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Abstract 

There is an urgent need to discover new antibiotics to combat the rise of antibiotic resistant 

bacteria, such as methicillin resistant Staphylococcus aureus (MRSA). Many of the antibiotics 

currently in clinical use are synthetic derivatives of chemical scaffolds identified over 50 

years ago in the golden era of antibiotic drug discovery. These antibiotics are often subject to 

existing resistance mechanisms and, as such, represent a short term solution to the antibiotic 

resistance crisis. Therefore it is imperative that new classes of antibiotics are developed that 

exhibit new modes of action and that are not subject to existing resistance mechanisms. Most 

antibacterial discovery efforts are focussed on drug targets with no mammalian equivalent. 

These targets have been well explored and therefore new antibacterial targets need to be 

identified. One strategy to identify new antibiotics is to explore targets that have a closely 

related human homologue. However, it is important that such inhibitors exhibit extremely 

high selectivity for the bacterial target over the human equivalent. One example of such a 

target is the essential enzyme biotin protein ligase (BPL) which catalyses the attachment of 

the micronutrient biotin onto biotin-dependent enzymes. In bacteria biotin-dependent 

enzymes play important roles in fatty acid synthesis and the tricarboxylic acid cycle. Without 

protein biotinylation these enzymes are devoid of activity and unable to perform their 

essential metabolic functions. Hence, inhibitors of BPL with selectivity over the human 

homologue represent a potential new class of antibiotic to combat MRSA. 

Our group has previously reported the X-ray crystal structure of S. aureus BPL (SaBPL) that 

provides the essential information necessary for structure guided design of new inhibitors. Of 

particular importance are two adjacent binding sites for the ligands biotin and ATP which, 

when bound, conjugate to form the adenylated reaction intermediate, biotinyl-5ʹAMP. Whilst 

amino acid residues in the biotin-binding pocket are highly conserved, residues in the ATP 

binding pocket are more variable and can be exploited to create species selective inhibitors. 

Our laboratory has previously reported analogues of biotinyl-5ʹAMP as BPL inhibitors where 
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the labile phosphoanhydride linker present in the native reaction intermediate has been 

replaced with a non-hydrolysable 1,4-disubstituted-1,2,3-triazole linker. The triazole linker 

can be readily synthesised by the Huisgen cycloaddition reaction that occurs between an 

acetylene and azide. This cycloaddition reaction can proceed in two ways. Firstly, copper or 

ruthenium catalysts can be used to produce the 1,4 or 1,5 regio-isomers respectively. 

Alternatively, in special cases, this reaction can be catalysed by an enzyme. This is known as 

in situ click chemistry. Our laboratory has identified a biotin triazole pharmacophore, 

containing the biotinyl moiety and a 1,4-disustituted triazole. Various groups that can probe 

available binding sites on SaBPL can be conjugated to the triazole through click chemistry. 

The most potent triazole inhibitor of SaBPL, BPL068, had an inhibition constant of 90 nM 

and, importantly exhibited >1000-fold selectivity over the human homologue (Soares da 

Costa et al, Journal of Biological Chemistry, vol. 287, p 17823-17832). Here, the biotin 

triazole was conjugated to a 2-benzoxalone moiety that was designed to bind in the ATP 

binding pocket. This compound inhibited growth of S. aureus and did not show any in vivo 

cytotoxicity against cultured mammalian cells. Although BPL068 exhibited antibacterial 

activity, the effect was not strong enough to determine a minimal inhibitory concentration 

(MIC), which is required for a pre-clinical candidate. 

The first aim of this project was to characterize new SaBPL inhibitors with the goal of 

improving the antibacterial activity of the parent compound. Here I have employed structure 

guided drug design and protein biochemistry techniques to design new SaBPL inhibitors with 

desirable properties for pre-clinical candidates. To facilitate the characterization of SaBPL 

inhibitors I developed a high-throughput enzyme assay to measure protein biotinylation, and a 

surface plasmon resonance assay to determine the kinetics of ligand binding (Chapter 4). With 

these techniques in hand I have characterised 40 rationally designed SaBPL inhibitors. 

Biotinol-5ʹAMP, a literature compound that has previously been developed as a research tool 

to characterize BPL function, was first characterized. Here the inhibition of BPLs from a 
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panel of clinically important bacteria was measured using an in vitro protein biotinylation 

assay. The spectrum of whole cell antibacterial activity was also addressed, with S. aureus 

and Mycobacterium tuberculosis being most susceptible to this compound (Chapter 5). A 

series of triazole inhibitors of SaBPL, designed to probe the ribose binding pocket was also 

investigated. Here 25, 1,4-triazole based compounds with 1-benzyl substituents were 

synthesized and tested for inhibition of SaBPL. These compounds are smaller in molecular 

weight compared to the parent molecule, BPL068, allowing further optimization by extending 

into the ATP binding pocket. The most potent compound from this series had an inhibition 

constant of 280 nM and exhibited antibacterial activity against S. aureus. Furthermore, all 

compounds did not inhibit the human homologue or cultured mammalian cells (Chapter 6). 

A further series of compounds were next synthesized to optimise the triazole linker in 

BPL068. Firstly, compounds were synthesized in which the triazole linker has been replaced 

with alternative heterocycles with a view to improving its biological activity. A 1,2,4-

oxadizole linker was found to inhibit SaBPL with an inhibition constant of 1.2 μM, with no 

inhibition of the human homologue (Chapter 7). A separate series of 1,4,5-trisubstituted-1,2,3 

triazole analogues were also investigated (Chapter 8). Here, the hydrogen of the C5 atom in 

the triazole heterocycle was replaced with halogenated substituents to investigate whether 

halogenation of BPL068 could improve antibacterial activity. A 5-fluoro-1,2,3 triazole was 

found to inhibit SaBPL with an inhibition constant of 420 nM. Importantly, the fluorinated 

analogue exhibited an MIC of 8 μg/mL against a clinical isolate of S. aureus. This compound 

is the first example of a triazole based BPL inhibitor in which an MIC could be determined. 

Following the identification of BPL antibacterials, the mechanism of action needed to be 

addressed. Therefore the second aim of my project was to develop probes that could facilitate 

mechanism of action and uptake studies. Here a fragment based approach was employed 

using in situ click chemistry. In situ click chemistry relies on the ability of the target enzyme 

to select out and synthesize its own inhibitors from a series of small molecule building block 
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precursors. This technique exploits the Huisgen cycloaddition reaction that proceeds between 

an acetylene and an azide to produce the 1,2,3-triazole heterocycle. Here, I have demonstrated 

that the in situ click chemistry approach could be adopted to identify inhibitors of a panel of 4 

BPLs from clinically important bacteria. Next, azide-functionalized analogues of 2 

fluorophores were synthesized and tested for chemical ligation to biotin acetylene using BPL 

as a catalyst. The ‘clicked’ compounds were confirmed for inhibition of SaBPL and entry into 

S. aureus. This newly developed probe will be used in solution based and con-focal 

microscopy studies to probe the mechanism of entry and action in S. aureus (Chapter 9). 

In summary, I have characterized a new series of SaBPL inhibitors that have improved 

antibacterial activity and still maintain the selectivity required for a pre-clinical candidate. 

Using in situ click chemistry, I also developed a new inhibitor that will be used to probe the 

mechanism of entry and action of BPL inhibitors in S. aureus. The work demonstrated in this 

thesis will be used to help optimize BPL inhibitors, ultimately leading to the development of a 

pre-clinical candidate. 

Thesis layout: 

The thesis will be presented as a series of manuscripts either published, submitted or to be 

submitted for publication. Each manuscript will be a chapter with its own references. A 

general introduction and discussion will also be included to link together all the research 

conducted during candidature. A publishing agreement with all co-authors involved with the 

work is also included.            
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Chapter 1: 

Introduction 
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1.1 Need for new antibiotics 

Antibiotic resistance is a major threat to human health worldwide. Many of the antibiotics in 

clinical use are synthetic derivatives of chemical scaffolds identified over 50 years ago. These 

next generation analogues are often subject to existing resistance mechanisms and only 

represent a short term solution to the antibiotic crisis [1]. New antibiotics are required that 

have novel modes of action and are not subject to existing resistance mechanisms [1]. Despite 

this desperate need for new antibiotics, there has been a decline in the introduction of new 

drugs into the clinic [2]. Most large pharmaceutical companies have terminated their 

antibiotic discovery programs due to low return on investment, strict regulatory requirements 

and the time and difficulty involved in developing a novel antibiotic [3]. Therefore much of 

the early stage antibiotic research is carried out by academic and government laboratories [3]. 

Many of the obvious drug targets present in bacteria with no mammalian homologue have 

been well explored. One strategy to develop new antibiotics is to investigate targets that have 

a closely related human homologue. However, inhibitors of these targets must have extremely 

high selectivity for the bacterial target. One such example is the essential enzyme biotin 

protein ligase (BPL).  

BPL catalyses the attachment of the micronutrient biotin onto biotin-dependent enzymes. In 

bacteria, biotin-dependent enzymes play important roles in fatty acid synthesis and the 

tricarboxylic acid cycle. Without the attached co-factor these enzymes are devoid of activity 

and are unable to perform their essential metabolic roles [4]. BPL catalyses protein 

biotinylation through the formation of an adenylated reaction intermediate, biotinyl-5ʹAMP, 

from its substrates biotin and ATP [4]. Multiple approaches by our group [5-9] and others 

[10-12] to design BPL inhibitors have been investigated, including analogues of biotin and 

non-hydrolysable analogues of the reaction intermediate. Of particular importance to this 

project are the biotin triazoles, which are not only potent inhibitors of Staphylococcus aureus 
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BPL (SaBPL), but importantly, demonstrate excellent selectivity over the human homologue 

[5]. 

In this thesis I have characterized rationally designed SaBPL inhibitors in order to optimize 

the biotin triazole pharmacophore (figure 1.1) and identify favourable drug-like properties 

that are required for a pre-clinical development candidate (Chapters 5-8). I have also used a 

fragment based drug discovery approach, called in situ click chemistry, to generate BPL 

inhibitors that can be used as fluorescent probes to investigate the mechanism of uptake and 

action of BPL inhibitors in S. aureus (Chapter 9).  

In this chapter I will provide a brief discussion on the various approaches to antibacterial 

discovery. This section focusses on the development process from a newly identified enzyme 

inhibitor to a pre-clinical candidate. I have also provided a brief overview of the current status 

of BPL inhibitors. Finally, I will provide a description of the research presented in this thesis.  

A comprehensive literature review on the structure and function of BPL and the development 

of BPL inhibitors is provided in chapter 2 which is a published article entitled ‘Structure 

Guided Design of Biotin Protein Ligase Inhibitors for Antibiotic Discovery’ [4].  

 

 

Figure 1.1: Pharmacophore representing the biotin-triazole moiety 
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1.2 Approaches to antibacterial discovery: 

Two common screening platforms used to discover antibiotics are phenotypic and target 

based screening [13]. Phenotypic screening involves testing compound collections for whole 

cell antibacterial activity against bacteria. This widely used approach has been responsible for 

the discovery of many of the antibiotics in clinical use today [13]. Following the birth of high-

throughput screening technologies and advances in DNA sequencing in the 1990’s, target 

based screening approaches took over and were thought to be the solution to replenishing the 

antibiotic pipeline [3]. Target based approaches involve screening chemical compound 

collections against a biological target to identify hit molecules that have the potential to be 

developed into lead compounds with whole cell activity. However, target based approaches 

have under-delivered [3]. One of the reasons is possibly due to the limited chemical diversity 

found in corporate compound collections [3, 14]. Corporate libraries are heavily biased 

towards compounds that follow Lipinski’s rule of 5. In Lipinski’s landmark study the ideal 

properties for orally available drug candidates were described [15]. Here, a drug candidate 

should have no more than 5 hydrogen bond donors, no more than 10 hydrogen bond 

acceptors, a molecular weight of no more than 500 and a calculated Log P, the partition 

coefficient that is a measure of lipophilicity greater than 5 [15]. However, antibacterials do 

not generally follow these rules [16, 17]. BPL was recognized as a potential antibiotic target 

by both GlaxoSmith Kline [3] and Astrazeneca [18] and was the subject of high-throughput 

screening campaigns. However, no hits were identified by either large company. These 

studies highlight that an alternative approach to identify BPL inhibitors was required. 

Structure based drug design (SBDD), is another approach that is employed by many small 

academic and government laboratories to develop new antibiotics [19]. Approaches to the 

design of BPL inhibitors using structural biology is detailed further in chapter 2.   

Once inhibitors have been discovered it is important to characterize the kinetics of inhibitor 

binding. The kinetics of binding can be measured using label free detection technologies, such 
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as surface plasmon resonance (SPR) (Chapter 4 and Chapter 8). SPR allows real time 

monitoring of protein: small molecule interactions and has been shown to be a powerful tool 

for early stage drug discovery [20, 21]. In this approach, the protein target is covalently 

attached to the surface of a sensor chip and small molecules are injected in solution across the 

surface. If a small molecule binds to the protein target the refractive index at the surface alters 

in proportion to a change in mass, resulting in a change in surface resonance [22]. SPR can be 

used to measure both the association and dissociation rates of inhibitors, the latter of which 

can be used to calculate the drug’s residence time, a measure of the lifetime of the drug-target 

complex [23]. SPR studies have been used to investigate the reaction mechanism of SaBPL. 

Here, SaBPL was found to bind its substrates biotin and ATP in an ordered manner with 

biotin binding first [5]. SPR studies have also shown that biotin binds to SaBPL with fast 

association and dissociation rates, but the reaction intermediate, biotinyl-5ʹAMP forms a 

stable complex with SaBPL on the surface of the sensor chip. This technology has been used 

to identify SaBPL inhibitors that exhibit slow dissociation kinetics and remain tightly 

associated with the BPL active site [5, 6, 9].  

One of the limitations associated with target based and SBDD approaches to antibacterial 

discovery is the identification of small molecule inhibitors that also exhibit whole cell 

antibacterial activity [18]. Hence, small molecule inhibitors should be tested early for whole 

cell activity against clinically important bacteria [13]. An important consideration here is to 

determine whether the compounds have broad or narrow spectrum antibacterial activity. 

Broad spectrum antibacterial agents, typically have bioactivity against both Gram-positive 

and Gram-negative bacteria. An example is the fluoroquinolones, which act by inhibiting two 

DNA topoisomerases [24, 25]. Such agents are highly sought after by industry but have been 

difficult to find [18]. Alternatively, compounds may have a narrow spectrum of activity. 

Examples include the macrolides, protein synthesis inhibitors and vancomycin, a glycopeptide 

antibiotic that is a cell wall synthesis inhibitor. Both of  these antibiotics are only active 
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against Gram-positive bacteria [13]. It is also useful to determine whether the inhibitor has a 

bactericidal or bacteriostatic mode of action. Bactericidal antibiotics, for example penicillin, 

kill bacteria directly, whereas bacteriostatic antibiotics like tetracycline slow the growth of 

bacteria, allowing the host immune system to clear the infection [26]. 

It is necessary in the development of a new antibacterial to investigate whether the 

compounds will exhibit any host cytotoxicity, either through inhibition of an equivalent target 

in mammalian cells or through an unrelated mechanism [13]. As BPL is a ubiquitous enzyme, 

all BPL inhibitors are tested for inhibitory activity against the human homologue. Only those 

inhibitors that do not inhibit the human isozyme are selected for further development. In 

addition to testing for activity against the human isozyme, compounds are also tested for any 

cytotoxic effects against cultured mammalian liver and kidney cells. It is important to identify 

potentially toxic compounds as early as possible so they can be eliminated before more pre-

clinical tests are performed.  

Once a small molecule has been identified that exhibits good potency against the biological 

target and whole cell activity against clinically relevant bacteria,  the next step is to ascertain 

that the antibacterial activity is consistent with the inhibition of the biological target [13]. A 

number of methods have been developed to verify the mechanism of action of an antibacterial 

in vivo. Macromolecular synthesis assays are a relatively simple way to gain insight into the 

mechanism of action of an antibacterial. These assays use radiolabelled precursors to 

determine if a compound specifically inhibits protein, RNA, DNA, lipid or peptidoglycan 

synthesis [27]. An alternative approach is to use genetically modified strains of bacteria that 

are engineered to under-express or over-express the expected biological target. These methods 

can be used to either sensitize or increase the resistance of the organism to the compound, 

respectively [13]. This approach has been used to confirm the in vivo mechanism of action of 

inhibitors targeting Mycobacterium tuberculosis BPL [11]. A third method that can be used to 

help elucidate the in vivo mechanism of action is the use of fluorescent probes. Fluorescent 
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analogues of linezolid [28], vancomycin [29] and daptomycin [30] have all been used to 

support the mechanism of action of these antibiotics. In this thesis I developed a fluorescent 

BPL inhibitor that can be employed to investigate the mechanism of uptake in S. aureus 

(Chapter 9). 

1.3 Approaches used to develop inhibitors of S. aureus biotin protein ligase 

Three different series of compounds have been developed by our laboratory as inhibitors of 

BPL from Staphylococcus aureus [5, 6, 8]. Here, each of these are briefly discussed alongside 

a more detailed description in chapter 2. Firstly, analogues of the substrate biotin 1 (figure 

1.2a) were tested for their potential as leads for BPL inhibitor development [6]. The biotin 

analogues were potent inhibitors of SaBPL with one example, biotin acetylene 2 (figure 1.2b), 

exhibiting an inhibition constant of 0.3 μM. However, this series of compounds exhibited 

minimal selectivity over the human enzyme (<20-fold). The biotin binding pocket is small 

and highly conserved and therefore chemical modifications to the biotin scaffold to improve 

upon selectivity are difficult [4, 6, 31]. Hence, biotin analogues are not suitable as pre-clinical 

candidates. 

Analogues of the native reaction intermediate, biotinyl-5ʹAMP 3 (figure 1.2c), have also been 

pursued as potential inhibitors. The first example is biotinol-5ʹAMP 4 (figure 1.2d), a non-

hydrolysable analogue where the labile phosphoanhydride present in 3 has been replaced by 

an ester linkage [8, 32]. Literature compound 4 was initially designed to characterize the 

dimerization and repressor activities of Escherichia coli BPL [33]. Chapter 5 is a published 

manuscript entitled ‘Improved synthesis of biotinol-5ʹAMP: Implications for antibacterial 

discovery’ [8]. In this study 4 was tested for inhibition of BPL from clinically relevant 

bacteria and was also tested for whole cell antibacterial activity against S. aureus, M. 

tuberculosis, E. coli and Enterococci species. Compound 4 was a potent inhibitor of both 

SaBPL and M. tuberculosis BPL. Compound 4 only exhibited 10-fold selectivity over the 

human homologue and therefore is an inappropriate pre-clinical development candidate.  
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Figure 1.2: Rationally designed BPL inhibitors: a). BPL substrate biotin. b). Biotin 

acetylene, a biotin analogue. c). Native reaction intermediate employed by BPLs, biotinyl-

5ʹAMP.d). Biotinol-5ʹ-AMP, a reaction intermediate analogue and a first generation BPL 

inhibitor. e). BPL068, parent molecule for this study. 

 

Soares da Costa and co-workers also reported the development of the biotin triazoles, as 

inhibitors of SaBPL [5, 9]. Here, the phosphoanhydride present in the reaction intermediate 

has been replaced with a 1,4-disubstituted-1,2,3-triazole heterocycle [5]. The triazole can be 

readily synthesized by the Huisgen cycloaddition reaction that occurs between acetylene and 

azide containing molecules. This reaction proceeds using either a copper or ruthenium 

catalyst or in special cases, this reaction can be catalysed by an enzyme (Chapters 2 and 9). 

The most potent biotin triazole exemplar, BPL068 5 in figure 1.2e, has an inhibition constant 

of 0.09 μM against SaBPL [5]. By varying the length of the alkyl chain joining the thiophane 
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ring of biotin with the triazole linker, an alkyl chain length of 5 carbon atoms was shown to 

be optimal. A 1,4-disubstituted 1,2,3-triazole linker was also preferred over a 1,5-

disubstituted 1,2,3-triazole linker. The ribose ring present in the native reaction intermediate 

was also shown to be dispensable for inhibitor binding and has been replaced by an alkyl 

chain, with an optimum length of 4 carbon atoms. Finally, the adenine moiety was replaced 

with a structurally related bicyclic ring system, in this case a 2-benzoxalone scaffold designed 

to occupy the ATP binding pocket. Compound 5 showed no inhibition of the human 

homologue (selectivity > 1000-fold) and had no cytotoxic activity against cultured 

mammalian liver cells. Finally, compound 5 was also able to inhibit the growth of S. aureus 

by 80% when 8 μg/mL was included in the growth medium [5]. 

BPL068 5 exhibits many favourable properties that makes it an appropriate candidate for pre-

clinical development, including good potency against the enzyme target, excellent selectivity 

over the human homologue (>1000-fold), no cytotoxicity against cultured mammalian liver 

cells and exhibits antibacterial activity against S.aureus. However, one of the major 

limitations for compound 5 is that the antibacterial activity was not potent enough to 

determine a minimal inhibitory concentration (MIC). An MIC is the lowest inhibitor 

concentration that prevents visible micro-organism growth after overnight incubation or 

reduces the viable cell count by 3-log units [18]. Therefore, compound 5 requires chemical 

optimization to improve upon the antibacterial activity. In this project I have characterized a 

series of analogues of 5 with the aim of discovering compounds with improved antibacterial 

activity (Chapters 6-8). 
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1.4 Research described in this thesis: 

In this project my aim was to characterize rationally designed BPL inhibitors in order to 

identify compounds with improved properties that are required for a pre-clinical candidate. In 

addition to the characterization of BPL inhibitors I have also used an in situ click chemistry 

approach to develop a BPL inhibitor with fluorescent properties that will be used to confirm 

the mechanism of entry of BPL inhibitors in S. aureus. 

