques.
These techniques can be merged into two main categories; physical and chemical (Figure 11) [1].
There are different chemical approaches for synthesizing the microcapsules such as interfacial
polymerization [110], coacervation, in situ polymerization [111,112], extrusion, and sol-gel methods.
The fastest and most convenient method among them is in situ polymerization. In this approach,
microcapsules containing healing agent (inhibitor) in a trapped state disperses uniformly in the matrix
containing a catalyst capable of polymerizing the healing agent and fracture upon loading of the
coating, releasing the low viscosity self-healing reagents to the damaged area for curing and filling of
the micro cracks (Figure 11) [113,114].

Brown et al. [112] are known as a pioneer of the micro-/nanocapsules synthesis with
their achievement of micro capsulation of dicyclopentadiene (DCPD) as a healing agent with
urea–formaldehyde (UF) shell using in situ polymerization. Most commonly used healing agents
as a core are dicyclopentadiene (DCPD), epoxy, linseed oil, tung oil, o-dichlorobenzene and
dimethyl siloxane. Shell materials are mainly limited to poly(urea–formaldehyde) (PUF) and
poly(melamine–formaldehyde) (PMF) or melamine modified poly(urea–formaldehyde) (MUF) [114].
Table 1 summarises recent work that has been carried out in microcapsulation based self-healing
system for coating applications.
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Table 2 is the summary of characteristics which will be required for designing microencapsulation-
based self-healing polymeric materials [115]. It is crucial to consider four steps process of achieving
healing ability to obtain better functionality: storage, release, transport, and rebonding. Each of these
steps depends significantly on the chemistry and properties of the healing agent system [107]. Table 2
reveals the importance to develop capsules with good compatibility with the coating matrix and
considering the possibility to encapsulate and upkeep active material, and control of the permeability
properties of the shell through external stimuli. Shell permeability could be changed reversibly or
irreversibly by various stimuli: variation of the pH, ionic strength, temperature, ultrasonic treatment,
alternating magnetic field and electromagnetic irradiation.

As a result, different responses can then be observed, such as tuneable permeability or more
drastic ones like total rupture of the container shell. Also as it has been shown in this table, size of the
capsules is another important parameter which should be less than 300–400 nm; capsules of larger size
can reduce the protective performance of the coating [107].

Table 1. Summary of most recent work in microcapsule based self-healing.

Microcapsule Components
(Core and Shell) Chemistry Specific Feature Size of

Capsule Ref.

Shell: polysulphone
Core: 1-hexyl-3-

methylimidazolium
bis(trifluoromethylsulphonyl)

imide [HMIM][NTf2] ionic liquid

Solvent
evaporation.

Chemically stable within the
high-temperature curing

conditions necessary for the
coating system (up to

approximately 380 ◦C).

Below 10 µm Magalhães et al.
[116]

Shell:
epoxy–amine(ethylenediamine

(EDA))
Core: epoxy

Interfacial
polymerization

improved compatibility and
adhesion with the coating matrix
especially if the coating is alkaline

100 µm Liu et al. [110]

Shell: poly(urea–formaldehyde)
Core: 1H,1H,2H,2H-

perfluorooctyl
triethoxysilane (POTS)

In situ
polymerization

good corrosion protection ability
to steel; self-healing behaviour

was realised under ambient
condition without any
manual intervention

100 µm Huang et al. [111]

Shell: poly(urea-formaldehyde)
Core: octyldimethylsilyloleate

In situ
polymerization

great potential of the silyl esters as
healing agents and good results in

corrosion protection
50 and 100 µm García et al. [117]

Shell: ethylene glycol
dimethacrylate (EGDM)

Core: ionic liquid,
1-hexyl-3-methylimidazolium

bis(trifluoromethane
sulfonyl)amide

Self-assembling of
phase separated

polymer
(SaPSeP method)

ionic conductivity; good results in
corrosion protection

Multi hollow
structure

Okubo et al.
[118,119]

Table 2. Characteristics required for designing microencapsulation-based self-healing polymeric materials.

Component Characteristics

Corrosion inhibitor

Stability and shelf-life
Deliverability
Reactivity
Shrinkage
Physical and mechanical properties
Thermal stability

Microcapsule shell wall

Chemical compatibility
Mechanical properties
Dispersion
Thermal stability

Catalyst, curing agent, or reaction initiator

Solubility
Chemical compatibility
Reactivity
Dispersion
Thermal stability
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5.1.2. Effective Parameters and Challenges of Microcapsule Embedment for Corrosion Inhibition

It is evident that application of self-healing coatings will be the most common and cost
effective method of improving the corrosion protection. However, for the excellent fabrication of
self-healing coatings several parameters must be considered such as inhibitor material, microcapsule
diameter (size), microcapsule core and shell, microcapsules dispersion, presence of catalyst, coating
application, coating thickness and coating matrix. Therefore, there is a growing need for investigation
of effective parameters in microcapsule formation which is under intense study by various researchers.
For example, Nesterova et al. [120] found that an increase in stirring rate, stirrer geometry, correct choice
of temperature, and a high stabilizer concentration all can affect the microcapsule size. In capsules
with irregular shape mechanical stability will be compromised and capsules will be unacceptable for a
coating use. Another interesting and effective parameter which should be considered for obtaining
self-healing property is the position of capsules in the coating matrix. Therefore, Kumar et al. [121,122]
studied two methods of applying microcapsules in the primer layer: mixing to the primer before
applying and sandwiching the microcapsules in the primer during application. Experimental results
suggested that the microcapsules should be mixed into the paint formulations at the time of application.

