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Abstract

In Lattice Quantum Chromodynamics, we calculate physical quantities on a dis-
crete 4D Euclidean lattice via expectation values, which take the form of path
integrals. Due to the high dimensionality of these integrals, the standard tech-
nique for evaluating lattice expectation values is Monte Carlo; we generate con-
figurations of gauge fields U and fermion fields ψ distributed according to the
lattice action S, then take a weighted average of the observable across the config-
urations. The most common method used to generate configurations is a Markov
Chain technique called Hybrid Monte Carlo. While this technique is functional,
it takes a lot of computational resources to generate configurations which are
desirably close to the continuum theory.

The object of this work is to investigate a variety of improvements over the
basic Hybrid Monte Carlo method, and determine which combinations produce
independent configurations at the lowest cost.

We start by performing a systematic study of filtering for double-flavour sim-
ulations, comparing polynomial filtering to the common technique of mass fil-
tering. We show that combining these two methods produces optimal speedup
with minimal tuning of parameters, which can be a serious concern when mul-
tiple filters are involved. During this investigation, we used the novel technique
of overlaid integrators for implementing multiple integration time scales, which
expands the possible step-size choices.

Next, we investigate improvements to single-flavour simulations, comparing
polynomial filtering with a different method that we denote truncated ordered
product RHMC. We obtain the best speedup when using truncation filters, but it
is highly dependent on the truncation order chosen. To alleviate this problem,
we apply a novel integration step-size tuning method called characteristic scale
tuning which allows for step-sizes to be better tuned to the energy modes of the
system. This improves the performance of our algorithms for a wide range of
filter parameters, thus reducing the need to tune filter parameters.

Finally, we extend our single-flavour techniques to Lattice QCD+QED simu-
lations, which include electromagnetic effects via a photon field.
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Introduction

The Standard Model of physics is an incredibly successful theory that describes
how three of the four fundamental forces of nature behave, which is through
force mediating particles known as gauge bosons that arise from a particular
local gauge symmetry. The three forces covered by the Standard Model are elec-
tromagnetism, which is mediated by the U(1) photon γ; the weak nuclear force,
which is mediated by the SU(2)L weak bosons W±, Z0; and the strong nuclear
force, which is mediated by the SU(3) gluon g. In addition, this theory has a
Higgs field φ which gives a mass to the weak bosons, leptons and quarks. This
model agrees strongly with experiment across a wide range of observed particle
behaviour.

The part of the Standard Model that describes the strong force is Quantum
Chromodynamics (QCD). The defining features of this theory is that the gluon
is massless and the SU(3) group is non-Abelian, which gives rise to 3-gluon and
4-gluon self-interactions. This produces a number of unique properties. In
particular, the gauge coupling g of the interaction vertex runs with the energy:
while it is small at high energies, it is large (∼ 1) at typical low energies. The
size of the coupling constant invalidates the usual perturbative approaches to
calculating observables in the theory: the series expansions involved diverge
for some quantities.

Lattice QCD [1] was developed to solve this issue. It is a non-perturbative
approach to QCD where we discretise space-time onto an Euclidean 4-D lattice.
Calculations are then made via expectation values in the form of path integrals,
which are evaluated via Monte Carlo methods: we sample configurations of our
gluon and quark fields distributed according to the lattice QCD action, then eval-
uate expectation values as an ensemble average. Lattice QCD simulations have
reliably reproduced the masses of several hadrons as observed in experiment,
and provide predictions for the quark masses [2–6], certain decay constants [4,
5] and form factors: see [7] for a recent review.

The most common Monte Carlo method used in Lattice QCD is Hybrid Monte
Carlo (HMC). This is where a series of configurations are generated by inte-

xvii



xviii INTRODUCTION

gration trajectories that preserve a fictional Hamiltonian, in conjunction with a
Metropolis-Hastings acceptance step that ensures that the configurations tend to
the desired equilibrium distribution. While this technique is functional, it takes a
lot of computation resources to generate configurations of physically interesting
lattices which are ‘close’ to the continuum theory: physical masses, small lattice
spacings, and large extents.

In this work, we investigate various optimisations to Hybrid Monte Carlo in
order to reduce the computational effort required to generate lattice configu-
rations. First, in chapter 1 we give an overview of Lattice QCD to put lattice
configuration generation into context. Then in chapter 2, we discuss Hybrid
Monte Carlo at length, along with a variety of improvements that can be made
to improve the performance of the algorithm.

The subsequent two chapters are devoted to comparing the performance of
certain optimisations to HMC, mainly a class of techniques known as filtering
methods. While many of these optimisations already see use in the Lattice QCD
community, there are relatively few studies that benchmark different filtering
methods. In chapter 3 we compare the cost performance of two different filter-
ing methods used on a double-flavour pseudofermion field, namely polynomial
filtering and mass preconditioning. Such a pseudofermion is a combination of
two mass degenerate quarks, so it most often used to simulate the up and down
quarks. In chapter 4 we consider single-flavour pseudofermions, investigating
the performance of polynomial filtering and truncated ordered product rational
HMC (tRHMC) which apply in this case. Single-flavour pseudofermions repre-
sent a single flavour of quark, and are required for simulating quarks with no
identical partner such as the strange quark.

Finally, in chapter 5, we discuss how to incorporate electromagnetism into
the Lattice QCD theory to produce Lattice QCD+QED simulations, such that
we can calculate electromagnetic corrections to measured observables. This re-
quires the use of single-flavour pseudofermions even for the up and down quarks
as they are now differentiated by their charge. Then we investigate the perfor-
mance of tRHMC for a Lattice QCD+QED simulation.



◦ 1 ◦

Lattice QCD

1.1 Quantum Chromodynamics

Quantum Chromodynamics (QCD) is a quantum field theory in the Standard
Model that describes the strong force. It is based on the non-Abelian Lie group
SU(3), which is most commonly represented as the set of 3 × 3 complex uni-
tary matrices with determinant 1. The fundamental fields of this theory are the
quark/fermion fields ψ, ψ and the gluon/gauge fields Aµ.

The quark fields ψ,ψ are elements of the fundamental representation of
SU(3), a.k.a. the Lie group SU(3). This means they can have three different
charges in SU(3) space, which we denote colour charge. The full structure of
these fields is given by

ψ f
aα(x),ψ

f
aα(x). (1.1)

Thus, quarks are fields of space-time x , Dirac spinors with Dirac indices α =
0,1, 2,3, and colour vectors with colour index a = 1,2, 3 (alternatively, “red,
green, blue”). The index f indicates the flavour of the quark, and in nature we
have observed six of these: up, down, strange, charm, top and bottom.

The gluon fields Aµ(x) are elements of the adjoint representation of SU(3),
a.k.a. the Lie algebra su(3). This space is 8-dimensional, with elements of the Lie
algebra being expressible as real linear combinations of the 8 SU(3) generators
t(a), a = 1, 2, . . . , 8; for the gluon field, we can write Aµ(x) = A(a)

µ
(x)t(a) where

A(a)
µ
(x) are eight real-valued fields. This implies there are 8 types of gluons. In

matrix notation, elements of the Lie algebra su(3) are traceless Hermitian ma-
trices, and the generators are t(a) = λα/2 where λα are the Gell-Mann matrices
(A.1). The full structure of the gluon field is

Acd
µ
(x), (1.2)

1



2 CHAPTER 1. LATTICE QCD

so it is a Lorentz vector (µ= 0,1, 2,3) and a colour matrix (c, d = 1, 2,3).
In nature, we have never observed objects with net colour charge. Motivated

by this, the essential idea of QCD is to have quantities which are invariant un-
der local SU(3) gauge transformations, which are defined by the fermion field
transformation

ψ(x)→ψ′(x) = G(x)ψ(x) (1.3a)

and ψ(x)→ψ′(x) =ψ(x)G−1(x), (1.3b)

where G(x) ∈ SU(3). To be concrete about the form of the transformation, we
often write G(x) in terms of the generators t(a) of SU(3):

G(x) = exp(iτ(a)(x)t(a)), (1.4)

where τ(a) are a set of real-valued functions of x
The Lagrangian density for this theory which satisfies gauge invariance is

given by

LQC D =
∑

f ,ab,αβ ,µν

ψ f
aα

�

i(γµ)αβ(Dµ)ab −m f δabδαβ
�

ψ
f
bβ−

1
2g2

Tr
�

(Fµν)
ab(Fµν)ba

�

.

(1.5)
Here, g is the SU(3) gauge coupling, m f is the bare mass of quark flavour f , γµ
are the gamma matrices (A.3), Dµ is the covariant derivative and Fµν is the gluon
field-strength tensor. We often omit the sums over flavour f , colour {a, b}, Dirac
index {α,β} and Lorentz index {µ,ν}, and write

LQC D =ψ(iγµDµ −m)ψ−
1

2g2
Tr
�

FµνFµν
�

; (1.6)

such sums are assumed unless otherwise noted. The form of this Lagrangian
can be motivated by the classical equations of motion, which will be discussed
in section 1.1.1.

The covariant derivative for QCD is given by

Dµ = ∂µ − iAµ; (1.7)

the addition of the gauge field Aµ to the derivative ensures that Dµψ has the
same gauge transformation as ψ and so ψDµψ is gauge invariant. This implies
the gauge transformation

Aµ(x)→ A′
µ
(x) = G(x)Aµ(x)G

−1(x) + i(∂µG(x))G−1(x). (1.8)



1.1. QUANTUM CHROMODYNAMICS 3

The gluon field-strength tensor is given by

Fµν =
∑

a

F (a)
µν

t(a) (1.9)

with
F (a)
µν
= ∂µA

(a)
ν
− ∂νA(a)µ + fabcA

(b)
µ

A(c)
ν

, (1.10)

where fabc are the structure constants for SU(3):

[t(a), t(b)] = i fabc t(c). (1.11)

Compared to the electromagnetic field-strength tensor, there is an extra non-
Abelian quadratic term fabcA

(b)
µ

A(c)
ν

. This gives rise to 3-gluon and 4-gluon self-
interactions, which causes the gluon gauge coupling g to run (i.e. change) with
the energy scale. This is responsible for two of the main features of QCD:

1. Asymptotic freedom: At high energies, the coupling constant αs ≡ g2/4π is
small. This gives rise to a gluon-quark plasma with free quarks.

2. Confinement: At low energies, the coupling constant αs ∼ 1, and we find
that free quarks are never observable; they only occur in colourless states
known as hadrons. Hadrons come in two kinds, corresponding to the ways
one can mix the three colour and three anti-colour states into a colourless
state: baryons and anti-baryons which consist of three quarks or three
anti-quarks, and mesons which consist of a quark and an anti-quark.

1.1.1 Euler-Lagrange equations

In classical mechanics, the equations of motion for a Lagrangian-based theory
are the Euler-Lagrange equations. For a particular variable Q in the Lagrangian
density L(Q,∂µQ, x), these take the form

∂L
∂Q
= ∂µ

�

∂L
∂ (∂µQ)

�

, (1.12)

where Q and ∂µQ are considered distinct variables. When we construct a La-
grangian for a field theory, we want to ensure that these equations of motion
match up with what we expect classically.

The QCD Lagrangian (1.6) has two distinct Euler-Lagrange equations, given
by differentiation with respect toψ orψ and with respect to Aµ. These equations
of motion can be shown to match up with results from quantum mechanics.
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In the case of the fermion field, the equations of motion are Hermitian con-
jugates. Thus, we just consider

∂L
∂ψ
= ∂µ

�

∂L
∂ (∂µψ)

�

, (1.13)

which can be shown to reduce to

iγµ(∂µ − iAµ)ψ−mψ= 0. (1.14)

This is simply the Dirac equation for a fermion in an external gauge field Aµ.
The equations of motion for Aµ are

∂L
∂ Aµ

= ∂ν

�

∂L
∂ (∂νAµ)

�

, (1.15)

which reduces to
∂νFνµ = g2ψγµψ. (1.16)

Comparing with electromagnetism, this equation can be identified as a relativis-
tic wave equation for the gluon field.

1.1.2 Path integral formulation

In order to get predictions for physical quantities from QCD, we must be able
to construct observables. There are a variety of ways these are mathematically
constructed, but here we discuss the path integral formulation [8, 9], as it is the
basis for Lattice QCD.

In the path integral formulation, we use the partition function

ZQC D =

∫

DψDψDAµ exp(iSQC D), (1.17)

where SQC D =
∫

d4 xLQC D(x) is the QCD action. This integral is a path integral
over all possible values of the fieldsψ,ψ, Aµ at all points in space-time x . Evalu-
ating this integral is problematic however, as the complex exponential leads to an
oscillatory integrand. To avoid this, we Wick rotate from Minkowski space-time
(M) with metric tensor

ηM
µν
= diag(1,−1,−1,−1) (1.18)
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to Euclidean space-time (E) with metric tensor

ηE
µν
= diag(1,1, 1,1) = δµν. (1.19)

Under this transformation, we find that we have ‘imaginary’ time,

t E = i tM , (1.20)

and the partition function becomes

Z E
QC D =

∫

DψDψDAµ exp(−SE
QC D), (1.21)

with

LE
QC D =ψ(γµDµ +m)ψ+

1
2g2

Tr
�

FµνFµν
�

, Dµ = ∂µ + iAµ, (1.22)

and all the variables are now in Euclidean space-time. We will use Euclidean
space-time for the rest of this thesis. Note that in this space-time, the metric
tensor transforms into a delta function, and hence covariant and contra-variant
indices are identical. To emphasise the difference, we use space-time indices
µ= 1,2, 3,4 with x4 = t E.

We extract observables from this partition function through expectation val-
ues, which are given by

〈O〉=
1

ZQC D

∫

DψDψDAµO[ψ,ψ, Aµ]exp(−SQC D). (1.23)

Here, the observable O is evaluated as an explicit functional of the gluon fields
Aµ and fermion fields ψ, ψ within the path integral. See section 1.3 for a dis-
cussion of how these functionals can be constructed. In practice, this integral is
evaluated using Monte Carlo methods by taking an average over a set of gauge
configurations, which we introduce in section 1.3.1.

1.2 Discretisation to Lattice QCD

Lattice QCD comes from continuum QCD after discretising Euclidean space-time
into a finite lattice Λ of points with

xµ = aµnµ, nµ = 1, . . . , Nµ, (1.24)
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where aµ is the lattice spacing in each direction. It is common to choose isotropic
lattices with a single lattice spacing a = aµ, the same spatial extent in each
direction N = Nx ,y,z and a larger time extent Nt > N , with corresponding lengths
L = aN , Lt = aNt . Considering the path integral (1.21), this reduces the size
of our phase space from infinite dimensions to a finite set of fields, thus making
the evaluation of the path integral computationally tractable. All the operators
on the fields also need to be discretised. For example, integrals over space-time
are replaced by sums over the lattice

∫

d4 x → a4
∑

x∈Λ

, (1.25)

and derivatives are replaced by finite differences

∂µ f (x)→
1

2a
[ f (x + aµ̂)− f (x − aµ̂)] (1.26)

where µ̂ is the unit vector in the µ direction.
The next step is to find a lattice version of the action SQC D. A guiding principle

will be that lattice quantities should match their continuum counterparts in the
limit a → 0 . To start with, consider the free-particle fermion action where
Aµ = 0:

S0
F =

∫

d4 xψ(x)(γµ∂µ +m)ψ(x). (1.27)

The lattice version of the action then seems to be

S0
F = a4

∑

x∈Λ

ψ(x)
�

γµ
ψ(x + aµ̂)−ψ(x − aµ̂)

2a
+mψ(x)

�

. (1.28)

This expression is not gauge invariant, but in a different way to the continuum.
For example, consider the term ψ(x)ψ(x + aµ̂) under a gauge transformation:

ψ(x)ψ(x + aµ̂)→ ψ′(x)ψ′(x + aµ̂)

=ψ(x)G−1(x)G(x + aµ̂)ψ(x + aµ̂). (1.29)

This bi-local transformation can’t be fixed by adding a local operator Aµ(x) as in
the continuum. What we require instead is a field Uµ(n) with directional index
µ that transforms like

Uµ(x)→ U ′
µ
(x) = G(x)Uµ(x)G

−1(x + aµ̂), (1.30)
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for then ψ(x)Uµ(x)ψ(x + aµ̂) is gauge-invariant. We call these bi-local fields
Uµ(x) the gauge links, as they are elements of SU(3) Lie group and live on the
links between lattice sites.

It is useful to define a gauge link in the negative direction U−µ(x), which can
be related to the usual gauge links by

U−µ(x) = U†
µ
(x − aµ̂). (1.31)

We can then write a gauge-invariant fermion action called the naive fermion
action:

SF = a4
∑

x∈Λ

ψ(x)

�

γµ
Uµ(x)ψ(x + aµ̂)− U−µ(x)ψ(x − aµ̂)

2a
+mψ(x)

�

. (1.32)

It is ‘naive’ as there is a subtle issue with it, which will be addressed in subsec-
tion 1.2.2 by adding an extra term that vanishes in the continuum.

Does (1.32) have the correct continuum limit as a → 0? To take this limit,
we require a continuum counterpart to Uµ(x) that transforms under local SU(3)
transformations in the same way. The operator we use is the gauge generator
T (x , y). It is the path-ordered exponential integral of the gauge field Aµ(x)
along a curve Cx y between two points in space-time

T (x , y) = P exp

�

i

∫

Cx y

A · ds

�

. (1.33)

It transforms under gauge transformations with

T (x , y)→ G(x)T (x , y)G†(y). (1.34)

To connect this to Uµ(x), we can identify the gauge links in the SU(3) Lie group
as exponentials of the gauge fields Aµ(x) in the SU(3) Lie algebra:

Uµ(x) = exp(iaAµ(x)). (1.35)

We thus have Uµ(x) = T (x , x + aµ̂)+O(a2), approximating the integral from x
to x + aµ̂ by the length of the path a multiplied by the value of the field at the
starting point Aµ(x).

Now we are in a position to consider the continuum limit a→ 0 of the naive
fermion action (1.32). Considering expansions of Uµ(x) for small a,

Uµ(x) = I + iaAµ(x) +O(a2) (1.36)
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and U−µ(x) = U†
µ
(x − aµ̂) = I − iaAµ(x − aµ̂) +O(a2), (1.37)

we can substitute into the lattice action and obtain

SF = a4
∑

x∈Λ

ψ(x)

�

γµ
ψ(x + aµ̂)−ψ(x − aµ̂)

2a

+ γµ
iaAµ(x)ψ(x + aµ̂) + iaAµ(x − aµ̂)ψ(x − aµ̂)

2a

+mψ(x) +O(a)
�

= a4
∑

x∈Λ

ψ(x)

�

γµ
ψ(x + aµ̂)−ψ(x − aµ̂)

2a
+ iγµAµ(x)ψ(x)

+mψ(x) +O(a)
�

. (1.38)

On the last line, we used Taylor series expansions forψ(x±aµ̂) and Aµ(x−aµ̂),
e.g.

ψ(x + aµ̂) =ψ(x) + a∂µψ(x) +O(a2). (1.39)

Taking the limit a → 0 and applying (1.26) then gives the continuum form,
namely

SQC D
F =

∫

d4 xψ(x)
�

γµ∂µ + iγµAµ(x) +m
�

ψ(x). (1.40)

As the lattice Λ is finite in extent, it is necessary to consider what to do
at the boundaries. Periodic and anti-periodic boundary conditions are usually
used as they conserve translational invariance. The gauge field U usually has
periodic boundary conditions in all directions. As for the fermion fields ψ,ψ, it
is usual to have periodic boundary conditions in the spatial directions and anti-
periodic boundary conditions in the temporal direction. This is done in order
to preserve the time reflection symmetry of continuum QCD. Other choices of
boundary conditions can help in certain domains however: for example, open
boundary conditions in the time direction helps prevent poor sampling of the
topological charge [10].

1.2.1 Gauge action

It is useful to consider the action as a sum of two terms

S = SG[U] + SF[U ,ψ,ψ], (1.41)
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consisting of gluon action SG involving just the gauge fields Aµ, and the fermion
action SF which describes interactions with the fermion fields ψ,ψ.

Recalling (1.22), the gluon action in the continuum is given by

SG[U] =
1

2g2

∫

d4 x Tr
�

Fµν(x)Fµν(x)
�

. (1.42)

In order to discretise this term for lattice QCD, we require a gauge-invariant ob-
ject made entirely out of gauge links. For this task, we can use a more substantial
discretisation of the gauge generator T (x , y) (1.33). Consider a path P of gauge
links on the lattice. We can define the ordered product

PP[U] = Uµ0
(x)Uµ1

(x + aµ̂1) · · ·Uµk−1
(y − aµ̂k−1) =

∏

(x ,µ)∈P
Uµ(x), (1.43)

noting that each µi can be in any of the 8 possible directions. The most important
feature of this path is that it has the gauge transformation

P[U]→ P[U ′] = G(x)P[U]G(y)−1, (1.44)

because all the terms between gauge links cancel. It follows that the trace of a
closed loop L of gauge links

L[U] = Tr





∏

(x ,µ)∈L
Uµ(x)



 (1.45)

is gauge invariant:

L[U]→ L[U ′] = Tr





∏

(x ,µ)∈L
G(x)Uµ(x)G(x)

−1



= Tr





∏

(x ,µ)∈L
Uµ(x)



= L[U].

(1.46)
The simplest non-trivial gauge loop on the lattice is known as the plaquette:

this is a product of four link variables

Uµν(x) = Uµ(x)Uν(x + aµ̂)U−µ(x + aµ̂+ aν̂)U−ν(x + aν̂)

= Uµ(x)Uν(x + aµ̂)U†
µ
(x + aν̂)U†

ν
(x), (1.47)

and is depicted in Figure 1.1. This leads to the simplest gluon action known as
the Wilson gauge action [1], which is a sum over all plaquettes on the lattice:

SWilson
G [U] =

2
g2

∑

x∈Λ

∑

µ>ν

Re Tr
�

I− Uµν(x)
�

. (1.48)
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Uµ(x)

Uν(x + aµ̂)

U†
µ
(x + aν̂)

U†
ν
(x)

x

µ

ν

Figure 1.1: The plaquette Uµν(x) on the µ,ν plane of a lattice.

We use this gauge action for several of our lattices as part of the filtering method
investigations in chapters 3 and 4.

We will now show that the Wilson gauge action produces the correct contin-
uum value (1.42) in the limit a→ 0. This requires an expansion of the plaquette
Uµν in terms of the Lie algebra gauge field Aµ

Uµν(x) = exp[iaAµ(x)]exp[iaAν(x + aµ̂)]exp[−iaAµ(x + aν̂)]exp[−iaAν(x)].
(1.49)

This is a product of matrix exponentials, so the Baker-Campbell-Hausdorff for-
mula is useful:

exp(aA)exp(aB) = exp
�

aA+ aB +
1
2

a2[A, B] +O(a3)
�

. (1.50)

Applying this to the expression (1.49) repeatedly and neglecting O(a3) terms,
we get

Uµν(x) =exp
�

iaAµ(x) + iaAν(x + aµ̂)− iaAµ(x + aν̂)− iaAν(x)

−
a2

2
[Aµ(x), Aν(x + aµ̂)] +

a2

2
[Aµ(x), Aµ(x + aν̂)]

+
a2

2
[Aν(x + aµ̂), Aµ(x + aν̂)] +

a2

2
[Aµ(x), Aν(x)]

+
a2

2
[Aν(x + aν̂), Aν(x)]−

a2

2
[Aµ(x + aν̂), Aν(x)] +O(a3)

�

. (1.51)

Noting that we have gauge fields in terms of shifted arguments, e.g. Aµ(x +
aµ̂), we now insert Taylor series expansions of these fields (1.39) and consider
contributions up to O(a2). Doing this results in

Uµν(x) = exp
�

ia2
�

∂µAν(x)− ∂νAµ(x) + i[Aµ(x), Aν(x)]
�

+O(a3)
�

= exp
�

ia2Fµν(x) +O(a3)
�

, (1.52)
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recalling the field strength tensor definition (1.10) in the continuum. We can
insert this equation into the Wilson gauge action (1.48) and expand the expo-
nential to get

SWilson
G [U] =

2
g2

∑

x∈Λ

∑

µ>ν

Re Tr
�

−ia2Fµν(x) +
1
2

a4F2
µν
(x) +O(a6)

�

=
a4

2g2

∑

x∈Λ

∑

µ,ν

�

Tr
�

F2
µν
(x)
�

+O(a2)
�

. (1.53)

The O(a3) terms in the expansion of the exponential are purely imaginary and
hence disappear when taking the real part of Tr[1− Uµν], leaving O(a2) errors
as noted. Taking the limit a→ 0 then produces

lim
a→0

SWilson
G [U] =

1
2g2

∫

d4 x
∑

µ,ν

Tr[F2
µν
(x)] = SG[U] (1.54)

as desired (cf. (1.42)).

Improved gauge actions

We can improve upon the O(a2) errors in the Wilson gauge action by using the
Symanzik improvement scheme [11]. The general idea of this scheme is as fol-
lows: consider a lattice quantity which approximates some continuum operator.
Then, introduce lattice discretisations of higher order terms which are possible
corrections to the operator. Finally, combine these terms such that errors up to
a certain order disappear.

Given the plaquette is of order 4 (i.e. it has 4 gauge links), we introduce
loops of the next possible order, 6. The most general improved action with
O(a4) errors takes the form [12]

S imp
G [U] = c0SWilson

G [U] + c1
2
g2

∑

x

∑

loops

ReTr [I − U1(x)]

+ c3
2
g2

∑

x

∑

loops

ReTr [I − U3(x)] , (1.55)

and is known as the tree-level improved or the Lüscher-Weisz gauge action.
U1 and U3 are the gauge loops of order 6 depicted in Figure 1.2, which are

summed over all lattice sites in one direction. The other gauge loop with or-
der 6, U2, introduces O(a2) errors to low lying energy terms that are linearly
independent from the other gauge loops, so it is disallowed.
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U1 U2 U3

Figure 1.2: All possible gauge loops of order 6. The last two loops U2, U3 are three-dimensional.