In order to characterize rationally designed BPL inhibitors it is important to develop 

biochemical assays to measure enzyme activity and ligand binding to facilitate compound 

development. Chapter 4 is focussed upon the development of such assays. Here, an enzyme 

assay with improved throughput compared to published methods has been developed using 

radiolabelled biotin to measure protein biotinylation. An SPR binding assay was also 

employed to characterize the kinetics of inhibitor binding. Chapter 5 is a published paper in 

ACS Medicinal Chemistry Letters entitled ‘Improved synthesis of biotinol-5ʹ-AMP: 

Implications for antibacterial discovery’ [8]. Here, literature compound 4, was tested for 

enzymatic inhibition of a panel of BPLs from bacteria and the spectrum of antibacterial 

activity was determined against strains of S. aureus and M. tuberculosis. My contribution to 

this work involved biochemical characterization of biotinol-5ʹ-AMP. Chapter 6 is a 

manuscript that has been accepted for publication in ACS Medicinal Chemistry Letters 

entitled ‘A new series of BPL inhibitors to probe the ribose-binding pocket of Staphylococcus 

aureus biotin protein ligase.’ In this work 25 biotin triazole inhibitors with 1-benzyl 

substituents were synthesized and tested for inhibition against SaBPL. These compounds are 

smaller in molecular weight compared to parent compound 5, but still maintain good potency 

and selectivity against the biological target making them promising candidates for further 

optimization. Chapter 7 is a published paper in Bioorganic & Medicinal Chemistry Letters 

entitled ‘Heterocyclic acyl-phosphate bioisostere–based inhibitors of Staphylococcus aureus 

biotin protein ligase [7].’ In this work two series of compounds were synthesized, that are 



11 
 

analogues of 5. My contribution to this work involved biochemical characterization of a series 

of compounds for inhibition against SaBPL in which the 1,2,3-triazole has been replaced with 

alternative heterocycles. Chapter 8 is a draft of a manuscript entitled ‘Halogenation of biotin 

protein ligase inhibitors improves antibacterial activity against Staphylococcus aureus.’ In 

this work halogenated analogues of 5 were synthesized in order to investigate whether 

halogenation improves the antibacterial activity against S. aureus. Chapter 9 is a draft of a 

manuscript entitled ‘A template guided approach to generating cell permeable inhibitors of 

Staphylococcus aureus biotin protein ligase.’  In this work high resolution mass spectrometry 

was adapted to detect BPL-catalysed in situ click chemistry reactions. Here we showed that 

the reaction of biotin acetylene 1 with an azide can be catalysed by recombinant BPLs from 

clinically relevant bacteria, demonstrating that this approach could be used to identify biotin 

triazole inhibitors of other BPLs. In this work we also synthesized azide-functionalized 

analogues of two fluorophores and tested them for chemical ligation to biotin acetylene 1 in 

the presence of BPL. The fluorescent probes identified in this study will be used to help 

elucidate the mechanism of uptake and action of in S. aureus. All the work that presented in 

this thesis will be used to identify BPL inhibitors with favourable drug-like properties in order 

to develop new pre-clinical candidates. 
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3.1 MATERIALS 

3.1.1 General Materials 

Materials Suppliers 

CoStar 96 well round bottom clear plate Corning Life Sciences, USA 

Amicon® centrifugal devices Millipore, MA, USA 

Satorius VIVASPIN20, 10000 MWCO Sartorius, Goettingen, Germany 

Cellu.SepT2 MWCO 6000-8000 dialysis 

tubing 

Membrane Filtration Products Inc., 

Seguin, TX, USA 

Ministart syringe filter 0.2µM, 0.45µM and 

0.8µM 

Sartorius, Goettingen, Germany 

NuPage® 4-12% Bis-Tris polyacrylamide gels Invitrogen, CA, USA 

5 mL Profinia® IMAC cartridge Bio-Rad Laboratories Inc., CA, USA 

40 mL glutathione agarose column Scientifix, Australia 

PD-10 Desalting column GE Healthcare, Buckinghamshire, England 

epT.I.P.S.® Standard 50-1250µL  Eppendorf, Hamburg, Germany 

epT.I.P.S.® Standard 20-300µL Eppendorf, Hamburg, Germany 

Eclipse Pipette Tip refill System Labcon, North America 

SealPlate® Plate seals Excel Scientific Inc., Victorville, USA 

96 well LUMITRAC 600 white plate Greiner Bio One, Germany 

96 well Multiscreen-IP FilterPlate, 0.45µM Merck Millipore, MA, USA 

Clear 96 well flexible pet microplate, round 

bottom  

Perkin Elmer, Boston, MA, USA 

Biacore Series S Sensor chip CM5 GE Healthcare Bio-sciences AB, Uppsala, 

Sweeden 

PVDF membrane (Hybond
TM

-C extra) Ammersham Pharmacia Biotech, CA, 

USA 

Gel blotting paper Schleicher & Schuell Bioscience GmbH, 

Germany 

pH indicator strips Merck, Darmstadt, Germany 
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3.1.2 Chemical Reagents 

All chemicals and reagents were of analytical grade or higher. Most common laboratory 

chemicals were purchased from Sigma Aldrich Inc (St Louis, MO, USA) or BDH chemicals 

Ltd. (Victoria, Australia). Specialized reagents and their suppliers are listed below. 

Reagents Supplier 

2-log DNA ladder New England Biolabs, MA, USA 

Agarose, DNA grade Probiogen Biochemicals, Australia 

Biotin Sigma-Aldrich inc., CA, USA 

Bradford protein reagent concentrate Bio-Rad Laboratories Inc., CA, USA 

Phenylmethanesulfonyl fluoride (PMSF) Sigma-Aldrich, MO, USA 

Dithiothreitol (DTT) Sigma-Aldrich, MO, USA 

Isopropyl β-D-1-thiogalactopyranoside (IPTG)             BioVectra, PE, USA 

MOPS/MES SDS running buffer Invitrogen Life Technologies Inc., NY, USA 

Precision Plus Protein Kaleidoscope standards Bio-Rad Laboratories Inc., CA, USA 

GelRED
TM

 Nucleic acid gel stain Biotium Inc., CA, USA 

BigDye (version 3) reaction mix Perkin Elmer, CA, USA 

Ampicillin Sigma-Aldrich, MO, USA 

Bovine Serum Albumin  Roche Diagnostics, IN, USA 

Chloramphenicol  Sigma-Aldrich, MO, USA 

Erythromycin Sigma-Aldrich, MO, USA 

Streptomycin sulfate salt Sigma-Aldrich, MO, USA 

DELFIA Enhancement Solution Perkin Elmer, Boston, MA, USA 

Eu-Streptavidin Perkin Elmer, Boston, MA, USA 

Optiphase Supermix Scintillation Fluid Perkin Elmer, Boston, MA, USA 
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3.1.3 Bacterial strains 

E. coli BL21 (hsdS gal (λcIts857) ind Sam7 nin5 lacUV5T7gene1): E. coli BL21 carrying 

(λDE3) insertion for expression of recombinant proteins using pET expression vector 

(Stratagene, La Jolla, CA, USA) 

E. coli DH5α (supEΔlac169 (p80lacZΔM15) hsdR17 recA1 end AA1 gyrA96 thi-1 relA1): 

For routine molecular cloning (New England Biolabs, MA, USA)  

E. coli BL21-CodonPlus(DE3)-RIPL strain (B F
- 

ompT hsdS(rB
- 

mB
-
) dcm

+
 Tet

r 
gal 

λ(DE3) endA The [argU proL Cam
r 

] [argU ileY leuW Sterp/Spec
r
]: E. coli BL21 

carrying (λDE3) insertion and contains plasmids encoding extra copies of genes for rare 

tRNAs in E. coli. This strain was used for recombinant expression of pET expression vector 

encoding the gene for Staphylococcus aureus and Klebsiella pneumoniae biotin protein 

ligases (Aglient Technologies, CA, USA). 

Methicillin Sensitive Staphylococcus aureus ATCC 49775: Purchased from the American 

Tissue Culture Collection. This strain was used for antimicrobial susceptibility assays. 

3.1.4 Bacterial Media 

Luria Broth (LB): 1% (w/v) tryptone, 0.5% (w/v) yeast extract, 1% (w/v) NaCl, adjusted to 

pH 7.0 with NaOH. 

LB agar: LB supplemented with 1.5% (w/v) bacto-agar 

Cation-adjusted Mueller Hinton Broth (CAMHB): 3 % (w/v) beef extract, 17.5 % (w/v) 

acid hydrolysate of casein, 1.5 % (w/v) starch, supplemented to contain 20-25 mg/L calcium 

and 10-12.5 mg/L magnesium. 
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Bacterial selection: Selection of bacteria bearing plasmid was achieved through addition of 

appropriate antibiotics to both liquid and solid media. Ampicillin was used at 100 μg/mL. For 

expression of S. aureus BPL in E.coli BL21 CodonPlus(DE3)-RIPL strain, chloramphenicol 

(34 μg/mL) and streptomycin (25 μg/mL) were used in addition to ampicillin (100 μg/mL). 

3.1.5 Commercial kits 

Kit Suppliers 

QIAprep Miniprep Kit QIAGEN, GmbH, Germany 

3.1.6 Buffers and Solutions 

Blocking Buffer (For Western analysis): 1% (w/v) BSA in PBS 

Cell Lysis Buffer: 10% (v/v) β-mercaptoethanol, 2% (w/v) SDS 

Cleaning solution 1 (2x): 100 mM NaCl, 100 mM Tris, at pH 8.0 

Cleaning solution 2 (4x): 2M NaCl, 0.4 M sodium acetate, at pH 4.5 

Coomassie blue stain: 0.2% (w/v) coomassie brilliant blue, 10% (v/v) ethanol, 10% (v/v) 

acetic acid 

Coomassie de-stain: 10% (v/v) methanol, 10% (v/v) acetic acid 

DNA loading buffer (6X): 0.5x Tris-borate-EDTA (TBE) buffer, 40% (v/v) glycerol, 

1mg/ml bromophenol blue  

HBS running buffer 1: 10 mM HEPES at pH 7.4, 150 mM NaCl, 3 mM EDTA 0.005% 

surfactant p20 

HBS running buffer 2: 10 mM HEPES at pH 7.4, 150 mM NaCl, 5 % DMSO, 0.005% 

surfactant p20 
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Immobilization buffer: 10 mM sodium acetate at pH 5.8 

Native IMAC lysis buffer/wash buffer 1: 300 mM KCl, 50 mM Tris at pH 8.0, 5 mM 

imidazole 

Native IMAC wash buffer 2 : 300 mM KCl, 50 mM Tris at pH 8.0, 10 mM imidazole 

Native elution buffer : 300 mM KCl, 50 mM Tris at pH 8.0, 250 mM imidazole 

SDS-PAGE loading buffer: 0.1 M Tris (pH 7), 4% (w/v) SDS, 0.2% (w/v) bromophenol 

blue 

SDS-PAGE Coomassie Blue staining solution: 0.2% (w/v) Coomassie brilliant blue, 10% 

(v/v) Methanol, 10% (v/v) Acetic acid 

SDS-PAGE de-staining solution: 10% (v/v) Methanol, 10% (v/v) Acetic acid 

PBS: 0.136 M NaCl, 2.7 mM KCl, 1.46 mM KH2PO4 at pH 7.4 

PBS-Tween: PBS, 0.1% (v/v) Tween 20 

TAE: 40mM tris pH 8.2, 20 mM sodium acetate, 1 mM EDTA 

TBS: 25 mM Tris pH 7.5, 150 mM NaCl 

TE: 10 mM Tris pH 7.5, 1 mM EDTA 

Transfer Buffer: 39 mM glycine, 48 mM Tris, 0.037% (w/v) SDS, 20% (v/v) methanol 

Transformation buffer 1: 30 mM potassium acetate, 100 mM RbCl, 10 mM CaCl2, 50 mM 

MnCl2 , 15% glycerol   

Transformation buffer 2: 10 mM MOPS, 10 mM RbCl, 75 mM CaCl2, 15% glycerol 

BPL storage buffer: 50 mM Tris pH 8.0, 100 mM KCI, 5% glycerol, 0.1 mM EDTA pH 8.0, 

1mM DTT 
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3.1.7 Tracers 

d-[8,9-
3
H]-biotin were purchased from Amersham Australia, North Ryde, NSW, Australia 

and Perkin-Elmer, Boston, MA, USA. 

3.1.8 Oligonucleotides 

All oligonucleotides were purchased from Geneworks Pty Ltd., Hindmarsh, South Australia. 

All primers were of sequencing grade.  

Oligo Name Sequence 5´  3´ 

T7-26mer Forward 5´ 
 
CGA AAT TAA TAC GAC TCA CTA TAG GG 

 
3´ 

T7-23mer Reverse 5´ 
 
CAA GAA TTC TCA TGT TTG ACA GC 

 
3´ 

 

3.1.9 Plasmids 

pET-TEV-H6: a derivative of pET16b, obtained from Dr Steven Polyak (School of molecular 

and Biomedical Science, University of Adelaide). 

pET-TEV-H6-MtBPL: a derivative of pET16b, used for recombinant expression of 

M.tuberculosis BPL.  

pET-SaBPL-H6: For recombinant expression of S. aureus BPL in E. coli BL21 

CodonPlus(DE3) RIPL strain 

pET-AcBPL-H6: A derivative of pET22b, used for recombinant expression of A. 

calcoaceticus BPL, obtained from Dr. Simone Beckham (School of Biological Sciences, 

Monash University) 
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pET- KpBPL-H6: A derivative of pET22b, used for recombinant expression of K. pneumoniae 

BPL, obtained from Dr. Simone Beckham (School of Biological Sciences, Monash 

University) 

3.1.10 Computer Software 

Data were analysed using GraphPad Prism 6 (GraphPad Software, Inc., CA, USA). UCSF 

Chimera version 1.8.1 (UCSF, CA, USA) was used for viewing and analysis of PDB files. 

AutoDock-Vina version 1.5.4 (UCSF, CA, USA) was used for in silico docking. ChemDraw
® 

version 10.0 (Perkin Elmer, Inc., MA, USA) was used for preparing chemical structures 

 

3.1.11 Web resources 

NCBI (http://www.ncbi.nlm.nih.gov/) was used to access protein, nucleotide, and PubMed 

databases. An Online SMILES Translator and Structure File Generator Software 

(http://cactus.nci.nih.gov/services/translate/) was used for generating 3D structures of 

compounds. 

 

 

 

 

 

 

 

 

http://www.ncbi.nlm.nih.gov/
http://cactus.nci.nih.gov/services/translate/
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3.2 METHODS 

3.2.1 Protein Techniques 

3.2.1.1 Preparation of cell lysate 

For the preparation of whole cell lysates for SDS-PAGE analysis, 1 mL of culture was 

centrifuged at 2600 x g for 1 minute. The supernatant was discarded and the cell pellet was 

resuspended with 40 μL of cell lysis buffer per unit OD. Cell suspension was vortexed, spun 

and boiled at 95 °C for 5 minutes, this process was repeated. 

3.2.1.2 Determination of protein concentration 

Protein concentration was assayed using the Bradford Reagent (Bio-Rad Laboratories Inc., 

CA, USA). A standard curve of bovine serum albumin (BSA) was generated using stock 

concentrations from 0 to 1 mg/mL and a linear regression was used to calculate protein 

concentration. For the Bradford assay 10 μL of sample was mixed with 200 μL of 1x 

Bradford Reagent in a 96 well plate (Corning Life Sciences, USA). Absorbance at 620 nm 

wavelength was measured on a microplate reader (Molecular Devices, CA, USA). 
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3.2.1.3 SDS PAGE electrophoresis and gel staining 

Protein samples were diluted in protein sample buffer to a final concentration of 1X. Samples 

were then boiled for 5 min, and centrifuged briefly to collect condensation from the top of the 

tube. The proteins samples were fractioned on NuPage
®
 4-12% Bis-Tris polyacrylamide 

precast gel (Invitrogen) using 1X NuPAGE
®
 MES running buffer (Invitrogen) at 200 V for 

approximately 40 min or until the dye front reached the bottom of the gel. The protein bands 

were visualized using SDS-PAGE Coomassie Blue staining solution. The gel was first soaked 

in staining solution (0.2% Coomassie Blue, 50% ethanol and 10% acetic acid) at room 

temperature for at least 1 hour, before soaking in SDS-PAGE destaining solution (10% acetic 

acid and 5% methanol) overnight. 

3.2.1.4 Concentration of proteins 

Concentration of protein solutions was performed using Amicon® centrifugal filter devices 

(10000 MWCO) (Millipore, MA, USA) following manufacturer’s instruction manual. The 

columns were rinsed with MilliQ water and then equilibrated in the appropriate buffer by 

centrifugation at 5000 x g at 4 ºC for 20 minutes or until reaching a required retentate volume. 

The buffer was discarded prior to adding protein sample into the spin column. Likewise, 

protein was concentrated by centrifugation at 5000 x g at 4 ºC until reaching a required 

retentate volume. For retentate recovery, the concentrate was collected using a pipette with 

200 microliter tip to new pre-cold microcentrifuge tube. The protein was kept at -80 ºC until 

needed.  For storage of using Amicon® centrifugal filter devices, the centrifuge tube was 

washed with distilled water to remove residual buffer components and kept in MilliQ water at 

4 ºC. 
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3.2.2 Molecular Biology Techniques 

3.2.2.1 Agarose Gel Electrophoresis 

Analysis of DNA and separation of DNA fragments was performed using Agarose gel 

electrophoresis. Gel slabs were poured by melting 1-2% (w/v) Agarose in TAE buffer. Prior 

to loading into wells, DNA samples were mixed with an appropriate volume of 6x DNA 

loading buffer. Samples were electrophoresed in TAE buffer at 100V and then stained in 1x 

GelRed
TM

 nucleic acid gel stain solution for at least 10 minutes. DNA was visualized on a UV 

transilluminator and photographed using a Mitsubishi video processor. 

3.2.2.2 Preparation of competent E. coli BL21 (DE3) and E. coli BL21 CodonPlus(DE3)-

RIPL competent cells 

Overnight cultures of cells in LB media were prepared and subcultured the next day into LB 

medium (330 μL of overnight culture into 10 mL of LB). The cell cultures were grown at 37 

ºC for 1.5 – 2 hours until they reached an OD600 measurement of 0.6. 5 mL of culture was then 

subcultured into 100 mL of pre-warmed LB media in a 1 L flask and was grown at 37 ºC for 

1.5 hours. The cells were then pelleted by centrifugation at 5000 x g for 5 minutes at 4 ºC and 

resuspended in 10 mL/pellet of transformation buffer 1 and incubated on ice for 5 minutes. 

The cells were then pelleted by centrifugation at 5000 x g for 5 minutes at 4 ºC and 

resuspended in 1 mL/ pellet of transformation buffer 2 and incubated on ice for 5 minutes. 

The cells were then aliquoted and stored in pre-chilled 1.5 mL microcentrifuge tubes at -80 

ºC. 
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3.2.2.3 Transformation of plasmids into competent cells 

3.2.2.3.1 Transformation of E. coli DH5α and E. coli BL21(DE3) competent cells 

1-5 μL of plasmid was added to 200 μL of competent cells and incubated on ice for at least 30 

minutes. This was followed by heat shock treatment at 42 °C for 3 minutes followed by 

further 5 minutes incubation on ice. Cells were immediately plated onto pre-warmed LB agar 

plates with Ampicilin selection. 

3.2.2.3.2 Transformation of E. coli BL21 CodonPlus(DE3)-RIPL competent cells 

50 µL of competent cells were treated with 1 µL of β-mercaptoethanol that had been diluted 

1:10 in MilliQ water. The competent cells were incubated on ice for 10 min. The contents 

were mixed gently every 2 min. 1 -5 µL of plasmid was added to 50 µL of β-mercaptoethanol 

treated competent cells and incubated on ice for at least 30 min. This was followed by heat 

shock treatment at 42 ºC for 20 seconds, followed by further 2 min incubation on ice. 900 µL 

of pre-warmed SOC media was added to each transformation and the cells were incubated for 

1 hour at 37 ºC with shaking. Cells were then pelleted by centrifugation at 2600 x g for 1 min 

and the pellet was resuspended in 100 – 200 µL of supernatant. Cells were immediately plated 

onto pre-warmed LB plates containing Ampicillin, chloramphenicol and streptomycin 

selection.     

3.2.2.4 Preparation of glycerol stocks 

For long term storage of E. coli strains, equal volumes of an overnight culture and 80% (v/v) 

glycerol were mixed and stored at -80 °C. 

3.2.2.5 Plasmid Purification 

For purification of plasmid DNA, the QIAGEN QIAprep Miniprep Kit was employed 

according to manufacturer’s instructions. 
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3.2.2.6 DNA Sequencing 

Plasmid DNA or PCR products were used as templates for DNA sequencing. A 20 μL 

reaction containing 200 ng DNA, 100 ng of appropriate primer, 1 μL of BigDye version 3 

reaction mix (Perkin Elmer, Applied Biosystems, CA, USA) and 4 μL of 5x sequencing 

buffer for PCR. The PCR profile consisted of 30 cycles of denaturation at 96 °C for 30 

seconds, annealing at 50 °C for 15 seconds and extension at 60°C for 4 minutes. After 

thermocycling 80 μL of 75% (v/v) isopropanol was added to the PCR products, vortexed and 

incubated at room temperature for 30 minutes. Precipitated DNA was isolated by 

centrifugation at 17500 x g for 20 minutes. The pellet was washed in 250 μL of 75% (v/v) 

isopropanol followed by centrifugation at 17500 x g for 5 minutes and dried in a 37 °C 

heating block. Sequencing was performed by the molecular pathology sequencing service at 

the institute of Medical and Veterinary Science, Adelaide using 3730 Analyser (Perkin Elmer, 

Applied Biosystems, CA, USA). 
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Chapter 4: 

Assay Development 
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4.1 Introduction 

In order to characterize rationally designed BPL inhibitors, there is a need to develop a BPL 

enzyme assay that is potentially amenable to high-throughput screening applications. Our well 

established assay for BPL enzymatic activity is to measure the incorporation of 
3
H-biotin into 

an acid precipitable biotin domain substrate that is captured and then washed on filter paper 

[1]. This assay involves a number of manual handling steps, and is not suited to high-

throughput applications. One of the considerations for an in vitro biotinylation assay is the 

need to separate unincorporated radiolabel from protein bound 
3
H-biotin. These separation 

techniques are not easily automated, and so the first aim of this project was to develop an 

alternative BPL enzyme assay that removes the cumbersome washing step. Firstly, a 

scintillation proximity assay was investigated to measure protein biotinylation. This 

technology removes the need for a separation step, allowing the entire assay to be performed 

in a single 96-well plate [2]. However, there were difficulties in achieving an appropriate 

level of signal above the background. Therefore this was abandoned for an alternative 

approach. Following this, commercially available HTS-multiscreen filter plates were 

investigated. This system allows the rapid separation of 
3
H-biotinylated protein from 

unincorporatated 
3
H-biotin through the use of an immobilon

TM
 PVDF membrane in the well 

of a 96-well plate [3]. This new BPL assay will be used to characterize rationally designed 

BPL inhibitors in chapters 5, 6, 7, 8 and 9. A surface plasmon resonance (SPR) binding assay 

was also developed to monitor the binding of BPL inhibitors. SPR has many advantages 

including label-free detection and real-time monitoring [4]. 

In this chapter I will describe the production of tools required throughout this thesis. The 

production of highly pure BPL for enzyme assays is discussed. Here, I have optimized the 

expression and purification of BPLs from S. aureus, M. tuberculosis, Klebsiella pneumoniae 

and Acinetobacter calcoaceticus. To measure BPL activity a suitable protein substrate is also 

required. Here I have optimized the expression and purification of apo (non-biotinylated) 
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protein substrate to be used in enzyme assays in order to measure protein biotinylation.  The 

combined use of the 
3
H-biotin incorporation assay and the SPR binding assay, will be 

employed to characterize the inhibition and binding of rationally designed BPL inhibitors. 

