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Constrained continuous optimisation problems are widespread in the
real-world and often very complex. Bio-inspired algorithms such as evolu-
tionary algorithms (EAs) or particle swarm optimisation (PSO) algorithms
have been successful in solving these problems. Recently, there has been
an increasing interest in understanding the features of problems that make
them hard to solve. These studies have been carried out for discrete and
unconstrained continuous optimisation problems, to find the relationship
between problem features and algorithm performance.

To study the connection between algorithms and constrained optimi-
sation problems (COPs), more practical perspectives of problem features
analysis and their relations to algorithms are essential. Thus, this thesis
contributes to the understanding of constrained optimisation problems and
their constraint features that make them hard to solve by algorithms. We
introduce an empirical feature-based analysis for COPs and bio-inspired
algorithms. Furthermore, the relationships between the constraint features
of given COPs and algorithms are studied here. By linking the features
of the constraints and different bio-inspired algorithms, we design a new
model for predicting the algorithm performance for COPs based on their
constraint features. In this thesis, we present a novel approach to anal-
yse constrained continuous optimisation problems based on their constraint
features. Furthermore we use this knowledge to implement an automated
feature-based algorithm selection model for constrained continuous opti-
misation.
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Chapter 1

Introduction

In many ways we require optimality in our lives. For instance, we seek
the best solution with minimum cost. Optimisation is the notation that is
given to this optimality. Examples of this are designing aircraft wings by
minimising drafts, finding a set of trading rules which maximises the to-
tal profit or locating an optimised route between networks that minimises
the traffic. In other words, what are called the variables of problem, max-
imise or minimise the problem’s objective. Many optimisation problems
in science and engineering involve constraints which reduce their search
space feasibility and increase the searching process complexity. These
problems are called constrained optimisation problems (COPs). In solving
constrained optimisation problems, solutions that satisfy all the constraints
are considered as feasible individuals, while the ones that fail to satisfy any
of the constraints are infeasible ones.

There are many real-world examples of constrained continuous opti-
misation problems. Such problems are widespread in the mathematical
modelling of real-world systems for a very broad range of applications.
The applications include engineering and numerical design, VLSI chip de-
sign, database problems, chemical engineering design and control, fixed
charges, economies of scale, location problems, quadratic assignment and
maximising profit within trading rules [6, 11]. Thus, constrained continu-
ous optimisation problems are an intrinsic part of real-world applications.

1.1 Constrained Continuous Optimisation Prob-
lem

A constrained optimisation problem in a numerical continuous space is an
optimisation problem in which the value of the variables should satisfy
some equalities/inequalities, while they minimise the value of an objective
function. In general the COP can be formulated as follows:
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minimise f (x), x = (x1, . . . ,xn) ∈ Rn

subject to gi(x)≤ 0 ∀i ∈ {1, . . . ,q}
h j(x) = 0 ∀ j ∈ {q+1, . . . , p}

where x=(x1,x2, . . . ,xn) is an n dimensional vector and x∈ S∩F . Also
gi(x) and h j(x) are inequality and equality constraints, q and r = p−q are
the numbers of them respectively. Also, the feasible region F ⊆ S of the
search space S is defined by

li ≤ xi ≤ ui, 1≤ i≤ n

where both li and ui denote lower and upper boundaries for the ith variable
and 1≤ i≤ n respectively.

To handle equality constraints, they are usually transformed into in-
equality constraints as:

|h j(x)| ≤ ε for j = q+1 to p

where ε is a small positive value. In all experiments carried out in this the-
sis the value of ε is as 1E-4, which is the standard setting in the CEC 2010
benchmark competition for constrained real-valued optimisation problems
[20].

1.2 Evolutionary Algorithms for Solving
Constrained Optimisation Problems

In order to solve these constrained continuous optimisation problems, many
algorithms have been proposed. The majority of COPs cannot be solved
using traditional mathematical methods, such as gradient-based techniques.
For instance, in multi-modal problems, those with non-differentiable search
spaces or black-box optimisation problems, gradient information is not suf-
ficient to solve problems. In order to find solutions for these problem types,
meta-heuristic methods that find approximate solutions are used. During
recent years, bio-inspired population-based stochastic evolutionary algo-
rithms (EAs) have been introduced to solve non-linear complex problems.
For a general review of evolutionary algorithms, we refer the reader to
[5]. Real-world optimisation problems mostly have real-valued variables
and there are many algorithms proposed to search their continuous search
space, such as Differential Evolution (DE) [32], Particle Swarm Optimisa-
tion (PSO) [16] and Evolutionary Strategies (ES) [27].
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Differential evolution is arguably one of the most powerful and pop-
ular stochastic real-parameter optimisation algorithms. It is a parallel di-
rect search method that fulfils the following optimisation practice require-
ments: the ability to handle non-linear, non-differentiable and multi-modal
objective functions, optimising in parallel to deal with high computational
cost functions, ease of use and acceptable convergence properties. The
initial population is chosen randomly, while covering the entire parame-
ter space. The differential evolution generates new parameter vectors by
adding the weighted difference between two population vectors and the
third one (xp, xq and xr). This operation is called a mutation. Next, the
parameters of the mutated vector is mixed with the parameters of another
predetermined vector (the target vector) to create trial vector. This process
is called crossover. For more details of varieties of crossovers we refer
the reader to [32]. If the trial vector has a lower fitness value than the
target vector (for minimising), the trial vector replaces the target vector.
To decide whether or not it should become a member of the next genera-
tion (g+ 1), the generated trial vector is compared with the target vector,
using greedy criteria and the better vector is chosen for the next genera-
tion. Algorithm 1 shows the pseudo-code for differential evolution with
the differential weight F , crossover probability Cr and generation number
g. Also, d denotes the algorithm population size.

In the ES algorithm ((µ +, λ )-ES), at a very abstract level, the evolu-
tion can be considered as a process of selecting states where the selection
is based on their fitness value. The original formulation is the application
of mutation and selection in the population of the new candidate solution.
µ stands for the number of parents appearing in population. Also, λ de-
notes the number of all the offspring created by these parents within a
generation. In (µ + λ )-ES, the parents and offspring are united before µ
fittest individuals are selected. But, in (µ , λ )-ES, new individuals are only
chosen from λ offspring. Within one ES generation step, λ offspring in-
dividuals are generated from the set of µ parent individuals. Then, based
on the selection process, the fittest individuals are selected for next gener-
ation. We refer the reader to [27] for a detailed discussion of the various
ES customisations. Algorithm 2 shows the pseudo-code for standard ((µ +,
λ )-ES).

For the PSO algorithm, a number of particles are placed in the search
space and each evaluates the objective function value at its own location.
Then, each particle updates its movement direction through the search
space by combining the information about its own current and best lo-
cations with other particles. Once all the particles are moved through the
search space, the current iteration has been completed. In the PSO system,
each agent makes its decision according to its own experiences and other
agents experiences. The system initially has a population of random solu-
tions. Each potential solution, called a particle (agent), is given a random
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Algorithm 1 Differential Evolution pseudo-code [32]
1: Initialise the population with randomly generated solutions
2: Set the weight F ∈ [0,2] and crossover probability Cr ∈ [0,1]
3: while (stopping condition) do
4: for i = 1 to d do
5: For each xi, choose 3 distinct vectors xp, xq and xr randomly
6: Generate a new mutated vector (using the mutation) using xp,

xq and xr
7: Generate a trial vector (using the crossover) using the mutated

and target vectors
8: Select and update the solutions by selection
9: end for

10: Update the counters such as g = g+1
11: end while
12: Find the best found solution (post-process)

Algorithm 2 Evolutionary Strategy pseudo-code [27]
1: Set g = 0 (generation counter)
2: Initialise and create the population of solutions of x using uniform

n dimensional probability distribution in a problem search space (µ
individuals)

3: Evaluate the fitness of the population
4: while (stopping condition) do
5: Generate a new offspring (using the mutation)
6: Evaluate the offspring fitness
7: Apply selection from the offspring individuals
8: g = g+1
9: end while

velocity and is flown through the problem space. The agents have mem-
ories and each agent keeps track of its previous best position (Pbest) and
its corresponding fitness. There exist a number of Pbest for the respective
agents in the swarm and the agent with the greatest fitness is called the
global best (Gbest) of the swarm. Each particle is treated as a point in an n
dimensional space. The swarm, as a whole, is likely to move through an
optimum of objective function in search space. The simple version of PSO
pseudo-code is shown in Algorithm 3.

Constrained optimisation problems have constraints that increase their
complexity. In order to tackle these constraints, evolutionary algorithms
use mechanisms known as constraint handling methods. One of the issues
with EAs is how to deal with these constraints. Based on [22], constraint
handling methods are categorised into preserving the feasibility of solu-
tions, separating feasible and infeasible solutions, penalty functions and
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Algorithm 3 Particle Swarm Optimisation pseudo-code [16]
1: Randomly the initialise positions and velocities of all particles
2: while (stopping condition) do
3: Set Pbest and Gbest
4: Calculate particle velocity
5: Update particle position
6: Evaluate the objective function value (fitness value)
7: end while

hybrid methods. We refer the reader to [4, 22] for a detailed survey of
constraint handling methods.

In this thesis, our studies cover three constrained handling algorithms
from DE, ES and PSO types. These algorithms are ε-constrained dif-
ferential evolution with an archive and gradient-based mutation (εDEag),
(1+1) CMA-ES for constrained optimisation and hybrid multi-swarm par-
ticle swarm optimisation (HMPSO), respectively [33, 38, 1]. The (εDEag)
is one of the best DE algorithms and the winner of the 2010 CEC for
continuous COPs [20]. The algorithm uses an ε-constrained transforma-
tion method for converting an unconstrained problem to a constrained one.
Possible solutions are compared using the ε-level technique where the con-
straint violation (φ(x)) has a greater priority than the function cost ( f (x)).
We also use (1+1) CMA-ES for constrained optimisation problems. This
algorithm is a variant of (1+ 1)-ES that adapts the covariance matrix of
its offspring distribution in addition to its global step size. The algorithm
obtains approximations to the direction of normal vectors in the current
solution location vicinity by using low-pass filtering steps, which violates
the constraints and decrease the offspring distribution variance in these di-
rections. This technique makes (1+1) CMA-ES one of the most efficient
algorithms for constrained continuous problems. The next algorithm we
use in this thesis is HMPSO. This algorithm solves the COP by dividing
the current swarm into smaller sub-swarms and searching them in paral-
lel. Using this technique, enables the algorithm to increase the diversity of
solutions near different optima.

1.3 Analysis of Bio-inspired Algorithms for
Constrained Continuous Optimisation
Problems

Frequently, solving a COP requires significant time using trial and error
attempts to choose the best single optimisation algorithm. With increasing
numbers of proposed evolutionary algorithms, it has always been desirable
to find the best algorithm to solve a given COP. In other words, finding the
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best algorithm (among a range of different options) to perform well on a
given COP is not a straightforward task. Although there are many algo-
rithms that have been used successfully to solve COPs, there is no clear
understanding as to which variations of algorithms or approaches are bet-
ter than the others for a given problem. In order to find a proper algorithm
for a problem, many approaches have been tested. Such studies have fo-
cused on finding a measure that can divide problems into those that are
easy and those that are hard to solve for all algorithms [3, 8]. However,
these attempts have not been very successful as in the literature there are
many counter-examples for which the proposed measure is not a reliable
methodology [10, 9]. Such studies found that a more realistic method is
to focus on the characteristics of problems that make them hard to solve
by certain evolutionary algorithms. In other words, what is hard for DE
might not necessarily hard for ES or PSO. So, this motivates researches
to propose various techniques to characterise the optimisation problems.
It is hoped that by analysing problems in a greater depth, it will become
possible to distinguish problems based on their characteristics.

1.3.1 Fitness Landscape Ruggedness Analysis
Instead of trying to find one measure of difficulty, a more realistic ap-
proach could be to determine the characteristics of a problem and then use
these characteristics to determine which algorithm would be best suited for
solving the problem. Such techniques are grouped into theoretical and em-
pirical analysis. These estimators of problem complexity, which are the-
oretical in nature, include measures of correlations between fitness values
and measuring hardness using landscape information [39, 31, 3, 14]. The
techniques discussed are focused on measuring various problem character-
istics. Examples of such characteristics include deception with respect to a
genetic algorithm, the fitness distribution layout, neutrality and evolvabil-
ity. We refer the reader to [35, 37, 7] for the detailed studies. It is clear that
there is no stand-alone problem characteristic that makes it hard or easy for
EAs, but there is no doubt that COP’s fitness landscape is effective in sup-
porting an algorithm’s ability to search the space. Among several fitness
landscape characteristics, the notion of fitness landscape ruggedness influ-
ences the problem difficulty. Hence, many studies have been conducted
to analyse and measure this feature in discrete optimisation and uncon-
strained numerical search spaces [19, 36, 39, 12, 18]. One of the most
general and popular approaches in problem ruggedness characterising is
discussed by Vassilev in [36]. The idea behind this is to propose the-
oretic information about discrete landscape smoothness, ruggedness and
neutrality. To obtain a landscape path, a random walk is used on the dis-
crete problem fitness landscape. This path is represented as an ensemble
of three-point objects, where each point is the objective function value of
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the current point and its neighbours. In other words, the object is neutral
(the current point has equal value to its neighbours), smooth (the fitness
difference between three points changes in one direction: like a slope)
and rugged (the fitness difference between three points changes in two di-
rections: like a peak). Then, the ruggedness estimation with respect to
neutrality is calculated using three-point objects obtained from the random
walk. As discussed earlier, this approach is used in discrete problem fitness
landscapes. Later, Malan modified the random walk to quantify the fitness
landscape’s ruggedness for unconstrained continuous problems in [19].

1.3.2 Feature-Based Analysis
The main objective of this thesis lies in the area of feature-based analy-
sis, which is an empirical approach. Understanding the conditions under
which these algorithms perform well is essential for selecting the most suit-
able algorithm for a given COP. In [24], Smith-Miles shows the problem
difficulty analysis in two ways: one is considering a problem as a learning
problem, where the automatic algorithm selection is based on the obtained
knowledge from the previous algorithm’s performance [15, 2]. The second
one is analysing the algorithms and problems to understand the reasons for
their performance [29, 30]. The terms ”feature” and ”characteristic” are
used synonymously throughout this research.

The key concept in the problem difficulty analysis is to find the fea-
tures of the problems that make them hard or easy to solve. A solution
to this is to investigate easy and hard instances of a problem for certain
algorithms. The major purpose of this analysis is to generate problem in-
stances, difficulty criteria and a set of problem features. The method ap-
plied to generate the easy and hard instances is an evolutionary algorithm.
The problem’s hardness criteria is considered as the algorithm’s perfor-
mance on the generated instances. Such studies have been conducted in
combinatorial optimisation [21, 34, 29]. To extend this, the approaches
are designed to generate extremely hard and easy problem instances for
evolutionary algorithms using an evolver. Using an evolutionary algorithm
(evolver) enables us to obtain the vast diversity of generated instances for a
certain algorithm(s). Then, analysing these instances could help us to iden-
tify the problem features that make it hard/easy for an algorithm. It can also
represent the strengths and weaknesses of certain algorithms on a partic-
ular problem instance feature. Figure 1.1 shows the evolving process for
easy or hard problem instances that we use in this thesis. Later, we use cus-
tomised version of this figure for linear and quadratic constraints. In this
approach, at first we define COP instances using a fixed objective function.
Then the constraints coefficients for COP are uniform randomly chosen.
We later solve these problem instances using an evolutionary algorithm
(solver). The required function evaluation number (FEN) for solving the
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Figure 1.1: The evolving approach to generate hard/easy problem
instances

COPs using an algorithm is considered as the fitness value for the evolver
algorithm. By performing mutation, combination, selection or replacing
these instances (based on the FEN), we generate easy or hard problems for
the solver algorithm. Applying this method, we can generate a diverse set
of COP instances from easy to hard for each algorithm.

1.3.3 Algorithm Selection
Given a range of algorithms (such as DE, ES and PSO) to solve a COP,
there has been always a question: ”Can we estimate the likelihood that Al-
gorithm A will perform successfully on a given constrained problem?”. Se-
lecting the best algorithm from a suite of algorithms for a given problem’s
referred to an algorithm selection problem (ASP) [26]. In this work, Rice et
al. proposed a method with four characteristics: a set of problem instances
(F), a set of algorithms (A), the cost of algorithm performance on a partic-
ular problem (Y ) and a set of characteristics of problem instances (C). An
example of his algorithm selection framework is represented in Figure 1.2.
This figure predicts the performance of y(a( f )) of a given algorithm (a) on
a problem ( f ) by extracted features (c). Various studies have extended this
framework, see [13, 17, 30]. Also, many studies have been conducted to
show the possibility of finding the best suited algorithm for a given prob-
lem [23, 28, 2]. Using a learning strategy from previous experiments and
extracting given problem features, it is possible to predict an algorithm’s
performance on a given problem. Based on these findings, it is possible
to find the links between problem characteristics and an algorithm’s per-
formance. The key to this lies in the problem features, which can be used
for best algorithm prediction. This knowledge can be used to create future
prediction framework for selecting the most suitable algorithm for a given
optimisation problem. This thesis proposes how Rice’s model [26] can be
applied to constrained optimisation problems and evolutionary algorithms,
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Figure 1.2: Algorithm selection framework

where the features of the problems are based on feature-based analysis for
constraints. A neural network is used to solve the problem of mapping
COP features to performance measures (FENs).

1.4 Goals and Contribution
The goal of this thesis is to design an automated algorithm selection method
for a given COP based on its constraints. In order to select the most suited
algorithm, firstly, the features of the constraints that make the problem
hard/easy to solve are analysed. These features are related to the com-
plex set of problem constraints. Then, this knowledge is used to design
and implement an algorithm prediction model for constrained optimisation
problems. This algorithm selection framework can predict the best algo-
rithm type with its required FEN for a given COP using only its constraint
features.

The organisation of the thesis is as follows: In Chapter 2, we first re-
view the preliminary theoretical analysis of fitness landscapes. We also
discuss the application of landscape ruggedness measurement for discrete
and unconstrained real-valued optimisation problems. By applying these
techniques on constrained optimisation problems, we prove that the rugged-
ness measure is not accurate. Therefore, to cope with constraints and infea-
sible areas in COPs or their highly infeasible search space, we use a biased
walk to collect ruggedness information. We also investigate the effects
of our new approach in quantifying the constraint optimisation problems
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with various benchmarks. Results show that the ruggedness information
collected by our proposed method is more reliable and useful comparing
to the techniques. Therefore, it is more beneficial to use this theoretical
characterising analysis for future problem difficulty predictions and algo-
rithm selection models.

Having initiated a theoretical constrained optimisation problem analy-
sis, Chapter 3 shows a first step towards more practical feature-based anal-
ysis for COPs. It is obvious that constraints are important in constrained
optimisation problems. Hence, this motivates us to focus on the features of
constraints that make COPs hard/easy for various types of algorithms. We
adopt an evolving approach to ensure that the sets of instances are varied
from easy to hard for constraint handling algorithms. Then, by extracting
and analysing their features, the relationship between the algorithms and
constraints in COPs can be identified. Thus, as our initial step, we con-
duct a feature-based analysis on the impact of a linear constraint for an
ε-constrained differential evolution (ε-DEag) [33]. We use an evolver to
generate COP instances with a linear constraint and different fixed objec-
tive functions for a solver algorithm. By extracting the constraint features,
we study their effects on COP difficulty.

Chapter 4 further extends the feature-based analysis on COPs for more
complex sets of constraints. The results for previous steps motivate us
to study a set of linear, quadratic (and their combination) constraints to
make a problem hard or easy for an algorithm. We carry out an evolving
approach to generate COP instances with a set of linear and/or quadratic
constraints. Our results provide the capability of a set of various types
of constraints to problem difficulty solving by ε-DEag algorithm. With
this feature-based analysis, we obtain knowledge about the influence of
constraints on problem hardness, which can be used to design a successful
prediction model for selecting an algorithm. Using the results for Chapters
3 and 4, we proved the high quality of this evolving approach to analyse the
effects of constraint features on COPs difficulty for an ε-DEag algorithm.

