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Abstract

Three projects are presented, all using comparison data to investigate representations. Processes
of comparison are the focus here because of the strong links they create between the abstract
representations much of cognition aims to study and unambiguous choice outcomes. The superfical
similarities between these projects, that they all use browser based studies to reach relatively large
numbers of people, and apply quantitative models to summarize and interpret the results, derive
from two things: a common set of concerns with representation structure, and the use of comparison
tasks to contrive situations where different representations predict different task behaviors. These
basic ideas are applied across different domains to address current questions of representation and
measurement in similarity and language.

The first section compares two prominent theories of similarity judgment, transformational
similarity and structural alignment, across three studies. The first of these constructs triad stimuli
such that the two approaches make opposite predictions, the second measures similarity using
an alternative measure of same-different discrimination speed, and a third applies both tasks to a
common set of stimuli to clearly resolve their similarities and differences. The results show evidence
of a misspecification in the APPLY rule of the transformational account current for geometric shapes,
and also show that while same-different discrimination and deliberative comparison measures of
similarity judgment are largely consistent, there are differences which appear to arise due to the
different time constraints of the two tasks.

The second section investigates a paradigm for testing the impact of transformation learning on
similarity and categorization judgments. In this paradigm, a common set of test items follows two
different training conditions, such that no test item is present in any training, and the status of each
test item as a match, near match, or non-match to the training varies by condition. Responses to
identical test items are compared across training conditions to expose the impact of transformation
training on similarity and categorization judgment. Across multiple iterations of this basic design I
show that the transformations are learned, and that transformation learning does impact similarity
and categorization judgment. Change in similarity and categorization ratings due to training
are largest in the easiest training conditions where transformations are presented explicitly to
participants during training, and less pronounced when transformations are presented implicitly.
Some generalization of learning is shown across related transformations, suggesting some similarity
structure among transformations.

The third section moves into empirical studies of syntax, comparing different ways of measuring
sentence acceptability, the degree to which a sentence appears well-formed to a speaker of that
language. This is related to the similarity work in the first and second sections through its use of
Thurstonian modeling for structure discovery, which is capable of inferring acceptability scores for
each sentence while also avoiding the need to present a rating scale of any kind to participants.
This study complements existing work on the Type 1 and Type 2 error rates of the most common
measurement techniques with its investigation of within and between participant test-retest reli-
ability. The Likert task is found to be particularly effective. The results presented here show it
has particularly good reliability properties and help empirically validate the common practice of
interpreting averaged Likert ratings as a fine-grained measure of gradient acceptability.
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Comparison and representation

This thesis describes three different projects that all use comparison judgment data to try and
shed light on the kinds of representations people use. Part II describes a comparison between
two prominent theories of similarity judgment, which I tested with ABX triads and same-different
comparisons. The results of this study suggested new questions, particularly surrounding the
role of transformations in defining categories and similarity, which I tested with another series of
comparison judgments, described in Part IT Chapter 5. Part III describes a project looking at the
psychometric properties of several common sentence acceptability judgment tasks. Although the
final results were presented as a methodology paper for experimental linguistics, its original point
of departure was a representation question about the structure of sentence acceptability, which
motivated a novel adaptation of a well-known procedure in psychophysics based on comparisons,
Thurstonian modeling.

So why all the comparisons?

Comparisons are one particularly convenient way to test otherwise unobservable mental repre-
sentations with simple unambiguous outcomes like clicking a button or tapping a key. Historically,
psychology’s shift to emphasizing the value of data — as opposed to introspection — came with
an explicit refusal to consider complex mental states, not necessarily because they were thought
to be false, but because they were unfalsifiable (Watson, 1913; Skinner, 1938). Psychology owes
its status as a ‘real science’ to these early empiricists, but the commitment of the new data-driven
psychology to simplicity was challenged by data sets that clearly supported the conclusion that
complex mental representations must be involved. The most famous of these was in the domain
of language, where Chomsky (1959) painstakingly demolished the simple input-output mapping
description of language put forward in Skinner’s Verbal Behavior (Skinner, 1958) in favor of more
complex structure: a grammar. What made this such a departure from the prevailing behaviorist
philosophy of the time was the fact that these mental structures were not directly observable.
However, relatively straightforward facts about language, for instance the apparent need for recur-
sion (Hauser, Chomsky, & Fitch, 2002), has put Occam’s razor firmly on the side of the structured
representations. Having said that, it’s interesting to note that current proponents of the generative
grammars first proposed in this early anti-behaviorist salvo are still engaged in an ongoing debate
over the status of data in this line of work (Featherston, 2007; Gibson & Fedorenko, 2013; Gibson,
Piantadosi, & Fedorenko, 2011), an issue the final section of this thesis engages with directly.

So what was it about language that made it possible to convincingly lift the lid on the be-
haviorist black box? Is there a way to do the same thing for other cognitive abilities, such as
categorization or similarity judgment? Any task that engages the putative representation is a
candidate, but not all tasks are equally useful in this regard. As well as engaging the relevant
representations in a meaningful way, a useful task should not restrict or direct responses such that
the task structure masks representational structure, and must also create situations where different
ways of representing the stimuli imply clearly distinct outcomes in responses.

Comparisons have the key properties required. First, comparisons between things necessarily
involve some commitment to a particular representation: there is no such thing as a generic
comparison, only a comparison in some respect, whether this is weight, height color, likelihood of
causing major bodily harm, or some other basis of comparison (Goodman, 1972; Watanabe, 1969;
Medin, Goldstone, & Gentner, 1993). Comparisons typically also result in unambiguous decisions.
Once people have concluded that something is heavier, taller, redder, or more dangerous, this
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conclusion is readily converted unambiguous outcomes such as clicking a button, positioning a
slider, or running away. By linking unambiguous observable outcomes with mental representation,
comparisons are one way of supplying evidence relevant to the structure of those representation in
property induction, categorization, or grammatical acceptability.

Chapter 3 describes a project where comparisons were used to contrast two different approaches
to structured similarity: that is, ways of calculating similarity scores that leverage structured
representations. People were asked to judge which of two possible alternatives was more similar
to a reference item, with the different accounts of similarity making different predictions about
which option would be chosen. Follow-up work used another type of comparison, speeded same-
difference judgments, to test the same two approaches in a different but related task. On the basis
of these results, I identify a particular mis-specification in the implementation of transformational
similarity current in the literature for geometric shapes, and discuss how different instantiations of
the general framework might accommodate them. This project also showed differences between the
deliberative comparison and speeded same-different tasks, adding to existing accounts describing
similarity judgment as a process that unfolds over time (Lovett, Gentner, Forbus, & Sagi, 2009;
Sagi, Gentner, & Lovett, 2012).

Chapter 5 describes a project that used comparisons to train people on new transformations. In
one experiment, people are shown a reference item and asked which of two alternatives belonged
to the same category; in another, people are shown two items and asked if they were from the
same category or not. All test questions are also in the form of comparisons, asking people how
similar two test items were or how likely they were to belong to the same category. The core of this
study is the way it manipulates the relationship between the training and the test items: using two
different transformation training conditions, test item identity is controlled while manipulating
test item status as related or unrelated to training. Although transformation learning is quite
general, and relatively little is known about the status of distinctive transformations as features,
the results of this work are most relevant to the transformational account of similarity discussed
in Chapter 3. The transformational account predicts particularly large changes in similarity when
learning a new transformation, and also requires fast transformation learning in new domains. The
results regarding these two properties are somewhat inconclusive: people do show changes in their
similarity and categorization judgments based on training experience, but are also highly sensitive
to task difficulty. One interesting outcome of this work is evidence that in some conditions people
generalize learning across related transformations, suggesting the existence of family resemblances
between transformations.

Part III moves to a new application domain, sentence acceptability rather than similarity, but
applies of many of the same ideas. In it, I take the well established Thurstonian modeling approach
from psychophysics, which is based on comparison data and has deep connections with geometric
accounts of similarity spaces (Ennis & Johnson, 1993), and adapt it to a linguistics question about
the structure of sentence acceptability. The Thurstonian method is particularly well suited to the
question of how sentence acceptability is structured, for example whether it is clustered or smoothly
varying, because of the way the comparison data it is based on is agnostic as to structure. In this it
is unlike popular scale based methods such as Likert scales. A second contribution of this work is
the contrast it draws between within and between participant reliability, which allows conclusions
to be drawn about the relative contribution of different sources of variability to the overall reliability
of sentence acceptability scores. Together, these are complementary lines of investigation that give
a detailed quantitative picture of the bias and variance inherent to the different measurement tasks.

Perhaps surprisingly, one striking result of this work was the observation that averages of z-
transformed Likert scale ratings give essentially identical acceptability scores to the Thurstonian
estimates in this context. This suggests that the standard warnings against over-interpreting Likert
scale data based on the ordinal nature of the scale may be overly conservative for the particular
case of sentence acceptability, since when a scale-free comparison based method is used, the same
results are obtained. Although there is reassuringly high agreement between the acceptability
scores assigned to sentences under each method, they are not equally efficient or reliabile. A
quantitative investigation into the causes of this variation in efficiancy and reliability forms the
main content of Chapter 7.

It would be fair to say that this is a diverse set of studies. They're related to somewhat
different literatures within cognitive science, although they do share a set of common concerns to
do with representation structure. Methodologically, the first and third sections can be considered
opposites: in the investigation into similarity in Chapter 3, I take the models as given and search
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for diagnostic stimuli, whereas when looking at sentence acceptability in Chapter 7, I treat the
stimuli as given and try to build a model that can summarize comparisons over these stimuli in an
informative way.

However the projects are also related to each other. Their superficial similarities as browser-
based studies of people’s behavior in contrived experimental scenarios all derive from the heavy
use of comparisons. There are other ways to achieve the same thing, but here it is the use
of comparisons that gives rise to the key task properties enabling these studies to leverage the
power of browser-based studies: comparison tasks engage relatively high level representations not
dependent on the fine details of the physical display, produce unambiguous behavioral response
outcomes, and can be used to construct situations where different responses distinguish between
different representations.

11
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Contrasting accounts of similarity

This section aims to motivate why similarity is worth studying at all, and gives a brief sketch
of the main approaches, situating the particular debate that this work aims to contribute to.
The motivating logic of the study presented here is outlined, followed by a detailed manuscript
presentation of the work.

2.1 Studying similarity

Similarity is a fundamental construct in cognition, forming a critical component in accounts of
categorization (Nosofsky, 1986), memory (Chater & Brown, 2008; Forbus, Gentner, & Law, 1995;
Hitzman, 1986), property induction, (Smith, Shafir, & Osherson, 1993), problem-solving (Riesbeck
& Schank, 2013), and language (Sassoon, 2011).

One simple reason for this broad popularity is that similarity, conceived of as an arbitrary oper-
ational construct, is useful in accounting for people’s behavior. For example, in category learning,
people remain sensitive to the number of shared features between test items and training exem-
plars even when those shared features are irrelevant or misleading (Brumby & Hahn, 2017; Hahn,
Prat-Sala, Pothos, & Brumby, 2010), suggesting ubiquitous and automatic similarity processing.
Meanwhile, in the otherwise unrelated field of natural language processing, an analogous process of
automatic reference to similarity information is one way of accounting for the way people introduce
knowledge about the world when parsing natural language structures that are thought to be hard
to distinguish on the basis of linguistic experience alone (Milajevs & Griffiths, 2016).

However observing that ‘similarity’ is a useful term in a diverse range of settings begs the
question of why this concept is useful, and how best to define it.

One possible grounding point for similarity starts with property induction, which admits a
normative treatment (Russell, 1986; Tenenbaum & Griffiths, 2001) formally describing the essential
survival ability of being able to make coherent decisions in the face of a changing world that can
never be experienced in exactly the same way twice. Cognitive agents need to know things like
which temperatures are reasonable for hatching eggs, or what color range indicates a fruit is ripe,
without necessarily seeing eggs hatch or fail to hatch across all possible temperatures or tasting
fruit of every possible color. Intuitively, it seems obvious that apples similar in color will be similar
in ripeness, without ever being perfectly identical in either property: the appeal of normative
property-induction accounts of similarity is that they show formally why it might be natural to
consider this intuitive and obvious. The critical features of the world that lead to a similarity
gradient in this sense are just that the property of interest exists in a well behaved consequential
region of psychological space, and the agent is trying to infer the extent of the consequential region
using one or more samples from the space.

There is some scope for variation in the definition of what constitutes a ‘well behaved’ region:
for Shepard (1987), who derived some of the earliest and best known results in this area for the
case of a single data point, a well behaved consequential region was continuous, finite, symmetrical
around its center, and convex. This account also provisionally assumed that example points were
uniformly sampled across the space, and that the space itself was metric. Later work has relaxed
some of these assumptions, broadening the possible ways examples could be sampled (Navarro,
Dry, & Lee, 2012), allowing for the possibility of complex (possibly disjoint) consequential regions
(Navarro, 2006), and re-deriving essentially the same conclusions for data sets consisting of multiple
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points in various non-metric spaces (Tenenbaum & Griffiths, 2001; Chater & Vitényi, 2003).

The ability to infer consequential regions of practical equivalence is broadly applicable, and can
be interpreted as behind many of the applications cited above to show the popularity of similarity
as a construct. For example, applied to the ‘group membership’ property, it becomes an account
of of categorization, and underpins several successful approaches, notably ALCOVE (Kruschke,
1992), SUSTAIN (Love, Medin, & Gureckis, 2004) and the GCM (Nosofsky, 1986). Applied to
the ‘identity’ property it becomes an account of similarity-based recognition memory (Davis, Xue,
Love, Preston, & Poldrack, 2014), and so on for the many properties at various levels of abstraction
that people might find consequential.

Successful as it has been, normative property induction gives an incomplete account of similarity
in at least two major ways (Boroditsky & Ramscar, 2001). One is that proporty induction is ill-
suited for calculating a level of similarity between stimuli from their observed features, where the
need for induction does not obviously apply. The other is its fundamental dependence on the
structure of the psychological space, which could be interpreted as usurping all the explanatory
power, especially if it varies substantially from context to context.

Property induction makes a poor basis for similarity when comparing known common and
distinctive features of two things because of the danger of falling into a circular definition. It is
clearly vacuous to say that things are similar when they share features and likely to share features
when they are similar (Boroditsky & Ramscar, 2001; Hahn & Chater, 1997). As Goodman (1972)
argued, when observing rather than inferring features, the need to define of what counts as a feature
does all of the explanatory work attributed to similarity. If similarity is interpreted as an estimated
probability of sharing additional unobserved features, the question is which features add to the
count? Weighing more than 75kg may be a critical feature when comparing two boxers, but not
two oil tankers, then there’s also the feature of weighing more than 76kg, and 77kg, and so on up
to the feature of weighing more than 100,000 tons, which is a relevant feature of contrast among oil
tankers, but not for nebulae or ants. Even without changing the subject of comparison similarities
can vary by context, for example when household items are being grouped in the context of packing
for a holiday versus the context of a house fire (Barsalou, 1983).

One possible resolution to this twin challenge of underspecification and heterogeneity of simi-
larity is explored in detail by Medin et al. (1993). This work essentially accepts the main criticism
that the basis of comparison is ‘doing all the work’ but considering the basis for comparison itself
as the object of study. Under this view, these two concerns are related by the central question of
specifying the appropriate representation space, a necessary prerequisite for the property-induction
accounts. It’s not that property induction accounts of similarity have failed to consider this is-
sue. Quite the opposite, moving from a physical description of the stimuli to a psychological
representation space was a key contribution of Shepard’s systemization of similarity. For example,
the attested confusability of red and violet makes little sense in terms of wavelengths, which do
not loop, but can be coherently described with an appropriately structured color wheel, which
does (Shepard, 1957, 1962). Although Shepard originally worked with metric psychological spaces
(Shepard, 1987), this assumption is not strictly necessary (see Tenenbaum & Griffiths, 2001; Chater
& Vitdnyi, 2003). However, allowing such richly structured spaces only makes property-induction
accounts of similarity more dependent on how that space is specified, and there is no universal
normative guide for how such spaces should be constructed (Bellet, Habrard, & Sebban, 2013;
Edelman & Shahbazi, 2012; Shahbazi, Raizada, & Edelman, 2016).

One approach to this problem of determining the representation space starts with structure
in the world and asks how people might learn representations such that similarity ‘just works’
in the sense of giving well-behaved consequential regions for properties of interest. A relatively
extreme version of this kind of approach was explored by C. Kemp, Bernstein, and Tenenbaum
(2005), investigating a specific definition of similarity in terms of inference about generative pro-
cesses. This breaks the potential circularity in inferring similarity from features and features from
similarity by appealing to causal processes in the world. Other work grounding representation in
the structure of the environment has shown people learning whether dimensions are integral or
separable (Austerweil & Griffiths, 2010a), and weighting dimensions according to their importance
in a category learning task (Goldstone & Steyvers, 2001), both critical properties for calculating
similarity distances.

Chapter 5 of this thesis uses an approach somewhat related to these, exploring a possible
relationship between learning and similarity judgment for the case of transformation features.
Chapter 3 focuses on the other main avenue of research exploring the structure of the representation
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space: evaluating process models accounting for people’s behavior in similarity-related tasks, with
representations initially set by theoretical fiat and then justified — or adapted — iteratively with
reference to empirical data.

As noted by Gentner (2001), process level theories specifically address the issue of defining a
hypothesis space conspicuously absent from arguments based on normative property induction,
although the models are not always described in these terms (see eg. Soto, Gershman, & Niv,
2014). The work presented in Chapter 3 is relevant to two such process models, transformational
similarity and structural alignment, with a particular focus on the core issue of the representations
they use.

The most studied approaches to representation in similarity can be broadly grouped into ge-
ometric, feature-based, alignment-based, and transformational accounts (Goldstone, Day, & Son,
2010; Hahn, 2014). Geometric accounts of similarity are often associated with the Shepard’s work
on multidimensional scaling (MDS) (Shepard, 1957). Developed alongside the property induction
systemization of similarity discussed above, MDS maps similarity judgments to a coherent similar-
ity space. It quickly found applications in a range of structure-discovery problems across phonetics,
color, word meaning, memory, and visual discrimination, among others (Shepard, 1974). The tech-
nique has proven extremely fruitful and is still in use (see eg. Nosofsky, Sanders, Gerdom, Douglas,
& McDaniel, 2017). However, Tversky (1977) pointed out two features of the approach that put
it at odds with known properties of human similarity judgment: first, that stimuli are adequately
represented as points in some coordinate space, and second, that the similarity spaces were met-
ric. Having shown that the metric properties of symmetry, maximum similarity at identity, and
the triangle inequality were violated by human similarity judgment, Tversky (1977) proposed the
Contrast Model as an alternative. The Contrast Model, based on feature-set overlap, captured
these human-like violations of the metric axioms.

Both of these highly successful ‘classical’ approaches can be considered unstructured theories
of similarity, since they do not account for relationships between features, whether these are rep-
resented as dimensions of a coordinate space or members of a feature set. People, on the other
hand, do seem sensitive to such relationships. For example, a black square and a yellow triangle
seems more similar to a black square and a blue circle than a black circle and a blue square, despite
the fact that the features ‘black’ and ‘square’ appear in both alternative options: the fact that
black and square are bound together is highly salient (Goldstone et al., 2010). Preserving this
intuitive effect by allowing conjunctive features such as ‘black-square’ leads to a combinatorial
explosion in the number of features (or dimensions) these unstructured models need to consider.
The non-independence of features (Goldstone, Medin, & Gentner, 1991) suggests human similarity
judgments require structured representations (Biederman, 1985, 1987; Wattenmaker, Nakamura,
& Medin, 1988; Likavec & Cena, 2015; Markman, 1999; Yuille & Kersten, 2006).

The work presented here aims to help differentiate two particular approaches to structured
representations in similarity judgment, structural alignment and transformational similarity. Al-
though not the only possibilities (see eg. Pothos & Busemeyer, 2011), these two approaches to
similarity judgment with structured representations have been particularly prominent. Despite
being based on fundamentally different theoretical conceptions of structure, the two approaches
have previously proven hard to distinguish due to their highly similar predictions in common test
domains.

2.1.1 Two approaches to structure

Structural alignment approaches to similarity (Markman & Gentner, 1993b) build on structure
mapping (Gentner, 1983), originally a theory describing how features and their relations to each
other could be aligned in analogy. Taking as a starting point prepositional representations and a
basic set of desiderata for analogy processing, notably structural consistency (requiring matching
relations to have matching arguments, and enforcing 1-1 mappings), relational focus (privileging
relationships over more superficial attributes), and systematicity (preferring a connected series of
matches over an equal number of disconnected matches), structure mapping provided a model
capable of capturing human-like inferences about analogies such as “an electric battery is like a
reservoir” or “an atom is like the solar system” (Falkenhainer, Forbus, & Gentner, 1989). The
approach has since been extended from analogy to other related domains, including similarity
(Gentner, Rattermann, Markman, & Kotovsky, 1995; Gentner & Markman, 1997; Markman &
Gentner, 1993a; Taylor & Hummel, 2009), where the ‘goodness of fit’ of an alignment between the
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representations may be interpreted as a measure of their similarity. This core idea of structural
matching is implemented in a variety of ways by a family of related models, notably STAM, CAB,
and LISA, (Goldstone, 1994; Larkey & Love, 2003; Hummel & Holyoak, 2005) although this list is
by no means exhaustive (Guan, Wang, & Wang, 2008).

In contrast, transformational similarity (Hahn, Chater, & Richardson, 2003) takes Kolmogorov
complexity as its underlying theoretical basis (Ming & Vitanyi, 1997), quantifying the similarity
between two representations as the length of the shortest program capable of transforming one
into the other. The information theoretic basis of this approach leads to a number of attractive
properties, notably linking similarity with a normative need for simplicity assumptions in pattern
discovery (Chater, 1999), and allowing a re-derivation of Shepard’s celebrated law of generalization
(Shepard, 1987) for arbitrary representations (Chater & Vitanyi, 2003). Since finding the shortest
program for a given transformation is in general uncomputable (Ming & Vitdnyi, 1997), attempts
to apply this theoretical framework to models of human behavior have focused on specific imple-
mentations which fix a set of allowable transformations and compute similarities in terms of the
number of basic operations in the shortest route from one representation to the other (Imai, 1977;
Chater & Hahn, 1997; Beltran, Liu, Mohanchandra, & Toussaint, 2015; Gershman & Tenenbaum,
2015).

Despite the very different origins of these approaches, they have been surprisingly difficult to
differentiate. As detailed below, both enjoy a measure of empirical support, and make many of
the same predictions.

2.1.2 When two approaches is one too many

One early effort to compare these different approaches to similarity judgment was carried out by
Larkey and Markman (2005). This study contrasted transformational similarity and three different
flavors of structure mapping (SME, STAM, and CAB) on stimuli consisting of pairs of geometric
shapes. A single item consisted of two shapes, and each trial consisted of two items, which were
rated by participants for similarity on a 1-6 scale. In this study, Larkey and Markman (2005)
found that STAM outperformed the other approaches.

It’s possible, however, that this particular test used a misspecified instantiation of the trans-
formational approach. In particular, the predictions attributed to transformational similarity in
Larkey and Markman (2005) were based on the premise that each unique physical relationship be-
tween stimulus components would be addressed with a single unique transformation. In response,
Hodgetts, Hahn, and Chater (2009b) proposed a particular set of transformations appropriate to
geometric shapes -CREATE, APPLY, and SWAP— emphasizing that transformations should be applied
at the level of representations rather than physical objects. This instantiation of the transforma-
tional approach fit experimental data well. Hodgetts et al. (2009b) showed that models based on
a differential weighting of matches in place (MIPs) and matches out of place (MOPs), the ba-
sic units of structural alignment approaches, could not match the performance of this particular
transformational account on their data.

In the same year, Hahn, Close, and Graf (2009) showed that the transformational account
naturally predicted comparison-direction asymmetries in similarity judgment. Asymmetries arise
in the transformational approach whenever the number of basic transformations needed to trans-
form A into B is not the same as the number of transformations needed to turn B into A. The
transformations used in this case were relatively complex shape morphs, for example a flat shoe
gradually changing into a high heel. A ‘preferred’ or ‘more available’ transformation direction
was induced by giving participants training experience with the transformation in a particular
direction. The observation that participants did indeed give higher similarity ratings to objects re-
lated by a transformation in the trained direction is somewhat problematic for alignment accounts.
Morph direction was counterbalanced across participants, meaning that either direction of com-
parison could be considered more similar depending on training experience. Under an alignment
account, much like the Contrast Model, similarity asymmetries are most naturally accounted for
by systematic differences in the representation of the base and target items: asymmetries are ex-
pected when the base representation has a richer or more systematically organized representation,
which maximizes the amount of information that can be mapped from base to target (Gentner &
Markman, 1997; Medin et al., 1993). It is unclear how experience with a morphing transformation
might change the representation of the base item in the required way, inducing a richer or more
systematic representation of the base.
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Although able to capture these asymmetry effects in a simple and coherent way, the transfor-
mational approach faced strong criticisms on other grounds by Grimm, Rein, and Markman (2012).
The model comparisons presented in Hodgetts et al. (2009b) were questioned on the grounds of
the hidden degrees of freedom involved in specifying an appropriate transformation set, and seri-
ous challenges were raised with regard to the kinds of transformations that could be considered
feasible. In particular, in a sequence of three related studies with geometric shape stimuli, Grimm
et al. (2012) showed the existence of context effects, where differences between stimuli thought
to correspond to the same transformation had a larger or smaller impact on similarity depend-
ing on whether the transformations were configuration-preserving or configuration-breaking (with
reference to Gestalt principles of perceptual organization (Garner & Clement, 1963)). Context
sensitivity (and the need for different weightings on different transformations highlighted in their
experiment 3) would seriously complicate the calculation of transformation distances. Even without
these factors, the computation involved in calculating transformation distances can be non-trivial
(Miiller, van Rooij, & Wareham, 2009). With them, Grimm et al. (2012) argue that the approach
is infeasible.

Hodgetts and Hahn (2012) demonstrated more asymmetry effects consistent with the transfor-
mational account of similarity. Given the publication dates, it would be unfair to criticize this work
for not directly engaging with the challenges raised by Grimm et al. (2012). Instead, it extended
the reach of the transformational similarity account: it used same-different discrimination time as
a fine-grained implicit measure of similarity, and found evidence of an asymmetry effect naturally
predicted by the transformational account but potentially hard to capture with other approaches.
Although it does not engage with the question of context effects, this work does implicitly reply
to the charge of hidden degrees of freedom when choosing the transformation set by re-applying
the original transformation set from Hodgetts et al. (2009b) without adaptations to new data in a
quite different task.

The motivation for the work presented in Chapter 3 was this unresolved status of the ongoing
debate between transformational and alignment approaches to similarity. Both approaches enjoyed
a measure of empirical support (Beltran et al., 2015; Gershman & Tenenbaum, 2015; Forbus,
Ferguson, Lovett, & Gentner, 2016) and both could claim to have been endorsed in direct model
comparisons. Transformational similarity’s success in direct comparison was slightly more recent,
following the introduction of a representation-level transformation set apparently well calibrated
to similarity judgments on pairs of geometric shapes, although there seemed to be no published
answer to the strong arguments raised by Grimm et al. (2012) regarding how that set was selected,
except indirectly via the successful application of it to a new task in Hodgetts and Hahn (2012).
The work in Chapter 3 aimed to contribute to this debate by contriving an experimental task
which created a direct conflict between the predictions of the two approaches.

To find stimuli where different theories of representation made different predictions, I turned
to comparisons. Initially, I constructed a set of triads where the two approaches made different
predictions about which of two options was most similar to a reference item. Follow-up work
replicated the same-different task used in Hodgetts and Hahn (2012), but using stimuli aimed at
providing diagnostic discrimination between the two approaches (rather than testing for asymmetry
effects, as in the original). The two different tasks gave seemingly conflicting results. I therefore
carried out a third experiment designed to disentangle this apparent contradiction by elements
from both previous experiments. The results of this third experiment suggested a particular
misspecification in the transformation set current for geometric shapes, and critical differences
between the tasks due to their different time profiles.
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Chapter 3

Transformation or alignment?

This section reproduces a manuscript currently under review, Are mental representations aligned
or transformed? A comparison between two accounts of similarity-based choice with authors Steven
Langsford, Daniel J Navarro, Amy Perfors, and Andrew Hendrickson.
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Chapter 3 8.1. Introduction

Current theories of stimulus similarity propose that people possess structured represen-
tations of stimuli, and that comparisons between items are made by processes defined
over these representations. Two of the most prominent of these theories are the struc-
tural alignment view and the stimulus transformation view, which have proven difficult
to discriminate empirically. In this chapter I present three experiments using the sim-
ple geometric stimuli commonly used to evaluate these theories, selecting stimuli for
which the two competing theories make qualitatively different predictions. Experiment
1 presents evidence from a forced choice task in which participants need to decide which
of two alternatives is more similar to a reference item, and appears to find very strong
support for the alignment approach. Experiment 2 presents evidence from reaction
times in a same-different judgment task, and finds moderate support for the transfor-
mation approach. A third experiment aims to reconcile these findings by presenting
both tasks to the same participants with a common set of stimuli. I find that that
(a) the tasks do indeed produce slightly incompatible measures of similarity due to
the different demands of a discrimination task and a similarity comparison and (b)
the “strong” results in Experiment 1 arise due to a slight misspecification in how the
standard version of the transformational model is usually implemented, and requires a
modification to the “apply” operation to be consistent with empirical data.

3.1 Introduction

Similarity is an important theoretical construct in cognitive science, and plays a central role in
models of categorization (Nosofsky, 1986), memory (Baddeley, 1966; Shulman, 1971), reasoning
(Riesbeck & Schank, 2013), problem solving (Novick, 1988), and others. Despite its importance
as an explanatory principle, similarity is notoriously difficult to define. It cannot be defined on
purely logical grounds (e.g., Goodman, 1972) and the empirical literature makes clear that —
among other things — similarity is a flexible quantity that depends on context (e.g., Watanabe,
1985; Barsalou, 1983) and reflects a decision process that unfolds over time (e.g., Goldstone &
Medin, 1994; Hendrickson, Navarro, & Donkin, 2015).