Both assays will be used to identify promising compounds that exhibit good inhibitory 

activity and binding affinity to direct further medicinal chemistry efforts, to help optimize the 

biotin triazole pharmacophore 
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4.2 Specific Methods 

4.2.1 Recombinant SaBPL and KpBPL expression in E. coli BL21-CodonPlus(DE3)-

RIPL strain 

Overnight cultures of E. coli BL21-CodonPlus(DE3)-RIPL cells harbouring either pET-

SaBPL-H6 or pET- KpBPL-H6 expression plasmids were grown at 30 ºC in LB for SaBPL or 

2YT medium for KpBPL supplemented with 200 µg/mL ampicillin, 34 µg/mL 

chloramphenicol and 75 µg/mL streptomycin. This was followed by subculturing at 1:50 

dilution into fresh media supplemented with 200 µg/mL ampicillin, 34 µg/mL 

chloramphenicol and 75 µg/mL streptomycin, 10 µM biotin and 2 % glucose. The cells were 

grown at 30 ºC to an OD600 of approximately 0.6-0.8. Recombinant protein expression was 

induced with 1 mM IPTG for 3 hours at 30 ºC. The cells were harvested by centrifugation at 

4500 x g for 5 minutes at 4 ºC. The cell pellets were washed with 100 mL of 1 x TBS and 

pelleted by centrifugation at 4500 x g for 5 minutes at 4 ºC and stored at -80 ºC. 

4.2.2 Recombinant MtBPL and AcBPL expression in E. coli BL21 (DE3) strain 

Overnight cultures of E. coli BL21 (DE3) cells harbouring pET-TEV-H6-MtBPL or pET-

AcBPL-H6 were grown in LB medium supplemented with 200 µg/mL ampicillin at 30 ºC. 

This was followed by subculturing at 1:50 dilution into fresh media supplemented with 200 

µg/mL ampicillin, 10 µM biotin and 2 % glucose. The cells were grown at 30 ºC to an OD600 

of approximately 0.6-0.8. Recombinant protein expression was induced with 1 mM IPTG for 

3 hours at 30 ºC. The cells were harvested by centrifugation at 4500 x g for 5 minutes at 4 ºC. 

The cell pellets were washed with 100 mL of 1 x TBS and pelleted by centrifugation at 4500 

x g for 5 minutes at 4 ºC and stored at -80 ºC. 
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4.2.3 Purification of recombinantly expressed SaBPL, MtBPL, KpBPL and AcBPL 

Cell pellets were resuspended in 30 mL ice cold native IMAC lysis buffer containing 1 mM 

PMSF. Cells were disrupted by at least 5 passages through a M110L homogenizer 

(Microfluidics, USA) until the solution became clear and homogenous. Cellular debris was 

removed by two centrifugation steps each at 45 000 x g for 10 minutes at 4 ºC and then the 

solution was passed through 0.8 µm and 0.45 µm filters. 

His-tagged BPL proteins were purified by immobilized nickel affinity chromatography 

(IMAC).  The filtered lysate was applied at 5 mL/min onto a 5 mL Profinia IMAC cartridge 

that was pre-equilibrated with 10 column volumes of milliQ water then 10 column volumes of 

native IMAC lysis buffer. The column was washed with 6 column volumes of native IMAC 

lysis buffer (300 mM KCl, 50 mM Tris pH 8.0, 5 mM imidazole) followed by 6 column 

volumes of native IMAC wash buffer 2 (300 mM, 50 mM Tris pH 8.0, 10 mM imidazole). 

His-tagged BPL was eluted with native elution buffer (300 mM KCl, 50 mM Tris pH 8.0, 250 

mM imidazole). Material eluting from the column was detected by UV absorbance at 280 nm 

and pooled and subsequently exchanged into storage buffer (50 mM tris pH 8.0, 100 mM 

KCl, 5% glycerol, 1 mM EDTA, 1mM DTT) using overnight dialysis at 4 °C. For SPR 

experiments SaBPL was dialysed into storage buffer containing 1X PBS, 100 mM KCl, 5 % 

glycerol, 1 mM EDTA and 1 mM DTT. Protein concentrations were determined using a 

Bradford protein assay (BioRad) using bovine serum albumin (Sigma Aldrich
®
) as a standard 

(section 3.2.1.2). The fractions containing BPL were confirmed using SDS-PAGE gel 

electrophoresis and the in vitro 
3
H-biotin incorporation assay. The purified enzyme was 

aliquoted and stored at -80 °C. 

 

 

 



53 
 

4.2.4 Expression and purification of apo GST-SaPC90 

Expression of apo (non-biotinylated) SaPC90 domain was performed in the temperature 

sensitive birA85
-
 E. coli strain BM4062 [5]. The SaPC90 biotin domain was expressed as a 

GST fusion protein permitting high-level expression and rapid purification by affinity 

chromatography. Cells were grown in LB Media supplemented with 200 µg/mL ampicillin 

and 10 µM biotin at 30 °C to OD600  ~0.8. The cultures were then moved to 42 °C for 30 

minutes to heat inactivate endogenous BirA before a 3 hour incubation with 0.2 mM IPTG. 

The cells were harvested by centrifugation at 4600 x g for 5 minutes at 4 ºC. The cell pellets 

were washed with 100 mL of 1 x TBS and pelleted by centrifugation at 4600 x g for 5 

minutes at 4 ºC and stored at -80 ºC. Cell pellets were resuspended in 30 mL ice cold TBS pH 

8.5 containing 1 mM PMSF. Cells were disrupted by at least 5 passages through a M110L 

homogenizer (Microfluidics, USA) until the solution became clear and homogenous. Cellular 

debris was removed by two centrifugation steps each at 45 000 x g for 10 minutes at 4 ºC and 

then the solution was passed through 0.8 µm and 0.45 µm filters. The filtered lysate was 

passed over a 40 mL glutathione agarose column (Scientifix, Australia)  that had been 

equilibrated with 5 column volumes of milliQ water and 5 column volumes of TBS pH 8.5 at 

a flow rate of 2 mL/min. Unbound material was removed by washing with 3 column volumes 

of TBS pH 8.5. The GST fusion was eluted with 10 mM reduced glutathione in TBS pH 8.5. 

Protein concentrations were determined using a Bradford protein assay (BioRad) using bovine 

serum albumin (Sigma Aldrich
®

) as a standard (section 3.2.1.2). The fractions containing 

GST-SaPC90 were confirmed using SDS-PAGE and tested for activity using the in vitro 
3
H-

biotin incorporation assay. The purified biotin domain was aliquoted and stored at –80 °C. 
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4.2.5 Streptavidin – blot analysis of GST-SaPC90 domain 

To test whether purified GST-SaPC90 domain was indeed apo (non-biotinylated) a 

streptavidin-blot analysis was performed. Briefly, biotin incorporation assays were set up as 

described in section 4.2.6, except each reaction contained 5 µM unlabelled biotin (ie, no 
3
H-

biotin was added). At completion of the assay, an appropriate volume of 2X SDS loading dye 

was added to each reaction. The samples were then boiled at 100 °C for 5 min and centrifuged 

briefly before being loaded and fractioned on a  NuPage
®
 4-12% Bis-Tris polyacrylamide 

precast gel (Invitrogen) using 1X NuPAGE
®
 MES running buffer (Invitrogen) at 200 V for 

approximately 40 min or until the dye front reached the bottom of the gel. The proteins 

fractionated by SDS-PAGE were transferred onto a PVDF membrane (Hybond
TM

-LFP) using 

a semi dry transfer unit (Hoefer Semiphor, Amersham Pharmacia Biotech, CA, USA). The 

PVDF membrane was pre-soaked briefly in methanol, then milliQ water, followed by transfer 

buffer. The transfer was run for 1 hour at 80 mA per gel. The membrane was then soaked with 

blocking buffer (1% (w/v) BSA in PBS) for at least 1 hour at room temperature and washed 3 

times with PBS-Tween before being probed with streptavidin conjugated - Alexa-488 (Life 

Technologies, 1:1000 dilution, PBS-Tween) for another hour at room temperature. The 

membrane was washed another 3 times with PBS-Tween then analysed using the 

ChemiDoc
TM

 MP imaging system (BioRad). 

4.2.6 In vitro 
3
H-biotin incorporation assays 

In vitro biotinylation assays were carried out as described previously [1]. Briefly, an in vitro 

biotinylation reaction was performed for at least 10 minutes at 37 °C in a 20 µL reaction mix 

containing 50 mM Tris pH 8.0, 3 mM ATP, 5.5 mM MgCl2, 10 µM apo SaPC90, 0.1 µM 

DTT, 0.5 µM 
3
H-biotin, 4.5 µM biotin and purified BPL enzyme at an appropriate 

concentration to detect the completed reaction in the linear phase (typically 6 – 150 nM). 
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4.2.6.1 In vitro 
3
H-biotin incorporation assays: 

3
H-biotin incorporated domain captured 

using filter paper 

In vitro biotinylation assays were set up as described in section 4.2.6 with the addition of BSA 

at 0.1 mg/mL. At completion of the assay 4 μL aliquots were spotted onto gel blotting paper 

pre-treated with 10% trichloroacetic acid and 0.2 mM biotin. Blotting papers were washed 

twice in ice cold 10% trichloroacetic acid and once in ice cold absolute ethanol and dried. The 

blotting papers were placed in glass vials and added with the appropriate volume of Ultima 

Gold F scintillation fluid. Radioactivity measurements were obtained using a Rackbeta Liquid 

Scintillation Counter (Perkin Elmer, MA, USA). 

4.2.6.2 In vitro 
3
H-biotin incorporation assays: 

3
H-biotin incorporated domain captured 

using HTS immobilon-P treated multiscreen Plates 

In vitro biotinylation assays were carried out as described in section 4.2.6. At the completion 

of the assay, BPL catalysed reactions were stopped with the addition of 90 µL stopping buffer 

(110 mM EDTA, 50 mM tris pH 8.0) and 100 µL of each reaction was added to the wells of 

96-well HTS multiscreen plate with a PVDF membrane (Merck Millipore) that had been pre-

treated with 50 µL of 70% ethanol and 400 µL of MilliQ water under vacuum at 5 mmHg. 

The wells were washed by the addition of 1 X TBS under vacuum at 5 mmHg. 25 µL of 

Optiphase Supermix Scintillation fluid was added to each well and quantitation of protein-

bound radiolabelled biotin was determined by liquid scintillation counting using a 

MicroBeta
2®

 sicintillation counter (Perkin Elmer, MA, USA).   

4.2.6.3 In vitro 
3
H-biotin incorporation assays with BPL inhibitors 

Quantitation of BPL catalysed 
3
H-biotin into SaPC90 was performed as described in section 

4.2.6.2 The IC50 value of each compound was determined from a dose-response curve by 

varying the concentration of the inhibitor under the same enzyme concentration. The data was 

analysed with GraphPad Prism Software using a non-linear fit of log10 (inhibitor) vs. 



56 
 

normalized response. The Ki, the absolute inhibition constant for a compound, was 

determined using Eq1 [6]: 

𝐾𝑖 =
𝐼𝐶50

1 + 
[𝑆]
𝐾𝑀

 

Where KM is the affinity of the substrate for the enzyme ([biotin] = 1.0 μM for SaBPL) and 

[S] is the substrate concentration ([biotin] = 5 μM).   

4.2.7 SPR – binding Assay 

The kinetics of the interaction between SaBPL and biotin was analysed using a BIAcore 

S200. SaBPL was immobilized onto the surface of a CM5 sensor chip using amide coupling 

chemistry. After activating the surface with 1-ethyl-3(3-dimethylaminopropyl)-carbodiimide 

(EDC) and N-hydroxysuccinimide  (NHS), SaBPL solution at a concentration of 0.12 mg/mL 

in 10 mM sodium acetate buffer (pH 5.8) was applied at a constant flow rate of 5 µL/min for 

1200 seconds. Approximately 7,500 resonance units (RU) of SaBPL were immobilized. A 

control lacking immobilized ligand was performed alongside immobilized SaBPL in order to 

correct for bulk refractive index changes with buffer and distinguish non-specific binding 

events. Biotin was diluted in running buffer (10 mM HEPES pH 7.4, 150 mM NaCl, 0.005 % 

surfactant P20). As analytes bind to immobilized SaBPL, the refractive index at the surface 

alters in proportion to the change in mass, resulting in a change of RU (resonance units) 

value. The binding capacity of the surface depends on the level and activity of immobilized 

ligand. The maximum binding capacity (Rmax) of the immobilized ligand was calculated 

using Equation 2 where MW is the molecular weight of either the ligand or analyte, RL is the 

amount of immobilized ligand in RU and, Sm is the stoichiometry as defined by the number 

of binding sites on the ligand. The percent activity of the immobilized ligand was determined 

using Equation 3.  

Equation 2: Rmax = (MWanalyte / MWligand) x RL x Sm 
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Equation 3: % ligand activity = (Rmaxexperiment / Rmaxtheory) x 100 

The binding affinity (KD) was determined by transforming the time-dependent binding curves 

into an affinity-steady state 1:1 model using BIAcore S200 evaluation software (GE 

Healthcare).   
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4.3 Results and discussion 

4.3.1 Purification of recombinantly expressed BPL proteins 

Bacterial BPL proteins were recombinantly produced in E. coli using the pET-16b expression 

system containing a hexa-histidine tag at the C-terminus of the protein, except for MtBPL 

where the tag was at the N-terminus. MtBPL and AcBPL were expressed as soluble proteins 

in E .coli BL21(DE3) cells. For optimal expression SaBPL and KpBPL were expressed as 

soluble proteins in E. coli BL21(DE3)CodonPlus RIPL cells. These cells contain extra copies 

of the argU, ileY, leuW and proL tRNA genes to help facilitate expression of recombinant 

proteins in E. coli [7]. The His6-tag facilitated protein purification using immobilized nickel 

affinity chromamtography (IMAC) which produced highly pure protein in a single 

purification step. SDS-PAGE analysis of the IMAC purified material showed the expected 

molecular mass of 38 kDa for SaBPL, 28.9 kDa for MtBPL, 28.7 kDa for AcBPL and 36.3 

kDa for KpBPL (Figure 4.1 lanes 2, 3, 4 and 5 respectively). The yields for each 

recombinantly produced BPL varied between 60 mg of SaBPL, 25 mg of MtBPL and 100 mg 

of AcBPL eluted from the column in a single step. It was difficult to over express KpBPL and, 

therefore, only 4 mg of material was obtained. All BPLs were found to be enzymatically 

active using the 
3
H-biotin incorporation assay with specific activities calculated to be 88 

μM/min/mg, 69.4 μM/min/mg, 33.3 μM/min/mg and 125 μM/min/mg for SaBPL, MtBPL, 

AcBPL and KpBPL respectively.  
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Figure 4.1 SDS-PAGE analysis of bacterially produced BPLs. IMAC purification of recombinantly 

expressed bacterial BPLs; lane 1, Precision Plus Protein Kaleidoscope Prestained Standards; lane 2, 

SaBPL (250 mM imidazole); lane 3, MtBPL (250 mM imidazole); lane 4,  AcBPL (250 mM 

imidazole); lane 5, KpBPL (250 mM imidazole). 

 

4.3.2 Purification and streptavidin-western analysis of apo GST-SaPC90 

The 90 C-terminal amino acids of the S. aureus biotin domain from pyruvate carboxylase 

(SaPC90) was used as the biotin-accepting protein substrate in the BPL assays. Fusion of a 

GST tag at the N-terminus of the protein facilitated high level recombinant expression in E. 

coli and rapid protein purification using a glutathione agarose column and a thrombin 

cleavage site to facilitate the removal of the GST-tag if required. The attachment of biotin 

onto a conserved lysine residue within the biotin domain of biotin-dependent enzymes 

catalysed by BPL is a highly specific modification. Consequently, the overall fold of the 

biotin domain is highly conserved amongst species permitting biotinylation by non-native 

BPLs [1, 8-10]. To avoid biotinylation of the SaPC90 domain by the endogenous E.coli BPL, 

the SaPC90 biotin domain was expressed in the E. coli BM4062 strain [5]. This E. coli strain 

contains the birA85 allele which encodes a temperature sensitive BPL that cannot catalyse 

protein biotinylation at 43 °C. SaPC90 was expressed as a soluble protein at 43 °C for 3 hours 

and purification was performed using a glutathione agarose column. SDS-PAGE analysis of 
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the purified material revealed highly pure (>90%) material in the glutathione eluted fraction 

with the expected molecular mass of 36 kDa (figure 4.2 lane 2). Furthermore the BPL enzyme 

was found to attach biotin to the purified biotin domain using the 
3
H biotin incorporation 

assay. 

 

Figure 4.2 SDS-PAGE analysis of GST-SaPC90. GST affinity purification of GST-SaPC90; lane 1, 

Precision Plus Protein Kaleidoscope Prestained Standards; lane 2, eluted GST-SaPC90 (10 mM 

reduced glutathione). 

 

To confirm that the purified GST-SaPC90 was indeed expressed in its apo (non-biotinylated) 

form, streptavidin blot analysis using a streptavidin-conjugated Alexa488 probe was 

performed. Purified GST-SaPC90 was added to a mixture of biotin and MgATP in 2 parallel 

reactions. AcBPL was added to the first tube to allow the biotinylation reaction to take place. 

An equivalent volume of buffer was added to a second reaction, to serve as the non-

biotinylated control. AcBPL was chosen here as it has a molecular weight different to GST-

SaPC90 allowing the two proteins to be resolved by SDS-PAGE. The reaction components 

were separated by SDS-PAGE and Western analysis was performed to compare biotinylated 

and non-biotinylated reactions (figure 4.3). As shown in figure 4.3a, in the absence of BPL, 

there is minimal signal corresponding to biotinylated domain, indicating that the GST tagged 

SaPC90 domain was expressed and predominantly in its apo form. 
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Figure 4.3 Streptavidin Western analysis of Purified GST-SaPC90. a). Biotin incorporation was 

set up as discussed in 3.2.6 using AcBPL and analysed using a western blot with streptavidin-

Alexa488. b). SDS-PAGE analysis of reaction; lane 1, Precision Plus Protein Kaleidoscope Prestained 

Standards; lane 2, Biotinylation of GST-SaPC90 (36 kDa) by AcBPL (27.5 kDa); lane 3, negative 

control reaction (no AcBPL added). Panel B served as the loading control.     

 

4.3.3 Development of high-throughput In vitro 
3
H-biotin incorporation assay using HTS 

multiscreen immobilon-P plates 

The current in vitro biotinylation assay that has been employed in our laboratory involves 

measuring the incorporation of 
3
H-biotin into an acid precipitable substrate biotin carboxyl 

carrier protein (BCCP) (section 4.2.6.1) [1]. Following the BPL catalysed reaction, protein is 

precipitated onto Whatman paper using trichloroacetic acid, and washed with cold ethanol to 

remove unincorporated radiolabel. This facilitated the quantitation of 
3
H-biotin-BCCP on 

filters using a scintillation counter. Whilst this filter-based assay is robust and yields reliable 

quantitative data, it does have limitations that impede its use in high-throughput applications, 

such as numerous pipetting and manual handling steps that introduce the potential for errors 

and assay to assay variation. Therefore, a more robust BPL assay was required to measure the 

bioactivity of compounds planned for this study. One of the hurdles that must be addressed 

when performing this radiolabel ligand binding assay is the need to remove the 
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unincorporated radiolabel after the biotinylation reaction. This has been performed through 

the use of filter paper and protein precipitation (as described above) or gel-filtration [11]. 

However, these steps are not easily automated [11]. To overcome this, an approach using the 

HTS-Multiscreen system was employed.  The Multiscreen assay system is a rapid, multi-

sample filter based system that has a number of applications including ligand binding and cell 

based assays [3, 12]. Here, multiscreen plates were used to capture the SaPC90 domain via a 

vacuum manifold and then quantitate the amount of incorporated 
3
H-biotin by liquid 

scintillation counting. Multiscreen plates that contain an immobilon
TM

 PVDF membrane were 

used for protein capture. The PVDF membrane allows for high protein binding to capture the 

biotinylated domain, but not the low molecular weight 
3
H-biotin which passes through the 

membrane under vacuum. Scintillation fluid can then be added directly to each well of the 96-

well plate to quantitate the amount of 
3
H-biotinylated SaPC90. 

The first experiment performed was to investigate whether the HTS-multiscreen plates could 

be used to capture 
3
H-biotinylated SaPC90 with sufficiently strong signal above the 

background. The accepted signal to background ratio for enzyme assays should be greater 

than 10 [13].  An in vitro biotinylation reaction was set up using M. tuberculosis BPL 

(MtBPL) and 125 nM of 
3
H-biotin. This reaction was performed for 4 hours when it was 

assumed that all of the available biotin was incorporated into protein. The captured protein 

substrate was quantified with one of three commercially available scintillation fluids: Ultima 

Gold F, Microscint PS and Optiphase Supermix (Perkin Elmer). All three scintillation fluids 

have high counting efficiency for 
3
H containing samples, and all contain the same solvent 

Diisopropylnaphthaline [14]. As shown in figure 4.4, the HTS-multiscreen plates were able to 

capture appropriate amounts of 
3
H-biotinylated SaPC90. The use of either Ultima Gold F, 

Microscint PS or Optiphase supermix scintillation fluids gave average ‘counts per minute’ 

(CPM) of 1066, 3169 and 25236 and calculated signal to background ratios of 25.8. 15.5 and 

47.2 respectively. All three scintillation fluids had signal to background ratios that were 
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higher than the minimal signal to background ratio for enzyme assays [13]. Optiphase 

supermix scintillation fluid gave the highest CPM, presumably because it is optimized for 

liquid scintillation counting in microplates. As Optiphase scintillation fluid gave the highest 

signal, it was chosen for all further in vitro biotinylation assays.  

 

Figure 4.4 In vitro 
3
H-biotin incorporation assays measured with different scintillation fluids. In 

vitro 
3
H-biotin incorporation assays with MtBPL were set up using 0.125 μM 

3
H-biotin. 25 μL of each 

scintillation fluid was added to either BPL catalysed samples (blue) or non-catalysed reactions (red). 

Liquid Scintillation counting was performed on a MicroBeta2 scintillation counter using normal 

counting mode. Data is plotted as the average of 3 readings from 1 well of the 96-well plate. Error bars 

represent standard error of the means (SEM) of data. All experiments were conducted in triplicate at 

three different occasions. 

 

The next experiment determined the optimum concentration of 
3
H-biotin to include in each 

reaction. In vitro biotinylation reactions were set up with MtBPL using 2-fold serial dilutions 

of 
3
H-biotin. The total counts for each reaction ranged from 143,000 CPM at 500 nM 

3
H-

biotin to 3175 CPM at 3.9 nM 
3
H-biotin (Figure 4.5). The results with a concentration of 62.5 

nM 
3
H-biotin were 10172 CPM with a signal to background ratio of 44.3 (figure 3.5). To 

characterize BPL inhibitors biotinylation assays must be performed under steady state 

conditions, where the reaction is measured within the first 10% of the reaction [13]. As 62.5 

nM of 
3
H-biotin in a reaction that was at completion was ~10,000 CPM. Capturing the 
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reaction at 10% would yield ~1000 CPM, and still have a signal to background ratio ≥10. 