In the other work by Cho et al. [113], two self-healing systems based on siloxane materials have
been studied. First system consists of phase-separated polydimethylsiloxane (PDMS) healing agents
and microencapsulated catalyst. The limitation of this system is the possible reaction between PDMS
healing agent and coating matrix. In order to overcome this drawback, in the second system both
catalyst and PDMS healing agent are encapsulated within urea-formaldehyde (UF) microcapsules.
Their dual-capsule PDMS healing system showed no evidence of corrosion in the damaged area even
after a long time exposure to the corrosive species. Although self-healing or autonomically healing
micro cracks is a promising approach for extending the life of coating, still there are significant of
unsolved challenges for optimization of the autonomous microcapsule system which is suitable for
multiple healing actions.

6. Evaluation of Corrosion Inhibitors Using Advanced Characterization Techniques

Electrochemical methods are most commonly used techniques for the evaluation of the efficiency
of corrosion inhibitors. The advantages of electrochemical methods are short measurement time and
mechanistic information that they provide which help not only in the design of corrosion protection
strategies but also in the design of new inhibitors. Although several electrochemical techniques may
be used to study the performance of corrosion inhibitors, potentiodynamic polarization method and
electrochemical impedance spectroscopy (EIS) can provide significant useful information, which makes
them the most useful method for such study and the number of reports used this method for study
of corrosion inhibition performance is limited. As an example, Otmacic Curkovic et al. studied
the mechanism of the protective action of three imidazole-based (4-methyl-1-(p-tolyl)-imidazole,
4-methyl-1-(o-tolyl)-imidazole, and 4-methyl-1-phenyl imidazole) corrosion inhibitors on copper in
3% NaCl, using quartz crystal microbalance measurements [123]. This study confirmed that even
slight changes in the molecular structure induce a significant effect on the inhibiting properties.
Both tolyl-substituted 4-methyl imidazoles rapidly adsorbed onto the copper surface and decreased
the copper corrosion rate while the phenyl-substituted 4-methyl imidazole slowly formed a protective
3D layer. On the other hand, the inhibiting effect of o-tolyl-substituted compound did not improve
with time, while the inhibiting efficiency of the phenyl-substituted inhibitor increased with immersion
time. Figure 12 presents the mass and the corrosion potential changes with respect to immersion period
measured by QCM-D in the presence of (a) 4-methyl-1-(o-tolyl)-imidazole and (b) 4-methyl-1-phenyl
imidazole. The use of better inhibitor (phenyl based imidazole) shows the increase of the mass of the
electrode which is due to the formation of protective layer on the copper surface. However, very little
work has been performed on GO/IL systems.
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Figure 12. Mass and potential change of copper electrode in 3% NaCl with the addition of (a) 4-methyl-
1-(p-tolyl)-imidazole and (b) 4-methyl-1-phenyl imidazole (Reprinted with permission from [123].
Copyright 2009 Elsevier).

On the other hand, the measurement of electrochemical reactions at the interface becomes a matter
of particular interest for the prediction of the service life of coating. To achieve such information,
new techniques that perform local measurements, such as scanning kelvin probe SKP are increasingly
applied [124,125]. This method is a non-destructive, non-contact mode technique based on a vibrating
capacitor to measure the surface work function (WF) distribution on the coating surface. Surface
work function is an extremely sensitive indicator of the surface condition and can be used to track
changes in the surface such as surface contamination and corrosive adhesion of polymers on metal
substrates [126].

Among many studies, Choudhury et al. [127] recently presented the sol-gel derived hybrid
coatings containing three different compositions of methacrylate-phosphosilicate on mild steel
substrates where SKP microscopy was used to evaluate the adhesion and corrosion protection
properties. Following equation can be used to correlate the absolute WF measured using SKP (VKP) to
the corrosion potential (Ecorr) [128]:

VKP = Ecorr + const. (5)

Phosphorus containing methacrylate hybrids were synthesized from 2-(methacryloyloxy)ethyl
phosphate (EGMP) and 3-[(methacryloyloxy)-propyl] trimethoxysilane (MEMO) via dual-cure process
involving sol-gel reaction and addition polymerization. Similar experimental procedures were used to
synthesize hybrids at other composition namely M:E–3:7 [129]. Figure 13 illustrates the SKP maps of
the gold-coated aluminum (reference), bare metal substrate (MS), MEMO, EGMP, M:E–1:1 and M:E–3:7
coated samples. The average WF values of the samples shift positively towards noble potential in the
order of bare MS < EGMP < MEMO < M:E–1:1 < M:E–3:7.