As a consequence, there are several theories that seek to explain how similarity is constructed
from more primitive mental representations (see Goldstone et al., 2010, for a review). Early
work developed models describing similarity as distances in psychological space (Shepard, 1962)
or as a function of the number of common and distinctive features (Tversky, 1977). In many
situations these simple models work reasonably well (Borg & Groenen, 2005; Tversky & Gati,
1982; Eidenberger & Breiteneder, 2003), but there is now a substantial literature highlighting the
systematic ways in which they fail to capture human intuitions about similarity (e.g., Wattenmaker
et al., 1988; Fodor, 1975). As a consequence, recent theories have sought to describe similarity in
terms of more complex processes defined over structured mental representations. The two most
prominent approaches are the structural alignment view (Markman & Gentner, 1993b, 1993a;
Gentner & Markman, 1997) and the stimulus transformation view (Chater & Hahn, 1997; Hahn et
al., 2003; Hahn, 2014), and in recent years a number of papers have sought to discriminate between
them (Larkey & Markman, 2005; Grimm et al., 2012; Hodgetts et al., 2009b; Hodgetts, Hahn, &
Chater, 2009a), with somewhat mixed results.

The work presented here constructs diagnostic tests by focusing on comparisons in which formal
models based on the transformational theory make qualitatively different predictions from those
made by models based on structural alignment. I conducted three experiments involving two
tasks, one a two alternative forced choice task and the other a speeded same-different task. In
the forced choice task (Experiment 1), people’s preferences closely matched the predictions of
the alignment model, yet a similar approach in a speeded same-different choice task (Experiment
2) suggested a slight advantage for the transformational approach. An attempt to resolve this
contradiction by presenting both tasks with a common set of stimuli (Experiment 3) suggests that
the apparently-conclusive results from Experiment 1 arise because my “diagnostic” items all exploit
a single point of failure in how the transformational model (Hodgetts et al., 2009b) instantiates a
transformational theory of similarity (specifically, how the APPLY operation works). The chapter
concludes with a discussion of how different tasks appear to measure slightly different notions of
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(a) structural alignment (b) stimulus transformation
111xxx1
111xxx1 Oyz000
step 1: create 0
step 2: apply 1 =+ 0
slot 1 slot 2 slot 3 slot 1 slot 2 slot 3
000xxx0
numeric text numeric numeric text numeric
step 3: flip left to right
length 3 || length 3 || length 1 length 1 || length 2 || length 3
value 111 ||value xxx || value 1 value 0 || valueyz ||value 000
0Oxxx000

step 4: create yz

slot 3 : slot 1
step 5: apply xxx = yx

2MOPS

slot 2: slot2
1MIP

slot 1: slot 3 OyZOOO

2 MOPS

1 MIP + 4 MOPS 5 transformations

Figure 3.1: Two different mechanisms by which people might judge the similarity of structured
stimuli such as 111xxx1 and 0yz000. The structural alignment view (panel a) assumes that features
can appear in specific slots, and assesses similarity in terms of features that have the same values
in the same slots (MIPs) and features that have the same values but appear in different slots
(MOPs). The transformational view (panel b) assumes that the dissimilarity between two items is
a function of the number of distinct operations required to transform one stimulus into the other.

similarity, and comment on the constraints that this data set impose on theoretical models of
similarity comparison.

3.1.1 Similarity as structural alignment

The structural alignment approach to similarity takes its inspiration from theories of analogy
(Gentner, 1983; Gentner & Markman, 1997). In these theories a stimulus is not merely represented
in terms of a set of features: features are bound to specific “slots” or “roles”. As is the case for
simpler feature-matching models, the similarity between two stimuli is driven by correspondences
between their features. However, unlike feature-matching models, the contribution of a particular
shared feature is dependent on the context in which they appear. If the shared features both
serve the same role (or appear in the same slot) they will typically make a larger contribution to
similarity. This kind of feature match is referred to as a match in place (MIP). In contrast, when
a shared feature appears in different slots, it constitutes a match out of place (MOP) and typically
makes a much smaller contribution to stimulus similarity. Illustrating this idea, Figure 3.1a shows
how a very simple structural alignment model might assess the similarity between the strings
111xxx1 and O0yz000. A natural way to represent these stimuli is to break them into three slots,
yielding representation that looks like [111] [xxx] [1] and [0] [yz] [000]. The contents of each
slot could be characterized in terms of a set of features (e.g., numeric, length 3, etc.), and a natural
way of aligning these structures might be to map slot 1 of the first item onto slot 3 of the second
one. Because 111 and 000 are both numeric and length 3, this mapping yields two matches, and
since these matches occur in the context of mapping two different slots (i.e., slot 1 to slot 3), this
correspondence yields two MOPs. In contrast, if slot 2 of the first item is mapped onto slot 2 of
the second item, the one feature shared by xxx and yz yields one MIP.

The structure mapping process shown in Figure 3.1 highlights the fact that there are a number
of substantive choices that need to be made when developing a concrete model. In the first instance,
the structure needs to be defined. A representation in which 111xxx1 is divided into three slots
[111] [xxx] [1] can yield different results to one in which each character is a separate slot (i.e.,
(11011 [1] [x] [x] [x]1 [1]). Similarly, the mapping process needs to be specified. In Figure 3.1,
each slot from the first stimulus is mapped to exactly one slot in the second stimulus, producing
a strictly consistent map. However it is entirely possible that similarity judgments are less than
strict, and might allow (for instance) the 111 in slot 1 of 111xxx1 to be partially matched (in
place) to the 0 in slot 1 of 0yz000 in addition to partially matching (out of place) the 000 in slot
3. Because of these issues, there are several different ways in which the structural alignment view
has been instantiated as a formal model of similarity, including STAM (Goldstone, 1994) and CAB
(Larkey & Love, 2003). A variety of models are compared side-by-side in Larkey and Markman
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(2005), but here it will suffice to consider a very simple approach that counts the number of MIPs
and MOPs, insofar as most of these models make similar predictions for the stimuli considered
here.

3.1.2 Similarity as transformation

The transformational approach (Hahn et al., 2003; Hahn, 2014) defines the dissimilarity between
stimuli in terms of the minimum number of operations that are required to transform one stimulus
into the other (Chater & Hahn, 1997). The more steps required to mentally “transform” one object
into another, the less similar those two objects are. For example, in order to convert 111xxx1 into
000xxx0, all the 1s need to be replaced with Os. In contrast, turning 111xxx1 into 000yz0 would
be a more complicated operation, since that would also require converting the xxx substring into a
yz string. In its most general form, transformation distance can be characterized as a measure of
information distance (Bennett, Gécs, Li, Vitdnyi, & Zurek, 1998), and has a number of desirable
properties. For example, it admits an alternative derivation of Shepard’s much studied universal
law of generalization (Shepard, 1987), but it applies over arbitrarily structured representations
rather than a Euclidean psychological space (Chater & Vitdnyi, 2003).

As with the structural alignment view, the transformational perspective requires the researcher
to make substantive choices in order to produce a specific similarity model. In particular, the
modeler must make choices as to what counts as a single “transformation”. Earlier, when the
example 111xxx1 was turned into 000xxx0 by replacing all the 1s with Os, how many operations
are involved? If each replacement is a single operation, then a total of four operations are involved,
but if several replacements can be applied as a single action then only one is required. Similarly,
does the transformational process get to introduce a new feature (i.e., the 0s) for free, or does it
require an operation to do so?

A number of versions of the transformational approach have been considered in the literature
and applied to different domains. Early work considered transformations that are most applicable
to binary strings (Imai, 1977), but other models have been defined and tested for simple geometric
shapes (Hodgetts et al., 2009b), complex real-world visual objects (Hahn et al., 2009), sounds
(Beltran et al., 2015), and spoken words (Hahn & Bailey, 2005). Since the stimuli will consist
of pairs of geometric shapes, I relied on the transformation model described by Hodgetts et al.
(2009b) (see also Cheries, Newman, Santos, & Scholl, 2006; Kdldy & Leslie, 2003; Hodgetts &
Hahn, 2012). According to this model, there are three primitive operations that are relevant to
these stimuli: SWAP, CREATE, and APPLY. These operations are defined in the following way. A
SWAP operation will reverse the positions of two objects or features. When a particular feature
is not already present, a CREATE operation is required to introduce it. Finally, if a feature is
present, it can be APPLIED to as many locations as is necessary using only a single operation. The
free application of subsequent APPLY transformations for a single feature is necessary to explain
previous results in the literature (Hodgetts & Hahn, 2012) and was the basis for the design of
Experiment 1.

The transformational view has been applied successfully in many domains including sounds
(Beltran et al., 2015) and phrases (Gershman & Tenenbaum, 2015), but the evidence has been
rather more mixed in other situations. The impact of any particular transformation on similarity
has been shown to be context-dependent (Grimm et al., 2012), complicating the computation of
transformation distances. It has also been argued that transformational similarity models perform
more poorly than structural alignment models in domains where the two are directly comparable
(Larkey & Markman, 2005), but this claim has been disputed and evidence to the contrary offered
(Hodgetts et al., 2009a).

3.2 Experiment 1

Although structural alignment and stimulus transformation are very different theories, they
are not simple to separate empirically (Larkey & Markman, 2005; Hodgetts et al., 2009a): models
based on both theories tend to produce good quantitative fits to the data. To motivate the first
experiment, consider the three stimuli shown in Figure 3.2. These stimuli are defined in terms of
two slots (left and right), and the objects that fill each slot have two features (shape and color).
The objects shown at the top comprise the base item x, and the two alternatives a and b are shown
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Figure 3.2: An example trial from Experiment 1, using a two alternative forced choice design.
Participants were asked “Which option is most similar to the pair on top?”

below. In a forced choice task, participants are shown all three stimuli and asked to indicate
whether the base item x is more similar to the option on the left (item a) or to the option on the
right (item b). Let S(a,z) denote how similar a is to x, and — in cases when the similarity relation
is asymmetric — let S(x,a) denote how similar z is to a.

What do the models predict about these items? First consider the predictions made by a
structural alignment model. A MIP occurs when a particular feature (e.g., a circle, a square, the
color yellow) appears in the same location. If a feature appears in different location it counts
as a MOP. As illustrated in Figure 3.3, when comparing option a to the base x there are no
feature matches of any kind and so these items are in no sense similar. In contrast, items b and
x both contain crosses and both contain pentagons, but these occur in different positions (e.g.,
the cross is on the left in  and on the right in b). These stimuli share 0 MIPs and 2 MOPs.
Throughout the chapter I consider two variations of this alignment model, a STRICT model that
requires every feature in one stimulus to map to exactly one feature in the other, and a LOOSE
model that considers every possible way of mapping features. Subtle differences in the different
instantiations of the structural alignment view notwithstanding, it seems uncontroversial to claim
that S(a,z) < S(b,x) is a natural prediction for the stimuli in Figure 3.3, as it is for all stimuli in
the experiment.

In contrast, consider the predictions of the transformational model. Assuming that the base
item x is presented to participants first, and that participants assess similarity by attempting
to transform x into the two alternatives a and b, it is clear from inspection of Figure 3.3b that
the transformational view makes the opposite prediction to the alignment view. It takes fewer
operations to transform the base item into the stimulus on the left than to the one on the right,
and thus S(b,z) < S(a,x). That being said — to foreshadow later experiments — it is important to
note that the direction of the transformation is important. Figure 3.3b assumes the transformation
is from base to target, and shows that S(a,z) > S(b,z). However, because the operations are not
symmetric, the similarities often reverse if the transformations are made from target to base,
yielding S(z,a) < S(z,b). Accordingly, there are two versions of the transformational model to
consider depending on assumed direction (FORWARD or REVERSE). Nevertheless, as this example
illustrates, it is possible to construct stimulus triads (a,b,z) that produce a qualitative reversal
in which the transformational view predicts S(a,z) > S(b,z) and the structural alignment view
predicts S(a,x) < S(b,z). The experiments presented here are based on stimuli that possess this

property.
3.2.1 Method
Participants

50 participants were recruited via Amazon Mechanical Turk. Of these 48 were included in the
final analysis, with two exclusions for making two or more errors on attention-check items (see
below). Ages ranged from 19 to 69 with a mean of 33.96, 58% were male. Participants were from
the United States, with one from India. Participants were each paid $1.85 US for an average of 13
minutes work, an effective hourly rate of $8.43.
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(a) structural alignment

pentagon on right :
pentagon on left
cross on left : cross on right

0 MIPs, 0 MOPs 0 MIPs, 2 MOPs

®

step 1: swap

(b) stimulus transformation

+o

step1 create “circle”
step2 apply “circle”

step 2: create “green”
step 3: apply "green”

l'I'

step 3: create “yellow”
step 4: apply “yellow”

step 4: create “blue”
step 5: apply “blue”

L

Figure 3.3: The structural alignment view predicts that the stimulus pair on the right are more
similar than the pair on the left. In contrast, the transformational view predicts that the pair of
items on the left are more similar than the pair shown on the right.
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Table 3.1: The 11 distinct test triads (see main text for details). In all triads there is a base item
(z) and two possible comparison options a and b. In both cases the transformational model judges
the first similarity S(a,z) to be higher than the second one S(b,z). The structural alignment
view always predicts the opposite effect. When describing the transformations below, < denotes
a swap operation @ denotes a feature create operation, and > denotes a feature application. For
clarity, 0> denotes a “double apply” operation in which a feature is applied to two locations.

Alignment
(MIPS-MOPS) Transformation
Base Option | Strict  Loose #  Forward #  Reverse
la | AwBw AxBx 2-0 2-0 2 [ex][>>x 2 |ow][>>v)
1b CwAw 2-1 2-3 3 [ec][>C][«<] 3  [«<][eB][>B]
2a | AwBw CwCw 2-0 2-2 2 [&C][>>C] 4  [@A][>A] [@B] [>B]
2b BwDw 2-1 2-3 3 [@D][>D][«<] 3 [e][eA]l>4]
3a | AwBw AxBx 2-0 2-0 2 [ex][>>x] 2 [ew][>>w]
3b ByAw 1-2 1-3 3 [ey][>y] <] 2 (<] [>w]
4a AwBw BxBx 1-0 1-1 3 [>B] [®x] [>1>x] 4 [@A] [>A] [®w] [>D>w]
4b CyBw 2-0 2-1 4 [&C][>C][@y] [>y] 3 [>w] [@A] [>4]
5a | AwBw BxBx 1-0 1-1 3 [>B][®x][>>x] 4 [@oA][>4] (@] >
5b CwDw 2-0 2-2 4  [&C][>C][@D][>D] 4 [®A][>A] [®B] [>B]
6a | AwBw CxBx 1-0 1-0 4 [&C][>C][@x] [>r>x] 4 [@oA][>4] (@] [>D>u)
6b ByDw 1-1 1-2 5  [@D][>D] [@y] [>y] [«] 4 [e][>v][eA][>4]
7a | AwAx ByAy 1-0 1-1 4  [@B][>B|[®y] [>>y] 5  [>A][ev] [>v] [@x] [>x]
b CzAw 1-1 1-2 5  [@C][>C][@z] [>z] <] 4 [<][>A] [@x] [>x]
8a | AwBx CyCy 0-0 0-0 4 [@C][>>C][@y] [>>y] 8  [@A][>A][@B] [>B] [@w] [>w] [@x] [>x]
8b DxEw 0-2 0-2 5  [@D][>D][®E] [>E] [«<] 5  [<][@A][>A][@B] [>B]
9a | AwBw CxCx 0-0 0-0 4 [eC][>>C] [@x] [>>x] 6  [@A][>A] [®B][>B][@w] [>>w]
9b ByDw 1-1 1-2 5  [@D][>D][@y] [>y] [«] 5  [<][@A][>A] [@x] >x]
10a | AwBx CyCy 0-0 0-0 4 [&C][>>C][@y] [>>y] 8  [@A][>A][@B] [>B] [ew] [>w] [@x] [>x]
10b DwEw 1-0 1-1 5  [@D][>D] [®E] [>E] [>w] 6 [@4A] [>A] [®B] [>B] [@x] [>x]
1la | AwBw CxCx 0-0 0-0 4 [@C][>>C][@x] [>>x] 6 [®@A] [>A] [@B] [>B] [@w] [>>>w]
11b DyEw 1-0 1-1 6  [eD][>D][@E][>E][@y][>y] | 5  [®@A][>A][®B][>B] [>w]
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Materials

As illustrated in Figure 3.2, each stimulus consisted of a pair of shapes, where the shapes in
question could be squares, triangles, circles, pentagons or crosses. Each shape could take on one of
five possible colors: red, green, blue, yellow, and white. On any given trial participants would be
shown three such stimuli, the base item z and the two alternatives a and b. An automated search
was used to construct a set of 11 triads for which the two approaches make opposing predictions,
with the transformational model always predicting that alternative a is more similar, and the
alignment model always predicting b is more similar. The search focused on triads in which the
prediction of the alignment model was identical regardless of if matches were STRICT and each
feature could only match one feature in the other item or LOOSE and a feature could match other
features. Thus the relative weighting of MIPs and MOPs in the alignment model was irrelevant as
long as both contributed positively to similarity.

The 11 triads are listed in Table 3.1: the logical representation of a particular stimulus is
written Cx-Dy, where the Cx part indicates that the object on the left has shape C and color x,
and Dy indicates that the object on the right has shape D and color y. The assignment of actual
feature values (e.g., square, circle) to logical values (e.g., C, D) was randomized, as was the left-
right position on the screen of the a and b options. Test items were augmented with 4 attention
check items in which one of the response options was identical to the base. Ninety trials were
presented to each participant, with direct repetition avoided by randomly assigning feature values
to logical values on each presentation, and by counterbalancing the roles played by shape and color
dimensions in each pattern.’

Procedure

The experiment was conducted online and delivered through the browser. After reading the exper-
imental instructions (and passing a short quiz checking that the participants had understood the
task), participants proceeded to the sequence of 90 trials, presented in a random order. On each
trial, the base stimulus was displayed at the top of the screen. Initially only the base item was
shown in order to ensure that participants focused on that item first, and only after the participant
pressed the space bar were the two alternatives displayed. The text on screen asked participants
to assess “Which option is most similar to the pair on top?” Responses were given using the key-
board: participants used the letter Q@ to select the left option and the letter P to indicate the right
one. The display is illustrated in Figure 3.2. At the end of each trial all stimuli were removed, and
a screen was shown containing a ‘next’ button, and an indication of how many trials remained.

3.2.2 Results

All participants chose the alignment-consistent option more often than the transformation-consistent
option, with the proportion of such choices ranging from 68% to 97% across subjects. Moreover, as
Figure 3.4 illustrates, a similar pattern emerges when the data are broken down by item: across
items, the proportion of alignment-consistent choices ranged from 58% to 98%. In all but one case
the corresponding 95% confidence interval excludes 50%.

3.2.3 Discussion

The results from Experiment 1 are apparently unambiguous, with the alignment approach perform-
ing much better. However, one concern with these results from the transformational perspective is
that the direction of comparison matters. In constructing the triads, I assumed that participants
would start with the base item x and transform it into one or both of the comparison items a or
b. However, if participants ran the transformations in the other direction, the predictions made
by the transformational model sometimes (though not always) reverse. Loosely inspired by the
approach taken by Hodgetts and Hahn (2012), I attempted to control this by ensuring that the
base item was displayed first in each trial, thereby encouraging them to attend to and process the
base item first. Nevertheless, given that methodology here does not precisely mirror theirs, there

1The minimum number of repetitions for each pattern was 6, but patterns 2 and 8 were presented 12 times due
to a coding error which mistakenly identified equivalent forms as distinct.
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Figure 3.4: Choice proportions for all 11 stimulus triad conditions in Experiment 1. Bars represent
95% credible intervals around the proportion of “alignment-consistent” choices for each participant.
Overall, the results appear to strongly favor the structural alignment model.

is some uncertainty about whether the direction of transformation was suitably constrained. This
concern is directly addressed in Experiment 2.

3.3 Experiment 2

The asymmetric nature of the transformational similarity model was discussed and explored by
Hodgetts and Hahn (2012), who employed a speeded same-different judgment task, and the de-
pendent measure was the response time (RT) taken to make correct decisions. The more time
required to correctly discriminate between two stimuli, the more similar they are assumed to be.
The key design feature was stimulus presentation asynchrony: in their task Hodgetts and Hahn
(2012) presented the stimuli in succession with a short gap between them. The asymmetry of pre-
sentation enforces an order of comparison, and participants’ judgments in their experiments were
consistent with the assumption that people make the comparison by taking the first-presented item
and transforming it into the second one.

Since stimuli in Experiment 2 were pairs rather than triads, the constraints on the stimuli were
also different, and new stimuli were selected to meet them. In particular, the requirements for
uniqueness were more restrictive for pairs than triads simply because pairs involve fewer features.
This extra constraint meant that pooling the individual pairwise options from the triads used in
Experiment 1 would lead to an unbalanced design with trial diversity confounded with condition,
since in Experiment 1 individual base-target comparison pairs were allowed to repeat among triads
if the contrasting pair was different. However, by not restricting the pairs to be components of the
triads more possible pairs could be considered because there was no requirement to share a base
item between pairs. As in Experiment 1, a search over the space of possible stimuli was used in an
attempt to find highly informative items. This search focused on finding a set of stimuli that had
a high negative correlation between similarity computed based on either transformation distance
or the number of alignable features. This resulted in a collection of 14 distinct pairs, covering
12 distinct intersections of alignment and transformation similarity scores (with the two collisions
considered distinct because they arrived at the same alignment score using different combinations
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of MIPs and MOPs).

3.3.1 Method

Participants

102 adults were recruited via Amazon Mechanical Turk. Of these 97 were included in the final
analysis. Exclusions were for low accuracy in the same-different task indicating lack of attention or
misunderstanding of the task (accuracy less than 80%, 3 participants), or for self-reported color-
blindness (2 participants). Ages ranged from 20 to 72 with a mean of 34.39, 63% were male.
Participants were from the United States, with one from India. Participants were paid $1.85 for
an average of 11 minutes work, an effective hourly rate of $9.94.

Materials

The stimulus set consisted of the 14 logicially distinct pairs in Table 3.2, which also lists the
predictions of the (FORWARD) transformational model as well as the number of MIPs and MOPs
according to the STRICT and LOOSE mapping rules. Additionally, the table lists the total number of
possible feature matches (equivalent to the unweighted sum of MIPs and MOPs under the LOOSE
mapping rule).

Each participant viewed 84 pairs, 42 ‘same’ and 42 ‘different’ trials in shuffled order. ‘Different’
trials consisted of a set of 14 distinct pairs presented three times in different configurations: a
base configuration, a reversal of the features within an item assigned to the left or the right, and
a reversal of the role played by the color and shape dimensions. ‘Same’ trials used the same set of
initial items as the ‘different’ trials. The specific feature values assigned to roles in a pattern was
randomized, with possible shape and color values the same as in Experiment 1.

Procedure

Participants were presented with a black page with a central display area delineated with a yellow
border, and instruction text “[z]=different” and “[m]=same” displayed in bottom left and right
corners of the screen. The size of this display area scaled to 70% of the available screen size, or
until increasing the width would distort the aspect ratio of the stimuli, which was fixed. On each
trial participants were shown a pair of geometric shapes, which remained on screen for 900ms. The
location of the pair was variable, falling in a randomly selected location drawn from a 5x5 grid of
possibilities. The screen was then cleared for 150ms, before drawing a second pair of shapes to a
new location. This second pair remained visible until participants responded by pressing either Z
or M to indicate if the second pair was identical to the first. In all cases, the key indicating the
‘same’ response was on the participant’s dominant side (M for the 83 right handed participants,
Z for the 14 left handed). Participants were given feedback on their responses before starting the
next trial. Correct responses were followed by a blank screen for 500ms, while incorrect responses
caused the message “Wrong response” to be displayed for 2000ms.

Preprocessing

The fastest and slowest 5% of trials were excluded from analysis to screen for anticipatory guessing
and lapses of attention, removing responses faster than 423ms or slower than 1457ms. In addi-
tion, trials where the browser recorded a loss of focus event were also dropped (8 trials from 5
different participants). Only correct responses to “different” pairs were analyzed. To mitigate the
effects of individual variability in response speed, I normalized the response time within-subject
by subtracting the mean RT for each participant.

3.3.2 Results

The median normalized response times are plotted in Figure 3.5 as a function of transformation
distance (left) and number of feature matches (right), with each logically distinct stimulus pair
plotted as as a single point, and error bars corresponding to 95% bootstrapped confidence intervals.
Viewed solely from the perspective of transformation distance, the result is largely in agreement
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Table 3.2: Stimulus pairs used in Experiment 2, counts of the numbers of MIPs and MOPs using
both strict and loose mapping rules, total number of possible feature matches (counted in the loose
sense that does not enforce 1:1 mappings), and the operations required to transform the base item
into the target item. As before < denotes a swap operation @ denotes a feature create operation,
and > denotes a feature application. For clarity, > denotes a “double apply” operation in which
a feature is applied to two locations. Note that in this design the number of MOPs under a loose
matching rule is always equal to the sum of MIPs and MOPs under the strict matching rule; but
this is not true in general.

‘ MIPs-MOPs Transformation

Base Target | Matches | Strict Loose | #  Operations
1 | AvBw  CwCx 1 0-1 0-1 5  [wev][ec][>>C) [@x] [>x]
2 | AvAv AwBv 4 2-0 2-2 4  [@B][>B][ew] [>w]
3 | AvAw  BxAx 2 1-0 1-1 4  [@B][>B|[@x] [>>x]
4 | AvAv AvBv 6 3-0 3-3 2  [@B][>B]
5 | AvBv  BwCx 1 0-1 0-1 7 [Bea][eC][>C] [ov] [>u] [@x] [>x]
6 | AvBv  AvAw 4 2-0 2-2 3 [>Al[ev][>v]
7 | AvBw BwCx 2 0-2 0-2 5  [Bwe>Av][@C][>C] [@x] [>x]
8 | AvAw  BxBy 0 0-0 0-0 6  [@B][>>B][@x] [>x] [@y][>Y]
9 AvAw BxBx 0 0-0 0-0 4  [@B][>>B][@x][>x]
10 | AvAw  BxAv 3 1-1 1-2 5  [AveAw][@B] [>B] [@x] [>x]
11 | AvAv BvBv 4 2-0 2-2 2  [@B][>>B]
12 | AvBw  CwCw 2 1-0 1-1 3 [>w][ec][>>C]
13 | AvBw BxAx 2 0-2 0-2 3 [AeB|[ex][>rx]
14 | AvBv  AvAv 6 30 33 | 1 [o4A

with Hodgetts and Hahn (2012). The more transformations required, the shorter the RT, with the
correlation of r = —.84 corresponding to a Bayes factor of 129:1 against the null hypothesis. How-
ever, the results are also somewhat in agreement with the predictions of a simple feature matching
model, and the correlation of r = .76 provides a Bayes factor of 21:1 against the null. Taken to-
gether, these findings suggest modest evidence (Bayes factor of 6:1) favoring the transformational
model over the feature matching model.

Turning to the alignment model, the constraints imposed by the stimulus design outlined in
Table 3.2 ensure that the weighted MIPs and MOPs model makes the same predictions regardless
of whether one assumes a strict matching rule or whether a loose matching rule is applied, because
the number of MOPs under the loose matching rule happens to be a linear combination of the
number of MIPs and MOPs under the strict matching rule. As such one needs to consider one
of the two alignment models. However, even at the best fitting weighting value (in which 1 MOP
= 0.70 MIP, under the strict rule) the alignment model does not fit the data any better than the
simple feature matching model, correlating at r = 0.77. A Bayes factor analysis suggests that the
alignment model is slightly dispreferred to the feature matching model (BF = 2.6) and moderately
dispreferred to the transformational model (BF = 15.6).

3.3.3 Discussion

The general pattern of results in Experiment 2 can be summarized in terms of two key findings.
Firstly, these results replicate the finding by Hodgetts and Hahn (2012) that reaction time to a
same-difference tasks shows a strong relationship with transformation distance. In fact they also
incidentally replicate the finding that asymmetric similarities can be predicted by the transforma-
tional model: Pairs 4 and 14 are logically equivalent except for the order in which the two items
are presented, and there is a suggestion of a small RT difference (about 30ms) between these pairs
that mirrors the prediction of the transformational model (though it should be noted that this
study was not powered to detect this difference reliably and statistical tests on this comparison
gave different answers depending on what assumptions were made - this evidence is at best sug-
gestive). Secondly, while I do find clear evidence that the transformational model outperforms a
simple feature matching model on these items, I did not find any clear evidence that the distinction
between MIPs and MOPs made any substantial contribution to RT: that is, the alignment model
“fits” the data only insofar as the feature matching account is a special case of a weighted MIPs
and MOPs model.
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Figure 3.5: Median response times for each item plotted as a function of transformation distance
(left) and total number of feature matches (right). As one might expect, both models make sensible
predictions, in which stimuli predicted to be more similar produce slower responses.

3.4 Experiment 3

The results of Experiments 1 and 2 together constitute a puzzle. Experiment 1 finds very strong
evidence for alignment, whereas Experiment 2 finds modest evidence favoring transformation. Why
does this happen? Perhaps the transformational model failed in Experiment 1 because the direction
of transformation could not be controlled? Perhaps — noting that every one of the transformation-
preferred options in Experiment 1 involves the use of the APPLY transformation to apply a feature
to multiple slots — there is something important about how the transformation model specifies the
APPLY operation? Perhaps there is a fundamental difference in how people behave in similarity
choice tasks and same-difference judgments? To test these possibilities, Experiment 3 presented
the tasks from Experiment 1 and Experiment 2 to the same participants using a common set
of stimuli. In order to meet the constraints imposed by the two different tasks simultaneously,
the stimuli were simpler than those used in the previous experiments. They varied on only one
dimension rather than two, and never involved the SWAP operation in their transformation scores.
In this simplified domain it was possible to construct stimuli that induce different patterns of
predictions under six similarity models relevant to the apparent conflict in Experiments 1 and 2.
I included four variations of the transformational model:

e Forward transformation, free apply. (FT-FA) The original transformational similarity scheme,
referred to as “free apply” below for the way it assigns a cost of one when applying multiple
instances of a single feature. This was the model used for designing the stimuli and analysis
of Experiments 1 and 2.

e Forward transformation, costly apply. (FT-CA) A modified transformation scheme where
each application of a feature value incurs a cost of one.

e Reverse transformation, free apply. (RT-FA) The similarity scores under the free apply
scheme when comparing in a target-to-base direction.

e Reverse transformation, costly apply. (RT-CA) The similarity scores under the costly apply
scheme when comparing in a target-to-base direction.