To design a useful algorithm selection model, we require information
about strengths and weaknesses of other algorithm types over the features
of constraints. This leads us to study the effect of constraints and their
features on various algorithm types over COP difficulty. Thus, in Chap-
ter 5, by using a single-objective evolver, we generate hard and easy COP
instances for DE, ES and PSO algorithm types. Then, to gain deeper in-
sight, we solve each set of generated instances (using an algorithm) by
the other algorithms. Results suggest that the instances that are hard/easy
for one algorithm type are still hard/easy for the others. This informa-
tion is good but not sufficient, especially for designing a future algorithm
selection model. So, we apply a multi-objective evolver that generates dif-
ferent sets of problem instances. This evolving approach generates COP
instances that are hard/easy for one but still easy/hard for the other algo-
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rithms. The experiments show that over which features of constraints, they
can make the problem hard/easy for one and still easy/hard for the other
algorithms. As is observed in [25], some constraint features have a greater
effect on problem difficulty for various types of algorithms. By analysing
how well an algorithm performs on a given COP where the others fail, we
can obtain their strengths and weaknesses. This knowledge is helpful for
implementing more reliable algorithm prediction model.

In Chapter 6, we design a meta-learning framework to build a predic-
tion model for a given COP. The inputs to this model are given problem
constraint features and selected parameter settings. The outputs include
the required FEN and the most suitable algorithm type for a given COP. To
build a reliable prediction model, we need to train it with the proper data,
so as to show the differences between various algorithm types and their
performances on different constraints features. Therefore, for our algo-
rithm prediction model, we use the approach in Chapter 5 to obtain evolv-
ing COP instances. However, selecting the best sets of instances from a
multi-objective evolver population in order to build a reliable prediction
model is a challenge. Experimenting various subsets of instances from a
multi-objective evolver population for the training phase is effective for
model accuracy. Hence, we trained the model with different subsets from
the evolver population. Based on the experimental results, it is observed
that the prediction model trained with the combination of Pareto front and
random points has the highest accuracy in algorithm type prediction for a
given COP. The results indicate that our model is reliable to predict the
most suitable algorithm with highly close required FEN for a given COP.
These results clearly demonstrate the ability of prediction model to choose
the best algorithm type, using only constraint features. We then conclude
this thesis in Chapter 7 with some final remarks.

26



References

[1] D. V. Arnold and N. Hansen. A (1+ 1)-cma-es for constrained opti-
misation. In Proceedings of the 14th annual conference on Genetic
and evolutionary computation, pages 297–304. ACM, 2012.

[2] B. Bischl, O. Mersmann, H. Trautmann, and M. Preuß. Algorithm
selection based on exploratory landscape analysis and cost-sensitive
learning. In Proceedings of the 14th annual conference on Genetic
and evolutionary computation, pages 313–320. ACM, 2012.

[3] Y. Borenstein and R. Poli. Information landscapes. In Proceedings of
the 7th annual conference on Genetic and evolutionary computation,
pages 1515–1522. ACM, 2005.

[4] C. A. C. Coello. Theoretical and numerical constraint-handling tech-
niques used with evolutionary algorithms: a survey of the state of
the art. Computer methods in applied mechanics and engineering,
191(11):1245–1287, 2002.

[5] A. E. Eiben and J. E. Smith. Introduction to evolutionary computing,
volume 53. Springer, 2003.

[6] C. A. Floudas and P. M. Pardalos. A collection of test problems for
constrained global optimization algorithms, volume 455. Springer
Science & Business Media, 1990.

[7] D. E. Goldberg. Simple genetic algorithms and the minimal, decep-
tive problem. Genetic algorithms and simulated annealing, 74:88,
1987.

[8] D. E. Goldberg, J. rey Horn, and K. Deb. What makes a problem hard
for a classi er system? Urbana, 51:61801, 1992.

[9] J. J. Grefenstette. Deception considered harmful sk. Foundations of
Genetic Algorithms 1993 (FOGA 2), 2:75, 2014.

[10] H. Guo and W. H. Hsu. Ga-hardness revisited. In GECCO, pages
1584–1585. Citeseer, 2003.

[11] D. M. Himmelblau. Applied nonlinear programming. McGraw-Hill
Companies, 1972.

27



[12] W. Hordijk and P. F. Stadler. Amplitude spectra of fitness landscapes.
Advances in Complex Systems, 1(01):39–66, 1998.

[13] F. Hutter, Y. Hamadi, H. H. Hoos, and K. Leyton-Brown. Per-
formance prediction and automated tuning of randomized and
parametric algorithms. In Principles and Practice of Constraint
Programming-CP 2006, pages 213–228. Springer, 2006.

[14] T. Jones, S. Forrest, et al. Fitness distance correlation as a measure of
problem difficulty for genetic algorithms. In ICGA, volume 95, pages
184–192, 1995.

[15] J. Kanda, A. Carvalho, E. Hruschka, and C. Soares. Selection of
algorithms to solve traveling salesman problems using meta-learning.
International Journal of Hybrid Intelligent Systems, 8(3):117–128,
2011.

[16] J. Kennedy. Particle swarm optimization. In Encyclopedia of machine
learning, pages 760–766. Springer, 2011.

[17] K. Leyton-Brown, E. Nudelman, and Y. Shoham. Empirical hardness
models: Methodology and a case study on combinatorial auctions.
Journal of the ACM (JACM), 56(4):22, 2009.

[18] M. Lipsitch. Adaptation on rugged landscapes generated by iterated
local interactions of neighboring genes. In ICGA, pages 128–135,
1991.

[19] K. M. Malan and A. P. Engelbrecht. Quantifying ruggedness of
continuous landscapes using entropy. In Evolutionary Computation,
2009. CEC’09. IEEE Congress on, pages 1440–1447. IEEE, 2009.

[20] R. Mallipeddi and P. N. Suganthan. Problem definitions and eval-
uation criteria for the cec 2010 competition on constrained real-
parameter optimization. Nanyang Technological University, Singa-
pore, 2010.

[21] O. Mersmann, B. Bischl, H. Trautmann, M. Wagner, J. Bossek, and
F. Neumann. A novel feature-based approach to characterize algo-
rithm performance for the traveling salesperson problem. Annals of
Mathematics and Artificial Intelligence, 69(2):151–182, 2013.

[22] Z. Michalewicz and M. Schoenauer. Evolutionary algorithms for con-
strained parameter optimization problems. Evolutionary computa-
tion, 4(1):1–32, 1996.
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Chapter 2

Analytical Feature Analysis for
Constrained Optimisation
Problems

The article in this chapter represents the literature review in theoretical
problem analysis [1]. It reviews the theoretical analysis on both con-
strained and unconstrained optimisation problems. The aim is to under-
stand the relationship between theoretical problem features and success of
certain types of algorithms to solve a problem. To measure the ruggedness
for constrained continuous optimisation problem landscapes, we introduce
a new approach which uses biased walk. The experimented results show
the reliability of the proposed approach in highly infeasible problems.
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Chapter 3

A Feature-Based Analysis on the
Impact of Linear Constraints for
ε-Constrained Differential
Evolution

The article in this chapter presents the first empirical feature-based anal-
ysis for constrained continuous optimisation problems [1]. It reviews the
evolving approach to generate easy and hard instances for a certain type
of algorithm by evolving a linear constraint in COP. We then analyse the
relationship between constraint features and algorithm performance. The
constraint features are discussed in detail. The results show that a linear
constraint coefficients can make a problem up to 30% more difficult to
solve in terms of function evaluation number.
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Chapter 4

A Feature-Based Analysis on the
Impact of Set of Constraints for
ε-Constrained Differential
Evolution

In this article [1], a feature-based analysis of evolved constrained contin-
uous optimisation instances is carried out to understand the characteristics
of constraints that make a problem hard for evolutionary algorithms. In
this study, we examined more complex set of constraints such as linear,
quadratic and their combinations. Investigating the features of the con-
straint in COP, we can obtain the knowledge of what type of constraints
and their features make a COPs difficult for the examined algorithm. The
results have been published in [1]. We include the extended version [2] in
this chapter.
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Abstract

Different types of evolutionary algorithms have been developed for constrained
continuous optimization. We carry out a feature-based analysis of evolved con-
strained continuous optimization instances to understand the characteristics of con-
straints that make problems hard for evolutionary algorithm. In our study, we ex-
amine how various sets of constraints can influence the behaviour of e-Constrained
Differential Evolution. Investigating the evolved instances, we obtain knowledge
of what type of constraints and their features make a problem difficult for the ex-
amined algorithm.

1 Introduction
Constrained optimisation problems (COPs), specially non-linear ones, are very impor-
tant and widespread in real world applications [1]. This has motivated introducing
various algorithms to solve COPs. The focus of these algorithms is to handle the in-
volved constraints. In order to deal with the constraints, various mechanisms have
been adopted by evolutionary algorithms. These techniques include penalty function,
decoder-based methods and special operators that separate the treatment of constraints
and objective functions. For an overview of different types of methods we refer the
reader to Mezura-Montes and Coello Coello [6].

With the increasing number of evolutionary algorithms, it is hard to predict which
algorithm performs better for a newly given COP. Various benchmark sets such as
CEC’10 [3] and BBOB’10 [2] have been proposed to evaluate the algorithm perfor-
mances on continuous optimization problems. The aim of these benchmarks is to find
out which algorithm is good on which classes of problems. For constrained continuous
optimization problems, there has been an increasing interest to understanding problem
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features from a theoretical perspective [9, 14]. The feature-based analysis of of hard-
ness for certain classes of algorithms is a relatively new research area. Such studies
classify problems as hard or easy for a given algorithm based on the features of given
instances. Initial studies in the context of continuous optimization have recently been
carried out in [4, 5]. Having enough knowledge on problem properties that make it
hard or easy, we may choose the most suited algorithm to solve it. To do this, two
steps approach has been proposed by Mersmann et al. [4]. First, one has to extract the
important features from a group of investigated problems. Second, in order to build
a prediction model, it is necessary to analyse the performance of various algorithms
on these features. Feature-based analysis has also been used to gain new insights in
algorithm performance for discrete optimization problems [7, 10].

In this paper, we carry out a feature-based analysis for constrained continuous
optimisation and generate a variety of problem instances from easy to hard ones by
evolving constraints. This ensures that the knowledge obtained by analysing problem
features covers a wide range of problem instances that are of particular interest. Al-
though what makes a problem hard to solve is not a standalone feature, it is assumed
that constraints are certainly important in constrained problems. Evolving constraints
is a new technique to generate hard and easy instances. So far, the influence of one lin-
ear constraint has been studied [8]. However, real world problems have more than one
linear constraint (such as linear, quadratic and their combination). Hence, our study
is to generate COP instances to investigate which features of the linear and quadratic
constraints make the constrained problem hard to solve. To provide this knowledge,
we need to use a common suitable evolutionary algorithm that handles the constraints.
In this research, the e-constrained differential evolution with an archive and gradient-
based mutation (eDEag) [13] is used. The eDEag (winner of CEC 10 special session
for constrained problems) is applied to generate hard and easy instances to analyse the
impact of set of constraints on it.

Our results provide evidence on the capability of constraints (linear, quadratic or
their set of combination) features to classify problem instances to easy and hard ones.
Feature analysis by solving the generated instances with eDEag enables us to obtain
the knowledge of influence of constraints on problem hardness which could later could
be used to design a successful prediction model for algorithm selection.

The rest of the paper is organised as follows. In Section 2, we introduce the con-
strained optimisation problems. Then, we discuss eDEag algorithm that we use to
solve the generated problem instances. Section 3 includes our approach to evolve and
generate problem instances. Furthermore, the constraint features are discussed. In Sec-
tion 4, we carry out the analysis of the linear and quadratic constraint features. Finally,
section 5 concludes with some remarks.

2 Preliminaries

2.1 Constrained continuous optimisation problems
Constrained continuous optimisation problems are optimisation problems where a func-
tion f (x) on real-valued variables should be optimised with respect to a given set of
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constraints. Constraints are usually given by a set of inequalities and/or equalities.
Without loss of generality, we present our approach for minimization problems.

Formally, we consider single-objective functions f : S ! R, with S ✓ Rn. The
constraints impose a feasible subset F ✓ S of the search space S and the goal is to find
an element x 2 S\F that minimizes f .

We consider problems of the following form:

minimize f (x), x = (x1, . . . ,xn) 2 Rn

subject to gi(x) 0 8i 2 {1, . . . ,q}
h j(x) = 0 8 j 2 {q+1, . . . , p}

(1)

where x = (x1,x2, . . . ,xn) is an n dimensional vector and x 2 S\F . Also gi(x) and
h j(x) are inequality and equality constraints respectively. Both inequality and equality
constraints could be linear or nonlinear. To handle equality constraints, they are usually
transformed into inequality constraints as |h j(x)|  e , where e = 10e�4 (used in [3]).
Also, the feasible region F ✓ S of the search space S is defined by

li  xi  ui, 1 i n (2)

where both li and ui denote lower and upper bounds for the ith variable and 1 i n
respectively.

2.2 eDEag algorithm
One of the most prominent evolutionary algorithms for COPs is e-constrained differ-
ential evolution with an archive and gradient-based mutation (eDEag). The algorithm
is the winner of latest CEC competition for constrained constrained continuous prob-
lems [3]. The eDEag uses e-constrained method to transform algorithms for uncon-
strained problems to constrained ones [12]. It adopts e-level comparison instead of
ordinary ones to order the possible solutions. In other words, the lexicographic order
is performed in which constraint violation (f(x)) has more priority and proceeds the
function value ( f (x)). This means feasibility is more important. Let f1, f2 and f1,f2
are objective function values and constraint violation at x1,x2 respectively. Hence, for
all e � 0, the e-level comparison of two candidates ( f1,f1) and ( f2,f2) is defined as
the follows:

( f1,f1) <e ( f2,f2) ()

8
><
>:

f1 < f2, if f1,f2  e
f1 < f2, if f1 = f2

f1 < f2, otherwise

( f1,f1)e ( f2,f2) ()

8
><
>:

f1  f2, if f1,f2  e
f1  f2, if f1 = f2

f1 < f2, otherwise

In order to improve the usability, efficiency and stability of the algorithm, an archive
has been applied. Using it improves the diversity of individuals (see Algorithm 1). The
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Algorithm 1 The e-constrained differential evolution with an archive and gradient-
based mutation (eDEag)

• Initializations:
- M randomly selected individuals from search space S is archived in A.
- Set e level Using control level function
- Population: Top N individuals are selected from archive. The Archive is ranked
using e level comparison

• Termination condition is set to Maximum function evaluation number.
• DE operation: Use DE/rand/1/exp to generate new child. Comparing is based on

the e level comparison
• Gradient based mutation: If child is infeasible, it is changed by the gradient-

based mutation with probability P. Go to step 3 and parent is considered as parent.
• Update and control the e-level
• Go to step 2

offspring generation is adopted in such a way that if the child is not better than its
parent, the parent generates another one (see [13]). This leads to more stability to the
algorithm. For a detailed presentation of the algorithm, we refer the reader to [13].

3 Evolving Constraints
It is assumed that the role of constraints in problem difficulty is certainly important for
constrained optimisation problem. Hence, it is necessary to analyse various effects that
constraint can impose on a constrained optimisation problems. Evolving constraints is
a novel methodology to generate hard and easy instances based on the performance of
the problem solver (optimisation algorithm).

3.1 Algorithm
In order to analyse the effects of constraints, the variety of them needs to be studied
over a fixed objective function. First, constraint coefficients are randomly chosen to
construct problem instances. Second, the generated constrained problem is solved by
a solver algorithm (eDEag). Then, the required function evaluation number (FEN)
to solve this instance is considered as the fitness value for evolving algorithm. This
process is repeated until hard and easy instances of constraint problem are generated
(see Figure 1).

To generate hard and easy instances, we use the approach outlined in [8].
It uses fast and robust differential evolution (DE) proposed in [11] (see Algorithm

2, 3) to evolve through the problem instances (by generating various constraint coef-
ficients). It is necessary to note that the aim is to optimise (maximise/minimise) the
FEN that is required by a solver to solve the generated problem. Also, to solve this
generated problem instance and find the required FEN we use eDEg as a solver. The
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Figure 1: Evolving constraints process

termination condition of this algorithm (evolver) is set to reaching FENmax number of
function evaluations or finding a solution close enough to the feasible optimum solution
as follows:

| f (xoptimum)� f (xbest)| e�12 (3)

This process generates harder and easier problem instances until it reaches the cer-
tain number of generation for the DE algorithm (evolver). Once two distinct sets of
easy and hard instances are ready, we start analysing various features of the constraints
for these two categories. This could give us the knowledge to understand which fea-
tures of constraints have more contribution to problem difficulty.

3.2 Evolving a set of inequality constraints
We focus on analysing the effects of constraints (linear, quadratic and their combina-
tion) on the problem and algorithm difficulty. We will extract features of constraints
and analyse their effect on constrained problem difficulty. The experimented con-
straints are linear and quadratic as the form of:

linear constraint g(x) = b+a1x1 + . . .+anxn (4)

quadratic constraint g(x) = b+a1x2
1 +a2x1 . . .+a2n�1x2

n +a2nxn (5)

or combination of them. We also consider various numbers of these constraints in
this study. Here, x1,x2 . . . ,xn are the variables from Equation 1 and a1,a2 . . . ,an are
coefficients within the lower and upper bounds (lc,uc). In our research, we construct
constrained problems where the optimum of the experimented unconstrained problem
is feasible. We use quadratic function as the form of Equation 5 (univariate) since
it is more popular in recent constrained problem benchmarks. Also, the influence of
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Algorithm 2 Differential evolution (DE) algorithm
• inputs: Problem and Popsize, Crossoverrate ,weighting f actor, outputs: Sbest

• Population InitializePop
EvaluatePopulation(population)
Sbest  GetBestSolution(Population)

• Repeat
• NewPopulation f
• For i starts at 1, i< Popsize-1, increment i
• Si  Newsample
• If Cost(Si)Cost(Pi)
• NewPopulation Si

• else
• NewPopulation Pi

• Endif
• Endfor
• Population NewPopulation
• EvaluatePopulation(population)
• Sbest  GetBestSolution(Population)
• Until (stop condition)

each xns can be analysed independently (exponent 2). The optimum of these problems
is x⇤ = (0, . . . ,0) and we ensure that this point is feasible by requiring b  0, when
evolving the constraints.

3.3 Constraints Features
In this paper, we study a set of statistic based features that leads to generating hard and
easy problem instances. These features are discussed as follows:

• Constraint Coefficients Relationship: It is likely that the statistics such as stan-
dard deviation, population standard deviation and variance of the constraints co-
efficients can represent the constraints influences to problem difficulty. These
constraint coefficients are (b,a1,a2, . . . ,an) in Equation 4 and 5.

• Shortest Distance: This feature is related to the shortest distance between the
objective function optimum and constraint. In this paper, the shortest distance
to the known optimum from each constraint and their relations to each other is
discussed. To find the shortest distance of optimum point (x1,x2, . . . ,xn) to the
linear constraint hyperplane (a1x1 +a2x2 + . . .anxn +b = 0) we use Equation 6.
also, for quadratic constraint hyperplane (a1x2

1 + a2x1 . . . + a(2n�1)x2
n + a2nxn +

b = 0) we need to find the minimum of Equation 7.
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Algorithm 3 Newsample function in Algorithm 2
• inputs: P0, population, NP, F, CR, outputs: S
• Repeat
• P1  RandomMember(population)
• Untill P1 6= P1

• Repeat
• P2  RandomMember(population)
• Untill P2 6= P0 _ P2 6= P1

• Repeat
• P3  RandomMember(population)
• Untill P3 6= P0 _ P3 6= P1 P3 6= P2

• cutpoint RandomMember(population)
• Sample 0
• For i starts a 1 to NP
• If i ⌘ cutpoint ^ Rand()  CR
• Si  P3i + F*(P1i -P2i )
• Else
• Si  P0i

• Endif
• Endfor
• Return S

d? =
a1x01 +a2x02 + . . .anx0n +bp

a12 +a22 + · · ·+an2
(6)

d? =
q

(x1� x01)2 +(x2� x02)2 + · · ·+(xn� x0n)2 (7)

where d? in Equation 7 is the distance from a point to a quadratic hyperplane.
Minimizing the distance squared (d2

?) is equivalent to minimizing the distance
d?.

• Angle: This feature describes the angle of the constraints hyperplanes to each
other. It is assumed that the angle between the constraints can influence problem
difficulty. To calculate the angle between two linear hyperplanes, we need to find
their normal vectors and angle between them using the following equation:

q = arccos
n1 ·n1

|n1||n2|
(8)

where n1,n2 are normal vectors for two hyperplanes. Also, the angle between
two quadratic constraints is the angle between two tangent hyperplanes of their
intersection. Then, the angle between these tangent hyperplanes can be calcu-
lated by Equation 8.
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• Number of Constraints: Number of constraints plays an important role in
problem difficulty. In this research, number of constraints and their effects to
make easy and hard problem instances is analysed.