The real coefficients ci are normalised such that

c0 + 8c1 + 16c3 = 1 (1.56)

and must satisfy

c1 − c3 = −
1
12

(1.57)

to cancel off the O(a2) terms. Therefore, these coefficients have one degree of
freedom, which we can parametrise using c3:

c0 =
5
3
− 24c3, (1.58a)

c1 = c3 −
1
12

. (1.58b)

We also require the gauge action to be positive, which restricts the values that c3

can take. A popular choice [13] sets c3 = 0 and just uses the plaquette Uµν and
rectangular loops U1 with c0 =

5
3 , c1 = −

1
12 ; we use this choice in the investigation

of improving the generation of configurations with electromagnetic corrections
in chapter 5.

1.2.2 Fermion action: a problem with doublers

We have noted that the naive fermion action (1.32)

SF = a4
∑

x∈Λ

ψ(x)

�

∑

µ

γµ
Uµ(x)ψ(x + aµ̂)− U−µ(x)ψ(x − aµ̂)

2a
+mψ(x)

�

is problematic. The issue is that this action only couples fermion fields with the
gauge field at sites 2a apart, leading to two uncoupled fermion fields in each
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dimension for a total of 24 = 16 uncoupled fermion fields per fermion flavour.
These extra fermion fields, called fermion doublers, are unphysical and need to
be managed.

Wilson [1] first proposed a solution to this by adding a new term to the
fermion action which involves a discretisation of the covariant Laplacian opera-
tor:

ψ(x)∆ψ(x) = −ψ(x)
∑

µ

Uµ(x)ψ(x + aµ̂)− 2ψ(x) + U−µ(x)ψ(x − aµ̂)

2a

= −
a
2
ψ(x)

∑

µ

DµDµψ(x) +O(a2). (1.59)

The factor of a in the continuum limit shows that this term has a higher order 5
than the order 4 terms in the naive fermion action (1.32), and so this extra term
disappears in the continuum limit as required. Adding this to the naive fermion
action gives the Wilson fermion action

SWilson
F = a4

∑

x∈Λ

ψ(x)
∑

µ

�

γµ
Uµ(x)ψ(x + aµ̂)− U−µ(x)ψ(x − aµ̂)

2a

+∆ψ(x) +mψ(x)
�

= a4
∑

x∈Λ

�

ψ(x)
�

m+
4
a

�

ψ(x)

−
1

2a

∑

µ

(1− γµ)Uµ(x)ψ(x + aµ̂)ψ(x)

−
1

2a

∑

µ

(1+ γµ)U−µ(x)ψ(x − aµ̂)ψ(x)
�

. (1.60)

As this is bilinear in ψ,ψ, we can write this in the form

SWilson
F = a4

∑

x ,y∈Λ

∑

a,b,α,β

ψ(x)aαDabαβ(x |y)ψ(y)bβ (1.61)

where D(x |y) is known as the Dirac operator. In the case of the Wilson fermion
action, we have Dirac operator

Dabαβ(x |y) =
�

m+
4
a

�

δx yδabδαβ +
±4
∑

µ=±1

(1− γµ)αβUµ(x)abδx+aµ̂,y , (1.62)

defining γ−µ = −γµ for notational convenience. We can simplify this construct by



14 CHAPTER 1. LATTICE QCD

scaling our fermion fieldsψ→ 1p
2κ
ψ where κ= 1

2am+8 is the hopping parameter,
such that the Wilson Dirac operator becomes

D = 1−κH (1.63)

where

Habαβ(x |y) =
±4
∑

µ=±1

(1− γµ)αβUµ(x)abδx+aµ̂,y (1.64)

is known as the hopping matrix. The Wilson fermion action is used in all the
lattices in this paper (see chapters 3, 4 and 5), though some lattices have an
improvement term which we now discuss.

1.2.3 Fermion action: improved actions

Improved discretisation errors

Adding the Wilson term to the fermion action increases the error to O(a). To
improve the error back to O(a2), we use the Symanzik improvement scheme,
which leads to the improved action [14]

S I
F = SWilson

F + cSW a5
∑

x∈Λ

∑

µ<ν

ψ(x)
1
2
σµν F̂µν(x)ψ(x), (1.65)

where cSW ∈ R is the Sheikholeslami-Wohlert coefficient, σµν = [γµ,γν]/2i and
F̂µν is a discretisation of the field strength tensor. The discretisation is usually
taken to be

F̂µν(x) =
−i
8a2
(Qµν(x)−Qνµ(x)) (1.66)

where Qµν is a sum of plaquettes in µ,ν plane

Qµν(x)≡ Uµν(x) + Uν,−µ(x) + U−µ,−ν(x) + U−ν,µ(x). (1.67)

This construct is depicted in Figure 1.3, and is reminiscent of a four-leaf clover.
The action term is thus referred to as the clover term or clover improvement. This
improvement is used for some of our lattices in chapters 4 and 5.



1.2. DISCRETISATION TO LATTICE QCD 15

Uµν(x)Uν,−µ(x)

U−µ,−ν(x) U−ν,µ(x)

x

µ

ν

Figure 1.3: The clover term Qµν(x) on the µ,ν plane of a lattice, which is a sum of 4 plaquettes.
The gauge links U are represented by arrows, and are slightly offset to emphasize the structure.

The Sheikholeslami-Wohlert coefficient cSW is set such that the O(a) order
terms in the action are cancelled, and depends non-trivially on the gauge cou-
pling g. It can be calculated directly in Lattice QCD via the partially conserved
axial current (PCAC) relation; see e.g. [15] for an explanation of this approach.

Chiral symmetry

The Wilson term, and hence many lattice actions, breaks chiral symmetry in
the massless mq = 0 limit. In the continuum, this symmetry in the Lagrangian
appears in the massless limit, and is given by the chiral transformation

ψ→ψ′ = eiαγ5ψ and ψ→ψ′ =ψeiαγ5 (1.68)

where γ5 = γ1γ2γ3γ4. This causes a decoupling of left-handed and right-handed
fermion fieldsψL,ψR. This symmetry is spontaneously broken in the continuum,
which gives rise to several effects such as the small mass of the pion.

Restoring this chiral symmetry in our fermion action turns out to be impos-
sible without sacrificing more vital properties of the fermion action, as it is part
of a no-go theorem [16]. We do not investigate it here, but this can be circum-
vented by defining a lattice-deformed version of chiral symmetry which has the
correct continuum limit; this leads to e.g. overlap fermions [17] and domain
wall fermions [18].
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1.3 Making measurements

Recall that the key construct for extracting physical information in QCD is the
expectation value (1.23). For Lattice QCD, this is given by the path integral

〈O〉=
1
Z

∫

DψDψDUµO[ψ,ψ, Uµ]exp(−S[ψ,ψ, Uµ]). (1.69)

This section gives an introduction to how we can measure physical properties
using this construct. While we do not make such measurements, understanding
them is important for determining the part that gauge configurations play, as
generating these is the main focus of this work.

1.3.1 The fermionic integral

Fermions ψ,ψ obey Fermi statistics, so the fields anti-commute in all combina-
tions. It follows that the fields are Grassmann numbers, which complicates the
evaluation of the expectation value path integrals.

To consider just the fermionic integral, we separate the expectation value
into fermionic and gluonic parts

〈A〉= 〈〈A〉F〉G, (1.70)

defining

〈A〉F =
1

ZF[U]

∫

DψDψA[ψ,ψ, U]e−SF [ψ,ψ,U] (1.71)

with fermionic partition function

ZF[U] =

∫

DψDψ e−SF [ψ,ψ,U], (1.72)

and

〈B〉G =
1
Z

∫

DU B[U]e−SG[U]. (1.73)

Given that the fermion fields are Grassmann numbers, we can evaluate the
fermionic partition function by applying the Matthews-Salam formula [19], giv-
ing

ZF[U] =

∫

DψDψ exp

 

−
∑

f

ψ f D fψ f

!

=
∏

f

det[D f ]. (1.74)
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Note that we have included the implicit sum over quark flavour f in the fermion
action for clarity. It follows that for purely gluonic observables B[U], the full
expectation value is given by

〈B〉=

∫

DU
∏

f det[D f ]B[U]e−SG[U]

∫

DU
∏

f det[D f ]e−SG[U]
. (1.75)

This integral is suitable for Monte Carlo methods; if we can generate a set of
fields {Ui} distributed according to 1

Z

∏

f det[D f ]e−SG[U], evaluating this integral
is simply a matter of taking the average of the operator over Ui,

〈B〉 ≈
1
N

N
∑

i=1

B[Ui]. (1.76)

The fields Ui are called gauge configurations. Generating such configurations is
highly non-trivial in practice, due in part to the size of D f . This process will be
discussed at length in chapter 2.

1.3.2 The Euclidean correlator

The most important kind of expectation value we take is called the Euclidean
correlator, which consists of two operators Ô1 and Ô2 which only act on lattice
sites with Euclidean times t1 and t2 > t1 respectively:

〈Ô2(t2)Ô1(t1)〉 ≡
1
Z

∫

DψDψDUµO2[t = t2;ψ,ψ, Uµ]O1[t = t1;ψ,ψ, Uµ]

× exp(−S[ψ,ψ, Uµ]). (1.77)

On the left hand side we have operators Ô, whereas on the right hand side we
have functionals O that map the values of the complex fieldsψ,ψ, Uµ at all lattice
sites (~x , t) to a complex value. The power of the Euclidean correlator is that it
is equal to (see e.g. [20] for a derivation)

〈Ô2(t2)Ô1(t1)〉=
∑

n

〈Ω|Ô2|n〉〈n|Ô1|Ω〉e−tEn , (1.78)

where t = t2−t1, |Ω〉 is the QCD vacuum state, and En and |n〉 are the eigenvalues
and eigenstates of the Hamiltonian operator Ĥ of our system

Ĥ|n〉= En|n〉 (1.79)
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with E0 ≤ E1 ≤ . . . ≤ Ek ≤ . . .. From this construction, it is possible to extract
the energies En and matrix elements, which then lead to physical properties.

As we are interested in the properties of particles, one of the most common
operators used in the Euclidean correlator are creation/annihilation operators.
These are operators Ô where Ô† (mesons)/O (baryons) creates a particle and
Ô destroys a particle with a particular set of quantum numbers. The operator
Ô can also create a state with the quantum numbers of the corresponding anti-
particle. These operators are formulated in terms of the fermion fields, combined
with gamma matrices and other algebraic objects such that the desired quantum
numbers and symmetries of the particle are obtained. The simplest example is
the quark field itself: ψ f (x) annihilates a quark or creates an anti-quark with
flavour f at x , while the conjugateψ f (x) creates a quark or annihilates an anti-
quark with flavour f at x .

Creation/annihilation operators can be used in the Euclidean correlator to
extract energy levels and matrix elements corresponding to the particle of in-
terest. For example, let ON (x) be an operator which creates a state with the
quantum numbers of the neutron at x . Then the Euclidean correlator for a neu-
tron propagating from space-time point 0 to x = (~x , t) is

〈ON (~x , t)ON (~0, 0)〉=
∑

n

〈Ω|ON (x)|n〉〈n|ON(0)|Ω〉e−tEn . (1.80)

This can be simplified by noting that the matrix elements will only be non-zero
when the state |n〉 has the same quantum numbers as the neutron. Taking these
states to be |Ni〉 with energy levels E(N)i , the Euclidean correlator is thus equal to

〈ON (~x; t)ON (~0;0)〉=
∑

Ni

〈Ω|ON (x)|Ni〉〈Ni|ON (0)|Ω〉e−tE(N)i . (1.81)

This construction is known as a particle correlator. From this, we can extract mass
of the neutron E(N)0 and its excited states E(N)i along with its matrix elements.

Momentum projection

It is often more convenient to consider operators with a definite momentum ~p
rather than definite position ~x . To accommodate this, we can Fourier-project the
operators

Õ(~p) =
∑

~x

e−i~p·~xO(~x), (1.82)
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and hence construct the momentum-projected correlator

〈Õ(~p; t)O(~x = ~0; 0)〉=
∑

~x

e−i~p·~x〈O(~x; t)O(~0;0)〉

=
∑

n

〈Ω|Õ(~p)|n〉〈n|O(~0)|Ω〉e−tEn(~p), (1.83)

where now the states |n〉 have definite momentum ~p. Note that the creation
operator O(0) remains in position space.

At zero momentum ~p = ~0, the correlator is exactly (1.81) summed over ~x .
At non-zero momenta ~p, the energies Ei(~p) should follow the dispersion relation

E(~p) =
q

E(~0) + |~p|2 (1.84)

up to discretisation errors.

1.3.3 Extracting the ground state energy

At large times t, exponentials in the Euclidean correlator (1.78) with larger en-
ergy terms drop out, leaving the ground state: for a particle correlator,

〈Ô(t)Ô†(0)〉 →
t large

〈Ω|Ô|0〉〈0|Ô†|Ω〉e−tE0 . (1.85)

To extract the ground state energy, which corresponds to the mass of the particle,
we can construct the effective mass

meff

�

t +
a
2

�

≡ ln
〈Ô(t)Ô†(0)〉
〈Ô(t + a)Ô†(0)〉

, (1.86)

which at large t tends to the ground state energy,

meff(t) →
t large

E0. (1.87)

We can thus determine E0 by fitting to a plateau in the effective mass. Such a
fit is generally required because at early times t the higher energy states still
dominate while at large times the signal is lost to noise.

For a more detailed discussion, including how to extract higher energy levels
and matrix elements, see e.g. [20].
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1.3.4 Fermionic operators

When considering observables involving fermions, we can simplify the fermionic
expectation value using Wick’s Theorem:

Theorem 1.1 (Wick’s Theorem). Let ai, ai where i = 1, . . . , N be a set of 2N
Grassmann numbers and M be a N ×N complex matrix. Then for some set of n
indices ik, jk ∈ 1, . . . , N , we have

1
ZF

∫ N
∏

k=1

(dakdak)
n
∏

m=1

(aim a jm)exp

�

N
∑

b,c=1

abMbcac

�

= (−1)n
∑

P(1,2,...,n)

sign(P)(M−1)i1, jP1
(M−1)i2, jP2

. . . (M−1)in, jPn
, (1.88)

where the sum on the second line indicates a sum over all possible permutations
P(1, 2, . . . , n) of the numbers 1,2, . . . , n, which are assigned to the numbers Pi,
and sign(P) is the sign of the permutation.

This theorem with N = 1 implies that the fermion expectation value

〈ψ(y)aαψ(x)bβ〉F = a−4D−1(y|x)aα,bβ . (1.89)

Thus, the Dirac matrix inverse D−1 is denoted the quark propagator, as it de-
scribes a quark propagating from x to y .

For more complicated constructions involving multiple fermions, Wick’s The-
orem implies that we take a sum over all possible Wick contractions. This is where
we take all possible rearrangements the product of fermion fields and other oper-
ators such that every fermion field ψ( f ) is on the left of a matching anti-fermion
field ψ( f ) with the same flavour: if any fields remain unmatched, the observ-
able is unphysical. For each valid permutation, we then factorize the fermionic
expectation value into one for each flavour of quark, then replace expectation
values with quark propagators (1.89).

For example, a lattice operator that creates a particle with the quantum num-
bers of the π+ is

O†
π+(x) = −u(x)γ5d(x), (1.90)

where f (x) ≡ ψ( f )(x) for notational convenience. This has overlap with the
continuum operator that actually creates the π+: in practice, there are many
lattice operators with the same quantum numbers. The fermionic part of the
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u

d

x y

Figure 1.4: The pion correlator

correlator for a propagating π+ is then given by (using summation notation)

〈Oπ+(y)O
†
π+(x)〉F = −〈d(y)γ5u(y)u(x)γ5d(x)〉F

= −(γ5)αβ(γ5)δγ〈d(y)aαu(y)aβu(x)bδd(x)bγ〉F
= (γ5)αβ(γ5)δγ〈u(y)aβu(x)bδd(x)bγd(y)aα〉F
= (γ5)αβ(γ5)δγ〈u(y)aβu(x)bδ〉u〈d(x)bγd(y)aα〉d
= (γ5)αβ(γ5)δγD

−1
u (y|x)aβ ,bδD−1

d (x |y)bγ,aα

= Tr[γ5D−1
u (y|x)γ5D−1

d (x |y)]. (1.91)

This trace can be visualised as a u quark propagator going from x to y , and a d
quark propagator going in the opposite direction, shown in Figure 1.4. Such a
visualisation is useful for determining which Wick contractions are required.

The full expectation value for this π+ correlator in a theory with just the up
and down quarks is then given by

〈Oπ+(y)Oπ+(x)〉= −
1
Z

∫

D[U]e−SG[U] det[Du]det[Dd]

× Tr[γ5D−1
u (y|x)γ5D−1

d (x |y)] (1.92)

where

Z =

∫

D[U]e−SG[U] det[Du]det[Dd]. (1.93)

Supposing we have Ui distributed according to 1
Z exp(−SG[U])det[Du]det[Dd],

which will be discussed in chapter 2, we can evaluate this as an average of the
trace over the ensemble of configurations.

1.4 Extrapolation to the physical point

We want to be able to calculate physical quantities from Lattice QCD. Theoret-
ically, this requires quark masses at their physical point, infinitely small lattice
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spacing, and infinitely large lattice extents. This is impossible to do in practice,
so instead we calculate on lattices with heavy quark masses, finite spacing and
finite extent, then extrapolate the observed quantities to the physical point. In
this work, we investigate several configuration generation improvements that
can help produce lattices closer to the physical point and hence improve predic-
tions.

1.4.1 Quark mass extrapolation: mq→ mphys

It is only recently that we have been able to simulate Lattice QCD with quark
masses at the physical point [2, 4, 5, 21], i.e. with particle masses at their phys-
ical value. This is because using such light masses is extremely computationally
intensive: improving this situation is the main topic of this thesis. Hence, we still
usually have unphysically heavy quarks, and we need to extrapolate the quark
masses to the physical point. This is often referred to as chiral extrapolation, as
in the two-flavour up/down quark case, the quark masses at the physical point
are almost zero and hence almost at the continuum chirally-symmetric point
mq = 0.

The framework of chiral perturbation theory (χPT) is usually used for the
physical mass extrapolation. This process involves selecting some reference me-
son masses that fully represent the quark matter present in the simulation: usu-
ally the pion π for the up and down, and the kaon K if strange is involved. Then
we expand all others hadron masses in terms of these reference mass parame-
ters about the physical point mq = mphys, taking into account the symmetries of
QCD; this is distinct from pure χPT, where we expand about the massless point
mq = 0. The resultant expressions can be fit to mass data from different lattices
to determine the coefficients, and hence provide predictions for hadron masses
aside from the reference particles.

In two-flavour simulations where the up and down quarks are degenerate,
choosing suitable lattices for this extrapolation is straightforward as there is only
one bare mass parameter. When we add more quarks with different physical
masses, e.g. the strange quark, we must decide on an extrapolation trajectory
in quark mass space to the physical point. Many set the strange quark mass
to its physical value, then go along a trajectory reducing the up/down quark
mass. QCDSF [22] uses a ‘symmetric point’ extrapolation, where one starts at
the point where all three quark masses are equal and have the same sum as in the
continuum, then extrapolates towards the physical point. SU(3) flavour singlet
quantities, i.e. quantities invariant under a permutation of the quark flavours
{u, d, s}, remain relatively constant along this path, so this simplifies some of the
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χPT expressions for hadron masses.

1.4.2 Finite volume extrapolation: L→∞

We are limited to finite lattice sizes, and quantities observed in a box are different
to those observed in free space. Such effects are known as finite volume effects.
These effects are observed to become small past a certain lattice size, with a
common rule-of-thumb being mπL > 4. To show that the finite volume effects
of an extrapolation are minimal, it is usual to compare the values of several
quantities (e.g. meson masses) across different lattice sizes at similar bare quark
masses. After a certain size, the quantity should stabilise, indicating where finite
volume effects can be neglected.

1.4.3 Finite spacing extrapolation: a→ 0

The continuum extrapolation a→ 0 is required for physical results. However, we
must simultaneously increase the number of lattice sites in order to avoid finite
volume effects, thus increasing the computation cost. A common way to take
this limit is to sample several values of a at a nearly-fixed volume V = L3 × LT ,
then extrapolate to a = 0.
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Gauge configuration generation

In order to effectively evaluate expectation values in Lattice QCD (1.69)

〈O〉=
1
Z

∫

DψDψDUµO[ψ,ψ, Uµ]exp(−S[ψ,ψ, Uµ]),

we must have a large set of configurations U distributed according to exp(−S)
(recalling section 1.3.1). This chapter is devoted to describing how we generate
such configurations.

2.1 Markov chains

A Markov chain is a series of states

X0→ X1→ X2→ . . .→ Xn→ . . . (2.1)

for some system produced by a Markov process, where each successive state is
produced by an update step that only depends on the previous state. The Markov
process is characterised by the conditional transitional probability distribution
P(X ′|X ), which reads “the probability of going to state X ′ given we are at state
X ”. Here, we only consider time-homogeneous Markov chains, so the transi-
tion probability is independent of the step number n. By the basic properties of
probabilities, P(X ′|X ) satisfies

0≤ P(X ′|X )≤ 1 and

∫

dX ′ P(X ′|X ) = 1. (2.2)

If we denote the probability of being in state X at step n as Pn(X ), we can
write a recursion relation

Pn+1(X ) =

∫

dX ′P(X |X ′)Pn(X
′), (2.3)

25
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where the right-hand side is the net probability of transitioning to state X from
all possible states X ′ at step n, including X ′ = X .

In order to generate configurations for Lattice QCD, we want a Markov chain
that samples a pre-determined probability distribution, namely exp(−S). This
requires the target distribution to be the equilibrium distribution of the Markov
chain. Denoting the target distribution as Π(X ), the required properties are:

• Π(X ) must be a stationary distribution. That is, if Pn(X ) = Π(X ) then
Pn+1(X ) = Π(X ). Using the recursion relation (2.3), this means that

Π(X ) =

∫

dX ′P(X |X ′)Π(X ′). (2.4)

Inserting a complete sum of probabilities (2.2) then gives the balance equa-
tion

∫

dX ′P(X ′|X )Π(X ) =
∫

dX ′P(X |X ′)Π(X ′). (2.5)

• For any initial probability distribution P0(X ), we have

lim
n→∞

Pn(X ) = Π(X ). (2.6)

This also implies that Π(X ) is a unique stationary distribution.

The Markov chain must satisfy certain properties in order for an equilibrium
distribution to exist, which will now be described.

Definition 2.1. Denote the probability of a state X reaching state X ′ for the first
time after n steps as f (n)(X ′|X ). Then the state X is recurrent iff

∞
∑

n=1

f (n)(X |X ) = 1, (2.7)

i.e. starting from state X , we will always reach X again. A Markov chain is
recurrent iff all states X are recurrent.

Definition 2.2. A state X is positive recurrent iff the mean recurrence time is
finite:

∞
∑

n=1

nf (n)(X |X )<∞. (2.8)

A Markov chain is positive recurrent iff all states X are positive recurrent.
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Definition 2.3. A state X is aperiodic iff returns to a particular state X can occur
sequentially. Formally,

k = gcd
�

n> 0 : f (n)(X |X )> 0
	

= 1 (2.9)

where ‘gcd’ denotes the greatest common divisor. A sufficient condition for ape-
riodicity is

P(X |X )> 0. (2.10)

A Markov chain is aperiodic iff all states X are aperiodic.

Definition 2.4. A Markov chain is ergodic iff it is both aperiodic and positive
recurrent. A sufficient condition for ergodicity is that for every X , X ′,

P(X ′|X )> 0. (2.11)

Definition 2.5. A Markov chain is irreducible iff for each state X and X ′ 6= X ,
there exists an integer n> 0 such that

g(n)(X ′|X ) =
∫

dX1dX2 . . . dXn−1P(Xn|Xn−1)P(Xn−1|Xn−2) . . . P(X1|X0)> 0

(2.12)
where X0 = X and Xn = X ′. A sufficient condition for irreducibility is that for
every X , X ′,

P(X ′|X )> 0.

Given these definitions, we now present a theorem without proof for the
existence of an equilibrium distribution.

Theorem 2.1. If and only if a Markov chain is ergodic and irreducible, then
there exists a unique equilibrium distribution Π(X ). That is, Π(X ) satisfies the
balance equation

Π(X ) =

∫

dX ′P(X |X ′)Π(X ′), (2.13)

and for any initial probability distribution P0(X ),

lim
n→∞

Pn(X ) = Π(X ). (2.14)

We can thus generate states Xn from the equilibrium distribution Π(X ) by
using a Markov chain that satisfies Theorem 2.1. The general procedure consists
of three stages:
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• Initialisation: choose an initial state X0 = X , which implies initial proba-
bility distribution P0(X ) = δ(X − X0).

• Thermalisation: apply enough Markov chain updates Ntherm such that equi-
librium is reached.

• Measurement: once thermalised, take the generated states as part of the
configuration set. Note that these may be correlated.

Techniques using Markov chains in this way, namely to generate Monte Carlo
samples of an integral, are known as Monte Carlo Markov Chain (MCMC) meth-
ods.

Theorem 2.1 describes how to create a Markov chain with an equilibrium
distribution, and this is relatively easily to do in practice: e.g. P(X ′|X ) > 0
is sufficient. The real trick is engineering a particular pre-defined equilibrium
distribution Π(X ). The guide here is the balance equation (2.5). We usually
show the sufficient condition of detailed balance to prove that a given distribution
is the equilibrium one: this is where the balance equation holds term-wise, i.e.