By including all four of these models, it should be possible to differentiate between the “direction
of transformation” explanation of Experiment 1 and the “cost to apply” explanation. Similarly I
included two simple alignment based models:

31



3.4. Ezperiment 3 Chapter 3

Which of these two objects is most similar to the top one?

4 4

this one this one
is more similar is more similar

Figure 3.6: Screenshot of the triads task as presented in Experiment 3. Unlike Experiments 1 and
2, these stimuli varied on a single dimension, the colors assigned to the three embedded shapes.
The same-different task (not shown) used the same stimuli.

o Strict alignment. (SA) A count of MIPs+MOPs where any individual feature can be involved
in at most one match.

o Loose alignment. (LA) A count of MIPs+MOPs where features can be involved in any
number of matches simultaneously.

By including these two models it can be determined whether the data place substantive constraints
on alignment models, and to investigate the extent to which it remains possible to distinguish
between alignment and transformation in the general cases.

3.4.1 Method

Participants

246 participants were recruited via Amazon Mechanical Turk. Of these, 213 were included in the
final analysis, with two participants excluded for reporting some degree of color blindness, four for
incorrect responses on attention-check triads for which one option was identical to the base, and
27 for attaining accuracy rates of less than 80% in the same-different task. Ages ranged between
18 and 72 with a mean of 36.3, and 56% of participants were male. Included participants were
predominantly from the United States, with two from India and one each from Canada and Ireland.
Participants were paid $1.50 for an average of 11 minutes work, an effective hourly rate of $7.67.

Materials

Individual items consisted of a black circle of radius 40px with three geometric shapes embedded
in the perimeter, each one with an area approximately 1/3 that of the black circle. These shapes
were evenly spaced around the perimeter and consisted of a circle in the upper left, a square on
the extreme right, and a pentagon in the lower left (see Figure 3.6). Items differed from each other
only in the colors assigned to these shapes, which could be red, green, blue, yellow, or grey. In
the triad task participants were shown three stimuli, whereas in the same-different task two items
were shown. The logical design of stimuli and predictions of each model are listed in Tables 3.3
and 3.4 (see below for details). Assignment of colors to roles indicated by the letter codes for each
stimulus was randomized on each trial. The left/right positioning of options A and B was also
randomized, and the order of trials shuffled.

Procedure

Each participant completed the triad task and the same-different task, with tasks presented in
a random order. The procedure in the triad task mirrored the procedure in Experiment 1, and
the procedure in the same-different task mirrored Experiment 2. For the triad task participants
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Table 3.3: Predictions made by six similarity models for the triad task in Experiment 3. Letter
codes represent a pattern of matching/distinct colors, with the particular color assigned to each
letter randomized on each trial. The triads were constructed to ensure that models would make
different predictions for a subset of items, while balancing nuisance variation in properties of the
base and option items. All possible pairs of models differ on at least four triads, and for calibration
purposes there are four triads for which all models make the same prediction.

Base A B SA LA FT-FA FT-CA RT-FA RT-CA
1 aaa aab abb A A = A = A
2 aaa abc bbb A A B = A A
3 aaa abc  bbc A A = A A A
4 aab aaa aac = A A A = =
5 aab aaa abb = A = = B B
6 aab aaa acb = A A A B B
7 aab aaa acc A A A A A A
8 aab aaa bbb A A = A = A
9 aab aac abb = = B B B B
10 aab aac acb = A = = B B
11 aab aac bbb A A B = = A
12 aab aac ccb A A = A = A
13 aab abb acc A A A A A A
14 aab acc bbb = B B B B =
15 aab acc ccb = A = = B =
16 abc aaa abd B A A = B B
17 abc aba add A A A A A A
18 abc aba ddd A A A A A A

Table 3.4: Model predictions about stimulus similarity for each pair in the same-different task
in Experiment 3: similarity values are given for the two alignment models (SA and LA) and
dissimilarity values are given for the two transformational models (FA and CA). The final column
in the table denotes the relative frequency of each stimulus pair: same trials and different trials are
equally likely overall, and are equally likely for all three distinct base stimulus types (i.e. aaa, aab
or abc), ensuring that the presentation of the base item carries no information about the correct
response.

Base Target SA LA FA CA Freq. Base Target SA LA FA CA  Freq.

1 aaa aaa 3 9 0 0 21 12 aab bbb 1 3 1 2 3
2 aaa aab 2 6 2 2 3 13 aab ccb 1 1 2 3 3
3 aaa abb 1 3 2 3 3 14 aab ccc 0 0 2 4 3
4 aaa bbb 0 0 2 4 3 15 abc aaa 1 3 1 2 3
5 aaa bcd 0 0 6 6 12 16 abc aba 2 3 1 1 3
6 aab aaa 2 6 1 1 3 17 abc abc 3 3 0 0 21
7 aab aab 3 5 0 0 24 18 abc abd 2 2 2 2 3
8 aab aac 2 4 2 2 3 19 abc add 1 1 2 3 3
9 aab abb 2 4 1 1 3 20 abc ade 1 1 4 4 6
10 aab acb 2 3 2 2 3 21 abc ddd 0 0 2 4 3
11 aab acc 1 2 2 3 3
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provided judgments for the 18 triads listed in Table 3.3 and two check trials in which one target
was identical to the base item. As illustrated in Figure 3.6, people were presented with a set of
three items in a triangle configuration on a white background. A reference item appeared at the
top of the screen under the title “Which of these two objects is most similar to the top one?”
with left and right options below it. Each of the left and right options had underneath it a button
labeled “This one is more similar”. Participants responded by clicking on either of these buttons.
A blank screen was displayed for 1000ms between each trial, with response buttons disabled for a
further 600ms after the new triad was drawn to the screen.

For the same-different task, participants were presented with the 132 pairs from Table 3.4 in
random order. In the same-different task, participants were presented with a white page with the
title “Is the second object the same or different from the first one?” The center of the page was
taken up by a central display area with a black border, with fixed aspect ratio but a size depending
on the viewing device as in Experiment 2. The instruction text “Type z for same” and “Type
m for different” was displayed in the upper left and right corners, with all left-right conventions
and response mappings being reversed for left handed participants. At the beginning of each trial,
an item was presented in one of the 5x5 possible locations within the display field, visible for a
randomly selected duration between 500ms and 1000ms. At that point, this item was erased and
a second item drawn at a new location not previously occupied by the first one. The second item
remained visible until a response was made. Participants were given feedback on their responses.
Correct responses progressed to the next trial after clearing the screen for 500ms, while incorrect
responses caused the message “Incorrect response” to be displayed for 2000ms.

Design: Triad task

The stimuli were constructed to maximize differences between the predictions of the six similarity
scoring schemes (See Table 3.3 for details). The maximum agreement between any two models over
the eighteen triads was fourteen shared predictions (between SA and RT-CA), with a minimum
of six (between FT-FA and RT-CA) and an average of eleven. The same-different task strictly
requires that the base item not carry information about the response type, and I also attempted to
make each item type roughly equally frequent. As a calibration check — to make sure that the task
produces sensible results for “easy” cases — there are four triads (7, 13, 17, 18) for which all six
items make the same prediction. Of the remaining 14 triads, seven produce two different predictions
across all models (no-preference under some models and a preference under the others), while seven
have every possible result endorsed by at least one of the similarity models (some preferring neither
option, some preferring option A, and some B).

Design: Same-different task

The design of the same-different task was structured to control for several possible confounds while
still allowing a meaningful comparison between the two tasks, and is outlined in Table 3.4. The
number of “same” trials (pairs 1, 7 and 17) was identical to the number of “different” trials (all
other pairs). The base item (i.e., the stimulus presented first) was roughly identical, with 32%
of trials displaying an aaa item first, 36% presenting aab and 32% of trials displaying an abc
base item. Critically, for all three base items, 50% of trials required a “same” response and 50%
required a “different” response, ensuring that participants could not guess what response would be
required until both items had appeared on screen. I also aimed to balance the number of distinct
colors that appear in a trial (e.g., an aaa:bcd trial has 4 distinct colors), in those cases where
it was possible to do so. For the “same” trials there are, 8 instances in Table 3.4 instances with
two colors (pair 7) and 7 with three colors (pair 17). There are 6 instances with 2 distinct colors
(pairs 2, 3, 4, 6, 9 and 12) and 7 instances with 3 distinct colors (pairs 8, 10, 11, 13, 14, 15, 16),
ensuring that for those cases where it was logically possible for a same and different trial to be
equally colorful (i.e., 2 and 3 distinct colors), the base rate of “same” and “different” responses
was roughly matched. However, because it is impossible for a “different” trial to contain only a
single color, and impossible for a “same” trial to have more than three, the overall colorfulness of
the display did differ between same and different trials: on average a “different” trial contained
3.1 distinct colors, whereas on average a “same” trial contained only 2 distinct colors.

The same-different task is strongly directional, and so do I not consider the possibility of a
“reverse” transformational model among the model predictions. This leaves only four models to
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Table 3.5: Choice proportions for all conditions in the triad task in Experiment 3. In this table,
the CI denotes a 95% credible interval. The right side of the table indicates the conditions for
which each model fails to make the correct prediction (see Figure 3.7 for a visual depiction).

Triad (X — A:B) %A [CI A:B SA LA | FT-FA RT-FA | FT-CA RT-CA
1 aaa — aab:abb 96% [93,98]  205:8 X X
2 aaa — abc:bbb 49% [42, 56]  104:109
3 aaa — abc:bbc 79% (73, 84]  169:44
4 aab — aaa:aac 43% [37, 50]  92:121
5 aab — aaa:abb 70% [63, 76] 149:64 X X
6 aab — aaa:acb 84% [78, 88]  178:35 X X
7 aab — aaa:acc 92% [87,95]  195:18
8 aab — aaa:bbb 95% [92, 97]  203:10 X X
9 aab — aac:abb 72% [66, 78]  154:59 X X X X
10 aab — aac:acb 83% [77,87] 176:37 X X X X X
11 aab — aac:bbb 96% [92, 98]  204:9 X X X
12 aab — aac:ccb  95% [91, 97]  202:11 X X
13 aab — abb:acc 89% [84, 92] 189:24
14 aab — acc:bbb 53% [46, 60]  113:100
15 aab — acc:ccb 46% [39, 53]  98:115
16 abc — aaa:abd 5% [3,9] 11:202 X X X X
17 abc — aba:add 92% [88, 95]  196:17
18 abc — aba:ddd 97% [93, 98]  206:7
Failures: (X) 2 1 7 8 4 4

consider: strict alignment (SA), loose alignment (LA), forward free apply (FA), and forward costly
apply (CA). Within this design the two alignment based models make similar predictions to one
another (r = 0.86), as do the two transformational models (r = .91), and as such the design does
not easily distinguish between these possibilities. Looking at correlations between alignment and
transformational models, the costly apply model is fairly closely correlated with both the strict
(r=-.87) and loose (r = —.82) alignment models. However, the free apply model is quite distinct
from both versions of the alignment model (r = —.61 in both cases), and accordingly the design has
most power to discriminate between those models.

3.4.2 Results

The data from the triad task are summarized in Table 3.5: for each triad the leftmost columns list
the proportion of participants choosing option A along with a 95% credible interval and counts of
the absolute number of participants making each choice. On the right hand side, the table highlights
the qualitative failures for all six similarity models. To determine what counts as a failure, I took
a conservative approach: a prediction of option A in Table 3.3 is considered consistent with the
model if the true probability of choosing option A lies between 0.5 and 1, and the data are deemed
inconsistent with the model only if the entirety of the 95% credible interval falls outside that
range. A model prediction of option B is evaluated in the same way, using the range 0 to 0.5,
and — again, conservatively — a model that predicts indifference to the two options is only labeled
as a qualitative failure if the credible interval falls outside the range 0.25 to 0.75. Using this
approach, a very clear pattern is observed. Consistent with the findings from Experiment 1 both
alignment models perform well: the SA model fails on 2 of the 18 triads, and the LA model fails
on 1. Moreover, the transformational models with free APPLY perform poorly (FT-FA fails on
7 triads and RT-FA fails in 8 cases), again mirroring the findings from Experiment 1. However,
when switching to a costly APPLY model, the performance of the transformational models improves
considerably (FT-CA and RT-CA both have 4 failures), though not quite to the level of performance
that the alignment-based models produce. This pattern of results is depicted visually in Figure 3.7
- on the triad task the alignment models retain some advantage over transformation models, but
the size of the advantage is greatly attenuated when the costly APPLY operation is used.

For the same-different task, I preprocessed the data using the same procedure as in Experi-
ment 2: the fastest and slowest 5% of response times were excluded from analysis to screen for
anticipatory guessing and lapses of attention, removing responses faster than 463ms or slower than
1584ms. To mitigate the effects of individual variability in response speed, response times were
normalized by subtracting the participant’s overall mean response time from each trial. Over
all participants, mean accuracy was .88 and median accuracy .91 (before any exclusion criteria
were applied). Only correct responses to different trials were analyzed. The pattern of results
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Figure 3.7: Performance of the six similarity models when applied to the triad task in Experiment
3. Each panel is divided into three sub-panels, corresponding to those experimental conditions in
which the model in question predicts option A in Table 3.5 (left), option B (right), or indifference
(middle). Grey shaded areas correspond to response probabilities that are deemed “consistent”
with the model prediction. Each marker plots the proportion of participants choosing option A,
and error bars show 95% credible intervals. Conditions for which the entire credible interval lies
outside the shaded area are deemed inconsistent with the model prediction.
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Figure 3.8: Median normalized RT data for the same-difference task, plotted against the predicted
similarity (or dissimilarity) values under each of the four models.

are plotted in Figure 3.8 and again mirror my previous findings. Consistent with Experiment 2,
the transformational approach shows a slight advantage. When calculated using the costly APPLY
method, the transformational distance explains 63% of the variance in the median RT across stim-
ulus pairs. The best performing alignment model uses the strict method, and explains 58% of the
variance in the data. Neither of the other two models performs especially well: the loose alignment
model and the free-APPLY transformation model both explain only 28% of the variance. In short,
while the same-different results from Experiment 3 afford a more nuanced interpretation than those
from Experiment 2 (only some versions of alignment and transformation models are successful)
the core result is the same: transformational and alignment models perform comparably on the
same-different task, with perhaps a slight advantage to the transformational model.

Comparing the two tasks to one another, there is a slight mismatch between the two, again
consistent with Experiments 1 and 2: the alignment model performs slightly better in both triad
tasks, and the transformational approach fares slightly better in both same-different tasks. By
including both tasks in the one study using the same stimuli, the data from Experiment 3 allow
us to investigate this. To compare the triad task and the same-different task, note that each
triad (ABX) in the forced choice task maps onto two pairwise similarities (AX and BX) in the
same-different task. To assess the degree of agreement between the two tasks, Figure 3.9 plots the
difference in RT in the same-different task against the choice probabilities in the triad task. As is
immediately clear from inspection, the data for all but three triads (5, 9 and 13) fall on or near
a linear function. If these three triads are ignored, the two tasks are very closely related, yielding
a correlation of r = 0.86. To the extent that any systematic differences between tasks exist, these
three triads seem most likely to be the source of the discrepancy.
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Figure 3.9: Degree of agreement in the same-different task and the triad task. If the three “special
cases” (triads 5, 9 and 13) are ignored, the agreement is quite close, producing a correlation of
r = 0.86. Note that this plot does not include triads 2 or 3 because these require the aaa:abc pair
and (for balance reasons) this pair was not included in the same-different task.

3.4.3 Discussion

The results from Experiment 3 replicate the key findings from both Experiments 1 and 2, and help
resolve a number of questions. First, the results from the triad task suggest that most (but not all)
of the alignment advantage in Experiment 1 can be attributed to the fact that the design exploited
the free APPLY transformation, which performs considerably worse than the costly APPLY. Second,
the results from the same-different task suggest that a strict alignment approach is somewhat
superior to a loose alignment approach, and both tasks suggest that a costly APPLY operation
produces a better performing transformational model. Third, Experiment 3 replicates the finding
that alignment models do slightly better on the triad task and transformation models slightly
better on the same-different task, and provides some suggestion that — while the two tasks are very
closely related — the origin of the discrepancy may lie in a small number of comparisons (triads 5,
9 and 13) for which human responses are inconsistent across the two tasks. Indeed, setting these
triads to one side, the alignment and transformation models perform almost indistinguishably on
the triad task: the strict alignment model has one fewer failure than the best transformation model
(the forward transformation with costly apply model), but one would hardly want to draw strong
conclusions on the basis of a single triad stimulus.

If triads 5, 9 and 13 are indeed the source of the discrepancies between tasks, what makes them
special? Inspection of Table 3.3 shows that these triads are the only triads in which one pair (AX
or BX) contains a feature mismatch and the other does not. For instance, triad 9 has aab as the
base item and has aac and abb as the two potential choices. One stimulus pair (aab and aac)
contains a feature mismatch, with the b feature being unique to one item and c being unique to the
other. This difference produces much faster reaction times for same-different judgments of the pair
containing the mismatched feature that does not produce strong (or even consistent) preference
for or against choosing that pair in the triad task.

In a same-different judgment, the mismatching features are likely to produce a visual pop-out
effect, quickly revealing that the two items are not identical. In contrast, the identification prob-
lem for the aab-abb pair cannot be solved in the same way as there are no distinctive features:
to correctly discern that these are distinct items the visual system must solve the feature binding
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problem (Treisman & Gelade, 1980) before responding. As this is a slow, attention-dependent pro-
cess, reaction times will necessarily be slower to the aab-abb pair than the aab-aac pair. Although
it is not straightforward to determine how such task characteristics relate to model differences,
a speculative possibility is as follows. Whenever a feature mismatch exists, the transformational
model requires that a CREATE operation be employed, which makes the two items more distinc-
tive than they otherwise might be. The simple alignment-based models I consider here do not:
the number of MIPs is identical in both pairs, as is the number of MOPs (regardless of whether
the alignments are loose or strict). The ability to emphasize feature mismatches via the CREATE
operation may allow the transformational approach to perform well on same-different judgment
tasks.

In the triad task, the pattern of responding is quite different for the same items. People have
a fairly strong preference (72%) to endorse aab and aac as more similar to one another than aab
and abb. This preference makes considerable sense: the fact that the first pair both share the aa?
structure seems more compelling as a pattern (and hence a basis for similarity) than the fact that
the second pair share the a?b structure. At the very least, there does not seem to be good reason to
treat a?b as a more compelling basis for similarity than aa?. In this context, the alignment model
seems to be in closer agreement with human behavior. More broadly, this mismatch highlights the
fact that identification decisions (as in the same-different task) do have a different structure than
similarity judgments (as in the triad task) and while the two are closely related they can differ
in non-trivial ways. In fact, the transformational model is designed around a kind of identity-
mapping problem: what operations are required to make two objects identical? The alignment
model is more focused on structure-mapping, and as such is arguably more closely linked to a
pattern matching problem. Given this, it is perhaps rather sensible that the performance of the
two models is different across the tasks in precisely the way observed empirically here. Nevertheless,
it should be noted that this account is somewhat speculative, and some caution is warranted.

3.5 General Discussion

My goal in this project was to try to distinguish between transformational and structure align-
ment approaches to assessing stimulus similarity — a goal that met with only partial success.
Perhaps unsurprisingly, I did not find a perfectly diagnostic test that allows these two frameworks
to be cleanly separated, but across three experiments I was able to place some constraints on both
frameworks. For transformational models, the experiments presented here suggest that the orig-
inal specification of the APPLY operation is not quite accurate: the cost for “applying” a feature
does seem to increase with the number of slots to which it is applied. Without such a change it
is difficult to see how the transformational account can capture the results in Experiment 1 and
3. However, this is difficult to align with previous results that rely on a “free” apply to capture
reaction time differences (Hodgetts & Hahn, 2012). For the alignment framework, I find evidence
that a “loose” alignment that allows a single feature in object A to be mapped to multiple fea-
tures in object B performs poorly when applied to a same-different task (in Experiment 3), and
a “strict” alignment mechanism that forces a set of consistent alignments produces a better fit.
That said, some caution is required: even though the distinction between loose and strict mapping
is mirrored in the literature on structure alignment, the particular alignment models I used are
greatly simplified when compared to STAM (Goldstone, 1994), CAB (Larkey & Love, 2003), or
LISA (Taylor & Hummel, 2007).?

Taking the three experiments together, the evidence suggests that the strict alignment model
and the costly-apply transformation model perform comparably well to one another, but their
performance is not consistent across tasks. The alignment model performs somewhat better in
a triad task (Experiments 1 and 3), whereas the transformational approach performs better in
a same-different task (Experiments 2 and 3), noting that this may in fact stem from the subtle
differences between the two tasks. A triad task completed without time pressure involves an
explicit similarity comparison, and in that sense is kind of pattern matching problem. In contrast,

21 did consider using the more complicated models but had some concerns about model flexibility. Either I
would have had to run SIAM with parameters fixed by previous research, which may not generalize well across the
various task changes considered here, or I would need to estimate a number of free parameters. As such, I chose to
restrict analysis to a simplified MIPs-versus-MOPs model, though I acknowledge this limits the scope of conclusions
somewhat.
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the speeded same-different task is an discrimination problem and while similarity is relevant, it is
possible to solve a discrimination task by detecting a single discrepant feature without necessarily
processing the complete object. This finding is reminiscent of other work (Hendrickson et al.,
2015; Hendrickson, Navarro, & Donkin, n.d.) investigating the time course of similarity. For
instance, using an evidence accumulation model of response time in a speeded same-different
task, Hendrickson et al. (n.d.) found that evidence for time-inhomogeneous information accrual
processes: during a single feature match information becomes available before the MIP/MOP
distinction exists and can trigger discrimination decisions even before any structural information
about the stimulus is available. With this in mind, it is not entirely clear that the triad task and
same-different tasks necessarily measure the “same” similarity construct.

On a different note, it should be pointed out that there is an additional source of ambiguity
in these results, pertaining to the mental representation of stimuli. As noted in connection to
Figure 3.1, in order to employ a structure mapping model to assess the similarity between 111xxx1
and 0yz000 it is critical to determine what counts as a “slot” and what counts as a “feature”.
Different ways of describing the stimuli can produce different similarities. As much as possible 1
tried to design stimuli for which this concern does not arise (on the assumption that in each case
there is one “obvious” way to describe the stimuli), but it may well be that there are exceptions. For
example, consider triad 10 from Experiment 3, denoted as aab—aac:acb in Table 3.5. Participants
showed a strong preference to rate aab and aac as more similar to one another than aab and
acb, an effect that was predicted by only one of the six models (loose alignment: one of the
worse performing models in general). However, the model failures may not be due to an inability
to describe similarity comparison processes, but might instead be caused by an inappropriately
specified stimulus representation. As shown in Figure 3.6 the stimuli were designed with three
visually distinct shapes, intended to prevent people from mentally rotating the stimuli or treating
the three locations as exchangeable. For a stimulus like acb it seems entirely reasonable to assume
a three-slot representation [a] [c] [b]. However when two of the three stimuli in the triad happen
to have the same features in the same two locations, it is quite possible that people might chunk
those two locations into a single slot, yielding stimulus representations [aal [b] and [aa] [c] for
the other two items. When the stimuli are recoded this way, all models will produce the right
effect. From the alignment perspective, the [aal [b] and [aa] [c] items share one MIP (i.e., aa),
whereas [aa] [b] and [a] [c] [b] have a single MIP (i.e., b) and a non-alignable difference caused
by the fact that one object has two slots and the other has three (Goldstone et al., 1991). From the
transformational perspective, to transform [aal [b] into [aal [c] requires two operations (CREATE
¢ and APPLY C), but to transform [aa] [b] into [a] [c] [b] presumably requires three operations.
First the [aal chunk needs to be SPLIT into [a][a], and then the CREATE C and APPLY C operations
follow. If there is a possibility that people make use of chunked representations when processing
stimuli, then both theories can be adapted to accommodate these results.

The transformational and alignment approaches to similarity are both broad frameworks, each
supporting a diverse menagerie of possible implementations. Since all models are wrong (Box,
1979), it is perhaps unsurprising that it was possible to find stimuli that caused problems for the
particular implementation of transformational similarity current for geometric shapes, or a simple
MIP+MOP lowest-common-denominator implementation of the alignment approach. However, 1
would argue these ‘wrong’ models are extremely useful in the way they inform thinking on the
bigger issues of what representations people use and how they can be compared. At this more
abstract level, these results do not offer strong constraints: but they do sharpen the questions, in
the spirit of Samuel Karlin’s assertion that “the purpose of models is not to fit the data but to
sharpen the questions”.?

Specifically, at the implementation level, requiring a costly apply operation improves the agree-
ment between the data presented here and the transformational theory of similarity. The original
multiple-apply transformation exposes the model to a set of special cases where people consistently
make choices incompatible with the theory. Although this could be considered a relatively minor
model misspecification, the result raises the more general question of how to appropriately deter-
mine the set of transformations used in the transformational approach. Along the same lines, these
results highlight the dependence of alignment approaches on the definition of a “slot”. Perhaps
surprisingly given the extremely simple nature of these stimuli, under an alignment interpretation
of the results it seems that participants flexibly adapted the nature of the chunking structures they
were using depending on apparent relations between features.

311th R. A. Fisher Memorial Lecture, Royal Society 20, April 1983.
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At the more abstract framework level, these results sharpen the old questions of “How do you
know you have the right representations?” and “How do you know you have the right task?” The
short answer to the first question is simply that you don’t, but here I sharpen the question with
a concrete demonstration of the problem in the domain of simple geometric stimuli: is [aa] [b]
different from [a] [a] [b]? The second question also admits a short answer, that there’s no such
thing as a wrong task, only different tasks. Here again it’s possible to sharpen the question, in this
case with a demonstration of specific timing-dependent differences between two tasks both aimed
at the same general construct of ‘similarity judgment’.

The comparison between transformational and alignment-based approaches to similarity pre-
sented above does not answer these sharpened questions. But I suggest these tasks highlight
promising places to look, in the way they link higher-level questions of representation to more
readily testable claims about the relationships between these abstractions and perceptual similar-
ity, pattern matching, discrimination, and visual pop-out.
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Which transformations?

One of the main results in Chapter 3 was a question: how can researchers (and people in general)
arrive at a ‘good’ set of transformations? The question was raised in the specific context of a
transformational account of similarity, but it’s also true that regardless of how people process
similarity, the world is full of transformations that need to be learned. For example, people tend to
take transformations due to aging into account when identifying faces (Mark, Todd, & Shaw, 1981),
and track object identities by inferring motion from a sequence of still images (Freyd, 1983). When
action stimuli are stripped of as much visual information as possible and rendered as a minimal
collection of moving dots, people find activities such as walking or running instantly recognizable
and base detailed inferences on just this motion information (Troje & Basbaum, 2008). Whether
these things are ‘just ordinary features’ in the same sense as FEATHERS or RED is debatable, but
they are clearly involved in natural category structures in the world.

So how do people actually process and use this transformation-like structure in the world?
Since transformations are so ubiquitous, one reasonable position might be that in fact there is
nothing particularly special about them. Why not simply give the feature FLIES the same status
as the feature FEATHERS for the category BIRD? Transformations may or may not be directly
observable, but in this sense they are no more strange than latent features such as CARNIVORE or
HAS-SESAMOID-BONES routinely invoked in inference and property induction (Navarro & Griffiths,
2008). Transformations themselves could admit category structures just like anything else, using
a more abstract representation space that allows for the way transformations unfold over time
(Lamberts, 2003; Pollick & Paterson, 2008). There are however a few different ways in which
transformations could potentially be distinct from other types of feature.

One view is that transformations are higher-order features composed of other, more basic,
perceptual features. Under this view, a transformation is a series of more primitive features chained
together over time (Sadanand & Corso, 2012). However it’s also possible that transformations
are in fact more fundamental than other types of features, in the sense that a having a set of
identity-preserving transformations defines the invariants that let us identify perceptual features
in the first place (Austerweil & Griffiths, 2013) For example, recognizing that shape features are
invariant under rotation might precede their use in object recognition (Ullman, 1996; Graf, 2006).

Given these different accounts it’s probably fair to say that it’s not currently clear what role
transformations might play in similarity and categorization. However the theory of transforma-
tional similarity discussed in the first section of this thesis makes some quite strong predictions in
this regard. Firstly, it describes a world where transformations are ubiquitous and involved early
in perceptual processing. Less obviously, it also commits to a world where new transformations
are learned quickly and are strongly associated with a specific context. These additional properties
arise as a consequence of the need for similarity judgments to be computationally tractable (Miiller
et al., 2009).

Efficiency is important to all accounts of similarity, which is known to be highly efficient. The
speeded same-different responses presented in Chapter 3 require similarity to be processed in at
most hundreds of milliseconds, see Hendrickson et al. (2015); Lovett et al. (2009) for tighter more
detailed bounds. However efficiency is particularly relevant to transformational similarity, where
the Kolmogorov complexity measure at the heart of the theory is not just hard to compute, but
provably uncomputable (Ming & Vitdnyi, 1997). As a result, all practical implementations of
information-distance measures must sacrifice the full generality of the theory (where the choice
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of programming language contributes only an additive logarithmic factor to the distance between
representations) for a specific instantiation where particular transformation distances and the time
needed to compute them depend on the specifics of the program doing the calculation (see M. Li,
Chen, Li, Ma, & Vitdnyi, 2004; Bennett et al., 1998). Since different instantiations render different
comparisons efficiently, the known need for high efficiency can be used to provide constraints on
the specific program involved. In the context of the similarity judgments considered here, these
constraints are naturally expressed in terms of limits on plausible transformation sets.

Miiller et al. (2009) investigated these constraints at a highly general level, working from a
broadly inclusive definition of transformational similarity and making minimal assumptions about
the nature of the representations. Even abstracting away these specific details, they were able to
identify a set of bottleneck parameters which must be controlled in any plausible implementation
of transformational similarity, with plausibility here defined as ‘polynomial running time.” These
critical parameters include constraints on the longest transformation distances, and on the size of
all intermediate representations on the transformation path, but the constraints most relevant to
the project described below are the ones on the transformations sets: the set of transformations
considered must be small and context-specific. The full details appear in Miiller et al. (2009), but
intuitively, the search for shortest paths is only feasible if there are a limited number of choices at
each potential crossroads and the target is not too far away.