• Optimum-local Feasibility Ratio: Although the global feasibility ratio is im-
portant to find the initial feasible point, it should not affect the convergence rate
during solving the problem. So, in this research, he feasibility ratio of gener-
ated COP is calculated by choosing 10e6 random points within the vicinity of
the optimum in search space and the ratio of feasible points to all chosen ones
is reported. In our experiment, the vicinity of optimum is equivalent to 1/10 of
boundaries from optimum for each dimension.

4 Experimental Analysis
We now analyse the features of constraints (linear, quadratic and their combination) for
easy and hard instances. We generate these instances for (eDEg) algorithm using well
known objective functions. In our experiments, we generate two sets of hard and easy
problem instances. Due to stochastic nature of evolutionary algorithms, for each num-
ber of constraints we perform 30 independent runs for evolving easy and hard instances.
We set the evolving algorithm (DE) generation number to 5000 for obtaining the proper
easy and hard instances. The other parameters of evolving algorithm are set to popu-
lation size = 40, crossover rate = 0.5, scaling factor = 0.9 and FENmax is 300,000.
Values for these parameters have been obtained by optimising the performance of the
evolving algorithm in order to achieve the more easier and harder problem instances.
For (eDEg) algorithm, its best parameters are chosen based on [13]. The (eDEg) al-
gorithm parameters are considered as: generation number = 1500, population size =
40, crossover rate = 0.5, scaling factor = 0.9. Also, the parameters for e-constraint
method are set to control generation (T c) = 1000, initial e level (q) = 0.9, archive size
= 100n (n is dimension number), gradient-based mutation rate (Pg) = 0.2 and number
of repeating the mutation (Rg) = 3.

4.1 Analysis for Linear Constraints
In order to focus only on constraints, we carry out our experiments on various well-
known objective functions. These functions are considered as: Sphere (bowl shaped),
Ackley (many local optima), Rosenbrock (valley shaped) and Schaffer (many local
minima) (see [2]). The linear constraint is as the form of Equation 4 with dimension (n)
as 30 and all coefficients (an)s and bs are within the range of [�5,5]. Also, number of
constraints is considered as 1 to 5. To discuss and study some features such as shortest
distance to optimum, we assume that zero is optimum (all bs should be negative). We
used (eDEg) algorithm as solver to generate more easy and hard instances.

To illustrate our investigation, we plot a 2 dimension Sphere function with 2 to
5 linear constraints in Figure 2. It is obvious that the first row (easy) instances have
higher feasibility ratio than the second row (hard).
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Figure 2: Easy (first row) and hard (second row) instances for 1 to 5 number of linear
constraints using eDEg (2 dimension). The dark blue hyperplane is the feasible

solution

In the following we will present our findings based on various features for linear
constraints (for each dimension).

Figure 4 shows some evidence about linear constraints coefficients relationship
such as standard deviation. It is obvious that there is a systematic relationship between
the standard deviation of linear constraint coefficients and problem difficulty. The box
plot (see Figure 4) represents the results for easy and hard instances using Sphere, Ack-
ley, Rosenbrock and Schaffer objective function for (eDEg) algorithm (solver). As it
is observed, the standard deviation for coefficients in each constraint (1 to 5) for easy
instances are lower than hard ones. Both these coefficient values can be a significant
role to make a constrained problem harder or easier to solve. Also, interestingly, all
different objective functions follow the same pattern.

Figure 5 represents variation of shortest distance to optimum feature for easy and
hard instances using (eDEg) algorithm. The lower value means the higher distance
from optimum. This means, the linear hyperplanes in easy instances are further from
optimum. Based on results, there is a strong relationship between problem hardness
and shortest distance of constraint hyperplanes to optimum. In other word, this feature
is contributing to problem difficulty. As expected, all objective functions follow the
same systematic relationship between their feature and problem difficulty. This means,
this feature can be used as a proper source of knowledge for predicting problem diffi-
culty.

The angle between linear constraint hyperplanes feature shows relationship be-
tween the angle and problem difficulty (see Table 1). As it is observed in this table, the
angle between constraints in easier instances are less than higher ones. So, this feature
is contributing in problem difficulty.
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Figure 3: Easy (first row) and hard (second row) instances for 1 to 5 number of
quadratic constraints using eDEg (2 dimension). The dark blue hyperplane is the

feasible solution

Table 1: The angle feature for Sphere objective function

Cons 1,2 Cons 1,3 Cons 1,4 Cons 1,5 Cons 2,3 Cons 2,4 Cons 2,5 Cons 3,4 Cons 3,5 Cons 4,5
DE Easy 15 17 25 21 32 27 41 47 45 43
DE Hard 45 51 63 59 62 73 76 69 79 86

10

65



Table 2: The FEN for linear constraints

Constraint -
Function

Easy
Instance

Hard
Instance

1 c Sphere 25.6K 91.2K
2 c Sphere 28.9K 93.4K
3 c Sphere 32.4K 98.3K
4 c Sphere 34.2K 104.2K
5 c Sphere 35.5K 123.2K
1 c Ackley 65.2K 232.1K
2 c Ackley 69.3K 243.7K
3 c Ackley 74.2K 265.4K
4 c Ackley 86.4K 271.3K
5 c Ackley 92.3K 277.2K

1 c Rosenbrock 32.8K 145.2K
2 c Rosenbrock 35.9K 153.3K
3 c Rosenbrock 34.5K 167.9K
4 c Rosenbrock 42.2K 172.4K
5 c Rosenbrock 48.3K 176.8K

1 c Schaffer 84.8K 247.1K
2 c Schaffer 87.9K 259.1K
3 c Schaffer 93.5K 280.3K
4 c Schaffer 103.2K 293.8K
5 c Schaffer 112.4K 297.4K

Table 3: The FEN for quadratic constraints

Constraint -
Function

Easy
Instance

Hard
Instance

1 c Sphere 24.2K 129.3K
2 c Sphere 25.3K 132.6K
3 c Sphere 27.9K 136.2K
4 c Sphere 34.1K 141.2K
5 c Sphere 38.7K 149.3K
1 c Ackley 68.4K 228.3
2 c Ackley 72.9K 232.5K
3 c Ackley 84.5K 239.6K
4 c Ackley 95.3K 247.9K
5 c Ackley 98.1K 251.9K

1 c Rosenbrock 31.4K 173.2K
2 c Rosenbrock 32.45K 182.3K
3 c Rosenbrock 42.5K 190.6K
4 c Rosenbrock 52.7K 192.8K
5 c Rosenbrock 71.1K 213.4K

1 c Schaffer 91.3K 278.9K
2 c Schaffer 94.9K 283.1K
3 c Schaffer 103.7K 289.3K
4 c Schaffer 114.1K 296.1K
5 c Schaffer 123.4 300k

Table 2 explains the variation of number of constraints feature group. It is shown
that the problem difficulty (required FEN for easy and hard instances) has a strong
systematic relationship with number of constraints for the experimented algorithm.

To calculate the optimum-local feasibility ratio, 10e6 points are generated within
the vicinity of optimum (zero in our problems). Later, the ratio of feasible points to
all generated points are investigated for easy and hard instances. Results point out that
increasing number of linear constraints, decreases the feasibility ratio for experimented
algorithms (see Table 4).

In summary the variation of feature values over the problem difficulty is more
prominent in some of them than the other groups of features. Features such as, co-
efficients standard deviation, shortest distance, angle between constraints, number of
constraints and feasibility ratio exhibit a relationship to problem hardness. This rela-
tionship is stronger for some features.

4.2 Analysis for Quadratic Constraints
In this section, we carry out our experiments on quadratic constraints. We use various
objective functions, dimension and coefficient range similar to linear analysis. In the
following the group of features are studied for easy and hard instances using quadratic
constraints.
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Table 4: Optimum-local feasibility ratio of search space near the optimum for 1,2,3,4
and 5 linear constraint

DE Easy DE Hard
1 cons 42% 7%
2 cons 32% 6%
3 cons 22% 4%
4 cons 17% 3%
5 cons 11% 2%

Observing the Figure 4, we can identify the relationship of quadratic coefficients
and their ability to make problem hard or easy. Based on the experiments, quadratic co-
efficients has the ability to make problems hard or easier for algorithms. In other words,
in each constraint, the quadratic coefficients (within the quadratic constraint) are more
contributing to problem difficulty than linear coefficients (see Equation 5). Figure 4
shows the standard deviation of quadratic coefficients for easy and hard COPs. As
shown, the standard deviation of quadratic coefficient in 1 to 5 constraints in easy in-
stances are less than harder one. In contrast to quadratic coefficients, our experiments
show there is no systematic relationship between the linear coefficient in quadratic
constraints and problem hardness. In other words, quadratic coefficients are more con-
tributing than linear ones in the same quadratic constraint.

Box plots shown in Figure 5 represent the shortest distance of a quadratic con-
straint hyperplanes to optimum. As it is observed, harder instances have constraint
hyperplanes closer to optimum than easier ones. The lower values in these box plots
means closer to optimum. Calculating the angles between constraints do not follow
any systematic pattern and there is no relationship between angle feature and problem
difficulty for quadratic constraints. We also study the number of quadratic constraints
feature. As it is shown in Table 3, number of quadratic constraints is contributing
to problem difficulty. It is obvious that increasing number of quadratic constraints
makes a problem harder to solve (increases FEN). As observed in Table 5, investi-
gations on feasibility ratio show that increasing number of constraint decreases the
problem optimum-local feasibility ratio for easy and hard instances respectively. As it
is observed, some group of features are more contributing to problem difficulty than the
others. It is shown that angle feature does not follow any systematic relationship with
problem hardness for experimented algorithm for quadratic constraints. On the other
hand standard deviation, feasibility ratio and number of constraints are more contribut-
ing for eDEag.

4.3 Analysis for Combined Constraints
In this section, we consider the combination of linear and quadratic constraints. The
generated COPs have different numbers of linear and quadratic constraints (5 con-
straints). The obtained results show the higher effectiveness of quadratic constraints.
In other words, these constraints are more contributing to problem difficulty than linear
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Table 5: Optimum-local feasibility ratio of search space near the optimum for 1,2,3,4
and 5 quadratic constraint

DE Easy DE Hard
1 cons 36% 11%
2 cons 27% 7%
3 cons 12% 4%
4 cons 11% 3%
5 cons 8% 2%

Table 6: The FEN for combined constraints using Sphere objective function

DE Easy DE Hard
1 Lin 4 Quad 22.4K 97.5K
2 Lin 3 Quad 17.5K 95.1K
3 Lin 2 Quad 16.5K 94.2K
4 Lin 1 Quad 14.1K 91.4K

ones. By analysing the various number of constraints (See Table 6) we can conclude
that required FEN for sets of constraints with more quadratic ones is higher than sets
with more linear constraints. This relationship holds the pattern for both easy and hard
instances.

In summary it is observed that the variation of linear and quadratic constraint co-
efficients over the problem difficulty is more contributing for some group of features.
Considering quadratic constraints only, it is obvious that some features such as angle
do not provide useful knowledge for problem difficulty. In general, this experiments
point out the relationship of the various constraint features of easy and hard instances
with the problem difficulty while moving from easy to hard ones. This improves the
understanding of the constraint structures and their ability to make a problem hard or
easy for a specific group of evolutionary algorithms.

Conclusions
In this paper, we performed a feature-based analysis on the impact of sets of constraints
(linear, quadratic and their combination) on performance of well-known evolutionary
algorithm (eDEag). Various features of constraints for easy and hard instances have
been analysed to understand which features contribute more to problem difficulty. The
sets of constraints have been evolved using an evolutionary algorithm to generate hard
and easy problem instances for eDEag. Furthermore, the relationship of the features
with the problem difficulty have been examined while moving from easy to hard in-
stances. Later on, these results can be used to design an algorithm prediction model.
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Figure 4: Box plot for standard deviation of coefficients in linear (A,C,E,G) and
quadratic (B,D,F,H) constraints for Sphere (A,B), Ackley (C,D), Rosenbrok (E,F) and

Schaffer (G,H). Each sub figure includes 2 sets of hard (H) and Easy (E) instances
with 1 to 5 constraints using algorithms (a/b/c denotes a: constraint number, b:

easy/hard instances and c:algorithm).
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Figure 5: Box plot for the shortest distance to optimum of linear (A,C,E,G) and
quadratic (B,D,F,H) constraints for Sphere (A,B), Ackley (C,D), Rosenbrok (E,F) and

Schaffer (G,H). Each sub figure includes 2 sets of hard (H) and Easy (E) instances
with 1 to 5 constraints using DE algorithm (a/b/c denotes a: constraint number, b:

easy/hard instances and c:algorithm).
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Chapter 5

A Feature-Based Comparison of
Evolutionary Computing
Techniques for Constrained
Continuous Optimisation

In article included in this chapter [1], we first use single-objective evolver
to analyse the features of sets of constraints and their influence on various
types of algorithms. We also, for the first time, use multi-objective evolver
to generate COP instances that are hard/easy for one and still easy/hard
for the other algorithm types. By analysing how well an algorithm per-
forms in conditions where other ones fail, we can derive its strengths and
weaknesses over COPS. The results have been published in [1] and its ex-
tended version [2] is included in this chapter. This knowledge can help us
to improve the efficiency of algorithm prediction model.
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Abstract

Evolutionary algorithms have been frequently applied to constrained continu-
ous optimisation problems. We carry out feature based comparisons of different
types of evolutionary algorithms such as evolution strategies, differential evolution
and particle swarm optimisation for constrained continuous optimisation. In our
study, we examine how sets of constraints influence the difficulty of obtaining close
to optimal solutions. Using a multi-objective approach, we evolve constrained
continuous problems having a set of linear and/or quadratic constraints where the
different evolutionary approaches show a significant difference in performance.
Afterwards, we discuss the features of the constraints that exhibit a difference in
performance of the different evolutionary approaches under consideration.

1 Introduction
There have been many algorithmic approaches proposed to solve complex optimisa-
tion problems, including constrained optimisation problems (COP). Several approaches
have been proposed to tackle the constraints in constrained problems. Most of the re-
search has been focused on introducing differential evolution (DE) [14], particle swarm
optimisation (PSO) [2] and evolutionary strategies (ES) [13] to solve numerical opti-
misation problems. In order to deal with these constrained problems, there have been
techniques that applied to these algorithms such as penalty functions, special operators
(separating the constraint and objective function treatment) and decoder based meth-
ods. We refer the reader for a survey of constraint handling techniques in evolutionary
computing methods to [9].

In order to compare and evaluate the evolutionary algorithms many approaches
have been used. One is finding which algorithm performs better on a set of continuous
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problems using benchmarks sets [3, 6]. Recently, there has been an increasing interest
to analyse the problem features that make it hard to solve. Initial studies have been
carried out in the field of continuous optimisation in [8]. Furthermore, there have been
techniques that generate a variation of problem instances from easy to hard. Then, the
features of this problem instances are analysed in order to find which of them make the
problems hard or easy to solve. Generating the variety of problem instances from easy
to hard ensures that the knowledge obtained from analysis is reliable.

Although there is not only a standalone feature that makes a problem hard to solve,
but it is assumed that constraints are very important in constrained continuous prob-
lems. The evolving approach that has been used to analyse the constraint features and
their effects on COP’s difficulty is discussed in [10, 11]. The idea is to evolve con-
strained problem instances (by using an evolutionary algorithm) in order to identify the
constraint features with more contribution to problem difficulty.

In this paper, by using a single-objective evolutionary algorithm, we generate hard
and easy COP instances for DE, ES and PSO algorithms. Later, we solve the generated
instances using one algorithm by the other algorithms. The results show that the hardest
generated instances using one algorithm are still hard for the other ones. To get better
insight, we use multi-objective evolving approach to generate instances that are hard
for one algorithm but still easy for the others. By analysing how an algorithm fails in
conditions where the rest perform well, we can derive its strengths and weaknesses over
constraint features. Our study shows the effectiveness of constraint features that make
the problems hard for one and easy for the other algorithms. It can be translated as over
which features of constraints, they make the problems hard for a certain algorithm but
still easy for the others.

The remainder of this paper is as follows: In Section 2 we introduce the concept of
COPs. Then we discuss the evolver (single and multi-objective evolutionary approach)
and the solver algorithms (DE, ES and PSO) we use in our experiments. In Section 3 we
analyse the performance of various algorithms on each others hard and easy instances
(using the single-objective evolver). Section 4 includes the multi-objective approach
that generates hard instances for one but easy for the other algorithms. Furthermore, we
carry out the analysis of linear and quadratic constraint features that make the problem
hard for one and still easy for the rest. Finally, we conclude with some remarks.

2 Preliminaries

2.1 Constrained continuous optimisation problems
In this study, constrained continuous optimisation problems with inequality and equal-
ity constraints are investigated. These problems are optimisation problems where a
function f (x) should be optimised with respect to a given set of constraints.

Single-objective functions f : S ! R with S ✓ Rn are considered in this research.
The constraints impose a feasible subset F ✓ S of the search space S and the aim is
finding x 2 S\F which minimises f . Formally, we state the problems as follows:
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minimize f (x), x = (x1, . . . ,xn) 2 Rn

subject to gi(x)  0 8i 2 {1, . . . ,q}
h j(x) = 0 8 j 2 {q+1, . . . , p}

(1)

where x = (x1,x2, . . . ,xn) is an n dimensional vector and x 2 S\F . The gi(x) (in-
equality) and h j(x) (equality) constraints could be linear/nonlinear. Also, the equality
constraints are usually replaced by |h j(x)|  e where e = 10e�4 [6]. The feasible re-
gion F ✓ S of the search space S is defined by

li  xi  ui, 1  i  n (2)

where li and ui denote lower and upper bounds respectively for the ith variable in which
1 i n. In this paper, we focus on the ability of constraints (linear, quadratic) to make
a problem hard or easy. The features of these constraints and their effect on problem
difficulty is discussed. The constraints are of the following form:

linear constraint g(x) = b+a1x1 + . . .+anxn (3)

quadratic constraint g(x) = b+a1x2
1 +a2x1 . . .+a2n�1x2

n +a2nxn (4)

or a combination of them, where x1,x2 . . . ,xn are values from Equation 1 and a1,a2, . . . ,an
are coefficients within lower (li) and upper bounds (ui). We assume univariant quadratic
function to analyse each xn (with exponent 2) independently. Also, unvivarient quadratic
constraints are more popular in recent benchmarks [6]. In order to include the optimum
of objective function in feasible area, we set b  0 (we assume the objective function
optimum is zero).

2.2 Algorithms
We now introduce the algorithms for constrained continuous optimisation that are sub-
ject to our investigation.

One of the most prominent evolutionary algorithms for COPs is e-constrained dif-
ferential evolution with an archive and gradient-based mutation (eDEag). The algo-
rithm is the winner of 2010 CEC competition for continuous COPs [6]. The eDEag
uses e-constrained method to transform algorithms for unconstrained problems to con-
strained ones. It adopts e-level comparison to order the possible solutions. In other
words, the lexicographic order is used in which constraint violation (f(x)) has more
priority and proceeds the function value ( f (x)). For more details we refer the reader to
[16].

The second algorithm we use in this paper is a (1 + 1) CMA-ES for constrained
optimisation [1]. The (1 + 1) CMA-ES in [4] is a variant of (1 + 1)-ES which adapts
the covariance matrix of its offspring distribution in addition to its global step size. The
idea behind the constraint handling approach of this algorithm is to obtain approxima-
tions to the normal vectors directions in the vicinity of the current solutions locations
by low-pass filtering steps which violates the respective constraints and reducing the
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variance of the offspring distribution in these directions. Incorporating this constraint
handling approach with (1 + 1) CMA-ES makes an algorithm which is significantly
more efficient than other approaches for constrained evolutionary algorithms. Also,
the selected algorithm is not sensitive to the rotation of the problem search space. We
refer the reader to [1] for more details and implementation.

The third algorithm that is used in our investigation is a particle swarm optimisa-
tion. This algorithm (HMPSO) applies a method that uses parallel search operator in
which it divides the current swarm into various sub-swarms and locates the solution
between them. In each sub-swarm, all particles follow the local best (fittest particle)
which improves them to be more fitter. Also, since all sub-swarms are located around
different optima (in parallel), then it is more possible to locate multiple optima which
improves the diversity of algorithm. Dividing the swarms into sub-swarms improves
the diversity of the algorithm. Also, choosing the local best in each sub-swarm can
attract the other particles to fitter positions. We refer the reader to [17] for detailed
algorithm and implementation.

2.3 Features of Constraints
In this paper we analyse the constraint features of generated problem instances. These
features are constraint coefficients relationships such as standard derivation, angle be-
tween constraint hyperplanes, feasibility ratio in vicinity of optimum, number of con-
straints, shortest distance of constraint hyperplane to optimum. The details of these
features are discussed in [11].