P(X ′|X )Π(X ) = P(X |X ′)Π(X ′). (2.15)

2.1.1 The Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm [23, 24], a.k.a. the Metropolis algorithm, is
a Markov chain update step that can produce a given equilibrium distribution.
The Markov update step is as follows:

1. Given the state X = Xn−1, choose a candidate state X ′ through some a
priori probability P0(X ′|X ).

2. Accept the new state Xn = X ′ with probability

Pacc(X
′|X ) =min

�

1,
P0(X |X ′)P(X ′)
P0(X ′|X )P(X )

�

, (2.16)

where P(X ) is some probability distribution, otherwise recycle Xn = X as
the new state.

Theorem 2.2. The Metropolis-Hastings algorithm has the equilibrium distribu-
tion P(X ) when P0(X ′|X )> 0 and P(X )> 0 for all X , X ′.
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Proof. If P0(X ′|X )> 0 and P(X )> 0, it follows that our total conditional transi-
tion probability P(X ′|X ) = P0(X ′|X )Pacc(X ′|X )> 0 for all X , X ′. Thus, the Markov
chain process is ergodic and irreducible as required for Theorem 2.1, and hence
there is an equilibrium distribution.

Finally, we show that the given probability distribution P(X ) is the equilib-
rium distribution by proving the detailed balance equation.

When P0(X |X ′)P(X ′)/P0(X ′|X )P(X )≤ 1,

P(X ′|X )P(X ) = P0(X
′|X )Pacc(X

′|X )P(X )

= P0(X
′|X )

P0(X |X ′)P(X ′)
P0(X ′|X )P(X )

P(X ) [implied by (2.16)]

= P0(X |X ′)P(X ′)

= P0(X |X ′)Pacc(X |X ′)P(X ′)
�

as
P0(X ′|X )P(X )
P0(X |X ′)P(X ′)

≥ 1
�

= P(X |X ′)P(X ′).

When P0(X |X ′)P(X ′)/P0(X ′|X )P(X )≥ 1, the argument is as above with X ↔
X ′.

2.2 Pure gauge theory

In order to determine how to use the Metropolis algorithm to generate lattice
gauge configurations, we first consider the case of pure gauge theory. The gen-
erated configurations are Un and the desired equilibrium distribution is P(U) =
e−S[U] where S[U] = SG[U]. We will almost always use an update step that is
symmetric, that is P0(U ′|U) = P0(U |U ′), so we can write the Metropolis accep-
tance probability as

Pacc(U
′|U) =min

�

1, exp[−∆S[U]]
�

(2.17)

where ∆S[U] = S[U ′] − S[U] is the change in the action. The challenge is
finding a Metropolis update step that significantly changes the gauge field for
good sampling but also provides good acceptance rates 〈Pacc〉.

We first consider a local update step for pure Wilson gauge theory (1.48).
This is where a single link variable Uµ(x) (µ, x fixed) is updated to Uµ(x)′ per
Markov chain step.

The resultant change in the action ∆S[U] can be determined by examining
the field in the neighbourhood of the link variable. With the Wilson gauge action

S[U] =
2
g2

∑

x∈Λ

∑

µ>ν

ReTr
�

I− Uµν(x)
�

, (2.18)
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Uµ(x)

Uν(x + aµ̂)

U−µ(x + aµ̂+ aν̂)

U−ν(x + aν̂)

U−ν(x + aµ̂)

U−µ(x + aµ̂− aν̂)

Uν(x − aν̂)
x

ν

µ

Figure 2.1: Two of the six staples surrounding Uµ(x), specifically those in the ν and −ν direc-
tions.

the part of the action dependent on the selected link variable is

S[Uµ(x)]loc =
2
g2

Re Tr
�

I− Uµ(x)A
�

(2.19)

where A is the sum over the so-called staples surrounding Uµ(x):

A=
∑

ν6=µ

�

Uν(x + aµ̂)U−µ(x + aµ̂+ aν̂)U−ν(x + aν̂)

+ U−ν(x + aµ̂)U−µ(x + aµ̂− aν̂)Uν(x − aν̂)
�

. (2.20)

These are plaquettes involving Uµ(x) with Uµ(x) removed: see Figure 2.1 for
a depiction. As the sum over staples does not change when Uµ(x) changes, it
follows that the change in the action when Uµ(x)→ Uµ(x)′ is given by

∆S[Uµ(x)]loc = −
2
g2

ReTr
�

(Uµ(x)
′ − Uµ(x))A

�

. (2.21)

The choice of candidate Uµ(x)′ should be ‘close’ to Uµ(x) to ensure a good
Metropolis acceptance rate. One way to achieve this is to multiply Uµ(x) by a
random element X of SU(3) near the identity matrix I,

Uµ(x)
′ = X Uµ(x), (2.22)

chosen such that X and X−1 are equally likely and rescaling if necessary to ensure
that Uµ(x)′ ∈ SU(3). A complete local update step is then as follows
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1. Choose a particular gauge link Uµ(x), and propose a candidate link vari-
able Uµ(x)′ based on e.g. (2.22).

2. Compute the change in the action ∆S via (2.21). Accept the candidate
state with probability min(1, exp(−∆S)).

To ensure good sampling of the gauge field distribution, local updates are often
repeated across the entire lattice in what are known as sweeps.

In many cases however, local update algorithms are not feasible, due to the
action containing non-local terms. This is the case for dynamical QCD, where
non-local update algorithms, in which large parts of the gauge field are updated
at each step, tend to perform substantially better. The most commonly used
algorithm in practice is Hybrid Monte Carlo, which will be discussed at length
in section 2.4.

2.2.1 A recipe for gauge configuration generation

Now we have the tools to describe a complete gauge configuration generation
algorithm. The goal is to generate configurations Un distributed according to
exp(−S[U]). As noted earlier, this process consists of three major stages: initial-
isation, thermalisation and measurement of the gauge fields.

Initialisation

We can choose any configuration U we like to start with. Two common choices
are:

• A cold start, where all the gauge links are set to unity Uµ(x) = I.

• A hot start, where all the gauge links are set to random elements of SU(3).

These two choices can be combined to obtain arbitrary initial values of the av-
erage gauge field 〈Uµ(x)〉.

Thermalisation

Once the gauge fields U are initialised, we then need to thermalise the configu-
ration. This means applying Markov chain updates until we are in equilibrium.
The number of updates required is dependent on the lattice size and the gauge
coupling g.

One way to determine whether we are in equilibrium is to compare the value
of a gluonic quantity between Markov chains with a cold start and with a hot
start – once they converge, we are near equilibrium.
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Measurement

Supposing the Markov chain has reached equilibrium, we can start to take con-
figurations as part of our ensemble {Ui} in order to measure observables via
Monte Carlo (1.76),

〈B〉 ≈
1
N

N
∑

i=1

B[Ui].

Consecutive configurations in the Markov chain can be highly correlated how-
ever, which needs to be taken into account in the statistical analysis of the mea-
sured observables. See section B.2 for a discussion. A simple way to deal with
such autocorrelations is to only take every Ncorr-th configuration into our ensem-
ble, ensuring that Ncorr > τ where τ is (an estimate of) the integrated autocor-
relation time (B.15).

2.3 Simulating fermions

Now we consider extending Markov Chain Monte Carlo techniques to the full
Lattice QCD theory with fermions. Recalling (1.75), the goal is to generate gauge
field configurations Ui distributed according to

P(U) =
1
Z

∏

f

det[D f [U]]e−SG[U]. (2.23)

For a reasonably sized lattice with Λ lattice sites, evaluating the determinants
det[D f ] directly is prohibitively expensive because D f is a 12Λ×12Λ matrix. In
order to evaluate the fermion determinant, we can write the determinant as an
integral over complex fields φ (Theorem A.1):

det[D f ]∝
∫

DφDφ∗ exp
�

−φ†(D f )−1φ
�

. (2.24)

This is similar to the Matthews-Salam formula (1.74), but note the matrix in-
verse. The advantage of this formulation compared to the original integral over
fermions fields ψ is that the integral is not Grassmannian, so we can evaluate it
by stochastic means. We denote the fields φ pseudofermions, as they represent
fermions but obey bosonic statistics.

With this new form of the determinant (2.24), one can naively write a prob-
ability distribution for the gauge fields Ui and pseudofermions φ f :

P(U ,φ f ) =
1
Z

exp

 

−SG[U]−
∑

f

φ†
f (D

f [U])−1φ f

!

. (2.25)
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Denoting SF =
∑

f φ
†
f (D

f [U])−1φ as the pseudofermion action and S = SG + SF

as the lattice action, this simplifies to

P(U ,φ f ) =
1
Z

e−S[U ,φ f ]. (2.26)

However, for many Dirac matrices D f (including Wilson), the matrix element
φ†

f (D
f [U])−1φ f is not guaranteed to be non-negative for all φ f , i.e. D f [U] is

not necessarily positive semi-definite. This is problematic, as negative values of
SF cause the Gaussian integral (2.24) to diverge. This causes large instabilities
when generating gauge fields. Negative values of SF also lead to a negative
probablity distribution for φ f , which invalidates the use of Monte Carlo impor-
tance sampling via (1.76) to evaluate operators. Hence, in order to use (2.26)
as a probability distribution in Monte Carlo sampling, we need to modify the
pseudofermion action SF .

The most common way to obtain positive semi-definiteness requires two
flavours of fermion with degenerate masses. In practice, these are almost al-
ways the up and the down quarks Du = Dd = D, for these have near-degenerate
masses in nature. Assuming det D ∈ R, we can combine the product of determi-
nants as follows:

det Du det Dd = (det D)2 = det D† det D = det(D†D). (2.27)

Then we can apply (2.24) to express this as an integral

det(D†D) =

∫

DφDφ∗ exp
�

−φ†(D†D)−1φ
�

, (2.28)

which gives rise to the double-flavour pseudofermion action

SF = φ
†(D†D)−1φ. (2.29)

The matrix D†D is positive semi-definite by construction, so this fixes the is-
sue. Utilising this pseudofermion action, we can evaluate expectation values
by generating configurations (Ui,φi) distributed according to 1

Z exp (−S[U ,φ])
and taking an ensemble average of the observable. The pseudofermion field φ
is easy to sample as it can be related to a Gaussian distributed χ ∼ exp(−χ†χ)
via φ = D†χ, so in practice we do not retain φi for measurement during the
Markov chain. The challenge is in generating appropriate gauge fields Ui.

In the case of the strange quark, there is no obvious same-mass partner, so we
cannot use the double-flavour action (2.29). Techniques for simulating singular
flavours of fermions are explored in section 2.6.
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2.3.1 Using Metropolis-Hastings

Now that we have a valid probability distribution for the gauge fields in the
presence of two degenerate fermions (2.29), we can formulate the appropriate
Metropolis-Hastings method:

1. Take an initial guess of the gauge field, U0

2. Sample φi = φ from the distribution 1
Z exp (−SF[U ,φ]). This is done by

generating Gaussian distributed χ ∼ exp
�

−χ†χ
�

then assigning φ = D†χ,
for then χ†χ = φ†D−1(D†)−1φ = φ†(D†D)−1φ.

3. Update the gauge field from Ui−1 to U ′ by some process with the properties
given in Theorem 2.2.

4. Accept the new gauge field Ui = U ′ with probability

min (1, exp(−∆S)) , (2.30)

otherwise Ui = U .

5. Repeat from step 2.

Using a local update algorithm here is nowhere near as effective as for pure
gluodynamics. This is because the fermion action SF involves the inverse of the
Dirac matrix D, so a local update causes broad non-local changes ∆S. Com-
pared to an O(1) calculation in gluodynamics, determining the change in the
action here requires a O(Λ) operation. As a local update algorithm needs to be
repeated at each lattice site to be effective, the full algorithmic cost is O(Λ2).
This is prohibitively expensive for most lattices of interest. While it is possible
to formulate SF to be local and thus avoid this issue [25], this is not as efficient
to simulate as other methods and few optimisations exist.

We therefore use a global update algorithm when simulating full Lattice QCD.
If this update is done completely randomly, however, we will still require a O(Λ2)
cost to control the large changes in the action∆S that result. Instead, we employ
global updates which are not completely random, but rather attempt to go in
directions where the action S is roughly conserved. Any potential bias in such
methods is corrected by the Metropolis acceptance step.
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2.4 Hybrid Monte Carlo

2.4.1 Introduction

The de facto standard method for generating gauge configurations in Lattice QCD
is Hybrid Monte Carlo (HMC) [26].

In HMC, we introduce momentum fields P conjugate to the gauge fields U .
As momentum is a real field, we must consider what parts of the SU(3) gauge
field the momentum is conjugate to. It is helpful to express U in terms of the
SU(3) generators:

Uµ(x) = exp

�

i
8
∑

i=1

ω(i)
µ
(x)t(i)

�

= exp(iQ), (2.31)

where Q is an element of the algebra su(3), ω(i)
µ
(x) are real fields, and t(i) are

the generators (cf. (1.4)). We thus introduce momentum fields P(i)
µ
(x) conjugate

to the real fields ω(i)
µ
(x). These eight momentum fields can be neatly combined

into a single element of su(3) via

Pµ(x) =
8
∑

i=1

P(i)
µ
(x)t(i), (2.32)

which is comparable to Q above.
Using the conjugate momentum fields, we construct the Hamiltonian

H[P, U] =
∑

Tr [P2] + S[U ,φ], (2.33)

where we have used the relation
1
2

∑

x∈Λ,µ,i

�

P(i)
µ
(x)
�2
=
∑

x∈Λ,µ

Tr[Pµ(x)
2]. (2.34)

The benefit of this construction is that the Hamiltonian is preserved by Hamil-
ton’s equations,

dω(i)

dt
=
∂ H
∂ P(i)

= P(i) and
dP(i)

dt
= −

∂ H
∂ω(i)

(2.35)

where t is the simulation time through which we imagine the Hamiltonian is
evolved. Now, if we write expectation values in the form

〈O〉=

∫

D[U]exp(−S[U])O[U]
∫

D[U]exp(−S[U])

=

∫

D[U]D[P]exp
�

−Tr[P2]− S[U]
�

O[U]
∫

D[U]D[P]exp (−Tr[P2]− S[U])
, (2.36)
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it suggests that configurations (P, U) from the distribution e−H correspond to
gauge configurations U distributed according to e−S as desired for expectation
values. Hence, if we engineer a Metropolis update step based upon integrating
Hamilton’s equations, the approximate preservation of H should allow for high
acceptance rates. This forms the central idea of Hybrid Monte Carlo.

2.4.2 Deriving the method

In order to put this idea into practice, we must discretise Hamilton’s equations
(2.35) to find update steps for U and P. The first differential equation can be
rewritten as

8
∑

i=1

dω(i)

dt
t(i) =

8
∑

i=1

P(i) t(i),

=⇒
dQ
dt
= P. (2.37)

Upon discretisation with step-size ε, we get the integration step

Q(ε) =Q(0) + εP(0),

=⇒ −i ln U(ε) = −i ln U(ε) + εP(0),

=⇒ U(ε) = eiεP(0)U(0). (2.38)

This integration step can be used to evolve the Hamiltonian system, and it is
often denoted the time step.

The second of Hamilton’s equations can be written as

dP
dt
= −

8
∑

i=1

∂ H
∂ω(i)

t(i). (2.39)

Comparing the right-hand side to a vector derivative

∂ f
∂ ~v
=
∑

i

∂ f
∂ vi

v̂i, (2.40)

we can write this equation simply as

dP
dt
= −

∂ H
∂Q
= −

dS
dQ

. (2.41)

Upon discretisation, this leads to the integration step

P(ε) = P(0)− ε
dS
dQ

�

�

�

�

t=0

, (2.42)
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which is denoted the space step. The derivative dS
dQ ≡ F is called the force term.

We combine these two integration steps into what is known as a molecular
dynamics trajectory to evolve the system from (P, U) to a new candidate state
(P ′, U ′). This new state then undergoes a Metropolis acceptance step, which is
slightly modified from the usual form to

Pacc =min
�

1, exp
�

H[P, U]−H[P ′, U ′]
��

. (2.43)

We use this particular acceptance criteria to ensure that detailed balance (2.15)
is satisfied by our desired equilibrium distribution e−S[U]. This also requires a
molecular dynamics trajectory which is area-preserving and reversible, proper-
ties which we now define.

Definition 2.6 (Area-preserving). A molecular dynamics process that updates
(P, U) to (P ′, U ′) is area-preserving if the measure D[P]D[U] remains unchanged.
To be precise, the Jacobian has determinant 1:

det
∂ (P ′, U ′)
∂ (P, U)

= 1. (2.44)

Definition 2.7 (Reversibility). Denote the probability of a molecular dynamics
process producing candidate state (P ′, U ′) given initial state (P, U) as

Tmd(P
′, U ′|P, U). (2.45)

Then a molecular dynamics process (P, U)→ (P ′, U ′) is reversible iff

Tmd(P
′, U ′|P, U) = Tmd(−P, U | − P ′, U ′). (2.46)

As the processes we consider are deterministic (given P and U), this is equivalent
to saying that reversing the momenta in the final state then performing the same
molecular dynamics trajectory produces the initial gauge configuration U with
reversed momentum −P.

Theorem 2.3 (HMC equilibrium). If the molecular dynamics trajectory in HMC
is area-preserving and reversible, then the HMC process has equilibrium distri-
bution e−S[U].

Proof. To show this is the case, we prove the detailed balance equation

e−S[U]T (U ′|U) = e−S[U ′]T (U |U ′), (2.47)



38 CHAPTER 2. GAUGE CONFIGURATION GENERATION

where T (U ′|U) is the probability of transitioning to state U ′ given we were in
state U . The total transition probability is given by an integral over all possible
initial and final momenta states:

T (U ′|U) =
∫

D[P]D[P ′]Tmd(P
′, U ′|P, U)TA(P

′, U ′|P, U)e−Tr[P2], (2.48)

where Tmd is the probability of transition during the molecular dynamics trajec-
tory, TA is the probability of accepting the state, and e−Tr[P2] is the probability of
selecting P in the first place. Note that this integral does not have a Jacobian
factor because the molecular dynamics trajectory is area-preserving.

Substituting (2.48) into the left-hand side of the detailed balance equation
(2.47) gives

e−S[U]T (U ′|U) =
∫

D[P]D[P ′]Tmd(P
′, U ′|P, U)TA(P

′, U ′|P, U)e−S[U]−Tr[P2]

=

∫

D[P]D[P ′]Tmd(P
′, U ′|P, U)min

�

1, eH[U ,P]−H[U ′,P ′]
�

e−H[U ,P]

=

∫

D[P]D[P ′]Tmd(P
′, U ′|P, U)min

�

e−S[U]−Tr[P2], e−S[U ′]−Tr[P ′2]
�

,

(*)

where the last step used the positivity of e−H[U ,P]. Now we apply reversibility:

e−S[U]T (U ′|U) =
∫

D[P]D[P ′]Tmd(−P, U | − P ′, U ′)min
�

e−S[U]−Tr[P2], e−S[U ′]−Tr[P ′2]
�

=

∫

D[P]D[P ′]Tmd(P, U |P ′, U ′)min
�

e−S[U]−Tr[P2], e−S[U ′]−Tr[P ′2]
�

= e−S[U ′]T (U |U ′),

where we flipped the sign of P and P ′, then noted the symmetry (P, U)↔ (P ′, U ′)
with expression (*).

Theorem 2.3 ensures that the Hybrid Monte Carlo algorithm works as in-
tended. In summary, the steps involved to produce gauge field configurations
via HMC are as follows (also see section 2.2.1):

1. Choose some initial state U = U0.

2. Generate pseudofermionsφ from the Gaussian distributedχ ∼ exp(−χ†χ).
In the case of SF = φ†(M †M)−1φ, we use φ = M †χ.
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3. Generate conjugate momenta P which are Gaussian distributed P(i) ∼
exp(−(P(i))2).

4. Evolve the Hamiltonian system using the integration steps (2.38) and (2.42)
to construct a reversible, area-preserving trajectory from (P, Ui−1) to can-
didate state (P ′, U ′). See section 2.4.3 for examples.

5. Accept the candidate state U ′ as Ui with probability

Pacc =min
�

1, e−∆H
�

(2.49)

where ∆H = H[P ′, U ′] − H[P, U]. Otherwise, recycle the previous state,
Ui = Ui−1.

6. If the system is thermalised, save the configuration Ui for measurements.

7. Go to step 2, until the desired number of configurations are generated.

As Hamilton’s equations preserve H, the molecular dynamics process with discre-
tised steps approximately preserves H. This means that the average acceptance
rate 〈Pacc〉 should be high, supposing that the integration steps are small enough.

2.4.3 Molecular dynamics integrators

Hybrid Monte Carlo requires molecular dynamics integration schemes built from
the two steps (2.38) and (2.42) which are area-preserving and reversible. An-
other typical requirement is that the sum of the integration step sizes ε for both
kinds of steps are equal, defining a trajectory length τ, such that we sufficiently
change P and U . Here, we prove some theorems that are helpful for constructing
suitable schemes, then present a couple of examples.

To begin with, we need a concrete definition of an integration scheme:

Definition 2.8 (Integration scheme). An integration scheme M̂ (a.k.a. integrator)
is a deterministic process which modifies our initial state (P, U) to some final state
(P ′, U ′):

(P ′, U ′) = M̂(P, U). (2.50)

Often, an integration scheme can be parametrized by a step-size ε, which we
will denote M̂[ε].

Using this notation, we denote the two atomic HMC integration steps

Ŝ[ε] : (P, U)→ (P − εF[U], U) (2.51a)

and T̂[ε] : (P, U)→ (P, eiεP U). (2.51b)
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We call an integration scheme made up purely of these two steps symplectic, be-
cause these steps are tangential to planes in phase space where the Hamiltonian
is constant.

First, we consider theorems relating to area-preservation:

Theorem 2.4. Let Â and B̂ be area-preserving integration schemes. Then so is
ÂB̂.

Proof. Let’s write the action of the combined scheme on an initial state as

ÂB̂(P, U) = Â(P ′, U ′) = (P ′′, U ′′).

Then the Jacobian for the full scheme is given by

JAB =
∂ (P ′′, U ′′)
∂ (P, U)

=
∂ (P ′′, U ′′)
∂ (P ′, U ′)

∂ (P ′, U ′)
∂ (P, U)

= JAJB.

The determinant of this Jacobian is then det J = det JAJB = det JA det JB = 1 by
assumption.

Theorem 2.5. The two atomic HMC integration steps are area-preserving, and
so, by Theorem 2.4, all symplectic integrators are area-preserving.

Proof. Consider the Jacobian for the space step Ŝ[ε]:

JS =

�

∂ P ′

∂ P
∂ U ′

∂ P
∂ P ′

∂ U
∂ U ′

∂ U

�

=

�

1 0
ε ∂ F
∂ U 1

�

Hence, det JS = 1, and the space step is area-preserving.
Consider the Jacobian for the time step T̂[ε]:

JT =

�

∂ P ′

∂ P
∂ U ′

∂ P
∂ P ′

∂ U
∂ U ′

∂ U

�

=

�

1 iεeiεP U
0 1

�

Hence, det JT = 1, and the time step is area-preserving.

In order to determine whether a scheme is reversible, we first write the re-
versibility condition in our notation. An integration scheme M̂ is reversible iff
for every (P, U)

M̂(−P ′, U ′) = (−P, U), (2.52)

where (P ′, U ′) = M̂(P, U).
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Theorem 2.6. Our atomic time and space integration steps are reversible.

Proof. First, let’s consider (P ′, U ′) = Ŝ[ε](P, U) = (P − εF[U], U). Then:

Ŝ[ε](−P ′, U ′) = (−P ′ − εF[U ′], U ′) = (−(P − εF[U])− εF[U], U) = (−P, U).

Hence, the space step is reversible. Next, let’s consider (P ′, U ′) = T̂[ε](P, U) =
(P, eiεP U). Then:

T̂[ε](−P ′, U ′) = (−P ′, e−iεP ′U ′) = (−P, e−iεP eiεP U) = (−P, U).

Hence, the time step is reversible.

We can construct larger integrators from these atomic steps by using the next
two theorems.

Theorem 2.7 (Integrator powers). Let M̂ be a reversible integration scheme.
Then for any n ∈ N, M̂ n is also reversible.

Proof. This is easily proved by induction. The n= 1 case is trivial.
Next, suppose M̂ k is reversible. Then if we write

M̂ M̂ k(P, U) = M̂(P ′, U ′) = (P ′′, U ′′),

then the reversed integration is

M̂ M̂ k(−P ′′, U ′′) = M̂ kM̂(−P ′′, U ′′)

= M̂ k(−P ′, U ′)

= (−P, U),

using the reversibility of M̂ and M̂ k. So M̂ k+1 is reversible.

Theorem 2.8 (Symmetric integrators). Let M̂i, i = 1, . . . , n be reversible inte-
gration schemes. Then the product

M̂ =
n
∏

i=1

M̂i (2.53)

is reversible if M̂i = M̂n−i+1∀i. We denote such schemes symmetric.

Proof. This can be proved by induction with two base cases, n= 1,2, to account
for an odd/even number of sub-schemes.
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The n= 1 case is trivial. For n= 2, we have M̂2M̂1 = M̂2
1 , which is reversible

by Theorem 2.7.
Next, suppose that

∏k
i=1 M̂i = K̂ is reversible for some integer k and re-

versible M̂i = M̂k−i+1. Then we can write the k+ 2 case as

k+1
∏

i=0

M̂i = L̂K̂ L̂

for some reversible L̂ = M̂0 = M̂k+1. Let’s write the action of the integrator on
an initial state as

L̂K̂ L̂(P, U) = L̂K̂(P ′, U ′)

= L̂(P ′′, U ′′)

= (P ′′′, U ′′′).