The constraint that transformations must be few and context-specific implies that under the
transformational account people should readily learn new transformations for new domains. Life-
long chopstick users won’t be able to use generic ‘object similarity’ schemes to make similarity
judgments between various Western eating utensils, while newcomers to Asian calligraphy will
need new transformations to judge the similarities that unite different seal scripts and distinguish
them from running scripts, and so on for each domain. Moreover, each domain will only admit a
small number of allowable transformations at any one time. So is it possible to observe this learn-
ing process in a controlled setting? Are the observed learning rates and any subsequent changes in
similarity judgment compatible with the predictions of the transformational account of similarity?
The work presented in Chapter 5 aims to find out.

Similarity and categorization judgments are known to change with domain knowledge (Medin,
Lynch, Coley, & Atran, 1997; Honoré-Chedozeau, Lelievre-Desmas, Ballester, Chollet, & Valentin,
2017; Shafto & Coley, 2003). Moreover, Hahn et al. (2009) specifically showed similarity judgments
changing with transformation learning over short time-frames. Chapter 5 describes a series of
studies looking at the feasibility of training people on new transformations in a simplified artificial
setting over short time scales and relatively low numbers of trials, and explores whether or not
such learning had a detectable impact on similarity or categorization judgment. It builds on the
work of Hahn et al. (2009) in a number of ways: by considering a new set of transformations in a
simple and flexible stimulus space, by separating measures of learning from measures of similarity
change, and by considering both similarity and categorization judgment.

People are known to be able to learn transformations, and alternative approaches to similarity
that simply consider transformations as latent features also predict that similarity judgments would
be impacted by learning about a new feature that two stimuli share. So evidence of learning
and applying transformations to similarity do not in themselves constitute a strong test of the
transformational approach. However establishing a paradigm for transformation learning and
similarity judgment would be especially useful for testing transformational approaches to similarity.
Given evidence of transformation learning, the problem of determining which transformations were
being used by people would be heavily constrained by the requirement that transformation sets be
small and context specific.

Putting the particular concerns of transformational similarity to one side, transformations as
features also have unusual properties relevant to other approaches to similarity. In particular, their
nature as features extended over time presents unique challenges for the broad family of geometric
approaches to similarity (Lamberts, 2003). From a research methodology point of view, unique
opportunities are offered by the way experience with a transformation can be manipulated to give
variable degrees of exposure to a feature for physically identical test stimuli. However to date there
has been relatively little work in this area (although see Austerweil, Griffiths, and Palmer (2016);
Austerweil and Griffiths (2010b) and references therein).

To investigate a potential paradigm for studying transformation learning, I turned again to
comparisons. The key properties of the task were a separation of measures of transformation
learning from measures of similarity, and a crossed design with two different training conditions
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such that physically identical test stimuli had a different relationship to the trained stimuli for
different people. Isolating this difference allowed me to separate out the effects of the training ma-
nipulation from the inherent properties of the stimuli. I also separated questions about category
membership from questions about similarity. I found that transformation learning was associ-
ated with changes in similarity and categorization, but also that people’s learning and patterns
of generalization were highly sensitive to the details of the presentation format. These results
give somewhat ambiguous support for the transformational account of similarity. The core re-
quirement of a relationship between learned transformations and similarity supported, but there is
also evidence of family relationships between transformations that suggest something like graded
availability of transformations might be required to give a full account of the data, complicating
the calculation of transformation distances. For other theories of similarity, the main contribution
of these results is their description of how differences in presentation format impact task difficulty.
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Transformation learning

The work in this section was published as: Langsford, Hendrickson, Perfors, Navarro (2017) When
do learned transformations influence similarity and categorization? In G. Gunzelmann, A. Howes,
T. Tenbrink, & E. Davelaar (Eds.) Proceedings of the 39th Annual Conference of the Cognitive
Science Society. (pp. 2530-2535)
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Chapter 6

From similarity to sentences

This section moves into a new application domain within cognitive science, examining the empirical
toolkit for studying syntax. T'wo aspects of this thesis in particular are novel contributions to this
area: one is the adaptation of the well-known Thurstonian modeling approach to the sentence
acceptability setting, and the other is an investigation into the test-retest reliability of various
measurement techniques.

The main connection with the themes of this thesis appears in the first of these, the Thursto-
nian modeling of sentence acceptability. As discussed in more detail below, this technique shares
common roots with the structure-discovery methods discussed earlier in the context of similarity
spaces. The Thurstonian method relies on comparison data to make inferences about the latent
structure of the representations involved. Here, the technique is useful in the context of an ongoing
debate over the graded-vs-clustered structure of acceptability, and is also motivated by the desire
to combine the best features of forced choice judgments with the advantages of scale-like data.

In the process of testing and validating the Thurstonian model, I found that the existing
literature did not fully address the test-retest reliability of the most popular elicitation tools for
sentence acceptability. Although other important aspects of reliability have been studied in this
context, notably type one and two error rates (Sprouse & Almeida, 2017), and sensitivity to effect
size (Weskott & Fanselow, 2011), test-retest reliability is distinct from both of these. It has the
advantage of being interpretable in the absence of a reference ground truth. Moreover, it can also
offer additional information about the source of variability by contrasting within-participant with
between-participant test-retest reliability; this comparison has no analogue in error rate.

The following section first motivates the question of the structure of acceptability, then presents
evidence that the particular Thurstonian model I implemented is capable of addressing this ques-
tion. After motivating the adaptation of Thurstonian modeling to this context, it gives a brief
introduction to work on the properties of popular methods used in this area, looking in particular
at their reliability and sensitivity. This is followed by the main chapter, which combines all of
these elements in a comparison between the Thurstonian model and five other formal measures of
acceptability. Through studies of their test-restest reliability and cross measure agreement, this
work provides a quantitative picture of the different sources of variability these different elicitation
tasks are vulnerable to, shows their relative efficiency, and tests for the presence of task-induced
biases.

6.1 The structure of acceptability

The structure of sentence acceptability is one of those questions where the answer is obvious to
everyone, but it’s not necessarily the same answer (Aarts, 2007; Aarts, Denison, Keizer, & Popova,
2004; Fanselow, 2006; Sorace & Keller, 2005). For some, acceptability is clearly a statistical phe-
nomenon related to the likelihood of a sentence under some appropriate language model, best
described by a real number (eg Manning, 2003; Halevy, Norvig, & Pereira, 2009). Others pre-
fer the discrete formalisms associated with Chomsky (1965), and highlight the possibility that
acceptability ratings combine several different factors, arguing that attested measures of gradi-
ent acceptability (eg Lau, Clark, & Lappin, 2016) conflate a strongly categorical grammaticality
component with gradient performance factors (Hofmeister, Jaeger, Arnon, Sag, & Snider, 2013).
The Thurstonian model presented here is relevant to this debate because of its ability to fit a
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range of different latent acceptability structures. In this it is unlike other common acceptability
judgment tasks, which admit either interpretation. For example, categorical acceptability judg-
ments (particularly binary ones) intuitively support a categorical view of acceptability matching a
literal interpretation of the discrete response format. However such responses can also be aggre-
gated to give a real-valued proportion of endorsements (Myers, 2009). The process used to analyze
the data depends on a theoretical commitment to a particular interpretation of the responses,
something that is not directly answerable by the responses themselves.

Thurstonian modeling is one way to address this question. The method was developed by Louis
Thurstone to describe comparison judgments in terms of a latent representation space (Thurstone,
1927), and is a descriptive modeling technique that applies whenever things can be compared on
a subjective continuum. Thurstone’s 1927 paper gives degrees of greyness, perceived weight, and
handwriting quality as examples, the many subsequent uses of the approach have included movie
ratings and presidential popularity (Selker, Lee, & Iyer, 2017), various kinds of food and other
product preferences (O’Mahony, 2003) and many many more (see Ennis (2016) for a review).

The core of the Thurstonian technique is the construction of a latent scale capturing people’s
“impressions” of the stimuli. Assuming only that people’s impressions are symmetrically variable
around some mean value characteristic of the stimulus, the fact that the units of the scale are
arbitrary allow it to be structured such that the variability of impressions is well described by a
normal distribution. Specifying a mapping between impressions on this scale and choice responses
allows the construction of an appropriate scale from data, inferring the position on the scale
representing the mean “impression” of each stimulus. The particular implementation presented
here uses a Gibbs sampler, JAGS, to do this (Plummer, 2003). The inferred means and variability
values on the latent scale are interpretable as an efficient summary of the comparison data used
to construct the scale. Given an assumption of transitivity, they can be used to infer probable
outcomes for comparisons that may not have been presented to participants, allowing a full n?
matrix of possible contrasts to be inferred from considerably fewer than n(n - 1) comparisons
(Thurstone, 1931). Although violations of transitivity are certainly possible (Tversky, 1969), in
many applications it is a reasonable assumption (see Cavagnaro & Davis-Stober, 2014), and in the
particular project described here, the use of multiple elicitation tasks including rating scales on
individual items provide a cross-check against the possible influence of contrast items on perceived
acceptability.

This ability to predict comparison outcomes is not just about leveraging an assumption of
transitivity to efficiently estimate a subjective ordering: to the extent that scores on the inferred
latent scale allow predictions about comparison outcomes, distances on the scale capture something
about the representation space (Ashby & Lee, 1991). Interest in the structure of the representation
space has given Thurstonian modeling an important place in the similarity literature: multidimen-
sional scaling approaches, a core formalism for geometric approaches to similarity (Borg & Groenen,
2005), can be considered a multidimensional generalization of the same basic idea (Nosofsky, 1992).

For the particular question of sentence acceptability, the Thurstonian method does not offer a
complete solution since it does not distinguish between different factors that might independently
contribute to overall acceptability. However, currently the most common approaches to elicit-
ing sentence acceptability judgments do not directly address the question of representation. The
most basic methodology for constructing linguistic arguments — simply presenting acceptable and
pathological examples validated by introspection — either makes no claim as to the structure of
acceptability or at best can be interpreted as offering a three-way categorical outcome distinguish-
ing between perfectly acceptable, questionable, and uncontroversially unacceptable (Gibbs, 2006).
While non-introspective approaches such as Likert scale ratings by groups of native speakers can
claim greater objectivity, which comes with its own substantial benefits, it is not clear that such
scales are any more informative about the structure of acceptability (Schiitze, 1996; Geeraerts,
2006). Likert scales in particular are ordinal judgments, with the psychological distance between
the various response option levels unknown and quite likely to be different between different pairs
of adjacent options: the difference in acceptability causing someone to change their rating from a
‘3’ to a ‘4’ need not be the same as that required to shift a rating from a ‘4’ to a ‘5’. Moreover,
both the level of acceptability each response option is taken to represent and the sizes of distances
between the options are likely to be different for different people (Gonzalez-Marquez, 2007).

One possible response to the limitations of Likert scale data is magnitude estimation judgment.
Originally adapted from its psychophysics origins (Stevens, 1956) to linguistics by Bard, Robertson,
and Sorace (1996), magnitude estimation asks participants to assign a numerical acceptability score
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to a series of test sentences using a reference item/score pair to calibrate their responses. Magnitude
estimation was originally intended to provide truly interval data, in which score differences map
directly onto acceptability differences (Stevens, 1956; Cowart, 1997). Interpreted literally in line
with the instructions given to participants, such responses should reflect representation structure,
and data of this type has been presented as evidence in claims about the structure of acceptability,
for example that is is categorical rather than gradient (Sprouse, 2007). However more recent work
(some by the same authors) shows that a literal interpretation of magnitude estimation scores as
interval data directly reflecting psychological distances is untenable. Magnitude estimation scores
violate commutativity (Sprouse, 2011a) and are insensitive to the choice of reference in ways that
are incompatible with the literal interpretation (Sprouse, 2008).

One possible response might be to modify the magnitude estimation task into something that
people can do more easily. One such modification appears in Featherston (2009b). The proposed
method approximates a continuous scale with a large number of response options (more than 20)
and supplies two references rather than one, placed near the top and near the bottom of the
expected response range (although allowing responses outside this range, if a test item goes above
or below the range spanned by the references).

The Thurstonian approach I investigated here presents an alternative possibility: it shifts the
responsibility for quantifying acceptability scores away from participants and onto to a model of
choice behavior, presenting participants with the easier task of just making comparisons. One
motivation for this approach was the hope that the relative simplicity of the comparison task
for participants would translate into higher reliability and clearer data. The other was due to
the similarity literature, which suggests that scale-free comparison judgments are particularly well
suited to structure discovery in domains like sentence acceptability where the underlying structure
of the space is unclear.

6.2 Testing the Thurstonian model

The Thurstonian model describes a simplified process for selecting either the more acceptable
sentence or a ‘no difference’ option from trials comparing pairs of sentences. The decision process
for each trial was modeled as follows: for each comparison, acceptability ‘impressions’ were drawn
for each sentence from a distribution with a mean at the group consensus for the acceptability
of that sentence and a variance that differed between participants but was constant for each
participant across sentences. The difference between the sampled values was then compared to
a participant’s criterion. If the absolute value of the difference was greater than the criterion,
the model predicted that the more acceptable sentence should be endorsed; otherwise, it made an
‘equal’ response. Implementation details of the model can be found in Appendix B.

I tested the structure-discovery capability of this particular instantiation of the Thurstonian
approach in two main ways. One was in simulation tests, checking that the model could successfully
recover a variety of simulated acceptability structures. The other was with real-world data, where I
examined whether distances on the inferred scale could be used to derive well-calibrated estimates
of the choices people would make when facing novel combinations of these sentences.

6.2.1 Simulation tests

This section reports the performance of the Thurstonian model on simulated datasets. All simu-
lated participants followed the model’s decision process, but various experimental design decisions
and facts about participant’s decision parameters and the simulated sentence acceptability were
allowed to change. For each simulated decision, acceptability impressions for each of the two
sentences were drawn from an underlying distribution with a community consensus mean and a
participant-specific degree of variability, with participants deciding which sentence to endorse based
on whether the differences in perceived acceptability were larger than their subjective criterion.
Simulations testing experimental design decisions such as sample size and the size of the item
set were used to check the feasibility of the the experimental approach but are not reported here.
As expected, these simulations showed that performance depends on the ratio of participants to
items, and gave an estimate of the feasible design space for this modeling approach given a range
of possible participant variability levels. These simulations were used to select the number of
items and participants used in the actual study. Given that the model was found to be feasible for
plausible experimental scenarios, the main question of interest here is its performance in recovering
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different underlying distributions of ‘true’ sentence acceptability. For the particular simulations
presented here, the other variables were fixed at: 300 sentences, 150 simulated participants making
40 responses each, with participant variability drawn from |N(10,10)|+ 10, and a criterion drawn
from |N(10,10)| + 5. These settings are chosen to be (roughly) consistent with the real-word
data. In particular, these variability and criterion settings result in a similar proportion of ‘equal’
endorsements to that observed in the real data set (~ 25%).

The issue of interest for the representation debate is whether the model can recover different
acceptability structures. If it can, this suggests it would be informative about the structure of
human representations if applied to human data. To test this, I evaluated the model on a variety
of acceptability structures (captured as different distributions). The candidate distributions tested
were UNIFORM (with sentence acceptabilities ranging uniformly from 0-100), CLUSTERED (with
acceptability scores of only 10, 50 or 90, with roughly equal numbers in each group), CUBIC (with
acceptability scores following a cubic equation), and SIGMOID (i.e., with acceptability scores drawn
from a logistic function scaled to fall in a 0-100 range).!

Results of these simulations are plotted in Figure 6.1. The first column shows the different ‘true’
acceptability structures (in order: CUBIC, UNIFORM, SIGMOID, and CLUSTERED). In each, the plot
shows the acceptability of each sentence when arranged by rank. The second column demonstrates
that model is capable of recovering the structure in each case: when the model estimates are
arranged according to the true acceptability rank of each sentence, the distribution shape matches
the true underlying distribution. The third column demonstrates the model’s success more precisely
by plotting model acceptability estimates on the z-axis and true simulated acceptability on the
y-axis. This presentation makes it easier to see differences between the model estimates and the
simulation truth: if the model is successfully recovering the acceptability structure, these plots
should be linear. The only case showing any kind of systematic difference from the simulated truth
is the cubic distribution, where the model gives less extreme ratings than the simulation truth
warrants for the best and worst sentences. This is a relatively minor effect and probably emerged
because of the model priors, which were chosen with the aim of preventing the ends of the scale
from becoming too extreme. Details appear in Appendix B.

6.2.2 Interpreting distances on the scale

Simulated data is not the only way to test whether the THURSTONE model can accurately capture
the structure of acceptability in the stimulus set. The THURSTONE acceptability scores can be
interpreted as predictions about future acceptability judgments, which admits tests of predictive
validity. The decision rule used to map acceptability scores onto comparison responses can be
applied to any two acceptability scores to produce a prediction of the probability of endorsement
for each possible response. Chapter 7, which investigates the test-retest reliability of sentence
judgments, involves datasets supporting exactly this kind of test. The chapter contains the full
details, but the key property here is that it conducted a BETWEEN PARTICIPANTS replication study.
In it, each new participant saw a different subset of the overall set of 300 sentences of interest. As
a result, the majority (4472 of 5000, 89%) of the comparisons made in the replication were novel
combinations that had not been presented to any participants in the INITIAL data set. This gave
us a natural test of the THURSTONE model: the fit to the INITIAL data set was used to generate
predictions for the new comparisons that appeared in the BETWEEN PARTICIPANTS data set.

One simple measure of predictive success is to count the number of times the response made
was the one predicted as having the highest probability on the basis of the fit to the INITIAL data.
This yields a predictive accuracy of 66.62% (3331 correct out of 5000 responses). This is, however,
a crude measure: it largely reflects the sign of the difference in acceptability scores while ignoring
the actual distance. To test if the distances between acceptability scores support interpretation as
a psychological distance, the level of confidence in each prediction is also important.

Figure 6.2 visualizes one possible test of this prediction calibration property. Outcome prob-
abilities predicted by the model were rounded to one decimal place, producing 11 bins from 0
to 1, and all possible responses to comparisons appearing in the BETWEEN PARTICIPANTS data
set were grouped by predicted probability of that response occurring. If the predictions of the
model are well-calibrated, the proportion of responses in each bin which were actually observed
should closely match the probability associated with that bin. Figure 6.2 shows the probability of
a response occurring based on the model fit to INITIAL data on the y-axis, and the proportion of

1The equation used to generate the data was fn(z) = x 100).

1
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Figure 6.1: Testing the Thurstonian model’s ability to recover various acceptability structures.
The leftmost column shows the ‘ground truth’ of the simulated acceptability values on the y axis,
and rank order on the x-axis. The distributions were (in order) CUBIC, UNIFORM, SIGMOID, and
CLUSTERED. The middle column shows the acceptability scores estimated by the model, positioned
on the same x-axis of true simulation rank. The third column shows the agreement between the
two, with estimated acceptability on the x-axis and simulation truth on the y-axis. The blue fit
line shows the best fitting linear model: perfect correlation would entail all points falling exactly
on this line. The red line shows a loess-smoothed local fit: differences between the linear and
smoothed fits visually highlight any differences in structure between the simulation truth and the
local model estimates. In most cases, the two lines coincide, indicating that the model successfully
recovers the simulated distribution regardless of the shape of the distribution. The only exception
is that when the underlying distribution is cubic, the smoothed line departs slightly from the linear
fit at the ends of the scale by giving less extreme estimates than the simulation truth warrants.

these responses which were actually observed on the x-axis. The model appears well calibrated, in
that the prediction probabilities closely match the observed proportion at all levels of confidence.
One widely-used metric for quantifying prediction calibration is the Brier score (Brier, 1950), es-
sentially the mean squared error of the prediction, with lower values indicating better predictions.
The model fit to INITIAL responses achieves a Brier score of 0.27 when predicting the BETWEEN
PARTICIPANTS responses. Brier scores are mainly useful for comparing competing predictors in
a particular domain, but since the other acceptability measures considered in Chapter 7 do not
produce such predictions, they cannot be compared on this measure. Still, the relatively low Brier
score is somewhat reassuring. To the extent that the THURSTONE acceptability estimates express
meaningful distances — and these distances embody valid predictions about people’s acceptabil-
ity judgments — the structure described by the estimated score distances can be interpreted as
expressing something about the structure of sentence acceptability.

So what was the structure that the THURSTONE model recovered based on the data presented
in Chapter 77 This data, described in detail in that chapter, consisted of participant sentence
acceptability judgments of 300 sentences of varying acceptability. Figure 6.3 shows the structure
of acceptability that the THURSTONE model recovered based on it. Although all intermediate
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Figure 6.2: Calibration of predictions made by the Thurstonian model. Each possible outcome for
each judgment appearing in the BETWEEN PARTICIPANTS replication study was assigned a proba-
bility of occurring by the model on the basis of its fit to the INITIAL data set, which involved the
same sentences but different individual comparisons. These predictions were binned by rounding
them to a single decimal place, and for each bin, the proportion of those outcomes which were ac-
tually observed in the BETWEEN PARTICIPANTS data set was calculated. Perfect calibration (blue)
would involve every bin showing a proportion of observed outcomes exactly identical to the bin
probability. The model’s predictions lie quite close to this line. Good calibration at this level of
detail implies that distances between THURSTONE acceptability scores have a valid interpretation
in terms of people’s ability to discriminate their acceptability.

values between the highest and lowest acceptability scores are represented, a histogram of the
acceptability scores shows a bimodal distribution, suggesting an underlying latent structure with
two clusters.

Of course, the analysis here and the sentences used are more suitable for validating the structure-
recovery ability of the model than they are for making any comment about the structure of sentence
acceptability more generally. In this case, the recovered structure reflects a property of the sentence
set that was known in advance: they were constructed by linguists in acceptable/unacceptable
pairs, each pair illustrating an argument put forward in Linguistic Inquiry (Sprouse, Schiitze, &
Almeida, 2013). This advance knowledge about the structure of the test sentences is a nice sanity
check on the plausibility of the structure recovered, but also strongly limits the generality of any
conclusions drawn about the ‘true’ distribution of sentence acceptability.

I leave the survey of acceptability distributions given different sentence sampling or construc-
tion schemes to future work, but note that to the extent that the debate is over the appropriate
interpretation of discrete response data, the results presented in Chapter 7 do suggest a resolution.
This is evident thanks to the strong agreement reported between the structure-agnostic THUR-
STONE acceptability scores and the scale-based LIKERT scores. As detailed in that chapter, means
of ztransformed Likert responses can be interpreted as indicating gradient levels of acceptability.
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Figure 6.3: Histogram showing distribution of acceptability scores inferred by the Thurstonian
model. Scores are bimodal, with one peak around an acceptability of -15 and another around 30.
These units are arbitrary: they roughly correspond to ranks 100 and 230 out of 300.

6.3 Reliability studies for sentence acceptability measures

The structure of acceptability discussed in detail above is only one aspect of a larger discussion
about measurement methods in linguistics research, and in particular the status of acceptability
judgments as evidence.

Early work in this area was prompted by concerns about the practice of ‘armchair linguistics’,
which considered phrases or sentences as the primary unit of evidence on which linguistic theories
were built, taking for granted that the acceptability status of these sentences would be immediately
obvious to a native speaker (Phillips, 2009). With reference to previously discredited introspective
approaches in psychology (see Danziger, 1980), critics pointed out that the intuitions of a linguist
about a sentence they constructed themselves to demonstrate a particular point of syntax might
not be the same as those of the broader language community (Spencer, 1973; Schiitze, 1996; Wasow
& Arnold, 2005; Dabrowska, 2010).

Proponents of informal approaches argued in response that linguists were mainly concerned with
phenomena that gave very large effect sizes, making multiple opinions on a particular acceptability
difference redundant (Phillips & Lasnik, 2003; Phillips, 2009; Featherston, 2009a). Arguing for
the acceptance of informal approaches on ‘obvious’ cases moved to defend the legitimacy of a large
literature built on such informal tests, but left open the question of how to decide what counts as
an obvious case (Linzen & Oseki, 2015).

Recent systematic work comparing expert and naive judgments has largely supported the ar-
gument that the majority of claims published in the linguistics literature are consistent with the
results of formal tests against the judgments of large numbers of naive native speakers (Culbertson
& Gross, 2009; Sprouse & Almeida, 2012; Sprouse et al., 2013). However the same program of re-
search has shown that even for contrasts with large effect sizes, formal tests offer more information
than informal ones. As well as giving an objective measure of whether a test sentence is more or
less acceptable than a control to a language community, a formal test can also give an indication of
the size of the difference, and the relative acceptability of both sentences on a global acceptability
scale (Sprouse & Schiitze, 2017). It has also been argued that as a result of much productive work
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on large effects, smaller effects have become increasingly important to further progress (Gibson
& Fedorenko, 2013; Gibson, Piantadosi, & Fedorenko, 2013). Rather than focusing on questions
of strict veracity of claims with regard to the presence or absence of an effect, as in the original
framing of the formal/informal measures debate, it may be more useful to focus on questions of
informativeness (Featherston, 2007).

The different types of information: veracity of the presence of an effect, effect size, and global
acceptability status of test items, all make different demands on the measurement tool. In par-
ticular, each comes with some cost in time and participant-hours. Myers (2009) describes a range
of possible experimental designs, varying in numbers of participants and the types of responses
offered, which could be expected to cover different trade-offs between the information gained and
cost of running the experiment. The discussion given by Myers (2009) makes the key point that ob-
jectivity and methodological rigor need not be prohibitively expensive or complicated: subsequent
work in the same vein (to which the project presented here also belongs) has looked at providing
more detailed quantification of the reliability of results for different testing methods and result
types.

At one end of this scale, Mahowald, Graff, Hartman, and Gibson (2016) examine the minimal
experiment needed to give high confidence in the veracity of an ‘obvious’ effect, the original question
in the formal/informal methods debate. They find that five unanimous judgments by independent
raters in a forced-choice task gives 95% confidence that endorsement rates for the preferred sentence
would be over 75% in a large-n formal study, assuming that the distribution of effect sizes being
tested is well represented by a sample drawn from 10 years of Linguistic Inquiry articles appearing
in Sprouse et al. (2013).

However if the target of a study is the extra information unique to formal tests, the estimates
of effect size and overall acceptability status of test items, more responses are needed. These
finer-grained questions are addressed in Sprouse and Almeida (2017) specifically focusing on sta-
tistical power in hypothesis tests for forced-choice, Likert scale, magnitude estimation, and binary
acceptability tasks. In brief, this study found that the forced choice task was the most sensitive to
contrasts between conditions, but noted that it did not give global acceptability information, as
Likert scales and Magnitude Estimation do. The latter two measures were found to have similar
sensitivity.

As described in the previous section, one contribution of the project presented in Chapter 7
was the application of Thurstonian modeling to the sentence acceptability context, which could
reasonably be expected to benefit from the high sensitivity of the forced choice task while also
supplying global acceptability information. A second contribution was the use of between and
within participant replications to test reliability.

Test-retest reliability is strongly related to the Type 1 and Type 2 error rates that are the main
focus of Sprouse and Almeida (2017). To the extent that true effects are stable in the world, they
drive stable patterns of responses resulting in both low error rates and high test-retest reliability.
Test-retest reliability is however distinct from error rates in not appealing to a ground truth, and
in the way the contrast across between and within participant test-retest reliability separate out
different sources of variability (Bland & Altman, 2007, 1999).

Type 1 and Type 2 error rates are defined with reference to the true state of the world: a
Type 1 error is the spurious endorsement of an effect where none truly exists, and a Type 2 error
is the rejection of a true effect. As a result, studying error rates is very resource intensive, since
validating high confidence ground truths for the small effect sizes of greatest interest for sensitivity
studies requires large numbers of responses. For example, the tests presented in Sprouse and
Almeida (2017) rely on reference effects established in (Sprouse et al., 2013) and independently
replicated by Haussler, Juzek, and Wasow (2016); Mahowald et al. (2016). Sprouse et al. (2013)
argues that there is no way to settle the superiority of a measure in a simple comparison study,
since inconsistencies between measures offer no information about accuracy. From this perspective,
assessments of measure accuracy require a deep prior understanding of the particular effects under
study. While this is true of inconsistencies between different measures, the same argument does
not apply to tests of self-consistency. In that case, it is not necessary to identify which if either of
two different results is accurate to determine that at least one of them is in error. The possibility
of consistent errors (for example, consistent failures to detect a small effect) mean that these
inconsistency rates do not give the same information as error rates, and do not directly address
statistical power. However in combination with null decision rates, test-retest reliability measures
offer a broadly applicable metric of measure quality without necessarily requiring large scale studies
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validating ground truths for a range of effect sizes.

Another advantage of the test-retest reliability method is that contrasting between participant
test-retest reliability and within-participant test-retest reliability offers some information about
the source of variability, a contrast which has no analogue in error rates. There are many potential
sources of variability when measuring psychological constructs such as a sentence’s acceptability,
even when the measures are within-participants and are not widely separated in time. The un-
derlying construct may itself be unstable and subject to some inherent variability (Vul & Pashler,
2008). Even for stable constructs, lapses of attention or misunderstanding of task instructions
may randomly introduce responses that do not accurately reflect the person’s perception of the
test sentence. Between-participant replication attempts are subject to all of these sources of vari-
ability, plus individual differences in ability or interpretation of the task, and potentially also
presentation differences such as item neighborhood effects. By measuring the extent to which
between-participant replications vary more than within participant replications with other factors
controlled, it’s possible to estimate the extent to which results may be impacted by the extra
factors specific to between-participant replications.

The next chapter presents the performance of six different sentence acceptability elicitation
tasks on these tests of measure quality. This work is related to the previous chapters in its use of
comparisons to examine representation structure, but also engages with the primary methodological
concerns of linguists working in this area, which center around reliability and efficiency. The
tasks include Likert scales, proportion endorsement in targeted forced choice tasks, proportion
endorsement in randomized forced choice tasks, Thurstonian modelling of randomized forced choice
tasks, and magnitude estimation with or without a z-transformation applied to the resulting scores.
Results suggest that all tasks have surprisingly high test-retest reliability, although Likert scales and
the Thurstonian model do especially well. Moreover, more fine-grained analyses allow a detailed
quantitative description of the various sources of variation impacting acceptability judgments.
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The reliability of acceptability

This chapter reproduces a manuscript currently under review Quantifying sentence acceptability
measures: Reliability, bias, and variability with authors Steven Langsford, Amy Perfors, Andrew
Hendrickson, Lauren Kennedy, and Daniel Navarro.
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7.1.  Introduction Chapter 7

Understanding and measuring sentence acceptability is of fundamental importance for
linguists, but although many measures for doing so have been developed, relatively
little is known about their variability and bias. In this chapter, I quantify the contribu-
tion of different sources of variability by contrasting within- and between- participant
test-retest reliability, which allows us to estimate the contribution of individual differ-
ences to the total variability of the consensus scores. By contrasting results with and
without response-style mitigation in analyses, I further isolate the impact of response
styles. By contrasting acceptability scores arrived at using different elicitation tasks,
I test potential sources of bias due to properties of the task. The measures examined
include Likert scales, two versions of forced-choice judgments, magnitude estimation,
and a novel measure based on Thurstonian approaches in psychophysics. I reproduce
previous findings of high reliability for effects, and extend these results to the reliability
of acceptability differences between individual items. I find that Likert scales have par-
ticularly good reliability, and their agreement with the Thurstonian method suggests
the limits of the discrete scale does not impose structure on results.