Therefore 62.5 nM 
3
H-biotin was determined to be the most suitable for the BPL enzyme 

assay. 

 

Figure 4.5 In vitro 
3
H-biotin incorporation assays with varying concentrations of 

3
H-biotin. 

3
H-

biotin incorporated assays were set with a 2-fold serial dilution series of 
3
H-biotin. The total biotin 

concentration was 5 μM in each reaction. MtBPL catalysed reactions are shown in blue, while 

corresponding non-catalysed reactions are shown in red. The data represents 1 is plotted as the average 

of 3 readings from 1 well of the 96-well plate. Error bars represent standard error of the means (SEM) 

of data. All experiments were conducted in triplicate at 3 different occasions. 

 

To show that the in vitro 
3
H-biotinylation assay can be measured under steady state conditions 

(i.e in the linear phase), a series of biotinylation reactions were set up using MtBPL and 

terminated at different time points (figure 4.6). After 30 minutes ~1200 CPM of 
3
H-

biotinylated SaPC90 could be detected, which was the equivalent of ~10% of the reaction. 

This result demonstrates that this alternative biotinylation assay can be used to characterize 

BPL inhibitors. 
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Figure 4.6 Time course 
3
H-biotinylation assay with MtBPL. 3

H-biotinylation assays were set 

up and started with the addition of MtBPL (50 nM). Each reaction was stopped after either15, 30, 60, 

120, 240 or 480 minutes after the addition of MtBPL. The samples were prepared using the 

multiscreen filtration system and counted using liquid scintillation on a MicroBeta2 scintillation 

counter. The data is plotted as the average of 3 readings from 1 sample. 

 

To validate the use of this 
3
H-biotin incorporation assay to characterize the inhibition of 

rationally designed BPL inhibitors, two known SaBPL inhibitors (BPL068 and biotinol-

5ʹAMP) were characterized. BPL068 inhibited SaBPL with an IC50 of 1.3 μM and had a 

calculated Ki value of 0.23 μM. (figure 4.7) This was in good agreement with the previously 

published Ki value of BPL068 (Ki SaBPL = 0.09 μM) [15]. Biotinol-5ʹAMP, was also 

characterized (figure 4.8). Biotinol-5ʹAMP inhibited SaBPL with a Ki  of 16 nM, which was 

in good agreement with the reported Ki value (20 nM) determined in our laboratory [16]. This 

new 
3
H-biotin incorporation assay with the multiscreen filtration system is now placed to 

measure BPL enzyme activity and to characterize rationally designed BPL inhibitors. This 

assay has been used in chapters 5-9 to measure the inhibition constants of rationally designed 

BPL inhibitors.  
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Figure 4.7 Inhibition of SaBPL activity by BPL068. a). An in vitro 
3
H-biotin incorporation assay 

was setup as described in section (4.2.6). The IC50 of BPL068 was determined by fitting the non-linear 

regression of the data in GraphPad Prism 6.0 and expressed as the mean of the data. The inhibition 

was calculated as the percentage of enzyme activity correlated to 100% of total enzyme activity 

without BPL068 in the reaction containing a saturating concentration of 5 μM biotin and 3 mM ATP. 

Determined IC50 value of BPL068 was 1.4 ± 0.06 μM. The Ki value was calculated to be 0.23 ± 0.01 

μM with respect to the biotin substrate. The data is plotted as the average of 3 readings from 1 well of 

the 96-well plate. Error bars represent standard error of the means (SEM) of data. All experiments 

were conducted in triplicate at three different occasions b). Structure of BPL068. 

 

Figure 4.8 Inhibition of SaBPL activity by biotinol-5ʹAMP. a). An in vitro 
3
H-biotin incorporation 

assay was set up as described in section (4.2.6). The IC50 of biotinol-5ʹAMP was determined by fitting 

the non-linear regression of the data in GraphPad Prism 6.0 and expressed as the mean of the data. The 

inhibition was calculated as the percentage of enzyme activity correlated to 100% of total enzyme 

activity without biotinol-5ʹAMP in the reaction containing a saturating concentration of 5 μM biotin 

and 3 mM ATP. Determined IC50 value of biotinol-5ʹAMP was 96.8 ± 5.5 nM. The Ki value was 

calculated to be 16.1 ± 0.9 nM with respect to the biotin substrate. The data is plotted as the average of 

3 readings from 1 well of the 96-well plate. Error bars represent standard error of the means (SEM) of 

data. All experiments were conducted in triplicate at three different occasions b). Structure of biotinol-

5ʹAMP. 
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4.3.4 Surface Plasmon Resonance Binding assay 

Surface plasmon resonance (SPR) is a powerful tool for early drug discovery applications as it 

can monitor the kinetics of biomolecular interactions in real time, providing association rates, 

dissociation rates and affinity measurements [17]. Here, one molecule is immobilized onto the 

surface of a sensor chip (the ligand). An interacting partner, referred to as the analyte, is then 

injected into solution across the sensor surface. As the analyte binds to the ligand, the 

refractive index at the surfaces alters in proportion to a change in mass. This results in an SPR 

signal (measured as Resonance units, RU), and is detected in real time [17]. There are several 

approaches for immobilizing the ligand to the sensor chip surface, including, covalent 

immobilization, high affinity capture and hydrophobic adsorption [17]. In this project, 

covalent immobilization of BPL was performed through the use of amine coupling onto CM5 

sensor chips. This has a matrix of carboxymethylated dextran that is attached to a gold 

surface. In amine coupling, the carboxymethylated dextran surface is activated with a mixture 

of 1-ethyl-3(3-dimethylaminopropyl)-carbodiimide (EDC) and N-hydroxysuccinimide (NHS), 

to give reactive succinimide esters. Ligands were then covalently linked with the dextran 

matrix through the reaction of amine groups with the esters on the activated surface (figure 

4.9). 
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Figure 4.9 Amide coupling of SaBPL to the CM5 sensor chip surface. The carboxylmethylated 

dextran on the surface of the gold layer on the sensor chip was activated with the mixture of 

EDC/NHS to give succinimide esters. SaBPL was then immobilized randomly on the surface by the 

reaction that occurs between its amide groups and the esters on the surface of the sensor chip. 

 

The binding affinity of an analyte is represented by the dissociation constant (KD). The KD is 

equal to the dissociation rate over the association rate (Kd/Ka). As mentioned in chapter 2 

SaBPL exhibits an ordered binding mechanism for its two substrates with biotin binding first 

followed by ATP. Therefore, biotin represents an appropriate control analyte to establish an 

SPR binding assay that can be used to characterize the binding of rationally designed BPL 

inhibitors. SaBPL was immobilized to the surface of a CM5 sensor chip using amine 

coupling. To establish whether the immobilized SaBPL retained biological activity, the native 

substrate biotin was injected over the sensor ship surface. Figure 4.10 shows that increase in 

resonance units was observed with increasing concentrations of biotin from 2 μM to 500 μM. 

Biotin bound with fast on and off rates as indicated by the rapid response at the start and end 

of the injection. The association and dissociation rates were outside of the range of 

quantification of the Biacore analysis software. Therefore, the KD was calculated using steady 

state analysis. In steady state analysis, the response obtained at different concentrations of 

biotin was fitted to a steady state model by the Biacore analysis software. The KD obtained 
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from two independent experiments were 25.9 ± 2.7 μM and 21.1 ± 4.3 μM respectively. The 

binding affinities obtained from these experiments are in good agreement with the published 

KD for biotin (10 μM) [15]. The experimental Rmax obtained from biotin binding was then 

used to assess the percent activity of the immobilized ligand. Typically around 7500 

resonance units of SaBPL was immobilized onto the sensor chip surface, leading to a 

theoretical Rmax of ~48.2. As a result 93% of immobilized ligand on the sensor chip was 

considered active. This SPR binding assay will be used to characterize the binding of 

rationally designed BPL inhibitors as discussed in chapter 8. 
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Figure 4.10 Dose-response SPR-binding analysis. a). Time-dependent binding curves of biotin 

correlated to dose-response. Arrows represent the start and the end of injection of biotin. 

Concentrations of biotin used were: 2 μM (red), 3.9 μM (green), 7.8 μM (blue), 15.6 μM (magenta), 

31.25 μM (cyan), 62.5 μM (yellow), 125 μM (purple), 250 μM (grey) and 500 μM (orange).  b). 

Concentration vs response plot of biotin binding.  Binding analysis based on affinity-steady state 1:1 

model. The binding affinity (KD) of biotin to SaBPL was calculated to be 21.1 ± 4.3 μM 

 

 

 



71 
 

4.4 Conclusions 

In this chapter I have developed a number of protein biochemistry techniques that are 

necessary to characterize BPL inhibitors. Firstly, I optimized the expression and purification 

of His-tagged BPLs from clinically relevant bacteria. I obtained highly pure material in a 

single step, that was active in BPL enzyme assays. I also demonstrated the expression and 

purification of apo (non-biotinylated) SaPC90 required for the enzyme assays. In the second 

part of this chapter I developed an alternative in vitro biotinylation assay with improved 

throughput, where the biotinylated protein substrate was captured through the use of HTS-

multiscreen plates. This assay was used in later chapters to characterize rationally designed 

BPL inhibitors. Finally I developed a SPR binding assay, that was characterized using the 

native substrate biotin. This SPR binding assay was used to monitor the kinetics of inhibitor 

binding in real time. All of the techniques developed in this chapter were used to help identify 

favourable inhibitor properties, ultimately leading to the development of a pre-clinical 

candidate.    
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Biotin protein ligase (BPL) represents a promising target for the development of new 

antibacterials. Chemical analogues of the reaction intermediate produced by BPLs 

represent a new class of antibiotics. The replacement of the labile phosphoanhydride 

linker with a non-hydrolysable 1,4-disubstituted-1,2,3-triazole heterocyle has led to the 

development of potent BPL inhibitors that have excellent selectivity over the human 

isozyme. However, the antibacterial activity is not potent enough to determine a minimal 

inhibitory concentration (MIC). In this study we investigated whether halogenation of 

our lead biotin triazole inhibitor 4 improved cell permeability and antibacterial activity 

against Staphylococcus aureus. The hydrogen on the C5 atom of the triazole heterocycle 

was targeted for replacement by a halogen atom (I, F, Cl) or a phenyl ring to generate 

1,4,5-trisubstituted-1,2,3-triazoles (5a-d). All 4 analogues exhibited sub-micromolar 

inhibition constants and low micromolar binding affinities against SaBPL, similar to the 

parent molecule. Importantly the 5-fluoro-1,2,3-triazole had antibacterial activity 

against S. aureus with an MIC of 8 μg/mL this is the first example of a biotin triazole 

inhibitor where the MIC could be determined. The results from this study highlight that 

halogenation of BPL inhibitors represent one strategy to improve antibacterial activity 

against S. aureus. These compounds represent promising candidates for further 

optimization in order to develop BPL antibacterials. 
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INTRODUCTION: 

There is an urgent need to discover new antibiotics to combat antibiotic resistant bacteria [1]. 

The advent of genome wide DNA sequencing has provided us with a number of potential 

drug targets that can be exploited for identifying novel antibacterials with new modes of 

action [2]. One of the major roadblocks associated with target based approaches to antibiotic 

discovery is the transition of hits with potent in vitro activity into bio-actives with whole cell 

antibacterial activity [2, 3].  The bacterial cell wall and membrane structures present as a 

formidable barrier that prevents compounds from entering cells and accessing intracellular 

drug targets. One potential strategy that can  improve upon cell permeability is to generate 

halogenated analogues of a hit molecule [4]. This has been demonstrated with 

fluoroquinolones, where replacement of  C6 with fluorine resulted in an ~100-fold decrease in 

the minimal inhibitory concentration (MIC)[5, 6]. Similar approaches have also been used to 

generate phenazine and quinolone scaffolds with biofilm-eradicating activity [7, 8]. One 

promising target for the development of new antibiotics is the essential enzyme, biotin protein 

ligase (BPL) [2, 9]. BPL is the sole enzyme responsible for the biotinylation, and subsequent 

activation, of biotin-dependent enzymes. The clinically important bacterial pathogen 

Staphylococcus aureus possesses two biotin dependent enzymes namely acetyl CoA 

carboxylase and pyruvate carboxylase, that catalyse key reactions in fatty acid biosynthesis 

and gluconeogenesis respectively [9]. Protein biotinylation, catalysed by BPL, proceeds 

through the ligation of biotin 1 and ATP to form biotinyl-5ʹAMP 2 [9]. A number of chemical 

analogues of 2 have been investigated as antibacterials that target the BPL from S. aureus [10, 

11] and other bacteria such as Escherichia coli [12-14] and Mycobacterium tuberculosis [15, 

16]. One such example includes biotinol-5ʹAMP 3 (figure 2) that inhibits the growth of S. 

aureus and M. tuberculosis with MICs of 2 and 2.5 μg/mL respectively [11].  

We have also reported 1,4-disubstituted 1,2,3 triazoles, the biotin triazoles, as a novel class of 

BPL inhibitor that selectively target the BPL from S. aureus over the human homologue [17, 
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18]. Biotin triazole 4 has been reported as the most potent inhibitor of S. aureus BPL (SaBPL) 

with an inhibition constant of 0.09 μM and >1000-fold selectivity over the human homologue 

[17]. Whilst biotin triazole 4 reduced the growth of S. aureus ATCC strain 49775 by 60% 

with 8 μg/mL in the culture medium, this level of inhibited cell growth was not sufficient to 

measure a true MIC [10, 17]. Here we report a series of halogenated 1,4,5-trisubstituted biotin 

triazoles as a new series of SaBPL inhibitors with improved antibacterial activity against S. 

aureus, see 5a-d (figure 2). These derivatives are the first examples of 1,4,5-trisubstituted 

triaozle BPL inhibitors. As a route towards improving the antibacterial activity of lead 

compound 4 the hydrogen on the C5 atom in the triazole heterocycle was targeted for 

replacement by iodine, fluorine and chlorine (see compounds 5a-c). We also synthesized a 

phenyl substitution, 5d, to address whether a non-halogenated substitution could improve cell 

permeability and antibacterial activity.  

RESULTS AND DISCUSSION 

The molecular mechanism of parent compound 4 binding to SaBPL has been determined by 

X-ray crystallography ([17] PDB 3V7S). This data revealed two key hydrogen bonding 

interactions between N2 and N3 of the triazole heterocycle with the side chains of R125 and 

R122 respectively (figure 3a). There is also the potential for hydrogen bonding interactions 

between the triazole heterocycle and side chains of D180 and K187. In silico docking 

experiments were performed to aid in the design of inhibitors and investigate the possible 

binding models by which new 1,4,5-trisubstituted triazoles might occupy the active site of the 

SaBPL target.  Flexible ligand docking was carried out using AutoDock Vina (1.5.6) [19]. 

The docking protocol was first validated by removing lead molecule 4 from its co-crystal 

structure with SaBPL (PDB 3V7S) [17] followed by re-docking into the vacated enzyme. The 

1,4,5-trisustituted triazoles 5a-c were likewise docked into SaBPL (figure 3b-d). The in silico 

analysis suggested that the 1,4,5-trisubstituted triazole occupies the same binding pose as 1,4-

disubstituted triazole 4, with rotation about the alkyl chains to best accommodate triazole 
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heterocycle and maximize binding interactions. The halogen substitutions did not cause steric 

clashes with the protein that would preclude binding. The predicted binding affinities 

(supplementary table 1) for 5a-c were similar, with the phenyl substitution predicted to be the 

least well tolerated.  

The synthesis of the 1,4,5-trisubstituted 1,2,3 triazoles 5a-d was carried out as summarized in 

scheme 1 and scheme 2. Synthesis of biotin acetylene 6 which served as the precursor for 7, 

was performed as previously described [17]. Synthesis of biotin 1-iodoacetylene 7 was based 

on conditions reported by Worrell et al [20]. Biotin acetylene 6 [17] was treated with 2 

equivalents of NMI in the presence of 20% CuI in DMF. Full conversion (>99%) was 

achieved after 1 hour as judged by 
1
H NMR. The reaction mixture was filtered through 

natural aluminium oxide, washed with MeOH/DCM (1:9) mixture and dried in vacuo to give 

7 as a pale yellow solid (scheme 1). To prepare 5a, biotin 1-iodo acetylene 7 was treated with 

azide 8 [17] in the presence of CuI and stoichiometric quantities of TEA in anhydrous DMF. 

The resulting 5-iodo-1,2,3-triazole was isolated and purified using flash chromatography to 

give 5a in 36% yield (scheme 1)[21].  

5-iodo-1,2,3-triazole 5a was subsequently converted to 5b and 5c by halogen exchange based 

on the optimized conditions reported by Worrell et al [22]. 5a was treated with 5 equivalents 

of either potassium fluoride or potassium chloride in MeCN/H2O (1:1) mixture. Vials were 

placed into the microwave reactor and allowed to stir at 180 ºC under 250 psi for 10 minutes. 

Resulting reaction mixtures were concentrated and purified by flash chromatography to give 

5-fluoro-1,2,3-triazole 5b and 5-chloro-1,2,3-triazole 5c  in 89% and 80% yield respectively 

(scheme 2). Finally 5d was prepared by palladium cross coupling reactions via sp
2
 arylation 

of 5a [23, 24]. 5-iodo-1,2,3-triazole 5a and phenylboronic acid were coupled in the presence 

of 1.5 equivalents of potassium carbonate and a catalytic amount of PdCl2(PPh)3 in THF at 70 

ºC for 12 hours to give 5-phenyl-1,2,3-triazole 5d in 41% yield after purification by flash 

chromatography (scheme 2).    



106 
 

The complete activity profiles of 1,4,5-tri-substituted triazoles 5a-d were determined using 

established biochemical and microbiological assay protocols [17, 25]. The in vitro potency 

and selectivity of triazoles 5a-d were first measured by enzyme assay and surface plasmon 

resonance (SPR) using recombinant BPLs from S. aureus and Homo sapiens. Here, the 

enzymatic incorporation of radiolabelled biotin onto an acceptor protein was measured in the 

presence of varying concentrations of inhibitor with the results shown in table 1. Previous 

enzymology and X-ray crystallography studies have demonstrated that biotin triazole 4 is a 

competitive inhibitor against biotin 1 [17]. Therefore, inhibition constants (Ki) were 

calculated from IC50 values using the known KM for biotin as previously described [26]. The 

biomolecular binding kinetics and equilibrium binding constants (KD) for each compound 

were also determined using SPR binding experiments. Varying concentrations of compounds 

4 and 5a-c were separately passed across immobilized SaBPL sensor chip to provide 

quantitative analysis of the KD using a steady-state affinity binding model. The antibacterial 

activity of the compounds was also determined using S. aureus strain ATCC 49775, where the 

growth of bacteria 20 hours post treatment was measured spectrophotometrically at 600 

nm[27]. The mechanism of action of 1,4,5-trisubstituted triazoles were also investigated by 

using a S. aureus RN4220 that had been engineered to over-express the BPL target. Finally, 

selected compounds were assessed for potential toxicity using a cytotoxicity assay with 

cultured mammalian HepG2 cells (ATCC HB-8065) [17]. 

1,4,5-trisubstituted 1,2,3 triazoles 5a-d were first assayed for inhibitory activity against 

SaBPL (table 1). All compounds in this series had similar inhibitory activity, with the 

inhibition constants within 4-fold of parent compound 4 (Ki = 0.23 μM). The iodinated and 

the fluorinated analogues 5a and 5b were the most potent, with Ki values of 0.41 μM and 0.42 

μM, respectively. The chlorinated analogue 5c proved to be the least potent compound in the 

series (Ki = 0.90 μM). The 5-phenyl-1,2,3-triazole (5d) also exhibited sub-micromolar 

inhibition with a Ki value of 0.78 μM. This data demonstrated that the active site of SaBPL 
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can accommodate the halogenated substitutions on the 1,2,3-triazole heterocyle as predicted 

by the docking. All of the compounds tested were inactive against the human homologue (Ki 

> 10 μM), indicating that substituents added to the C5 atom of the triazole ring, still maintain 

the reported selectivity observed with 4. 

The kinetics of the interaction between SaBPL and inhibitors were further probed using SPR 

(table 1). All compounds displayed rapid association and dissociation rates that were unable 

to be quantified by the SPR software. Consequently a steady state affinity model for binding 

was employed to determine a KD. Compound 5a had the highest affinity for SaBPL (KD = 3.8 

μM) with 2.2-fold higher binding affinity compared to parent compound 4 (KD = 8.4 μM). 

Compound 5b had a similar potency as 4 (KD = 7.1 μM), whilst compound 5c was the least 

potent (KD = 10.1 μM). The binding affinity for 5d could not be determined due to non-

specific binding to the sensor chip surface at high concentrations. There was no significant 

difference between the binding affinities of 4 and the halogenated analogues, consistent with 

the in silico docking and enzyme assays. 

We next directly addressed our hypothesis that halogenation of the triazole would improve 

whole cell activity by assaying all compounds for antibacterial activity against S. aureus 

ATCC 49755 (figure 5a).The characterized BPL inhibitor, biotinol-5ʹAMP 3 served as a 

control. Biotinol-5ʹAMP inhibited S. aureus growth with an MIC of 2 μg/mL, consistent with 

previous reports [11]. Parent compound 4 also exhibited dose responsive antibacterial 

activity, with the greatest affect observed at 2 μg/mL where a ~40% reduction in the optical 

density of the culture was measured. However, an MIC could not be determined. The 

fluorinated analogue 5b exhibited the most potent antibacterial activity of all the trisubstituted 

triazoles, with an MIC of 8 μg/mL. This is the first example of biotin-triazole inhibitor where 

an MIC could be determined.  The 5-iodo (5a) and the 5-chloro (5c) analogues, did not 

exhibit antibacterial activity against S. aureus, possibility due to the increase in molecular 

weight and/or impaired membrane permeability. Interestingly, the 5-phenyl-1,2,3-triazole 5d 
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reduced cell growth by >80% at 64 μg/mL. The results from the antibacterial susceptibility 

assays highlights that fluorination of parent compound 4, significantly improved the 

antibacterial activity. To address whether BPL is the target of 5b in S. aureus, antibacterial 

susceptibility assays were performed using a S. aureus strain engineered to over-express the 

BPL target (figure 5b). Over-expression of BPL reduced the antibacterial activity of 5b where 

~60% growth reduction was observed. Although growth was not fully restored in the presence 

of the compound, this data does suggest that BPL can bind to 5b in vivo, supporting a 

mechanism of action through BPL, although there is the possibility of another target. 

Compound 5b did exhibit antibacterial activity (MIC 8 μg/mL) against bacteria harbouring 

the parent cloning vector (pCN51) that did not express additional BPL.  Finally, cytotoxicity 

was assessed using mammalian HepG2 cells at concentrations ranging from 0.625 – 80 

μg/mL for compounds 5a-c (table 1). None of these compounds showed cytotoxic activity at 

all concentrations tested.  