3 Single-objective Investigations
We first consider different algorithms and compare their relative performance on each
other’s generated hard and easy instances. We use single-objective evolver to evolve
and generate hard and easy instances for all types of algorithms. The detailed procedure
and results for DE instances are discussed in [11]. For this experiment, we perform 30
independent runs generating easy and hard instances for PSO and ES solvers. It means,
the single-objective evolver only generates instances that are hard/easy for one type
of algorithm (PSO, ES and DE). The required function evaluation number (FEN) for
solving these instances (PSO, ES and DE) is used as fitness value for single-objective
evolver. The parameters for solvers are identical to [1, 16, 17]. Also, we run our exper-
iments on Sphere function (bowl shaped)[3]. We now have three groups of easy and
hard instances generated for DE, ES and PSO algorithms. We then compare the DE,
ES and PSO algorithms by applying them on each other’s easy and hard instances. The
analysis is done by comparing the required FEN for an algorithm to solve the other’s
generated problem instances. Then, it is possible to derive strengths and weaknesses of
the considered algorithms by observing how well one algorithm performs in conditions
where the other algorithms fail (or it is difficult for them). Table 1 and 2 show different
algorithms performance on Sphere objective functions with linear/quadratic constraints
(1 to 5 constraints). We also run our experiments on different objective functions such
as Ackley and Rosenbrock. The results are shown in Tables 3, 4, 5 and 6. It is interest-
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ing that all objective functions follow similar pattern. Considering the required FEN
to solve each instances, it is observed that hard instances are still the hardest for their
own algorithms and hard for the others. It implies that the hard instances share some
common features to make it difficult to solve for all solvers. However, the obtained
knowledge is not enough to compare the algorithm capabilities to solve hard problem
instances.

4 Multi-objective Investigations
Based on the experiment results in previous section, hard instances for each algo-
rithm are still hard for the others. In order to extract more useful knowledge about
the strengths or weaknesses of certain algorithms on constraint algorithms, we need
problem instances that are hard for one and easy for the others. Analysing the features
of these instances helps us extracting knowledge regarding the strengths and weak-
nesses of algorithms by examining why an algorithm performs better on some groups
of features while the others fails. This will help us developing more efficient prediction
model for automated algorithm selection.

To do this, we use a multi-objective DE algorithm (DEMO) described in [12] to
minimise the FEN for one algorithm and maximise it for the others. In other words,
the FEN for generated problem instances is higher (harder) for a certain algorithm and
lower (easier) for the others. In order to find instances that are hard for one algorithm
type and easy for the others, we need to find solution as diverse as possible. Also,
the solutions need to be close to pareto front. Satisfying these two aims makes us
to use multi-objective evolutionary algorithm to generate problem instances. Hence,
we use differential evolution for multi-objective optimisation (DEMO) proposed by
Robic in [12]. Based on results in [12], the DEMO achieves efficiently the above two
goals. In DEMO, the candidate solution replaces parent when it dominates it and if
the parent dominates it, the candidate is discarded. Otherwise, if the candidate and
parent cannot dominate each other, the candidate is added to the population. The major
difference between DEMO and other multi-objective evolutionary algorithms is that the
newly generated good candidates are immediately used in creation of the subsequent
candidates. This improves fast convergence to the true pareto front, while the use
of non-dominated sorting and crowding distance metric in truncation of the extended
population promotes the uniform spread of solutions. We refer the reader to [12] for
further details and implementation.

In the following, we discuss the results for algorithms performances comparison.
We carry out 30 independent runs for each number of constraints that are hard for one
algorithm but still easy for the others. We set the evolving algorithm (DEMO) genera-
tion number to 5000 and the other parameters of evolving algorithm are set to pop size
= 40, CR = 0.5, scaling factor = 0.9 and FENmax is 300K. Values for these parameters
have been obtained by optimising the performance of the evolving algorithm in order
to achieve the more easier and harder problem instances. For each of three algorithms,
their best parameters are chosen [3, 16, 17]. First, the (eDEg) algorithm parameters
are considered as: generation number = 1500, pop size = 100, CR = 0.5, scaling factor
= 0.5. Also, the parameters for e-constraint method are described in [11]. Moreover,
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for evolutionary strategy we perform (1,7)-ES algorithm with 1500 generation using
Pf = 0.4 with tendency to focus on feasible solution. In HMPSO algorithm, the swarm
size N is set to 60, each sub-swarm size (Ns) is 8 and all the PSO parameters are con-
sidered as Krohling and Coelho’s PSO [5]. In order to solve generated COPs, HMPSO
generation number is set to 1500. We need to say the parameters for the solvers are
identical to those given in [1, 12, 16, 17]

In our all experiments, we generate set of problem instances that are hard to one al-
gorithm and easy to the other ones. Tables 7, 8, 9, 10, 11 and 12 show the function eval-
uation number (FEN) required for each algorithm to solve DE/ES/PSO hard instances
for Sphere, Ackley and Rosenbrock objective functions (with 1 to 5 linear/quadratic
constraints). As it is observed, there is more difference between the required FEN of
instances generated by multi-objective algorithm evolver than the single-objective one.
For instance, the required FEN for solving DE hard instances are higher for DE algo-
rithm than solving it by ES and PSO algorithm. It means the DE hard instances are
only hard for DE algorithm and easy for the others. In the following we start analysing
constraint features of instances that are hard for one and easy for others.

4.1 Analysis for Linear Constraints
We run our experiments on Sphere, Ackley and Rosenbrock objective functions. The
linear constraints are considered as in Equation 3 with all coefficients ans that are in
the range of [�5,5]. Also, the problem dimension is set to 30. As it mentioned be-
fore, to analyse and discuss some features such as shortest distance, we assume that
the optimum is zero (b  0). We use three types of problem instances. DE hard de-
notes problem instances that are hard for DE algorithm but still easy for PSO and ES
algorithms. Also, ES hard instances are easy for DE and PSO algorithm in this sec-
tion. PSO hard means the instances that are hard for PSO but easy for the rest. Each
constraint is generated using multi-objective evolver to generate instances that are hard
for one algorithm but easy for others. In the following we discuss the features of linear
constraints.

Figure 1 represents some evidence of linear constraint coefficient relationship (stan-
dard deviation). It is shown that standard deviation of (1 to 5) linear constraints are
higher for DE hard instances than ES and PSO hard ones. This result is similar for all
Sphere, Ackley and Rosenbrock objective functions. This means, the instances that are
hard for DE algorithm but easy for ES and PSO have higher standard deviation for their
constraints coefficients. In other words, this constraint feature has influence on problem
difficulty. This improves the prediction ability for algorithm selection framework.

Box plots shown in Figure 2 represent the shortest distance from optimum feature
for hard instances. Based on the experiments, hard instances for ES algorithm have
higher value (closer to optimum) shortest distance than the other algorithms. It is note-
worthy that lower value in Figure 2 means the constraint hyperplane is further from
optimum. In other words, the constraints hyperplanes are closer to the optimum in ES
hard instances. This relationship holds the pattern for all objective functions in linear
constraints. We also study the feasibility ratio in vicinity of the optimum. As observed
in Table 14, hard DE instances have lower feasibility ratio comparing to PSO and ES
hard instances. This follows the same pattern for all experimented objective functions.
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Table 1: The comparison of algorithms performance
on each other’s easy and hard instances based on re-
quired FEN for Sphere objective function with lin-
ear constraints. DE Easy (1 c) means instances that
are easy for DE and with 1 constraint.

Instances DE algorithm ES algorithm PSO algorithm
DE Easy (1 c) 25.6K 28.2K 33.2K
ES Easy (1 c) 26.3K 27.1K 33.9K
PSO Easy (1 c) 24.9K 29.1K 72.5K
DE Easy (2 c) 28.9K 21.9K 32.1K
ES Easy (2 c) 25.2K 24.3K 29.4K
PSO Easy (2 c) 24.2K 25.2K 33.5K
DE Easy (3 c) 32.4K 31.2K 33.9K
ES Easy (3 c) 31.8K 29.1K 33.2K
PSO Easy (3 c) 35.1K 28.6K 35.1K
DE Easy (4 c) 34.2K 29.8K 38.2K
ES Easy (4 c) 32.1K 31.5K 36.1K
PSO Easy (4 c) 35.7K 28.9K 39.5K
DE Easy (5 c) 35.3K 42.1K 46.4K
ES Easy (5 c) 31.2K 45.2K 38.2K
PSO Easy (5 c) 35.3K 44.9K 41.2K
DE Hard (1 c) 91.2K 78.3K 76.4K
ES Hard (1 c) 81.3K 86.4K 78.8K
PSO Hard (1 c) 82.5K 72.5K 85.4K
DE Hard (2 c) 93.4K 81.3K 81.4K
ES Hard (2 c) 84.3K 92.6K 79.4K
PSO Hard (2 c) 85.7K 84.1K 89.4K
DE Hard (3 c) 98.3K 93.8K 78.9K
ES Hard (3 c) 91.4K 108.6K 81.2K
PSO Hard (3 c) 89.1K 98.2K 91.6K
DE Hard (4 c) 104.2K 89.4K 82.5K
ES Hard (4 c) 89.4K 115.1K 78.4K
PSO Hard (4 c) 92.9K 93.5K 115.3K
DE Hard (5 c) 123.2K 111.4K 98.4K
ES Hard (5 c) 98.2K 133.2K 94.9K
PSO Hard (5 c) 101.3K 109.2K 118.3K

Table 2: The comparison of algorithms performance
on each other’s easy and hard instances based on
required FEN for Sphere objective function with
quadratic constraints. DE Easy (1 c) means in-
stances that are easy for DE and with 1 constraint.

Instances DE algorithm ES algorithm PSO algorithm
DE Easy (1 c) 24.2K 23.6K 24.9K
ES Easy (1 c) 24.8K 24.2K 25.4K
PSO Easy (1 c) 26.4K 25.4K 26.4K
DE Easy (2 c) 25.3K 28.1K 26.4K
ES Easy (2 c) 24.1K 27.2K 27.4K
PSO Easy (2 c) 23.5K 29.3K 271.K
DE Easy (3 c) 27.9K 31.9K 35.5K
ES Easy (3 c) 29.4K 32.1K 28.5K
PSO Easy (3 c) 28.1K 28.7K 29.4K
DE Easy (4 c) 34.1K 28.9K 36.4K
ES Easy (4 c) 35.2K 35.3K 31.6K
PSO Easy (4 c) 31.8K 29.5K 33.2K
DE Easy (5 c) 38.7K 29.2K 37.2K
ES Easy (5 c) 35.6K 28.2K 39.5K
PSO Easy (5 c) 36.3K 31.5K 36.2K
DE Hard (1 c) 129.3K 102.7K 105.3K
ES Hard (1 c) 104.3K 121.2K 108.2K
PSO Hard (1 c) 108.2K 104.2K 119.8K
DE Hard (2 c) 132.6K 114.2K 114.9K
ES Hard (2 c) 111.2K 127.1K 112.4K
PSO Hard (2 c) 109.4K 112.4K 125.3K
DE Hard (3 c) 136.2K 116.3K 112.4K
ES Hard (3 c) 117.2K 132.1K 109.9K
PSO Hard (3 c) 119.8K 119.2K 132.6K
DE Hard (4 c) 141.2K 119.9K 119.6K
ES Hard (4 c) 113.8K 131.2K 121.9K
PSO Hard (4 c) 115.4K 121.4K 138.9K
DE Hard (5 c) 149.3K 129.7K 122.9K
ES Hard (5 c) 124.4K 149.6K 126.4K
PSO Hard (5 c) 123.9K 124.2K 148.3K
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Table 3: The comparison of algorithms performance
on each other’s easy and hard instances based on re-
quired FEN for Achkley objective function with lin-
ear constraints. DE Easy (1 c) means instances that
are easy for DE and with 1 constraint.

Instances DE algorithm ES algorithm PSO algorithm
DE Easy (1 c) 39.2K 37.1K 37.4K
ES Easy (1 c) 38.6K 37.8K 38.1K
PSO Easy (1 c) 41.3K 39.2K 41.7K
DE Easy (2 c) 40.3K 41.5K 42.6K
ES Easy (2 c) 41.3K 42.5K 41.5K
PSO Easy (2 c) 42.6K 41.2K 44.7K
DE Easy (3 c) 47.3K 48.2K 46.9K
ES Easy (3 c) 48.9K 47.3K 46.3K
PSO Easy (3 c) 49.2K 51.6K 50.9K
DE Easy (4 c) 48.9K 47.2K 49.2K
ES Easy (4 c) 49.2K 48.2K 50.1K
PSO Easy (4 c) 51.2K 50.5K 52.6K
DE Easy (5 c) 51.3K 52.7K 51.6K
ES Easy (5 c) 52.1K 52.6K 50.7K
PSO Easy (5 c) 55.3K 54.7K 52.3K
DE Hard (1 c) 107.3K 83.2K 85.6K
ES Hard (1 c) 82.3K 105.2K 81.6K
PSO Hard (1 c) 85.2K 83.9K 106.3K
DE Hard (2 c) 114.2K 88.2K 91.5K
ES Hard (2 c) 87.3K 115.3K 88.8K
PSO Hard (2 c) 89.2K 87.3K 116.9K
DE Hard (3 c) 119.8K 94.1K 93.9K
ES Hard (3 c) 95.2K 121.6K 94.2K
PSO Hard (3 c) 93.2K 95.1K 121.5K
DE Hard (4 c) 125.2K 99.2K 101.4K
ES Hard (4 c) 101.3K 126.3K 98.2K
PSO Hard (4 c) 99.4K 97.8K 127.4K
DE Hard (5 c) 132.5K 102.2K 101.5K
ES Hard (5 c) 101.4K 134.7K 103.5K
PSO Hard (5 c) 103.9K 102.4K 131.4K

Table 4: The comparison of algorithms performance
on each other’s easy and hard instances based on
required FEN for Ackley objective function with
quadratic constraints. DE Easy (1 c) means in-
stances that are easy for DE and with 1 constraint.

Instances DE algorithm ES algorithm PSO algorithm
DE Easy (1 c) 38.1K 39.4K 37.2K
ES Easy (1 c) 37.1K 38.1K 39.0K
PSO Easy (1 c) 41.2K 39.9K 40.7K
DE Easy (2 c) 38.9K 43.9K 41.7K
ES Easy (2 c) 40.1K 41.2K 43.2K
PSO Easy (2 c) 39.1K 43.1K 46.1K
DE Easy (3 c) 46.3K 47.9K 45.1K
ES Easy (3 c) 49.1K 48.1K 47.2K
PSO Easy (3 c) 42.1K 45.1K 49.1K
DE Easy (4 c) 49.2K 48.7K 48.4K
ES Easy (4 c) 49.7K 49.9K 52.9K
PSO Easy (4 c) 56.1K 55.1K 54.1K
DE Easy (5 c) 50.0K 51.2K 52.4K
ES Easy (5 c) 51.3K 56.2K 54.1K
PSO Easy (5 c) 61.2K 58.9K 59.1K
DE Hard (1 c) 133.4K 93.1K 94.6K
ES Hard (1 c) 92.1K 135.1K 94.1K
PSO Hard (1 c) 95.2K 94.9K 134.2K
DE Hard (2 c) 139.1K 98.2K 97.1K
ES Hard (2 c) 97.1K 138.2K 99.1K
PSO Hard (2 c) 109.1K 107.2K 145.2K
DE Hard (3 c) 145.3K 112.6K 109.6K
ES Hard (3 c) 111.6K 141.2K 108.9K
PSO Hard (3 c) 111.2K 109.2K 152.K
DE Hard (4 c) 167.2K 132.1K 135.1K
ES Hard (4 c) 131.1K 167.9K 133.9K
PSO Hard (4 c) 132.1K 133.2K 169.1K
DE Hard (5 c) 177.1K 143.2K 131.3K
ES Hard (5 c) 141.2K 181.2K 144.9K
PSO Hard (5 c) 139.1K 142.9K 182.1K
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Table 5: The comparison of algorithms performance
on each other’s easy and hard instances based on re-
quired FEN for Rosenbrock objective function with
linear constraints. DE Easy (1 c) means instances
that are easy for DE and with 1 constraint.

Instances DE algorithm ES algorithm PSO algorithm
DE Easy (1 c) 38.1K 37.4K 39.1K
ES Easy (1 c) 39.2K 38.9K 36.2K
PSO Easy (1 c) 44.6K 40.1K 43.1K
DE Easy (2 c) 41.2K 42.4K 47.1K
ES Easy (2 c) 40.2K 45.2K 40.4K
PSO Easy (2 c) 43.9K 42.6K 44.8K
DE Easy (3 c) 41.2K 42.3K 45.4K
ES Easy (3 c) 47.7K 48.1K 47.4K
PSO Easy (3 c) 48.3K 52.4K 53.1K
DE Easy (4 c) 44.1K 42.7K 43.3K
ES Easy (4 c) 48.4K 49.7K 52.6K
PSO Easy (4 c) 53.5K 53.1K 54.9K
DE Easy (5 c) 55.5K 53.2K 52.1K
ES Easy (5 c) 52.8K 55.4K 52.1K
PSO Easy (5 c) 58.2K 53.4K 52.8K
DE Hard (1 c) 110.2K 83.7K 85.2K
ES Hard (1 c) 81.5K 107.2K 82.1K
PSO Hard (1 c) 86.9K 85.3K 108.2K
DE Hard (2 c) 116.6K 89.3K 92.1K
ES Hard (2 c) 88.2K 117.5K 87.0K
PSO Hard (2 c) 90.8K 88.1K 114.5K
DE Hard (3 c) 121.2K 92.1K 92.5K
ES Hard (3 c) 94.1K 124.8K 93.2K
PSO Hard (3 c) 94.7K 96.5K 125.2K
DE Hard (4 c) 126.1K 101.6K 104.2K
ES Hard (4 c) 104.8K 127.2K 96.1K
PSO Hard (4 c) 100.2K 92.1K 123.7K
DE Hard (5 c) 135.1K 109.5K 106.8K
ES Hard (5 c) 105.2K 136.1K 105.1K
PSO Hard (5 c) 102.1K 106.8K 131.4

Table 6: The comparison of algorithms performance
on each other’s easy and hard instances based on re-
quired FEN for Rosenbrock objective function with
quadratic constraints. DE Easy (1 c) means in-
stances that are easy for DE and with 1 constraint.