7.1 Introduction

Acceptability judgments have formed a large part of the study of language since at least Chomsky
(1965). They are one of many sources of evidence, alongside corpus linguistics (Sampson, 2007),
psychological experiments (Noveck & Reboul, 2008), and neuroscience techniques (Shalom & Poep-
pel, 2007), that each offer distinct and complementary information about language (Arppe &
Jarvikivi, 2007). One major factor in the popularity of acceptability judgments is the way they
allow theories to be tested against artificial constructions that passive observation would rarely
or never provide (Schiitze, 1996). For instance, acceptability judgments can differentiate between
constructions that are ungrammatical and those that are rare or missing but still grammatical.

Acceptability judgments come in a number of possible forms, each with their own advantages
and disadvantages. The main differences between different forms are in the kind of response re-
quired from the participant. People can be offered a discrete rating scale, a real-valued scale,
or be asked to make a relative comparison between items. The choice of what response options
to offer is critical in two important respects: it determines the statistical tests available to re-
searchers, and it may also significantly influence people’s interpretation of the task. For these
reasons, the characteristics of different kinds of acceptability measures are well studied. It is well
known that acceptability judgment data are influenced by details such as the selection of partici-
pants (Dabrowska, 2010), sample size (Mahowald et al., 2016), task structure (Featherston, 2008),
participant engagement (Haussler & Juzek, 2017), and data processing decisions (Juzek, 2015).

Most of the existing literature focuses on the question of to what extent acceptability judgment
data can be used to adjudicate about individual phenomena or effects of linguistic interest (e.g.,
by presenting pairs of sentences that capture a specific contrast relevant to a particular theoretical
claim). However, one might be interested in evaluating the range of acceptability measures along
other dimensions as well. To what extent do acceptability judgments from different elicitation
tasks support claims about the global structure of acceptability across different sentences and
phenomena? To what extent do different measures of acceptability agree with each other about
specific items or sentences? To what extent is each measure robust to differences within individuals
at different time points? This chapter focuses on exploring these questions.

In the work presented here, I attempt to quantify the extent to which acceptability judgment
data from a variety of different elicitation tasks supports different kinds of claims: claims about
the global structure of acceptability across a large set of diverse sentences, claims based on the
magnitude of acceptability differences, and claims made at the level of single items or sentences.
This is done by quantifying the relative contribution of multiple factors — individual participant
differences, sample size, task structure, and response-style mitigation in data processing — to the
empirical reliability of acceptability scores over specific items (rather than over specific effects)
for different measures. I chose to focus on reliability because reliability places a ceiling on how
appropriate acceptability judgments are as a test of linguistic theories. Just as replicable effects
are the foundation of theory, repeateable measurements are the foundation of effects. Moreover,
understanding what factors influence the reliability of a measure can be informative about exactly
what that measure reflects.

The approach taken here aims to differentiate between possible sources of bias and variance.
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It is currently unclear what proportion of the variability seen in acceptability judgment data is
due to lapses of attention, idiolect differences between participants, differences in interpretation of
acceptability scales, or interference from simultaneously presented items. A standard response to
the diversity of potential sources of variability is to give them all equal status as noise independent
of the linguistic effect and ask what can be concluded about true linguistic effects (focused on
specific phenomena) in the presence of this noise, regardless of its source. An extensive literature
explores this question, looking at the chance of identifying an effect where none exists (Sprouse
& Almeida, 2011; Sprouse et al., 2013), the chance of failing to identify an effect that is truly
present (Sprouse & Almeida, 2017), and differences in sensitivity of different measures compared
on a particular known effect (Weskott & Fanselow, 2011). The consensus of such studies is that
acceptability judgments are highly reliable across replications (Sprouse & Almeida, in press).

As this literature shows, differentiation between different sources of bias and variance is not
strictly necessary in order to test specific linguistic effects, which are the primary currency of
linguistic research. Many measures of sentence acceptability have good psychometric properties
when they are used for such a purpose (e.g., testing whether a set of sentences licensed under some
linguistic theory have different acceptability than a set of sentences that are not licensed). If such
differentiation is not necessary, why attempt to do so here?

The first reason is that such differentiation is important if acceptability judgments are to be
used to explore questions that are not focused on hypothesis testing about specific linguistic effects.
For instance, it is quite possible that the nature of the elicitation task may impose structure on the
overall distribution of acceptability scores across multiple kinds of sentences. Thus, understanding
to what extent different tasks do this is important for investigations of the global structure of
acceptability in language. Such investigations would include issues like whether acceptability is
gradient or strongly clustered (Lau et al., 2016; Hofmeister et al., 2013), whether there are dialect or
language differences in global acceptability structure, or whether low acceptability sentences show
greater variability than high acceptability ones. Indeed, global acceptability judgments (if they
are reliable) may even provide a means to differentiate between dialects or evaluate the knowledge
or fluency of individual speakers.

The second reason it might be useful to distinguish between different sources of variability is the
expectation that some of these sources fall under an experimenter’s control and can be minimized.
Different elicitation tasks may vary in their vulnerability to particular sources of variability, which
affects their relative quality as scientific instruments. In general, a task that is more difficult
might be expected to incur greater variability due to distraction or mistaken responding. Tasks
with a small number of unambiguous response options, such as forced choice tasks, may be less
vulnerable to response style variability than tasks with flexible free response options that are open
to differences of interpretation, such as magnitude estimation. Conversely, forced choice tasks may
be more vulnerable to item neighborhood effects, with sentences potentially processed differently
in the context of a contrast rather than in isolation. How much do these tasks vary and how
large are these different sources of variation? My goal is to provide a quantitative answer to this
question.

The many possible sources of bias and variability cannot be completely disentangled, since they
are generally all present in some unknown degree in every response. I give quantitative bounds for
the distinct contribution of certain sources of variability in two different ways.

First, I contrast between and within participant test-retest reliability. Between-participant
test-retest reliability is an important metric of measure quality in its own right, since no strong
conclusions can be drawn from the results of a measure if it is liable to give different answers
to the same question on different occasions (Kline, 2013; DeVellis, 2016; Porte, 2013; Brandt et
al., 2014). While distinct in the way it avoids appealing to a ground truth, between-participant
test-retest reliability is closely related to error-rate reliability, if the underlying truth is considered
stable over the time scales involved. As such, it is widely reported in existing work on the relia-
bility of acceptability judgment data (Sprouse et al., 2013; Sprouse & Almeida, 2017). However
test-retest reliability within the same participant can offer additional information, especially when
contrasted with between-participant reliability. This contrast, which has no analogue in error
rates, is informative about the composition of the variability: variability inherent to the construct
itself and random noise due to inattention or other error can be expected in both, while individ-
ual differences in response style and subjective acceptability only contribute to the variability of
between-participant replications. As a result, between-participant replications are expected to be
less reliable, and the size of the reliability gap quantifies the combined impact of these particular
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sources of variability. Even further decomposition into the source of this within/between reliabil-
ity gap is possible as well. For instance, the variability due to response style differences can be
estimated by examining the effect of data pre-processing steps (e.g. z-transformation of scores)
known to mitigate this particular source of variability.

Second, I contrast these within and between participant test-retest reliability results for mea-
sures based on different tasks. The tasks differ primarily in the kind of response options offered,
which could potentially impose structure on results. For example, asking people to give responses
on a discrete Likert scale might force them to collapse distinct acceptabilities onto one response if
there are too few options or encourage them to make spurious distinctions if there are too many
(Carifio & Perla, 2008; Schiitze, 1996, 2011). The comparisons involved in forced choice judgments
could also direct people’s attention to specific syntactic details, particularly when the two sentences
are related, as is typical of a well-controlled test pair. This might lead to different acceptability
ratings than if each sentence was considered in isolation (Cornips & Poletto, 2005). Contrasts
between measures are therefore useful both in identifying the best-performing measures (Sprouse
et al., 2013; Sprouse & Almeida, 2017) and to test the degree of agreement between them (Weskott
& Fanselow, 2011; Schiitze, 2011; Sprouse & Almeida, 2012). However, from the perspective of
decomposing sources of bias and variance, distinct tasks may also be differently vulnerable to
different sources of variability. As a result, they can be used to cross-check against each other’s
potential biases.

The structure of this chapter is as follows. I first give a detailed introduction to the measures
considered in this chapter, the processing steps and statistical tests associated with each, and the
series of experiments that provide the data. When reporting the results the primary focus is on
test-retest reliability; it is first evaluated in terms of raw score correlation of all sentences in a
dataset, then in terms of the decisions yielded by each measure on particular contrasts of interest.
For each of these I compare within and between participant reliability and examine the impact of
sample size. I conclude by examining the mutual agreement between the measures, with reference
to expert judgments in the published literature. The discussion explores some limitations of this
work, gives recommendations for researchers interested in measuring sentence acceptability, and
describes some possible future directions.

7.1.1 The measures

Early work on the reliability of formal measures was prompted by concerns about the practice of
‘armchair linguistics’, which considered phrases or sentences as the primary unit of evidence on
which linguistic theories were built, taking for granted that the acceptability status of these sen-
tences would be immediately obvious to a native speaker. With reference to previously discredited
introspective approaches in psychology (Danziger, 1980), critics pointed out that the intuitions of a
linguist about a sentence they constructed themselves to demonstrate a particular point of syntax
might not be the same as those of the broader language community (Spencer, 1973; Schiitze, 1996;
Wasow & Arnold, 2005; Dabrowska, 2010). Proponents of informal approaches argued in response
that linguists were mainly concerned with phenomena that gave very large effect sizes, making mul-
tiple opinions on a particular acceptability difference redundant (Phillips & Lasnik, 2003; Phillips,
2009; Featherston, 2009a). This approach defended the legitimacy of the large literature built on
such informal tests, but left open the question of how to decide what counts as an obvious case
(Linzen & Oseki, 2015).

Recent systematic work comparing expert and naive judgments has largely supported the ar-
gument that the majority of claims published in the linguistics literature are consistent with the
results of formal tests against the judgments of large numbers of naive native speakers (Culbertson
& Gross, 2009; Sprouse & Almeida, 2012; Sprouse et al., 2013). However the same program of re-
search has shown that even for contrasts with large effect sizes, formal tests offer more information
than informal ones. As well as giving an objective measure of whether a test sentence is more or
less acceptable than a control to a language community, a formal test can also give an indication of
the size of the difference, and the relative acceptability of both sentences on a global acceptability
scale (Sprouse & Schiitze, 2017). It has also been argued that as a result of much productive work
on large effects, smaller effects have become increasingly important to further progress (Gibson &
Fedorenko, 2013; Gibson et al., 2013).

One potential drawback of formal methods is their higher cost in time and participant-hours.
However, as Myers (2009) points out, objectivity and methodological rigor need not be prohibitively
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expensive or complicated. Moreover, cost depends in part on the measurement task as well as the
question being asked. For instance, many fewer judgments are required for a forced-choice task
on an ‘obvious’ effect (Mahowald et al., 2016) than for answering finer-grained questions about
statistical power or sensitivity (Sprouse & Almeida, 2017).

My goal in this work was to evaluate all of the most commonly used formal measures of sentence
acceptability, as well as variants on them, in order to isolate and expose the impact of task-specific
assumptions. The primary distinction between existing measures is whether they ask participants
to give each sentence a rating on a scale of some sort (a rating task) or make a choice between two
sentences (a choice task). The two rating tasks considered here are LIKERT scales and Magnitude
Estimation (ME), while the two choice tasks involve either deciding between two related sentences
(TARGET PAIRS) or two random sentences (RANDOM PAIRS). This yields four separate tasks, but
for two I separately evaluate alternative statistical methods for transforming the raw results, giving
six distinct measures. One task for which I consider multiple analyses is magnitude estimation,
where scores can be log transformed (ME(LOG)) or both log and ztransformed (ME(2SCORE)).
The other is the judgments involving random sentence pairs, which can either be used directly or
input into a THURSTONE model based on a standard measurement approach in psychophysics.

The six measures, ME(2-SCORE), ME(LOG), LIKERT, THURSTONE, TARGET PAIRS, and RAN-
DOM PAIRS are described in more detail in the Method section. One reason for this choice of tasks
is to reflect current practice: LIKERT, TARGET PAIRS, and ME are probably the most common
instruments for eliciting acceptability judgments (Podesva & Sharma, 2014). However another con-
sideration is their diversity of assumptions. In particular, LIKERT and ME each supply a particular
rating scale, while the choice tasks do not. A key contribution of this project is the presentation
of the THURSTONE model, which allows comparisons between these perspectives by inferring scale
structure from choice data (Thurstone, 1927). The THURSTONE model is capable of representing
a wide range of latent acceptability structures: the degree of consistency between the structure
inferred from choice task data and rating task data gives an indication of the extent to which the
researcher-supplied scales impose structure on people’s responses.

7.1.2 Measure evaluation

In this section I systematically investigate three criteria for evaluating each of the six measures:
test-retest reliability, agreement, and robustness to sample size. Measure agreement is an important
check of validity for diverse measures claiming to reflect the same underlying construct. Here I am
also interested in the vulnerability of different measures to different sources of noise, with the goal
of allowing researchers to minimize the variability in results that are due to controllable properties
of the elicitation task rather than the linguistic construct of interest. Although robustness to
sample size is not directly related to the decomposition of measure variability and bias that is
the main focus of this project, I include it as important information for readers interested in the
implications of this work for study design.

Test-retest reliability can be defined at various levels from responses (when repeating questions
within-participants) to items (an aggregation of many responses) to effects (which aggregate over
many theoretically-related items). Here I am primarily concerned with the item level, for several
reasons. First, effect-level reliability is already well studied. Second, including only one item per
effect (as here) allows us to maximize variability across items and thus creates a much more stronger
test of each measure. If a measure is highly reliable even across an extremely varied sentence set,
this is more informative than finding that it is reliable along a more narrow set of stimuli. Finally,
item-level reliability is not itself well-studied, yet is theoretically important: if people’s judgments
about specific items are reliable for a given measure, a much wider range of theoretical claims
about language are open to study with this data type.

The assessment of reliability depends in part on the nature of the hypothesis being tested.
Some researchers might be particularly interested in a decision problem: determining whether
people make different judgments for two different sentences or kinds of sentences. Others might be
interested in an estimation problem, being able to accurately position sentences relative to each
other on an acceptability scale. Here I evaluate reliability using both kinds of assessment. For a
decision problem, I rely on statistical significance testing of the difference between acceptability
scores produced by a particular measure for the two sentences. This allows us to precisely char-
acterize uncertainty in the estimate of the difference for each pair of sentences, and compare that
degree of uncertainty across measures in a principled way. For estimation problems, I calculate
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correlations between scores from different time periods or people. Reliability at this level of detail
is relevant to claims about the overall structure of acceptability, for example whether or not it
exhibits strong clustering (Sprouse, 2007).

A secondary factor explored here is sensitivity to sample size. I do this by systematically
repeating the reliability analyses with the judgments derived from different sample sizes of partic-
ipants and comparing this to the results from the full sample. This is directly useful in estimating
the sample size required for a target level of reliability in studies using these measures. It also
gives an indication of how efficiently these measures are able to extract information from responses;
this is useful because different methods might take different numbers of trials to produce reliable
answers (L. Li, Malave, Song, & Yu, 2016).

The final factor of interest is the agreement between measures. This is of interest not only
because substantial agreement suggests that the measures reflect genuine acceptability judgments
rather than superficial measure-specific behavior, but also because such agreement provides con-
verging evidence about the nature of those judgments. Cross-measure agreement is better studied
than reliability (Weskott & Fanselow, 2011; Schiitze, 2011; Sprouse & Almeida, 2012), but still has
not been investigated within the full array of measures considered here. It is therefore valuable as
a replication and extension of previous work.

7.2 Method

7.2.1 Sentences

In order for the comparisons to be fair, all of the measures are evaluated on the same set of
sentences. Sprouse et al. (2013) selected these sentences from a subset of English data points pub-
lished in Linguistic Inquiry between 2001 and 2010. Sprouse et al. (2013) subdivide these sentences
into 148 distinct linguistic phenomena, roughly corresponding to 150 distinct sources (with two
instances where different sources discussed the same construction). Each linguistic phenomenon
was then represented by multiple items (eight instances). Since the focus here is not on the content
of any particular linguistic claim, I selected one matched pair of acceptable/unacceptable items
at random from the 150 distinct sources to create a set of 300 sentences. This decision limits my
ability to make claims about the status of any particular phenomenon, since each is represented by
a single item. However, my focus is on the reliability and variability inherent to specific measures,
and for this the diversity of sentences is a significant advantage: it is important to evaluate them
over the full range of sentence acceptability levels and effect sizes. In addition, with this data it is
also possible to estimate the variability associated with individual items. The full list of sentences
appears in Appendix A.

7.2.2 Measures

The reliability and sample size analyses involve comparing the six different measures of sentence
acceptability described above. When analyzing agreement, I additionally include informal expert
judgments from the published literature (INFORMAL). The procedures for deriving scores and
significance tests for each measure are given below, followed by the details of data collection.
Table 7.1 summarizes this information.

Informal

The INFORMAL measure captures the binary judgments presented in the Linguistic Inquiry journal
for each of the sentences in question. For each of the 150 pairs, one sentence was judged to be
acceptable and one was unacceptable (as noted with a judgment diacritic like * or ? in the journal).
I include this measure because of the intense interest in comparing informal and formal methods
(Sprouse et al., 2013; Gibson & Fedorenko, 2013; Munro et al., 2010; Myers, 2012; Featherston,
2007; Sprouse & Almeida, 2012), although the main focus is on evaluating the test-retest reliability
and mutual consistency of the formal methods. One important caveat for the interpretation of the
comparison with INFORMAL results presented here is the fact that each phenomenon is represented
by a single example sentence, rather than the multiple items as is the usual practice for formal
studies (Myers, 2009). For my purpose here (i.e., investigating item-level reliability and especially
the extent to which acceptability judgment data supports tests of global structure), this feature of
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the item set is an advantage: to the extent that different instances of the same phenomenon have
similar acceptability, using one item per phenomenon gives the maximum variability over the item
set and maximum coverage over the acceptability space. However it also means that there is some
risk that any specific phenomenon in question will be represented by an atypical example. Since
INFORMAL measures are single judgments, test-retest reliability measures do not apply, so they are
assessed only in terms of cross-measure agreement.

Likert

In a typical LIKERT task, each sentence is presented with a series of possible acceptability rating
options. This task is widely used in the psychological literature (Likert, 1932; Hartley, 2014) and is
generally considered fairly intuitive. LIKERT scales are one of the most widely-used formal measures
of linguistic acceptability (Schiitze & Sprouse, 2014) and have been shown to substantially agree
with informal judgments (Sprouse et al., 2013), with experts and non-linguists coming to largely
the same conclusions (Culbertson & Gross, 2009). In these experiments, following Sprouse et al.
(2013) and Mahowald et al. (2016), I aggregated LIKERT scores by first converting each individual
participants’ responses to zscores. The acceptability score for each sentence was thus the average
of all zscores associated with it. This normalization scheme mitigates the impact of individual
differences in response style.

Magnitude Estimation

ME tasks were developed to estimate the relative magnitude of differences between items by
supplying interval data (Bard et al., 1996). In this procedure, adapted from psychophysics (Stevens,
1956), participants are given an initial reference item to calibrate their judgments and then asked
to compare other items by assigning them any positive real number. Although unable to provide
true ratio data as initially claimed (Weskott & Fanselow, 2008; Sprouse, 2008, 2011a), ME is still
commonly used (Keller, 2003; K. Johnson, 2011; Featherston, 2005; Schiitze, 2011; Cowart, 1997;
Murphy, Vogel, & Opitz, 2006; Erlewine & Kotek, 2016). Interpreted as a linear scaling task rather
than a direct recording of people’s mental representations, it is distinct from other measures in the
extreme freedom it gives for arbitrarily precise responses, although whether that extra variability
actually encodes information about linguistic effects has been questioned (Weskott & Fanselow,
2011). ME has been shown to agree with other forms of acceptability judgment (Keller & Asudeh,
2001; Weskott & Fanselow, 2009).

The typical aggregation scheme for ME data in linguistics, following Bard et al. (1996), is to
average the log of the raw scores associated with each item (Sorace, 2010; Weskott & Fanselow,
2011). Originally, this was because the log transform is natural for ratio data, which is the form
requested in the instructions to participants. Recent work has shown that participants are in
general unable to produce responses conforming to the properties of true ratio scales (Sprouse,
2011a), and it may in fact be impossible to do so since acceptability does not have a clearly defined
zero point. I adopt the log transformation here primarily because it has historically been a standard
approach for reducing the impact of the outliers typical of ME data. Moreover, other possibilities,
such as trimming the data or Windsorizing, would remove information.

In order to evaluate the role played by response style differences, I additionally investigate the
impact of also applying a ztransformation, which is sometimes recommended for ME scores for
that purpose (Fukuda, Goodall, Michel, & Beecher, 2012; Sprouse & Almeida, 2011; Featherston,
2005). The ztransformation mitigates response style differences in two ways. First, participant
ratings are scored relative to their mean rating (which compensates for individual differences in
which part of the scale people use) and distances are expressed in standard deviation units (which
compensates for individual differences in the range of the scale that they use). By contrasting the
test-retest reliability of ME data both with and without the z-transform applied, it is possible to
see how effective it is in mitigating response style differences. Specifically, the z-transformation
is predicted to improve reliability in the between-participant replication to a much greater extent
than the within-participant replication, since response style differences are a between-participant
source of variability. To the extent that it is effective, this contrast gives an indication of the degree
to which variation in ME scores can be attributed to variability in people’s usage of the scale.!

T also ran all of these analyses with raw judgments (no transformations at all), judgments receiving only the
z-transform (rather than z and log), or judgments that were converted to ranks. None had superior reliability
than LIKERT or THURSTONE, and judgments that did not incorporate some way of taming outliers did not produce
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Target pairs

The TARGET PAIRS judgment task asks people to select the more acceptable sentence of two
candidates specifically chosen to isolate a particular contrast of theoretical interest. This is perhaps
the simplest measure. By focusing only on the differences that are of theoretical interest, this
measure increases the statistical power for determining the differences within those targeted pairs,
but sacrifices the ability to compare pairs to one another. The TARGET PAIRS comparison is widely
used (Rosenbach, 2003; Myers, 2009) and has been shown to substantially agree with informal
judgments (Sprouse & Almeida, 2011; Sprouse et al., 2013).

Acceptability scores in the TARGET PAIRS task are considered to be the proportion of times
the preferred option was chosen, without distinguishing between responses indicating equal accept-
ability or the alternative option. Unlike the other aggregate scores, this measure does not capture
global structure, since decisions regarding each pair are isolated by design. The primary outcome
of interest for this measure is the outcome of the significance test of the estimated proportion (]5)
with respect to the number of judgments (N). This was calculated by determining if the 95% con-
fidence interval around the estimated proportion included random guessing (0.5). If the interval
did not include 0.5, the null hypothesis that people did not prefer one sentence over the other was
rejected. The standard formula for calculating a confidence interval around a proportion was used:

Pt Lerit X \/ w where Z..;; = 1.96.

Thurstone

The THURSTONE measure, which has a long history in psychophysics (Thurstone, 1927; Roberts,
Laughlin, & Wedell, 1999; Fabrigar & Paik, 2007), is used to make inferences about the subjective
perception of stimuli based on forced-choice comparison data. The basic idea is to ask people to
make acceptability judgments about a random subset of pairs drawn from a large set of stimuli (for
us, this corresponds to asking people to give forced-choice judgments on two sentences sampled at
random from the full set of 300 sentences). It is important that the pairs are random rather than
the theoretically-motivated pairs as in the TARGET PAIRS task because comparing each sentence
to many others imposes strong statistical constraints on the set of possible orderings of all of the
sentences (Thurstone, 1927). Distances on the inferred acceptability scale are given meaning by
the model’s mapping between acceptability differences and probability of endorsing a particular
response. The observed responses constrain the plausible outcomes for responses in unobserved
comparisons, assuming transitivity of acceptability. As a result, only a small subset of all possible
pairs is necessary to make inferences about the acceptability of all of the sentences relative to each
other. Technical details for the THURSTONE measure are described thoroughly in Appendix B.

The THURSTONE model represents the acceptability of each sentence as a distribution over its
inferred acceptability scale. To derive an overall acceptability score from this measure, I simply
take the mean of each distribution as representing the acceptability score for that sentence. For a
decision rule corresponding to the significance test in other measures, I constructed a credible in-
terval over the difference between sentences. The distribution of credible differences was generated
by repeatedly sampling from each posterior and taking the difference of those samples. The result
was considered inconclusive if the range between 0.025 and 0.975 quantiles included 0, otherwise
the observed difference was considered significant.

The THURSTONE model has a well-established record of performance in other domains that
require inferring latent acceptability orderings, such as product preferences in marketing research
(O’Mahony, 2003; Ennis, 2016). It is also a prominent tool in the ‘wisdom of crowds’ literature,
where it is used to define a meaningful consensus aggregating over individual judgments that
cannot be simply be averaged together (Miller, Hemmer, Steyvers, & Lee, 2009; Selker et al.,
2017). Previous work on experimental syntax methodology has identified forced choice tasks as a
particularly sensitive and reliable method of eliciting acceptability judgments (Sprouse et al., 2013;
Schiitze & Sprouse, 2014), while noting that they are are restricted in the way they give limited
ordinal information about only the particular sentences involved in the contrast at hand. The
THURSTONE method retains main benefits of this task type, which are the simple unambiguous
response options and the way individual items can target arbitrarily small acceptability differences,
while also aggregating information over all responses to derive a real-valued acceptability score
that is directly comparable over all items. By providing real-valued data on a psychologically

meaningful results.
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7.2.

Method

Task

Measure

Sentence Score

Hypothesis test

Targeted contrasts
Random contrasts
Random contrasts
Magnitude estimation
Magnitude estimation
Likert rating

TARGET PAIRS
RANDOM PAIRS

Proportion endorsements
Proportion endorsements

Difference of proportions
Difference of proportions

THURSTONE Mean posterior acceptability Credible interval
ME(LoG) Mean of log responses t-test
ME(2-SCORE) Mean of ztransformed log responses — t-test
LIKERT Mean of ztransformed ratings t-test

Table 7.1: Method summary: I examined four different tasks, two choice tasks and two rating tasks, analyzing two
of these in two different ways for a total of six distinct measures. For each of these measures, I evaluate the set of
acceptability scores for all sentences (which supports comparisons using Pearson correlations) as well as decisions made
on pairs of sentences (which allows us to focus on targeted contrasts between two particular sentences in a hypothesis-

testing framework)

meaningful scale (Borg & Groenen, 2005; Nosofsky, 1992), THURSTONE modeling draws on much
of the same motivation that originally drove the adoption of ME (Schiitze, 2011). By shifting the
responsibility for quantifying acceptability from participants to a measurement model, it avoids
problems associated with the difficulty people have using the number line in the requested way
(Sprouse, 2008, 2011a).

Random Pairs

The THURSTONE model requires choice task data over random pairs rather than the theoretically
related pairs that are usually compared in a choice task. This means that there is a dataset —
the raw scores on RANDOM PAIRS — which can provide a baseline against which to compare the
THURSTONE and the TARGET PAIRS measures. Analyzing the RANDOM PAIRS measure may be
helpful in both determining how much of the performance of the THURSTONE measure depends on
the model, as well as in quantifying the impact the choice of contrast sentence has in the TARGET
PAIRS task.

As in the TARGET PAIRS measure, the proportion of trials in which a sentence was endorsed over
the alternative or the both-equal option was taken as its overall acceptability score. Unlike TARGET
PAIRS, this is an estimate of global acceptability across the whole set of sentences considered, albeit
a noisy measure that depends on the randomly sampled set of alternative sentences each sentence
appeared with. The significance test applied was the same test of proportion equality applied to
TARGET PAIRS.

7.2.3 General procedure

To examine within and between participant reliability, three data sets were needed, an INITIAL
reference set, followed by a WITHIN PARTICIPANTS replication and a BETWEEN PARTICIPANTS
replication. Participants involved in the WITHIN PARTICIPANTS replication gave the series of ac-
ceptability judgments used in the INITIAL dataset. They then performed a short distractor task
designed to interfere with their ability to remember their answers to particular items, after which
they repeated the same set of acceptability judgments (in a different random order) to create the
WITHIN PARTICIPANTS data set. A second group of participants was recruited to supply the BE-
TWEEN PARTICIPANTS data set: the same procedure was used, except that these participants did
not see the distractor task or give a second set of judgments.

In order to keep the time commitment per participant under approximately 30 minutes, I
divided the four tasks into two groups that were presented to the same set of participants, with the
RANDOM PAIRS task grouped with the LIKERT rating task, and the TARGET PAIRS task grouped
with the ME task. With these groupings each participant saw one choice task and one rating task,
which minimized possible fatigue due to always making the same type of judgment or interference
between similar task types. Furthermore, requiring participants to complete more than one task
increases the time and attention expended between responses to identical items. This decreases the
chance that responses reflect an explicit memory of the first judgment for the WITHIN PARTICIPANTS
replication.