Fluorination can improve the drug-like properties of lead compounds and, as such, 20% of 

available drugs are fluorinated [28]. Due to its small size and high electronegativity, the 

fluorine atom is an attractive modification that can improve the binding affinity, membrane 

permeability and metabolic stability of lead compounds [29]. In this study 5b exhibited 

similar inhibition and binding activities to the SaBPL target as parent compound 4. Therefore 

we presumed the improved antibacterial activity is not simply due to an improvement in 

binding to SaBPL. Importantly, the dissociation rates of 5b binding to SaBPL were 

indistinguishable to 4. Therefore the improved activity is not likely due to high occupancy 

rates on the BPL target. One explanation for the improved antibacterial activity of 5b is that 

the addition of fluorine enhances its membrane permeability. It has been demonstrated that 

fluorination of drugs improves membrane permeability through enhancements in the free 

energy of partitioning into the lipid membrane [4]. Another possibility for the improved 

antibacterial activity of 5b is that the addition of a carbon-fluorine bond in the molecule 
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improves upon the metabolic stability inside the bacterial cell, due to the higher energy 

requirement to hydrolyse a C-F bond compared to its C-H counterpart [30].  The 1,4,5-

trisubstituted triazoles reported here represent a new class of BPL inhibitors that exhibit good 

inhibition and excellent selectivity, but importantly a 5-fluoro-1,2,3 triazole was found to 

improve upon the antibacterial activity, and is the first example of a triazole inhibitor of 

SaBPL, where an MIC could be determined. Future studies will involve determining the 

mechanism by which 5b binds to SaBPL via X-ray crystallography and determining the 

mechanism by which 5b improves upon the antibacterial activity against S. aureus.    
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FIGURE LEGENDS 

Figure 1. Reaction mechanism of biotin protein ligase 

Figure 2.  Compounds synthesized in this study 

a).  Biotinol-5ʹAMP 3. b).Parent compound 4. c). 1,4,5-trisubstituted 1,2,3-triazoles 5a-d. 

Figure 3.  Docking studies of 1,4,5-trisubstituted 1,2,3-triazoles with SaBPL 

a). X-ray crystal structure of 4 (cyan) in complex with SaBPL (PDB 3V7S). Amino acids that 

encompass the triazole binding pocket are shown. Dashed lines represent hydrogen bonds. b). 

Top ranked in silico docking pose for 5a (blue). c). Top ranked in silico docking pose for 5b 

(red). d). Top ranked in silico docking pose for 5c (green).  

Figure 4. SPR sensograms (left) and concentration vs response plots (right) of compounds 4 

and 5a-c binding to SaBPL. 

a). SPR sensogram and concentration vs response plot of 4 binding to SaBPL. b). SPR 

sensogram and concentration vs response plot of 5a binding to SaBPL. c). SPR sensogram 

and concentration vs response plot of 5b binding to SaBPL. d). SPR sensogram and 

concentration vs response plot of 5c binding to SaBPL. Concentrations of compounds 4 and 

5a-c  used were: 0.2 μM (red), 0.4 μM (green), 0.8 μM (blue), 1.6 μM (magenta), 3.1 μM 

(cyan), 6.3 μM (yellow), 12.5 μM (purple), 25 μM (grey) and 50 μM (orange). 

Figure 5. Inhibition of S. aureus growth in vitro. 

a). Compounds 4 (cyan), 5a (blue), 5b (red),  5c (green), 5d (purple) and biotinol-5ʹAMP 

(orange) were tested against S.aureus strain ATCC 49775 (n = 3). 

b). Compound 5b was tested for antibacterial susceptibility against S. aureus RN4220. S. 

aureus RN4220 harbouring pCN51-BPL (red solid lines) or pCN51 (red dashed lines) are 

shown (n = 3). Error bars represent standard error of the means (SEM) of data.  

LIST OF TABLES: 

Table 1. Binding affinities derived from SPR analysis, inhibition and cytotox data for 

compounds 4 and 5a-d. 
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LIST OF SCHEMES: 

Scheme 1.  Synthesis of biotin 1-iodoacetylene and 5-iodo-1,2,3-triazole 5a. 

Conditions and reagents: (a) CuI, DMF, 1 h, Rt; (b) CuI, DMF, TEA, 12 h, Rt  

Scheme 2. Synthesis of 5b-d, from precursor 5a. 

Conditions and reagents:   (a) KX (X=F, X=Cl), MeCN/H2O (1:1), 180 ºC, 10 min, mw; (b) 

PhB(OH)2 (1.5 equiv), PdCl2(PPh)3 (5 mol%), K2CO3 (1.5 equiv), THF, 70 ºC, 12 h. 
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Figure 4. 
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Figure 5. 

 

 

 

Table 1: Binding affinities derived from SPR analysis, inhibition and cytotox data for compounds 4 

and 5a-d. 

ID R KD SaBPL (μM) Ki SaBPL (μM) Ki HsBPL (μM) Cytotox HepG2 (μg/mL) 

4 H 8.4 ± 1.0 0.23 ± 0.01 >10 >80 

5a I 3.8 ± 1.5 0.41 ± 0.02 >10 >80 

5b F 7.1 ± 3.4 0.42 ± 0.05 >10 >80 

5c Cl 10.1 ± 1.8 0.9 ± 0.11 >10 >80 

5d Ph N/D 0.78 ± 0.17 >10 N/D 

KD : Represents Dissociation constant 

Ki : Represents Inhibition constant 
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Scheme 1.  
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SUPPLEMENTARY MATERIAL: 

Recombinant protein production 

The cloning and purification of recombinant BPL from Staphylococcus aureus and Homo 

sapiens have been previously described [1, 2]. 

In vitro biotinylation assays 

Quantification of BPL catalysed 
3
H-biotin incorporation into the biotin domain substrate was 

performed as previously described [3-5]. A reaction mixture was prepared containing 50 mM 

Tris HCl pH 8.0, 3 mM ATP, 4.94 μM biotin, 0.06 μM 
3
H-biotin, 5.5 mM MgCl2, 100 mM 

KCl, 0.1 μM DTT and 10 μM biotin domain of S. aureus pyruvate carboxylase. To determine 

inhibitory activity, BPL activity was measured in the presence of varying concentrations of 

compound. All compounds were dissolved in DMSO and then diluted into the reaction buffer 

to give a final concentration of 4% DMSO. BPL reaction was initiated by the addition of 

enzyme to give final concentrations of 6.25 nM for SaBPL and 140 nM for HsBPL. After 10 

minutes at 37 ºC, 90 μL of stopping buffer (110 mM EDTA and 50 mM Tris HCl pH 8.0) was 

added to terminate the reaction and a 100 μL aliquot of the reaction mixture was added to the 

wells of 96-well HTS multiscreen plate containing an Immobilon-P® (Merck Millipore) 

membrane that had been pre-treated with 50 μL of 70% ethanol. 400 μL of MilliQ-H2O and 

followed by 200 μL of TBS. Quantitation of protein-bound radiolabelled biotin was 

determined by liquid scintillation counting. The IC50 value of each compound was determined 

from a dose-response curve by varying the concentration of inhibitor under the same enzyme 

concentration. The data was analysed with GraphPad prism (version 6) using a non-linear fit 

of log10 [inhibitor] vs. normalized response. The Ki, the absolute inhibition constant for a 

compound was determined using Eq 1: [6] 
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Eq 1: 

𝐾𝑖 =
𝐼𝐶50

1 +  
[𝑆]
𝐾𝑀

 

Where [S] is the substrate concentration ([biotin] = 5 μM) and KM is the affinity of the enzyme 

for biotin (S.aureus BPL = 1 μM, [3], and H. sapiens BPL = 1 μM [2]). 

Surface Plasmon Resonance 

SPR was performed using a Biacore
TM

 S200 instrument (GE healthcare). S. aureus BPL was 

immobilised on a CM5 sensor chip by standard amine coupling chemistry. The 

carboxymethyl groups on the chip were activated by the addition N-ethyl-Nʹ-(3-diethylamino-

propyl) carbodiimide and N-hydroxysuccinimide. BPL (120 μg/mL) in 10 mM sodium acetate 

buffer (pH 5.8) was coupled onto the surface, and 50 mM Tris pH 8.0 was injected to block 

any unreacted sites. Typically, 7,000 resonance units of BPL were immobilised on the sensor 

chip. One channel was left blank which was subtracted from the sample channel to allow 

analysis methods to distinguish between actual and non-specific binding. Experiments were 

conducted at 25 ºC with a running buffer containing 10 mM HEPES pH 7.4, 150 mM NaCl, 

0.005% surfactant p20 and 5% (v/v) DMSO. For compounds that were poorly water soluble, 

samples were initially dissolved in DMSO and diluted in running buffer so that the final 

concentration of DMSO was 5%. To correct for variations in DMSO concentration during the 

preparation of these compounds, a solvent correction curve was included in the analysis by 

preparing a series of test solutions between 4.5% and 5.8% DMSO. Binding experiments were 

performed by injecting the analyte solutions into the instrument across the sensor surface of 

all flow cells at a flow rate of 30 μL/min with a contact time of 120 seconds followed by a 

dissociation time of 300 seconds. Zero concentration samples were used as blanks. The time-

dependent binding curves of all flow cells were monitored simultaneously. The results of 

compounds 5a-d showed fast on and off rates outside the range of kinetic quantification, so 
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KD values were determined by transforming time-dependent binding curves into an affinity-

steady state 1:1 model using Biacore
TM

 S200 evaluation software (GE healthcare).  

Antibacterial Activity Evaluation 

Antibacterial activity was determined by a microdilution broth method as recommended by 

the CLSI (Clinical and Laboratory Standards Institute, Document M07-A8, 2009, Wayne, Pa.) 

using cation-adjusted Mueller-Hinton broth (trek Diagnostics Systems, U.K.). Compounds 

were dissolved in DMSO. Serial two-fold dilutions of each compound were made using 

DMSO as the diluent. Trays were inoculated with 5 x 10
4
 CFU of each strain in a volume of 

100 μL (final concentration of DMSO was 3.2 % (v/v)), and incubated at 35 ºC for 16-20 

hours. Growth of the bacterium was quantified by measuring the absorbance at 620 nm. 

Assay of cytotoxicity 

Mammalian HepG2 cells were suspended in Dulbecco-modified Eagle’s medium containing 

10% fetal bovine serum, and then seeded in 96-well tissue culture plates at either 5 000, 10 

000 or 20 000 cells per well. After 24 hours, cells were treated with varying concentrations of 

the test compound such that the DMSO concentration was consistent at 2 % (v/v) in all wells. 

After treatment for 24 or 48 hours, WST-1 cell proliferation reagent (Roche) was added to 

each well and incubated for 0.5 hours at 37 ºC. The WST-1 assay quantitatively monitors the 

metabolic activity of cells by measuring the hydrolysis of the WST-1 reagent, the products of 

which are detectable at absorbance 450 nm. 
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Docking studies 

Docking experiments were performed using AutoDock vina (version 1.5.6) and the binding 

affinities were predicted [7]. All molecules were drawn using ACD/Chemsketch and the 3D 

structure was optimized, before loading into UCSF Chimera (version 1.5). Protein for docking 

was taken from RCSB protein data bank: Staphylococcus aureus, 3V7S [3]. The original 

bound ligand and all water molecules were removed from the original protein data bank file. 

Compounds 4 and 5a-d were docked into the active site of S. aureus BPL as defined by Grid 

Box coordinates (x = 52.8, y = 20.94, z = 22.55), size (x = 18, y = 20, z = 22) and spacing set 

to 1 Å. Final docked conformations were ranked by binding energy and the top 3 

conformations (as shown by table below) were selected to compare and overlay with the 

original bound ligand. 

 

Supplementary table 1: Predicted binding affinities of compounds 4 and 5a-d 

 R Lowest binding 

energy 

(kcal/mol) 

2
nd

 Lowest 

binding energy 

(kcal/mol) 

3
rd

 Lowest 

binding energy 

(kcal/mol) 

4 5-H -11.1 -10.9 -9.8 

5a 5-I -11.3 -10.4 -8.4 

5b 5- F -11.6 -11.3 -10.8 

5c 5-Cl -11.5 -10.9 -9.2 

5d 5-Ph -8.5 -8.4 -8.3 
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Synthetic Chemistry methods 

All reagents were obtained from commercial sources and are of reagent grade or as specified. 

Solvents were also obtained from commercial sources, except for anhydrous THF, anhydrous 

DCM and anhydrous DMF which were dried over solvent purifier (PS-Micro, Innovative 

Technology, USA). Reactions were monitored by TLC using precoated plates (silica gel 60 

F254, 250 μm, Merck, Darmstadt, Germany), spots were visualised under ultraviolet light at 

254 nm and with either sulphuric acid-vanillin spray, potassium permanganate dip or 

Hanessian’s stain. Column chromatography was performed with silica gel (40-63 μm 60 Å, 

Davisil, Grace, Germany). HPLC was performed on HP Series 1100 with Phenomenex 

Gemini C18 5 µM (250 x 4.60 mm) for Analytical HPLC and Phenomenex Luna C18 10 µM 

(50 x 10.00 mm) for Semi-preparative HPLC. Microwave reactions were performed on a 

CEM Discovery SP with external IR temperature monitoring. Reactions were stirred for 5 min 

in a sealed container at ambient temperature, followed by 5 min stirring with increased 

microwave power until the prescribed temperature was reached. Both power and pressure 

were kept variable.  1H and 13C NMR spectra were recorded on a Varian Inova 500 MHz or 

a Varian Inova 600 MHz. Chemical shifts are given in ppm (δ) relative to the residue signals, 

which in the case of DMSO-d6 were 2.55 ppm for 1H and 39.55 ppm for 13C, CDCl3 were 

7.26 ppm for 1H and 77.23 ppm for 13C and D2O was 4.79 for 1H. Structural assignment 

was confirmed with COSY, ROESY, HMQC and HMBC.  Mixtures of isomers are 

designated A and B in NMR spectra without individual assignment. Partial integrals are also 

reported for each isomer. High-resolution mass spectra (HRMS) were recorded on an Agilent 

6230 time of flight (TOF) liquid chromatography mass spectra (LC/MS) (Δ < 5 ppm).    
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(3aS,4S,6aR)-4-(7-iodohept-6-yn-1-yl)tetrahydro-1H-thieno[3,4-d]imidazol-2(3H)-one 7  

 

To a solution of biotin acetylene 6 (100 mg, 0.42 mmol) in dry DMF (5 ml) was added CuI (5 

mg, 0.08 mmol) and N-iodomorpholine (143 mg, 0.42 mmol). The reaction mixture was 

stirred at ambient temperature for 3 h, after which a fine white precipitate had formed. The 

suspension was filtered through a pad of natural alumina, which was further washed with 10% 

MeOH in DCM (3 x 20 ml). The combined organics were concentrated in vacuo and purified 

by flash chromatography on silica eluting with 10% MeOH in DCM to give a yellow solid. 

1H NMR of purified compound confirmed the presence of the target compound 7 as a yellow 

solid (145 mg, 95%) > 98% by 1H NMR.   

1H NMR (500 MHz, DMSO-d6): δ 6.42 (1H, bs, C(O)NH), 6.34 (1H, s, C(O)NH), 4.294.31 

(1H, m, NHCH), 4.11-4.14 (1H, m, NHCH), 3.08-3.10 (1H, m, SCH), 2.80-2.83 (1H,m,  

SCHa), 2.53-2.59 (3H, m, SCHb, CH2C≡C-I), 1.43-1.65 (4H, m, 2 x CH2), 1.27-1.39 (4H, m, 

2 x CH2); 13C NMR (125 MHz, DMSO-d6): δ 165.8, 122.2, 79.8, 64.2, 62.3, 58.6, 52.8, 

31.5, 31.3, 31.4, 30.9 HPLC Rt = 16.9 min. 
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3-(4-(5-iodo-4-(5-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4yl)pentyl)-1H-1,2,3-

triazol-1-yl)butyl)-5-methylbenzo[d]oxazol-2(3H)-one 5a   

 

To a solution of 1-iodoalkyne 7 (20 mg, 0.06 mmol)  and azide (14 mg, 0.06 mmol )  in dry 

DMF (1 ml per 10 mg of 1-iodoalkyne) was added CuI (0.05 equiv) and TEA (2.0 equiv) and 

the mixture was stirred at ambient temperature for 12 h. The volatiles were removed under 

reduced pressure and the resulting residue was purified by column chromatography on silica 

gel, and was purified by flash chromatography on silica eluting with 5% MeOH in DCM to 

give a yellowish solid (12 mg, 36%).   

1H NMR (500 MHz; CDCl3): δ 7.08 (1H, d, J = 8.1 Hz, ArH), 6.90-6.92 (1H, m, ArH), 6.78 

(1H, m, ArH), 5.08 (1H, bs, NH), 4.86 (1H, bs, NH), 4.50-4.53 (1H, m, NHCH), 4.42 (2H, t, J 

= 6.9 Hz, ArNtriCH2), 4.30-4.33 (1H, m, NHCH), 3.84 (2H, t, J = 6.9 Hz, NCH2), 3.143.19 

(1H, m, SCH), 2.93 (1H, dd, J = 5.0, 12.8 Hz, SCHa), 2.74 (1H, d, J = 12.8 Hz, SCHb), 2.64 

(2H, d, J = 7.5 Hz, ArCtriCH2), 2.40 (3H, s, ArCH3), 1.97-2.02 (2H, m, CH2), 1.791.84 (2H, 

m, CH2), 1.64-1.72 (4H, m, 2 x CH2), 1.38-1.49 (4H, m, 2 x CH2);  13C NMR (125 MHz; 

CDCl3): δ 162.8, 154.9, 151.8, 140.7, 134.0, 130.8, 122.9, 109.7, 108.8, 61.9, 60.1, 55.5, 

49.7, 41.3, 40.6, 28.9, 28.6, 28.6, 28.4, 26.6, 25.8, 24.5, 21.5, HRMS calcd. for (M + H) 

C24H32IN6O3S, requires 611.1301, found 611.1298 HPLC Rt = 17.0 min 
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3-(4-(5-fluoro-4-(5-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4yl)pentyl)-1H-

1,2,3-triazol-1-yl)butyl)-5-methylbenzo[d]oxazol-2(3H)-one 5b   

 

To a 5 ml round-bottomed microwave vial was added a solution of 5-iodo-1,2,3-triazole 5a 

(15 mg, 0.03 mmol) in acetonitrile (1 ml per 100 mg of triazole) and de-ionised water (1 ml 

per 100 mg of triazole) and potassium fluoride (7 mg, 0.12 mmol). The vial was placed into 

the microwave reactor set at a pressure of 250 psi and heated at 180 oC for 10 min. After the 

vial was cooled to room temperature, the mixture was concentrated in vacuo and the residue 

was purified by column by flash chromatography on silica eluting with 5% MeOH in DCM to 

yield 5-fluoro-triazole 5b as an off white solid (11 mg, 89%). 

1H NMR (500 MHz; CDCl3): δ 7.08 (1H, d, J = 8.1 Hz, ArH), 6.90-6.92 (1H, m, ArH), 6.76-

6.77 (1H, m, ArH), 5.06 (1H, bs, NH), 4.82 (1H, bs, NH), 4.49-4.52 (1H, m, NHCH), 4.30-

4.33 (1H, m, NHCH), 4.27 (2H, t, J = 6.9 Hz, ArNtriCH2), 3.85 (2H, t, J = 6.9 Hz, NCH2), 

3.14-3.17 (1H, m, SCH), 2.92 (1H, dd, J = 5.0, 12.8 Hz, SCHa), 2.73 (1H, d, J = 12.8 Hz, 

SCHb), 2.62 (2H, d, J = 7.5 Hz, ArCtriCH2), 2.40 (3H, s, ArCH3), 1.96-2.02 (2H, m, CH2), 

1.79-1.85 (2H, m, CH2), 1.63-1.70 (4H, m, 2 x CH2), 1.37-1.48 (4H, m, 2 x CH2);  13C 

NMR (125 MHz; CDCl3): δ 162.8, 154.9, 140.7, 134.0, 130.7, 122.9, 110.0, 109.7, 108.7, 

61.9, 60.0, 55.5, 46.1, 41.2, 40.5, 28.9, 28.6, 28.6, 28.0, 26.2, 24.7, 23.4, 21.5, HRMS calcd. 

for (M + H+) C24H32FN6O3S, requires 503.2241, found 503.2220 HPLC Rt = 16.7 min   
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3-(4-(5-chloro-4-(5-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4yl)pentyl)-1H-

1,2,3-triazol-1-yl)butyl)-5-methylbenzo[d]oxazol-2(3H)-one 5c 

 

To a 5 ml round-bottomed microwave vial was added a solution of 5-iodo-1,2,3-triazole 5a 

(15 mg, 0.03 mmol) in acetonitrile (1 ml per 100 mg of triazole) and de-ionised water (1 ml 

per 100 mg of triazole) and potassium chloride (9 mg, 0.12 mmol). The vial was placed into 

the microwave reactor set at a pressure of 250 psi and heated at 180 oC for 10 min. After the 

vial was cooled to room temperature, the mixture was concentrated in vacuo and was purified 

by flash chromatography on silica eluting with 5% MeOH in DCM to yield 5-chloro-triazole 

as an off white solid (10 mg, 80%). 

1H NMR (500 MHz; CDCl3): δ 7.03 (1H, m, ArH), 6.97-6.99 (1H, m, ArH), 6.83 (1H, d, J = 

8.1 Hz, ArH), 5.39 (1H, bs, NH), 5.08 (1H, bs, NH), 4.49-4.51 (1H, m, NHCH), 4.35 (2H, t, J 

= 6.9 Hz, ArNtriCH2), 4.29-4.32 (1H, m, NHCH), 3.84 (2H, t, J = 6.9 Hz, NCH2), 3.133.17 

(1H, m, SCH), 2.91 (1H, dd, J = 5.0, 12.8 Hz, SCHa), 2.72 (1H, d, J = 12.8 Hz, SCHb), 2.62 

(2H, t, J = 7.5 Hz, ArCtriCH2), 2.38 (3H, s, ArCH3), 1.95-2.01 (2H, m, CH2), 1.77-1.83 (2H, 

m, CH2), 1.63-1.73 (4H, m, 2 x CH2), 1.36-1.47 (4H, m, 2 x CH2);  13C NMR (125 MHz; 

CDCl3): δ 163.1, 154.8, 143.6, 142.8, 132.7, 128.4, 124.3, 122.2, 110.8, 107.8, 62.0, 60.1, 

55.6, 47.3, 41.3, 40.5, 28.9, 28.6, 28.5, 28.0, 26.2, 24.6, 24.3, 21.4; HRMS calcd. for (M + 

H+) C24H32ClN6O3S, requires 519.1945, found 519.1909 HPLC Rt = 17.1 min   
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5-methyl-3-(4-(4-(5-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4yl)pentyl)-5-

phenyl-1H-1,2,3-triazol-1-yl)butyl)benzo[d]oxazol-2(3H)-one 5d 

 

To a solution of 5-iodo-triazole 5a (75 mg, 0.13 mmol) in dry THF (5 ml) was added K2CO3 

(52 mg, 0.38 mmol), followed by adding phenylboronic acid (15 mg, 0.13 mmol) and 

PdCl2(PPh3)3 (8 mg, 5 mol %). The reaction mixture was stirred at 70 ºC for 12 h, after 

which the solvent was removed in vacuo and purified by flash chromatography on silica 

eluting with 5% MeOH in DCM to give the target compound 5d as a yellowish solid (30 mg, 

41%).  