Then the reversed integration is

L̂K̂ L̂(−P ′′′, U ′′′) = L̂K̂(−P ′′, U ′′)

= L̂(−P ′, U ′)

= (P, U),

using the reversibility of L̂ and K̂ . Hence, the n= k+ 2 case is true.
Therefore, the n ∈ N case is true.

Combining Theorems 2.5 and 2.8, we therefore find that symmetric symplec-
tic integrators are area-preserving and reversible as required for HMC. Suitable
schemes can also be repeated as many times as desired while preserving these
properties via Theorem 2.7.

The most basic example of a symmetric symplectic integrator is the leap-frog
integrator, which has a space-time-space version

ŜLFSTS[h] = Ŝ[h/2]T̂[h]Ŝ[h/2] (2.54)

and a time-space-time version

ŜLF TST [h] = T̂[h/2]Ŝ[h]T̂[h/2]. (2.55)

The combined step-size h here is in ‘simulation’ time, and we can repeat these
integration steps n times to form a trajectory of length τ= nh:

M̂[τ] = (ŜLPF[h])
n. (2.56)
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Leap-frog integration schemes with n= τ/h steps have discretisation errorO(h2),
and hence they are second order. The structure of (2.56) allows one to easily
change the accuracy of the scheme by changing the step count n, which is espe-
cially useful for tuning the acceptance rate 〈Pacc〉.

A class of symmetric symplectic integrators with better integration errors are
the minimal norm integrators, discovered by Omelyan, Mryglod, and Folk [27].
The simplest example is the second-order minimal norm integrator, which again
has both a space-time-space version

Ŝ2MNSTS[h] = Ŝ[λh]T̂[h/2]Ŝ[(1− 2λ)h]T̂[h/2]Ŝ[λh] (2.57)

and a time-space-time version

Ŝ2MN TST [h] = T̂[λh]Ŝ[h/2]T̂[(1− 2λ)h]Ŝ[h/2]T̂[λh]. (2.58)

Here 0≤ λ≤ 1 is a parameter that can be tuned to optimise the integrator error.
The second-order minimal norm schemes with n= τ/h steps have discretisation
error O(h2), the same order as leap-frog. However, compared to a leap-frog
scheme with the same cost (i.e. same number of space steps Ŝ), these schemes
have about three times smaller errors.

The next higher order scheme is a fourth-order minimal norm scheme. This
can take several forms, but two of note are the ‘velocity’ version with 5 force
evaluations

Ŝ4MN5FV [h] = Ŝ[θh]T̂[ρh]Ŝ[λh]T̂[µh]Ŝ[(1− 2(λ+ θ ))/2h]

× T̂[(1− 2(µ+ρ))/2h]Ŝ[(1− 2(λ+ θ ))/2h]

× T̂[µh]Ŝ[λh]T̂[ρh]Ŝ[θh] (2.59)

and the ‘position’ version with 4 force evaluations

Ŝ4MN4F P[h] = T̂[ρh]Ŝ[λh]T̂[θh]Ŝ[(1− 2(λ+ θ ))/2h]T̂[(1− 2(θ +ρ))/2h]

× Ŝ[(1− 2λ))/2h]T̂[θh]Ŝ[λh]T̂[ρh]. (2.60)

The four parameters θ ,ρ,λ,µ are set differently in each case to minimise the
error terms. Both of these schemes have similar O(h4) discretisation errors over
n steps. For this reason, it would seem that the position version is superior as
there are less force evaluations. Note however that when taking powers of such
schemes, any adjacent T̂ or Ŝ steps can be merged into a single step, such that
the 4MN5FV scheme only has one more force evaluation than 4MN5FP for any
number of steps.
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Tuning the acceptance rate

Having discussed the molecular dynamics integrators used to produce candidate
states for the Metropolis-Hastings acceptance step, we are now in a position to
discuss the acceptance rate 〈Pacc〉.

In HMC simulations, there is a trade-off between good acceptance rates 〈Pacc〉
to minimise autocorrelations and computational cost. The ideal 〈Pacc〉minimises
the cost to generated statistically independent configurations. As the computa-
tion is dominated by matrix multiplies by the Dirac matrix D, a suitable cost
function for HMC is

C =
Nmatτa

〈Pacc〉
(2.61)

where Nmat is the number of matrix multiplies required per trajectory and τa

is the integrated autocorrelation time defined in Appendix B. The inclusion of
〈Pacc〉 accounts for the cost of configurations rejected by the Metropolis accep-
tance step, which are excluded from the definition of τa.

This cost function is not possible to minimise analytically, for we can only
determine Nmat and τa by actually performing HMC. However, with a few as-
sumptions, we can write a cost function in terms of analytical parameters. First,
assume that our integrator is of the form [ Î(h)]n for some fixed integration step
Î(h), e.g. leap-frog or minimal norm, with trajectory length τ = nh = 1. Then
Nmat is proportional to the number of integration steps n and hence inversely
proportional to the step-size h. Second, we assume that on the same lattice, the
integrated autocorrelation time does not depend on the particular method used
for molecular dynamics integration. Therefore, we can use the cost function

C =
1

〈Pacc〉h
. (2.62)

It can be shown [28] that for this measure of performance and assuming small
h, the optimal acceptance rate only depends on the order m of the integrator
used:

〈Pacc〉opt = exp
�

−
1
m

�

. (2.63)

For example, the theoretical optimal 〈Pacc〉 for a second-order integrator is 61%.
This provides a target acceptance rate when tuning the step-size h in a HMC
simulation.

However, problems can arise if the step-size h is set too large. This is because
Dirac matrix inversions can be unstable, which occurs more frequently at low
quark masses mq. Instabilities can lead to unexpectedly large forces which cause
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‘spikes’ in the Hamiltonian delta ∆H distribution. This affects the ergodicity of
the HMC algorithm, which can change the equilibrium of the Markov chain;
thus, one needs to reduce the step-size h to keep this in check. However, an
unstable Dirac matrix inversion also requires more iterations to converge, so the
computational cost is compounded. Applying improvement techniques, to be
discussed in section 2.5, helps to alleviate these issues. Furthermore, in practice,
the acceptance rate is often tuned to be higher than that predicted by (2.63) to
avoid potential instabilities.

2.4.4 The force term

The most important part of a molecular dynamics trajectory is the evaluation of
the force term

F =
dS
dQ
=
∑

i

dS
dω(i)

t(i) (2.64)

at each space step (2.42). This is because, as will be demonstrated, this update is
the most computationally intensive part of a HMC simulation for typical lattices.

As the action is written in terms of U , we require a way to evaluate the
derivative d f /dω(i) of some arbitrary scalar function f (U). As U is a member
of the SU(3) Lie group, this is a directional derivative in the same direction as
ω(i), namely

d f (U)
dω(i)

=
d

dω
f (exp[i

∑

j

ω( j) t( j) + iωt(i)])

�

�

�

�

�

ω=0

. (2.65)

This can be parametrised as

d f (U)
dω(i)

=
d f (γ(ω))

dω

�

�

�

�

ω=0

, (2.66)

where γ(ω) is a path on the SU(3) manifold defined by

γ(ω) = exp[i
∑

j

ω( j) t( j) + iωt(i)]. (2.67)

This expression (2.65) for the directional derivative is hard to use in practice, as
the gauge field U has to be augmented directly. However, it can be shown (see
e.g. [29, definition 3.33]) that the directional derivative is the same for any path
γ̃(ω) on the SU(3) manifold with γ̃(0) = γ(0) and γ̃′(0) = γ′(0). In particular,
we can use

γ(ω) = exp[iωt(i)]U , (2.68)
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and write the directional derivative as

d f (U)
dω(i)

=
d

dω
f (eiωt(i)U)

�

�

�

�

ω=0

. (2.69)

Using this formula, we can now consider the force terms for the gauge and pseud-
ofermion actions.

The Wilson gauge action

Recall the Wilson gauge action (1.48):

SG[U] =
2
g2

∑

x∈Λ

∑

µ>ν

Re Tr
�

I− Uµ(x)Uν(x + aµ̂)U†
µ
(x + aν̂)U†

ν
(x)
�

=
1
g2

∑

x∈Λ

∑

µ>ν

Tr
�

2I− Uµ(x)Uν(x + aµ̂)U†
µ
(x + aν̂)U†

ν
(x)

− Uν(x)Uµ(x + aν̂)U†
ν
(x + aµ̂)U†

µ
(x)
�

=
1
g2

∑

x∈Λ

∑

µ,ν6=µ

Tr
�

I− Uµ(x)Uν(x + aµ̂)U†
µ
(x + aν̂)U†

ν
(x)
�

.

This involves a sum over all plaquettes in both directions. Upon taking the
derivative with respect to ω(i)

µ
(x), we only act on the terms Uµ(x) and U†

µ
(x).

Thus, only 6 different plaquettes are involved. Recalling the sum over staples
(2.20),

A=
∑

ν6=µ

Uν(x + aµ̂)U†
µ
(x + aν̂)U†

ν
(x) +

∑

ν6=µ

U−ν(x + aµ̂)U†
µ
(x − aν̂)U†

−ν(x),

we can utilise the cyclic properties of the trace to write the derivative as

∂ SG[U]

∂ω
(i)
µ (x)

=
1
g2

∂

∂ω
Tr
�

−eiωt(i)Uµ(x)A− A†U†
µ
(x)e−iωt(i)

�

= −
1
g2

Tr
�

i t(i)(Uµ(x)A− A†U†
µ
(x))

�

. (2.70)

The force term for the Wilson gauge action is thus

FG =
dSG

dQ
= −

1
g2

∑

i

t(i) Tr
�

i t(i)(UA− A†U†)
�

. (2.71)
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Now, i(UA− A†U†) is traceless and Hermitian, and hence is an element of the
su(3) algebra. Writing an element of su(3) in terms of generators and using the
identity Tr[t(i) t( j)] = 1

2δi j, we have

∑

i

t(i) Tr

�

t(i)
∑

j

c j t
( j)

�

=
∑

i

∑

j

c j t
(i) Tr[t(i) t( j)]

=
1
2

∑

i

∑

j

c j t
(i)δi j

=
1
2

∑

i

ci t
(i). (2.72)

Therefore, the force term for the Wilson gauge action can be simplified to

FG =
dSG

dQ
= −

1
2g2

i(UA− A†U†). (2.73)

The fermion action

In the case of a double-flavour pseudofermion action (2.29)

SF = φ
†(D†D)−1φ,

the corresponding force term is given by

F =
dSF

dQ
= φ† d

dQ

�

(D†D)−1
�

φ

= −φ†(D†D)−1 d
dQ

�

(D†D)
�

(D†D)−1φ

= −φ†(D†D)−1

�

dD†

dQ
D+ D† dD

dQ

�

(D†D)−1φ. (2.74)

Note that the fermion force term involves inverses of D†D. Due to the size of
the matrices involved on a typical lattice, it is impractical to directly calculate the
full matrix inverse. Instead, we solve D†Dχ = φ for χ with an iterative solver
such as conjugate gradient. For a typical lattice, this operation is computationally
expensive, which is compounded by the fact the forces have to be calculated at
each space step. For these reasons, calculating the fermion force terms is the
leading cost of HMC simulations.
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In the case of a Wilson fermion (1.63), the derivative of the Dirac operator
is fairly simple to write down due to linearity in U:

dD(x |y)
dQ(z)

= −iκ
∑

i

t(i)
�

(1− γµ)t(i)Uµ(z)δx+aµ̂,yδx ,z

− (1+ γµ)U†
µ
(z)t(i)δx−aµ̂,yδy,z

�

. (2.75)

2.5 HMC improvements

The basic Hybrid Monte Carlo algorithm (page 38) is fully functional for produc-
ing gauge field configurations U with fermions. However, when working with
large lattices at small quark masses, the calculations required take significantly
large amounts of compute power. This has led to the development of several
different improvements to the base HMC algorithm, which is the main subject
of investigation in this thesis as discussed in chapters 3, 4 and 5.

2.5.1 Even-odd preconditioning

One of the earlier ideas was even-odd preconditioning [30]. It is based on the fact
that the Wilson Dirac operator D, and many others like it, only couple nearest-
neighbour sites. A convenient decomposition of such operators is

D =

�

Dee Deo

Doe Doo

�

; (2.76)

this is a matrix that acts on a fermion vector ψ=
�

ψe ψo

�T
decomposed into

‘even’ and ‘odd’ lattice sites, where Dee is the part of D that connects even sites
to even sites, Deo odd to even, et cetera. The ‘even’ and ‘odd’ sites are given by
a chequerboard decomposition of the lattice Λ, depicted in Figure 2.2.

A Dirac matrix in even-odd form (2.76) can undergo a (block) LDU factori-
sation

�

Dee Deo

Doe Doo

�

=

�

1ee 0
Doe 1oo

��

Dee 0
0 Doo − DoeD

−1
ee Deo

��

1ee Deo

0 1oo

�

= LD∗U .

(2.77)
Now recall that when generating gauge configurations, the fermion contribution
comes in the form of the determinant det D (1.75). Using this LDU factorisation,
we find that

det D∝ det Dee det D̃ (2.78)
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Figure 2.2: Even-odd decomposition of a 2D lattice. Lattice sites with black circles are even,
white circles are odd.

where
D̃ = Doo − DoeD

−1
ee Deo. (2.79)

This works because L and U are triangular, and D∗ is block diagonal. We can
therefore replace det D with det Dee det D̃ in the expectation value, as any con-
stant factor disappears in the ratio of path integrals. In the case of an operator
that only couples nearest-neighbour sites, Dee and Doo are diagonal with respect
to lattice sites. Thus, we can easily evaluate the first determinant via the identity

det Dee = exp (Tr(ln Dee)) (2.80)

because the logarithm acts element-wise on a diagonal matrix. The product of
determinants in the double-flavour case (2.29) can then be evaluated via

(det Dee det D̃)2 =

∫

dφdφ∗ exp
�

2 Tr(ln Dee)−φ†(D̃†D̃)−1φ
�

(2.81)

and hence gives a fermion action with two terms,

Seven−odd = −2 Tr(ln Dee) +φ
†(D̃†D̃)−1φ. (2.82)

The first term is called the determinant term, Sdet[U], and is relatively cheap
to calculate due to O(Λ) scaling. The second term can be treated just like the
double-flavour pseudofermion term (2.29) for HMC, but with the advantage that
D̃ is a quarter of the size of D.

In the case of a Wilson Dirac operator (1.63), the determinant term can be
neglected because Dee = 1ee and hence produces a constant factor in the partition
function. The resultant even-odd preconditioned Dirac operator is

D̃Wilson = 1−κ2HoeHeo. (2.83)
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For the clover improved action, if we denote the clover term (1.65) as T , we get
the clover determinant action term

Sdet = −2 Tr [ln(1+ Tee)] (2.84)

and modified Dirac operator

D̃Clover = (1+ Too)− κ2Hoe(1+ Tee)
−1Heo. (2.85)

2.5.2 Multiple time-scales

When using Hybrid Monte Carlo, we often have multiple action terms that have
differently behaved forces. The most basic case is a gluon action and a fermion
action. The gluon action SG has a cheap to evaluate force term FG, so it would be
advantageous to use an integration scheme with a fine step-size h for high accu-
racy. On the other hand, SF often has an expensive force term FF , so we would
like to use a coarse step-size to reduce the expense. To satisfy these two com-
peting desires, we can use integrations schemes that have multiple integration
step-sizes built in. Each level of integration is known as a time-scale.

Nested integrators

One way to construct multiple time-scales is by nesting integration steps within
other integrators [31].

Suppose we have the action

S = SG + SF . (2.86)

These can be integrated via the HMC integration steps (2.51a), (2.51b). How-
ever, we can separate the space step into updates for each of the action terms:

ŜG[h] : (P, U)→ (P − hFG, U), (2.87a)

and ŜF[h] : (P, U)→ (P − hFF , U). (2.87b)

These update steps are used in the construction of a multi-scale scheme. Now
consider (without loss of generality) the STS leap-frog integrator (2.54) acting
just on SF ,

Ŝ1[h] = ŜF[h/2]T̂[h]ŜF[h/2]. (2.88)

We can nest another integration scale for SG within this scheme by replacing the
time steps T̂ with a reversible and area-preserving integration step for SG, as this
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will always produce a symmetric scheme. The replacement scheme is chosen to
have the same step-size, such that the trajectory length τ is consistent between
each action term step and the time step. For example, if we write

Ŝ2[h] = ŜG[h/2]T̂[h]ŜG[h/2], (2.89)

then we can construct a nested integration step

Ŝnested[h] = ŜF[h/2](Ŝ2[h/m])
mŜF[h/2], (2.90)

where m is a positive integer. This places the gauge action on a fine scale with
step-size hG = h/m, and the fermion action on a coarse scale with step-size
hF = h.

Such nesting can be applied to all symplectic integrators. The nesting can
also be repeated to give a different step-size to each of several action terms,
with each finer step-size being a divisor of the previous.

Overlaid integrators

A more flexible way to construct integration schemes with multiple time-scales
is to overlay complete schemes for each action term on top of one another. We
call these overlaid integrators [32].

The basic idea is to first consider the time-steps advancing a time parameter
t from 0 to τ. If we construct integration schemes for each action term that
advance the partial Hamiltonian Hi = T + Si where T = Tr[P2], then we can
superimpose the schemes onto the t axis to produce a single integration scheme
that is symmetric and hence suitable for HMC: see Theorem A.3 for the proof.
Furthermore, the error in the overlaid scheme has the same order as the con-
stituent integrators.

As an example, let’s have an action S = S1+S2 with S1 being integrated with
a two-step STS leap-frog scheme (2.54)

V̂1[h] = Ŝ1[h/4]T̂[h/2]Ŝ1[h/2]T̂[h/2]Ŝ1[h/4] (2.91)

and S2 being integrated with a one-step TST second order minimal norm scheme
(2.58)

V̂2[h] = T̂[λh]Ŝ2[h/2]T̂[(1− 2λ)h]Ŝ2[h/2]T̂[h/2]. (2.92)

If we overlay these schemes along the time-step axis t, as shown in Figure 2.3,
we end up with the two-scale scheme

V̂ [h] =Ŝ1[h/4]T̂[λh]Ŝ2[h/2]T̂[(1/2−λ)h]Ŝ1[h/2]

× T̂[(1/2−λ)h]Ŝ2[h/2]T̂[λh]Ŝ1[h/4]. (2.93)
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Ŝ[ h
4 ] T̂[ h

2 ] Ŝ[
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Ŝ1[
h
2 ]
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Figure 2.3: Demonstration of overlaid integrators. Overlaying the two-step STS leap-frog scheme
(top left) with the one-step TST second order minimal norm scheme (bottom left) produces a
two-scale scheme (right).

The advantage of overlaid multiple time-scale integrators is that any number
of steps can be used for the constituent schemes, rather than being restricted
to multiples as in the nested case. This turns out to be useful when tuning the
step-sizes to match the force term distribution, as will be demonstrated when
discussing benchmarking results in chapter 3.

2.5.3 Filtering methods

While splitting the gauge action and fermion action onto different integration
time scales (section 2.5.2) improves the computational cost, the fermion action
in HMC is still expensive to simulate. It is even more expensive when dealing
with larger lattices and lighter quark masses, both of which are desirable for reli-
able physical point extrapolations. To mitigate this, we can split up the standard
HMC pseudofermion action into different parts.

Suppose we have a fermion action with matrix kernel L,

SF = φ
† Lφ. (2.94)

We can use the identity

det L−1 = det F−1 det F L−1 (2.95)
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to split up the fermion determinant evaluation into two pseudofermion integrals

det F−1 det F L−1 =

∫

dφ1dφ∗1dφ2dφ∗2 exp
�

−φ†
1Fφ1 −φ

†
2F−1 Lφ2

�

, (2.96)

which gives a two term fermion action

SF = φ
†
1Fφ1 +φ

†
2F−1 Lφ2. (2.97)

As the matrix F filters out a portion of the fermion matrix kernel L, we denote
such methods filtering methods.

The true benefit of filtering is realised when one puts the filter term S1 and
the correction term S2 on separate time-scales as in section 2.5.2. If we choose
a filter F such that [33]

• The filter term S1 has a cheap to evaluate force term F1 compared to F2,
and

• The filter term S1 captures (i.e. encapsulates) the high energy/frequency
modes of the system, roughly corresponding to a larger force F1,

then we can place S1 on a fine scale h1 and S2 on a coarse scale h2 > h1 while
maintaining a good acceptance rate. This works because S2 only contains lower
frequency modes which can be integrated with a coarser step-size. As there are
fewer evaluations of the expensive correction term, this leads to a large reduction
in computational cost.

Investigating the performance of filtering methods is the main focus of this
thesis. This starts with chapter 3, where we compare the performance of the
following two filtering methods on a small lattice.

Hasenbusch

One of the most common filtering methods is Hasenbusch filtering, a.k.a. mass
preconditioning [34].

In this method, the filtering action term is similar to the original term except
with a heavier quark mass. If we consider the double-flavour pseudofermion
action

SF = φ
†(D†D)−1φ, (2.98)

then the Hasenbusch filtered action is

SHasen = φ
†
1(W

†W )−1φ1 +φ
†
2W (D†D)−1W †φ2 (2.99)
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where W = D[κ′] has a heavier mass κ′ < κ. Note that the second term has
been rearranged using the cyclic properties of determinants, making its force
term a bit easier to evaluate. The filter term S1 is cheap to evaluate due to the
heavier mass, and captures the high energy modes for the same reason. Hence,
this filtering method is suitable for speedup via multiple time-scales. In fact, it
was such a combination that broke through the ‘Berlin Wall’ of computational
cost [35, 36] and makes physical point calculations feasible today.

The force term for the Hasenbusch filter S1 is near-identical to that of the
pure HMC action,

F1 = −φ
†
1(W

†W )−1

�

dW †

dQ
W +W † dW

dQ

�

(W †W )−1φ1

= −φ†
1(W

†W )−1W † dW
dQ
(W †W )−1φ1 + h.c. (2.100)

This requires just one inversion, solving (W †W )χ = φ1 for χ. As for the correc-
tion term S2, we have force

F2 =
d

dQ

�

φ†
2W (D†D)−1W †φ2

�

= φ2
dW
dQ
(D†D)−1W †φ2 +φ2W (D†D)−1 dW †

dQ
φ2 +φ

†
2W

d(D†D)−1

dQ
W †φ2

= φ2
dW
dQ
(D†D)−1W †φ2 −φ

†
2W (D†D)−1D† dD

dQ
(D†D)−1W †φ2 + h.c. (2.101)

This also requires just one inversion, solving (D†D)χ =W †φ2 for χ.
We can easily have multiple Hasenbusch filters, which is often beneficial for

particularly light quark masses. For example, the two filter action is

S2−Hasen = φ
†
1(W

†
1 W1)

−1φ1 +φ
†
2W1(W

†
2 W2)

−1W †
1φ2 +φ

†
3W2(D

†D)−1W †
2φ3

(2.102)
where W1 = D[κ1], W2 = D[κ2] and κ1 < κ2 < κ. As before, each of these terms
can be placed on separate time-scales h1 < h2 < h3 to minimise the cost.

Polynomial

Polynomial filtering [37] is another filtering method. If we define K = D†D,
then the filter is a polynomial approximation P(K) to the inverse K−1, giving the
action

SPF = φ
†
1P(K)φ1 +φ

†
2[P(K)K]

−1φ2. (2.103)
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We usually express the polynomial as a product of roots,

P(K) = cn

n
∏

i=1

(K − zi) (2.104)

where cn ∈ R, zi ∈ C. Using this form, the force term for the polynomial filter
term S1 is given by

F1 = φ
†
1

d
dQ

�

cn

n
∏

i=1

(K − zi)

�

φ1

=
n
∑

i=1

χ†
i

dK
dQ
ηi, (2.105)

where we define

χi =
i−1
∏

j=1

(K − z∗i )φ1 (2.106)

and ηi = cn

n
∏

j=i+1

(K − zi)φ1. (2.107)

Note that this force term has no inverses, which gives it a low cost. Along with
the fact that it captures the high energy modes by virtue of approximation, this
means polynomial filtering can benefit from multiple time-scales.

The correction term S2, meanwhile, has force term

F2 = φ
†
2

d
dQ

�

c−1
n K−1

n
∏

i=1

(K − zi)
−1

�

φ2

= φ†
2

d
dQ

�

c−1
n

n+1
∏

i=1

(K − zi)
−1

�

φ2 [zi+1 = 0]. (2.108)

We can express the inverted polynomial in partial fraction form

c−1
n

n+1
∏

i=1

(K − zi)
−1 =

n+1
∑

i=1

ri

K − zi
, (2.109)

where

ri =
1
cn

∏

j 6=i

1
(z j − zi)

. (2.110)
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Substituting this into the force term gives

F2 = φ
†
2

d
dQ

�

n+1
∑

i=1

ri

K − zi

�

φ2

=
n+1
∑

i=1

φ†
2(K − zi)

−1 dK
dQ

ri(K − zi)
−1φ2

=
n+1
∑

i=1

χ̃†
i

dK
dQ
η̃i, (2.111)

where we define

χ̃i = (K − z∗i )
−1φ2 (2.112a)

and η̃i = ri(K − zi)
−1φ2. (2.112b)

This involves calculating shifted inverses (K − zi)−1φ2, which can be done effec-
tively by a multi-shift solver such as multi-shift conjugate gradient with a cost
comparable to inverting the zero-shift K . Note that for a polynomial with real
coefficients, the roots zi are either real or come in complex conjugate pairs due
to the Fundamental Theorem of Algebra. Thus, the conjugate z∗i is always equal
to some root z j and so there are only n+ 1 shifted inverses required to evaluate
the correction force term.