In the first set of trials (the first half of the experiment for the INITIAL/WITHIN PARTICIPANTS
group, the entirety of the study for the BETWEEN PARTICIPANTS group) participants saw two
blocks (one rating task and one choice task) of 42 trials each. The order of tasks within a block
was randomized for each participant, and the order of items within each task was randomized on
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each presentation of a block. Each block contributed 40 trials to the data analysis. The additional
two questions were attention checks designed to have a clear correct answer, used only to exclude
participants whose incorrect responses indicated either inattention or misunderstanding of the task
(see Appendix A). Participants involved in the BETWEEN PARTICIPANTS study completed at this
point, while those involved in the WITHIN PARTICIPANTS study then did the distractor task, followed
by a repetition of the exact same trials, with the same task order as the initial presentation but
a re-drawn random order of items within each task. No sentences were repeated in different items
for any one participant. Each participant thus saw only a random subset of the 300 sentences, but
across participants all sentences were seen a similar number of times.

The distractor task was based on a change blindness demonstration (Simons & Rensink, 2005).
It was chosen because it is non-linguistic and known to be a very attention-grabbing task (Rensink,
O’Regan, & Clark, 1997). During it, people were shown two images that were identical except for
one difficult-to-identify discrepancy: for instance, one showed a city street in which the window of
one of the buildings was present in one image and absent in the other. The images were presented
sequentially and repeatedly for 800ms each with an 800ms white mask in between. Participants
were asked to identify the discrepancy and click on it. Once they had done so or thirty seconds
had elapsed, they were shown another pair of alternating images. There were six such images.
Because the point of this task was just to provide a break between the acceptability judgment
tasks, performance was not analyzed.

In all conditions participants saw the same general set of instructions, shown below:

This study will ask you some questions about the acceptability of sentences. There’s no
objective standard for what makes a phrase feel ‘more acceptable’, but we’re confident
that you’ll know it when you see it. Some phrases are natural while others are clumsy
or just plain wrong, and we expect you'll find it pretty easy to judge how acceptable a
phrase is, even across very different topics. There are two different types of question.
Some of the questions will ask you to give a sentence an acceptability rating. Others
will ask you to compare two sentences and say which one is more acceptable.

All participants were asked to answer two multiple choice questions to make sure they under-
stood the instructions (see Appendix A) before beginning the experiment. Those who did not
answer both questions correctly were returned to the instructions page and could not begin until
both were answered correctly.

7.2.4 Task-specific procedures
Random pairs blocks

In these blocks, people were presented with three vertically arranged options. Each was surrounded
by a blue border under the title “Which of the two sentences is most acceptable?”. The first two
options were sentences randomly drawn from the full pool of 300. The third option read “These
two sentences are equally acceptable.” Participants clicked on a sentence to choose it, as shown in
Figure 7.1(b). As in the LIKERT blocks, a progress marker indicating the item and block number
was displayed, and no feedback was given.

Target Pairs blocks

These trials were exactly the same as the RANDOM PAIRS trials in the other version of the experi-
ment. The only difference is that the sentences were both in the pair of theoretical interest rather
than randomly selected from the entire set; an example is shown in Figure 7.1(d).

Likert blocks

In these blocks, on each trial people saw a single sentence surrounded by a blue border under the
title “Please rate the acceptability of this sentence.” Under the sentence was a row of five unmarked
buttons labeled “Bad” at the far left and “Good” on the far right, as shown in Figure 7.1(a). Below
this was a progress marker giving the trial and block number. Clicking any of the response buttons
disabled them for 500ms and displayed the next sentence to be judged. No feedback was given.
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(a) Likert example (b) Random pairs example

Which of the two sentences is most acceptable?

Please rate the acceptability of this sentence. [ © Lorey cooked her hushand the meal ]
(Which coworker did George yawn before insulting? ( © Who brought what? )
Bid © © © © © Good (m These two sentences are equally acceptable. )

(c) Magnitude estimation example (d) Target pairs example

If this sentence gets an acceptability rating of one hundred...

N
[Who said that my brother was kept tabs on by the FBI? Which of the two sentences is most acceptable?

( O) What did John wonder what he bought?
...what should these get?

NN

( O) John wondered what he bought.
The book is long and the essay is short.
?

( ~) These two sentences are equally acceptable.

The virtuoso practices any pieces only rarely.
?

Figure 7.1: Example trials for each of the four question types. In one version of the experiment
((a) and (b)), participants saw blocks of sentences presented in random order in a LIKERT task and a choice
task in which the sentences were randomly drawn from the entire sentence pool (RANDOM PAIRS). In the
other version ((c) and (d)), the blocks were either in a magnitude estimation (ME) or typical choice task in
which the sentence pairs were theoretically motivated (TARGET PAIRS). For each measure, the associated
panel reflects the appearance of a typical trial

ME blocks

In these blocks, people saw six pages of seven sentences each. On each page the top of the screen
contained a fixed title banner that remained in position when the page was scrolled. It consisted of
some reminder instructions (“If this sentence gets an acceptability rating of one hundred...[reference
sentence] ... what should these get?”). The reference sentence, following Sprouse (2011b), was
“Who said that my brother was kept tabs on by the FBI?”), and was surrounded by a black
border that also contained a non-editable text box in the lower right corner that was pre-filled
with the reference value 100. This was followed by the test items, which were surrounded by a blue
border and contained an editable text box in the lower right corner initially containing a question
mark. An example is shown in Figure 7.1(c).

Test items were arranged vertically with seven to a page with approximately two or three test
sentences visible at once on the screen and the remaining sentences visible by scrolling. Each set of
seven sentences was followed by progress marker and a next button which presented a fresh set of
seven sentences, with no option to return to a previously rated set. Input was restricted to positive
numbers, and no feedback was given, other than a prompt to give positive number ratings in order
to continue if an unparsable or empty input was detected when the next button was clicked.

In order to ensure that people understood the ME task, before they rated any sentences each
participant practiced the task on line lengths. They were required to give ratings for six different
test lines (relative to a reference line length of 100). There were five test lines presented in
random order, with lengths ranging between x0.01 and x2.5 of the reference line. Although the
exact lengths of test lines were randomized to avoid encouraging participants to only use round
numbers, there was one example each of very short (length ~ 25% of the reference line), short
(~ 75%), roughly equal (~ 125%), long (~ 175%), and very long (~ 225%) lines®. During these

2The ME specific instructions were:

Some of the questions will ask you to compare the acceptability of each sentence to a standard reference
sentence and tell us the result as a number. The standard reference sentence always has an acceptability
rating of 100. A sentence that is twice as good should get a rating that is twice as large, a sentence
that is half as good should get a rating that is half as large, and so on. Any positive number is a valid
rating, please do try to use a wide range of numbers. More detailed responses carry more information
about how acceptable you feel the sentences are, and that’s really what we're interested in. Having
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practice trials there was feedback on every response, and people did not continue to the next trial
until their estimates were within 30 of the correct answer. Participants successfully completing
this practice were considered to have understood the process of ME.

Participants

There were four rounds of recruitment to cover the two pairs of tasks (LIKERT/RANDOM PAIRS
and ME/TARGET PAIRS) in two presentation formats (a two-session format giving INITIAL and
WITHIN PARTICIPANTS data, and a single-session format giving BETWEEN PARTICIPANTS data).

Two-session LIKERT and RANDOM PAIRS 150 adults were recruited via Amazon Mechanical
Turk. Participants were paid US$3.00 for an average of 33 minutes work. They ranged
in age from 20 to 65 (mean: 34.6) and 81 of them (55%) were male. Fifteen people were
excluded from the analysis: three had non-compatible browsers so their data failed to save,
one reported being a non-native English speaker, and 11 gave at least one incorrect response
to the attention check questions. Of the 135 remaining participants, 133 were from the US
and two were from India. Three reported speaking additional languages other than English
but all 135 included participants reported being English native speakers.

Two-session ME and TARGET PAIRS 160 adults were recruited via Amazon Mechanical Turk.
Participants were paid US$4.00 for an average of 38 minutes work. They ranged in age
from 19 to 66 (mean: 34.0) and 91 of them (57%) were male. Twenty-five people were
excluded from the analysis: one reported being a non-native English speaker, two were found
to have participated in the previous round, and 22 gave at least one incorrect response to the
attention check questions. Of the 135 remaining participants, 132 were from the US, with
one each from India, Chile, and Ireland. One reported speaking an additional language other
than English but all 135 included participants reported being English native speakers.

Single-session LIKERT and RANDOM PAIRS 150 adults were recruited via Amazon Mechanical
Turk. Participants were paid US$1.60 for an average of 21 minutes work. They ranged in
age from 22 to 69 (mean: 34.5) and 93 of them (62%) were male. Twenty-three people were
excluded from the analysis: two had participated in a previous round, four reported being
non-native English speakers, and 17 gave at least one incorrect response to the attention
check questions. Of the 127 remaining participants, 125 were from the US, one was from
Dominica, and one was from India. Two reported speaking additional languages other than
English but all 127 included participants reported being English native speakers.

Single-session ME and TARGET PAIRS 151 adults were recruited via Amazon Mechanical Turk.
Participants were paid US$3.00 for an average of 31 minutes work. They ranged in age from 18
to 70 (mean: 34.8) and 89 of them (59%) were male. Fourteen people were excluded from the
analysis: four reported being non-native English speakers, and 10 gave at least one incorrect
response to the attention check questions. Of the 137 remaining participants, 135 were from
the US with one participant from Canada and one from the United Kingdom. Three reported
speaking additional languages other than English but all 137 included participants reported
being English native speakers.

7.3 Results

I begin by examining the test-retest reliability of the scores derived from each measure. For
these analyses, I use the Pearson correlation between scores drawn from the relevant data sets:
INITIAL and WITHIN PARTICIPANTS for within participant reliability or INITIAL and BETWEEN
PARTICIPANTS for between participant reliability. Reliability at this level of detail may be
required to test claims involving comparisons over more than two items, such as whether or not
acceptability exhibits strong clustering, or claims expressed in terms of the degree of difference
between items rather than the binary presence or absence of a difference (Gibson et al., 2013;
Sorace & Keller, 2005).

said that, you don’t need to spend a lot of time doing a deep analysis of every little detail, we’re much
more interested in your first impressions.

78



Chapter 7 7.3. Results

Within participant reliability

Score correlations for two consecutive runs of the same items with the same participants
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Figure 7.2: Within-participant reliability measured by correlations between sentence accept-
ability rankings. All of the formal measures aggregate responses into an acceptability score for each
sentence. For each, the z-axis reflects the score using that measure in the INITIAL data, while the y-axis
reflects the score from that measure in the WITHIN PARTICIPANTS data. The r values indicate Pearson’s
correlation coefficient, and the stars (*) indicate significance at p < 0.001. All measures are both highly
linear and highly significant, suggesting that all these measures have good within-participant reliability

7.3.1 Global measures
Reliability

I quantify the global reliability of a measure across different data sets using the Pearson correlation
between acceptability estimates. Correlations between scores obtained between scores based on
the INITIAL dataset and those based on the WITHIN PARTICIPANTS replication data are shown in
Figure 7.2, with the score based on INITIAL responses on the x-axis and scores based on WITHIN
PARTICIPANTS replication on the y-axis. The strong linear relationships obtained show that all
measures were highly reliable. Test-retest correlations were large and statistically significant for
every measure. LIKERT scores and TARGET PAIRS were the most reliable measures.

Correlations between scores obtained in INITIAL data and BETWEEN PARTICIPANTS data are
shown in Figure 7.3, with scores obtained from the INITIAL data on the x-axis and scores obtained
from the BETWEEN PARTICIPANTS replication on the y-axis. As in the WITHIN PARTICIPANTS case,
all measures were highly reliable, with all correlations large and statistically significant. However,
each correlation is somewhat lower than the within-participant counterpart. This extra variation
must be driven by those factors unique to the BETWEEN PARTICIPANTS case: either individual
differences among the participants in the two participant pools or item effects due to the re-
drawing of the items shown to participants (within-participants tests used identical items each
time).

Given that all the measures seem to be relatively reliable, it is natural to test whether the
relative differences in reliability can be considered significant. One way to test the significance
of the differences observed between these correlations is to bootstrap 95% intervals around them.
I used the R package boot (Davison & Hinkley, 1997) to generate adjusted bootstrap percentile
intervals (BCa) around the r? estimate of variance explained in re-test scores given only scores
from the INITIAL data set, assuming linearity.
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Between participant reliability

Score correlations for two independent runs with different participants
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Figure 7.3: Between-participant reliability measured by correlations between sentence ac-
ceptability rankings. All of the formal measures aggregate responses into an acceptability score for each
sentence. For each, the x-axis reflects the ranking derived using that measure in the INITIAL data. The
y-axis reflects the score from that measure in the BETWEEN PARTICIPANTS data. The r values indicate
Pearson’s correlation coefficient, and the stars (***) indicate significance at p < 0.001. Between-participant
reliability is naturally lower than within-participant reliability for all measures, but the relationship be-
tween scores derived from the two data sets are still linear and highly significant. All these measures show
good between-participant reliability

Results are shown in Figure 7.4. There is a significant difference in correlations between within-
participant and between-participant reliability for the ME and RANDOM PAIRS measures but not
the other ones. The relatively large drop in correlation when moving to from within to between-
participant data for the ME scores is most likely driven by individual differences in response styles,
as shown by the large reduction in this gap when mitigating response style differences using ME(2-
SCORE). In contrast, there is limited scope for response style differences in the RANDOM PAIRS
task, so the large drop in reliability when moving from within to between-participants data is
likely to reflect the fact that new items were drawn, which gave each sentence a different set of
comparison sentences.

What is most noteworthy about these effects is the fact that the LIKERT and THURSTONE
scores do not appear to suffer from them. Despite LIKERT ratings being vulnerable in theory
to response style differences, these results suggest they do not appear to be a major source of
variation in practice. Although the THURSTONE acceptability estimates are based on exactly the
same responses the RANDOM PAIRS endorsement proportions derive from, they do not show strong
item effects, which is a testament to the robust nature of the THURSTONE approach.

Sample size dependence

The analyses so far yield estimates of between- and within-participant reliability of global sentence
acceptability judgments for each measure, but all involve the full sample of judgments derived
from all included participants. Although even this quantity of judgments is relatively cheap and
straightforward using platforms such as Amazon Mechanical Turk, it is important to understand
how robust reliability is when sample sizes are lower. By repeatedly dropping some subset of

80



Chapter 7 7.3. Results

Bootstrapped BCa intervals on r?
0ss | -
090 1 T 1T
T 1 _____ Between
r2  0.85 participants
—— ____ Within
=T — participants
0.80
0.75- 1

Likert|
ME(log)|
ME(z-score)’
Random pairs]
Target pairs]
Thurstone

Figure 7.4: Comparing reliability correlations with bootstrapped r2. The correlations indicating
score reliability were compared across scores and across between/within contrasts by bootstrapping a 95%
BCa interval. These intervals are of the r2 for the linear model predicting scores in the second data set
(WITHIN PARTICIPANTS or BETWEEN PARTICIPANTS) from scores derived from the INITIAL dataset, and are
based on 1000 samples. The results show that ME scores and RANDOM PAIRS scores are significantly
impacted by participant and item effects where the other scores are not. TARGET PAIRS is the single most
reliable measure. Of the measures allowing global comparisons, the most reliable is LIKERT

participants at random from the full sample and re-running all analyses on the retained participants
only, I obtained estimates for the number of participants required for a given level of reliability
up to the level achieved in the full sample. These required-sample-size estimates are directly
useful for researchers planning future studies, and also give an indication of how efficiently each
measure extracts information from its input. All measures can be expected to asymptote to
some maximum level of reliability given the underlying variability of responses, with more efficient
measures approaching this maximum more quickly.

I explored sample size by performing a sub-sampling procedure in which only a subset of
participants were drawn without replacement® from the total population (of around 150) at sample
sizes ranging from 30 to 120 in increments of 10. Only the subset of judgments was used to derive
the reliability estimates. I carried out 30 repetitions of the sub-sampling procedure at each sample
size and averaged them to estimate the reliability measures at that sample size. Although this
smooths out variation associated with the random choice of participants retained, it does not
fully reflect the variability expected at each sample size because the repetitions cannot be totally
independent. Especially when the sub-sample is a large proportion of the full sample, there is
extensive overlap in the data retained across iterations. Sub-sampling was also constrained to only
allow samples where every item appeared at least once so that an acceptability score was always
computable for each sentence and the targeted comparisons were guaranteed to be feasible.

As Figure 7.5 shows, reliability decreased for every measure with decreasing sample size, but less
reliable measures also showed larger decreases and the drops were higher for between-participant

30ther work (Sprouse & Almeida, 2017) draws samples with replacement for similar analyses, but unlike the
work presented here, their items were organized into lists, preserving an even distribution across people. Because in
the current study participants all rated different sets of sentences, sampling people multiple times greatly distorts
the distribution of items within the dataset in a way that they would never be distorted had that been the target
sample size.
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Figure 7.5: Global reliability measured by Pearson correlation. Pearson correlations (y-axis)
between acceptability estimates based on different data sets were used to quantify the reliability of each
measure over different sample sizes (x-axis). Results to the right of the dotted vertical bar are based on the
full sample, results to the left are averages of 30 samples of the designated size drawn from the full sample.
For all measures, smaller sample sizes are less reliable, but gains in reliability from increasing sample size
become progressively smaller. Within-participant reliability (left panel) shows variability in estimates
based on responses from the same people to the same items, and can be interpreted as variability deriving
from the difficulty of the task and the inherently probabilistic nature of people’s responses. Between-
participant reliability (right panel) is subject to the same sources of noise plus individual differences and
variability introduced when re-drawing the items presented, so contrasting within and between participant
reliability indicates the vulnerability of each measure to these extra factors. These results show that
RANDOM PAIRS and ME scores are particularly vulnerable to participant and item differences, and that
TARGET PAIRS and LIKERT ratings are consistently most reliable

reliability. Reassuringly, the relative ordering of measures did not change and most became rea-
sonably close to their performance on the full dataset at samples between 50 and 100 people.
These results also suggest that the most reliable measures are most efficient, as they approach
their maximum reliability more quickly in the number of responses.

Discussion

Overall, all of the measures have high test-retest reliability, especially LIKERT, THURSTONE, and
TARGET PAIRS; the most reliable judgments are obtained by TARGET PAIRS. This task is unusual
in not offering acceptability scores that are comparable across all sentences: of the measures that
do offer global comparisons, LIKERT scores are most reliable. RANDOM PAIRS and the two ME
scores were the least reliable. Contrasting the within and between-participant 2 values suggests
one possible reason: these scores are particularly vulnerable to individual response style or item
effects. Of these two possibilities, individual differences in response style is likely to be the major
contributing factor for ME, as shown by the way the ztransformation improves reliability and
reduces the gap between within and between participant reliability. The RANDOM PAIRS measure
is more likely to be showing item effects. There is little scope for response style differences in a
choice task, but the measure is clearly sensitive to the changing identity of the alternative choices,
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which were re-drawn for the new participants.

In principle, LIKERT scales are also vulnerable to response style differences, and since the
THURSTONE scores are based on the same input as random-pairs they are exposed to the same
item effects. However both measures include protection against these influences: ztransformation
in the case of LIKERT scores and the inferred latent scale for the THURSTONE scores. These results
suggest that in practice these protections are effective.

Examining subsets of participants shows that the relative reliability of the different measure
types does not change with sample size, and that the most reliable measures were also the least
impacted by the number of participants. For the sentences considered here, reliability scores
approached their maximum values at approximately 100 participants, which with 40 trials per
participant and 300 items corresponds to an average of 13.3 trials per item. The degree of variability
in responses might be expected to vary with the particular sentences used, so this relation between
reliability and number of trials per item holds only to the extent that the sentences considered
here represent a typical range of acceptability for research targets.

7.3.2 Decision measures

Global reliability is useful when testing claims applicable to diverse collections of sentences, but
some hypotheses are most naturally tested with targeted contrasts between particular pairs of sen-
tences. Does each measure yield the same decision about which item of a pair is more acceptable?
This sort of targeted comparison can expose changes in acceptability due to a particular syntactic
manipulation while controlling for other factors like length, plausibility, and complexity. The global
scores discussed above do allow pair-wise contrasts based simply on the difference between two ac-
ceptability scores, but for targeted contrasts researchers would typically conduct a measure-specific
significance test instead. These are preferable because they take full advantage of a researcher’s
knowledge of the test structure to appropriately characterize the variability associated with the
acceptability estimates, which in turn offers control of the long-run Type 1 error rate.

Of course, if a researcher’s primary goal was to evaluate a particular theoretical claim, they
would present participants with multiple item pairs that all instantiate the syntactic manipulation
of interest, rather than the one-item-per-effect that I have evaluated here. It is nevertheless inter-
esting for us to evaluate the decision reliability of items as shown here, for several reasons. First,
if items are highly reliable across tests or people, that is both noteworthy and highly reassuring
about whether effects might also be reliable. Second, looking at item-level decision reliability is
still informative about the overall reliability of each measure, and can tell us about the sources of
variability within each measure.

These analyses investigate the reliability of each of the measures with regard to the decisions
a researcher would draw based on a significance test for a contrast of interest. The particular
significance tests I used differ for each measure as described in the Measures section in Table 7.1:
some involve t-tests while for others, because of the structure of the data, more complex analyses
are necessary. I consider only the 150 targeted contrasts used in the targeted pairs task, reflecting
the particular linguistic phenomena under investigation in the original Linguistic Inquiry articles.
Since the main focus here is the reliability of decisions rather than the content of any particular
decision, I did not control for multiple comparisons in any of these tests, mimicking the situation
that would obtain if each contrast was being studied independently. As in the previous analysis, I
contrast within and between-participant reliability.

There are three outcomes relevant to the test-retest reliability and sensitivity of such decisions:
the number of inconsistent decisions across time points, the number of those inconsistencies which
involve decision reversals, and the null decision count. Each individual decision admits three
possible outcomes: option A is more acceptable, option B is more acceptable, or the null hypothesis
of no difference cannot be rejected. For each measure, I evaluate the number of decisions (of 150
pairs) which were inconsistent (i.e., at one time option A was selected by the measure but at the
other time either option B or the null was). An inconsistent measure indicates that an error of
some sort (either Type 1 or Type 2) was made at some point, but it in most cases it is impossible
to determine what kind of error it was. Flipping from option A to option B, a reversal indicates a
Type 1 error, and is quite rare: no measure produces a reversal on the full dataset. Flipping from
a null to a non-null result could be either a Type 1 error (if the non-null result was incorrect) or
a Type 2 error (if the null result was incorrect).

An indication of the sensitivity of a measure is given by the number of null decisions (i.e.,
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[LIKERT ME(zSCORE) ME(LOG) THURSTONE RANDOM PAIRS TARGET PAIRS
Inconsistent decisions

Within 11 15 18 12 26 13

Between 17 21 28 18 27 15
Null decisions

Initial [ 24 35 44 31 49 11

Table 7.2: Decision reliability measured by agreement on targeted contrasts. The reliability of
each measure was quantified based on the number of decisions, out of a 150 total, that suggested different
conclusions at different time points. All inconsistent decisions here were significant at one time point and
null in the other: sign reversals appeared only at smaller sample sizes. To test if high reliability was based
on insufficient power resulting in consistent null decisions, the total number of null results is also shown.
There was no significant difference in the number of inconsistent decisions across measures for within- or
between- participant datasets, however there was a significant difference in the number of null decisions,
with the TARGET PAIRS measure showing the fewest null decisions

the measure was unable to reject the null hypothesis in the INITIAL data set): it would be possible
for a measure to never produce an inconsistent decision, but only because it was unable to ever
reject the null hypothesis, which would not be a very interesting measure.

The raw numbers of inconsistent and null decisions are shown in Table 7.2. No significant
differences in the number of inconsistent measures was found either within participants (x2(5) =
10.933,p = 0.0527) or between participants (x?(5) = 8.0842,p = 0.15), but there were significant
differences in the number of null decisions (x?(5) = 37.35,p < 0.001). In particular, TARGET PAIRS
had notably fewer null responses: it was a more sensitive measure. There were no reversals across
data sets for any measure in the full sample, but some did occur at smaller sample sizes.

Sample size dependence

As in the previous analysis, I examined the impact of sample size on decision reliability by analyzing
30 random subsets of the full sample for each increment of 10 participants between 30 and 120.
Results are shown in Figure 7.6. As expected, within-participant reliability is generally higher
than between-participant reliability. TARGET PAIRS is highly reliable and less sensitive to sample
size, although at sample sizes of 75 and above it enjoys no particular advantage over the most
reliable global scores, LIKERT and THURSTONE. A similar sample size analysis for the null results
is shown in Figure 7.7, whose left panel indicates the number of sentence pairs for which each
measure concluded the evidence was insufficient to reject the null in the INITIAL data set.

Overall, then, TARGET PAIRS appears to be both highly reliable and extremely sensitive, yield-
ing relatively few inconsistent decisions (Figure 7.6) even with very low numbers of null decisions.
That said, the main drawback of the measure is evident upon comparing the effect of sample size on
the number of decision reversals across measures: the number of decisions on which the measure
indicates one option was significantly more acceptable at one time but the same measure indicates
that the other option was significantly more acceptable at the other time. Reversals are one kind
of inconsistency, but are singled out here because they reflect a larger and more consequential
difference than inconsistencies that involve being unable to reject the null in one sample but not
another. As the right panel of Figure 7.7 indicates, only TARGET PAIRS yields decision reversals.
Especially at small sample sizes, it may show a statistically significant preference for one item of
a pair only to prefer the other item with more data. Thus, its sensitivity comes at a cost — being
more likely to completely flip in the direction of a statistically significant judgment.

Discussion

The relative reliability of the targeted contrast decisions derived from each measure is consistent
with the ordering observed in the score correlation analysis, with TARGET PAIRS and LIKERT
the most reliable measures. The consistency of decisions is however distinct from the consistency
of the underlying scores because of the way it depends on the threshold for rejecting the null.
When the null hypothesis is true, the number of agreements across replications is completely
determined by the alpha level of the test, but in the presence of a real effect it also depends on
the sensitivity of the measure and the true effect size. In this study the effect sizes are constant
across measures, so differences between measures reflect their sensitivity. A measure’s sensitivity
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Figure 7.6: Decision reliability measured by agreement on targeted contrasts. The reliability of
each measure was quantified as the number of decisions resulting in inconsistent outcomes (y-axis) tested
across various sample sizes (x-axis). Outcomes were considered inconsistent if a contrast was considered
null at one time point but significant at another, or the two results were significant in opposite directions:
either case guarantees an error, although the first scenario is ambiguous as to error type.Results to the
right of the dotted vertical bar are based on the full sample, results to the left are averages of 30 samples
of the designated size drawn from the full sample. For all measures, smaller sample sizes are less reliable.
Within-participant reliability (left panel) shows variability in estimates based on responses from the same
people to the same items, and can be interpreted as variability deriving from the difficulty of the task
and the inherently probabilistic nature of people’s responses. Between-participant reliability (right panel)
is subject to the same sources of noise plus individual differences and variability introduced when re-
drawing the selection of items presented. Contrasting within and between participant reliability indicates
the vulnerability of each measure to these extra factors. Between-participant reliability also gives a direct
measure of how well acceptability scores might be expected to replicate. These results show that RANDOM
PAIRS and ME scores are particularly vulnerable to participant and item differences, and that THURSTONE
and LIKERT scores are consistently reliable and approach the reliability of the TARGET PAIRS method

ultimately depends on the information content of responses, and the extent to which information
is lost by the process of aggregating responses to produce an acceptability score. Unlike the alpha
level, this is not a property of the decision rule and can only be estimated empirically. It is
determined by the allowable range of variability in responses and the extent to which observed
variability is systematic. An ideal measure would be high on both, but the two properties conflict
in the sentence acceptability context to the extent that increasing the flexibility of response options
makes the task more difficult. The different tasks considered here represent different trade-offs in
intuitive ease-of-use (helping participants respond systematically) and expressiveness (widening
the range of response options). As previous authors have noted (Fukuda et al., 2012; Weskott &
Fanselow, 2008), the greater expressiveness of ME’s free responses appears to be offset by increases
in unsystematic variation. As in the score correlations discussed above, contrasting between and
within participant reliability suggests that this extra noise is introduced by individual participants’
idiosyncratic use of the scale, and can be mitigated by ztransformation. LIKERT appears to be
effective in the compromise it achieves between allowing variability in responding and constraining
unsystematic variation.
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Figure 7.7: Sensitivity tests by sample size. The number of non-significant differences declared by
each decision rule (left panel) and the number of times significant effects appear to reverse between samples
(right panel). Each measure evaluated the same 150 contrasts between target-pairs of interest. Results to
the right of the dotted vertical bar are based on the full sample, results to the left are averages of 30 samples
of the designated sample size drawn from the full sample. TARGET PAIRS stands out as rejecting the null
most often, and at a similar rate across a range of sample sizes. Taken together, these results highlight the
unique properties of the TARGET PAIRS measure, which almost always arrives at a decision even at small
sample sizes, but with decisions that may not be stable under repeated measurement. Decision reversals
are shown for the between-participants test, the within-participants analogue shows the same qualitative
pattern with roughly half the number of decision reversals at each sample size for TARGET PAIRS. The
other measures are less sensitive in the sense of producing more null decisions, but more conservative in
the way repeated samples only ever disagree on the magnitude of an effect, never its sign. Among these
conservative measures, LIKERT ratings are the most likely to detect acceptability differences

TARGET PAIRS was found to achieve a very high power on the limited contrasts it considers,
in that it arrived at fewer null decisions and was relatively insensitive to sample size. The risk
of producing significant results in the wrong direction, as shown by the decision reversals, is a
consequence of this high power along with the fact that controlling Type 1 error rates does not
entail controlling error magnitudes. The design of the decision rule used allows for the possibility of
significant findings in the wrong direction so long as the rate of such outcomes obeys the specified
limits (Cumming & Maillardet, 2006; Gelman & Tuerlinckx, 2000). The practice of testing several
instances of any one phenomenon of interest (Schiitze, 2011) provides protection against these
potential sign errors, since measurement error will be randomly distributed across individual items.
The cost is inflation of the item set size, which may be a relatively minor burden compared to
increasing the number of participants to the levels required for comparable power with a more
conservative measure such as LIKERT or THURSTONE.

Although item effects may be driving the higher level of sign errors for TARGET PAIRS, it is
unlikely that they are responsible for the relatively greater number of null decisions yielded by
the LIKERT measure here than were reported in other work (Sprouse et al., 2013; Mahowald et
al., 2016; Haussler et al., 2016). On closer examination, this difference probably emerges because
the dataset presented here involved fewer responses per item. For instance, the Sprouse et al.
(2013) results are based on 12 or 13 responses per item, with 8 items per phenomenon giving
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roughly 100 responses per effect. The data presented here involve approximately 20 responses per
item (with some variability due to the random draw of items), but since there is only one item
per phenomenon this is also 20 responses for each effect. With the smaller number of responses
there are naturally more null decisions. Despite the much smaller Ns per item, the fact that there
were still relatively few null decisions is reassuring, especially in light of the fact that a researcher
investigating a specific effect would test multiple items.