Instances DE algorithm ES algorithm PSO algorithm
DE Easy (1 c) 41.2K 40.2K 38.7K
ES Easy (1 c) 39.2K 39.3K 36.1K
PSO Easy (1 c) 43.1K 39.6K 42.2K
DE Easy (2 c) 39.1K 44.4K 43.2K
ES Easy (2 c) 42.6K 44.5K 41.8K
PSO Easy (2 c) 41.2K 45.6K 47.2K
DE Easy (3 c) 47.1K 48.5K 49.2K
ES Easy (3 c) 46.8K 49.5K 48.8K
PSO Easy (3 c) 46.2K 42.7K 48.4K
DE Easy (4 c) 48.7K 49.1K 51.2K
ES Easy (4 c) 50.2K 52.4K 55.2K
PSO Easy (4 c) 59.2K 54.5K 51.9K
DE Easy (5 c) 52.5K 56.1K 55.7K
ES Easy (5 c) 56.0K 55.7K 53.8K
PSO Easy (5 c) 66.3K 59.8K 60.4K
DE Hard (1 c) 137.2K 93.7K 92.1K
ES Hard (1 c) 93.7K 138.2K 99.2K
PSO Hard (1 c) 93.1K 96.2K 138.0K
DE Hard (2 c) 142.7K 99.7K 98.4K
ES Hard (2 c) 98.8K 141.6K 101.4K
PSO Hard (2 c) 112.7K 109.5K 148.1K
DE Hard (3 c) 148.2K 115.3K 112.8K
ES Hard (3 c) 114.1K 144.8K 113.2K
PSO Hard (3 c) 113.6K 113.1K 157.3K
DE Hard (4 c) 171.7K 136.7K 133.4K
ES Hard (4 c) 134.7K 168.2K 135.3K
PSO Hard (4 c) 134.7K 139.3K 172.6K
DE Hard (5 c) 179.6K 146.1K 144.8K
ES Hard (5 c) 143.8K 185.1K 147.4K
PSO Hard (5 c) 143.7K 141.4K 186.4K

Table 7: The FEN required for each algorithm to
solve DE/ES/PSO hard instances (Sphere for 1 to 5
linear constraints)

Instances DE algorithm ES algorithm PSO algorithm
DE hard (1 c) 86.3K 41.5K 43.2K
ES hard (1 c) 45.7K 84.2K 48.3K
PSO hard (1 c) 37.2K 41.8K 80.1K
DE hard (2 c) 88.8K 43.9K 44.2K
ES hard (2 c) 45.9K 85.4K 46.3K
PSO hard (2 c) 43.2K 42.5K 82.9K
DE hard (3 c) 91.4K 44.6K 45.3K
ES hard (3 c) 49.2K 87.8K 48.1K
PSO hard (3 c) 46.2K 47.7K 85.5K
DE hard (4 c) 94.2K 47.5K 47.8K
ES hard (4 c) 51.7K 89.1K 50.1K
PSO hard (4 c) 48.7K 49.9K 87.3K
DE hard (5 c) 96.2K 48.2K 49.5K
ES hard (5 c) 52.4K 90.4K 53.5K
PSO hard (5 c) 49.6K 51.4K 91.6K

Table 8: TThe FEN required for each algorithm to
solve DE/ES/PSO hard instances (Sphere for 1 to 5
quadratic constraints)

Instances DE algorithm ES algorithm PSO algorithm
DE hard (1 c) 92.3K 50.2K 51.9K
ES hard (1 c) 48.8K 91.3K 49.3K
PSO hard (1 c) 44.5K 46.8K 93.1K
DE hard (2 c) 93.5K 52.9K 54.2K
ES hard (2 c) 50.9K 95.9K 51.2K
PSO hard (2 c) 50.2K 53.2K 96.3K
DE hard (3 c) 95.9K 54.3K 55.3K
ES hard (3 c) 53.9K 97.4K 52.4K
PSO hard (3 c) 57.3K 56.3K 98.9K
DE hard (4 c) 98.3K 56.4K 57.3K
ES hard (4 c) 56.3K 102.3K 52.1K
PSO hard (4 c) 59.2K 58.2K 101.6K
DE hard (5 c) 102.1K 58.3K 59.4K
ES hard (5 c) 59.2K 103.2K 60.2K
PSO hard (5 c) 62.6K 63.8K 105.2K
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Table 9: The FEN required for each algorithm to
solve DE/ES/PSO hard instances (Ackley for 1 to 5
linear constraints)

Instances DE algorithm ES algorithm PSO algorithm
DE hard (1 c) 102.3K 46.1K 51.4K
ES hard (1 c) 51.2K 104.7K 50.2K
PSO hard (1 c) 47.4K 49.8K 107.4K
DE hard (2 c) 112.1K 56.1K 54.1K
ES hard (2 c) 53.9K 115.9K 48.6K
PSO hard (2 c) 55.5K 55.3K 117.2K
DE hard (3 c) 126.1K 63.7K 65.2K
ES hard (3 c) 59.1K 128.3K 58.7K
PSO hard (3 c) 61.7K 62.8K 134.2K
DE hard (4 c) 124.9K 68.4K 63.1K
ES hard (4 c) 64.1K 129.8K 59.2K
PSO hard (4 c) 67.5K 69.2K 135.2K
DE hard (5 c) 138.8K 75.2K 74.1K
ES hard (5 c) 71.2K 137.1K 76.7K
PSO hard (5 c) 73.1K 74.1K 141.2K

Table 10: The FEN required for each algorithm to
solve DE/ES/PSO hard instances (Ackley for 1 to 5
quadratic constraints)

Instances DE algorithm ES algorithm PSO algorithm
DE hard (1 c) 142.5K 60.1K 62.5K
ES hard (1 c) 58.5K 148.2K 61.4K
PSO hard (1 c) 53.2K 53.9K 147.7K
DE hard (2 c) 153.3K 58.1K 58.1K
ES hard (2 c) 59.2K 155.5K 59.2K
PSO hard (2 c) 57.8K 56.3K 157.2K
DE hard (3 c) 167.3K 65.2K 68.1K
ES hard (3 c) 63.2K 169.2K 69.8K
PSO hard (3 c) 65.7K 67.9K 167.6K
DE hard (4 c) 174.8K 71.2K 75.1K
ES hard (4 c) 66.8K 169.1K 72.9K
PSO hard (4 c) 69.1K 68.3K 172.9K
DE hard (5 c) 179.5K 75.1K 76.1K
ES hard (5 c) 72.8K 174.9K 77.4.2K
PSO hard (5 c) 75.1K 74.9K 175.9K

Table 11: The FEN required for each algorithm to
solve DE/ES/PSO hard instances (Rosenbrock for 1
to 5 linear constraints)

Instances DE algorithm ES algorithm PSO algorithm
DE hard (1 c) 103.1K 48.2K 53.9K
ES hard (1 c) 53.1K 107.2K 52.7K
PSO hard (1 c) 45.7K 48.1K 109.2K
DE hard (2 c) 115.1K 57.8K 55.7K
ES hard (2 c) 54.7K 113.4K 46.1K
PSO hard (2 c) 54.8K 54.9K 119.5K
DE hard (3 c) 124.3K 65.2K 62.1K
ES hard (3 c) 58.8K 127.1K 59.7K
PSO hard (3 c) 62.3K 65.5K 136.1K
DE hard (4 c) 125.5K 69.1K 65.2K
ES hard (4 c) 67.5K 128.1K 58.7K
PSO hard (4 c) 64.9K 70.6K 137.1K
DE hard (5 c) 135.1K 74.1K 74.7K
ES hard (5 c) 73.7K 135.8K 75.1K
PSO hard (5 c) 72.3K 76.5K 140.9K

Table 12: The FEN required for each algorithm to
solve DE/ES/PSO hard instances (Rosenbrock for 1
to 5 quadratic constraints)

Instances DE algorithm ES algorithm PSO algorithm
DE hard (1 c) 143.1K 61.4K 63.7K
ES hard (1 c) 59.6K 149.7K 62.5K
PSO hard (1 c) 54.3K 54.2K 143.8K
DE hard (2 c) 155.2K 59.2K 59.2K
ES hard (2 c) 61.3K 154.8K 57.9K
PSO hard (2 c) 59.2K 57.1K 158.0K
DE hard (3 c) 168.9K 63.7K 66.8K
ES hard (3 c) 65.2K 170.1K 68.1K
PSO hard (3 c) 63.7K 68.1K 168.9K
DE hard (4 c) 175.1K 73.8K 76.9K
ES hard (4 c) 68.2K 172.7K 75.2K
PSO hard (4 c) 67.7K 69.1K 176.2K
DE hard (5 c) 180.2K 74.2K 77.8K
ES hard (5 c) 74.2K 175.1K 79.2K
PSO hard (5 c) 73.6K 74.4K 179.4K
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Also increasing the number of constraints decreases the problem optimum-local feasi-
bility for all algorithm problem instances. The angle between linear constraints feature
is analysed for linear constraints. As it is observed in Table 13, ES hard instances have
lower angle values for all Sphere, Ackley and Rosenbrock objective functions. This
means, instances that are hard for ES have less angle value between their constraint
hyperplanes. Interestingly, all objective function that we use in this experiment follow
the same relationship.

As it is observed, to compare the instances, DE hard instances have higher linear
constraint coefficient standard deviation. It can be translated as DE algorithm has more
difficulty to coefficients standard deviation feature than PSO and ES algorithms. Also,
the local-optimum feasibility ratio value is higher in ES and PSO hard instances than
DE hard ones. This means, ES and PSO algorithms are more effective to problems
with higher optimum feasibility ratio feature. The shortest distance and angle features
for ES is less than DE and PSO hard instances. Interestingly, this features are similar
for all used objective functions. The linear constraint feature based analysis gives us
helpful knowledge to implement algorithm selection framework.

4.2 Analysis for Quadratic Constraints
In this section, we carry out our experiments on Sphere, Ackley and Rosenbrock objec-
tive function with quadratic constraints (see Equation 4) using same setup as previous
section. In the following we do feature based analysis of constraints in hard DE, PSO
and ES instances (that are easy for the other algorithms).

Figure 1 shows some evidence of quadratic constraint coefficients relationship.
Based on our experiments, in each constraint, the quadratic coefficient has more ability
than linear coefficients to make problem harder to solve. In other words, in Equation
4, a1 is more contributing than a2 to problem difficulty. As it is shown in the box
plots, the standard deviation of 1 to 5 quadratic constraints in DE hard instances are
higher comparing the other two algorithm hard instances. In contrast, our results show
no systematic relationship between problem difficulty and linear coefficients in each
quadratic constraints and quadratic coefficients have more contribution in problem dif-
ficulty.

As it is observed in Figure 2, the shortest distance feature for DE, PSO and ES
hard instances are compared. In instances that are hard for ES and easy for the other
algorithms, the quadratic constraint hyperplanes are closer to optimum (zero). This
applies to all experimented objective functions. Also, calculating the angle feature for
quadratic constraint does not show any systematic relationship to problem difficulty.
The feasibility ratio near the optimum is analysed for DE, ES and PSO hard instances.
As it is shown in Table 15, the feasibility ratio in DE hard instances are lower than the
other algorithms hard instances. All objective functions have the same pattern. Also,
the number of constraint has a systematic relationship with feasibility ratio.

Based on the results, to compare COP instances with quadratic constraints, DE hard
instances have higher coefficient standard deviation value than the other algorithm hard
ones. It is translated as the DE algorithm has more difficulty solving instances with
higher standard deviation value for their quadratic constraints than ES and PSO. Also,
the quadratic constraints are closer to optimum in ES instances than the other experi-
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Table 13: The angle feature for Sphere objective function for linear constraints

Cons
1,2

Cons
1,3

Cons
1,4

Cons
1,5

Cons
2,3

Cons
2,4

Cons
2,5

Cons
3,4

Cons
3,5

Cons
4,5

DE Hard 74 64 63 58 74 71 68 59 62 86
ES Hard 33 21 37 24 44 46 39 46 48 51
PSO Hard 75 63 82 68 71 73 72 69 81 86

Table 14: Optimum-local feasibility ratio of search space near the optimum for 1,2,3,4
and 5 linear constraint

1 cons 2 cons 3 cons 4 cons 5 cons
DE Hard 6% 5% 3% 3 % 2%
ES Hard 16% 11% 10 % 6% 5%
PSO Hard 17% 12% 11% 8% 5%

mented algorithms. In other words, ES algorithm is more influenced by constraint with
closer to optimum instances. Moreover, the optimum feasibility ratio in DE instances
are lower than PSO and ES.

5 Conclusion
In this paper, we carried out an algorithm performance comparison on each others
constrained problem instances. We then analysed the features and characteristics of
constraints that make them hard to solve for certain algorithm but easy for the others. It
is observed that some constraint features are more contributing to problem difficulty for
certain algorithms. In linear constraints, some features such as coefficient relationship,
angle, local-optimum feasibility ratio and shortest distance play an important role in
problem difficulty to DE and ES algorithms. Considering quadratic instances, angle
does not show any relationship to problem difficulty.

By analysing how well one algorithm performs in conditions where other algo-
rithms fail, we can derive its strengths and weaknesses over constrained problems.
These results can help us to improve the efficiency of algorithm prediction model.

Acknowledgements
Frank Neumann has been supported by ARC grants DP130104395 and DP140103400.

References
[1] D. V. Arnold and N. Hansen. A (1+ 1)-cma-es for constrained optimisation. In

Proceedings of the 14th annual conference on Genetic and evolutionary compu-

12

87



Figure 1: Box plot for standard deviation of coefficients in linear constraints with ob-
jective functions: Sphere (A), Ackley (C) and Rosenbrock (E) and quadratic constraints
Sphere (B), Ackley (D) and Rosenbrock (F). Each sub figure includes hard instances
(H) with 1 to 5 constraints using algorithms (a/b/c denotes a: number of constraints, b:
hard instances and c: hard instances for DE/ES/PSO algorithm).

13

88



Figure 2: Box plot for shortest distance feature in linear constraints with objective func-
tions: Sphere (A), Ackley (C) and Rosenbrock (E) and quadratic constraints Sphere
(B), Ackley (D) and Rosenbrock (F). Each sub figure includes hard instances (H) with
1 to 5 constraints using algorithms (a/b/c denotes a: number of constraints, b: hard
instances and c: hard instances for ES/PSO/DE algorithm).

14

89



Table 15: Optimum-local feasibility ratio of search space near the optimum for 1,2,3,4
and 5 quadratic constraint

1 cons 2 cons 3 cons 4 cons 5 cons
DE Hard 4% 4% 3% 2 % 2%
ES Hard 14% 10% 8 % 7% 5%
PSO Hard 15% 10% 9% 8% 7%

tation, pages 297–304. ACM, 2012.

[2] R. Eberhart and J. Kennedy. A new optimizer using particle swarm theory. In
Micro Machine and Human Science, 1995. MHS’95., Proceedings of the Sixth
International Symposium on, pages 39–43. IEEE, 1995.

[3] N. Hansen, A. Auger, S. Finck, and R. Ros. Real-parameter black-box optimiza-
tion benchmarking 2010: Experimental setup. 2010.

[4] C. Igel, T. Suttorp, and N. Hansen. A computational efficient covariance matrix
update and a (1+ 1)-cma for evolution strategies. In Proceedings of the 8th an-
nual conference on Genetic and evolutionary computation, pages 453–460. ACM,
2006.

[5] R. A. Krohling and L. dos Santos Coelho. Coevolutionary particle swarm opti-
mization using gaussian distribution for solving constrained optimization prob-
lems. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions
on, 36(6):1407–1416, 2006.

[6] R. Mallipeddi and P. N. Suganthan. Problem definitions and evaluation criteria for
the cec 2010 competition on constrained real-parameter optimization. Nanyang
Technological University, Singapore, 2010.

[7] O. Mersmann, B. Bischl, H. Trautmann, M. Preuss, C. Weihs, and G. Rudolph.
Exploratory landscape analysis. In Proceedings of the 13th annual conference on
Genetic and evolutionary computation, pages 829–836. ACM, 2011.

[8] O. Mersmann, M. Preuss, and H. Trautmann. Benchmarking evolutionary algo-
rithms: Towards exploratory landscape analysis. Springer, 2010.

[9] E. Mezura-Montes and C. A. Coello Coello. Constraint-handling in nature-
inspired numerical optimization: past, present and future. Swarm and Evolu-
tionary Computation, 1(4):173–194, 2011.

[10] S. Poursoltan and F. Neumann. A feature-based analysis on the impact of linear
constraints for e-constrained differential evolution. In Evolutionary Computation
(CEC), 2014 IEEE Congress on, pages 3088–3095. IEEE, 2014.

[11] S. Poursoltan and F. Neumann. A feature-based analysis on the impact of set of
constraints for e-constrained differential evolution. CoRR, abs/1506.06848, 2015.

15

90
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Chapter 6

A Feature-Based Prediction
Model of Algorithm Selection for
Constrained Continuous
Optimisation

The article in this chapter investigates the impact of different sets of evolved
instances for building prediction models in the area of algorithm selection
[1]. This article is an extended version of paper [2] that is already sub-
mitted for review. We used evolved instances to implement a prediction
model that predict the best suited algorithm type for a given COP based on
its constraint features. The training data is tested between various subsets
of evolved instances from multi-objective evolver in previous chapter. In
other words, the prediction model performance is analysed to find the best
customisation of training data.
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Abstract

With this paper, we contribute to the growing research area of feature-based
analysis of bio-inspired computing. In this research area, problem instances are
classified according to different features of the underlying problem in terms of
their difficulty of being solved by a particular algorithm. We investigate the im-
pact of different sets of evolved instances for building prediction models in the area
of algorithm selection. Building on the work of Poursoltan and Neumann [11, 10],
we consider how evolved instances can be used to predict the best performing
algorithm for constrained continuous optimisation from a set of bio-inspired com-
puting methods, namely high performing variants of differential evolution, particle
swarm optimization, and evolution strategies. Our experimental results show that
instances evolved with a multi-objective approach in combination with random in-
stances of the underlying problem allow to build a model that accurately predicts
the best performing algorithm for a wide range of problem instances.

1 Introduction
Throughout the history of heuristic optimisation, various methods have been proposed
to solve constrained optimisation problems (COPs), specially non-linear ones. The
main idea behind these algorithms is to tackle the constraints. Important approaches in
this area are differential evolution (DE), particle swarm optimisation (PSO) and evo-
lutionary strategies (ES). To handle the constraints, there have been many techniques
applied to these algorithms such as penalty functions, special operators (separating the
constraint and objective function treatment) and decoder based methods. We refer the
reader to [7] for a survey of constraint handling techniques in evolutionary computa-
tion. Given a range of different algorithms for constrained continuous optimisation,
we consider algorithm selection problem (ASP) [12] which consists of selection the
best performing algorithm from a suite of algorithms for a given problem instance. In
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most circumstances, it is difficult to answer the following question: ”Can we estimate
the likelihood that algorithm A will be successful on a given constrained optimisation
problem P?”. Recent works in the field show that it is possible to select the algorithm
most likely to be best suited for a given problem [8, 14, 2]. Based on these studies, it is
possible to find the links between problem characteristics and algorithm performance.
The key to these investigations is problem features which can be used to predict the
most suited algorithm from a set of algorithms.

It is widely assumed that constraints play a vital role in COP’s difficulty. There-
fore, in this study we use the meta-learning framework outlined in [12, 16] to build a
prediction model for a given COP. Our model predicts the best algorithm type (DE, ES
and PSO) for a given COP based on their constraint features. The model inputs include
the features of constraints in a given problem. It is shown in [11, 9] that by using an
evolving approach, it is possible to generate problem instances covering a wide range
of problem/algorithm difficulty. Such instances can be used to extract and analyse the
features that make a problem hard or easy to solve for a given algorithm. For a detailed
discussion on these constraints (linear, quadratic and their combination) we refer the
reader to [11].

To build a reliable prediction model, we need to train it with variety of problem
instances that are hard or easy for algorithm(s). Based on the investigations in [10],
a multi-objective evolutionary algorithm can be used to generate constrained problem
instances that are hard/easy for one algorithm but still easy/hard for the others. The
authors show which features of the constraints make the problems hard for certain
algorithm but still easy for the others. Hence, we use the same approach to generate
problem instances to use in our model training phase. This can improve the accuracy of
prediction model since the training instances are used to show the strengths and weak-
nesses of various algorithm types over constraint features. To illustrate the model’s
efficiency on constraints, we examine our model with generated testing problems such
as hard/easy for one but easy/hard for the others and more general random instances.
To show the model prediction ability over constraints (linear, quadratic and their com-
bination), we also experiment given problems with various objective functions.

The remainder of this paper is organised as follows. In section 2, we discuss con-
strained continuous optimisation problems. Later, we introduce the evolutionary algo-
rithms that are suggested by our prediction model. Moreover, the background materials
related to multi-objective evolver, algorithm selection problem and meta-learning pre-
diction model are discussed in detail. Section 3 describes and compares all models
trained with different subsets of instances from multi-objective evolver population set.
By choosing the best training data preference in Section 3, the experimental analysis
on various benchmark problems is described in Section 4. We then conclude with some
remarks in Section 5.
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2 Preliminaries

2.1 Constrained Continuous Optimisation Problems
A constrained optimisation problem (COP) in a continuous space is formulated as fol-
lows:

Find x 2 S ✓ RD

f (x) = min( f (y);y 2 S),

subject to gi(x)  0 8i 2 {1, . . . ,q}
h j(x) = 0 8 j 2 {q+1, . . . , p}

(1)

In this formulation, f , gi and h j are real-valued functions on the search space S, q is
the number of inequalities and p�q is the number of equalities. The search space S is
defined as a D dimensional rectangle in RD. These equality and inequality constraints
could be linear or nonlinear. The set of all feasible points F ✓ S which satisfy all
equality and inequality constraints is formulated as:

li  xi  ui, 1  i  D (2)

where li and ui denote lower and upper bounds for the ith variable respectively. Usu-
ally, to simplify COP, the equalities are replaced by the following inequalities [18] as
follows:

|h j(x)|  e for j = q+1 to p (3)

where e is a small positive value. In all experiments in this paper, the value of e is
considered as 1E-4, the same as it was in [5].

2.2 Algorithms
In this section we discuss the basic ideas about algorithms for constrained optimisa-
tion problems such as differential evolution, evolutionary strategies and particle swarm
optimisation.

The e-constrained differential evolution with an archive and gradient-based mu-
tation (eDEag) is the winner of 2010 CEC competition for continuous constrained
optimisation problems [5]. This algorithm uses e-constrained method technique to
transform algorithms for unconstrained problems to constrained ones. Also, possible
solutions are ordered by e-level comparison. This means, the lexicographic order is
used in which constraint violation (f(x)) has more priority and proceeds the function
value ( f (x)). A detailed description of this algorithm can be found in [17].