The deviation in WF values can be correlated to the interfacial interaction between the coating and
the substrate. The SKP measurements showed the presence of strong interfacial interaction, which is
attributed to the interaction of phosphate group with the metallic substrate [130].

An understanding of the correlation between the structure and observed corrosion inhibition
properties, such as mechanism of adsorption, is essential for designing corrosion inhibitors with
enhanced properties. Adsorption of an inhibitor on a metal surface depends on various parameters
such as the nature and the surface charge of the metal, the inhibitor’s chemical structure etc.
One of the most common scattering techniques used for corrosion and corrosion inhibition study is
surface-enhanced Raman scattering [131]. However, this technique studies the film that forms on the
metal and is a surface analysis technique.
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In the field of organic corrosion inhibitors, more attention is paid to the mechanism of adsorption
and also to the relationship between inhibitor structures and their adsorption properties. Neutron
scattering techniques including small angle neutron scattering (SANS) and ultra-small angle neutron
scattering (USANS) are valuable techniques to study the structure of corrosion inhibitors in different
forms including gels and nanoparticles. SANS and USANS are ideal and can be used to provide
information relating to the crosslink porosity of structure, which is directly related to the mechanical
properties of inhibitors. A literature survey of neutron scattering demonstrates that this technique has
been employed to study the microstructure of a range of different types of polymers, predominantly
from synthetic polymers. Furthermore, polymers studied by this method are classified into polymer
blends, block copolymers and polymer gels [132].

Shibayama et al. [133] studied the structure of tetra-arm polyethylene glycol (PEG) gels by SANS.
It has been investigated that there is no inhomogeneities appeared even by swelling. However, a
steep upturn was observed in SANS curves, indicating the presence of PEG chain clusters or defects
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where these inhomogeneities disappear in swelled sample. Furthermore, Bhatia and co-workers
designed a unique form of chemically cross-linked PEG gels to minimize defects in the network [134].
SANS was utilized to investigate the network structures of gels in two different solvents: D2O and
d-DMF. SANS results show the resulting network structure is dependent on PEG length, transitioning
from a more homogeneous network structure at high molecular weight PEG to a two phase structure
at the lowest molecular weight PEG. It has been shown that with qualitative analysis and model
fitting of SANS data, the highest molecular weight tetra-functional PEG hydrogels have a remarkably
homogeneous network structure with low junction functionality. However, there are still some small
indications of inhomogeneity for the lowest molecular weight networks even in d-DMF, suggesting a
higher level of defect formation during cross-linking for these systems. Despite the extensive research
on structural study of materials using SANS and USANS, to date there has not been any reports of
using a combination of SANS and USANS to study the effect of corrosion inhibitors’ structure on
their efficiency. Recently, using combined USANS/SANS tools, Taghavikish et al. [74] investigated
the hierarchical gel network structure and their relation to the observed bulk properties for polymeric
ionic liquid nanoparticle emulsion based corrosion inhibitor in anticorrosion coatings.

7. Conclusions and Future Outlook

The importance of physico-chemical properties of the emerging corrosion inhibitors based on IL
and graphene for corrosion prevention of metallic substrates were outlined. Despite the very interesting
properties of ILs and graphene for corrosion inhibition, there have been very few reports on their
application for corrosion protection of metals. On the other hand, in spite of the considerable progress
made in the chemistry of inhibitors, the inhibition study in a corrosion system presents the same
challenges today as it did in the past. The transport of the corrosion inhibitor from bulk solution to the
surface of the metal and the active inhibitor species that is available to interact with the metal are the
fundamental factors governing corrosion inhibition. In the case of inhibitors that adsorb on the metal
surface and inhibit the corrosion, there are two main challenges: (1) metal-inhibitor interactions and (2)
transport of the corrosion inhibitor from bulk solution to the surface of the metal. These challenges
could be overcome through immobilization of corrosion inhibitors into micro-/nanocontainers.

Although active corrosion inhibitors lead to sufficient temporary protection of the underlying
metal, in the case of local damage of the protective coating, to reach an even more extended lifetime
protection or to have repeatable healing at a specific location, an additional functionality of damage
closure is required. Therefore, there is a significant need to develop the new micro-/nanocapsules
family which are sensitive to pH, temperature, environmental conditions changes and dispersion of
them to coatings should be considered.

Further research should also be focused on using more advanced characterization techniques
and more fundamental studies in order to further clarify the mechanism of corrosion inhibitors and
investigate the correlation between the structure and observed corrosion inhibition. This understanding
will help us to tailor the inhibitor structure to obtain required corrosion inhibition properties.
This would be more pronounced in the case of appropriate chemical modifications, especially by
using eco-friendly inhibitors, which can render the coating with enhanced anticorrosive characteristics.
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