1H NMR (500 MHz; CDCl3): δ 7.44-7.47 (3H, m, 3 x ArBnH), 7.17-7.19 (2H, m, 2 x 

ArBnH), 7.00-7.01 (1H, m, ArH), 6.94-6.96 (1H, m, ArH), 6.77 (1H, d, J = 7.9 Hz, ArH), 

5.86 (1H, bs, C(O)NH), 5.52 (1H, bs, C(O)NH), 4.45-4.49 (1H, m, NHCH), 4.24-4.27 (3H, 

m, NHCH, ArNtriCH2), 3.70 (2H, t, J = 6.9 Hz, NCH2), 3.06-3.10 (1H, m, SCH), 2.84-2.88 

(1H, m, SCHa), 2.70 (1H, dd, J =5.1, 12.8 Hz, SCHb), 2.56 (2H, dt, J = 1.5, 7.3 Hz, 

ArCtriCH2), 2.37 (3H, s, ArCH3), 1.73-1.79 (2H, m, CH2), 1.56-1.69 (6H, m, 3x CH2), 1.28-

1.38 (4H, m, 2 x CH2); 13C NMR (125 MHz; CDCl3): δ 166.2, 157.3, 148.3, 145.4, 136.8, 

135.3, 132.1, 132.0, 131.9, 131.1, 130.1, 126.9, 113.4, 110.5, 64.7, 62.8, 58.5, 50.1, 44.0, 

43.2, 31.8, 31.7, 31.3, 31.1, 29.4, 27.5, 27.2, 24.1. HRMS calcd. for (M + H+) 

C30H37N6O3S, requires 561.2648, found 561.2640 HPLC Rt = 17.4 min   
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The essential enzyme, biotin protein ligase (BPL) represents a novel target for the 

development of new antibiotics. We have previously reported 1,4-disubstituted 1,2,3-

triazole inhibitors of the BPL from Staphylococcus aureus that were generated using in 

situ click chemistry. In this work, we have used wildtype SaBPL to catalyse the synthesis 

of 1,4-triazole 3. We have also adopted this approach to other BPLs from clinically 

relevant bacteria. The 1,4-disubstituted triazole inhibitors exhibit antibacterial activity 

against S. aureus, however, the mechanism of uptake is yet to be determined. To 

facilitate mechanism-of-uptake studies we synthesized azide-functionalized analogues of 

two fluorophores and tested them for chemical ligation to biotin acetylene 1 using BPL 

as a catalyst. 1,4-triazole 12 was generated by SaBPL in situ and contains a 

nitrobenzofurazan (NDB) fluorophore and exhibited inhibitory activity against SaBPL 

(Ki = 1.4 μM). Finally, compound 12 was imaged within S. aureus using SR-SIM 

fluorescence microscopy, indicating that this fluorescent probe can be used to gain 

insight into the mechanism of uptake of BPL inhibitors in S. aureus.  
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INTRODUCTION 

There is a well-documented need to develop new antibiotics to treat the growing number of 

antibiotic resistant bacteria [1]. Two important hurdles that must be overcome during early 

stage drug discovery are 1) the need to identify the in vivo mechanism of action and 2) to 

identify mechanisms by which the compound penetrates the bacterial cell [2, 3]. Small 

molecules that help to investigate these issues are welcome tools in drug discovery programs 

[4-6]. One emerging target for the development of new antibiotics is the essential metabolic 

enzyme, biotin protein ligase (BPL) [7]. BPL catalyses protein biotinylation through the 

formation of the adenylated reaction intermediate from its substrates biotin and ATP to form 

biotinyl-5ʹAMP [7] (scheme1). Non-hydrolysable analogues of biotinyl-5ʹAMP have been 

reported that are inhibitors of the BPLs from Escherichia coli [8, 9], S. aureus [7, 10-12], and 

Mycobacterium tuberculosis [13, 14]. Of particular interest is the replacement of the 

hydrolysable phosphoanhydride linker, present in biotinyl-5ʹAMP with a more stable 1,4-

disubstituted 1,2,3-triazole [15, 16]. Synthesis of the 1,2,3-triazole linker proceeds via the 

Huisgen cycloaddition reaction between an acetylene and an azide [17]. In special cases this 

reaction can be catalysed by an enzyme [16, 18-23], in a process known as in situ click 

chemistry. This is a useful approach for identifying enzyme inhibitors as the target enzyme is 

able to select out and synthesize its own optimized inhibitors from libraries of  acetylene and 

azide containing small molecules [18]. We have previously reported that the BPL from S. 

aureus (SaBPL) can catalyse the formation of the 1,2,3-triazole from biotin acetylene 1 and 

an azide precursor 2 (scheme 1)[16]. Here analysis of the products was performed using 

HPLC. One of the limitations associated with in situ click chemistry is the production of tight-

binding inhibitors. Tight-binding inhibitors often remain associated within the enzyme’s 

active site, thereby preventing further rounds of catalysis [16, 20, 21]. To overcome this 

problem we reported the use of a  ‘leaky’ mutant SaBPL-R122G to enhance the turnover rate 

for the cycloaddition reaction [16]. Mutations equivalent to R122G in other BPLs has been 
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shown to reduce affinity for ATP binding and compromise enzyme activity [24]. To adapt this 

technology to BPLs from other clinically important bacterial pathogens it was important to 

develop an alternative detection method with higher sensitivity than analytical HPLC to 

analyse in situ generated products without the need for BPL mutants. To improve product 

detection we employed liquid chromatography coupled to high resolution electrospray mass 

spectrometry (LC/HRMS) to analyse in situ generated products catalysed by the BPLs from S. 

aureus, M. tuberculosis, Klebsiella pneumoniae and Acinetobacter calcoaceticus. LC/HRMS 

allows precise identification of individual products using a combination of retention time and 

high resolution molecular mass [20]. We also used this approach to screen for biotinylated 

compounds that can be used as fluorescent probes to investigate the in vivo mechanism of 

uptake of BPL inhibitors. To identify such probes we synthesized azide-functionalized 

analogues of two fluorophores for chemical ligation to biotin acetylene 1 using BPL as a 

catalyst. Here SaBPL catalysed the formation of 1,4-triazole 12, containing an 

nitrobenzofurazan (NBD) fluorophore. Compound 12 was found to inhibited activity of 

SaBPL, consistent with its mechanism of action through the BPL target. Finally, SR-SIM 

fluorescent imaging of S. aureus and Escherichia coli revealed the former compound 12 was 

permeant for S. aureus but not E. coli. This newly generated fluorescent probe will be used to 

further investigate the mechanism of uptake of BPL inhibitors in S. aureus.  

RESULTS AND DISCUSSION 

As mentioned above, our previous study used a mutant SaBPL as a template to catalyse the 

Huisgen cycloaddition of biotin acetylene 1 and azide 2, with analytical HPLC as the 

detection method (scheme 1). The use of analytical HPLC did not permit the resolution of 

regioisomers (1,4 vs 1,5). Therefore, we turned to LC/HRMS to analyse the products. 1,4-

triazole 3 and 1,5-triazole 4 were separately prepared using CuAAC and RuAAC catalysed 

reactions from biotin acetylene 1 and azide 2 (scheme 1) respectively. The retention times of 

the purified standards were analysed by LC/HRMS  using positive mode with selective ion 
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monitoring of triazoles 3 and 4 (M+H
+
 = 471.2398 Da) (figure 1). LC/HRMS analysis 

revealed baseline separation of the two isomers with a 1 minute difference in the retention 

times of 1,4-triazole 3 (7.2 min) and 1,5-triazole 4 (8.2 min) (figures 1a and 1b respectively). 

We next repeated the Huisgen cycloaddition of biotin acetylene 1 and azide 2 using wildtype 

SaBPL as the catalyst. Here, SaBPL catalysed the formation of the triazole product (figure 

1c). The retention time of the in situ formed triazole (7.2 min) corresponded with that of the 

CuAAC prepared standard confirming that SaBPL selectively forms 1,4-triazole 3. Triazole 3 

was not formed in the absence of BPL (figure 1d), and neither isomer was produced by using 

bovine serum albumin as a non-specific protein (figure 1e), indicating that this reaction is 

truly template guided.  

Encouraged by the successful in situ click chemistry experiments with SaBPL, we next turned 

our attention to expanding the panel of BPL enzymes that could be employed in in situ 

experiments. Recombinant BPL enzymes from M. tuberculosis (MtBPL), K. pneumoniae 

(KpBPL) and A. calcoaceticus (AcBPL) were tested as templates for Huisgen cycloaddition of 

biotin acetylene 1 and azide 2 (figure 1). LC/HRMS analysis confirmed formation of triazole 

3 by MtBPL and to a lesser extent KpBPL (figure 1f and 1g). In all cases the retention times 

of the in situ generated triazole products were consistent with the formation of 1,4-triazole 3. 

In contrast there was no detectable formation of triazole 3 by AcBPL. CuAAC prepared 

triazole 3 was also tested for inhibitory activity of MtBPL, KpBPL and AcBPL using an in 

vitro biotinylation assay that measures the incorporation of biotin onto an acceptor protein. 

Triazole 3 was active against MtBPL(Ki = 0.57 ± 0.08 μM ) and exhibited similar potency to 

SaBPL (Ki = 0.66 ± 0.05 μM) [16]. Consistent with the in situ experiment above triazole 3 

was inactive against AcBPL (Ki >10 μM). Triazole 3 was also inactive against KpBPL. This is 

consistent with the LC/HRMS analysis as triazole 3 was only formed weakly by KpBPL. 

These results demonstrate that the in situ click chemistry approach can potentially be used to 

identify triazole inhibitors of other BPL enzymes, including MtBPL.  
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In early stage antibacterial discovery, it is important to elucidate the mechanism of entry into 

the bacterial cell [2, 3]. Therefore, compounds that can be used as probes to understand these 

mechanisms are useful research tools. To identify such probes two fluorophores were 

functionalized with an azide substituent namely, nitrobenzofurazan (NBD) (Sigma-Aldrich) 

and 7-(dimethylamino)-coumarin-4-acetic acid (DMACA) [25, 26]. This yielded 7 and 11 

respectively (scheme 2). Both fluorophores have previously been acetylene-functionalized 

and successfully ligated via Huisgen cycloaddition to azide-functionalized analogues of 

linezolid and trimethoprim for imaging within Gram-positive bacteria [4, 27]. Azides 7 and 

11 were tested for chemical ligation to biotin acetylene 1 using SaBPL, MtBPL, KpBPL or 

AcBPL as a catalyst to potentially form triazoles 12 and 13 (scheme 3). A series of 12 binary 

in situ click chemistry reactions were incubated at 37 ºC for 2 days, potentially giving rise to 

24 products. LC/HRMS analysis revealed only one product formed by SaBPL, triazole 12 

(figure 2a). Encouragingly, there was no triazole product detected in the absence of BPL nor 

in the presence of bovine serum albumin (data not shown).  To confirm the regioselectivity of 

the in situ triazole, 1,4-triazole 12 was prepared using CuAAC before biochemical and 

microbiological assays were pursued. 

First 1,4-triazole 12  was synthesized and purified as described in schemes 2 and 3. 

LC/HRMS analysis was employed to compare the retention times of both the in situ and 

CuAAC prepared triazole 12. The LC/HRMS analysis revealed that in situ generated triazole 

12 had the same retention time as CuAAC prepared triazole 12, consistent with SaBPL 

producing the 1,4 regioisomer as expected. We also synthesized 1,4-triazole 13 as described 

in schemes 2 and 3 to use in biochemical and microbiological assays as a control compound 

which was not formed in the in situ click chemistry experiments. 

1,4-triazole 12 was next tested for inhibitory activity against SaBPL using an in vitro 

biotinylation assay. Previous enzymology and X-ray crystallography studies have 

demonstrated that triazole inhibitors are competitive inhibitors against biotin [15, 16, 28] and 
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as such the inhibition constant was calculated from the IC50 value using the known KM  for 

biotin as previously described [29]. 1,4-triazole 12 exhibited inhibitory activity against 

SaBPL (Ki = 1.4 ± 0.1 μM). Consistent with the in situ click chemistry reactions 1,4, triazole 

12 was not active against MtBPL, KpBPL or AcBPL (Ki >10 μM)  Interestingly, 1,4-triazole 

13 also inhibited SaBPL (Ki = 5.0 ± 0.7 μM) although it was at least 3-fold less potent than 

compound 12. This data could suggest that azide 11 requires the biotin moiety to anchor the 

DMACA fluorophore into the ATP binding pocket of SaBPL.  

To demonstrate the utility of 1,4-triazoles 12 and 13 as tools to probe the mechanism of 

uptake, compounds 12 and 13 were imaged with Gram-positive and Gram-negative bacteria 

using SR-SIM fluorescence microscopy. Compounds 12 and 13 were incubated with either S. 

aureus ATCC 25923 or E. coli ATCC 25922 and cells were co-stained with fluorescent dyes 

selective for the bacterial membrane (FM4-64FX) and nucleic acid (Hoechst 3342 for 12 or 

SYTO 21 for 13) (figure 3). The staining pattern of compound 12 with S. aureus 

demonstrated that the compound was predominantly detected within the bacterial cytoplasm. 

Single cell analysis suggested a small amount of material also associated with the inside layer 

of the bacterial membrane (figure 4a).  The staining pattern of compound 12 with E. coli was 

with consistent the compound co-localizing with the membrane stain and not penetrating into 

the cytoplasm (figure 3). However, single cell analysis showed some fluorescence within the 

cell (figure 4b). In sharp contrast weak staining with compound 13 was observed with S. 

aureus but not with E. coli (figure 3). This data is consistent with our previous studies which 

show BPL inhibitors are active against S. aureus but not E. coli [11]. Together this data 

demonstrates that compound 12 can be used as a fluorescent probe to gain insight into the 

mechanism of uptake of BPL inhibitors in S. aureus. Current studies will focus on 

competitive uptake studies using fluorescent 12 and other BPL inhibitors to address the 

specific mechanism of uptake for this class of anti-Staph agents. Compound 12 could also be 

used to investigate the membrane permeability of BPL inhibitors. A recent study involved 
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using spinning disc confocal microscopy (SDCM) to study passive transport of small 

molecules containing an NBD fluorophore into liposomes [30]. Compound 12 represents a 

promising candidate for such membrane permeation studies.  

CONCLUSIONS 

The results from this study have shown that the in situ click chemistry reaction between biotin 

acetylene 1 and azide 2 can be catalysed by wildtype SaBPL using LC/HRMS analysis. 

LC/HRMS analysis also demonstrated that the enzyme generates the 1,4-triazole 3 over the 

1,5-triazole 4. We have also shown that SaBPL can catalyse the Huisgen cycloaddition of 

biotin acetylene 1 and an azide functionalized analogue of the fluorophore NBD. This in situ 

generated triazole, compound 12, was a potent inhibitor SaBPL and SR-SIM fluorescence 

microscopy demonstrated the utility of 12 for staining. This fluorescent probe will now be 

used to help gain insight into the mechanism of uptake and action of BPL inhibitors in S. 

aureus, enabling the development of BPL antibacterials. Finally, we have also shown that 

MtBPL can be used to catalyse the Huisgen cycloaddition of biotin acetylene 1 and azide 2. 

The in situ generated triazole 3 exhibited sub-micromolar inhibition against MtBPL and 

exhibits similar potency to SaBPL, highlighting that in situ click chemistry could be used to 

identify potent inhibitors of MtBPL. This in situ approach to developing cell permeant BPL 

inhibitors could also be adapted to other clinically important bacteria, such as M. tuberculosis. 
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FIGURE LEGENDS 

Figure 1. LC/HRMS traces of in situ generated and reference triazoles, with selective ion 

monitoring for triazoles 3 and 4 (M+H
+
 = 471.2398 Da).  

a).1,4-triazole 3 prepared by CuAAC. b). 1.5-triazole 4 prepared by RuAAC. c).Triazole 3 

from in situ reaction of 1 and 2 in the presence of SaBPL. d). In situ reaction of 1 and 2 in the 

absence of BPL. e). In situ reaction of 1 and 2 in the presence of bovine serum albumin. f). In 

situ reaction of 1 and 2 in the presence of MtBPL. g). In situ reaction of 1 and 2 in the 

presence of KpBPL.  

Figure 2. LC/HRMS traces of in situ generated triazole 12 at selective ion monitoring (M + 

H
+
 = 502.1979 Da). 

a). In situ generated triazole 12 in the presence of SaBPL. b). 1,4-triazole 12 prepared by 

CuAAC. 

Figure 3 

Staining of S. aureus ATCC 25923 and E. coli ATCC 25922 with compounds 12 and 13. 

Bacterial membrane was stained with FM4-64F and nucleic acid was stained with Hoechst 

33342 for 12 or SYTO 21 for 13. Bars represent 1 μm. 

Figure 4 

Single cell staining analysis of compound 12, FM4-64F (bacterial membrane) and Hoechst 

33342 (nucleic acid). 

a). Single cell staining analysis of S. aureus ATCC 25923. b). Single cell staining analysis of 

E. coli ATCC 25922. 
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LIST OF SCHEMES 

Scheme 1. BPL catalysed reaction of biotin and ATP (top) and synthesis of 1,4-triazole 3 by 

BPL and CUAAC and 1,5-triazole 4 by RuAAC from biotin acetylene 1 and azide 2 (bottom). 

a). Cu nanopowder, 2:1 AcCN/H2O, 12 h , sonication, 35 ºC. b). Cp*Ru(PPh3)2Cl, 1:1 

DMF/THF, 12 h, 35 ºC.  

Scheme 2. Synthesis of azide-functionalized fluorophores 7 (top) and 11 (bottom).  

a). BrCH2CH2CH2NH2 ·HBr, MeOH, 0ºC, 1h, 0ºC to 35ºC, 12 h. b). NaN3 , DMF, 35ºC, 12 h. 

c). CO(CH2CO2Et)2 , ZnCl2, EtOH, Δ, 17h. d). BrCH2CH2CH2NH2 ·HCl, DMAP, EDC·HCl, 

DCM, 35ºC, 12h e). NaN3, DMF, 35ºC, 12 h. 

Scheme 3. Synthesis of 1,4-triazoles 12 and 13 from biotin acetylene 1 and azides 7 and 11. 
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Figure 2 
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Scheme 1 
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Scheme 3. 
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SUPPLEMENTARY MATERIAL 

LC/MS analysis of in situ reactions 

Aliquots of each reaction (50 μL) were diluted with a stock solution of 0.1% TFA in 

acetonitrile (50 μL). Samples of the diluted reaction mixtures (10 μL) was separately injected 

into the LC/MS system, and the analytes were fractionated usng the Poroshell 120 EC-C18 

reverse phase column (dimensions 2.1 mm x 50 mm), using eluents  (0.1% TFA in water) and 

B (0.08% TFA in acetonitrile) at a flow rate of 0.3 mL/min. The gradient increased from 2% 

acetonitrile to 100% acetonitrile wash for 5 min. The mass spectroscopy detector was tuned to 

the positive mode with selective ion monitoring of the target molecule. The presence of the in 

situ product was identified by retention time and molecular weight (Δ <5 ppm). 

In situ click experiment 1 

The stock solutions of biotin acetylene 1 and azide 2 were separately prepared by dissolving 

in a mixture 10% DMSO in Milli-Q water to give a concentration of 2.5 mM for each 

compound. The in situ click reaction mixture was then prepared by adding these solutions to 

PBS (137 mM NaCl, 2.7 mM KCl, 8 mM Na2HPO4, 1.46 mM KH2PO4, pH 7.4) to give final 

concentration of 500 μM for each component (final DMSO concentration 4% (v/v)). SaBPL 

was then added to the mixture to give a final concentration of 2 μM. Control samples were 

prepared in parallel using either PBS or BSA (final concentration 2 μM) in place of SaBPL. 

All 3 reaction mixtures were incubated at 37 °C for 48 hours. Each reaction was analysed 

using LC/HRMS (as described above) with selective ion monitoring of the target triazole 

(M+H
+
 = 471.2398 Da). The regioselectivity of cycloaddition products were identified by 

comparison of its retention time with the authentic samples of 1,4-triazole 3 and 1,5-triazole 

4, which were prepared through CuAAC and RuAAC respectively.  
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In situ click experiment 2 

The in situ click reaction was performed essentially as described above in experiment 1 

except each reaction contained either1) MtBPL, 2) KpBPL, or 3) AcBPL in place of SaBPL. 

The control samples were also prepared in parallel using either PBS or BSA (final 

concentration 2 μM), in place of BPL enzymes. All 6 sample mixtures were incubated at 37 

°C for 48 hours. Each reaction was analysed using LC/HRMS with selective ion monitoring 

of the target triazole (M+H
+
 = 471.2398 Da). The regioselectivity of the cycloaddition 

products were identified by comparison of its retention time with the authentic samples of 

1,4-triazole 3 and 1,5 triazole 4, which were prepared through CuAAC and RuAAC 

respectively.  

In situ click experiment 3 

The in situ click library screening was performed between the biotin acetylene 1 (final 

concentration 500 μM) and one of the azides 7 and 11 (final concentration 500 μM each). The 

individual reaction mixture was treated in parallel with either SaBPL, MtBPL, KpBPL, 

AcBPL, BSA or no enzyme to give total 12 samples, which were incubated at 37 °C for 48 

hours. Each sample was analysed using LC/HRMS by electrospray ionisation with positive 

selected-ion monitoring tuned to molecular masses of target triazoles. The cycloaddition 

product of 1,4-triazole 12 was identified by comparison of its retention time with that 

determined from analysis of the copper-catalysed reaction and by its molecular weight (M+H
+
 

= 502.1979 Da).  