7.3.3 Agreement between measures

Having investigated the within and between-participant reliability of all of the measures, a natural
question is whether they give the same answers as each other. Indeed, the question of how well
different measures compare to informal judgments (as published in scholarly journals or textbooks)
is much of the focus of related research in the literature (Sprouse et al., 2013; Gibson & Fedorenko,
2013; Munro et al., 2010; Myers, 2012; Featherston, 2007; Sprouse & Almeida, 2012).

The work presented here extends this body of existing work by also incorporating comparisons
to the INFORMAL measure of acceptability, though that is not the main focus. Instead, I explore
a much wider set of comparison measures between all of the formal measures. I examine both
global structure and decision agreement, using the same tests of agreement between measures as
the reliability analyses, but for agreement between measures rather than across data sets.

Figure 7.8 summarizes these results, presenting both correlations between acceptability esti-
mates and the percentage of decisions (out of 150 total) where the measures arrived at the same
conclusions. The scores used in this analysis were from the INITIAL dataset for LIKERT and TARGET
PAIRS measures, and from the BETWEEN PARTICIPANTS data for THURSTONE, RANDOM PAIRS, and
ME scores. This avoids comparing unrelated measures on data derived from the same participants,
potentially inflating their agreement. Related measures (the two versions of ME, or the two anal-
yses of the random pairs choice task) are derived from the same data sets, so any disagreements
between them are consequences of the different analysis only.

Discussion

There was substantial agreement between measures. Measures based on the same responses (THUR-
STONE/RANDOM PAIRS and ME(LOG)/ME(2SCORE)) were highly correlated (r ~ 0.96). Between
measures based on different responses, correlations ranged between 0.74 and 0.95, with the high-
est agreement appearing between the LIKERT and THURSTONE measures. This highest level of
agreement is comparable to the reliability between participants for these measures, indicating that
switching from one measure to the other introduces no more variation than using the same measure
twice, despite substantial differences in the presentation of the task.

All measures are largely consistent with the informal judgments. Almost all differences were
observed in the expected direction, although on average 23% of these differences were deemed
too small to be considered statistically significant. This rate of null decisions is higher than that
previously reported for these measures in Sprouse et al. (2013) primarily because these decisions
are based on more responses per item but many fewer responses per effect, due to the way each
effect was represented by a single sentence pair. Although these design decisions limit conclusions
about any particular effect, because they were constant over measures, contrasts can still be drawn
between the measures. In particular, this comparison highlights a striking difference between TAR-
GET PAIRS and the other measures, as it identified 14 contrasts in the opposite of the predicted
direction, a disagreement rate of 9.3%. There are several possible explanations for these inconsis-
tencies. It is possible that they represent measurement errors, although the sub-sampling analysis
suggests that it is unlikely that re-measurement at the sample size considered here would ever be
expected to reverse more than one decision. More likely is that in most cases these are genuine
effects counter to the predicted direction, but they are extremely small and TARGET PAIRS is the
only measure with enough power to identify them. This interpretation is supported by the fact
that most of these contrary decisions by TARGET PAIRS are identified as null results by the other
measures.

Measurement error seems unlikely for cases where two different measures agree with each other
and informal judgments, so there may also be instances where contrasting highly similar sentences
directs people’s attention to features of the sentences that are less salient when the two items
are presented separately. One example of such an effect is the pair of sentences There are leaves
burnt and There are leaves green. This pair of sentences, constructed by Sprouse et al. (2013),
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Figure 7.8: Agreement between different measures. The lower left of this table presents Pearson correlation

as a measure of global agreement between scores. The upper right presents the percentage of targeted contrasts for

which different measures arrived at the same conclusion (A is more acceptable, B is more acceptable, or the evidence is

inconclusive). The exception to this format is the informal expert judgment measure of acceptability, which presents

only the number of decisions where informal judgments were consistent with the formal measure, the number that

were inconsistent, and the number of decisions where the formal measure found the evidence inconclusive. Overall

inter-measure agreement is strong. Among the formal measures, the highest agreement obtains between the LIKERT
and THURSTONE scores. Agreement with the informal judgments is also high, with TARGET PAIRS notable as the
only measure indicating an appreciable number of contrary conclusions

follows a pattern designed to demonstrate that (English) passives have event arguments (Basilico,
2003). The option endorsed in the INITIAL TARGET PAIRS data is There are leaves green.* One
possible explanation for this counterintuitive result is that it arises from people recognizing that
the sentences are identical except for the words burnt and green, then responding to a strong
association between green and leaves. The interpretation that the choice is somehow induced by
the particular contrast of these two sentences is supported by the agreement of the measures that
do not presenting the two sentences together that There are leaves burnt is the more acceptable
option. The practice of using multiple items targeting each phenomenon under study would be an
effective defense against this kind of potentially misleading result, since it depends heavily on the
green/leaves association, which would be unlikely to have an analogue in other sentences targeting
this particular passive construction. Across all three data sets collected, only 19 contrasts are
involved in a decision result conflicting with expert judgment at any point. These are presented in
Appendix A.

7.4 Summary and Conclusions
The main focus in this work is the test-retest reliability survey of the most common tasks used

to measure sentence acceptability. All tasks considered here showed high reliability, with even
the least reliable measure, RANDOM PAIRS, producing large positive correlations across re-test

4This result re-appears in the WITHIN PARTICIPANTS replication, but not the BETWEEN PARTICIPANTS replication,
which is null.
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data sets. By contrasting within-participant reliability with between-participant reliability on the
same sentences with the same measures, I estimated what proportion of the variability observed
can be attributed to factors unique to the between-participant replication. In all cases between-
participant reliability was lower, and this reliability drop was particularly pronounced for ME and
RANDOM PAIRS, suggesting these measures are particularly vulnerable to variability across people
or how items are paired together. The TARGET PAIRS and LIKERT ratings showed not only the
highest within-participant reliability but also had the least amount of decrease in reliability when
comparing between- to within-participant correlations. This pattern is a hallmark of well-calibrated
measurement instruments.

Secondly, I ask to what extent acceptability estimates depend on the particular assumptions of
each measurement tool, and whether the conclusions a researcher would reach would change based
on the measurement task they used. Here I find high consistency between measures, including near-
uniform agreement with expert judgment. The least accurate global score (RANDOM PAIRS) was
still highly correlated (r ~.9) with the most accurate global score (LIKERT). Where disagreements
occurred between the measures, it was usually in the magnitude rather than the direction of the
difference, with the less reliable scores more likely to not reject the null for closely matched pairs.

This overall consistency is striking given the structural differences between these tasks, espe-
cially between the LIKERT and THURSTONE tasks. Both these measurement tasks incorporate
strong assumptions, and in different domains have not always agreed with each other (Roberts
et al., 1999; Drasgow, Chernyshenko, & Stark, 2010). Specifically, the assumptions made by the
LIKERT task center around people’s interpretation of the scale, which may impose structure on
responses (Carifio & Perla, 2008; Schiitze, 1996) or be vulnerable to differences in response style
(T. R. Johnson, 2003; Lee, Jones, Mineyama, & Zhang, 2002). The THURSTONE measure avoids
these issues by removing the researcher-supplied scale and forcing a discrete choice, but instead
assumes transitivity of acceptability, which is known to be violated in similar preference-ranking
tasks (Tversky, 1969). Such violations have been observed in sentence acceptability judgments
(Hindle & Ivan, 1975; Danks & Glucksberg, 1970)

A core contribution of this work is that these measures provide converging evidence in the
domain of sentence acceptability: theoretically motivated concerns about the restrictions a fixed
LIKERT response scale imposes on participants turn out not to matter in practice, with the scale-
free THURSTONE measure based on choice task data arriving at essentially identical acceptability
estimates. Although the LIKERT and THURSTONE acceptability scores agree, LIKERT scores are
marginally more reliable and have the advantage of more easily accepting additional sentences into
an existing set of comparisons.

Despite the close agreement between measures, TARGET PAIRS stands out as having noteworthy
decision reliability. It showed the highest power, yielding very few null results, but as a result was
also the only measure vulnerable to complete reversals of a significant decision. This pattern is
characteristic of high-powered tests, where significant differences observed under high-noise/low
information conditions tend to entail exaggerated estimates of effect size (Loken & Gelman, 2017).
While TARGET PAIRS is the highest performing measure in terms of test-retest consistency, and
maintains this performance at small sample sizes, the relatively few errors it produces at low sample
sizes can be of a qualitatively different and potentially much more misleading kind. Relatedly, the
TARGET PAIRS measure had by far the highest disagreement with the informal expert ratings of
any measure, endorsing the informally dispreferred sentence on 14 of the items (9.3%) while the
other measures endorsed at most two. When using the TARGET PAIRS measure it is critical for
researchers to include multiple pairs of target sentences within the same construct to increase
decision reliability.

These studies show that ME tasks produce acceptability scores that are consistent with the
other measures but somewhat less reliable. Contrasting the within and between participant test-
retest reliability shows that this greater variability is likely to be due to variation in participant
response styles, which appears as noise in the final measure. This source of variability can be
mitigated somewhat by processing the scores using a transformation sensitive to response style,
such as the ztransform. However, this is less effective than offering restricted responses in the task
itself, as the LIKERT and THURSTONE measures do. In general, although ME measures performed
overall better than expected, they were still consistently inferior to most of the alternatives.

Although these results can be expected to be indicative of the relative test-retest reliability of
these measures, the particular reliability results observed here depend to some extent on factors
such as the specific sentences and the number of trials per participant, which were controlled across
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measures to ensure the comparisons were fair. For the rating tasks, reliability can be expected
to be a function of the number of trials per item, so the analysis over participant sample sizes
gives some indication of how reliability might be expected to change with different sentence set
sizes. The situation is less clear for the THURSTONE and RANDOM PAIRS measures, which may
be sensitive to the diversity of contrasts presented as well as the average number of presentations
per sentence. By choosing to hold the set of sentences constant I ensured that each measure was
tested on the same range of effect sizes, but this does limit the generalizability of the reliability
results presented here. They hold to the extent that these 150 sentences are representative of the
kinds of sentences commonly used for sentence grammaticality judgments, which does not seem
unreasonable given the way they were sampled from a prominent linguistics journal (Sprouse et
al., 2013).

Although individually these measures make a range of assumptions that could be considered
strong limitations, the high agreement between them suggests that these measure-specific assump-
tions do not have a strong impact on acceptability judgments. The results presented here indicate
that if multiple items targeting the same contrast are used, none of the methods considered here
have an appreciable chance of giving a strongly misleading result (although there are differences
in efficiency, with ME measures requiring more trials for any given level of reliability).

While these studies find that the most common measurement tasks are all reasonably effective,
the LIKERT task performed especially well. In addition to achieving relatively high test-retest
reliability, the results also suggest that the LIKERT measure admits a stronger interpretation of
sentence acceptability scores than is usually attributed to it. These findings suggest that the in-
terpretation of LIKERT data need not be constrained by concerns that the limited response scale
may impose structure on the data, or that the subjective distance between response options is
unknown and may vary between people. The structure suggested by the LIKERT data is in high
agreement with the structure suggested by the THURSTONE measure. Since the latter is both ag-
nostic about the underlying structure of acceptability and capable of recovering various clustered or
gradient but non-linear distributions of acceptability, this high agreement suggests that the nature
of the LIKERT scale is not significantly shaping the structure of acceptability judgments it yields.
The minimal difference between within-participant test-retest reliability and between-participant
test-retest reliability suggests that the z-transformation offers effective protection against potential
differences in the interpretation of the scale.

One interesting aspect of the results hinges on the fact that the dataset examined here involved
only one item per effect. This was intentional since it thus made the item set maximally variable
and offered a stronger test of each measure. The result indicating that many of these measures
can reliably reflect global acceptability, rather than just effect-level acceptability, is gratifying and
reassuring. It is also interesting that the item-level reliability is so high, differing from other work
measuring effect-level reliability primarily in yielding slightly higher numbers of null decisions at
lower sample sizes (Sprouse et al., 2013; Mahowald et al., 2016; Haussler et al., 2016). Aside from
this, item-level reliability was in this case nearly as good as effect-level reliability incorporating
multiple items. Taken together with the high item-level variability observed around effects in other
work (Sprouse et al., 2013), this may suggest that people are surprisingly consistent on specific
items but that the effect-level phenomena within any given item can at least sometimes be obscured
by lexical choices or other superficial differences between sentences.

In terms of design recommendations for researchers interested in efficiently obtaining results
that replicate with high confidence, the studies presented here replicate previous results pertaining
to the reliability of effects defined as ordinal relationships between sentence classes and extend
them to include recommendations for ensuring the reliability of distances between individual items.
These results reproduce both the general finding that acceptability judgments are highly reliable
in between-participant replications (Sprouse & Almeida, 2012; Sprouse et al., 2013), and also more
detailed claims such as the high power of TARGET PAIRS (Schiitze & Sprouse, 2014), the lack of
extra information in the extra variability of ME ratings (Weskott & Fanselow, 2011), and the
qualitative relationship between decision reliability and sample size (Mahowald et al., 2016). The
results presented here further show that these reliability results extend to estimation analyses, with
a high correlation in the acceptability scores assigned by different tasks to different sentences.

Overall, this work demonstrates that formal acceptability results are even more informative
than previously realized. They agree substantially with each other (as well as informal measures)
across the global structure of acceptability, not just individual targeted sentence pairs. Moreover,
the best-performing measures (like LIKERT and THURSTONE) appear not to impose substantial
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structure of their own onto the pattern of acceptability responses. This licenses researchers to use
acceptability judgments to address a wider variety of questions than previously — from identifying
dialectical or language differences (or possibly even individual fluency) using acceptability judg-
ments, to investigating the global structure of grammatical knowledge (e.g., is it all-or-none or
multi-dimensional?). Not all of these questions may pan out, but the investigation into the prop-
erties of the formal tools available to study them is an important prerequisite of such work. The
positive results presented here suggest that acceptability judgment data may be more informative
about these questions than previously thought.
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Summary and conclusions

This thesis has presented three related projects linked by their use of comparison data to help
shed light on representations. This final chapter briefly reviews the main findings and adds some
further discussion relating the results to the existing literature, outlining limitations, and giving
possible future directions.

The first of these projects compared two prominent theories of similarity judgment, the trans-
formational account and a simple alignment approach. In the first study, triad stimuli were con-
structed such that the two accounts gave different predictions as to which of two options was
most similar to a reference ‘base’. Participants overwhelmingly endorsed the options indicated
as more similar by the alignment account. In a follow-up study, a same-different discrimination
task gave somewhat different results. In this task, the speed of correct ‘different’ responses is
thought to reflect similarity, with more similar pairs more difficult to distinguish and therefore
slower. The transformational approach better captured the timing of ‘different’ judgments. A
third study examining both choice and same-different discrimination tasks with a common set of
stimuli concluded that the two tasks gave largely consistent measures of similarity across stimuli,
with three exceptions possibly reflecting differences due to the differing time demands. The third
study also compared a number of closely related variations on the models being considered. As
a result of these contrasts, an explanation for the differences between studies one and two based
on comparison direction was ruled out. Instead, the balance of evidence suggested the the main
factors contributing to the observed pattern of results were the different time demands over the
two tasks and a particular misspecification of the APPLY operation in the transformational account
current for geometric shapes.

The original goal of Experiment 1 was to find a set of diagnostic items for which alignment-
based models would typically make qualitatively different predictions to the transformation model,
using simple perceptual stimuli that have been used in previous work (Larkey & Markman, 2005;
Hodgetts et al., 2009a; Hodgetts & Hahn, 2012). However, because both approaches typically
provide realistic (and therefore similar) accounts of human similarity judgment, the search for
diagnostic tests tends to focus on special cases. From a statistical perspective this would usually
be considered good practice, insofar as it maximizes the power of the experimental design. However,
what actually happened in Experiment 1 is that the diagnostic tests all exploited a “single point
of failure” in the transformational model, leading to minor modifications to the model but not
yielding a decisive result. Similarly, the results in Experiment 3 impose some constraints on
alignment-based models of perceptual similarity. However, it is less than clear that either of these
advances is entirely informative regarding the more substantive question of whether transformation
or alignment provides the better theory of similarity. Given the ease with which both modeling
frameworks can be modified to accommodate discrepant findings — particularly when we allow the
stimulus representation to be changed — these results do not strongly support one framework over
the other.

The original intention of the study was to distinguish between these frameworks, but this may
have been a somewhat quixotic goal. If the transformations or feature representations are allowed
to vary arbitrarily, both frameworks are unfalsifiable. The only achievable version of this goal
would be to restrict the viable set of transformations or feature representations to an implausibly
narrow set, ideally one incapable of generalizing across tasks. Such a result could be taken as
evidence at the framework level, but the constraints imposed by the data collected here are simply
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not that strong.

Although the results presented here do not require implausible gymnastics from either theory, it
is also true that some accommodation is required, and the fact that the basic building blocks of each
framework admit variation is theoretically important. This is especially true of the transformational
approach, where the results presented here add to arguments presented by Grimm et al. (2012)
questioning the specification of the transformation set used. The work presented here also implicitly
suggests a solution to the problem of how to specify a transformation set — incrementally, in
response to data, as is done here by working through a number of closely related possibilities.
Admittedly this is a very slow process, especially given the fact that transformation sets must
be domain specific (Miiller et al., 2009). The analogous comparison between the variations on
basic structural alignment models is somewhat limited by the way I sought a lowest-common-
denominator for several much more sophisticated alignment based schemes such as SIAM, LISA,
or CAB (Goldstone, 1994; Taylor & Hummel, 2009; Larkey & Love, 2003). However a search
process evaluating stimuli on the basis of this simplified measure did help eliminate ‘easy cases’
and returned stimuli that exposed a fundamental question of chunking in representation: is [aa] [b]
different from [a] [a] [b]? From this point of view, the most interesting aspect of these results
would be the follow up work they suggest exploring candidate explanations for why triads 5, 9 and
13 were exceptional.

Is it useful to go down this path of pursing ever finer distinctions in people’s similarity judgments
on such heavily simplified stimuli? The whole program behind process accounts of similarity seems
open to question in a world where all models are wrong, and the state of the art in closely related
AT visual processing is instead built on an unashamedly uninterpretable bottom up process using
very different representations (eg Wang et al., 2017). I would argue that it is useful, because the
primary value of the project is in the human responses rather than the specific theories, the data,
not the debate. In order to test the more sophisticated theories of the future, cognitive science
should be able to produce stimuli on demand that are both simple enough to be interpretable
and rich enough to capture a meaningful picture of human similarity processing. Debates like
the one explored here between proponents of transformational and structural alignment accounts
of similarity make that possible. For example, it may be useful to distinguish stimuli where
human responding systematically differs from the strict alignment account, and seek to include
such examples in tests of future theories, despite their relative rarity when sampling stimuli at
random in this domain of pairs of geometric shapes. No commitment to the literal veracity of the
strict alignment account is necessary for this to be useful. The work presented here is itself an
example of this kind of logic. Although it constructed stimuli with reference to an oversimplified
version of structural alignment and a misspecified version of transformational similarity, by avoiding
‘easy cases’ it ended up highlighting stimuli that exposed differences between the speeded same-
different task and deliberative comparisons. The distinction between these tasks was not apparent
in earlier work using stimuli from the same domain. The admittedly imperfect models examined
here show that the tasks are distinct, and between them give a procedure for identifying those
stimuli where the distinction is particularly obvious. The models that succeed them (for example
the adjusted instantiation of transformational similarity with costly apply) will almost certainly
still be wrong, but can be expected to enable improved searches for stimuli highlighting further
properties of human similarity judgment.

The second of the three projects presented here looked at how learning a transformation might
influence similarity and categorization judgment. Participants were shown one of two different
training conditions before proceeding to a common set of test items. The different training condi-
tions meant that identical test items had different relation-to-training status depending on training
condition. The study focused mainly on whether relation-to-training status was associated with
differences in ratings for similarity or category membership questions. Study one, which gave a
particularly easy form of training where participants were shown the transformation explicitly at
each step, established that such training could cause shifts in people’s similarity and categorization
judgments for novel stimuli instantiating the trained transformation. Follow-up work moving to
implicit rather than explicit presentation of transformations showed people’s response to the in-
creased difficulty of the task. Transformation learning was still possible, but this lower-confidence
learning appeared to have somewhat less influence on categorization and similarity judgment, par-
ticularly for similarity. Across the two studies, this work also showed transfer of learning across
transformations, suggesting a family resemblance structure for transformations. The extent of
transfer also depended on the difficulty of the learning task as manipulated by the explicit/implicit
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presentation format of the transformations.

This work was primarily exploratory. The many minor changes to the experimental procedure
documented in the method section were helpful to hone in on a feasible experimental paradigm, but
also introduce variability that precludes strong conclusions from comparisons across the different
data sets. For reasons of space, the procedural variations are reported without much discussion in
the proceedings paper, but they were quite critical to this work. For example, the paper notes that
pilot testing indicated the grid stimuli could not be too visually complex, so the number of colors
in each grid was limited. This fact is not particularly relevant to the main question of interest,
the relation between transformation learning and changes in similarity judgment, and is therefore
mentioned without further elaboration, but it was critical prerequisite knowledge for designing the
main test. There are many such details, another is the inclusion and subsequent removal of the
‘identity’ transformation condition, which was primarily useful as a test for item effects: if for
example the test stimuli related by one or the other of the main transformations was at ceiling or
floor when neither of the relevant transformations was seen, the main comparison between the two
could potentially be misleading. In the event, the stimuli related by the color transformation were
found to be a little more similar than those related by the movement transformation when neither
transformation was seen, but neither approached ceiling or floor similarity.

Although many of these learnabilty results were highly specific to the particular task explored
here, some are more general, such as the distinction between observed and inferred transformations
that formed the main point of contrast between experiments one and two. This is particularly
relevant to the theory of transformational similarity, as many of the transformations involved
in comparing representations are unobservable. For example, the transformations involved in
comparing a glass with a coffee mug would need to account for a change in material. There is no
barrier to constructing transformations that do this, it could be as simple as a CREATE operation
for the appropriate feature followed by APPLY, but regardless of its exact form, the resulting
transformation whatever it is cannot exist in the natural world. If transformations like these are
to be learned, they must be inferred not observed. The results presented here do suggest that such
learning is feasible on the short timescales needed for consistency with transformational similarity,
but also that the resulting difference in task difficulty is not trivial.

With these learnability results in hand, future work could use this paradigm in more cleanly
confirmatory studies of the relationship between transformation learning and similarity judgment.
From this perspective the most interesting result of this work is probably the evidence of gener-
alization suggesting family relationships between transformations. Transformation features offer
strong challenges to both approaches to similarity discussed in Chapter 2. It’s true that the learn-
ability of these simple transformations suggest that the computational complexity constraints put
forward by Miiller et al. (2009) do not present insurmountable barriers to transformational ac-
counts of similarity, since people showed some evidence of the required quick learning of domain
specific transformations. However, any graded availability of transformations such as that im-
plied by family resemblances between transformations would seriously complicate the calculation
of transformation distances. Considering the same results from a structural alignment perspec-
tive is also challenging, since it’s not immediately clear what the appropriate representation is for
transformations, making it difficult to determine what to align on. General theories of similarity
do need to be able to account for transformations and actions, which have a number of unique
properties (Austerweil & Griffiths, 2010b; Lamberts, 2003; Pollick & Paterson, 2008). The work
presented in this thesis was only partially successful in providing a simple lab-friendly task cap-
turing the relevant phenomena, but did establish the feasibility of such an approach and give some
preliminary results.

The third project compared different ways of measuring sentence acceptability. Although ap-
plied in a different area of cognition, this work drew on ideas from the the similarity work in
projects one and two, in particular in its use of a Thurstonian model for measuring acceptability.
This approach, which has deep connections to the similarity literature, uses comparison data to
make inferences about representation. In total six different measures of sentence acceptability were
examined with test-retest reliability as the main measure of performance, complementing existing
work on the Type 1 and Type 2 error rates of these measures. The test-retest reliability analysis
indicated that Likert scales gave particularly high reliability, and in particular small differences
when contrasting between and within participant reliability suggested that individual differences in
interpretation of the scale were effectively controlled by using a z-transformation on raw responses.
High agreement with the scale-free Thurstonian measure suggested that providing a discrete scale
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did not impose structure on responses. That averages of z-transformed Likert scale responses give
identical answers to a scale-free estimate of acceptability from comparison data supports the legit-
imacy of interpreting such data as representing a fine-grained estimate of gradient acceptability.
While magnitude estimation was found to give similar acceptability estimates to other measures,
a greater variability across replications suggested this is a less efficient measure, and contrasting
between and within participant reliability with and without a z-score transformation of the data
showed that this higher variability is most likely to be due to individual differences in the interpre-
tation of the scale. Targeted forced choice tasks were found to have extremely high power, with a
very low null decision rate but a corresponding vulnerability to a small proportion of sign errors
for significant differences based on smaller sample sizes.

This work contributes to the existing literature in this area by informing the interpretation of
acceptability judgment data and by offering information relevant to study design. In one sense the
most important results here are the least surprising ones. Since the primary justification for taking
averages of Likert scale data is that it just works, a result licensing the interpretation of averaged
Likert scale data is the opposite of revolutionary. It does in fact just work. However this result
was not a foregone conclusion. The objections to interpreting averages of Likert scale data are
theoretically sound: the Likert scale is a discrete scale, discrete scales provide ordinal data, ordinal
data cannot simply be averaged (Yusoff & Mohd Janor, 2014; Chimi & Russell, 2009; Harwell &
Gatti, 2001). The opposing ‘just works’ argument is based to a large extent on simulation studies
showing that popular parametric tests invoking an interval interpretation of these averages are
robust to the violations of their assumptions imposed by Likert scale data (see for example Carifio
and Perla (2007) and references therein). Although this does provide a principled basis for a kind
of ‘just works’ argument in specific cases such as the ANOVA F-statistic, it does not address the
core theoretical concern around the validity of interpreting averaged ordinal data (Jamieson, 2004;
Cliff, 2014). As is often the case, it seems that both sides of this debate are right: the ‘just works’
argument is very often valid but it is conditional, depending in part on properties of the thing
being measured (S. Kemp & Grace, 2010). To the best of my knowledge, the work presented in
this thesis provides the first empirical evidence that these conditions are met for the specific case
of sentence acceptability judgment.

The results of this work also have implications for study design. If the range of acceptability
differences represented in the test sentences collected by Sprouse et al. (2013) can be taken as rep-
resentative, then the reliability results here provide quite specific guides: for estimation questions,
the Likert elicitation task is preferable to the other methods examined here, and ideally should use
at least 30 responses per participant (for the z-transformation to be effective) and approximately
13 to 15 responses per item, beyond which only limited improvements in reliability is possible.
Where the hypothesis takes the form of a directed contrast between two sentence classes, the tar-
geted forced choice task is preferable, but the use of multiple items to represent each sentence class
is important, and sample sizes higher than the minimum necessary to achieve statistically signifi-
cant results are desirable to avoid sign errors. In this regard, the recommendations presented here
overlap substantially with existing work (Sprouse & Almeida, 2011, 2017; Mahowald et al., 2016;
Erlewine & Kotek, 2016; Gibson et al., 2011). As well as functioning as an independent replica-
tion of these existing results, the work presented here adds some detail showing why the different
elicitation tasks have these different performance profiles, using the decomposition of variability
afforded by the within/between participant reliability contrast. The clearest example of this is the
identification of how response styles contribute to the attested high variability of the magnitude
estimation task. Since the same tests are applied to all measures, this information is also available
for the other tasks, it’s just that for the other measures potential concerns such as response style
or item neighborhood effects are mainly notable by their absence.

As noted in the discussion section of Chapter 7 this work is subject to a number of limitations.
Some important possible sources of bias were controlled here in order to test the different measures
under comparable conditions, precluding any conclusions about the size of their impact. For
example, participants may be quite sensitive to the instructions, particularly the way ‘acceptability’
is introduced. This may be an important effect, especially when interpreting the results of diverse
studies across the literature, but since this factor was held uniform across all experiments here
no comment on it is possible on the basis of these results. Similarly, it’s possible that people
are sensitive to properties of the stimulus set, such as calibrating their responses to the range
of variation exhibited by test items, but this too was controlled in these studies by applying all
measures to the same sentences. As a consequence it’s not possible to tell how important these
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effects might be and whether they impact the different measures differently on the basis of these
results.

As well as excluding a few controlled sources of bias and variability from consideration, the
narrow focus of this work on properties of the elicitation tasks meant that it also did not consider
any issues of syntax itself. It’s worth asking what kinds of research question this reliability work
could support, and whether they go beyond the questions that are currently being asked in any
useful way.

Two anonymous reviewers of this work independently pointed out that the presentation of
item-level reliability results here stands in contrast with the way such acceptability data is usually
used, which is to identify statistically significant differences between syntactic classes. My hope
is that this difference is part of a recent trend in this area towards finer levels of analytic detail.
A recent case study articulating a rallying call for this kind of approach is Vasishth, Nicenboim,
Chopin, and Ryder (2017). In brief, this study shows a syntactic violation previously identified by
the longer average reading times it produces is better modeled as a mixture of fast successful parses
and occasional but dramatically slower failures to parse. Although this example is in reading times
not acceptability judgment, the main message of the paper still applies: the shape of the whole dis-
tribution of responses to individual items is informative. Further, identifying differences in terms
of the whole distribution can motivate quite different working theories of the underlying process.
Although the initial identification of the effect via mean reading times was sound, asking ‘what
raises failure-to-parse rates’ is a very different question from ‘what slows down reading speeds’. In
this case the first question makes closer contact with the data, the second is subtly misleading.
The item level reliability results presented here suggest that an analogous argument may apply
to acceptability differences between syntactic classes, in that response reliability is high enough
to motivate modeling response distributions as mixtures with item and individual level contribu-
tions. Doing so might finally answer the most common broad objection to acceptability judgments
as a source of linguistic data, that they contain confounds such as plausibility and parsing effort
unrelated to the putative syntactic target of a particular contrast (Bornkessel-Schlesewsky & Schle-
sewsky, 2007). I would argue that these different factors most definitely exist, but that they are
best considered as important factors in natural language use rather than just experimental con-
founds. One way to address such factors would be to examine a large and diverse set of sentences,
maximizing independent variation along these different dimensions. The reliability work presented
in this thesis would support research of this kind in two ways. Studies looking large diverse item
sets could leverage the efficiency and between-participant reliability results presented here in their
design. In addition, the Thurstonian model represents a small first step towards describing full
response distributions with a response model, and could be elaborated to capture structure beyond
the simple one dimensional acceptability scale I consider here, such as hierarchical clustering of
speakers or items.