For two filter polynomial filtering, we can use two approximations P1(K) and
P2(K) to the inverse K−1 with orders p1 < p2 such that P2(K)/P1(K) = Q(K) is
also a polynomial. This ensures the intermediate force term remains cheap. This
leads to the fermion action

S2−poly = φ
†
1P1(K)φ1 +φ

†
2Q(K)φ2 +φ

†
3[P2(K)K]

−1φ3. (2.113)

One class of polynomials suitable for polynomial filtered HMC (PF-HMC) are
Chebyshev approximations to the inverse. The roots of these polynomials are
given by

zi = µ(1− cosθk)− i
p

µ2 − ν2 sinθk, θk =
2πk
n+ 1

, (2.114)

and the normalisation is given by

dn =
1

µ
∏n

i=1(µ− zi)
, (2.115)

where µ and ν < µ are real parameters. The roots describe an ellipse in the com-
plex plane with semi-major axis µ along the positive real axis and semi-minor
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Re

Im

p

µ2 − ν2

µ

Figure 2.4: The roots of a fourth order Chebyshev polynomial approximation to K−1. The roots
are shown as circles, and if the origin (cross) is included they are distributed evenly around an
ellipse.

axis
p

µ2 − ν2. If we add the origin to the set of roots, the set is distributed at
equal angles around the ellipse. See Figure 2.4 for a depiction. The approxi-
mation is effective within that ellipse, so we require µ and ν to encompass the
eigenvalue spectrum of the fermion matrix kernel K . These parameters can be
tuned to minimise the size of the filter’s force term. At the very least, we ensure
2µ > λmax where λmax is the maximum real eigenvalue of K .

A useful property of Chebyshev polynomials is that if n + 1 divides m + 1,
then the Chebyshev polynomial Pn(K) factorises Pm(K) assuming the same (µ,ν).
This is especially useful for constructing multiple levels of polynomial filtering
(2.113).

2.5.4 Iterative solvers

The most computational intensive part of a typical HMC calculation is inverting
the fermion matrix K = D†D, so the way we perform this inversion has a signif-
icant bearing on the computational cost. As this matrix is large and sparse, the
most common approach is to solve Kχ = φ for χ, up to a given precision, via
iterative solvers such as conjugate gradient (CG) [38].

The different phases in a HMC simulation have different precision require-
ments. When generating the pseudofermions φ and calculating the action S at
the end of a trajectory, we require a high precision to ensure that the φ are cor-
rectly distributed and that the Metropolis acceptance step is accurate. During
a molecular dynamics trajectory, we can safely use a lower precision, because
the Metropolis acceptance step corrects for any solver errors. However, a very
low precision can result in large changes in the Hamiltonian ∆H and hence low
acceptance rates. Large solver errors also affect the reversibility of the molecu-
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lar dynamics trajectory. The size of such a reversibility violation can be tested
directly: perform a molecular dynamics trajectory, redo it on the resultant state
with reversed momentum, then calculate the overall change in the Hamiltonian.
As long as these violations are small and ∆H is stable, the precision is safe.

The usual way to change the precision of the iterative solver is by changing
the convergence criteria. A common choice is |Kχ − φ| < δ, where δ is the
tolerance which can be tuned to change the precision of the solution χ.

There are advanced iterative solvers such as bi-conjugate gradient stabilised
(BICGStab) [39], generalised conjugate residual (GCR) [40], and generalised
minimal residual (GMRES) [41]. These improved methods reach a solution
quicker than CG when we require high accuracy, which is useful when calcu-
lating φ and S. However, the precision required during molecular dynamics
trajectories is not usually high enough for such methods to be advantageous
over CG.

If the required precision is low, one can safely use reduced precision floats,
e.g. 32-bit rather than 64-bit, in an iterative solver in order to reduce the mem-
ory bandwidth. Taking this idea further, one can utilise low precision solutions
with low precision floats to help perform a high precision inversion with high
precision floats, leading to mixed precision solvers. These often only require a
few more matrix operations compared to a normal high precision inversion, but
with the advantage of the reduced memory bandwidth from the low precision
floats. As iterative solvers on large matrices are often memory-bound (i.e. the
performance bottleneck is slow/insufficient memory), this can provide a signif-
icant speedup: see e.g. [42].

Another way to speed up the convergence of an iterative solver is to use
chronological inversion [43]. This is where an initial guess χ0 of the solution is
made based upon recent previous solutions to Kχ = φ. Although K changes
between force updates, this change is usually small enough that this technique
is still effective. One way to combine the information from previous solutions
is minimal residual extrapolation (MRE), where we take our initial guess χ0 as
an average of a small number of previously stored solutions χi weighted by the
norm of their residuals ri = φ−Kχi. Note that the correlation due to reusing past
solutions means that the reversibility violations are larger with this technique.
While this forces a higher solver precision to ensure reversibility, it still produces
a considerable speedup.

In the case of polynomial filtering (section 2.5.3) and rational HMC (section
2.6.1), we often require shifted inverses, which are the solutions to the equations
(K + σi I)χi = φ with complex shifts σi. They can be obtained via multi-shift
methods that calculate all shifted inverses simultaneously, such as multi-shift
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conjugate gradient (MCG) [44]. Such methods only require a number of matrix
K multiplies up to those required for the zero-shift case. Note however that
chronological inversion techniques do not work with such methods, as obtaining
the solution for all shifts requires starting with the initial guess χi = 0.

2.6 Single flavour HMC

Up to this point, we have only considered double-flavour pseudofermions, with
fermion action (2.29)

SF = φ
†(D†D)−1φ.

These are useful when simulating up and down quarks, as the quarks can usu-
ally be set to the same mass without complicating physical point extrapolations.
However, in the case of a single flavour such as the strange quark, we do not have
a counterpart with the same mass and are hence required to calculate det Ds on
its own. Single flavour fermions are also necessary for incorporating QED effects
(see chapter 5). The main barrier to evaluating this is that, recalling section 2.3,
using the fermion action φ†D−1

s φ causes numerical instability, so we must find
some other way to evaluate det Ds.

2.6.1 Rational Hybrid Monte Carlo (RHMC)

The solution lies in observation that for real and positive det D,

det D =
p

det D†D = det(D†D)
1
2 . (2.116)

We cannot calculate a square root of K = D†D exactly, but we can use a high
precision rational polynomial approximation R(K) ≈ K−1/2. This leads to the
fermion action

SRHMC = φ
†R(K)φ. (2.117)

As R(K) is positive definite by construction, this resolves the instability issue.
This technique is known as Rational Hybrid Monte Carlo [45], or RHMC for short.

For γ5-Hermitian Dirac operators such as the Wilson Dirac operator where
γ5Dγ5 = D†, det D is guaranteed to be real but could still be negative. If we have
configurations where det D < 0, we can still apply RHMC, but we would need
to correct the sign s = sign(det D) when measuring observables by reweighting.
In practice, the mass term m( f ) in the Dirac operator is usually large enough to
ensure det D > 0.
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The use of a rational approximation R(K) instead of D−1 introduces a bias
in the HMC trajectories. However, this effect can be easily managed. The only
places where the equilibrium distribution can be affected are during the Metropo-
lis acceptance step and during the sampling of the pseudofermions φ. When
calculating S for the Metropolis acceptance step, we can use a different rational
approximation R∗(K)≈ K−1/2 that has high precision such that the maximum er-
ror in the approximation is less than floating-point precision. This ensures that
the error in the approximation is comparable with the integration error, and
hence does not affect the results. Similarly, to sample φ at the start of a trajec-
tory, we use a highly precise approximation S(K) with S†(K)S(K) ≈ K1/2, and
relate φ to a Gaussian distributed χ, P(χ) ∼ e−χ

†χ , via φ = S(K)χ. With the
bias accounted for, this allows a lower precision, cheaper rational approximation
R(K) to be used during the molecular dynamics step. In practice, we do not need
a very high order approximation (n ∼ 30) to achieve the required level of pre-
cision in the acceptance step, so we often use the same rational approximation
R(K) throughout.

Another consideration is that a rational approximation R(K) typically has an
effective range outside of which errors increase dramatically. This range should
hence encompass the eigenvalue range [λmin,λmax] of the fermion matrix K in
question. While we have not done so in this work, one can scale the rational
approximation R(K) dynamically with a factor f via

R(K)≈ K−1/2 = f 1/2( f K)−1/2 ≈ f 1/2R( f K), (2.118)

and adjust the effective range to centre geometrically on the eigenvalue range
of the fermion matrix.

RHMC can be used to create multiple action terms via the “n-th root trick”:
using an approximation R(K)≈ K−1/2n, we can use the fermion action

SF =
n
∑

i=1

φ†
i R(K)φi, (2.119)

integrating all terms on the same integration scale. This approach can be adapted
to simulate double-flavour pseudofermions by using an approximation R(K) ≈
K−1/n. From here on out, we will exclusively look at the single flavour case with
one term, R(K) ≈ K−1/2, but many of the methods we discuss extend to these
approximations as well.

We usually use the Zolotarev rational approximation R(K) to K−1/2 in this
work (see e.g. [46]), which has an analytic form in terms of Jacobi elliptic
functions and is provably optimal for a rational approximation of given order and
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range. Given this approximation, we can construct S(K) with S†(K)S(K)≈ K1/2

as required for generating φ: if we express the rational approximation as

R(K) = dn

n
∏

i=1

K + ai

K + bi
(2.120)

where dn, ai, bi ∈ R, then we can factorise the inverse as

R(K)−1 = S†(K)S(K), (2.121)

with

S(K) =
1
p

dn

n
∏

i=1

M ∗ + i
p

bi

M ∗ + i
p

ai
(2.122)

where M ∗ = γ5M . Note that M ∗ is not positive-definite, so conjugate gradient
methods for evaluating the shifted inverses (M ∗ + i

p
ai)−1φ may not converge.

Instead, we use the multi-shift conjugate residual method (MCR) [44]: as this
requires the matrix to be Hermitian, this motivates using M ∗ in (2.122), as it is
Hermitian for Wilson-like Dirac matrices and (M ∗)†M ∗ = M †M = K .

In the more general case of finding a rational approximation R(K) ≈ K±1/n,
one can use iterative methods such as the Remez algorithm to find appropriate
coefficients dn, ai, bi for (2.120) with a given order, range and error.

2.6.2 Force terms

Given the product form of a rational approximation (2.120), the force term for
the RHMC action is given by

FRHMC = φ
† d
dQ

�

dn

n
∏

i=1

K + ai

K + bi

�

φ

= φ† d
dQ

�

dn

n
∑

i=1

Ri

K + bi

�

φ

=
n
∑

i=1

φ†(K + bi)
−1 dK

dQ
dnRi(K + bi)

−1φ

=
n
∑

i=1

χ†
i

dK
dQ
ηi, (2.123)

where Ri are the residues from a partial fractions expansion

Ri =

∏n
j=1(−bi + a j)

∏n
j=1, j 6=i(−bi + b j)

, (2.124)
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and

χi = (K + bi)
−1φ, (2.125a)

ηi = dnRi(K + bi)
−1φ. (2.125b)

This force term requires n shifted inverses, which can be evaluated effectively
by a multi-shift solver such as MCG.

2.6.3 Filtering methods

Just as with the double-flavour pseudofermion action, filtering methods (section
2.5.3) can be applied to the RHMC action (2.117). We investigate the perfor-
mance of the following methods in chapters 4 and 5.

Polynomial

Polynomial filtering (section 2.5.3) can easily be applied to the RHMC action. If
we choose a polynomial P(K)≈ K−1/2, then we can use the action

SPF−RHMC = φ
†
1P(K)φ1 +φ

†
2P−1(K)R(K)φ2. (2.126)

The correction term is just another rational function, so the force term F2 can be
calculated similarly to the pure RHMC case (2.123).

To construct multiple filters, we choose a polynomial approximation Q(K) to
P−1(K)R(K), and the action

S2PF−RHMC = φ
†
1P(K)φ1 +φ

†
2Q(K)φ2 +φ

†
3P−1(K)Q−1(K)R(K)φ3. (2.127)

Choosing such an approximation Q(K) ensures that the correction term’s kernel
P−1(K)Q−1(K)R(K)≈ I .

For this method, we can use Chebyshev polynomial approximations to K−1/2

and P−1(K)R(K) for P(K) and Q(K) respectively. However, these do not have
nice parametrisations or factorisations as in the double-flavour case (section
2.5.3), so it is easier to set Q(K) as above rather than P2(K) as was the case
for double-flavour polynomial filtering (2.113).

One can calculate Chebyshev polynomial approximations numerically. Sup-
pose we have some function f (x) that we wish to approximate on the range
[−1, 1] with an N -th order Chebyshev polynomial approximation of the form

P(x) =
N−1
∑

n=0

anTn(x) (2.128)
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where an ∈ R and Tn(x) are Chebyshev polynomials of the first kind. We can
calculate the optimal coefficients an that minimize the size of the relative error
(P(x)− f (x))/ f (x) numerically via the discrete cosine transform

an ≈
2−δ0n

N

N−1
∑

k=0

cos
�

nπ(k+ 1/2)
N

�

f (xk) (2.129)

where xk = cos
�

π(k+1/2)
N

�

. To extend this to approximating f (x) on an arbitrary
range [a, b], we calculate the optimal coefficients an for the shifted function

g(x) = f
�

a− b
2

x +
a+ b

2

�

, (2.130)

then use the approximation

P(x) =
N−1
∑

n=0

anTn

�

2
a− b

�

x −
a+ b

2

��

. (2.131)

This is method used when we investigate PF-RHMC in chapter 4.

Truncated ordered product RHMC (tRHMC)

A filtering method exclusive to RHMC splits the product form of the rational
approximation (2.120). If we order the shifts such that ai > ai+1, bi > bi+1, then
the truncated ordered product

R0, j(K) = dn

j
∏

i=1

K + ai

K + bi
(2.132)

also forms an approximation to K−1/2. Thus, if we split the rational approxima-
tion between action terms,

StRHMC = φ
†
1R0, j(K)φ1 +φ

†
2R j,n(K)φ2 (2.133)

where we define

Ri, j(K) =
j
∏

k=i+1

K + ak

K + bk
(2.134)

for i 6= 0 (i.e. without the normalisation dn), then the filter term S1 has a cheaper
to evaluate force than S2 due to the larger shifts and captures the high energy
modes of the system by virtue of approximation. Therefore, this filtering method
can engineer a reduction in cost by placing S1 on a finer integration scale than



64 CHAPTER 2. GAUGE CONFIGURATION GENERATION

S2. We denote this method truncated ordered product RHMC, or tRHMC for short.
Note that as each action term is a rational polynomial, their force terms can be
evaluated via (2.123) just as in pure RHMC.

This method easily extends to multiple filters. For example, the 2-filter tRHMC
action is

S2tRHMC = φ
†
1R0,t1

(K)φ1 +φ
†
2Rt1,t2

(K)φ2 +φ
†
3Rt2,n(K)φ3 (2.135)

where 0< t1 < t2 < n.
There is a similar method [47] that splits the sum over poles expression of

the rational approximation,

R(K) = dn

n
∑

i=1

Ri

K + bi
. (2.136)

However, tRHMC has the advantage that the filter term R0, j(K) approximates
K−1/2, and thus acts as a high-pass filter.



◦ 3 ◦

Benchmarking of double-flavour

optimisations

The results in this chapter were originally published in Computer Physics
Communications [32].

Our first investigation into configuration generation optimisations concerns fil-
tering methods on the double-flavour pseudofermion action, which are often
used to simulate the up and down quarks. As there has been widespread use of
mass preconditioning, we use this as a benchmark to compare with polynomial
filtering for the cost to generate configurations. Refer to subsection 2.5.3 for
details of these methods.

3.1 Lattice setup

We used a modified version of the BQCD program [48] to investigate these fil-
tering methods, with the changes now available in version 5. We thermalised
a small 163 × 32 lattice with n f = 2 Wilson fermions with even-odd precondi-
tioning at κ = 0.15825, giving pion mass mπ ∼ 400 MeV. The gauge coupling
is β = 6/g2 = 5.6, providing a lattice spacing of a ∼ 0.08 fm [36]. This was
thermalised with 1000 trajectories of length τ = 1, using two Hasenbusch fil-
ters. This relatively small and heavy lattice was chosen to ensure that we could
accumulate configurations using a wide variety of filters without requiring large
amounts of computational resources.

The goal of gauge configuration generation optimisations is to reduce the
amount of computational work required to generate statistically independent
lattice configurations. Recalling the arguments in subsection 2.4.3, we use the

65
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cost function
C = Nmat/Pacc, (3.1)

where Nmat is the average number of matrix operations per trajectory and Pacc is
the acceptance rate (dropping the ‘〈〉’ notation). In particular, we set Nmat to be
the average number of fermion matrix K = M †M (and, for mass preconditioning,
J =W †W ) multiplies per trajectory, counting D, D† etc. as half a multiply. This
choice of cost function has been used before [49]. Here, we use the uncorrelated
standard error (B.8) for the cost function in our results to indicate the variance
in the data.

We attempt to tune the acceptance rate to the range Pacc = [0.65, 0.75]
for consistency. For each set of filters chosen, we used the second-order min-
imal norm scheme (2.57) with overlaid integrators for multiple time-scales (sec-
tion 2.5.2). The solver we use for fermion matrix inversions is conjugate gradi-
ent, with convergence criteria |Ax − b| < δ where δ is the tolerance. This tol-
erance is set to 10−8 during molecular dynamics trajectories, and to 10−10 when
constructing the pseudofermions or performing the Metropolis acceptance step
(see section 2.5.4 for why these are set differently). In the case of mass precondi-
tioning, we also use chronological inversion with minimal residual extrapolation
from seven prior solutions (section 2.5.4); this reflects what is commonly used
in practice.

3.2 Comparing polynomial and mass filtering

We start by comparing the two methods using a single filter. Recalling section
2.5.3, the fermion actions in question are

S1M P = φ
†
1(W

†W )−1φ1 +φ
†
2W (D†D)−1W †φ2 (3.2)

and
S1PF = φ

†
1P(K)φ1 +φ

†
2[P(K)K]

−1φ2, (3.3)

where K = D†D. These filtering schemes have a number of parameters to tune.
The mass preconditioned action (1MP) has the free parameter κ′ < κ. As for
polynomial filtering, we use Chebyshev polynomials (equations (2.114) and
(2.115)) and select the ellipse parameters (µ,ν) = (1.2,0.9) to minimise the
force term, holding these values fixed for all the runs considered in this chapter.
The polynomial action (1PF) then has only one free parameter: p, the polyno-
mial order. Finally, as we are using a multi-scale integrator, both actions have 3
step-sizes {h0 = hG, h1, h2} to tune.
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We tune the parameters as follows. We sample a set of appropriate κ′ and p,
since the optimal values are hard to know a priori. The step-sizes {hG, h1, h2} are
then tuned via force-balancing: this is where the force term Fi and the step-size
hi for each action term are set such that

Fihi ≈ constant. (3.4)

In our case, we use the maximal forces for Fi in this equation as this was found to
better reflect the energy mode differences between action terms. Equation (3.4)
fixes the ratios between step-sizes, leaving the coarsest step-size h2 to tune. This
is set such that the acceptance rate lies in the target range, namely [0.65, 0.75].
However, since the gauge term SG is very cheap to calculate, we ignore this
prescription and simply set the step-size hG to be sufficiently small such that
reducing the step-size further does not change the acceptance rate. Here, we
used hG = 1/480 for every run.

The resulting parameter choices are given in Tables 3.1 and 3.2; note that
we express the step-sizes in terms of the number of steps n j at each scale, which
are related to h j via h j = τ/n j where τ is the trajectory length (τ= 1 here). We
also show the average number of K (and J) multiplications required to evaluate
the forces as a basis for comparison between the two methods.

Table 3.1: Single polynomial filter parameters. Ntraj is the number of trajectories. ‘mat/Fi ’
denotes the average number of matrix multiplications by K to evaluate the force Fi . There is no
inversion required for F1, so the number of matrix multiplications needed is exactly 2.5p−2 (see
section 2.5.3). Otherwise, statistical errors are of the same order as the last significant figure.

p µ ν n2 n1 n0 Ntraj mat/F1 mat/F2

4 1.2 0.9 48 120 480 2000 8 690
10 36 160 480 2000 23 777
20 24 240 480 2000 48 758

Figure 3.1 shows the cost function C (3.1) for the mass preconditioned and
the polynomial filtered actions respectively. Looking at this figure, we see that
a single mass filter provides a better overall performance than a single polyno-
mial filter, with a cost of C = 43,800 ± 3,500 at κ′ = 0.1545 compared with
C = 87,500± 7, 400 at p = 10. For completeness, plots of the acceptance rate
Pacc and the number of matrix operations Nmat are given in Figures C.1 and C.2
respectively.

Given that the cost to evaluate the filter term F1 is significantly less for the
polynomial filter (Table 3.1) than for the mass filter (Table 3.2), it is worthwhile
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Table 3.2: Single mass filter parameters. Refer to Table 3.1 for the legend.

κ′ n2 n1 n0 Ntraj mat/F1 mat/F2

0.154 8 120 480 2000 84.55 719
0.1545 7 96 480 2000 114.4 671
0.155 7 120 480 2000 112.7 697
0.1555 6 120 480 2000 135.9 754
0.156 5 120 480 2000 173.5 755
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Figure 3.1: Cost function for 1-filter actions. Squares = matrix operations to construct F1, tri-
angles = F2 construction, filled circles = total. Statistical errors are smaller than marker size.
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whilst the right hand plots show the polynomial filtered action’s forces. For each fermion term
S1, S2, the maximal and average forces are plotted for each choice of κ′/p.
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to try to further understand the difference between the two filters. We can do this
by considering the force terms shown in Figure 3.2. We see that the force for the
filter term F1 is similar in both cases. However, the average and maximal forces
for the correction term F2 are much larger in the polynomial case than in the mass
preconditioning case. This leads to more molecular dynamics steps n2 via (3.4)
for PFHMC (see Table 3.1), and is the main reason for the higher cost. As shown
in Table 3.1 and indicated by the squares in the right-hand graph of Figure 3.1,
increasing the polynomial order to reduce this force simultaneously increases the
cost to calculate F1, making polynomials of very large order inefficient filters.

The results for a single filter term stand to reason. Given that the Hasenbusch
filter is constructing a Krylov-space polynomial to approximate the inverse, a
short polynomial term of order 10 cannot capture as much of the dynamics as a
Hasenbusch filter that requires 80 or more iterations to invert.

In order to improve the performance of the polynomial filtered action, we can
introduce multiple polynomial filters without any additional fine tuning [37].
Here, we consider the two polynomial filter (2PF) action

S2PF = φ
†
1P1(K)φ1 +φ

†
2Q(K)φ2 +φ

†
3[P2(K)K]

−1φ3. (3.5)

We set the first polynomial’s order to p1 = 4 to keep the cost of F1 low, then vary
the order of the intermediate polynomial q = p2−p1. The parameter set is shown
in Table 3.3. The cost function for 2PF is shown in Figure 3.3 alongside 1MP for
comparison. For completeness, plots of the acceptance rate Pacc and the number
of matrix operations Nmat for 2PF are given in Figures C.3 and C.4 respectively.
The minimum of C = 47, 700± 3, 700 here at q = 50 is a marked improvement
over 1PF’s minimum of C = 87, 500± 7,400, and is quite comparable to 1MP’s
performance. Looking at the contributions to the cost function, we see that
increasing q for 2PF does not increase the cost to evaluate F2 (triangles in Figure
3.3) nearly as much as the corresponding case of increasing p for 1PF (squares
in Figure 3.1).

Table 3.3: Configuration parameters for 2PF

p1 p2 µ ν Ntraj n3 n2 n1 n0

4 24 1.2 0.9 2000 24 20 108 480
34 2000 20 16 80 480
54 2000 16 30 120 480
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Figure 3.3: Cost function for 1MP versus 2PF. Squares = matrix operations to construct F1,
triangles = F2 construction, empty circles = F3 construction, filled circles = total.

3.3 Polynomial-filtered mass-preconditioning

3.3.1 Motivation

At this point it is pertinent to make some remarks comparing the relative efficacy
of polynomial filtering and mass preconditioning.

Mass preconditioning (2.99) works best when the difference between the
Hasenbusch mass and the target quark mass ∆m = m′ − m is small, as this
implies that J(m′)K−1(m) ' I (J = W †W ) and hence the force term is corre-
spondingly reduced. However, when ∆m and hence m′ is made smaller, the
inversion cost to evaluate J−1φ is increased. At light quark masses, a single
Hasenbusch filter is unable to simultaneously satisfy the criteria that the filtered
force term F2 is reduced and the high frequency term F1 is cheap to evaluate.
Hence, to achieve a computationally efficient frequency-splitting scheme, light
quark mass simulations introduce multiple mass preconditioning terms [21, 36,
50, 51] that distribute the mass differences across multiple Hasenbusch masses
m < m′ < m′′ < m′′′ . . .. As it is not possible to know a priori the inversion
cost for a given term, this requires performing simulations to tune the hierar-
chy of Hasenbusch mass parameters, which becomes more labour-intensive as
more scales are introduced. Previous experience can help guide the choice of
parameters, but the extent to which this choice is optimal depends on the en-
semble, quark masses and gauge coupling being similar to a past run or another
published parameter set.
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Meanwhile, the efficacy of polynomial filtering (2.103) depends on two fac-
tors: the choice of the polynomial and the spectral range of the matrix whose
inverse is being approximated. Specifically, the smaller the spectral range of the
matrix K , the smaller the order of the polynomial required to achieve a given
accuracy.

In our case, we use a Chebyshev approximation P(z)' 1/z whose roots lie on
an ellipse. Choosing the parameters (µ,ν) that determine the ellipse is straight-
forward: one can simply evaluate the size of the force term while adjusting (µ,ν)
and look for a minimum. In practice, one finds that the minimum is relatively
shallow and hence fine-tuning of (µ,ν) is not required once a reasonable pair of
values has been found.