For evolutionary strategy algorithms, (1+1) CMA-ES for constrained optimisation
[1] is included in our experiment. This algorithm is a variant of (1 + 1)-ES which
adapts the covariance matrix of its offspring distribution in addition to its global step
size. The (1+1) CMA-ES for constrained optimisation obtains approximations to the
normal vectors directions in the vicinity of the current solution locations by applying
low-pass filtering steps that violates the constraints and reducing the variance of the
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offspring distribution in these directions. Adopting this method makes (1 + 1) CMA-
ES as one of the most efficient algorithms for constrained optimisation problems. We
refer the reader to [1] for detailed description and implementation.

The next algorithm that is used in our investigation from particle swarm optimi-
sation algorithms is hybrid multi-swarm particle swarm optimisation (HMPSO). This
algorithm divides the current swarms into sub-swarms and search the solution between
them in parallel. All particles in each sub-swarms locate their fittest local particle
which attracts the particles to fitter positions. Also, having multiple sub-swarms near
different optima increase the diversity of the algorithm. A detailed description and
implementation of HMPSO can be found in [19].

2.3 Multi-objective Investigations
In order to extract information about the strengths and weaknesses of certain algorithms
on constrained optimisation problems, we need problem instances with different kinds
of difficulties for the considered algorithms. The reason behind this idea is that using
instances that are randomly generated are not efficient to cover the full spectrum of dif-
ficulty analysis. To do this, we evolve instances to find the ones that are hard/easy for
one algorithm and easy/hard for the others. Analysing the features of these instances
helps us extracting knowledge regarding the strengths and weaknesses of the consid-
ered algorithms and give reasons of why an algorithm performs well on one problem
while the others have difficulties. Insights from this analysis can be used to develop
more efficient prediction model for automated algorithm selection.

As mentioned above, we generate problem instances of different difficulties. To do
this, a multi-objective DE algorithm (evolver) [13] is used to evolve constraints that
make problems hard for one algorithm type and easy for the others in the algorithm
suite following the approach in [11, 10]. The feature-based comparison of various
algorithm types has been carried out in these papers. The authors show the constraint
(linear and/or quadratic and their combination) features that are more contributing to
problem difficulty for certain algorithms. We refer the readers to [11, 10] for a detailed
description and implementation.

2.4 Algorithm Selection Problem
There are many algorithms that are proposed for constrained continuous optimisation
problems. These algorithms are categorised as different types such as differential evo-
lution (DE), evolutionary strategy (ES) and particle swarm optimisation (PSO). So, as
a direct consequence of this, it is difficult to understand which algorithms or types of
algorithms are more efficient to solve given COPs. To determine the best algorithm
to solve a problem is referred to ”Algorithm Selection Problem” term in [12] by Rice.
In his work, Rice proposed a model with four main characteristics: a set of problem
instances F , a set of algorithms A, measures for the cost of performing algorithms on
particular problem (Y ) and set of characteristics of problem instances (C). The illus-
tration for Rice general algorithm selection framework is shown in Figure 1 which
predicts the performance y(a( f )) of a given algorithm a on a problem f by extracted
features c. If a solution is found, it is possible to extract features from a given problem
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Figure 1: The framework of general problem of algorithm selection and performance prediction using problem features
based on [12].

and select the most appropriate algorithm or predict the performance of the algorithm
based on these features. This framework has been extended by [16, 3, 4] in a variety of
computational problem domains using meta-learning framework. So, if the values are
features of problems with algorithm performance measure are known beforehand, then
it is possible to use a learning strategy to predict the algorithm performance based on
the problem features.

2.5 Prediction Model
Our prediction model is based on the [8]. Note that this model is used for unconstrained
continuous optimisation problems using landscapes features. Inputs to the model are
independent problem feature variables (C) and algorithm parameters and output is the
performance measure as an dependant variable which is required function evaluation
number (FEN) of the suggested algorithm. This model can be used to predict the algo-
rithm behaviour on a given problem. To achieve this we use popular basic technique
for model building. A high-level overview of the regression model is shown in Figure
2.

As discussed above, there have been many attempts to train these prediction models
with random generated or benchmark problem instances which could not fully include
all problem instances with difficulty variations. To improve this, we cover the full spec-
trum of difficulty by evolving two sets of instances with extreme problem difficulties.
These extreme difficulty instances are the ones which are hard for one algorithm and
easy for the others or easy for one and still hard for the rest.
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Figure 2: Meta-learning prediction model for a constrained continuous optimisation problem

To build our regression model, we implement a multi-layered feed-forward neural
network with 2 hidden layers and 10 neurons in each layer as the regression model.
For training the model, we use a Levenbeg-Marqurd back-propagation algorithm [6]
package using Matlab R2014b. To train this model, we use evolved instances that
are generated from multi-objective evolver in [10]. The prediction model inputs are
given COPs constraint features and algorithms parameter values (the parameters for
the experimented algorithms are identical to [17, 19, 1].)

3 Prediction Model based on Evolved Instances
As mentioned earlier, our goal is to propose a reliable prediction model using con-
straint features. This reliability can be improved by choosing proper set of learning
data. The accuracy of this prediction model depends on many factors such as the rel-
evance of constraint features, the diversity of instances used to train the model and its
training method. Therefore, to improve this, we train our prediction model obtained
from multi-objective evolver described in [10]. These instances are hard for one algo-
rithm but still easy for the other (or easy for one and hard for the other algorithms).
Analysing these instances shows the effectiveness of constraint features that make a
problem hard or easy for certain algorithms. This set up improves the accuracy of
prediction which is evaluated on the capability to provide realistic ranking of different
algorithm types performances. This can be done by comparing the required function
evaluation numbers (FEN) needed by various algorithms to solve a given COP.

The prediction model uses constraint features (first input) to predict the best al-
gorithm type for a given constrained optimisation problem. These constraint features
are constraint coefficients relationships such as standard deviation, angle between con-
straint hyperplanes, feasibility ratio in vicinity of optimum and number of constraints.
The details of these features are discussed in [11]. Also, for the second input, since se-
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lecting various algorithm parameters has different impact on algorithm ability to solve
a given problem, we conduct an experimentally driven meta-learning approach which
has been proposed by Smith-Miles in [15]. For our model, we use the parameters for
DE, CMA-ES and HMPSO suggested in [17, 19, 1].

Our goal of building a prediction model is to identify the best algorithm type for
a given problem. Therefore, the model output predicts the most suited algorithm and
required FEN to solve a given constrained problem. The suggested FENs denote num-
bers of function evaluation which are needed by different algorithms to solve a given
COP.

In the following we train our prediction model with variety of instance subsets gen-
erated by the multi-objective evolver. We choose different combination of subsets of
instances to maximise our prediction model accuracy upon a given constrained prob-
lem. These training phase instance subsets are selected from extreme points, Pareto
front line, more random (general) solutions and combination of Pareto front and ran-
dom points from multi-objective evolver solution population in [10]. We then compare
the prediction accuracy for these prediction model with various training data prefer-
ences.

3.1 Extreme Instances
We first train our prediction model with an extreme instance subset which covers the
extreme points of Pareto front in the multi-objective evolver population set. These
extreme solutions are selected from evolved instances that are easiest/hardest for one
and hardest/easiest for the other algorithms at the same time. The reason behind this
selection is to assess the ability of our model to find the most suited algorithm for
a given COP which is fairly hard for one or multiple algorithms. In other words, it
is more beneficial to choose a best algorithm for a given COP in which it cannot be
solved easily by certain other algorithms.

To determine the actual accuracy of our extreme point prediction model (EP-PM),
we select 1500 extreme instances that are hard/easy for one and easy/hard for the other
algorithms for its training phase. To analyse and test the quality of this prediction
model, we use two sets of testing problem instances that we already know their best
algorithm and required FEN. The first one is the set of problem instances that are
hard/easy for one algorithm and easy/hard for the others. This set can improve the
accuracy of EP-PM for given problems that fall into extreme-like evolved problem in-
stances. However, it is very likely that the real world given COP is similar to other
evolved instance subset types. Therefore, as a second set, we use random (general)
testing problem instances to analyse the EP-PM with a potential real world given prob-
lem. We need to mention that we already know about their best algorithm and required
FEN.

Our result for EP-PM is summarised in Table 1 for instances that are hard/easy
for one and easy/hard for the other algorithms. Also, the results for testing random
instances are shown in this table. Moreover, DE hard (1 C) denotes testing Sphere
problem instance with 1 linear constraint that is hard for DE algorithm but still easy for
the others. The information about actual and predicted algorithm and required FEN to
solve a problem instance is indicated. The model not only suggests the best algorithm
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with its required FEN but also predicts the FENs required to solve a given problem
with other algorithms (not the best ones).

Based on the results, EP-PM performs acceptable on extreme-like testing instances.
This performance is acceptable on predicted best algorithm type and required FEN.
Also, the error rates for using other algorithms (not the best ones) are still acceptable.
But, analysing the testing random instances, it is obvious the model is not capable of
predicting algorithm and FEN for these more general form instances. This means, the
proposed model (EP-PM) is not accurate enough for randomly generated real world
instances and the difference between predicted and actual FEN is considerable. Also,
the error rate of other algorithm choices (not the best algorithm) is still high.

To summarize, although the EP-PM model performs fairly accurate on instances
that are grouped into extreme points evolved instances, still needs improvement to han-
dle other subsets (such as random generated instances). The likelihood of given COP
which is more similar to random evolved instances are higher. Thus, this motivates us
to examine other subsets from evolving algorithm population instances for our training
phase. This could be moving along the Pareto front line and choosing more instances
from this category.

3.2 Pareto Front Instances
It is shown that in order to improve the accuracy of our prediction model we need to
include or select different varieties of evolved instance subsets for its training step. The
idea behind this choice is to obtain a model that can predict more general forms of given
constrained problems. Of course it is vital to predict best algorithm for a given problem
which is considerably hard/easy for one and still easy/hard for the other algorithms,
but we also need to include more forms of generality to our prediction model. So, we
need to move along Pareto front line in multi-objective evolver population set for our
learning phase. This could increase the ability of our model to predict algorithms for
more general given COP which is not similar to extreme point instances.

Given a total number of 3000 instances from evolver Pareto front line, we train our
Pareto front prediction model (PF-PM). This preference could increase PF-PM ability
to predict more general forms of given COPs. To compare the quality of our predic-
tion model and other models with different learning phases, we use same extreme and
random generated testing instances used in previous section. Results shown in Table 2
indicate an improving accuracy for random testing instances used for previous model
EP-PM (using extreme instances). Looking at the Table 2, we see that moving towards
Pareto front line in evolver population set for choosing learning instances increases the
accuracy of predicted FEN for predicted algorithm. Also, predicting FEN using other
algorithms (not the best one) represents that the PF-PM is more accurate than EP-PM
for testing random instances. This improvement is acceptable in algorithm type pre-
diction but we still need to improve the predicted required FEN.

As discussed in this section, to improve the accuracy of prediction model, we chose
instances of evolver from its Pareto front line solution population. In other words,
Pareto front prediction model (PF-PM) has some strengths and weaknesses. Although
its error rate for predicting correct algorithms is improved, there is still considerable
difference between the actual required FENs and predicted ones. As testing instances
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are selected mostly from more general instances (not close to extreme points), we need
to experiment other training instances subsets. In order to address more general form,
based on results so far, our next move is to choose more random instances from evolver
population set for our training set. This could result in increasing the accuracy of our
model for more general forms of given COPs.

3.3 Random Instances
The initial prediction models discussed earlier (EP-PM and PF-PM) has some limi-
tations. In other words, they are not accurate enough to predict more general forms
of given COPs, specially when they are similar to evolver population instances except
extreme and Pareto front points. The results for PF-PM show an increase in accuracy
of prediction for testing COPs which are not similar to extreme points, but the pre-
dicted required FEN still needs an improvement. Our goal is to design a prediction
model with an ability to predict all possible given COPs. These COPs are within the
range of extreme to random like instances. Based on previous results, it is shown that
moving from extreme to Pareto front line instances increases the model accuracy (see
Section 3.2). Hence, to decrease the error rate for required FEN for more general test-
ing COPs we choose only random instances for testing phase. These random instances
are selected from evolver population set.

We use 3000 random instances from multi-objective evovler population set for our
random only prediction model (RO-PM). To assess the accuracy of our random only
prediction model we use the same testing instances applied to EP-PM and PF-PM.
Table ?? indicates the actual and predicted FEN and algorithm of hard/easy and ran-
dom testing instances for RO-PM. As it is observed, the random only prediction model
(RO-PM) fails to predict suitable algorithm for a given COP. This failure include both
predicted algorithm and required FEN. Results show that moving through random in-
stances in evolver population and choose only random instances increase the number
of incorrect predictions. Also, comparing to previous models, RO-PM accuracy is de-
creased for testing instances similar to extreme points (easy/hard instances).

It is shown that the accuracy of resulting model with Pareto front instances (PF-
PM) is improved by selecting different subsets (Pareto front line) than extreme points.
This improvement is analysed by experimenting more general form of testing COPs.
Therefore, this motivated us to experiment only random solutions in order to build more
accurate prediction model for given COPs. By selecting only random instances to train
the new model, it is observed the predicted algorithm and required FEN is not accurate
as Pareto front (PF-PM) and extreme points (EP-PM) models. It can be translated as
excluding instances from Pareto front line for training step decreases the accuracy of
prediction model. Also, the RO-PM model failed to predict testing instances which are
similar to evolver extreme points (easy/hard instances). So, other possibility is to use
a combination of both Pareto front and random instances from evolver population for
model training.
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3.4 Pareto Front with Random Instances
In previous sections we experimented three types of prediction models (EP-PM, PF-PM
and RO-PM). These models have different prediction accuracy upon choosing different
varies of evolver subsets for their training phases. Our goal of building a prediction
model is to minimise its error rate in both algorithm and required FEN. So far, we
understand that moving from extreme points (EP-PM) to Pareto front (PF-PM) for
training step increases the accuracy of prediction model. However, moving further and
choosing only random points from evolver (RO-PM) is not the solution for covering
all possible given COPs (extreme and random like instances). In other words, there
should be a trade-off relation between moving towards random points from extreme
and random instances in multi-objective evolver population. Therefore, our preference
for training phase is a combination set of Pareto front and random instances from multi-
objective evolver. Not only it covers instances that are hard/easy for one and easy/hard
for the other algorithms, but also it can predict general given COPs more accurately.

To train our Pareto front with random instances prediction model (PFR-PM), we
use 3000 points from evolver population set (1500 each). To compare and assess the
prediction model accuracy we experiment our PFR-PM with the same testing COPs for
the former models. The results for Pareto front and random prediction model (PFR-
PM) are shown in Table 4. It is observed that including both Pareto front line and
random only instances can be effective in accuracy improvement. Analysing the re-
sults, it is obvious the error rate for both predicted algorithm and required FEN are
decreased. Also, the model is able to predict required FEN using other algorithms (not
the best one) more accurate. This can be concluded by having lower error rates for
FENs of other algorithms (not the best one) for PFR-PM. The reason behind this is that
to cover all possible given COPs, we use both Pareto front and random points from
evolver population for out training phase. In other words, our model is trained with
constraint characteristics and features of both types of COPs (Pareto front and random
instances).

It is shown that choosing the proper subsets for training phase is effective in pre-
diction model accuracy. The results for four prediction models suggest that moving
from extreme points to random instances can improve the quality of prediction model.
It is found that there is a trade-off relationship in choosing instances that are close to
random or extreme points (from evolver) for training phase. Results analysis shows
by selecting a combination subsets from both random and Pareto front instances (PFR-
PM) for training step, we can improve our model prediction quality. This improvement
is in both selected algorithm and also its required FEN. By selecting the best model
(PFR-PM), in the following, we examine it in a more detailed approach.

4 Experiments on Benchmarks
Our goal is to design highly accurate prediction model for a given COP based on its
constraint features. As mentioned earlier, in order to improve the model accuracy, it
needs to be trained with COP instances that are generated using multi-objective evolver.
So far, we analysed the results for all four types of prediction models trained with ex-
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treme points (EP-PM), Pareto front (PF-PM), random only (RO-PM) and combination
of Pareto front with random (PFR-PM) instances. We have experimented our prediction
model with various subsets of training data to analyse the best preference. As results
indicate, the most accurate prediction model is the one which is trained with combina-
tion of Pareto front and random subset of evolver population (PFR-PM). This model is
capable of predicting algorithms for almost all possible given testing COPs such as the
ones similar to extreme (hard/easy) or ordinary instances (random) in a multi-objective
evolver population. Also, the prediction ability for required function evaluation num-
ber (FEN) has been significantly increased. Therefore, in order to assess our optimised
prediction model (see Section 3.4), we decide to experiment it with our newly designed
benchmark. In order to analyse the capability of the prediction model (PFR-PM) on
constraints, we use fixed objective function with various numbers of linear, quadratic
(and their combination) constraints. Then, we test other well-known objective function
to see the relationship of constraints and our prediction model.

For this experiment, we train our PFR-PM with 3000 instances from both Pareto
front and random instances of evolving algorithm population set (1500 each). We also
use optimised algorithm parameter settings for each algorithm suggested in [17, 19, 1].
In order to show the accuracy of model on prediction over constraints, we examine
the model on various well-known objective functions such as Sphere (bowl-shaped),
Ackley (many local optima) and Rosenbrock (valley-shaped). Also, to evaluate the
effectiveness of our model on constrained problems, we use various numbers and types
of constraints. Tables 5, 6 and 7 show the prediction results for Sphere, Ackley and
Rosenbrock objective functions respectively. The results show the number of correct
algorithm types prediction (success rate) from 30 different tests. Also, one step further,
the average deviations of required FEN (the correct and predicted one) for the predicted
algorithms are calculated.

Table 5 compares the prediction results for our proposed model (PFR-PM) and ran-
dom only model (RO-PM) for Sphere COPs. The results indicate the effectiveness of
choosing the proper subset training instances. It is observed that the prediction algo-
rithm success rate for our proposed model (PFR-PM) is significantly better than RO-
PM for all Sphere COPs using various combinations of constraints. The success rate
(out of 30 tests) for newly testing given COP is significantly higher for PFR-PM com-
paring to RO-PM. Also, the low value average deviation of predicted FEN and actual
one for PFR-PM represents its higher accuracy in predicting the algorithm performance
in terms of function evaluation number.

By observing the Tables 6 and 7, we realise that our prediction model (PFR-PM)
is reliable in predicting with only constraints. In other words, experimenting other
types of objective functions (Bowl-shaped, many local-optima and valley shaped) with
accurate results shows the ability of the model to predict based on constraints. Based
on the Table 6, the lower value of FEN average deviation indicates the higher accuracy
of PFR-PM for Ackley COPs. Also, the results for Rosenbrock COPs with 1 to 5
linear, quadratic constraints (and their combination) shows the accuracy of PFR-PM
comparing to RO-PM. The average deviation of FEN for Rosenbrock problems denotes
the significantly close predicted FEN with PFR-PM (see Table 7).

As mentioned before, the output of our proposed prediction model (PFR-PM) in-
cludes predicted algorithm with its required FEN. It is observed that the prediction
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model is capable of suggesting the best algorithm and required FEN based on con-
straint features of given COP. Due to the stochastic nature of evolutionary optimisation,
the above benchmark tests are repeated 30 times and the two-tail t-test significance is
performed for average deviations of FEN. The significant level a is considered as 0.05.
The p-values for significance of a difference between FEN average deviation of Pareto
front with random (PFR-PR) and random only (RO-PR) models for each Sphere, Ack-
ley and Rosenbrock are shown in Tables 5, 6 and 7 respectively. The results show that
the difference in FEN Average deviation are significant and less than 0.05.

As discussed earlier, the idea of designing a prediction model based on instance
features is rather a novel approach in algorithm selection problem. Training a model
with COP instances from multi-objective evolver improves the prediction accuracy.
The performance prediction (FEN) and suggested algorithm can be used to produce
the final output of our prediction model. As we know selecting a suitable algorithm
for a given problem requires substantial amount of time. In contrast, in our approach,
we only need to extract features of a problem once and the model produces the final
output. It is observed that selecting different sets of training instances improves the pre-
diction model success rate. We designed and examined various prediction model using
different subsets of problem instances from evolver population set. In order to show
the ability of the prediction model only based on constraints features we use various
objective functions. Results for these COPs with different combinations of objective
functions and constraints indicate that the model is highly accurate in algorithm and
required FEN prediction.

5 Conclusion
In this study, we examined the impact of different types of problem instances that can
be used in prediction models for constrained continuous optimisation.

Our resulting prediction model captures the links between constraint features, al-
gorithm type performance and the required function evaluation number. The model
inputs are considered as constraint features and selected parameter settings. The out-
puts includes the required function evaluation number and most suited algorithm type
to solve the given COP.