Final overview

Although these three projects are each different and related to somewhat different literatures in
cognitive science, they are related by their use of comparisons to investigate questions of represen-
tation in similarity, categorization, and language. Through asking people to make comparisons,
this work gives some constraints on the transformational and alignment approaches to similarity,
raises questions about the specification of representations in structured accounts of similarity, and
gives an example of time course effects making theoretically consequential differences in different
measures of similarity. It explores transformations as latent features, showing the impact of some
simple presentation manipulations on a relationship between transformation learning, similarity,
and categorization judgment. Finally, it also investigates the measurement of sentence acceptabil-
ity, adding to the toolkit of experimental linguistics. These are diverse results relevant to different
areas, but they all draw on the way comparisons link easily observed behaviors like button presses
with the true object of interest, complex structured mental representations.
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Part V

Appendices



A Sentence stimuli

A.1 Attention check questions

In addition to the 300 sentences below, which formed the basis of the analyses in this paper,
each experiment incorporated some attention-check questions. These were intended to be used to
identify participants who were not paying attention to the task or did not understand it. As such,
they were two pairs of sentences with a clear answer, as shown below (the first sentence of the pair
is the better one).

e Mike read things quickly. / Read things, Mike did quickly.
e Eva was killed by John. / Eva was killed from John.

In the INITIAL / WITHIN PARTICIPANTS two-session experiment format, in TARGET PAIRS and
RANDOM PAIRS choice tasks, both pairs of sentences were presented in both halves of the exper-
iment. In the LIKERT and ME rating tasks, one sentence from each pair was presented in the
first half and the other sentence from each was presented in the second half. A participant was
considered to have failed the attention check if they chose the incorrect sentence over the correct
one in a choice task or ranked an incorrect sentence more highly than a correct one in a rating
task.

The BETWEEN PARTICIPANTSsingle-session format was identical except that no sentences ap-
peared in the second half (since there was no second half). Participant exclusions were determined
before any other analyses and the attention check questions were not included in the main analysis
for any measure.

A.2 Instruction quiz

Participants in all conditions had to pass a two-question instruction quiz testing their understand-
ing of acceptability as defined in the instructions (reported in the main Method section. These may
have influenced their interpretation of the task. The questions asked were:

Which of these best describes ’sentence acceptability’, the thing you’ll be asked to make judg-
ments about?

e How likely the sentence is to offend someone.

e Whether the sentence expresses positive or negative sentiment.

e How ’well formed’ the sentence is, whether it sounds natural.

e How likely the sentence is to be true.

How can you tell us about the acceptability of these sentences?

e You’ll be asked to give sentences an acceptability rating.

e You’ll be asked to compare two sentences and say which one is more acceptable
e You'll be asked to describe what is wrong with some badly worded sentences.

e Both of options 1 and 2, but not 3.

Expected answers were options 3 and 4 respectively.

A.3 Sentence stimuli

The sentences used here were a randomly selected subset of those collected by Sprouse et al.
(2013). Although drawing randomly from the instances presented for each phenomenon, we did
sample uniformly across the 150 sources present in the full collection when drawing the set of 150
pairs of sentences used here. Sprouse et al. (2013) identify repeated phenomena among this set,
one example appearing in our subset is the pair of sentences I seem eating sushi / I like eating
sushi and the pair I tend taking vacations / I like taking vacations, which Sprouse et al. (2013)
consider equivalent. In addition to direct repeats, we expect further theoretical connections to be



present among related but non-identical phenomena, but for the purposes of the analyses presented
above the critical property of this set of sentences is just that they cover a range of acceptability
values representative of linguistics research. As noted in the main text, multiple items testing a
single phenomenon are necessary to make reliable claims regarding its status: occasional repeats
notwithstanding, in general we chose to sacrifice the ability to make claims about the status of
individual phenomena in order to increase the diversity of the contrasts considered, since the latter
is more directly relevant to the test-retest measure of reliability.

Pair Id | Proposed as acceptable Proposed less acceptable

1 Brittany attempted to touch the porcupine. Brittany touched plenty of.

2 It seems to him that Kim solved the problem. He seems to that Kim solved the problem.

3 Scott intended to run for class president. Scott intended to have run for class president.

4 Debra convinced Elliot that he would wash the dishes. Debra convinced Elliot to have washed the dishes.

5 Celia convinced Brad that he will have eaten dinner by the | Celia convinced Brad that he would have eaten dinner by
time she gets home. the time she gets home.

6 Charlene believed Shawn to be helpful. Charlene believed Shawn to write the paper.

7 Thomas read in the paper that the stock market crashed. Thomas read in the paper the stock market crashed.

8 It is important for one to sleep regularly. It is important one to sleep regularly.

9 The expectation that Lauren will graduate is reasonable. The expectation Lauren will graduate is reasonable.

10 How likely to sell the house is Diane? How likely to be a stock market crash is there?

11 Carla appears to have graduated high school. Carla was hoped to graduate high school.

12 ‘Stop bullying me!” shouted the overweight child fearfully. ‘Stop bullying me!” shouted fearfully the overweight child.

13 Jason drove his car, and Tara rode her bike. Jason drove his car, and Tara her bike rode.

14 Annie was insulted. Was insulted Annie.

15 The money was stolen. The money was stolen the money.

16 Beth hitchhiked to Los Angeles and Robert drove to San | Beth hitchhiked Los Angeles and Robert drove to San Diego.
Diego.

17 Richard may have been hiding, but Blake may have been | Richard may have been hiding, but Blake may have done so
doing so too. too.

18 They all have eaten and they have all done so quickly. They all have eaten and they have done all so quickly.

19 Arty is sick, and Mark is too. Arty is sick, and Mark does so too.

20 John tried to win. John tried himself to win.

21 Dale found Brooke after frightening himself. Dale found Brooke after frightening herself.

22 Olivia told Gregory when to exonerate himself. Olivia told Gregory when to exonerate herself.

23 Last month there was a plan to promote me. Last month there was a plan to promote oneself.

24 Edward created a website in order for us to promote our- | Edward created a website in order for us to promote himself.
selves.

25 Melissa’s pledge to Dan to take care of herself. Melissa’s pledge to Dan to take care of himself.

26 Eric shouted to Maria to believe in herself. Eric shouted to Maria to believe in himself.

27 Jack asked Sally to be allowed to take care of himself. Jack asked Sally to be allowed to take care of herself.

28 She called Victor and yelled at him. She called Victor and yelled at.

29 There has been an announcement made in the newspaper. There has been made an announcement in the newspaper.

30 There has been a man considered violent. There has been considered a man violent.

31 She wrote her boyfriend a poem. She wrote a poem her boyfriend.

32 We believed Ben with all our hearts to be innocent. We believed with all our hearts Ben to be innocent.

33 We consider there to be three problems. We consider there three problems.

34 I told Mandy who would win the election. I told Mandy who the hell would win the election.

35 During no storm should people leave their computers on. What during no storm should people leave on?

36 I don’t think that I will take any musicians to the office. I don’t think that any musicians, I will take to the office.

37 Who the hell asked who out? Who asked who the hell out?

38 Clare didn’t promise Rita a red cent. Clare didn’t promise every employee a red cent.

39 I visited a city yesterday near the city that John did. I visited a city near the city yesterday that John did.

40 I told you when we met that Bill will come to the party. I told you that Bill when we met will come to the party.

41 I suggested when we dated that Laura should cut her hair. I suggested that Laura when we dated should cut her hair.

42 Melanie prefers for everyone to get a raise that you do. Melanie prefers for everyone you do to get a raise.

43 It rained torrentially. It torrentially rained.

44 Mike believes Phil to be a genius. Mike believes to be a genius.

45 There are likely to be students in the library. There are likely students to be in the library.

46 There might seem to be fossils several miles underground. There might fossils seem to be several miles underground.

47 The flowers were planted to attract hummingbirds. The flowers plant seasonally to attract hummingbirds.

48 The bureaucrat was bribed deliberately. The bureaucrat bribes deliberately.

49 The book was written truthfully. The was written book truthfully.
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Picking which suit to wear in the morning makes Helen late
to work.

Someone better leave town.

John wondered what he bought.

Which coworker did George compliment before insulting?
It appears that tonight Marjorie is staying over.

Who did T see hug Natalie?

There are leaves burnt.

The doctors are almost all wealthy.

What do you complain that the neighbor turns on at night?
It appears that a certain player will leave the team, but which
player is still a secret.

The professor said that the score of one the assignments is
going to be posted online by the end of the day, but I don’t
remember which.

Melissa said she read about one of Shakespeare’s plays, but
I don’t know which play.

Richard and Christine hate each other.

Sabrina gave her elderly mother a beautiful new coffee mug
at breakfast time.

The poor were overlooked by the politicians and the bankers.
The government gives no help to any poor people.

Julian learned to drive, and Rita learned to compose music.
The instructor put more solutions than the TA did on the
board.

John intended to give the children something nice to eat,
and give the children a generous handful of candy he did.
The table was being set by the waiter.

We supporters of democrats are just as worried about the
economy as you supporters of republicans.

He was the assistant.

The brother and sister that were playing all the time had to
be sent to bed.

The hammer with the black handle and the screwdriver with
the square tip are in your toolbox.

The book is long and the essay is short.

This is a shelf.

The lobby of the movie theater with the fantastic sound sys-
tem was empty.

There seems to be a new deal in the works.

One interpreter tried to be assigned to every visiting diplo-
mat.

Nobody has gone anywhere.

The virtuoso only rarely practices any pieces.

It seemed at that time that Robert had confessed.

What they children believe is that they will get some candy.
They denied and we suspected that Sean would buy the car.
Matt believed that Ben read a book and Lilly that Ben
watched a movie.

That Addison bit the boy, Jena didn’t believe.

At that time, what did they believe that Peter fixed?

This is the child who I think will walk your dog.

Eric wondered how Lisa learned to dance a certain dance,
but it’s not clear what dance.

They consider a teacher of Chris geeky.

Cassie is more talented than intelligent.

They anticipate that everybody will contact Fred that you
do.

Fran searched the web for Danny.

The eerie sound frightened Seth.

I find it annoying that usually this bus is late.

A dog bigger than my corgi started snarling.

Jessica shouted at a girl as nervous as her daughter.

Picking who to wear that new suit in the morning makes late
to work.

Anyone better leave town.

What did John wonder what he bought?

Which coworker did George yawn before insulting?

Tonight appears that Marjorie is staying over.

Who was seen hug Natalie?

There are leaves green.

The doctors almost all are wealthy.

What do you notice if the neighbor turns on at night?

It appears that a certain player will leave the team, but which
player it does is still a secret.

The professor said that the score of one the assignments is
going to be posted online by the end of the day, but I don’t
remember which he did.

Melissa said she read about one of Shakespeare’s plays, but
I don’t know which play she did.

Each other hate Richard and Christine.

Sabrina gave at breakfast time her elderly mother a beautiful
new coffee mug.

The poor were overlooked and the bankers by the politicians.
The government gives any help to no poor people.

Julian learned to drive, and Rita did to compose music.
The instructor put more solutions on the board than the TA
did on the handout.

John intended to give the children something nice to eat,
and give the children he did a generous handful of candy.
The table was being heavy.

We supporters of democrats are just as worried about the
economy as you of republicans.

He was assistant.

Brother and sister that were playing all the time had to be
sent to bed.

Hammer with the black handle and screwdriver with the
square tip are in your toolbox.

Book is long and essay is short.

This is shelf.

The movie theater with the fantastic sound system’s lobby
was empty.

There desires to be a new deal in the works.

One interpreter each tried to be assigned to every visiting
diplomat.

Anywhere has nobody gone.

The virtuoso practices any pieces only rarely.

It seemed at that time Robert had confessed.

What they children believe is they will get some candy.
They denied and we suspected Sean would buy the car.
Matt believed Ben read a book and Lilly Ben watched a
movie.

Addison bit the boy, Jena didn’t believe.

What did they believe at that time that Peter fixed?

This is the child who I think that will walk your dog.

Eric wondered how Lisa learned to dance, but it’s not clear
what dance.

Who do they consider a teacher of geeky?

Cassie is more than intelligent talented.

They anticipate that everybody you do will contact Fred.

Fran searched Danny the web.

The eerie sound frightened Seth at the ghost.

I find it annoying for usually this bus to be late.

A bigger dog than my corgi started snarling.
Jessica shouted at as nervous a girl as her daughter.
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The heat turned the meat rotten.

It seems a woman is in the yard.

There is likely to appear a man.

It is unimaginable for Mary to arrive on time.

What did you contribute to whom?

Some frogs and a fish are in the pond.

The more you give, the happier you will be.

Brian asked who sent what.

He met Bush, about whom he wrote several stories.

He would have been fired.

There tend to be storms at this time of year.

I like eating sushi.

I like taking vacations.

The tennis players watched the ball bounce a crazy bounce
off the line.

How much money is there in your account?

Into which room walked three men?

Onto which floor did the wine glass fall?

Mr. Ted said we should write five pages each night, but the
actual doing of it turned out to be impossible.

From the Atlantic to the Pacific there are people who oppose
immigration reform.

It will take five to seven days for your cat to feel better.
The newlyweds travelled a few days and then settled down
at a motel.

Larry cooked her husband the meal

There seems to be a box on your doorstep.

Dale was suspended by the principal.

The freezer was defrosted to remove the ice build-up.

The chamber was flooded intentionally.

John broke a cup, and Mary did so too.

Linda graduated high school before her brother.

Leonard talks about the things Sally likes.

Eric began a romantic relationship with an employee who he
later found himself superior to.

Who brought what?

He envied me my success after the promotion.

Maggie is difficult to compliment without embarrassing.

That Mary was going out with Luke bothered you.

Angela wonders which story about Elaine is online.

The teacher denied George his extra credit.

In that room anyone who stays long enough is given horrible
headaches.

The prom queen was picked some flowers before the award
ceremony.

The child that the clown gave the creeps to at the party is
still upset.

The children are certain to have all been picked up.
Shannon stole food for her family to enjoy.

The question was answered feeling nervous.

I informed Stan that I wanted to wash the car together.
The gardener and handyman painted the fence together.
There have arisen in these negotiations all of the issues the
lawyers warned us about.

Caroline likes cupcakes and Lisa cookies.

Kelsey speaks Japanese more fluently than Jason does.

The girls made sandwiches, and I believe that the boys did
too.

The bully threatened students triumphantly.

Sarah expected to receive a good grade.

Who did the executives appoint a friend of to the board?

The heat turned the meat rotted.

It seems a woman to be in the yard.

There is likely a man to appear.

It is unimaginable Mary to arrive on time.

To whom did you contribute what?

Some frogs and a fish is in the pond.

That much the more you give, the happier you will be.
Brain asked what who sent.

He met about whom he wrote several stories.

Him would have been fired.

There like to be storms at this time of year.

I seem eating sushi.

I tend taking vacations.

My parents appeared an unexpected appearance last night.

How much money there is in your account?

Into which room did walk three men?

Onto which floor fell the wine glass?

Mr. Ted said we should write five pages each night, but the
actual doing of so turned out to be impossible.

With the generals about a new approach the president
talked.

It will take from five seven days for your cat to feel better.
A few days, the newlyweds travelled, and then settled down
at a motel.

Who did Larry cook the meal?

There seems a box to be on your doorstep.

Dale was suspended from the principal.

The freezer defrosted to remove the ice build-up.

The chamber flooded intentionally.

John broke a cup, and Mary did so with a saucer.

Linda graduated high school her brother.

Leonard talks what Sally likes.

Eric began a romantic relationship with an employee supe-
rior to who later found himself.

What did who bring?

He envied me after the promotion my success.

Maggie is unlikely to be complimented without anyone em-
barrassing.

Who did that Mary was going out with bother you?

Who does Angela wonder which story about is online?

The teacher denied his extra credit to George.

In that room is given anyone who stays long enough horrible
headaches.

Before the award ceremony was picked the prom queen some
flowers.

The child that the clown gave the creeps at the party to is
still upset.

All the children are certain to have all been picked up.
Shannon stole for her family to enjoy.

The question was answered nervous.

I informed Stan that I must wash the car together.

The gardener painted the fence together.

There have all arisen in these negotiations the issues the
lawyers warned us about.

Caroline likes cupcakes because Lisa cookies.

Kelsey speaks Japanese more fluently than Jason English.
The girls made sandwiches, and I believe that the boys hot
dogs.

Threaten students, the bully did triumphantly.

Expect to receive, Sarah did a good grade.

Who did the executives appoint a friend of chairman of the
board?



148 When yesterday Marnie started to present that report, I | When that report Marnie started to present yesterday, I
thought we were in for a lot of surprises. thought we were in for a lot of surprises.

149 Bill knows that such books John only reads at home. Bill asked if such books John only reads at home.

150 If George comes, the party will be a disaster. If George probably comes, the party will be a disaster.



A.4 Conflict sentences

Proposed as acceptable Proposed less acceptable TARGET PAIRS LIKBRT
TARGET PAIRS BETWEEN LIKERT BETWEEN
INITIAL/WITHIN INITIAL/WITHIN

Celia convinced Brad that he | Celia convinced Brad that he ~X ~ ~~ ~

will have eaten dinner by the | would have eaten dinner by the

time she gets home. time she gets home.

How likely to sell the house is | How likely to be a stock market Xy~ x ~ ~

Diane? crash is there?

Richard may have been hiding, | Richard may have been hiding, X~ x ~~ ~

but Blake may have been doing | but Blake may have done so too.

so too.

We believed Ben with all our | We believed with all our hearts X, X x v ~

hearts to be innocent. Ben to be innocent.

Melanie prefers for everyone to | Melanie prefers for everyone you X, X ~ ~y~ ~

get a raise that you do. do to get a raise.

There are leaves burnt. There are leaves green. , ~ Ve v

What do you complain that the | What do you notice if the neigh- , ~ ~ ~

neighbor turns on at night? bor turns on at night?

The instructor put more solu- | The instructor put more solu- X, X X X~ ~

tions than the TA did on the | tions on the board than the TA

board. did on the handout.

It seemed at that time that | It seemed at that time Robert X, X ~ Ve ~

Robert had confessed. had confessed.

What they children believe is | What they children believe is X, X x ~~ ~

that they will get some candy. they will get some candy.

They denied and we suspected | They denied and we suspected ~, X X Vi~ ~

that Sean would buy the car. Sean would buy the car.

That Addison bit the boy, Jena | Addison bit the boy, Jena didn’t X~ x ~ ~

didn’t believe. believe.

Eric wondered how Lisa learned | Eric wondered how Lisa learned X, X x ~~ ~

to dance a certain dance, but | to dance, but it’s not clear what

it’s not clear what dance. dance.

They anticipate that everybody | They anticipate that everybody X, X x ~~ ~

will contact Fred that you do. you do will contact Fred.

A dog bigger than my corgi | A bigger dog than my corgi ~X Ve ~ye ~

started snarling. started snarling.

There is likely to appear a man. | There is likely a man to appear. X, X ~ ~~ ~

What did you contribute to | To whom did you contribute Xy~ X ~y ~

whom? what?

Who did the executives appoint | Who did the executives appoint ~y~ X ~y~ ~

a friend of to the board? a friend of chairman of the

board?
Bill knows that such books John | Bill asked if such books John ~y~ X Vave v
only reads at home. only reads at home.

This table lists only those pairs of sentences for which there is disagreement in the decisions made by different
measures. Expert judgments from Linguistic Inquiry are taken as the reference standard, v* indicates that the
formal measure endorses the expert-preferred item, x indicates the formal measure endorses the less preferred
item, and ~ indicates the formal measure failed to reject the null hypothesis of no difference. Two relevant
formal measures are given, TARGET PAIRS for its distinctively high power and LIKERT to represent the consensus
of the other formal measures.Since this data set does not in general contain multiple items targeting the same
phenomena, little can be said about any possible relation between particular sentence structures and the behavior
of any one measure. What is important from a test-retest reliability viewpoint is that there are different ways
in which disagreements can arise. Some appear to be simple sampling error, which seems to be the most likely
explanation for the single instance of disagreement with expert judgment in the Celia convinced Brad... sentence
pair (pair #1). Others appear to be instances where the high power of TARGET PAIRS allows it to pick up a
counterintuitive effect too small to be detected with the other measures, such as The instructor... (pair #8).
Finally, there do appear to be rare instances where presenting controlled contrasts directs people’s attention to
features of a construction that are not salient when the sentences involved are considered in isolation or contrasted
with unrelated partners, such as There are leaves... (pair #6) or ... Robert had confessed (pair #9).
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Figure 8.1: Model diagram showing the implementation of the THURSTONE model. Variable

definitions are given in Table 8'%able 8.3: Parameter descriptions

Variable Meaning Distributed as

Dy, Observed decision 1if Lj; > C, -1if L;j; < -C, 0 otherwise
L;; Decision variable for trial j N(a, - ap,04)

C Participant decision criterion U(1,50)

o Participant variability Weibull(\, v)

A Variability hyperparameter [N (2,5)]

v Variability hyperparameter |N(0.02,0.04)|

Q Ttem acceptability N(0,20)

B Model implementation

Choice task responses were modeled using a hierarchical variation of the traditional Thurstonian
model, fit using JAGS (Plummer, 2003) as outlined in Figure 8.1. Participants responded to a series
of sentence pairs. For each pair, three response options were available: one for each of the sentences
indicating that sentence is more acceptable, plus one to indicate no difference. Given a collection
of responses, the model infers an acceptability strength for each item under the assumptions that
the language community is homogeneous, and that acceptability is transitive.

The acceptability strength scores are inferred using the following decision process mapping
acceptability strength to choice responses: When presented with test items a and b on trial j,
participant ¢ samples an acceptability strength for each item. By definition, these samples come
from normal distributions with means centered at the group’s consensual acceptability score for
each item, a, and «. Each participant has their own degree of variability around the shared mean,
o;. The participant then takes the difference between the perceived acceptability scores on this trial,
L;j, and compares it to their criterion level C;. The criterion determines how each participant maps
their perception of the acceptability difference onto the response options. If the absolute difference
is greater than the criterion value, the participant indicates the preference indicated by the sign
of the difference, otherwise they indicate no preference. Although different in some respects, this
mapping process follows similar motivating logic to a scheme previously described by Bader and
Haussler (2010) for mapping between graded sentence acceptability responses and binary ones.

The model requires priors on sentence acceptability, participant variability, and participant
criterion values. Some aspects of these were informed by our understanding of the acceptability
judgment task, such as the general shape of participant variability distribution. In cases where



we were forced to choose between a number of plausible alternatives, we tested the sensitivity of
outcomes to changes in the specification of the model to examine the impact of these decisions.

The sentence acceptability scale has arbitrary units, making it relatively difficult to specify a
completely terrible prior, since the primary requirement is simply that all acceptabilities appear
on the same scale. However there are issues with the way the boundaries of acceptability are
set. A uniform prior over the real number line is not possible, and a truncated distribution (such
as a uniform distribution) can introduce distortions for sentences with extreme acceptabilities,
exaggerating acceptability estimates at the ends of the scale when the prior is relatively wide
and compressing them when the prior is relatively narrow (where 'wide’ and 'narrow’ are defined
relative to the degree of variation in the acceptability of the sentences tested, which is in general
unknown). Also, when the prior is very wide relative to the true variability in sentence acceptability,
the model is unidentifiable, with multiple solutions corresponding to identical relative arrangements
of acceptability scores falling in different regions of the scale. We considered various solutions to
this problem, including forcing identifiability by fixing a reference distance between a reference
pair of sentences, but eventually settled on a normal prior over acceptability, which has a number
of useful properties.

Most importantly, with a normal prior over acceptability the width of the prior has no meaning-
ful impact on the final estimates. Changing the width of the prior simply changes all acceptability
estimates by a multiplicative scaling factor, as shown in Figure 8.2, which shows the perfect cor-
relation between acceptability scores from models fit to the same data using different width priors
on acceptability. Although the scores are not numerically identical (models with wider priors
give numerically wider acceptability ranges) there is no meaningful difference in the information
presented.

The normal distribution also results in identifiable acceptability solutions without needing to
pre-select reference sentences or reference differences. For any particular relative arrangement of
sentences consistent with the data, solutions centering this arrangement around the mean of the
prior are preferred.

Although the width of the acceptability prior does not impact the final estimates, the steepness
of the distribution tails does. An inevitable feature of comparison data is that there is relatively
little constraint over the placement of extreme items which either always win or always lose com-
parisons. While it’s clear these items belong at the ends of the scale, there is little or no information
constraining the distance between them and the next most extreme items. Since the data con-
tain little relevant information, these distances are strongly influenced by the shape of the prior
distribution, in particular how quickly it decreases in the tails.

We tested this in simulation by using a t-distribution as the prior over acceptability and varying
the degrees of freedom.

Figure 8.3 shows the characteristic pattern on one particular simulated data set where the true
distribution of sentence acceptability scores was uniform. Acceptability priors with fatter tails
(fewer degrees of freedom) resulted in acceptability estimates for extreme items that were further
from the mean. This tendency for the extreme items to ‘fly away’ can obscure the true distribution
of acceptability scores (in this example, uniform).

The current version of the model attempts to mitigate this problem in two ways. One is the
use of the normal prior on acceptability, which is quite steep and performed well in simulation
recovery tests. The other, by analogy with a similar trick commonly used in the signal detection
literature (McNicol, 2005),was to add two ’sacrificial’ items to the data before fitting the model,
each of which participated in a single comparison with every item in the data set, and won or lost
every one. These imaginary items were then removed before proceeding to any data analysis. The
presence of these imaginary items during the fitting process does not strongly constrain the width
of the inferred acceptability distribution, but is helpful in moderating the scores given to extreme
sentences. In particular, they make it impossible for any actual sentence to achieve a perfect record
of only one type of response, which would be consistent with any distance from the rest of the
sentences so long as it is on the appropriate side of the scale. Informally, the sacrificial items soak
up the tendency for the ends of the scale to ‘fly away’, without imposing strict constraints on the
form of the acceptability estimates.

The prior on participant criterion values encodes the expected rate of endorsements for the
option ‘these two sentences are equally acceptable’. The main consideration in choosing this prior
was the scale size, defined by the width of the prior on sentence acceptability. The uniform(1,50)
prior we used allows the proportion of equal responses to vary from near zero to near 100%,



without any particular expectation that any particular proportion is more likely, and without
any expectation that the proportion of ’equal’ responses will be similar between people. The
relationship between criterion values and responses is complicated by the unknown distributions
of sentence acceptability and participant variability. Given the responses observed over the course
of this project, a more realistic prior for future work using this decision rule might express the
expectation that people use largely similar criterion values and endorse the ‘equal’ option on around
25% of responses.

It was clear in simulation that a uniform prior for participant variability performed relatively
poorly, but there are a range of plausible alternatives to consider (see for example Gelman (2006)).
The Weibull distribution we ended up using has a number of nice properties, among them simplicity
of implementation. More importantly, it flexibly expresses with only two parameters a range of
distributions we felt to be plausible for participant variability in the sentence acceptability context:
it respects the constraint to be positive, does not strongly constrain the location of the central
tendency, and can exhibit strong clustering, quite flat distributions, or distributions with a long
right tail. As it turns out, the typical Weibull distributions generated from the priors usually
underestimated the amount of variation needed to be consistent with the plausible values of the
criterion and acceptability components of the model. A future version of this model would benefit
from a prior over variability more similar to the posterior observed here after fitting to the INITIAL
dataset.

The priors and posteriors for each component of the model are summarized in Figure 8.4.
Together, these plots give a relatively complete picture of the model’s summary of the data set.
The main text focuses on the reliability properties of these results, and finds they are highly
reliable.
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Figure 8.2: Mutual correlation between acceptability scores for the same data set from models
with different width priors over sentence acceptability. All priors were normal and centered at
zero, ”scalesize” refers to their standard deviation. The resulting acceptability estimates were nu-
merically different, with wider priors resulting in estimates that covered a wider range, but they
were near-perfectly correlated, encoding the same information about acceptability differences be-
tween sentences. The particular data set used for this figure was a simulation one with acceptability
uniformly distributed over a 100 point range.
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Figure 8.3: Testing the impact of different acceptability prior shapes. Although the width of the
prior distribution over sentence acceptability was found not to influence the model’s acceptability
estimates, the steepness of the distribution tails can. This is shown here by substituting a series of
t-distributions with different degrees of freedom for the normal prior, and fitting each to the same
simulated data set with uniformly distributed sentence acceptability. Lower degrees of freedom
correspond to fatter tailed distributions and cause exaggeration in the acceptability distances at
the extremes of the scale. Priors with tighter tails recover the simulation truth better in this case,
motivating the normal prior.
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Figure 8.4: Priors and posteriors for key model parameters. The prior over sentence acceptability
was N(0,20). The model’s acceptability estimates did not depend on the width of this prior, but
were sensitive to the thickness of the distribution tails with relatively thin-tailed distributions such
as the normal performing better on simulated data. The posterior is bimodal, reflecting distinct
‘acceptable’ and ‘unacceptable’ groups of sentences. This particular distribution of acceptabili-
ties reflects the process by which these sentences were selected, as constructed contrasting pairs.
Since this was a hierarchical model, the prior on participant variability was actually a family of
distributions corresponding to different settings of the hyperparameters. Some randomly selected
members are plotted here. The prior also puts some probability over distributions with extreme
values for kurtosis and location of the mean, which have been filtered from this plot so that the
more typical members of the family are clearly visible. Looking at the posterior, it appears that
the means of typical distributions drawn from the prior are an order of magnitude too small for
the acceptability and criterion values used in this model, but that the model was flexible enough
and the data informative enough to infer a variability distribution on a scale compatible with
them. The prior of participant criterion values was uniform between 1 and 50, expressing a lack of
knowledge about how popular the ‘equal’ option would be. The data suggests the ‘equal’ option
was relatively unpopular, resulting in a posterior distribution shifted towards the smaller end of
this range.
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