Once this process has been completed, the only remaining parameter to
choose is p, the order of the polynomial approximation. The choice of p al-
lows one to directly determine the cost of the high frequency filter term. As p
must be an integer, there is no fine-tuning.

Higher values of p provide a greater reduction in the force for the low fre-
quency correction term F2, but correspondingly increase the cost for the filter
term F1. Hence it is beneficial to make use of multiple polynomial filtering terms
(3.5) to introduce additional frequency scales [37]. An advantage of polynomial
filtering over mass-preconditioning is that the introduction of an additional scale
simply involves choosing another (integer) polynomial order q and hence does
not require additional fine-tuning.

Noting that we could approximate the inverse exactly if we had a polynomial
of very high order, we can consider the order of the polynomial filter as a means
of interpolating between the high and low frequency scales. The effectiveness
of polynomial filtering is best in the high frequency regime, associated with high
energy scales. As we move to lower frequency scales, the order of polynomial
required to capture the dynamics increases significantly and the Chebyshev ap-
proximation becomes inefficient when compared with a Krylov-space construc-
tion. On the other hand, at low frequency scales mass preconditioning becomes
more effective as ∆m becomes smaller and hence J(m′)K(m)−1 ∼ I .

This observation leads us to propose applying a polynomial filter (or several)
to a mass preconditioned fermion action, giving

SPF−M P = φ
†
1P(J)φ1 +φ

†
2[J P(J)]−1φ2 +φ

†
3W K−1W †φ3. (3.6)

As m′ > m, the condition number and hence spectral range of J(m′) is reduced
in comparison to that of K(m), and hence the accuracy of the polynomial P(J)
is better than that of P(K) at a fixed order. The use of short polynomials then
provides a good approximation to the high energy fluctuations and is cheap to
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evaluate, simple to tune and provides direct control over the cost of the highest
filtering terms. As the highest energy scales are filtered out using polynomi-
als, the filtered mass preconditioner P−1(J)J−1 can be placed on a coarse time
scale. Hence, the Hasenbusch mass parameter m′ can be chosen such that∆m is
small to better reduce the force when evaluating the mass preconditioned quark
mass term W K−1W †. The combined algorithm, which we refer to as polynomial-
filtered mass-preconditioned HMC (PF-MP HMC) promises to provide the com-
putational benefit of multiple filters with simpler tuning in comparison to plain
mass preconditioning.

3.3.2 Comparison to mass preconditioning

In order to test the performance of the PF-MP scheme, we compared it against
using an action with two mass preconditioners (2MP),

S2M P = φ
†
1J−1

1 φ1 +φ
†
2W1J−1

2 W †
1φ2 +φ

†
3W2K−1W †

2φ3, (3.7)

as this type of scheme is relatively common [21, 36, 50, 51]. For the 2MP action
we have the Hasenbusch filters J1(κ1) = W †

1 W1 and J2(κ2) = W †
2 W2, with κ1 <

κ2 < κ. For the PF-MP action we have the order p of the polynomial term P(J)
and the mass κ′ < κ of the Hasenbusch term J(κ′). The cheapest filter in each
case was fixed — κ1 = 0.145 for 2MP and p = 4 for PF-MP — and optimisation
took place through the choice of intermediate filter κ2/κ

′ and the choice of step-
sizes {h0, h1, h2, h3}. As in the previous section, we tune the step-size ratios such
that Fihi ≈ constant, then tune the coarsest step-size h3 to the correct acceptance
rate. The full range of parameters are detailed in Tables 3.4 and 3.5.

Table 3.4: Configuration parameters for 2MP

κ1 κ2 Ntraj n3 n2 n1 n0

0.145 0.154 2000 8 15 120 480
0.155 2000 7 20 96 480
0.1555 2000 6 20 96 480
0.156 2000 5 20 120 480
0.1565 1000 4 20 120 480

Figure 3.4 shows the forces for the 2MP and PF-MP runs. Whereas for the
single-filter actions (section 3.2) the correction term for polynomial filtering has
a much greater force variance than that for mass preconditioning, here, the cor-
responding polynomial correction term S2 for PF-MP has a maximal force only
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Table 3.5: Configuration parameters for PF-MP

p µ ν κ′ Ntraj n3 n2 n1 n0

4 1.2 0.9 0.154 2000 8 20 80 480
0.155 2000 6 20 120 480
0.1555 2000 5 20 120 480
0.156 2000 5 30 120 480
0.1565 2000 4 30 120 480

slightly larger than that of the Hasenbusch correction term S2 for 2MP. This sup-
ports the prior argument that polynomial filtering (at a fixed order) is more
effective on J(κ′) than on K(κ); we are filtering at a heavier mass κ′ < κ, with
an associated suppression in the long range physics.

Figure 3.5 shows the cost function for the two actions in question. The opti-
mal point for 2MP is at κ2 = 0.1555 with cost C = 31,000±2,200, whereas for
PF-MP it is at κ′ = 0.155 with cost C = 29,000±1, 800. For completeness, plots
of the acceptance rate Pacc and the number of matrix operations Nmat are given
in Figures C.3 and C.4 respectively. We see that the PF-MP scheme can perform
just as well as mass preconditioning in this instance.

Note that for both 2MP and PF-MP, the cost increases for higher values of
the intermediate filter (κ2/κ

′). This is due to the increasing cost to evaluate
the correction force terms F2 (triangles in Figure 3.5), which are caused by S2

capturing a larger portion of the energy spectrum. This increased dependence
on one action term reduces the effectiveness of splitting up the action.
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3.3.3 3-filter actions

We have examined the PF-MP action in the case of a single polynomial filter
applied to a single mass preconditioner, which for clarity we denote as 1PF-
1MP. Within the PF-MP scheme, as for plain polynomial filtering, we use two
polynomial terms to see if the introduction of an additional intermediate scale
provides any additional benefit. This does not require any additional fine tuning,
as the choice of polynomial orders p1, p2 provides direct control over the cost and
scale of the filter terms, independent of the quark mass. We denote the scheme
with two polynomial filters and a single mass preconditioner as 2PF-1MP:

S2PF−1M P = φ
†
1P1(J)φ1 +φ

†
2Q(J)φ2

+ φ†
3[J P2(J)]

−1φ3 +φ
†
4W K−1Wφ4. (3.8)

For completeness, we also examine the 1PF-2MP scheme with a single polyno-
mial filter and two levels of mass preconditioning,

S1PF−2M P = φ
†
1P(J1)φ1 +φ

†
2[J1P(J1)]

−1φ2

+ φ†
3W1J−1

2 W †
1φ3 +φ

†
4W2K−1W †

2φ4; (3.9)

however, this does introduce an additional mass parameter that requires fine
tuning.

For the 1PF-2MP scheme, we fix the polynomial order at p = 4 as with PF-MP,
and set κ1 to 0.145 to match the 2MP runs. For the 2PF-1MP scheme, we set
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p1 = 4, p2 = 24. This leaves a single Hasenbusch parameter κ2/κ
′ to tune in

both cases. See Tables 3.6 and 3.7 for a full list of the resultant parameters. The
forces for 1PF-2MP and 2PF-1MP are shown in Figure 3.6; note that the forces as-
sociated with the S3 term are significantly smaller for 2PF-1MP than for 1PF-2MP.
Figure 3.7 shows the cost function. For completeness, plots of the acceptance
rate Pacc and the number of matrix operations Nmat are given in Figures C.5 and
C.6 respectively.

Table 3.6: Configuration parameters for 1PF-2MP

p µ ν κ1 κ2 Ntraj n4 n3 n2 n1 n0

4 1.2 0.9 0.145 0.153 2000 11 12 16 96 480
0.154 2000 8 15 15 96 480
0.1555 2000 6 20 20 96 480
0.1565 2000 4 24 20 96 480

Table 3.7: Configuration parameters for 2PF-1MP

p1 p2 µ ν κ′ Ntraj n4 n3 n2 n1 n0

4 24 1.2 0.9 0.153 2000 10 5 16 80 480
0.154 2000 9 6 24 120 480
0.1555 2000 6 8 20 120 480
0.1565 2000 4 10 24 120 480

For ease of comparison, the cost function for all the actions considered in
this chapter are presented in Figure 3.8, aside from 1PF which has a signifi-
cantly higher cost than the other actions. Looking at this figure, the three PF-MP
schemes all have a similar cost minimum, which is as good as or better than
the 2MP benchmark. The differentiator is their dependence on the free mass
parameter, κ′ or κ2. We can see that for 2MP, 1PF-1MP and 1PF-2MP that choos-
ing κ′/κ2 too large can lead to a significant increase in the cost function (see
e.g. κ′/κ2 = 0.1565), where as the 2PF-1MP cost function has only a very weak
dependence on the Hasenbusch mass parameter. Comparing the contributions
from evaluating F2 for 2MP, 1PF-1MP (triangles in Figures 3.5) and F3 for 1PF-
2MP, 2PF-1MP (squares in Figures 3.7), we see that the difference lies in the
slower increase in the cost of F3 for 2PF-1MP as we increase the mass parameter
κ′. This is due to the smaller force term F3 which, by force balancing, leads to
fewer integration steps for S3. This demonstrates that no fine tuning of κ′ is
required for 2PF-1MP to achieve optimal performance.
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3.4 Concluding remarks

We have compared the polynomial filtered and mass preconditioned HMC al-
gorithms, and found that a 2-level polynomial filter provides a benefit similar
to a single mass preconditioner. We proposed combining the two methods to
provide a multi-level frequency-splitting scheme with minimal fine tuning of the
action parameters. This was partly motivated by noting that the values (µ,ν) de-
termining the Chebyshev polynomial roots produce a shallow minimum in the
polynomial force term, and hence do not need fine tuning, leaving the polyno-
mial order p as the only free parameter.

Any form of Sexton–Weingarten integration with a large number of terms re-
quires a sensible choice of the relative time scales to achieve good performance.
The tuning of the different time steps for our study of multi-level algorithms
was aided by using an overlaid integration scheme, permitting any choice of
step-size for each action term. This made it simple to use the force balancing
method ‘Fihi = constant’ to select the scale for each action term based on its
(maximal or average) force.

The polynomial-filtered mass-preconditioned (PF-MP) algorithm was inves-
tigated with n f = 2 flavours of dynamical quarks, using several different com-
binations of polynomial and Hasenbusch filters, and compared to 2-level mass
preconditioning (2MP) as a baseline. We found that the 2PF-1MP action yielded
a cost function that was as good as or better than the 2MP action, with a sig-
nificant reduction in the tuning effort required to optimise the overall cost. The
2MP action has two real Hasenbusch parameters κ1,κ2 that need to be tuned. In
contrast, the 2PF-1MP action did not need any fine tuning: it showed almost no
dependence on the Hasenbusch parameter κ′, and the orders of the polynomial
terms (as integers) were easily chosen to optimise the cost.

This study was performed at an intermediate quark mass mπ ∼ 400 MeV as a
proof of the viability of the PF-MP scheme. Simulations at lighter quark masses
typically introduce additional filters to further ameliorate the cost of these sim-
ulations, with some groups even using 6-level mass preconditioning [51]. At
these light quark masses, the PF-MP algorithm can potentially provide an easier
path to gain the benefits of multi-level frequency splitting.



◦ 4 ◦

Benchmarking of single-flavour

optimisations

The results in this chapter were submitted for publication to Computa-
tional Physics Communications on the 19th of June, 2018 [52].

The subject of the next investigation is filtering methods for single-flavour pseud-
ofermions, i.e. pseudofermions simulated using RHMC (section 2.6.1), which are
used to simulate the strange quark and for simulations that incorporate electro-
magnetic effects (chapter 5). Compared to the double-flavour case, there are rel-
atively few investigations in the literature of filtering methods for single-flavour
simulations. Here, we compare the performance of polynomial filtered RHMC
(PF-RHMC) with truncated ordered product RHMC (tRHMC), which were intro-
duced in section 2.6.3.

4.1 Lattice setup

For this investigation, we reuse the lattice from chapter 3, performing compar-
isons on the 163×32 lattice with two (degenerate) individual flavours of Wilson
fermion, i.e. a n f = 2 simulation performed with n f = 1+1 methods. Note that
while the two single-flavour fermion actions are treated equally on this lattice,
this is not a requirement for the filtering methods studied here: these apply to
each fermion flavour individually, and hence allow for the possibility that the
fermions have different masses and/or electric charge, the latter of which will
be explored in chapter 5. Both the filtering techniques discussed herein have
been implemented into version 5 of BQCD [48].

The cost metric is the same as for the double-flavour investigation, namely

81



82 CHAPTER 4. BENCHMARKING OF SINGLE-FLAVOUR OPTIMISATIONS

(3.1):
C = Nmat/Pacc.

Here, we use the total cost of both pseudofermions to ease comparison with the
results from chapter 3.

4.2 Tuning the step-sizes

Just as in the double-flavour pseudofermion case (chapter 3), we initially tune
our step-sizes hi via force-balancing, where the maximal forces Fi satisfy (3.4):

Fihi ≈ constant.

The gluon action step-size h0 = hG is excluded from this scheme: as it has a very
cheap force term, it is safe to set n0 = nG = 480 and neglect further tuning.

The degree of freedom remaining after force-balancing is used to tune the
acceptance rate Pacc to the range [0.65,0.75]. Finding an appropriate coarsest
step-size hn can be aided by the observation that for pure HMC or RHMC, the
acceptance rate as a function of the step-size h is approximately given by [53]

Pacc ≈ erfc
�

h2

c2

�

, (4.1)

where c is a fitting parameter known as the characteristic scale. For the filter-
ing schemes considered here, we find that the final correction term Sn with the
‘coarsest’ step-size hn captures most of the dynamics of the system, so to a good
approximation we can replace h with hn in the above expression. To show that
this works, we present fits to the complementary error function for RHMC and
PF-RHMC (p = 4) against step-count n = 1/h in Figures 4.1 and 4.2. While the
fits are not perfect, they are superior to guesswork for determining the appro-
priate step-size hn for obtaining a given Pacc.

4.2.1 Characteristic scale tuning

When we simulate a single pseudofermion flavour with filtering, we find that the
force terms for the final correction term Fn can become much smaller than that
in the degenerate two-flavour pseudofermion case (see e.g. t = 6, 7,8 tRHMC in
Figure 4.3), due to the fact that the fermion matrix is no longer squared. This
implies that the fermion matrix inversions for the correction term Sn can take
place on a much coarser molecular dynamics integration scale. When we apply
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Figure 4.1: Fit of RHMC Pacc data on the 163 × 32 lattice to the complementary error function
(4.1). The data is taken from trajectories at the force-balanced point. The fit is shown as a faded
band, and has characteristic scale c = 0.156(4).
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Figure 4.2: Fit of PF-RHMC p = 4 Pacc data on the 163 × 32 lattice to the complementary error
function (4.1). The data is taken from trajectories at the force-balanced point. The fit is shown
as a faded band, and has characteristic scale c = 0.185(4).
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force-balancing (3.4), this can be problematic. As the final correction term Sn

usually captures most of the dynamics, its force term Fn is quite noisy. When
this force term is very small, this leads force-balancing to suggest significantly
finer step-sizes for the filter terms than is necessary. This motivates us to try to
improve upon force-balancing.

We propose a different step-size tuning technique we denote characteristic
scale tuning, or c-scale tuning for short. This is simply an additional step on top
of force balancing. Recalling the force balancing equation (3.4), we drop the hn

term and relax the criteria to

Fihi ≈ constant, i = 1, . . . , n− 1, (4.2)

allowing the (typically) second-coarsest step-size hn−1 to be tuned freely. In prac-
tice, we set hn such that the characteristic scale fit of the acceptance rate (4.1)
gives the desired Pacc, then we tune hn−1 to minimise the cost while remaining
within the target acceptance rate range. This extra degree of freedom can help
offset an unfavourable force distribution. In the results that follow, we investi-
gate the effects of both tuning methods, and show how much c-scale tuning can
improve the performance.

4.3 RHMC

The baseline for comparing our filtering schemes is obviously the cost of a stan-
dard RHMC simulation. This has pseudofermion action

SRHMC[U ,φ] = φ†R(K)φ. (4.3)

In all our simulation results that follow, it is implicitly assumed that there are
two copies of the pseudofermion action, one for each degenerate flavour, with
independent pseudofermion fields. The rational approximation R(K) we use on
our 163 × 32 lattice is a 20th order Zolotarev approximation (see e.g. [46]) on
the interval [5× 10−5, 3]. The eigenvalue range for this lattice is [λmin,λmax] =
[6.8(1)× 10−5, 2.18949(5)], so this Zolotarev approximation is suitable.

As the gluon step count n0 has been fixed to 480, there is only one step-size
to consider, so tuning is simply a matter of reaching the target acceptance rate
range [0.65, 0.75]. Using the step counts (n1, n0) = (12,480), we find that the
number of matrix operations required per trajectory for pure RHMC is Nmat =
46, 960±120 with an acceptance rate of Pacc = 0.69(1). This gives a normalised
cost of

CRHMC = 68, 100± 1, 200, (4.4)
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setting the benchmark that our filtering methods will have to beat. Note that
this is the total cost for both pseudofermion flavours. Comparing this with the
performance of the double-flavour pseudofermion simulations in chapter 3, we
already see an improvement in cost over ordinary HMC, demonstrating the ben-
efits of the n-th root trick (2.119).

4.4 PF-RHMC

For polynomial filtered RHMC (2.126),

SPF−RHMC = φ
†
1P(K)φ1 +φ

†
2P−1(K)R(K)φ2,

we generate Chebyshev polynomial approximations P(K) to K−1/2 using (2.129)
on the same range as the rational approximation. This leaves a choice of poly-
nomial order p, so in order to determine which integer value of p is optimal, we
sample a broad set of polynomial orders. The forces for all polynomial orders
are shown in the middle column of Figure 4.3, and the resultant step-sizes are
shown in Table 4.1.

Table 4.1: PF-RHMC configurations on the 163 × 32 lattice, using force balancing

p n2 n1 n0 Pacc Ntraj

4 10 18 480 0.68(1) 2000
10 10 26 480 0.70(1) 2000
16 11 35 480 0.75(1) 2000

The cost function for PF-RHMC with force-balanced points is shown in the
middle plot of Figure 4.4. The optimal point is at p = 4 with C = 62,100 ±
1,100, which is only 9% cheaper than plain RHMC (4.4). It’s surprising that
the cost increases as we increase the polynomial order. The main contributor
to this is the cost of evaluating the correction term’s forces F2 (empty circles in
Figure 4.4), which does not go down as we increase p. The computational cost
of each force term F2 evaluation is relatively constant in p due to the use of a
multi-shift solver (see section 2.6.2). While Figure 4.3 shows that the magnitude
of F2 does decrease as p increases, the corresponding step count n2 required to
maintain an acceptance rate in the range [0.65, 0.75] only changes marginally
(see Table 4.1).

Looking at the relative error of P(K) in Figure 4.5, we can see that increasing
the polynomial order p does not greatly improve the approximation, especially at
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small K . This is likely due to the inherent divergence of K−1/2 at the origin, which
is hard to approximate with polynomials. Hence, this indicates that S1 does not
capture significantly more of the action as we increase p, leaving the brunt of
the dynamics and required computational work at the expensive correction term
S2.
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Figure 4.3: Forces for the 1-filter actions on the 163×32 lattice. Left-hand bars show the maximal
force, while right-hand bars show the average. The single force term for plain RHMC is included
for comparison on both force terms.

The cost for PF-RHMC with c-scale tuning is shown on the left in Figure 4.6,
which shows no significant improvement over force-balancing. The resulting
step-sizes under c-scale tuning are shown in Table 4.2, and are not very differ-
ent from those of force balancing (Table 4.1). As discussed earlier, most of the
computational effort here is in the expensive correction term S2, so using c-scale
tuning to optimise the filter term’s step-size h1 has little effect.
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Figure 4.6: C-scale tuned cost for the single-filter actions on the 163×32 lattice. Refer to Figure
4.4 for the legend.

Table 4.2: C-scale tuned configurations for PF-RHMC on the 163 × 32 lattice

p n2 n1 n0 Pacc Ntraj

4 10 30 480 0.71(1) 2000
10 10 30 480 0.72(1) 2000
16 11 35 480 0.75(1) 2000
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4.5 tRHMC

For truncated RHMC (2.133),

StRHMC = φ
†
1R0,t(K)φ1 +φ

†
2Rt,n(K)φ2,

the only novel tunable parameter is the truncation order t. Just as with PF-
RHMC, we sample a range of values for t, then tune the step-sizes with force
balancing and acceptance rate fitting. The forces are shown in the right-hand
column of Figure 4.3, and the resultant configuration points are shown in Table
4.3.

Table 4.3: tRHMC configurations on the 163 × 32 lattice, using force balancing

t n2 n1 n0 Pacc Ntraj

2 15 5 480 0.68(1) 2000
3 10 10 480 0.72(1) 2000
4 8 20 480 0.67(1) 2000
5 6 35 480 0.65(1) 2000
6 5 60 480 0.73(1) 2000
7 4 70 480 0.70(1) 2000
8 3 85 480 0.68(1) 2000

The cost function is shown in the right-hand plot of Figure 4.4, and has a
minimum at t = 5 with C = 52,100±1, 000. This is a more significant improve-
ment than PF-RHMC: it is 24% cheaper than plain RHMC. However, note that
the cost increases dramatically if we choose a truncation too low at t = 2, or too
high at t = 7, 8. These filter parameters correspond to unbalanced force term
hierarchies (see Figure 4.3) where either the correction term has a larger force
than the filter term, or the correction term has a very small force. Thus, it is
unsurprising that force-balancing does not perform well here.

The effect of c-scale tuning on tRHMC is shown on the right in Figure 4.6,
with the corresponding step-sizes in Table 4.4. Compared to PF-RHMC, the
improvement is much more pronounced, particularly at the lower and higher
truncation orders where we noted sub-optimal force hierarchies. The overall
minimum in cost is significantly better than the best force-balanced tRHMC
point t = 4 (compare Figure 4.4); the new optimal point is t = 6 with cost
C = 40, 700± 700, now 30% cheaper than plain RHMC. Note that, due to tun-
ing Pacc via the characteristic scale fit rather than brute force, we are able to use a
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larger step-size for the t = 2 case under c-scale tuning than with force balancing
(compare Table 4.3 with Table 4.4) to achieve a similar Pacc.

Table 4.4: C-scale tuned configurations for tRHMC on the 163 × 32 lattice

t n2 n1 n0 Pacc Ntraj

2 11 25 480 0.71(1) 2000
3 10 25 480 0.76(1) 2000
4 8 20 480 0.67(1) 2000
5 6 30 480 0.70(1) 2000
6 5 15 480 0.71(1) 2000
7 4 15 480 0.67(1) 2000
8 3 25 480 0.65(1) 2000

More significantly, we engineer a significant reduction in the cost across a
range of truncation values, namely t = 2,5, 6,7, 8. Consequently, the compu-
tational cost under c-scale tuning for t = 4–7 is similar, and the cost for t = 8
is vastly improved over force balancing. This demonstrates that characteristic
scale tuning also helps to reduce filter parameter sensitivity. In practice, this
means that using c-scale tuning should reduce the need for re-tuning the filter
parameter(s) when generating a new lattice with different physical parameters
(such as the quark mass).

Note that (refering to Tables 4.3 and 4.4) the acceptance rate Pacc for the c-
scale tuned point t = 5, 0.70(1), is higher than the force-balanced point, 0.65(1).
This is despite the fact that the c-scale tuned point has fewer integration steps
(n1 = 30 versus n1 = 35).

This behaviour is most likely due to the use of overlaid integrators, which
can have different discretisation error behaviour than nested integrators: see
section A.3 for a full discussion. In short, because the c-scale tuned point with
step counts (n2, n1) = (6,30) uses step sizes with a small odd factor between
them, the resultant discretisation error (A.18) is smaller than what would be
expected in the nested case (A.17) and hence the acceptance rate Pacc improves.
Furthermore, the force-balanced point (n2, n1) = (6, 35) has step sizes which are
not multiples of each other, and hence has a larger discretisation error than what
would be expected in the nested case. These effects combine to give the c-scale
tuned point a better Pacc than the force-balanced point.
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4.6 Two-filter results

We now investigate using multiple filters to see if they will improve the compu-
tational performance just as in chapter 3. We also want to measure the effec-
tiveness of c-scale tuning for such lattice actions.

We first consider polynomial filtering. For two polynomial filters (2PF-RHMC),
we select a pair of polynomials P(K),Q(K) such that P(K) ≈ K−1/2 and Q(K) ≈
P(K)−1K−1/2. This yields the action

S2PF−RHMC = φ
†
1P(K)φ1 +φ

†
2Q(K)φ2 +φ

†
3[P(K)Q(K)]

−1R(K)φ3, (4.5)

where the correction term S3 has matrix kernel ≈ I . The 2PF-RHMC fermion
action has two polynomial orders p, q and three step-sizes {h1, h2, h3} to tune.
We fix p = 4, vary q, and then tune the step-sizes with force balancing. This gives
the configurations in Table 4.5. Starting from this parameter set, we perform
c-scale tuning by varying the second-coarsest step-size h2 while keeping h2/h1

fixed. The resultant configuration choices are given in Table 4.6.