The model was trained (using NN learning strategy) with evolved COP instances.
To improve the accuracy of the model we used evolved instances that are hard/easy
for one and easy/hard for the other algorithms. These training instances are generated
with multi-objective evolver. We first, chose various subsets of instances from multi-
objective evolver population set. It is observed that the a model using combination of
Pareto front line and random points from population set has the highest accuracy in pre-
dicting best algorithm types for a given COP. We then, tested our prediction model with
different objective functions and constraints types. The results indicate our prediction
model is reliable to suggest and predict most suited algorithm and required FEN using
problem’s constraint features. Our approach shows the relationship between constraint
features and various algorithm performances. The results clearly demonstrate the abil-
ity of prediction model to predict the algorithm and required FEN using only constraint
features.
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Table 1: Predicted and actual most suited algorithm type/required FEN for Sphere function with linear constraint(s). The
prediction model is trained with extreme points (EP-PM) from multi objective evolver population. DE hard/easy (1 C) is a

problem instance that is hard/easy for DE algorithm but easy/hard for the others.

Instances
name

Predicted
alg.

Actual
alg.

Error Predicted
FEN for
DE

Actual
FEN
for DE

Error
for DE

Predicted
FEN for
ES

Actual
FEN
for ES

Error
for ES

Predicted
FEN for
PSO

Actual
FEN for
PSO

Error
for
PSO

DE hard (1 c) ES ES NO 83.2K 86.3K -3.1K 43.7K 41.5K +2.2K 46.8K 43.2K +3.6K
ES hard (1 c) PSO DE YES 43.4K 45.7K -2.3K 80.9K 84.2K -3.3K 41.6K 48.3K -6.7K
PSO hard (1 c) DE DE NO 38.9K 37.2K +1.7K 43.2K 41.8K +1.4K 76.2K 80.1K -3.9K
DE hard (2 c) ES ES NO 83.5K 87.4K -3.9K 42.5K 45.2K -2.7K 44.2K 43.6K +1.4K
ES hard (2 c) DE DE NO 47.2K 46.4K +0.8K 84.3K 88.3K -4.0K 49.4K 46.8K +2.6K
PSO hard (2 c) DE DE NO 41.5K 43.6K -2.1K 46.3K 45.1K +1.2K 85.5K 83.2K +2.2K
DE hard (3 c) ES ES NO 87.3K 92.4K -5.1K 43.8K 45.2K -1.4K 45.6K 47.2K -1.6K
ES hard (3 c) PSO PSO NO 45.6K 51.2K -5.6K 95.5K 91.2K +4.3K 43.5K 48.2K -4.7K
PSO hard (3 c) DE DE NO 47.2K 49.6K -2.4K 51.2K 53.5K -2.3K 92.1K 89.5K +2.6K
DE hard (4 c) PSO ES YES 95.2K 93.7K -1.5K 52.4K 47.2K +5.2K 49.2K 50.2K -1.0K
ES hard (4 c) PSO PSO NO 51.3K 49.2K +2.1K 85.3K 89.1K -3.8K 46.3K 48.9K -2.6K
PSO hard (4 c) DE ES YES 49.2K 52.7K -3.5K 53.4K 50.8K +2.6K 89.3K 87.5K +1.8K
DE hard (5 c) ES ES NO 94.7K 96.3K -1.6K 49.3K 53.3K -4.0K 57.1K 55.3K +1.8K
ES hard (5 c) DE DE NO 51.4K 53.8K -2.4K 94.2K 92.6K +1.6K 55.2K 54.7K -2.5K
PSO hard (5 c) DE DE NO 49.1K 51.3K -2.2K 57.9K 55.2K +2.7K 89.5K 93.2K -3.7K
DE easy (1 c) DE DE NO 45.3K 48.9K -3.6K 81.5K 85.2K -3.7K 75.4K 79.1K -3.7K
ES easy (1 c) ES ES NO 87.3K 81.4K +5.9K 48.3K 54.7K -6.4K 79.4K 81.7K -2.3K
PSO easy (1 c) PSO PSO NO 92.5K 87.1K +5.4K 81.4K 84.2K -2.8K 48.2K 41.9K +6.3K
DE easy (2 c) DE DE NO 49.4K 44.5K +4.9K 89.3K 83.1K +6.2K 78.9K 81.6K -2.7K
ES easy (2 c) ES ES NO 78.4K 83.6K -5.2K 51.4K 55.3K -3.9K 79.3K 78.9K +0.4K
PSO easy (2 c) PSO PSO NO 84.2K 81.4K +2.8K 78.3K 83.9K -5.6K 51.6K 49.4K 2.2K
DE easy (3 c) DE DE NO 41.8K 48.4K -6.6K 85.8K 89.4K -3.6K 86.3K 84.5K +1.8K
ES easy (3 c) ES ES NO 91.4K 87.8K +3.6K 48.2K 46.2K +2.0K 51.3K 48.0K +3.3K
PSO easy (3 c) PSO PSO NO 88.4K 89.5K -1.1K 93.2K 87.3K +5.9K 46.8K 49.1K -2.3K
DE easy (4 c) DE DE NO 51.6K 53.2K -1.6K 83.5K 85.1K -1.6K 91.4K 93.8K -2.4K
ES easy (4 c) ES ES NO 85.3K 89.4K -4.1K 51.2K 48.9K +2.3K 89.4K 87.2K +2.2K
PSO easy (4 c) PSO DE YES 57.2K 55.5K +1.7K 84.1K 92.4K -8.3K 54.2K 68.9K -14.7K
DE easy (5 c) DE DE NO 59.2K 57.8K +1.4K 93.2K 95.3K -2.1K 81.3K 81.5K -0.2K
ES easy (5 c) ES ES NO 88.3K 91.9K -3.6K 53.2K 55.7K -2.5K 86.3K 81.1K 5.2K
PSO easy (5 c) PSO PSO NO 89.3K 91.3K -2.0K 84.3K 82.9K +1.4K 55.8K 57.6K -1.8K
Rnd. 1 (1 c) DE PSO YES 53.2K 65.7K -12.5K 65.3K 56.9K +8.4K 62.4K 53.2K +9.2K
Rnd. 2 (1 c) ES DE YES 77.2K 61.9K 15.3K 43.5K 64.2K -20.7 51.9K 65.2K -13.3K
Rnd. 3 (2 c) ES DE YES 71.4K 59.8K +11.6K 48.1K 65.3K -17.2K 60.2K 69.6K -9.4K
Rnd. 4 (2 c) PSO ES YES 61.2K 72.2K -11.0K 68.8K 59.4K +9.4K 55.3K 71.4K -16.1K
Rnd. 5 (3 c) DE DE NO 45.2K 65.4K -20.2K 77.2K 66.9K +10.3K 64.5K 74.6K -10.1K
Rnd. 6 (3 c) ES PSO YES 71.9K 82.4K -10.5K 45.6K 78.3K -32.7K 50.3K 61.4K -11.1K
Rnd. 7 (4 c) DE ES YES 71.6K 83.2K -11.6K 80.3K 65.8K +14.5K 89.2K 78.9K +10.3K
Rnd. 8 (4 c) PSO DE YES 84.7K 71.1K +13.6K 68.8K 79.2K -10.4K 62.7K 73.2K -10.5K
Rnd. 9 (5 c) ES DE YES 91.8K 82.7K +9.1K 83.9K 93.8K -9.9K 89.0K 97.3K -8.3K
Rnd. 10 (5 c) DE PSO YES 78.4K 93.2K -14.8K 79.2K 89.5K -10.3K 89.3K 68.4K +20.9K
Rnd. 11 (1 c) ES DE YES 56.3K 44.6K +11.7K 49.3K 59.2K -9.9K 65.2K 64.2K -8.0K
Rnd. 12 (1 c) ES DE YES 54.2K 45.2K +9.0K 48.2K 58.9K -10.7K 61.2K 69.4K -8.2K
Rnd. 13 (2 c) DE PSO YES 48.2K 61.2K -13.0K 78.5K 64.3K +14.2K 50.9K 59.1K -8.2K
Rnd. 14 (2 c) ES PSO YES 70.2K 79.0K -8.8K 61.2K 75.3K -14.1K 71.2K 63.4K +7.8K
Rnd. 15 (3 c) DE PSO YES 63.4K 71.9K -8.5K 71.3K 79.3K -8.0K 73.1K 65.3K +7.8K
Rnd. 16 (3 c) PSO DE YES 77.5K 69.2K +8.3K 89.5K 79.3K +10.2K 74.3K 70.1K +6.2K
Rnd. 17 (4 c) ES ES NO 69.3K 73.9K -4.6K 68.5K 75.9K -7.4K 69.K 77.4K -7.7K
Rnd. 18 (4 c) DE PSO YES 71.4K 85.3K -13.9K 81.2K 78.3K +2.9K 75.3K 68.3K +7.0K
Rnd. 19 (5 c) DE ES YES 81.2K 93.9K -12.7K 83.2K 91.2K -8.0K 87.2K 95.9K -8.7K
Rnd. 20 (5 c) PSO PSO NO 81.2K 90.9K -9.7K 81.3K 93.2K -11.9K 78.2K 87.3K -9.1K
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Table 2: Predicted and actual most suited algorithm type/required FEN for Sphere function with linear constraint(s). The
prediction model is trained with pareto front line (PF-PM) from multi objective evolver population. DE hard/easy (1 C) is a

problem instance that is hard/easy for DE algorithm but easy/hard for the others.

Instances
name

Predicted
alg.

Actual
alg.

Error Predicted
FEN for
DE

Actual
FEN
for DE

Error
for DE

Predicted
FEN for
ES

Actual
FEN
for ES

Error
for ES

Predicted
FEN for
PSO

Actual
FEN for
PSO

Error
for
PSO

DE hard (1 c) ES ES NO 82.7K 86.3K -3.6 43.5K 41.5K 2.0K 47.3K 43.2K 4.1K
ES hard (1 c) PSO DE YES 42.3K 45.7K -3.4K 86.4K 84.2K 2.2K 40.3K 48.3K -8.0K
PSO hard (1 c) DE DE NO 35.1K 37.2K -2.1K 43.8K 41.8K 2.0K 77.4K 80.1K -2.7K
DE hard (2 c) ES ES NO 89.4K 87.4K 2.0K 43.1K 45.2K -2.1K 45.7K 43.6K 2.1K
ES hard (2 c) DE DE NO 48.5K 46.4K 2.1K 86.9K 88.3K -1.4K 48.2K 46.8K 1.4K
PSO hard (2 c) DE DE NO 42.3K 43.6K -1.3K 47.2K 45.1K 2.1K 84.6K 83.2K 1.4K
DE hard (3 c) ES ES NO 87.6K 92.4K -4.8K 42.9K 45.2K -2.3K 46.2K 47.2K -1.0
ES hard (3 c) DE PSO YES 49.3K 51.2K -1.9K 94.5K 91.2K 3.3K 50.7K 48.2K 2.5K
PSO hard (3 c) DE DE NO 47.5K 49.6K -2.1K 55.7K 53.5K 2.2K 93.1K 89.5K 3.6K
DE hard (4 c) ES ES NO 94.9K 93.7K 1.2K 49.2K 47.2K 2.0K 53.6K 50.2K 3.4K
ES hard (4 c) PSO PSO NO 52.4K 49.2K 3.2K 86.9K 89.1K -2.2K 45.1K 48.9K -3.8K
PSO hard (4 c) ES ES NO 55.1K 52.7K 2.4K 51.9K 50.8K 1.1K 85.2K 87.5K -2.3K
DE hard (5 c) ES ES NO 94.1K 96.3K -2.2 55.9K 53.3K 2.6K 58.3K 55.3K 3.0K
ES hard (5 c) DE DE NO 51.9K 53.8K -1.9K 95.1K 92.6K 2.5K 52.9K 54.7K -1.8K
PSO hard (5 c) ES DE YES 54.7K 51.3K 3.4K 53.1K 55.2K -2.1K 89.4K 93.2K -3.8K
DE easy (1 c) PSO DE YES 72.3K 48.9K 23.4K 80.4K 85.2K -4.8K 71.2K 79.1K -7.9K
ES easy (1 c) ES ES NO 78.4K 81.4K -3.0K 47.2K 54.7K -7.5K 78.9K 81.7K -2.8K
PSO easy (1 c) PSO PSO NO 91.4K 87.1K 4.3K 80.7K 84.2K -3.5K 45.8K 41.9K 3.9K
DE easy (2 c) DE DE NO 48.1K 44.5K 3.6K 85.9K 83.1K 2.8K 85.1K 81.6K 3.5K
ES easy (2 c) ES ES NO 79.4K 83.6K -4.2K 52.9K 55.3K -2.4K 80.7K 78.9K 1.8K
PSO easy (2 c) PSO PSO NO 83.5K 81.4K 2.1K 79.3K 83.9K -4.6K 47.1K 49.4K -2.3K
DE easy (3 c) DE DE NO 42.4K 48.4K -6.0K 86.2K 89.4K -3.2K 87.5K 84.5K 3.0K
ES easy (3 c) ES ES NO 90.4K 87.8K 2.6K 47.9K 46.2K 1.7K 50.5K 48.0K 2.5K
PSO easy (3 c) PSO PSO NO 86.4K 89.5K -3.1K 94.1K 87.3K 6.8K 47.9K 49.1K -1.2K
DE easy (4 c) DE DE NO 50.8K 53.2K -2.4K 84.2K 85.1K -0.9K 95.3K 93.8K 1.5K
ES easy (4 c) ES ES NO 86.3K 89.4K -3.1K 46.2K 48.9K -2.7K 90.3K 87.2K 3.1K
PSO easy (4 c) PSO DE YES 60.4K 55.5K 4.9K 88.2K 92.4K -4.2K 58.8K 68.9K -10.1K
DE easy (5 c) DE DE NO 56.7K 57.8K -1.1K 92.5K 95.3K -2.7K 83.2K 81.5K 1.7K
ES easy (5 c) ES ES NO 87.3K 91.9K -4.6K 52.8K 55.7K -2.9K 85.4K 81.1K 4.3K
PSO easy (5 c) PSO PSO NO 88.2K 91.3K -3.1K 85.2K 82.9K 2.3K 56.2K 57.6K -1.4K
Rnd. 1 (1 c) PSO PSO NO 60.8K 65.7K -4.9K 60.2K 56.9K +3.3K 48.8K 53.2K -4.4K
Rnd. 2 (1 c) DE DE NO 67.3K 61.9K +5.4K 68.1K 64.2K +3.9K 71.3K 65.2K +6.1K
Rnd. 3 (2 c) DE DE NO 51.5K 59.8K -8.3K 59.9K 65.3K -5.2K 63.8K 69.6K -5.8K
Rnd. 4 (2 c) ES ES NO 65.9K 72.2K -6.3K 64.1K 59.4K +4.7K 64.7K 71.4K -6.7K
Rnd. 5 (3 c) ES DE YES 59.2K 65.4K -6.2K 57.1K 66.9K -9.8K 67.3K 74.6K -7.3K
Rnd. 6 (3 c) PSO PSO NO 74.9K 82.4K -7.5K 69.2K 78.3K -9.1K 55.1K 61.4K -6.3K
Rnd. 7 (4 c) ES ES NO 87.6K 83.2K +4.4K 71.3K 65.8K +5.5K 72.1K 78.9K -6.8K
Rnd. 8 (4 c) ES DE YES 78.3K 71.1K +7.2K 70.5K 79.2K -8.7K 77.9K 73.2K +4.7K
Rnd. 9 (5 c) DE DE NO 87.9K 82.7K +5.2K 88.2K 93.8K -5.6K 91.9K 97.3K -5.4K
Rnd. 10 (5 c) PSO PSO NO 79.1K 93.2K -14.1K 85.6K 89.5K -3.9K 75.6K 68.4K +7.2K
Rnd. 11 (1 c) DE DE NO 51.2K 44.6K +6.6K 52.1K 59.2K -7.1K 57.1K 64.2K -7.1K
Rnd. 12 (1 c) DE DE NO 49.2K 45.2K +4.0K 52.1K 58.9K -6.8K 62.4K 69.4K -7.0K
Rnd. 13 (2 c) PSO PSO NO 53.2K 61.2K -8.0K 60.5K 64.3K -3.8K 52.7K 59.1K -6.4K
Rnd. 14 (2 c) PSO PSO NO 72.9K 79.0K -6.1K 65.9K 75.3K -9.4K 59.6K 63.4K -3.8K
Rnd. 15 (3 c) ES PSO YES 65.1K 71.9K -6.8K 59.9K 79.3K -19.4K 60.9K 65.3K -4.4K
Rnd. 16 (3 c) DE DE NO 63.1K 69.2K -7.9K 72.5K 79.3K -6.8K 74.2K 70.1K 6.1K
Rnd. 17 (4 c) ES ES NO 69.9K 73.9K -4.0K 68.4K 75.9K -7.5K 70.3K 77.4K -7.1K
Rnd. 18 (4 c) PSO PSO NO 74.8K 85.3K -10.5K 84.0K 78.3K +5.7K 72.6K 68.3K +4.3K
Rnd. 19 (5 c) DE ES YES 85.1K 93.9K -8.1K 85.8K 91.2K -6.1K 98.9K 95.9K +3.0K
Rnd. 20 (5 c) PSO PSO NO 85.1K 90.9K -5.8K 87.9K 93.2K -5.3K 82.5K 87.3K -4.8K
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Table 3: Predicted and actual most suited algorithm type/required FEN for Sphere function with linear constraint(s). The
prediction model is trained with random points (RO-PM) from multi objective evolver population. DE hard/easy (1 C) is a

problem instance that is hard/easy for DE algorithm but easy/hard for the others.

Instances
name

Predicted
alg.

Actual
alg.