 

Protein expression and purification: 

The cloning, expression and purification of SaBPL [1], MtBPL [2], KpBPL (ref biotinol 

paper) and AcBPL (biotinol paper) have been previously described. 
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In vitro Biotinylation assays 

Quantification of BPL catalysed 
3
H-biotin incorporation into the biotin domain substrate was 

performed as previously described [3, 4]. A reaction was prepared containing 50 mM Tris 

HCl pH 8.0, 3 mM ATP, 4.94 μM biotin, 0.06 μM 
3
H-biotin, 5.5 mM MgCl2, 100 mM KCl, 

0.1 μM DTT and 10 μM biotin domain of S. aureus pyruvate carboxylase. To determine 

inhibitory activity, BPL activity was measured in the presence of varying concentrations of 

compound. All compounds were dissolved in DMSO and then diluted into the reaction buffer 

to give a final concentration of 4% DMSO. BPL reaction was initiated by the addition of 

enzyme to give final concentrations of 6.25 nM for SaBPL, 20 nM for MtBPL, 100 nM for 

KpBPL and 10 nM for AcBPL. After 10 minutes at 37 ºC, 90 μL of stopping buffer (110 mM 

EDTA and 50 mM Tris HCl pH 8.0) was added to terminate the reaction and 100 μL aliquot 

of the reaction mixture was added to the wells of a 96-well HTS multiscreen plate containing 

an Immobilon-P® (Merck Millipore) membrane that had been pre-treated with 50 μL of 70% 

ethanol, 400 μL of MilliQ-H2O followed by 200 μL of TBS. Quantitation of protein-bound 

radiolabelled biotin was determined by liquid scintillation counting. The IC50 value of each 

compound was determined from a dose-response curve by varying the concentration of 

inhibitor under the same enzyme concentration. The data was analysed with GraphPad Prism 

(version 6) using a non-linear fit of log10 [inhibitor] vs. normalized response. The Ki, the 

absolute inhibition constant for a compound was determined using Eq 1: [5] 

 

𝐾𝑖 =
𝐼𝐶50

1 +  
[𝑆]
𝐾𝑀

 

Where [S] is the substrate concentration ([biotin] = 5 μM) and KM is the affinity of the enzyme 

for biotin (S.aureus BPL = 1 μM, [3], and H. sapiens BPL = 1 μM [3]). 
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Bacterial SR-SIM fluorescence microscopy of compound 12 

SIM was performed using the Zeiss Elyra PS.1 SIM/STORM microscope (green channel: 

laser HR Diode 488-100, filter BP495-550 + LP750; red channel: laser HR DPSS 561-100, 

filter BP570-620 + LP750; blue channel: laser HR Diode 405-50, filter BP420-480 + LP750). 

Images were analyzed with ZEN2012. VectaShield H1000 (Abacus ALS Cat.-No.: 

VEH1000) was used as a mounting media. Cover slip glasses (Zeiss/Schott, 18 mm × 18 mm, 

No.1.5H) were used to prepare samples. Hank’s Balanced Salt Solution (HBSS) without 

phenol red, CaCl2, and MgSO4 (Sigma Aldrich Cat.-No.: H6648) was used for bacterial 

staining. Fluorescent dyes FM4-64FX (Life Technologies, Australia Cat.-No.: F34653), 

Hoechst 33342 (Life Technologies, Australia Cat.-No.: H21492), and SYTO 21 (Life 

Technologies, Australia Cat.-No.: S7556) were used for membrane staining and DNA 

staining, respectively.  

 

S. aureus (ATCC 25923) and E.coli (ATCC 25922) were cultured in LB at 37 ºC overnight. A 

sample of each culture was then diluted 50-fold in LB and incubated at 37 ºC for 1.5-2 h. 1 

mL of the resultant mid-log phase cultures were transferred to an Eppendorf tube and 

centrifuged. Bacteria were washed once with HBSS, then suspended in 20 μL of HBSS. 2 μL 

of this suspended bacteria solution was dropped onto a cover slip, spread and dried. An ice-

cold solution (200 μL) of 12 or 13 (64 μg/mL in HBSS) was then added to the bacteria, left 

for 1 hour on ice, and then washed once with ice-cold HBSS. An ice-cold solution (200 μL) of 

Hoechst 33342 (10 μg/mL in HBSS) or Syto 21 (5 μM in HBSS) was then dropped onto the 

bacteria, left for 5 min on ice for S. aureus and 10 min for E. coli, then drained. This was 

followed by adding an ice-cold solution (200 μL) of FM4-64FX (5 μg/mL in HBSS) onto the 

bacteria, left for 2 min on ice for S. aureus and 5 min for E. coli and then washed once with 

ice-cold HBSS. The bacteria were fixed with 4% paraformaldehyde 10 min for S. aureus on 
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ice and 20 min for E. coli on ice, followed by mounting on slides using VectaShield H1000 as 

a mounting media. 

Synthetic Chemistry methods 

All reagents were obtained from commercial sources and are of reagent grade or as specified. 

Solvents were also obtained from commercial sources, except for anhydrous THF, anhydrous 

DCM and anhydrous DMF which were dried over solvent purifier (PS-Micro, Innovative 

Technology, USA). Reactions were monitored by TLC using precoated plates (silica gel 60 

F254, 250 μm, Merck, Darmstadt, Germany), spots were visualised under ultraviolet light at 

254 nm and with either sulphuric acid-vanillin spray, potassium permanganate dip or 

Hanessian’s stain. Column chromatography was performed with silica gel (40-63 μm 60 Å, 

Davisil, Grace, Germany). HPLC was performed on HP Series 1100 with Phenomenex 

Gemini C18 5 µM (250 x 4.60 mm) for Analytical HPLC and Phenomenex Luna C18 10 µM 

(50 x 10.00 mm) for Semi-preparative HPLC. Microwave reactions were performed on a 

CEM Discovery SP with external IR temperature monitoring. Reactions were stirred for 5 min 

in a sealed container at ambient temperature, followed by 5 min stirring with increased 

microwave power until the prescribed temperature was reached. Both power and pressure 

were kept variable.  1H and 13C NMR spectra were recorded on a Varian Inova 500 MHz or 

a Varian Inova 600 MHz. Chemical shifts are given in ppm (δ) relative to the residue signals, 

which in the case of DMSO-d6 were 2.55 ppm for 1H and 39.55 ppm for 13C, CDCl3 were 

7.26 ppm for 1H and 77.23 ppm for 13C and D2O was 4.79 for 1H. Structural assignment 

was confirmed with COSY, ROESY, HMQC and HMBC.  Mixtures of isomers are 

designated A and B in NMR spectra without individual assignment. Partial integrals are also 

reported for each isomer. High-resolution mass spectra (HRMS) were recorded on an Agilent 

6230 time of flight (TOF) liquid chromatography mass spectra (LC/MS) (Δ < 5 ppm).    
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Preparation of (3aS,6aR)-4-[5-[1-[4-(6-aminopurin-9-yl)butyl]triazol-4-yl]pentyl]-

1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-2-one 3 

 

Biotin acetylene 1 (31 mg, 0.13 mmol) was reacted with alkyl adenine 2 (36 mg, 0.14 mmol) 

and Cu nanopowder (2 mg, 0.026 mmol) using ‘general CuAAC’. The crude material was 

purified by flash chromatography on silica eluting with 8% methanol in dichloromethane to 

give a crystalline white solid (46 mg, 73%).  

1
H NMR (600 MHz; DMSO-d

6
): δ 8.12 (1H, s, ArH), 8.11 (1H, s, ArH), 7.86 (1H, s, Ar

tri
H), 

7.20 (2H, bs, ArNH2), 6.52 (1H, bs, C(O)NH), 6.40 (1H, bs, C(O)NH), 4.34-4.38 (3H, m, 

ArN
tri

CH2,  NHCH), 4.34-4.38 (3H, m, Ar
ad

CH2, NHCH), 3.12-3.16 (m, 1H, SCH), 3.12-

3.16 (1H, dd, J  = 4.8, 12 Hz, SCHa), 2.59-2.64 (3H, m, SCHb, ArC
tri

CH2), 1.76-1.80 (4H, m, 

2 x CH2), 1.28-1.67 (8H, m, 4 x CH2);  

13
C NMR (150 MHz; DMSO-d

6
): 162.8, 156.0, 152.4, 149.5, 146.8, 140.8, 121.8, 118.7, 

61.2, 59.2, 55.6, 48.5, 42.2, 40.0, 28.8, 28.6, 28.5, 28.3, 27.0, 26.7, 25.1;  

LC/HRMS calcd. for (M
 
+ H) C21H31N10OS: requires 471.2398, found 471.2392;    Rt = 7.17 

min. 
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Preparation of (3aS,4S,6aR)-4-[5-[1-[4-(6-aminopurin-9-yl)butyl]triazol-4-yl]pentyl]-

1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-2-one 4 

 

Biotin acetylene 1 (41 mg, 0.17 mmol) was reacted with alkyl adenine 2 (47 mg, 0.19 mmol) 

and Cp*Ru(PPh3)2Cl (27 mg, 0.034 mmol) using ‘general RuAAC’. The crude material was 

purified by flash chromatography on silica eluting with 7% methanol in dichloromethane to 

give a white solid (46 mg, 55%).    

1
H NMR (600 MHz; 1% CD3OD, CDCl3): δ 8.20 (1H, s, ArH), 7.76 (1H, s, ArH), 7.37 (1H, 

s, Ar
tri

H), 6.14 (1H, bs, C(O)NH), 5.58 (1H, bs, C(O)NH), 4.47 (1H, dd, J = 4.8, 7.8 Hz, 

NHCH), 4.13-4.29 (5H, m, ArCH2, ArN
tri

CH2, NHCH), 3.08-3.12 (1H, m, SCH), 2.88 (1H, 

dd, J = 5.4, 12.9 Hz,  SCHb), 2.69 (1H, d, J = 12.9 Hz, SCHa), 1.81-1.89 (2H, m, ArC
tri

CH2), 

1.26-1.68 (10H, m, 5 x CH2); 

13
C NMR (150 MHz; DMSO-d

6
): 163.9, 155.6, 152.6, 149.4, 140.1, 137.1, 131.7, 118.8, 

72.2, 62.0, 59.9, 46.7, 43.0, 40.3, 29.0, 28.7, 28.5, 27.8, 27.0, 26.7, 22.8;  

LC/HRMS calcd. for (M
 
+ H) C21H31N10OS: requires 471.2398, found 471.2395;    Rt = 8.19 

min. 
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N-(3-bromopropyl)-7-nitrobenzo[c][1,2,5]oxadiazol-4-amine 6 

 

To a stirring solution of 3-bromopropylamine hydrobromide (175 mg, 1.0 mmol) in ice-cold 

MeOH (2 mL) was added NBD-Cl (200 mg, 1.0 mmol) in MeOH (8 mL) dropwise over 1 h. 

The reaction was gradually allowed to warm to room temperature and stir at that temperature 

overnight. The mixture was partitioned between water and dichloromethane. The organic 

phase was separated and the aqueous phase was extracted with dichloromethane (x3). The 

organics were combined, dried over magnesium sulphate, filtrated and concentrated under 

reduced pressure. The crude material was purified by flash chromatography on silica eluting 

with 5% methanol in dichloromethane to give as yellow solid (96 mg, 32%).  

1
H NMR (500 MHz, CDCl3) δ 8.47 (d, J = 8.7 Hz, 1H, ArH), 6.78 (s, 1H, NH), 6.30 (d, J = 

8.7 Hz, 1H, ArH), 3.79 (dd, J = 13.0, 6.5 Hz, 2H, CH2), 3.59 (t, J = 6.1 Hz, 2H, CH2) and 

2.54 2.29 (m, 2H, CH2) ppm  

13
C NMR (125 MHz, CDCl3) δ 144.3, 144.1, 143.9, 136.8, 123.8, 99.1, 42.4, 31.0 and 30.2.  

HRMS calcd. for (M
 
+ Na

+
) C9H9BrN4NaO3: 322.9756, found 322.9748 

HPLC Rt = 18.11 min. 
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N-(3-azidopropyl)-7-nitrobenzo[c][1,2,5]oxadiazol-4-amine 7 

 

Bromide 6 (96 mg, 0.32 mmol) was reacted with sodium azide (24 mg, 0.37 mmol) in DMF 

and purified by flash chromatography on silica eluting with 30% EtOAc in hexane to yield a 

yellowish oil (62 mg, 76%). 

1
H NMR (500 MHz, CDCl3) δ 8.43 (d, J = 8.7 Hz, 1H, ArH), 6.93 (br s, 1H, NH), 6.22 (d, J 

= 8.7 Hz, 1H, ArH), 3.67 (dd, J = 12.2, 6.0 Hz, 2H, CH2), 3.57 (t, J = 6.2 Hz, 2H, CH2) and 

2.12-2.04 (m, 2H, CH2).  

13
C NMR (125 MHz, CDCl3) δ 144.3, 144.2, 143.9, 136.8, 123.6, 98.9, 49.1, 41.7, 27.7. 

HRMS calcd. for (M
 
+ H) C9H9BrN4NaO3: 322.9756, found 322.9748 
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(3aS,4S,6aR)-4-(5-(1-(3-((7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)amino)propyl)-1H-1,2,3-

triazol-4-yl)pentyl)tetrahydro-1H-thieno[3,4-d]imidazol-2(3H)-one 12 

 

Biotin alkyne 1 (50 mg, 0.21 mmol) was reacted with azide 7 (62 mg, 0.19 mmol) and Cu 

nanopowder (2 mg, 0.026 mmol) using General Procedure G1. The crude material was 

purified by flash chromatography on silica gel eluting with 3% MeOH in DCM to give a 

crystalline white solid (40 mg, 38%). 

1
H NMR: (500 MHz, DMSO-d6) δ 9.49 (s, 1H, NH), 8.49 (d, J = 8.8 Hz, 1H, ArH), 7.86 (s, 

1H, ArH), 6.42 (s, 1H, NH), 6.36 (s, 1H NH), 6.35 (d, J = 7.5 Hz, 1H, ArH), 4.44 (t, J = 6.9 

Hz, 2H, CH2), 4.35-4.27 (m, 1H, NHCH), 4.19-4.09 (m, 1H, NHCH), 3.56-3.43 (m, 2H, 

CH2), 3.08 (m, 1H, SCH), 2.81 (dd, J = 12.4, 5.1 Hz, 1H, SCHa), 2.57 (d, 2H, J = 12.4 Hz, 

SCHb), 2.57 (m, 2H, CH2), 2.24 (p, J = 6.9 Hz, 2H, CH2), 1.65-1.51 (m, 3H, CH2+CHH), 

1.49-1.41 (m, 1H, CHH), 1.35 (m, 4H, 2xCH2).  

13
C NMR: (125 MHz, DMSO-d6) δ 162.9, 147.1, 125.1, 144.5, 144.2, 137.9, 122.0, 121.0, 

99.3, 79.2, 61.2, 59.3, 55.6, 47.0, 28.9, 28.7, 28.5, 28.3, 25.0. 

HRMS: calcd for C21H28N9O4S (M+H
+
): 502.1985, found 502.1979;  

HPLC: Rt = 14.98 min.  
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7-Dimethylaminocoumarin-4-acetic acid 9  

 

M-Dimethylaminophenol (500 mg, 3.7 mmol), diethyl 1,3-acetonedicarboxylate (0.73 mL, 4 

mmol, 1.1 equiv.) and ZnCl2 (595 mg, 4.4 mmol, 1.2 eq) were dissolved in absolute ethanol 

(2 mL). The reaction mixture was heated at reflux (100 °C) for 15 h. The reaction mixture 

was cooled to room temperature and the solvent was removed under reduced pressure. The 

crude material was purified by flash chromatography on silica eluting with 5% methanol in 

dichloromethane to give a colourless oil that was treated with with 2 M LiOH aq (2.3 mL, 

4.57 mmol, 2 eq) in THF for 2 h. Water was added and the aqueous phase was extracted with 

ethyl actetae (x3). The aqueous layer was acidified to pH 2 with 2 M HCl aq and The 

precipitate formed was filtered and air dried to give the title compound as a yellow solid (450 

mg, 50 %, over two steps). 

1
H NMR (500 MHz, MeOD): 7.70 (d, J = 9 Hz, 1H, Coum-H), 7.14 (dd, J =9, 3 Hz, 1H, 

Coum-H), 7.05 (d, J=3 Hz, 1H, Coum-H), 6.26 (s, 1H, Coum-H) and 3.86 (s, 2H, CH2) and 

3.19 (s,6H, N(CH3)2) ppm. 

13
C NMR (125 MHz, MeOD): 172.6, 163.0, 156.5, 151.5, 151.0, 127.80, 114.0, 113.56, 

103.7, 88.52, 43.01 and 38.33 ppm. 
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N-(3-bromopropyl)-2-(7-(dimethylamino)-2-oxo-2H-chromen-4-yl)acetamide 10 

 

To a solution of 7-Dimethylaminocoumarin-4-acetic acid (450 mg, 1.8 mmol) and 3-

bromopropylamine hydrobromide (350 mg, 2 mmol, 1.1 eq) in 9 mL of anhydrous 

dichloromethane were added EDC·HCl (414 mg, 2.2 mmoL, 1.2 eq) and DMAP (44 mg, 0.36 

mmoL, 0.2 eq) at 0 ◦C. The mixture was allowed to warm to room temperature for overnight. 

After the reaction was completed it was diluted with water and washed with water and brine, 

dried over magnesium sulphate and concentrated under reduced pressure. The crude material 

was purified by flash chromatography on silica eluting with 20 % ethyl acetate in 

dichloromethane to give the title compound as yellow solid (70 mg, 10%). 

1
H NMR (500 MHz, CDCl3) δ 7.48 (d, J = 9.0 Hz, 1H, ArH), 6.61 (dd, J = 9.0, 2.5 Hz, 1H, 

ArH), 6.44 (d, J = 2.5 Hz, 1H, ArH), 6.27 (br s, 1H, NH), 6.04 (s, 1H, CH), 3.63 (s, 2H, 

CH2CO), 3.37 (q, J = 6.5 Hz, 2H, CH2), 3.31 (t, J = 6.6 Hz, 2H, CH2), 3.04 (s, 3H, (CH3)3) 

and 2.062.00 (m, 2H, CH2) ppm. 

13
C NMR (125 MHz, CDCl3) δ 168.4 (C), 162.0 (C), 156.1 (C), 153.3 (C), 149.9 (C), 125.8 

(CH), 110.5 (C), 109.4 (CH), 108.3 (CH), 98.3 (CH), 41.0 (CH2), 40.2 (3xCH3), 38.7 (CH2), 

32.1 (CH2) and 30.8 (CH2) ppm. 

MS HRMS (ESI) calculated for C16H20BrN2O3: 367.0657/369.0637; found, 

367.0688/369.0669. 

Analytical HPLC: Sample was dissolved in methanol (1 mg/ml) and eluted with solvent A: 

0.1% TFA in Milliq water and solvent B: 0.08% TFA in MeCN on a phenomenex Luna 5 uM 

C18 (2) 100 Å (250 x 4.60 mm), flow rate = 1 ml/min, gradient 0100% of solvent B over 15 

min, with UV detection at 360 nm. Retention time 16.40 min. Purity 100%. 
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N-(3-azidopropyl)-2-(7-(dimethylamino)-2-oxo-2H-chromen-4-yl)acetamide 11 

 

Bromide 10 (96 mg, 0.32 mmol) was reacted with sodium azide (24 mg, 0.37 mmol) 

according to general procedure J2 and purified by flash chromatography on silica eluting with 

30% EtOAc in hexane to yield a yellowish oil (30 mg, 41%). 

1
H NMR (500 MHz, CDCl3) δ 7.46 (d, J = 9.0 Hz, 1H, ArH), 6.62 (dd, J = 9.0, 2.5 Hz, 1H, 

ArH), 6.51 (d, J = 2.5 Hz, 1H, ArH), 6.03 (s, 1H, ArH), 5.85 (br s, 1H, NH), 3.63 (s, 2H, 

CH2CO), 3.31 (q, J = 6.4 Hz, 2H, CH2), 3.25 (t, J = 6.6 Hz, 2H, CH2), 3.06 (s, 6H, N(CH3)2) 

and 1.71 (p, J = 6.6 Hz, 2H, CH2N3) ppm. 

13
C NMR (125 MHz, CDCl3) δ 168.1 (C), 161.8 (C), 156.3 (C), 153.4 (C), 149.6 (C), 125.7 

(CH), 110.6 (CH), 109.4 (CH), 108.2 (C), 98.4 (CH), 49.5 (CH2), 41.1 (CH2), 40.3 (2xCH3), 

37.8 (CH2) and 28.7 (CH2) ppm. 

MS HRMS (ESI) calcd for C16H20N5O3 (M−H
+
): 330.1566, found 330.1557. 
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2-(7-(dimethylamino)-2-oxo-2H-chromen-4-yl)-N-(3-(4-(5-((4S)-2-oxohexahydro-1H-

thieno[3,4-d]imidazol-4-yl)pentyl)-1H-1,2,3-triazol-1-yl)propyl)acetamide 13 

 

Biotin alkyne 1 (50 mg, 0.21 mmol) was reacted with azide 11 (62 mg, 0.19 mmol) and Cu 

nanopowder (2 mg, 0.026 mmol) using ‘general CuAAC’. The crude material was purified by 

flash chromatography on silica gel eluting with 3% MeOH in DCM to give a crystalline white 

solid (54 mg, 45%). 

1
H NMR (500 MHz, DMSO-d6) δ 8.28 (t, J = 5.5 Hz, 1H, NH), 7.79 (s, 1H, ArH), 7.54 (d, J 

= 9.0 Hz, 1H, ), 6.72 (dd, J = 9.0, 2.5 Hz, 1H, ArH), 6.54 (d, J = 2.5 Hz, 1H, ArH), 6.43 (s, J 

= 13.9 Hz, 1H, NHCH), 6.35 (s, 1H, NHCH), 6.00 (s, 1H, CH), 4.324.26 (m, 3H, 

CH2+NHCH), 4.13 (m, 1H, NHCH), 3.61 (s, 2H, CH2), 3.133.04 (m, 3H, CH2+SCH), 3.01 

(s, 6H, 2xCH3), 2.81 (dd, J = 12.4, 5.1 Hz, 1H, SCHa), 2.59 (m, 2H, CH2), 2.57 (d, J = 8.1 

Hz, 1H, SCHb), 1.94 (p, J = 6.9 Hz, 2H, CH2), 1.661.52 (m, 3H, CH2+CHH), 1.45 (m, 1H, 

CHH) and 1.35 (m, 4H, 2xCH2) ppm.  

13
C NMR (125 MHz, DMSO-d6) δ 168.0 (C), 162.7 (C), 160.7 (C), 155.4 (C), 152.8 (C), 

151.1 (C), 146.8 (C), 125.9 (CH), 121.7 (CH), 109.4 (CH), 109.0 (C), 108.2 (CH), 97.5 (CH), 

61.1 (CH), 59.2 (CH), 55.5 (CH), 46.9 (CH2), 39.8 (CH2), 39.7 (2xCH3), 38.8 (CH2), 36.1 

(CH2), 29.8 (CH2), 28.8 (CH2), 28.6 (CH2), 28.4 (CH2), 28.2 (CH2) and 25.0 (CH2) ppm.  

MS HRMS (ESI) calcd for C28H38N7O4S (M−H
+
): 568.2700, found 568.2733. 

IR (ATR) ʋ: 3223 (NH), 2924 (=CH), 1979 (N=N), 1694 and 1613 (C=O) and 1252 (NC) 

cm
-1

. 