Table 4.5: 2PF-RHMC configurations on the 163 × 32 lattice, using force balancing

p q n3 n2 n1 n0 Pacc Ntraj

4 10 7 33 62 480 0.68(1) 2000
16 8 51 98 480 0.66(1) 2000
20 9 65 125 480 0.70(1) 2000

Table 4.6: C-scale tuned 2PF-RHMC configurations on the 163 × 32 lattice

p q n3 n2 n1 n0 Pacc Ntraj

4 10 7 33 62 480 0.68(1) 2000
16 8 15 27 480 0.65(1) 2000
20 9 20 38 480 0.72(1) 2000

For two-level truncation filtering (2tRHMC), we use a pair of truncation or-
ders t < t ′, giving fermion action

S2tRHMC = φ
†
1R0,t(K)φ1 +φ

†
2Rt,t ′(K)φ2 +φ

†
3Rt ′,n(K)φ3. (4.6)

We set t = {4,5}, vary t ′ > t, and apply force balancing and c-scale tuning to
the step-sizes. The resultant configuration choices are given in Table 4.7 (force
balancing) and Table 4.8 (c-scale tuning).
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Table 4.7: 2tRHMC configurations on the 163 × 32 lattice, using force balancing

t t ′ n3 n2 n1 n0 Pacc Ntraj

4 5 6 6 29 480 0.69(1) 2000
6 5 12 40 480 0.72(1) 2000
7 4 17 50 480 0.71(1) 2000
8 3 25 70 480 0.66(1) 2000

5 7 4 8 64 480 0.67(1) 2000
8 3 10 70 480 0.66(1) 2000
10 2 22 129 480 0.77(1) 2000

Table 4.8: C-scale tuned 2tRHMC configurations on the 163 × 32 lattice

t t ′ n3 n2 n1 n0 Pacc Ntraj

4 5 6 6 29 480 0.69(1) 2000
6 5 12 40 480 0.72(1) 2000
7 4 12 35 480 0.69(1) 2000
8 3 10 30 480 0.67(1) 2000

5 7 4 6 47 480 0.71(1) 2000
8 3 5 35 480 0.63(1) 2000
10 2 5 30 480 0.68(1) 2000
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The cost function for 2PF-RHMC and 2tRHMC using force balancing is shown
in Figure 4.7, and the corresponding forces are shown in Figure 4.8. Comparing
with the one-filter case Figure 4.4, we only see a small additional benefit to
using two polynomial filters versus just one, with a minima at (p, q) = (4,10).
Looking at the 2tRHMC results, using two truncations with t = 4 keeps the cost
at a level similar to the best 1tRHMC point for t ′ = 5,6, 7. However, as in the
single filter case, using force-balancing to set the step sizes is far from optimal
for higher polynomial orders, see q = 16, 20, or at larger truncation orders, see
(t, t ′) = (4,8) or any of the t = 5 actions.

10 15 20
0

2

4

6

8

10

12

14

q

C
/1

04

2PF-RHMC

5 6 7 8
t ′

2tRHMC, t = 4

7 8 9 10
t ′

2tRHMC, t = 5

Figure 4.7: The cost function for 2PF-RHMC and 2tRHMC on the 163 × 32 lattice using force
balancing. Filled circles are the total cost. Empty squares are the component of the total cost due
to action initialisation, empty triangles due to calculating F1, empty circles due to calculating F2,
and empty diamonds due to calculating F3. Statistical errors are smaller than the marker size.
The faded band is the cost of plain RHMC, included for ease of comparison.

Next we consider c-scale tuning for the two-filter actions, with cost functions
shown in Figure 4.9. Comparing this with the force balanced case (Figure 4.7),
2PF-RHMC gets some improvement in the case of higher order polynomials q =
16,20, but overall there is only a relatively small benefit. The optimal point
(p, q) = (4,10) has a cost C = 53, 200± 900, yielding a 22% improvement over
plain RHMC.

The main contributor to the 2PF-RHMC cost is, as in the single-filter case,
the cost of evaluating the correction term F3 (empty diamonds in Figure 4.9),
which is symptomatic of an increasing step count n3 (see Table 4.6). Looking at
the relative error of Q(K) in approximating P−1(K)z−1/2 in Figure 4.10, we find
that, just as in the single filter case, increasing the polynomial order q does not
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Figure 4.8: Forces for the 2-filter actions on the 163×32 lattice. Left-hand bars show the maximal
force, while right-hand bars show the average.
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Figure 4.9: C-scale tuned cost for 2PF-RHMC and 2tRHMC on the 163 × 32 lattice. Refer to
Figure 4.7 for the legend.

greatly improve the approximation. This behaviour shows that using a Cheby-
shev polynomial approximation for PF-RHMC is ineffective. A different class of
polynomials could have better approximation behaviour at lower values, but we
do not investigate this here.

The optimal point for 2tRHMC with c-scale tuning is at (t, t ′) = (4, 6) with
cost C = 45,300 ± 700, a 32% improvement over plain RHMC. The optimal
cost is only marginally improved over the force balanced results, and is actually
slightly worse than that in the single truncation filter case. However, note that
the cost function under c-scale tuning is now consistent over all the filter choices
shown. This behaviour demonstrates that c-scale tuning reduces the sensitivity
of the cost to the truncation order in the case of multiple tRHMC filters. In
practice, this means that a set of reasonable truncation parameters (t, t ′) for
a particular order rational approximation should work near-optimally across a
variety of lattices.

4.6.1 Combining the filters: PFtRHMC

It is also possible to combine the two filtering techniques we consider here, ap-
plying both a polynomial filter and a truncation filter. For our PF-tRHMC tests,
we place a p = 4 polynomial filter on top of the tRHMC action,

SPF−tRHMC = φ
†
1P(K)φ1 +φ

†
2P(K)−1R0,t(K)φ2 +φ

†
3Rt,n(K)φ3. (4.7)

This form suggests using a polynomial P(K) that approximates R0,t(K)−1. As
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range [10−5, 3]. Closeness to unity indicates how well the intermediate filter Q(K) approximates
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before, we make use of a Chebyshev approximation. The configuration choices
are shown in Tables 4.9 and 4.10 for force balancing and c-scale tuning respec-
tively, the corresponding forces on the right-hand side in Figure 4.8, and the cost
function in Figure 4.11.

Table 4.9: PF-tRHMC configurations on the 163 × 32 lattice, using force balancing

p t n3 n2 n1 n0 Pacc Ntraj

4 4 15 6 39 480 0.82(1) 2000
5 6 12 36 480 0.75(1) 2000
6 5 26 59 480 0.75(1) 2000
7 4 38 79 480 0.69(1) 2000

PF-tRHMC with force balancing is very sensitive to the choice of truncation
order t, with inflated cost at t = 4 and t = 7. This is appears to be due to
a rapidly varying distribution of forces between the polynomial and truncated
terms in the action (see Figure 4.8).

When we apply c-scale tuning, PF-tRHMC performs as well as (or slightly
better than) 2tRHMC, with a relatively consistent cost improvement over the
range of filters tested t = 4,5, 6,7. The optimal filter choice is (p, t) = (4,5)with
cost C = 42, 600± 700, which is a small improvement on the optimal 2tRHMC
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Table 4.10: C-scale tuned PF-tRHMC configurations on the 163 × 32 lattice

p t n3 n2 n1 n0 Pacc Ntraj

4 4 8 8 42 480 0.73(1) 2000
5 6 10 30 480 0.69(1) 2000
6 5 12 27 480 0.69(1) 2000
7 4 16 32 480 0.70(1) 2000
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Figure 4.11: The cost function for PF-tRHMC on the 163 × 32 lattice. The left hand plot shows
the force-balanced data, while the right hand plot shows the c-scale tuned data. Refer to Figure
4.7 for the legend.

result. The superior behaviour of PF-tRHMC, compared with 2PF-RHMC, is due
to the improved performance of the polynomial filter correction term (empty
circles in Figure 4.11). This occurs because the polynomial filter is small (p = 4)
and does not have to approximate the full inverse square-root. However, we
note that 2tRHMC provides a similar benefit whilst being simpler to implement
because it only has one type of filtering.

4.7 Larger lattice tests

4.7.1 Setup

In order to determine whether the single-flavour improvement techniques de-
scribed here scale to more physical lattices, we also run comparison tests on a
243 × 48 lattice with two degenerate single-flavour clover-improved fermions,
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pion mass mπ ≈ 300 MeV and lattice spacing ∼ 0.07 fm [54]. Based on the rela-
tive merits of the 163×32 results, we do not consider polynomial filtering on the
larger volume, and only compare plain RHMC, tRHMC and 2tRHMC. The cost
of simulating the 243×48 lattice is much larger than that for the 163×32 lattice,
so we only have 100 trajectories per filter set. Nonetheless, these statistics are
sufficient to compare the different filtering methods to the baseline result.

For the rational approximation on this lattice, we use the 30th order Zolotarev
approximation on the range [10−6, 3]. When we measure the eigenvalue spec-
trum of the fermion matrix, we find that the distribution extends slightly outside
this range: [λmin,λmax] = [3.3(1) × 10−6, 3.078(4)]. Nonetheless, the rational
function is still valid as the error of the Zolotarev approximation remains within
the desired tolerance well above the upper bound for this range.

Note that using clover-improved fermions under even-odd preconditioning
adds an extra term to the fermion action, namely the determinant term Sdet =
−2 Tr(ln(Dee)), which must be placed on an integration scale (see section 2.5.1).
This term is relatively cheap to calculate, so for this investigation it is always
integrated on the second-finest integration scale, i.e. n1.

4.7.2 Results

Using n1 = 35 steps for the pseudofermion and determinant terms, and n0 = 480
for the gauge term, plain RHMC for the 243×48 lattice takes Nmat = 628, 000±
4, 000 matrix operations per trajectory with an acceptance rate of Pacc = 0.65(4).
This gives a baseline cost of

C = 971, 000± 65, 000 (4.8)

for comparison.
The cost functions for tRHMC and 2tRHMC (with t = 4) using c-scale tuning

are shown in Figure 4.12. The baseline RHMC point is shown as a faded band.
The corresponding forces are shown in Figure 4.13, and the configuration data
in Tables 4.11 and 4.12.

We find that the results with c-scale tuning are qualitatively similar to the
163×32 lattice results. Once again we see that tRHMC provides the best result,
with the minimum cost at t = 10 with C = 412,000 ± 27, 000, an impressive
58% improvement over plain RHMC. As was the case for the 163 × 32 lattice,
we also see that using two truncation filters does not improve the minimum cost
– the optimal cost for 2tRHMC with t = 4 is at t ′ = 8, with C = 451,000 ±
32, 000. Most importantly, we see that the cost is relatively flat across all filter
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empty triangles due to calculating F1, empty circles due to calculating F2, and empty diamonds
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Table 4.11: C-scale tuned configurations for tRHMC on the 243 × 48 lattice

t n2 n1 n0 Pacc Ntraj

6 20 30 480 0.71(4) 100
8 16 25 480 0.69(5) 100
10 12 25 480 0.73(4) 100
12 10 25 480 0.66(5) 100

Table 4.12: C-scale tuned configurations for 2tRHMC on the 243 × 48 lattice

t t ′ n3 n2 n1 n0 Pacc Ntraj

4 8 15 30 32 480 0.70(4) 100
10 12 35 34 480 0.66(5) 100
12 11 25 23 480 0.65(5) 100
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parameters shown, demonstrating again that c-scale tuning reduces the need for
filter parameter tuning.

4.8 Concluding remarks

We have studied two types of filtering that can be applied to RHMC: polynomial
filtering (PF-RHMC) and truncated ordered product filtering (tRHMC). Com-
paring tRHMC and PF-RHMC for single-flavour pseudofermion simulations on
a 163×32 lattice, we find that tRHMC performs better overall, providing a 40%
improvement in cost over the plain RHMC case.

We tested both one and two levels of filtering, finding that adding a second
filter did not improve the performance of tRHMC. When testing tRHMC on a
larger 243 × 48 lattice at a lighter quark mass we find a similar improvement:
tRHMC reduces the cost significantly, but two truncations are not better than
one. A possible explanation for this is that, by simulating a single flavour only
(rather than two as a single pseudofermion), there is already a significant re-
duction in the force variance [55], and hence there is less work for the filter to
do.

The superior benefits of tRHMC over PF-RHMC are possibly due to the Cheby-
shev polynomial filter being a relatively poor approximation to the high-energy
modes of the single-flavour system. A different polynomial approximation might
provide better performance, but given the simplicity of implementing tRHMC
we did not consider investigating this here. The combined PF-tRHMC filtering
method performs as well as tRHMC, but again this combination is more complex
to implement than tRHMC.

An important consideration for the filtering methods investigated here is
choosing the filter parameters and integration step-sizes. The most common
way to tune the integration step-sizes is to choose step-sizes hi such that the
molecular dynamics forces Fi satisfy Fihi ' constant. However, when using this
force balancing method to tune the step-sizes, we found that the cost function
is highly dependent on the choice of filter parameters – choose these too low or
too high, and the performance compared with ordinary RHMC is only marginally
better or even worse. This is partially due to small numbers of integration steps
at the coarsest scale.

To mitigate the filter parameter dependence, we introduced a novel way of
tuning the integration step-sizes, which we refer to as c-scale tuning. This tech-
nique uses the characteristic scale to set the coarsest step size, then holds that
fixed while tuning the next step size, with the remaining step sizes set using the
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force balancing method. For both filtering methods and both lattices, we found
that while employing this technique did not improve the lowest achievable cost,
it did make the cost function significantly less sensitive to the filter parameters.

The advantage of this is particularly relevant for larger and more physical
lattices, where generating configurations is so expensive that we cannot tune
the filter parameters by brute-force within a reasonable time-frame. When we
use multiple filters, which is usually necessary for such lattices, then the benefits
of c-scale tuning should prove significant. One can just choose a reasonable set
of filters, calculate the forces, then tune two step-sizes to achieve near-optimal
costs.

Implementing tRHMC and c-scale tuning is straightforward. In particular,
tRHMC only requires a small modification to regular RHMC code to allow for
multiple rational polynomial terms. Applying c-scale tuning only requires in-
formation about the force terms in a HMC simulation. Thus, these techniques
can be quickly deployed in order to reduce the computational cost in simulat-
ing single-flavour pseudofermions on the lattice. Here, the lightest quark mass
we considered was mπ ≈ 300 MeV. At lighter masses, the relative benefits of
single-flavour tRHMC filtering will increase. This should prove particularly use-
ful for dynamical Lattice QCD+QED configurations, where the up and the down
quark must be simulated separately: this is the subject of the next investigation
in chapter 5.



◦ 5 ◦

Electromagnetic effects

We now discuss how to dynamically incorporate electromagnetic effects into Lat-
tice QCD simulations, which is denoted Lattice QCD+QED. These effects are im-
portant for many physical quantities of interest, such as the neutron-proton mass
difference, and the current precision of Lattice QCD simulations is such that even
∼ 5% corrections from EM make a noticeable difference.

5.1 Quantum Electrodynamics

First, we consider pure electrodynamics for a system of quarks, which is gov-
erned by the theory of Quantum Electrodynamics (QED). The QED action looks
very similar to that of QCD in the continuum (1.22): in Euclidean space-time, it
takes the form

SQED =ψ(γµD(QED)
µ

+m)ψ+
1
4

F (QED)
µν

F (QED)
µν

. (5.1)

The vital difference here is that all of the gauge objects are based on the Abelian
Lie group U(1), rather than SU(3) as for QCD.

The Lie group U(1) is the unitary group of dimension one, which is usually
represented as a complex phase: g ∈ U(1) if

g = eiχ ,χ ∈ R. (5.2)

Thus, we have just one kind of U(1) charge, the electric charge. The quark fields
ψ,ψ are elements of the fundamental representation of U(1), which means that
under local U(1) gauge transformations, we have

ψ(x)→ψ′(x) = eiχ(x)ψ(x) (5.3a)

and ψ(x)→ψ′(x) = e−iχ(x)ψ(x), (5.3b)

103
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where χ(x) is a real-valued function of x .
The covariant derivative is defined in terms of the U(1) gauge field Bµ(x)

D(QED)
µ

(x) = ∂µ + iQ f Bµ(x). (5.4)

The parameter Q f here is the charge of the quark f in question, so for the six
physical quarks we have Qu = Qc = Q t =

2
3 e and Qd = Qs = Qb = −

1
3 e where

e is the magnitude of the charge on the electron. The gauge field Bµ(x) is an
element of the adjoint representation of U(1), namely the Lie algebra u(1). U(1)
only has one generator, t = 1, so the adjoint set is simply the set of all real
numbers. Hence, Bµ(x) is just a real-valued function of x with Lorentz index µ.
This field represents the photon.

Just as in QCD, it is convenient to absorb the main factor of the gauge cou-
pling e into the definition of the fields, so we use the action

SQED =ψ(γµD(QED)
µ

+m)ψ+
1

4e2
F (QED)
µν

F (QED)
µν

(5.5)

with covariant derivative

D(QED)
µ

(x) = ∂µ + iq f Bµ(x). (5.6)

where q f = Q f /e is a real number that quantifies the relative strength of the
coupling: 2/3 for the up-type quarks {u, c, t}; −1/3 for the down-type quarks
{d, s, b}.

In contrast to SU(3), U(1) is Abelian: multiplication of group elements com-
mute. Hence, the electromagnetic field strength tensor takes the form

F (QED)
µν

= −i[D(QED)
µ

(x), D(QED)
ν

(x)] = ∂µBν(x)− ∂νBµ(x) (5.7)

and we do not have self-interactions of photons. Because of this, the gauge
coupling of QED e remains relatively constant across energy scales. The coupling
is often expressed by the fine-structure constant α= e2/4π≈ 1

137 . This coupling
is small, so, unlike QCD, QED can be readily examined using perturbation theory.

5.2 Lattice QCD+QED

We want to incorporate electromagnetic effects into our lattice calculations. If
we combine the QED action (5.5) with the QCD action (1.22), we obtain

SQC D+QED = SG + SA+ SQC D+QED
F (5.8)



5.2. LATTICE QCD+QED 105

where SG is the SU(3)/gluon gauge action

SG =
1

2g2
Tr
�

Fµν(x)Fµν(x)
�

, (5.9)

SA is the U(1)/photon gauge action

SA =
1

4e2
F (QED)
µν

(x)F (QED)
µν

(x), (5.10)

and SQC D+QED
F is the combined QCD+QED fermion action

SQC D+QED
F =ψ(γµD∗

µ
+m)ψ (5.11)

where the combined covariant derivative is

D∗
µ
= ∂µ + iAµ(x) + iq f Bµ(x). (5.12)

In order to discretise this action onto a lattice, we must decide upon the
essential gauge field for the QED interaction from which we construct all other
QED operators. As the U(1) theory is Abelian, we have two choices:

1. A compact representation: use the U(1) fundamental group gauge fields,
U ′
µ
(x) = exp

�

iq f Bµ(x)
�

, or

2. A non-compact representation: use the u(1) algebra gauge fields, Bµ(x).

As QED has no self-interactions, it turns out that the non-compact representation
is the most useful. With this decision, we are now in a position to formulate
lattice operators for the new QED parts of the action.

First, consider the discretisation of SA. Expanding the electromagnetic field-
strength tensor gives

SA =
1

4e2

∫

d4 x
∑

µ,ν

�

∂µBν(x)− ∂νBµ(x)
�2

. (5.13)

This can be discretised by replacing the derivative ∂µBν(x) with the forward
difference [Bν(x + aµ̂)− Bν(x)]/a, and replacing the integral with a sum. This
leads to the lattice photon action

SA =
a2

4e2

∑

x∈Λ

∑

µ,ν

�

Bµ(x) + Bν(x + aµ̂)− Bµ(x + aν̂)− Bν(x)
�2

. (5.14)
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This is accurate to order O(a2). This is comparable to the Wilson gauge action
(1.48), where instead of the plaquette Uµν we have the sum Bµ(x)+Bν(x+aµ̂)−
Bµ(x +aν̂)−Bν(x). If better discretisation errors are required, we can apply the
Symanzik improvement scheme just as in the QCD case.

Next, consider the combined fermion action SF . The only difference from
the QCD action is that the covariant derivative has the extra term iq f Bµ(x).
Considering the derivation of a lattice fermion action in section 1.2, we simply
need to replace all instances of the gluon gauge field Uµ(x) with eiq f Bµ(x)Uµ(x).
Therefore, the Wilson lattice action with QED effects is

SWilson+QED
F = a4

∑

f

∑

x ,y∈Λ

ψ f (x)
�

δx ,y − κ f H f (x |y)
�

ψ f (y) (5.15)

where the hopping matrix is now given by

H f
abαβ(x |y) =

4
∑

µ=1

(1− γµ)αβ eiq f Bµ(x)Uµ(x)abδx+aµ̂,y

+
4
∑

µ=1

(1+ γµ)αβ e−iq f Bµ(x)U−µ(x)abδx−aµ̂,y . (5.16)

The QED component of this action is accurate to O(aα), which is usually suffi-
cient for typical Lattice QCD+QED simulations.

5.2.1 Other points to consider

In Lattice QCD+QED, the electromagnetic gauge needs to be fixed in order for
physical quantities to be measured. This is not a consideration in Lattice QCD;
confinement ensures that all observable particles are flavour singlets and thus
QCD gauge-invariant, so expectation values are always well-defined and com-
putable without gauge-fixing. In contrast, we have several electrically charged
particles in Lattice QCD+QED (e.g. the π+), which are inherently QED gauge-
variant. One popular choice of gauge for Lattice QCD+QED simulations is the
Landau gauge, given by the condition

∑

µ

∂µBµ(x) = 0. (5.17)

Another potential choice is the Coulomb gauge, given by
∑

i=1,2,3

∂iBi(x) = 0. (5.18)
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These can be applied on the lattice by numerical optimisation of a gauge fixing
function, based on the idea that at the local minima and maxima of a function
f , we have ∂ f = 0.

The photon field Bµ(t, ~x) can have a non-physical zero-momentum mode

B̃µ(t,~k = 0) =
∑

~x

Bµ(t, ~x), (5.19)

which causes an IR divergence in the continuum. This makes extrapolating quan-
tities to the physical point impossible. The cause of this phenomenon is that the
classical equations of motion for QED are inconsistent with a single charged par-
ticle in a periodic box. To fix this issue, we can remove the zero-mode explicitly
by setting

B̃µ(t,~k = 0) =
∑

~x

Bµ(t, ~x) = 0, ∀t,µ. (5.20)

While this constraint violates the hypercubic symmetry of the lattice action, the
symmetry is restored in the continuum. See [56] for a detailed discussion of this
zero-mode removal.

In practice, the smallness of the electromagnetic coupling α∼ 1
137 compared

to the gluon gauge coupling αs ∼ 1 makes measuring electromagnetic contribu-
tions to expectation values difficult, because they are often drowned out by the
statistical noise of the QCD contribution. To alleviate this, we can simulate with
non-physical large EM couplings α to boost the signal, then interpolate to the
physical value by also measuring quantities on plain Lattice QCD configurations
where α= 0 [57, 58].

Finite volume effects for Lattice QCD+QED simulations are much more pro-
nounced than those in pure Lattice QCD. This is because the electromagnetic
force is a long-range interaction, so, unlike QCD, the strength of the electro-
magnetic force does not quickly drop off as we move to the boundaries. There-
fore, the finite-volume effects should always be considered when using Lattice
QCD+QED simulations for continuum extrapolations.

5.3 Benchmarking tRHMC

In Lattice QCD+QED, the up and down quarks have different charges which
necessitates using single-flavour pseudofermions to simulate them. Given the
success of filtering methods for single-flavour pseudofermions in chapter 4, we
now try to determine whether we can achieve a similar improvement when gen-
erating Lattice QCD+QED configurations.
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For this benchmarking, we use a lattice from the QCDSF collaboration near
the flavour-symmetric point [58]. This is a 243 × 48 lattice with a tree-level
improved gluon action (1.55), and n f = 1 + 1 + 1 SLiNC fermions [59] with
hopping parameters κu = 0.124362,κd = κs = 0.121713 and quark charges
qu = 2/3 e, qd = qs = −1/3 e. These parameters are chosen such that, after
taking into account the electromagnetic effects, the masses of the quarks are
about the same. Electromagnetic effects are implemented via the addition of a
non-compact photon action (5.14) and the modification of the Wilson part of
the fermion action (5.15), using the Landau gauge (5.17). The electromagnetic
coupling is set unphysically large to α ∼ 0.1. The pion mass on this lattice is
mπ ≈ 330 MeV, and the lattice spacing is a = 0.068 fm. For further details of
this lattice, refer to the original literature [58].

Given the performance of tRHMC for single-flavour pseudofermions (chap-
ter 4), we only compare RHMC (2.117) and tRHMC (2.133), using the same cost
function as before (3.1):

C = Nmat/Pacc.

Here, we use a 30th order Zolotarev approximation on the range [10−6, 5]. For
each choice of filter parameters, we perform 100 trajectories using BQCD [48]
and apply c-scale tuning in order to see if we can provide an improvement in
simulation cost.

The forces terms for RHMC and various tRHMC filters are shown in Fig-
ure 5.1. Note that the force terms for the up quark and the down-type quarks
{d, s} are similar, demonstrating that the quark masses are also similar.

The choice of step-sizes under force balancing are shown in Table 5.1, while
the c-scale tuned points are shown in Table 5.2. Here, we use the same trunca-
tion order t for each quark, with corresponding step-sizes {h2, h3} for the filter
and correction term respectively. As in the previous investigations, the Wilson
gauge action is very cheap to calculate, so we fix its step-size to h0 = 1/480.
Meanwhile, the tree-level improvement to the gauge action and the clover de-
terminant term are a little more expensive to simulate, so we put them on a
coarser scale h1 which is fixed to 1/80.