Error Predicted
FEN for
DE

Actual
FEN
for DE

Error
for DE

Predicted
FEN for
ES

Actual
FEN
for ES

Error
for ES

Predicted
FEN for
PSO

Actual
FEN for
PSO

Error
for
PSO

DE hard (1 c) PSO ES YES 93.6K 86.3K +7.3K 53.5K 41.5K +12K 38.1K 43.2K -5.1K
ES hard (1 c) DE DE NO 51.8K 45.7K +6.1K 78.1K 84.2K -6.1K 53.7K 48.3K +5.4K
PSO hard (1 c) PSO DE YES 58.8K 37.2K +21.6K 73.5K 41.8K +31.7K 57.3K 80.1K -22.8K
DE hard (2 c) ES ES NO 66.8K 87.4K -20.6K 57.9K 45.2K +12.7K 72.8K 43.6K +29.2K
ES hard (2 c) PSO DE YES 67.2K 46.4K +20.8K 73.2K 88.3K -15.2K 53.7K 46.8K +6.9K
PSO hard (2 c) DE DE NO 55.7K 43.6K +12.1K 73.6K 45.1K +28.5K 77.8K 83.2K -5.4K
DE hard (3 c) PSO ES YES 73.4K 92.4K -19.0K 59.2K 45.2K +14.0K 57.3K 47.2K +10.1K
ES hard (3 c) DE PSO YES 62.7K 51.2K +11.5K 73.6K 91.2K -17.6K 64.3K 48.2K +16.1K
PSO hard (3 c) ES DE YES 59.2K 49.6K +9.6K 43.2K 53.5K -10.3K 103.6K 89.5K +14.1K
DE hard (4 c) PSO ES YES 88.2K 93.7K -5.5K 51.2K 47.2K +4.0K 49.1K 50.2K -1.1K
ES hard (4 c) ES PSO YES 39.8K 49.2K -9.4K 96.3K 89.1K +7.2K 41.2K 48.9K -7.7K
PSO hard (4 c) DE ES YES 63.9K 52.7K +11.2K 64.6K 50.8K +13.8K 83.8K 87.5K -3.7K
DE hard (5 c) PSO ES YES 102.6K 96.3K +6.3K 62.3K 53.3K +9.0K 49.2K 55.3K -6.1K
ES hard (5 c) PSO DE YES 47.9K 53.8K -5.9K 84.8K 92.6K -7.8K 47.1K 54.7K -7.6K
PSO hard (5 c) ES DE YES 59.9K 51.3K +8.6K 45.2K 55.2K -10.0K 82.7K 93.2K -10.5K
DE easy (1 c) DE DE NO 41.2K 48.9K -7.7K 78.2K 85.2K -7K 67.2K 79.1K -11.9K
ES easy (1 c) ES ES NO 68.2K 81.4K -13.2K 64.2K 54.7K 9.6K 72.9K 81.7K -8.8K
PSO easy (1 c) ES PSO YES 81.2K 87.1K 4.1K 62.1K 84.2K -22.1K 63.4K 41.9K 21.5K
DE easy (2 c) DE DE NO 54.2K 44.5K 9.7K 68.4K 83.1K -14.7K 71.4K 81.6K -10.2K
ES easy (2 c) PSO ES YES 75.3K 83.6K -8.3K 69.2K 55.3K 13.9K 65.1K 78.9K -13.8K
PSO easy (2 c) PSO PSO YES 68.3K 81.4K -13.1K 94.1K 83.9K 10.2K 58.1K 49.4K 8.7K
DE easy (3 c) DE DE NO 59.1K 48.4K 10.7K 78.2K 89.4K -11.2K 80.4K 84.5K -4.1K
ES easy (3 c) PSO ES YES 73.9K 87.8K -13.9K 55.2K 46.2K 9K 42.4K 48.0K -5.6K
PSO easy (3 c) PSO PSO NO 69.2K 89.5K -20.3K 76.4K 87.3K -10.9K 58.2K 49.1K 9.1K
DE easy (4 c) DE DE NO 64.2K 53.2K 11K 78.3K 85.1K -6.8K 87.3K 93.8K -6.5K
ES easy (4 c) ES ES NO 78.3K 89.4K -11.1K 59.1K 48.9K 10.2K 82.5K 87.2K -4.7K
PSO easy (4 c) PSO DE YES 61.3K 55.5K 5.8K 85.9K 92.4K -6.5K 60.4K 68.9K -8.5K
DE easy (5 c) PSO DE YES 71.4K 57.8K 13.6K 99.1K 95.3K 3.8K 70.9K 81.5K -10.6K
ES easy (5 c) ES ES NO 86.9K 91.9K -5.0K 62.3K 55.7K 6.6K 78.9K 81.1K -2.2K
PSO easy (5 c) PSO PSO NO 84.1K 91.3K -7.2K 76.9K 82.9K -6.0K 63.4K 57.6K 5.8K
Rnd. 1 (1 c) PSO PSO NO 59.1K 65.7K -6.6K 51.3K 56.9K -5.6K 50.9K 53.2K -2.3K
Rnd. 2 (1 c) DE DE NO 55.2K 61.9K -6.7K 67.4K 64.2K +3.2K 69.8K 65.2K +4.6K
Rnd. 3 (2 c) DE DE NO 49.2K 59.8K -10.6K 57.9K 65.3K -7.4K 73.4K 69.6K +3.8K
Rnd. 4 (2 c) ES ES NO 64.1K 72.2K -8.1K 63.2K 59.4K +3.8 65.3K 71.4K -6.1K
Rnd. 5 (3 c) ES DE YES 68.3K 65.4K +2.9K 63.5K 66.9K -3.4K 69.9K 74.6K -4.7K
Rnd. 6 (3 c) PSO PSO NO 73.9K 82.4K -8.5K 66.2K 78.3K -12.1K 56.8K 61.4K -4.6K
Rnd. 7 (4 c) PSO ES YES 78.3K 83.2K -4.9K 73.5K 65.8K +7.7K 71.2K 78.9K -7.7K
Rnd. 8 (4 c) ES DE YES 76.9K 71.1K +5.8K 68.3K 79.2K -10.9K 76.3K 73.2K +3.1K
Rnd. 9 (5 c) DE DE NO 88.3K 82.7K +5.6K 90.9K 93.8K -2.9K 90.2K 97.3K -7.1K
Rnd. 10 (5 c) PSO PSO NO 80.8K 93.2K -12.4K 83.5K 89.5K -6K 75.3K 68.4K +6.9K
Rnd. 11 (1 c) ES DE YES 52.9K 44.6K +8.3K 52.4K 59.2K -6.8K 54.3K 64.2K -9.9K
Rnd. 12 (1 c) DE DE NO 50.2K 45.2K +5K 51.2K 58.9K -7.7K 62.5K 69.4K -6.9K
Rnd. 13 (2 c) PSO PSO NO 67.3K 61.2K 6.1K 60.8K 64.3K -3.5K 49.2K 59.1K -9.9K
Rnd. 14 (2 c) PSO PSO NO 70.3K 79.0K -8.7K 68.3K 75.3K -7K 57.9K 63.4K -5.5K
Rnd. 15 (3 c) ES PSO YES 66.9K 71.9K -5K 55.2K 79.3K -24.1K 58.3K 65.3K -7K
Rnd. 16 (3 c) DE DE NO 61.2K 69.2K -8K 70.5K 79.3K -8.8K 73.9K 70.1K 3.8K
Rnd. 17 (4 c) ES ES NO 67.9K 73.9K -6K 65.2K 75.9K -10.7K 69.2K 77.4K -8.2K
Rnd. 18 (4 c) PSO PSO NO 72.7K 85.3K -12.6K 80.3K 78.3K +2K 70.2K 68.3K +1.9K
Rnd. 19 (5 c) DE ES YES 83.1K 93.9K -10.8K 83.9K 91.2K -7.3K 99.1K 95.9K +3.2K
Rnd. 20 (5 c) PSO PSO NO 84.1K 90.9K -6.8K 85.9K 93.2K -7.3K 83.5K 87.3K -3.8K
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Table 4: Predicted and actual most suited algorithm type/required FEN for Sphere function with linear constraint(s). The
prediction model is trained with combination of pareto front and random points (PFR-PM) from multi objective evolver

population. DE hard/easy (1 C) is a problem instance that is hard/easy for DE algorithm but easy/hard for the others.

Instances
name

Predicted
alg.

Actual
alg.

Error Predicted
FEN for
DE

Actual
FEN
for DE

Error
for DE

Predicted
FEN for
ES

Actual
FEN
for ES

Error
for ES

Predicted
FEN for
PSO

Actual
FEN for
PSO

Error
for
PSO

DE hard (1 c) ES ES NO 83.8K 86.3K -2.5K 40.2K 41.5K -1.3K 45.8K 43.2K 2.6K
ES hard (1 c) DE DE NO 43.6K 45.7K -2.1K 80.2K 84.2K -4.0K 45.1K 48.3K -3.2K
PSO hard (1 c) DE DE NO 39.1K 37.2K 1.9K 42.4K 41.8K 0.6K 78.1K 80.1K -2.0K
DE hard (2 c) PSO ES YES 85.2K 87.4K -2.2K 43.2K 45.2K -2.0K 41.9K 43.6K -1.7K
ES hard (2 c) DE DE NO 45.8K 46.4K -0.6K 85.3K 88.3K -3.0K 48.9K 46.8K 2.1K
PSO hard (2 c) DE DE NO 41.8K 43.6K -1.8K 47.9K 45.1K 2.8K 85.3K 83.2K 2.1K
DE hard (3 c) ES ES NO 89.5K 92.4K -2.9K 43.1K 45.2K -2.1K 44.2K 47.2K -3.0K
ES hard (3 c) PSO PSO NO 47.8K 51.2K -3.4K 94.7K 91.2K 3.5K 42.9K 48.2K -5.3K
PSO hard (3 c) DE DE NO 46.8K 49.6K -2.8K 50.2K 53.5K -3.3K 92.5K 89.5K 3.0K
DE hard (4 c) ES ES NO 96.2K 93.7K 2.5K 49.2K 47.2K 2.0K 51.2K 50.2K 1.0K
ES hard (4 c) PSO PSO NO 50.4K 49.2K 1.2K 84.7K 89.1K -4.4K 46.8K 48.9K -2.1K
PSO hard (4 c) ES ES NO 50.3K 52.7K -2.4K 53.6K 50.8K 2.8K 90.2K 87.5K 2.7K
DE hard (5 c) PSO ES YES 97.2K 96.3K 0.9K 55.9K 53.3K 2.6K 52.4K 55.3K -2.9K
ES hard (5 c) DE DE NO 52.5K 53.8K -1.3K 94.2K 92.6K 1.6K 53.8K 54.7K -0.9K
PSO hard (5 c) DE DE NO 50.2K 51.3K -1.1K 56.3K 55.2K 1.1K 90.5K 93.2K -2.7K
DE easy (1 c) DE DE NO 46.3K 48.9K -2.6K 82.7K 85.2K -2.5K 76.2K 79.1K -2.9K
ES easy (1 c) ES ES NO 86.6K 81.4K 5.2K 48.2K 54.7K -6.5K 80.2K 81.7K -1.5K
PSO easy (1 c) PSO PSO NO 86.3K 87.1K -0.8K 82.4K 84.2K -1.8K 45.7K 41.9K 3.8K
DE easy (2 c) DE DE NO 48.1K 44.5K 3.6K 87.4K 83.1K 4.3K 79.4K 81.6K -2.2K
ES easy (2 c) ES ES NO 77.2K 83.6K -6.4K 52.3K 55.3K -3.0K 77.4K 78.9K -1.5K
PSO easy (2 c) PSO PSO NO 83.2K 81.4K 1.8K 78.4K 83.9K -5.5K 48.1K 49.4K -1.3K
DE easy (3 c) DE DE NO 42.5K 48.4K -5.9K 86.8K 89.4K -2.6K 87.4K 84.5K 2.9K
ES easy (3 c) PSO ES YES 90.9K 87.8K 3.1K 48.9K 46.2K 2.7K 46.9K 48.0K -1.1K
PSO easy (3 c) PSO PSO NO 87.8K 89.5K -1.7K 92.4K 87.3K 5.1K 47.0K 49.1K -2.1K
DE easy (4 c) DE DE NO 50.2K 53.2K -3.0K 83.4K 85.1K -1.7K 91.8K 93.8K -2.0K
ES easy (4 c) ES ES NO 86.7K 89.4K -2.7K 50.8K 48.9K 1.9K 89.8K 87.2K 2.6K
PSO easy (4 c) DE DE NO 56.7K 55.5K 1.2K 87.9K 92.4K -4.5K 55.2K 68.9K -13.7K
DE easy (5 c) DE DE NO 55.9K 57.8K -1.9K 93.1K 95.3K -2.2K 82.4K 81.5K 0.9K
ES easy (5 c) ES ES NO 89.4K 91.9K -2.5K 56.3K 55.7K 0.6K 85.9K 81.1K 4.8K
PSO easy (5 c) PSO PSO NO 92.4K 91.3K 1.1K 84.1K 82.9K 1.2K 56.1K 57.6K -1.5K
Rnd. 1 (1 c) PSO PSO NO 63.4K 65.7K -2.3K 55.4K 56.9K -1.5K 51.7K 53.2K -1.5K
Rnd. 2 (1 c) DE DE NO 64.6K 61.9K +2.7K 64.7K 64.2K +0.5K 65.7K 65.2K +0.5K
Rnd. 3 (2 c) DE DE NO 55.0K 59.8K -4.8K 62.3K 65.3K -3.0K 67.1K 69.6K -2.5K
Rnd. 4 (2 c) ES ES NO 68.6K 72.2K -3.6K 61.4K 59.4K +2.0K 68.2K 71.4K -3.2K
Rnd. 5 (3 c) DE DE NO 61.9K 65.4K -3.5K 62.5K 66.9K -4.4K 70.8K 74.6K -3.8K
Rnd. 6 (3 c) PSO PSO NO 78.3K 82.4K -4.1K 73.9K 78.3K -4.4K 57.8K 61.4K -3.6K
Rnd. 7 (4 c) ES ES NO 86.4K 83.2K +3.2K 69.4K 65.8K +3.6K 74.7K 78.9K -4.2K
Rnd. 8 (4 c) ES DE YES 74.6K 71.1K +3.5K 73.7K 79.2K -5.5K 75.8K 73.2K +2.6K
Rnd. 9 (5 c) DE DE NO 84.2K 82.7K +1.5K 87.6K 93.8K -6.2K 94.2K 97.3K -3.1K
Rnd. 10 (5 c) PSO PSO NO 83.7K 93.2K -9.5K 84.3K 89.5K -5.2K 65.8K 68.4K -2.6K
Rnd. 11 (1 c) DE DE NO 48.5K 44.6K +3.9K 55.8K 59.2K -0.4K 60.9K 64.2K -3.3K
Rnd. 12 (1 c) DE DE NO 48.7K 45.2K +3.5K 53.6K 58.9K -5.3K 63.6K 69.4K -5.8K
Rnd. 13 (2 c) PSO PSO NO 55.7K 61.2K -5.5K 65.9K 64.3K +1.6K 54.9K 59.1K -4.2K
Rnd. 14 (2 c) PSO PSO NO 76.0K 79.1K -3.1K 66.6K 75.3K -8.7K 61.7K 63.4K -1.7K
Rnd. 15 (3 c) ES PSO YES 68.8K 71.9K -3.1K 62.7K 79.3K -16.6K 63.1K 65.3K -2.2K
Rnd. 16 (3 c) DE DE NO 66.5K 69.2K -2.7K 72.2K 79.3K -7.1K 71.5K 70.1K +3.4K
Rnd. 17 (4 c) ES ES NO 70.4K 73.9K -3.5K 70.3K 75.9K -5.6K 71.6K 77.4K -5.8K
Rnd. 18 (4 c) PSO PSO NO 75.4K 85.3K -9.9K 83.5K 78.3K +5.2K 71.2K 68.3K +2.9K
Rnd. 19 (5 c) DE ES YES 86.9K 93.9K -7.0K 88.5K 91.2K -2.7L 97.4K 95.9K -1.5K
Rnd. 20 (5 c) PSO PSO NO 87.4K 90.9K -3.5K 90.3K 93.2K -2.9K 85.9K 87.3K -1.4K
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Table 5: Comparison of PFR-PM with RO-PM models for Sphere function with various types of constraints (linear,
quadratic and their combination). Average deviation of FEN denotes the average of differences between actual and

predicted required FEN for PFR-PM and RO-PM.

Problem Success Rate
RO-PM

Success Rate
FR-PM

Average devi-
ation of FEN
for RO-PM

Average devi-
ation of FEN
for PFR-PM

P
value

Sphere, 1lin 2 26 7.8K 2.4K 0.004
Sphere, 2lin 1 27 8.6K 1.8K 0.013
Sphere, 3lin 1 26 12.6K 3.2K 0.018
Sphere, 4lin 5 28 13.6K 3.5K 0.006
Sphere, 5lin 1 28 17.4K 2.7K 0.028
Sphere, 1Quad 1 27 11.9K 2.1K 0.035
Sphere, 2Quad 1 26 13.4K 2.6K 0.038
Sphere, 3Quad 3 28 15.8K 3.7K 0.043
Sphere, 4Quad 1 29 19.3K 3.1K 0.026
Sphere, 5Quad 5 28 21.6K 4.3K 0.035
Sphere, 4Lin, 1Quad 2 24 13.4K 2.5K 0.007
Sphere, 3Lin, 2Quad 2 26 13.8K 2.8K 0.004
Sphere, 2Lin, 3Quad 3 28 16.1K 3.8K 0.031
Sphere, 1Lin, 4Quad 5 27 18.9K 3.7K 0.016

Table 6: Comparison of PFR-PM with RO-PM models for Ackley function with various types of constraints (linear,
quadratic and their combination). Average deviation of FEN denotes the average of differences between actual and

predicted required FEN for PFR-PM and RO-PM.

Problem Success Rate
RO-PM

Success Rate
FR-PM

Average devi-
ation of FEN
for RO-PM

Average devi-
ation of FEN
for PFR-PM

P
value

Ackley, 1lin 0 27 9.3K 2.5K 0.043
Ackley, 2lin 1 27 11.5K 3.2K 0.016
Ackley, 3lin 2 25 10.3K 2.7K 0.004
Ackley, 4lin 1 28 14.7K 3.6K 0.008
Ackley, 5lin 6 29 13.8K 4.5K 0.025
Ackley, 1Quad 2 29 16.3K 3.5K 0.046
Ackley, 2Quad 1 27 17.7K 4.1K 0.026
Ackley, 3Quad 0 25 18.3K 3.7K 0.043
Ackley, 4Quad 3 27 16.9K 5.1K 0.048
Ackley, 5Quad 2 29 21.9K 5.8K 0.034
Ackley, 4Lin, 1Quad 4 24 15.8K 4.2K 0.032
Ackley, 3Lin, 2Quad 2 26 16.7K 4.6K 0.012
Ackley, 2Lin, 3Quad 3 24 16.8K 4.9K 0.006
Ackley, 1Lin, 4Quad 0 28 19.8K 4.3K 0.021
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Table 7: Comparison of PFR-PM with RO-PM models for Rosenbrock function with various types of constraints (linear,
quadratic and their combination). Average deviation of FEN denotes the average of differences between actual and

predicted required FEN for PFR-PM and RO-PM.

Problem Success Rate
RO-PM

Success Rate
FR-PM

Average devi-
ation of FEN
for RO-PM

Average devi-
ation of FEN
for PFR-PM

P
value

Rosenbrock, 1lin 2 26 10.3K 3.3K 0.038
Rosenbrock, 2lin 0 26 11.5K 4.6K 0.035
Rosenbrock, 3lin 3 25 12.7K 3.6K 0.002
Rosenbrock, 4lin 4 27 15.8K 5.2K 0.035
Rosenbrock, 5lin 5 28 19.4K 5.1K 0.028
Rosenbrock, 1Quad 2 27 17.4K 4.1K 0.017
Rosenbrock, 2Quad 1 29 21.5K 4.7K 0.043
Rosenbrock, 3Quad 4 26 21.3K 5.7K 0.037
Rosenbrock, 4Quad 3 28 18.5K 5.2K 0.043
Rosenbrock, 5Quad 2 28 24.6K 6.9K 0.004
Rosenbrock, 4Lin, 1Quad 1 28 14.7K 3.6K 0.004
Rosenbrock, 3Lin, 2Quad 0 24 17.4K 4.7K 0.024
Rosenbrock, 2Lin, 3Quad 4 25 19.5K 3.6K 0.029
Rosenbrock, 1Lin, 4Quad 2 27 21.3K 5.2K 0.006
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Chapter 7

Conclusions

In this thesis, we have presented new insights into feature-based analysis
for bio-inspired algorithms for constrained continuous optimisation prob-
lems. We introduced a new feature-based analysis for constrained opti-
misation problems in which the relations between constraint features and
algorithms are studied. Then, by analysing these features, we have de-
signed an automated feature-based algorithm selection model to predict
the performance of the most suited algorithm for a given problems.

In Chapter 2, we conducted a survey of existing theoretical analysis
techniques for fitness landscapes. We discussed ruggedness quantifying
and its application in combinatorial or unconstrained real-valued optimisa-
tion problems. However, applying the existing techniques on constrained
problems provides an inaccurate ruggedness value. Hence, we imple-
mented a technique with a biased walking method to measure the fitness
landscape ruggedness for constrained continuous optimisation problems.

Taking a more practical analysis perspective, we provided new insight
into real-valued constrained optimisation problems. Constraints are very
important in constrained optimisation problems and this motivation led us
to implement the first feature-based analysis on COPs using an evolving
approach. By applying this approach we generated easy and hard COP in-
stances to analyse the features of a set of linear and/or quadratic (and their
combination) constraints. By analysing the constraints for the diverse set
of evolved COP instances, we identified the features of the constraints that
influence the problem difficulty (in Chapter 3, 4). We extended the study
by conducting a feature-based comparison of various types of evolutionary
algorithms such as DE, ES and PSO. In Chapter 5, we then used a multi-
objective algorithm as an evolver to generate instances that are hard/easy
for one algorithm, but still easy/hard for the others. Analysing the con-
straint features of these evolved instances helps us extracting the knowl-
edge regarding the strengths and weaknesses of various algorithm types by
examining why an algorithm fails while the other performs better.

Building on the evolved instances from evolving approach, we con-

115



sider how a prediction model can predict a most suited algorithm type
for a given COP. Experimenting various subsets of evolved instances from
multi-objective evolver population for the model training phase, we identi-
fied its best customisation. Based on the results in Chapter 6, using a com-
bination of Pareto front and more random instances from a multi-objective
evolver in the learning phase increased the reliability of the prediction
model. The experimental evaluation showed the accuracy of the proposed
prediction model and its ability to predict the right algorithm type, based
on the constraint features of a given COP.

In summary, the feature-based analysis provides new insights into con-
strained optimisation problems. The novel feature-based analysis of COPs
not only provides guidance to implement a prediction model based on the
knowledge, but also can help practitioners to study the strengths and weak-
nesses of the evolutionary algorithms. This study was the first step in COP
feature-based analysis with its ability to find the relationships between al-
gorithm performances and constraint features. By using knowledge from
evolved instances, the outcome of the study shows how to use an evolving
approach and features of COPs to design a successful algorithm selection
framework. Finally, the prediction model provides valuable insights into
the algorithm themselves, in terms of the kinds of problems that an algo-
rithm would potentially struggle to solve.
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