Analytical HPLC: Sample was dissolved in methanol (1 mg/ml) and eluted with solvent A: 

0.1% TFA in Milliq water and solvent B: 0.08% TFA in MeCN on a phenomenex Luna 5 uM 

C18 (2) 100 Å (250 x 4.60 mm), flow rate = 1 ml/min, gradient 0100% of solvent B over 15 

min, with UV detection at 360 nm. Retention time 14.31 min. Purity 100%. 
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10.1 Final discussions and future directions 

10.1.1 Key findings 

Non-hydrolysable analogues of the BPL reaction intermediate 1 (figure 10.1a) have been 

demonstrated to be excellent inhibitors with potential as new antibacterials [1-8]. In this thesis 

several synthesized analogues of 1 were characterized for their biochemical and 

microbiological properties that will enable the development of new BPL antibacterials. The 

first generation analogue, biotinol-5ʹAMP 2 (figure 10.1b)(Chapter 5) [3] was a potent 

inhibitor of SaBPL (Ki = 18 nM)  and MtBPL (Ki = 52 nM). Importantly, it exhibited 

antibacterial activity against both antibiotic sensitive and resistant strains of S. aureus (MIC 2 

– 8 μg/mL) and M. tuberculosis (MIC 0.5 – 2.5 μg/mL) [3]. This data provided proof of 

concept that BPL inhibitors can serve as antibacterials against drug resistant strains of 

bacteria that are becoming more prevalent and difficult to treat in both healthcare settings and 

the wider community.  

A second generation of inhibitors, the biotin triazoles, were also investigated [1, 4, 5, 9, 10]. 

The most potent exemplar, BPL068 3 (figure 10.1c) served as the lead compound for this 

project. Compound 3 is the most potent inhibitor of SaBPL (Ki = 230 nM) from the biotin 

triazole class, exhibits >1000 fold selectivity for SaBPL and shows no cytotoxicity against 

cultured mammalian HepG2 cells [1]. However, the antibacterial activity of 3 was not potent 

enough to determine a MIC [1, 2]. To improve antibacterial activity two approaches to 

inhibitor optimization were pursued.  
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Figure 10.1 Key inhibitors identified in this study 

The first approach that was investigated to improve the potency and antibacterial activity of 

biotin triazole inhibitors was to generate a series of small more ‘drug-like’ molecules. The 

molecular weight of small molecule drugs can impact on the oral bioavailability. In Lipinski’s 

landmark study, molecular weight was one key physicochemical property that was identified 

as impacting oral bioavailability and cell permeability with <500 being optimal [11]. In 

chapter 6 a series of biotin triazoles with 1-benzyl substituents, with an average molecular 

weight of <500 were synthesized and represent the first example of reaction intermediate 1 

analogues that lack an appended adenine or benzoxalone moiety. The most potent exemplar 

contained a fluorine 4 (Ki = 280 nM) at position 3 of the benzyl ring (figure 10.1d). 

Encouragingly, compound 4 exhibits similar potency to compound 3 and exhibits modest 

antibacterial activity against S. aureus. Recent work in our laboratory, in collaboration with 

Prof. Andrew Abell in the Department of Chemistry at the University of Adelaide, has looked 

at designing a modified benzyl series in which the C5 atom of the triazole heterocycle has 

been replaced by either a fluorine or an iodine atom to make 1,4,5-trisubstituted triazoles. 
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Studies are currently underway to investigate whether these compounds have improved 

antibacterial activity against S. aureus. 

The second approach investigated to improve the potency and antibacterial activity of BPL 

inhibitors, was to modify the 1,2,3-triazole heterocycle. In chapter 8, a series of 1,4,5-

trisubstituted-1,2,3-triazoles were synthesized to investigate whether halogenation of 

compound 3 improved antibacterial activity. In this study compound 5 (figure 10.1e) 

exhibited antibacterial activity against S. aureus ATCC 49775, where it had an MIC of 8 

μg/mL. X-ray crystallography studies are currently underway in collaboration with Prof. 

Matthew Wilce at Monash University to determine the molecular mechanism of binding. 

Enzyme inhibition and surface plasmon resonance binding assays demonstrated that 

compound 5 exhibited similar potency and binding affinity compared to compound 3.  

Therefore it is unlikely that the additional fluorine atom will make extra interactions with 

SaBPL. Compound 5 is the first example of a biotin triazole inhibitor for which an MIC could 

be reported. Fluorination of compounds represents one strategy to impart favourable 

properties to a lead molecule including improved binding affinity, membrane permeability 

and metabolic stability [12-16]. One study looked at quantifying the effect of halogenation on 

membrane permeability. Here, halogenated drugs through either the addition of a chlorine 

atom or a tri-fluoromethyl group were characterized using surface activity measurements to 

yield the lipid-water partition coefficient and permeability coefficient (measurements of 

membrane permeability) [17]. Both the addition of chlorine and a tri-fluoromethyl group 

improved both measurements in the order of H < Cl < CF3 [17]. Such studies could be 

pursued with compound 5 to determine whether it has enhanced membrane permeability in 

comparison to compound 3.  
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10.1.2 Investigating mechanism of uptake of BPL inhibitors 

In chapter 9, an in situ click chemistry approach was used to identify cell permeant 

compounds that could be employed in mechanism-of-uptake studies. Here, compound 6 was 

generated in situ by SaBPL from biotin acetylene and an azide-functionalized 

nitrobenzofurazan (NBD) fluorophore (figure 10.2). SR-SIM fluorescence microscopy 

demonstrated that the staining pattern of compound 6 was consistent with the compound 

being located in the cytoplasm in S. aureus, where it could co-localize with the BPL target. 

The mechanism of uptake for new antibacterials should be defined during early stage drug 

discovery. This is valuable information as certain properties can be incorporated into small 

molecule inhibitors to enhance uptake. One of the main uptake mechanisms for compounds 

that bind intracellular targets, such as BPL, is through passive diffusion across the lipid 

bilayer into the bacterial cytoplasm. [18]. An alternative way for BPL inhibitors containing a 

biotinyl moiety to enter S. aureus is by active transport through the biotin transporter BioY 

(described below).   Compound 6 could be employed to investigate whether BPL inhibitors 

passively diffuse across a lipid bilayer, using liposomes. One such study involved using 

spinning disc confocal microscopy (SDCM) of giant unilamellar vesicles (liposomes) to 

investigate passive transport of small molecules [19]. These molecules consisted of 

polyethylene glycol chains of various lengths attached to an NBD fluorophore [19]. Confocal 

microscopy imaging studies could also be employed to investigate where BPL inhibitors 

localize in S. aureus. Such studies have been performed with the glycopeptide antibiotic, 

vancomycin [20, 21]. The location of BPL inhibitors in S. aureus could be used to help gain 

insight into the mechanism of action in vivo.  

 

Figure 10.2: SaBPL inhibitor containing NBD fluorophore 
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The BioY transporter is a part of the energy coupling factor (ECF) family of vitamin 

transporters that uses ATP hydrolysis to move solutes across the bacterial cell membrane [22]. 

A fluorescence polarization assay that measures binding of biotin to the S. aureus BioY 

protein complex recombinantly expressed on the cell surface of E. coli has been developed in 

our laboratory [23]. This assay showed that both biotin acetylene and the lead molecule 

BPL068 3 could compete with a fluorescently labelled biotin reagent to bind to BioY with 

equivalent affinity as biotin [23]. Whilst this data suggests that the biotin triazoles can bind to 

BioY, it does not address whether these compounds are actively transported into S. aureus. 

We have recently purchased a transposon based S. aureus bioY null mutant (NE1541, Bei 

Resources), that will be employed in further mechanism of uptake studies. Here, the MIC of 

BPL inhibitors will be compared for the bioY knockout and its parent strain. If NE1541 is 

resistant to the compounds, this would provide strong evidence to implicate the BioY 

transporter complex in inhibitor uptake. If BPL inhibitors are found to enter S. aureus 

predominantly through the SaBioY transporter complex, then the fluorescence polarization 

assay described above could be used in conjunction with antimicrobial susceptibility assays to 

identify compounds with enhanced antibacterial activity. One such experiment could 

investigate the binding affinity of compound 5 compared to BPL068 3 to determine whether 

high binding affinity to SaBioY correlates with better antibacterial activity.  By incorporating 

chemical properties that result in a better binding affinity to BioY, BPL with lower MICs 

could be developed.  
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10.1.3 Investigating the mechanism of action of BPL inhibitors 

One of the hurdles that must be overcome during early stage antibacterial discovery is to 

determine the mechanism of action of inhibitors in vivo [24, 25]. This is important 

information as it is necessary to confirm that the observed antibacterial effect is due to 

inhibition of the expected biological target. It is also important to determine whether there are 

any off target effects and whether this could raise any potential mechanisms of host toxicity 

[24]. 

In chapters 6 and 8, S, aureus RN4220 was employed to generate a BPL over-expression 

strain to aid in mechanism of action studies (Mr A. Hayes, School of Biological Sciences, 

University of Adelaide). When SaBPL was over-expressed, the MIC was elevated, this is 

consistent with compounds binding to the SaBPL target in vivo [5]. Although over-expression 

studies can aid in supporting the mechanism of action of an inhibitor, it is not definitive proof 

that inhibition of the candidate enzyme is the cause of the antibacterial effect [24]. It only 

demonstrates that the inhibitor can bind to the target enzyme in vivo [24]. 

Another well accepted method to determine the mechanism of action of an antibacterial in 

vivo is through target alteration [24]. This can be performed by evolving resistance of a 

bacterial strain to a compound through serial passage with sub-optimal concentrations of that 

compound, thus raising the MIC until a resistance phenotype is observed. The genome of the 

bacterial strain can then be sequenced to identify mutations associated with the resistance 

phenotype. If mutations map to the gene encoding the candidate enzyme, this is strong 

evidence that the candidate gene is responsible for the antibacterial effect [24]. This approach 

has also been recently attempted in our laboratory. To facilitate these studies we have 

identified another inhibitor which is extremely potent against SaBPL (Ki = 0.4 nM), has 

~5000-fold selectivity for SaBPL over the human homologue, does not show any cytotoxicity 

against cultured mammalian liver and kidney cells and, importantly, has an MIC for S. aureus 

ATCC 49775 of < 1 μg/mL. This SaBPL inhibitor, termed, BPL199, does not contain a 
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triazole heterocycle that is reported in this thesis (S. Poylak, personal communication). 

BPL199 was used to evolve resistance in 7 S. aureus strains. The genome of each was 

sequenced and amongst the mutations identified was a loss of function of pyruvate 

carboxylase (one of two biotin-dependent enzymes in S. aureus) and a single missense 

mutation in SaBPL. Here, Asp 200 has been mutated to glutamic acid (D200E). SaBPL is a 

multi-functional class II BPL that is both a biotin ligase and a transcriptional repressor (as 

described in chapter 2). Comparative genomics analysis predict that SaBPL regulates three 

target promoters, namely the bioO operon which encodes the genes involved in biotin 

biosynthesis, the bioY gene encoding the biotin transporter protein BioY and finally the yhfS-

yhfT genes which are predicted to encode 2 putative fatty acid ligases [26]. When all available 

biotin-dependent enzymes have been modified by BPL, SaBPL dimerizes and the reaction 

intermediate acts a co-repressor to facilitate repression of all 3 target genes [9, 26-30]. Recent 

work in our laboratory performed by Ms J. Satiaputra has confirmed that biotin represses all 3 

BPL target genes through quantitative PCR (qPCR) studies on S. aureus in vivo and using a 

LacZ reporter system constructed in E. coli. Finally, BPL199 was also used in the qPCR 

experiments to define its role as a co-repressor. BPL199 did indeed act as a co-repressor and 

downregulate bioD (biotin biosynthesis) and bioY transcripts (J. Satiaputra, personal 

communication). Asp 200 is located in the dimerization interface of SaBPL. Studies in our 

laboratory have shown that SaBPL D200E mutant (described above) behaves as a monomer 

in solution and exhibits a weaker binding affinity to the target operator sequences (Mr. A 

Hayes, personal communication). This result demonstrates that D200E SaBPL mutant may 

exhibit weak repression of the target promoters in vivo. As a consequence the genes involved 

in biotin synthesis and biotin transport may no longer be repressed, hence biotin can out-

compete the inhibitor for the BPL active site. As SaBPL is the master regulator protein of all 

biotin-mediated events in S. aureus it is important to not only design BPL inhibitors that stop 

protein biotinylation but also induce dimerization, thereby affecting both functions of BPL. 
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All of these studies help to further define the mechanisms of action and uptake of BPL 

inhibitors.  

10.1.4 Pharmacological properties of BPL inhibitors in pre-clinical candidates 

The aim of this project is to identify BPL inhibitors that could be developed into pre-clinical 

candidates. Therefore an investigation into the pharmacological properties of our compounds 

is important. One common reason for the high attrition rate seen in antibacterial discovery is 

poor bioavailability in serum [31]. Antibiotics need to have a free concentration in serum that 

is above the MIC in order to be efficacious. This pharmacological parameter is often higher 

for antibiotics than drugs for other therapeutic areas [31]. Serum binding proteins are often 

problematic for antibiotics. If the percentage of antibiotic bound to serum is too high the free 

drug concentration may be reduced to concentrations below the MIC, thereby reducing 

efficacy [31, 32]. Testing BPL inhibitors for serum protein binding early on can remove high 

protein binding compounds before they are progressed to animal models. This can be 

performed using dialysis experiments, where the drug is incubated with serum proteins within 

a dialysis membrane. Any drug that does not bind to the serum proteins can pass through the 

dialysis membrane due to its small molecular weight [33]. The concentration of the unbound 

drug that has passed through the dialysis membrane can be determined using LC/MS [33]. 

Other approaches also include the use of HTS-multiscreen plates to separate the unbound 

drug from serum proteins after incubation. Antimicrobial susceptibility assays can also be 

performed in the presence of serum to see if the MIC of a compound is altered significantly 

[32]. These experiments employed to measure serum binding levels should be used to predict 

the efficacy of BPL inhibitors in an animal model, enabling the development of pre-clinical 

candidates. 

The stability of compounds in serum is another pharmacological parameter that should be 

tested early on. One enzyme present in human serum that could potentially hydrolyse BPL 

inhibitors is biotinidase [34, 35]. Mammals cannot synthesize their own biotin and rely on 
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biotin uptake through the SMVT transporter or by recycling biotin that has been attached to 

biotin-dependent enzymes through the action of biotinidase [36]. Recently published work 

investigated molecules functionalized with biotin that could potentially be used for pre-

targeted therapeutic and medical imaging technologies. By introducing a biotin triazole linker 

into the compound, resistance to biotinidase hydrolysis was far greater than for ester and 

amide linkers [37]. This is an important discovery as it highlights that biotin triazoles with 

good antibacterial efficacy are stable in human serum. 

10.1.5 Addressing the challenges of antibacterial discovery  

The two main approaches employed by large pharmaceutical companies to identify new 

antibiotics are target based screening of compound libraries for binding to a protein target or 

phenotypic screening for whole cell activity against bacteria [38, 39]. Both approaches have 

advantages and disadvantages when it comes to antibacterial discovery. In target based 

screening approaches, compounds that bind to and/or inhibit the protein target can be quickly 

and cheaply identified. The many small molecules that have been curated in corporate 

compound collections are often designed around Lipinski’s rule of 5 [11, 38]. In target based 

screening, many targets often have low hit rates against the hydrophilic molecules in the 

compound collection. Therefore hydrophobic molecules, which are commonly at a higher 

proportion in compound libraries than hydrophilic molecules are often identified, which could 

lead to high serum binding and therefore poor bio-availability [31, 40]. It is also often 

difficult to develop these inhibitors into bio-actives with whole cell antibacterial activity [39]. 

In contrast, whole cell screening identifies compounds with antibacterial activity, which is an 

advantage over target based screening approaches. Many of the antibiotics in clinical use were 

discovered by this approach. Hence, it is not uncommon to identify previously discovered 

classes of antibiotics, making it difficult to identify novel chemical scaffolds [24, 41]. Most 

antibiotics have been discovered from cultivable soil microorganisms. However, there are 

many more species of bacteria that cannot be cultivated under laboratory conditions. These 
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microorganisms represent an important source of new antibiotics and therefore it is important 

to develop new technologies to culture such organisms [42]. The iChip, is one device that has 

been developed to isolate and grow uncultivable bacteria in their natural environment [43]. 

This approach was used to identify a new antibiotic, teixobactin, which inhibits cell wall 

synthesis in Gram-positive bacteria [44, 45]. Novel technologies such as this will be 

important to continue bioprospecting the natural world for new classes of antibiotics. As 

mentioned in chapter 1, BPL was identified as a potential antibiotic target by both 

GlaxoSmith Kline [38] and Astrazeneca [39]  and was the subject of high-throughput 

screening campaigns, with no hits being identified by either company. We have employed a 

structure based drug design approach to identify inhibitors of BPL. To facilitate BPL 

antibacterial development it is important to screen rationally designed compounds that bind to 

and/or inhibit BPL in conjunction with antimicrobial susceptibility assays. This approach 

utilizes the advantages of both target based and phenotypic screening approaches that are 

employed by large pharmaceutical companies. Therefore compounds that exhibit good 

potency and antibacterial activity are identified, enabling BPL antibacterial development.    

Many small molecules that have been curated in corporate compound collections are often 

designed to follow Lipinski’s rule of 5 [11, 38]. However, studies have shown that 

antibacterials do not generally abide by Lipinski’s rules [24, 40, 46, 47]. Antibiotics tend to 

be more polar than drugs for other therapeutic areas [47]. There are also differences observed 

in the chemical properties of antibiotics that target Gram-positive versus Gram-negative 

bacteria [47]. Gram-positive bio-actives generally have a higher molecular weight and are 

more polar compared to corporate compound libraries. Antibiotics that target Gram-negative 

bacteria are even more polar than those that are only active on Gram-positive bacteria and 

have a size limit of ~600 Da, presumably to pass through outer membrane porins [24, 46, 47]. 

Antibiotics that enter Gram-negative organisms also tend to be charged at physiological pH. 

To enter Gram-negative bacteria, molecules need to be charged to cross the outer membrane, 
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but also need to be able to cross the inner membrane (hydrophobic) in order to access 

intracellular targets [46]. Fluoroquinolones active against both Gram-positive and Gram-

negative organisms are zwitterionic which is believed to contribute to their ability to permeate 

through the outer membrane of Gram-negative organisms and also permeate the gut 

endothelial layer [46]. These compounds successfully address the requirements for entry into 

Gram-negative organisms. This information is useful to generate a set of ‘rules’ that can be 

employed to incorporate useful chemical properties into newly discovered inhibitors to 

enhance antibacterial activity against both Gram-positive and Gram-negative bacteria. 

Currently, these rules are not well understood for antibiotics. 

Development of resistance limits the useful lifetime of an antibiotic in the clinic. There have 

only been 5 new classes of antibiotics introduced for clinical use since the year 2000, and of 

particular concern none of these can be used to treat Gram-negative bacteria [48]. In order to 

develop new classes of antibiotics it is important to look at the properties of successful 

antibiotics used in systemic monotherapy. Antibiotics that are used in systemic monotherapy 

commonly have multiple targets and, therefore, a low occurance of high-level resistance 

through single step mutation of their targets [49-51]. Some examples of these antibiotics 

include the β-lactams and fluoroquinolone classes. β-lactam containing antibiotics act through 

inhibition of at least two penicillin binding proteins and fluoroquinolones act through 

inhibition of two DNA topoisomerases [49, 50]. Antibiotics that target singe enzymes are all 

subject to high-level resistance from a single step mutation in the target enzyme. Some 

examples include rifampin, which targets RNA polymerase, and novobiocin, which targets the 

B subunit of DNA gyrase [49, 50]. These drugs are not used in standard systemic 

monotherapy but are used in combination with other drugs [49]. Using two antibiotics that 

have single targets in combination with each other gives the advantage of having multiple 

targets in the bacterium thereby slowing development of resistance. This combination therapy 

approach may be an avenue to progress BPL antibacterials to pre-clinical development. 
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Another strategy to improve and/or broaden the spectrum of antibacterials is to make hybrid 

antibiotics [49]. Here, two separate pharmacophores from different established antibiotic 

classes are covalently attached by a linker [51]. One such antibiotic pursued by Roche (Ro 23-

9424) is a β-lactam-fluoroquinolone hybrid [52]. This compound exhibited a broader 

spectrum of antibacterial activity against bacteria that were resistant to either one or both of 

the compounds [52-54]. However, this compound had a relatively short half-life in human 

phase I trials, likely due to chemical and enzymatic instability [49]. Another example is an 

oxazolidinone-fluoroquinolone hybrid developed by Morphochem (now Biovertis) [55]. This 

hybrid approach is one solution to overcoming multi-drug resistance, however more work 

needs to be done to improve stability in serum. We have recently used in situ click chemistry 

to ‘click’ azide-functionalized analogues of established antibiotic classes to biotin acetylene 

to identify SaBPL inhibitors that could be used as hybrid antibiotics. Compound 7 (Figure 

10.3) was identified in an in situ click chemistry experiment and contains the biotin triazole 

pharmacophore with an appended quinolonyl group belonging to the fluoroquinolone class of 

antibiotics. Further studies will involve investigating the spectrum of antibacterial activity. 

This approach could be continued using either rational design of compounds to link to the 

biotin triazole or through using in situ click chemistry. 

 

Figure 10.3: Biotin triazole – fluoroquinolone hybrid molecule 

Finally, the use of nanoparticles has been gaining attention to improve drug delivery. This 

approach has been investigated to enhance the antibacterial activity and/or extend the 

spectrum of activity of inhibitors [56]. Nanoparticles allow for targeted delivery of 

antibacterials, improved solubility, improved half-life and can be used to deliver 
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combinations of drugs [57, 58]. Recently, mesoporous silica nanoparticles were used to 

extend the spectrum of antibacterial activity of histidine kinase autophosphorylation inhibitors 

in Gram-negative bacteria [58]. Here, the MIC of the inhibitor encapsulated in the 

nanoparticle was significantly reduced in comparison to the free drug, where no antibacterial 

activity could be observed against Gram-negative pathogens [58]. Another study involved 

encapsulating gentamicin, a protein synthesis inhibitor, into polymeric nanoparticles for 

potential use in osteomyelitis treatment [59]. Here, gentamicin encapsulated nanoparticles 

exhibited antibacterial activity against both S. aureus and Staphylococcus epidermidis in vitro 

[59]. This approach could be adapted to improve the antibacterial activity of BPL inhibitors as 

well as other antibacterials in early stage development. 

10.2 Conclusions  

There is an urgent need to develop new antibiotics to combat the growing rise in antibiotic 

resistant bacteria. The biotin-triazoles represent a new class of antibiotics to target the 

essential metabolic enzyme BPL. In this project multiple SAR series have been designed and 

characterized to identify BPL inhibitors with improved potency and antibacterial activity. 

Here we identified 1,4,5-trisubtituted triazoles that exhibited improved antibacterial activity 

against S. aureus. We have also developed new fluorescent probes that will be important in 

facilitating mechanism of uptake and action studies, which are necessary requirements for a 

pre-clinical candidate. All the work presented in this thesis will be valuable in optimizing 

BPL inhibitors as potential pre-clinical candidates to target the superbug Staphylococcus 

aureus. 
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