The cost function for RHMC and tRHMC is shown in Figure 5.2, with both
force balancing and c-scale tuning. The cost of RHMC is plotted as a faded band,
and takes the value

CRHMC = 923, 000± 62,000. (5.21)

Under force-balancing, the optimal cost with tRHMC is at t = 8 with C =
711, 000 ± 45,000, which is a 23% improvement over RHMC. Hence, tRHMC
is effective for reducing the cost of generating QCD+QED configurations. We
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Figure 5.1: Forces for RHMC and tRHMC on the 243×48 lattice with QED. For each filter set, the
first two bars represent the maximal and average forces for the down-type quarks {d, s}, while
the second two bars represent the maximal and average forces for the up quark u. Note that the
vertical scale differs between F1 and F2. The single fermion force term F for RHMC is included
for comparison on both force terms F1, F2 (left-hand plots).
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Table 5.1: tRHMC configurations on the 243 × 48 lattice with QED, using force balancing. The
configuration for plain RHMC is included as ‘t = 0’.

t n3 n2 n1 n0 Pacc Ntraj

0 30 80 480 0.72(4) 100
6 16 40 80 480 0.72(4) 100
8 20 80 80 480 0.74(4) 100
10 26 145 80 480 0.74(4) 100

Table 5.2: tRHMC configurations on the 243 × 48 lattice with QED, using c-scale tuning. The
configuration for plain RHMC is included as ‘t = 0’.

t n3 n2 n1 n0 Pacc Ntraj

0 30 80 480 0.72(4) 100
6 16 40 80 480 0.72(4) 100
8 20 80 80 480 0.74(4) 100
10 26 40 80 480 0.71(4) 100

note however that the cost is highly dependent on the truncation order, with far
less optimal costs for t = 6 and t = 10. Looking at the force terms involved
(Figure 5.1), this is due to a rapidly varying force distribution between the filter
and correction terms.

The situation is improved with c-scale tuning: while the only improvement
we see is at t = 10, it is quite substantial, producing a reduced cost of C =
679, 000± 47, 000. This behaviour demonstrates that our c-scale tuning is still
effective at reducing filter parameter sensitivity.
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Figure 5.2: Cost function for tRHMC on the 243×48 lattice with QED. The left-hand plot shows
the force-balanced data, while the right hand plot shows the c-scale tuned data. Filled circles
are the total cost. Empty squares are the component of the total cost due to action initialisation,
empty triangles due to calculating F1 for all three fermions, empty circles due to calculating F2 for
all three fermions. The faded band is the cost of plain RHMC, included for ease of comparison.





Conclusion

Lattice QCD simulations have come a long way from their inception, with cur-
rent lattices reaching physical masses and continuum extrapolations with errors
as low as 1%. This achievement is partially due to improvements in computa-
tional capabilities, but it is also due to significant improvements in simulation
techniques. In this work, we have mainly focussed on a particular class of im-
provement techniques known as filtering methods, which work by splitting the
fermion action into different energy-mode components that can be integrated
separately in Hybrid Monte Carlo. We have shown that these techniques can
provide significant cost benefits.

First, we looked at polynomial filtering and mass preconditioning for double-
flavour pseudofermions, showing that a combination of the filters produces sig-
nificant computational cost improvements without the need for filter parameter
fine-tuning. This should prove useful for production lattice simulations, where
the lattices are often so computationally intensive that the effort required to
finely tune such parameters is significant.

Next, we considered single-flavour pseudofermions, with polynomial filter-
ing and truncated ordered product RHMC. There, we found that tRHMC pro-
duced the biggest improvement in cost. This technique is also very simple to im-
plement into existing codebases with RHMC. Furthermore, by applying a novel
step-size tuning technique we denote c-scale tuning, we can significantly reduce
the dependency of the cost on the truncation order. This should further reduce
the tuning effort required for production lattice simulations.

Finally, we tried the tRHMC technique on a dynamical Lattice QCD+QED
simulation, showing that we can achieve cost improvements there as well. The
c-scale tuning technique also provides a similar reduction in filter parameter
dependency. The combination of tRHMC and c-scale tuning should prove use-
ful for dynamical Lattice QCD+QED simulations near the physical point, such
that important quantities like the neutron-proton mass difference can be accu-
rately calculated in the Standard Model. Discrepancies with experimental values
would then provide evidence for physics beyond the Standard Model.
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◦ A ◦

Algebraic toolbox

This appendix describes several pieces of algebra that appear throughout the
thesis.

A.1 Matrix definitions

The generators of SU(3) span the su(3) algebra, which is usually represented as
the set of traceless Hermitian 3× 3 matrices. In this representation, the genera-
tors are given by t(a) = λa/2 where λa are the Gell-Mann matrices:

λ1 =





0 1 0
1 0 0
0 0 0



 , λ2 =





0 −i 0
i 0 0
0 0 0



 , λ3 =





1 0 0
0 −1 0
0 0 0



 ,

λ4 =





0 0 1
0 0 0
1 0 0



 , λ5 =





0 0 −i
0 0 0
i 0 0



 , λ6 =





0 0 0
0 0 1
0 1 0



 ,

λ7 =





0 0 0
0 0 −i
0 i 0



 , λ8 =
1
p

3





1 0 0
0 1 0
0 0 −2



 . (A.1)

The gamma matrices γµ are a set of four matrices which satisfy the anti-
commutation relation

{γµ,γν}= 2ηµνI (A.2)

where ηµν is the metric tensor. The smallest matrix size which can satisfy this
relation are 4× 4, and within that there are many possible representations. In
Lattice QCD, we are mainly concerned with Euclidean space-time where ηµν =

115
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δµν. A common representation of the gamma matrices in this space-time is the
chiral representation, where

γ1 =









0 0 0 i
0 0 i 0
0 −i 0 0
−i 0 0 0









, γ2 =









0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0









,

γ3 =









0 0 i 0
0 0 0 −i
i 0 0 0
0 −i 0 0









, γ4 =









0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0









. (A.3)

We also define another matrix, γ5, where

γ5 ≡ γ1γ2γ3γ4 =









−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1









(chiral). (A.4)

A.2 Theorems

Theorem A.1 (Matthews-Salam for bosonic fields). Let ai, i = 1, . . . , N be a set
of complex numbers and Mi j be a positive-definite complex matrix. Then

∫

da1da∗1 . . . daN da∗N exp

�

−
N
∑

i, j=1

a∗i (M)
−1
i j a j

�

= πN det M . (A.5)

Proof. Consider the transformed co-ordinates

a′i =
N
∑

i=1

(M)−1
i j a j.

It follows that with this change of variables, we have

da′1 . . . da′N = |det M−1|da1 . . . daN ,

=⇒ det Mda′1 . . . da′N = da1 . . . daN ,



A.2. THEOREMS 117

using the fact that det M > 0. Hence, we can write the integral as

∫

da1da∗1 . . . daN da∗N exp

�

−
N
∑

i, j=1

a∗i (M)
−1
i j a j

�

= det M

∫

da′1da∗1 . . . da′N da∗N exp

�

−
N
∑

i=1

a∗i a′i

�

= det M
N
∏

i=1

∫

da′ida∗i exp(−a∗i a′i)

= det MπN .

A.2.1 Symmetry of overlaid integrators

In order to show that the overlaid multi-scale integrators are time-reversible, we
first define a useful construct for expressing integrators.

Definition A.1 (Time-step inserted product). Let Âi[µ= bi], i = 1, . . . n be a set
of integration steps Âi augmented by computational time parameters µ = bi.
Then the time-step inserted product of these operators from µ= 0 to µ= τ

M̂ = T τ
0

�

n
∏

i=1

Âi[µ= bi]

�

(A.6)

is defined as

M̂ = T̂[b′n+1 − b′n]
n
∏

i=1

(Âi T̂[b
′
i − b′i−1]), (A.7)

where

• T̂[h] is the atomic time-step (2.38),

• the bi have been rearranged to b′i such that b′i+1 ≥ b′i, with any steps at the
same time b′i = b′i+1 remaining in the same order,

• b′0 = 0, b′n+1 = τ, and

• The product Π is left-ordered, such that Π[ai] = anan−1 · · · a2a1.

This offers a convenient way to express symplectic integrators of trajectory
length τ. As we will usually use the limits (0,τ), we denote T = T τ

0 . For
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example, a one-step second-order minimal norm space-time-space scheme of
length τ= h can be expressed as

M̂2MNSTS[h] = T
�

Ŝ[λh;µ= h]Ŝ[(1− 2λ)h;µ= h/2]Ŝ[λh;µ= 0]
�

. (A.8)

It is even more convenient for expressing overlaid integrators: given a set of N
integration schemes that conserve the partial Hamiltonians Hi = T + Si

M̂i = T
� ni
∏

j=1

Ŝi[b
i
j;µ= c i

j]

�

, (A.9)

the corresponding overlaid integration scheme is simply

M̂overlaid = T
�

N
∏

i=1

ni
∏

j=1

Ŝi[b
i
j;µ= c i

j]

�

. (A.10)

Note that as [Ŝi[h1], Ŝi[h2]] = 0, the constituent schemes can always be written
such that the c i

j are distinct for each scheme i and bi
j 6= 0.

The parameter µ can be thought of as the cumulative total of time-step up-
dates, ranging from 0 to τ. Note that this parameter does not modify the action
of an integration step in any way – it is only used to specify the action of the
time-step inserted product above.

For time-step inserted products of operators, the symmetry condition be-
comes as follows.

Theorem A.2 (Symmetry of a time-step inserted product). Suppose we have an
integration scheme

M̂ = T
�

n
∏

i=1

Âi[µ= bi]

�

. (A.11)

where Âi 6= Î are reversible and the bi are distinct. Then M̂ is symmetric, and
hence reversible, iff for every operator Â[µ = b] in the product, there is also an
operator of the form Â[µ= τ− b].

Proof. Under the action of the time-step insertion operator, we can rearrange
the operators Âi such that bi < bi+1. Expanding the time-step insertion operator
then gives

M̂ = T̂[bn+1 − bn]
n
∏

i=1

�

Âi T̂[bi − bi−1]
�

,

where b0 = 0 and bn+1 = τ, and only the operators at either end, T̂[b1− b0] and
T̂[bn+1 − bn], can possibly be equal to the identity Î .
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By Theorem 2.8, this product is symmetric iff

Âi = Ân−i+1 (A.12)

and
bi − bi−1 = bn−i+2 − bn−i+1 ∀i = 0, . . . , n+ 1.

Rearranging the second condition gives

bi + bn−i+1 = bi−1 + bn−i+2

= bi−2 + bn−i+3

= . . .

= b0 + bn+1 = τ,

so

bi + bn−i+1 = τ ∀i = 0, . . . , n+ 1. (A.13)

The two conditions (A.12) and (A.13) together are equivalent to saying that
for each the operator Âi[µ= bi] in the product, we also have Ân−i+1[µ= bn−1+1] =
Âi[µ= τ− bi].

Given the reversibility condition Theorem A.2, we can then systematically
show reversibility for overlaid integrators.

Theorem A.3 (Reversibility of overlaid integrators). If the constituent symplec-
tic integrators of an overlaid multi-scale integrator are symmetric, then the over-
laid multi-scale integrator is also symmetric and hence time-reversible.

Proof. Consider the overlaid integrator with N schemes, M̂overlaid (A.10), express-
ing the constituent schemes in minimal form such that the c i

j are distinct for each
scheme i.

By assumption, the constituent schemes are symmetric. Hence, by Theorem
A.2, it follows that each Ŝi[b,µ = c] has a mirror Ŝi[b,µ = τ− c] for all of the
schemes i = 1, . . . , N .

Now suppose that for some µ = c, we have a set of M ≤ N space-steps of
the form Ŝ j[b j,µ = c]. Upon application of the time-step insertion operator,
these form the left-ordered product ŜM · · · Ŝ1 in the integration scheme, which
we define as a single operator Ŝ′ to ensure only one operator in the scheme has
µ = c. As each constituent scheme is symmetric, the constituent steps of Ŝ′

have mirrors Ŝ j[b j,µ= τ− c], which upon application of the time-step insertion
operator are also left-ordered ŜM · · · Ŝ1 in the product. Thus, Ŝ′[µ = c] has a
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mirror Ŝ′[µ= τ− c]. However, we must demonstrate that Ŝ′ is reversible, which
by Theorem 2.8 requires

Ŝ1[b1]Ŝ2[b2] · · · ŜM[bM] = ŜM[bM] · · · Ŝ2[b2]Ŝ1[b1]. (A.14)

As [Ŝi[a], Ŝ j[b]] = 0 for every i, j, a, b, this equation is satisfied.
Thus, we can write M̂overlaid in a form such that every operator M̂[µ = c] in

the product has a mirror M̂[µ= τ− c], every operator is reversible, and no two
operators have the same µ. Hence, by Theorem A.2, M̂overlaid is symmetric and
thus reversible.

A.3 Integration scheme errors

In this section, we consider the discretisation errors of the integration schemes
used in Hybrid Monte Carlo, which quantify how accurately an integration scheme
preserves the Hamiltonian and hence determines the acceptance rate Pacc.

For a classical system described by the Hamiltonian operator H = T + S,
the operator eτH can be used to advance the system state by time τ. In HMC,
eτH does not have a linear form, and can’t be used to advance the system (P, U)
directly. However, we do have linear forms for the operators ehT and ehS; these
are simply the time T̂[h] and space Ŝ[h] atomic integration steps (2.51). When
we combine these steps into an integration scheme of trajectory length τ, we are
effectively applying an operator eτH̃ for some H̃ which is known as the shadow
Hamiltonian for the scheme. The difference H̃ − H is the discretisation error of
the integration scheme or the integration error, and we would like to keep this
small in order to maintain a high acceptance rate Pacc.

To calculate the discretisation error for a given scheme, we can start by writ-
ing the full integration scheme in terms of the T and S operators: for the inte-
grators in subsection 2.4.3, we replace the time step T̂[a]with eaT where a is the
step-size, and the space step Ŝ[a] with eaS. If we rewrite the resultant product
of exponentials as a single exponential factor, we determine H̃ and hence the
error. This can achieved by repeatedly applying the Baker-Campbell-Hausdorff
formula for a symmetric product,

ln
�

ehÂehB̂ehÂ
�

= h(2A+ B)−
h3

6
([B, [A, B]] + [A, [A, B]]) +O(h5), (A.15)

assuming a symmetric integrator as we use for Hybrid Monte Carlo. For exam-
ple, the discretisation error of a second-order minimal norm space-time-space
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(2MNSTS) integration step of size h (2.57) is

H̃2MN −H = h2
�

6λ2 − 6λ+ 1
12

[S, [S, T]] +
1− 6λ

24
[T, [S, T]]

�

+O(h4). (A.16)

In the practical case of applying n such steps to form a trajectory of length τ =
nh, the error is given by n(H̃2MN − Ĥ).

For a multi-scale integration scheme, the Hamiltonian operator is given by
H = T+

∑

i Si where we sum over several action terms Si. The error of such an in-
tegration scheme has terms of the form [Si, [S j, T]] and [T, [Si, T]] at first order.
For symmetric symplectic integration schemes, the terms of the form [T, [Si, T]
and [Si, [Si, T]] for a particular Si are identical to what would be the case if
the integration scheme only had the T and Si operators, e.g. (A.16). This can be
shown by considering all possible scenarios when applying the symmetric Baker-
Campbell-Housdorff formula (A.15) recursively. The cross terms [Si, [S j, T]],
i 6= j are thus a distinguishing feature of multi-scale schemes, and they typically
reduce the benefit of placing one action term on a finer time-scale than another.

For a nested 2MNSTS scheme with step-size h for S1 and nesting factor a for
S2 (i.e. each T̂ step was replaced by a 2MNSTS steps for S2), the error is

H̃nested − Ĥ = h2
�

6λ2 − 6λ+ 1
12

[S1, [S1, T]] +
1− 6λ

24
[T, [S1, T]]

�

+
h2

2a

�

6λ2 − 6λ+ 1
12

[S2, [S2, T]] +
1− 6λ

24
[T, [S2, T]]

�

+ h2 1− 6λ
24

[S1, [S2, T]] +O(h4), (A.17)

Note that this scheme is exactly equivalent to an overlaid 2MNSTS scheme with
step-sizes h1 = h and h2 = h/2a.

When we use overlaid integrators, we have access to a variety of different
step-sizes (h1, h2) that are not possible with nesting. In such cases, the integra-
tion error generally differs from the nested case.

Consider an overlaid 2MNSTS scheme with step-sizes h1 = h and h2 = h/a
where a is odd; the case of a even corresponds to a nested scheme with nesting



122 APPENDIX A. ALGEBRAIC TOOLBOX

factor a/2. The error of this scheme is given by

H̃nested − Ĥ = h2
�

6λ2 − 6λ+ 1
12

[S1, [S1, T]] +
1− 6λ

24
[T, [S1, T]]

�

+
h2

a

�

6λ2 − 6λ+ 1
12

[S2, [S2, T]] +
1− 6λ

24
[T, [S2, T]]

�

+ h2
�

1
a2

6λ2 − 6λ+ 1
6

+
�

a2 − 1
a2

�

1− 6λ
24

�

[S1, [S2, T]] +O(h4).

(A.18)

Hence, depending on a and λ, the cross-term coefficient can be larger or smaller
than the nested case (A.17).

In this thesis, we use λ ≈ 0.193183 which minimises the Euclidean norm of
the two error terms in the nested case (A.17). That is, it minimises

p

α2 + β2

where α= (6λ2−6λ+1)/12 and β = (1−6λ)/24. Hence, the coefficient of the
cross-term in the nested case is

1− 6λ
24

≈ −0.006629. (A.19)

Denoting the coefficient of the cross-term in (A.18) as c(a), we have:

c(1) =
6λ2 − 6λ+ 1

6
≈ 0.01080,

c(3)≈ −0.004692,

c(5)≈ −0.005932,

c(7)≈ −0.006273,

. . .

c(∞) =
1− 6λ

24
≈ −0.006629.

Therefore, for odd factors a > 1, the cross-term has a smaller coefficient than in
the nested case. If we were to interpolate the nested integrator case for arbitrary
factors a, this particular integration scheme would have a smaller error than the
interpolation. This effect reduces as we increase a.

The other case of a two-level overlaid 2MNSTS integrator is where one level
has n steps of size h/n and the other has m> n steps of size h/m where m is not
a multiple of n. In such cases, the discretisation error is generally worse than an
interpolation of the nested case.
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Statistical analysis

In this appendix, we outline the various statistical tools used to obtain meaning-
ful information from Lattice QCD configurations.

B.1 Uncorrelated data

Let’s consider analysing a set of n measurements X i of some observable X . In the
frequentist approach, these sample a true normal population distribution of X
measurements with mean E(X ) = µ and variance Var(X ) = σ2. While we do not
know these parameters in practice, we can construct effective estimators based
upon our sample. An unbiased estimator of the true mean value µ is

X =
1
n

n
∑

i=1

X i, (B.1)

while the true variance σ2 of the observable can be estimated by

s2 =
1

n− 1

n
∑

i=1

(X − X i)
2. (B.2)

Often, we want to know the mean value of X and an estimate on how accurate
this mean value is. For the latter, we use the square root of the variance of the
mean,

σSEM =
Æ

Var(X ), (B.3)

which is known as the standard error of the mean. To construct an estimator for
the standard error, we consider each measurement X i a random variable and
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expand (B.3) in terms of these variables:

Var(X ) = Var

�

1
n

n
∑

i=1

X i

�

= Cov

�

1
n

n
∑

i=1

X i,
1
n

n
∑

j=1

X j

�

=
1
n2

n
∑

i=1

n
∑

j=1

Cov(X i, X j), (B.4)

where Cov(X , Y ) is the covariance

Cov(X , Y ) = (E[X ]− X )(E[Y ]− Y ), (B.5)

and Var(X ) ≡ Cov(X , X ). The last equality uses the fact that the covariance is
bilinear. In the case of uncorrelated data, all the covariances where i 6= j vanish
and we are left with

Var(X ) =
1
n2

n
∑

i=1

Var(X i). (B.6)

If we assume the data is equally distributed with variance σ2, the variance of
the mean X of the data is then given by

Var(X ) =
σ2

n
. (B.7)

It follows that we can estimate the standard error of the mean by

σ̂ =
s
p

n
, (B.8)

and so we quote the mean value of our observable X as

〈X 〉= X ± σ̂. (B.9)

B.2 Correlated data

We often encounter data which has correlations. This means that the covariance
Cov(X i, X j) is non-zero for some i 6= j. In this case, the variance of the mean is
given by

Var(X ) =
1
n2

n
∑

i=1

n
∑

j=1

Cov(X i, X j)

=
1
n2

n
∑

i=1

Var(X i) +
2
n2

∑

1≤i< j≤n

Cov(X i, X j). (B.10)
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Let’s define the autocorrelation as the covariance between two measurements
X i and X j normalised by their variances:

R(i, j) =
Cov(X i, X j)

σiσ j
. (B.11)

For stationary processes (e.g. HMC), this function only depends on the lag t =
j − i between the measurements in computational ‘time’. The autocorrelation
can thus be written as

R(t) =
Cov(X i, X i+t)

σ2
. (B.12)

Substituting into the variance of the mean gives

Var(X ) =
1
n
σ2 +

2
n2

n−1
∑

t=1

σ2(n−τ)R(t)

=
σ2

n

�

1+ 2
n−1
∑

t=1

n− t
n

R(t)

�

. (B.13)

For large n, a good approximation for this variance is

Var(X )≈
σ2

n
τ (B.14)

where τ is the autocorrelation time, defined as

τ= 1+ 2
∞
∑

i=1

R(t). (B.15)

The error in the mean is thus

σ̂corr =
s

τ

n
σ. (B.16)

Comparing this to the uncorrelated case (B.7), we are effectively using a sample
size

neff =
n
τ

. (B.17)

Thus, the autocorrelation time τ can be thought of as a measure of how much
lag is required between measurements to remove correlations.

As all of the data sample the same distribution, a suitable estimator of the
covariance is

Cov(X i, X j)≈ (X − X i)(X − X j). (B.18)
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The autocorrelation can then be estimated by

R̂(t) =
1

n− t

n−t
∑

i=1

(X − X i)(X − X i+τ)
s2

. (B.19)

In practice, the estimate for the autocorrelation becomes unreliable for suffi-
ciently large lags t. Thus, to estimate the autocorrelation time we often choose
a suitable cutoff T and write

τ≈ 1+ 2
T
∑

i=1

R̂(t). (B.20)

A fairly large number of measurements are required for a reliable estimate of
the autocorrelation, ∼ 1000τ.

In Lattice QCD, we are interested in a wide range of observables on a set
of gauge configurations. Each of these have different autocorrelation times. As
the autocorrelation time is hard to measure in practice, we usually use the au-
tocorrelation time of some representative observable O in all cases, τ = τO.
An example of an observable with typical autocorrelation time is the plaquette.
Note however that observables with non-local structure such as the topological
charge often have larger autocorrelation times.

We often cannot obtain a reliable estimate of the autocorrelation time. In
this case, we can employ other methods to extract an uncorrelated set of data
from our sample, such that we can estimate the standard error via (B.7). One
such method is data blocking, where we bin our data into n/m bins of size m,
then take the mean value of the observable in each bin

Yi =
1
m

mi−1
∑

j=(m−1)i

X j (B.21)

as our new data set. Consider the covariance of this new measurement Yi:

Cov(Yi, Yj) = Cov

 

1
m

mk−1
∑

k=(m−1)i

Xk,
1
m

l i−1
∑

l=(m−1) j

X l

!

=
1

m2

mk−1
∑

k=(m−1)i

l i−1
∑

l=(m−1) j

Cov(Xk, X l). (B.22)

For i 6= j, the covariance in X i has an average lag of |i − j|m. Hence, for
large enough bins m, the covariance for i 6= j vanishes (corresponding to where
R(m) → 0), and the blocked data set is uncorrelated. More simply, we can
choose to only take every N th

corr data point into our data set, using some upper
bound estimate Ncorr > τ to remove autocorrelations.
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B.3 Small data sets

Due to the inherent computational cost in generating configurations and calcu-
lating observables in Lattice QCD, we often only have small sets of uncorrelated
data. In such cases, we cannot reliably estimate the variance of the data and
thus the standard error in the usual manner.

Surprisingly, we can artificially inflate the number of measurements by re-
sampling our existing uncorrelated sample and thus obtain better estimators.
One way we can do this is statistical bootstrap, where we create an arbitrarily-
sized bootstrap sample data set of size Nboot (at least 1000) by randomly sam-
pling our set of n measurements with replacement. Then we can use the usual
statistical estimators on this new data set to find reliable estimates on the vari-
ance and standard error, “as if pulling oneself up by their bootstraps”.

B.4 The binomial distribution

An important quantity for determining the performance of Hybrid Monte Carlo is
the Metropolis-Hastings acceptance rate 〈Pacc〉. This is the number of successfully
accepted configurations at the acceptance step divided by the number of steps,
so it is related to a binomial distribution.

A binomial distribution characterises a series of independent yes/no experi-
ments with the same success probability, and is parametrised by the number of
trials n and the probability of success p. The probability mass function, which is
the probability of exactly k successes from n trials, is given by

Pr(k; n, p) =
n!

k!(n− k)!
pk(1− p)n−k. (B.23)

The mean of this distribution is given by

E(X ) = np, (B.24)

while the variance is given by

Var(X ) = np(1− p). (B.25)

The acceptance rate follows the binomial distribution, but is normalised by
the number of experiments n. In practice, we do not know what p is, but it can
be estimated by

p̂ =
s
n

(B.26)
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when we observe s accepted configurations after n steps. An effective estimator
of the variance of the acceptance rate is then given by

σ̂2 =
np̂(1− p̂)

n2
=

p̂(1− p̂)
n

. (B.27)

For sufficiently large n, the binomial distribution tends to the normal distribu-
tion, where we can quote the acceptance rate as

〈Pacc〉= p̂± σ̂. (B.28)
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Extra data for chapter 3
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Figure C.1: Acceptance rates for the double-flavour 1-filter actions with the parameters given in
Tables 3.1 and 3.2.
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Figure C.2: Matrix operation counts for double-flavour 1-filter actions with the parameters given
in Tables 3.1 and 3.2. Squares = matrix operations to construct F1, triangles = F2 construction,
filled circles = total. Statistical errors are smaller than marker size.
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Figure C.3: Acceptance rates for the double-flavour 2-filter actions with the parameters given in
Tables 3.3, 3.4 and 3.5.
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