
 

 

THE UNIVERSITY OF ADELAIDE 

 

 

NUMERICALLY ROBUST LOAD FLOW TECHNIQUES 

IN POWER SYSTEM PLANNING 

 

by 

Alberto J. Sarnari 

A thesis submitted for the degree of 

Doctor of Philosophy 

in 

School of Electrical and Electronic Engineering 

Faculty of Engineering, Computer and Mathematical Sciences 

January 2019 

 

Supervisors: 

Dr Rastko Živanović  

Dr Said Al-Sarawi 



i 

 

Contents 

CONTENTS ................................................................................................................... I 

LIST OF FIGURES ....................................................................................................... V 

LIST OF TABLES ........................................................................................................ VII 

DECLARATION OF AUTHORSHIP ............................................................................. VIII 

ABSTRACT ................................................................................................................. X 

ACKNOWLEDGEMENTS ............................................................................................ XII 

LIST OF PUBLICATIONS .......................................................................................... XIV 

ABBREVIATIONS ...................................................................................................... XV 

SYMBOLS ............................................................................................................... XVII 

CHAPTER 1: INTRODUCTION .................................................................................... 1 

1.1. Voltage stability ................................................................................................ 1 

1.2. Contingency evaluation .................................................................................... 1 

1.3. Preventive versus emergency indicators ........................................................... 2 

1.4. Voltage stability analysis ................................................................................... 4 

1.5. Review of recently proposed load flow methods ................................................ 5 

1.5.1. Robust Padé approximants ....................................................................... 6 

1.5.2. DFT-Padé ................................................................................................. 7 

1.6. Conclusions ..................................................................................................... 7 

CHAPTER 2: LITERATURE REVIEW ............................................................................10 

2.1. Introduction .....................................................................................................10 

2.2. Plain Newton-Raphson ....................................................................................11 



ii 

 

2.2.1. Newton-Raphson equations .....................................................................12 

2.3. Improvements in the Newton-Raphson power flow algorithm ............................14 

2.3.1. Starting point ...........................................................................................15 

2.3.2. Solutions to ill-conditioned power systems ................................................17 

2.3.3. Multiplication parameter ...........................................................................18 

2.3.4. Power flow in rectangular coordinate system ............................................20 

2.3.5. Dealing with multiple load-flow solutions ...................................................21 

2.3.6. Low voltage solutions ...............................................................................23 

2.3.7. Proximity to voltage stability limit...............................................................24 

2.3.8. Homotopy methods ..................................................................................28 

2.3.9. Continuation power-flow methods ............................................................29 

2.4. Non-iterative methods .....................................................................................31 

2.4.1. The holomorphic load flow method (HELM) ..............................................32 

2.4.2. Quadratic approximations ........................................................................34 

2.5. Conclusions ....................................................................................................35 

CHAPTER 3: ROBUST PADÉ APPROXIMATION FOR HELM ......................................37 

3.1. Introduction .....................................................................................................39 

3.2. Bus-voltage representation through Taylor series expansion ............................40 

3.2.1. Bus voltage Taylor series coefficients [86] ................................................41 

3.2.2. Padé rational functions .............................................................................42 

3.3. The Rational approximation Algorithm ..............................................................42 

3.3.1. Defect and ill-posed Padé approximation ..................................................43 

3.3.2. Removal of spurious poles via SVD-based Padé approximation .................44 

3.4. Simulation study ..............................................................................................46 

3.5. Conclusions ....................................................................................................50 



iii 

 

CHAPTER 4: DFT-PADÉ MATHEMATICAL FOUNDATIONS ........................................52 

4.1. Introduction .....................................................................................................54 

4.2. Mathematical foundations of the DFT-Padé load-flow method ..........................54 

4.2.1. Roots of unity on the unit disk ...................................................................55 

4.2.2. When the radius of convergence is different from 1 ...................................57 

4.2.3. Interpolation by harmonic polynomials ......................................................57 

4.2.4. How to reconstruct an aperiodic curve: Fourier Series and Transforms .....57 

4.3. Application to load-flow problem ......................................................................59 

4.3.1. Nodal equations .......................................................................................61 

4.3.2. Computational process ............................................................................63 

4.3.3. Conclusions .............................................................................................65 

CHAPTER 5: DFT-PADÉ APPLICATION. .....................................................................67 

5.1. Introduction .....................................................................................................69 

5.1.1. Application to 14-bus system ...................................................................69 

5.1.2. Two-bus system study ..............................................................................73 

5.1.3. IEEE 30-bus system test case ..................................................................77 

5.2. Improvements over the plain N-R method and comparison with the continuation 

power flow approach ..........................................................................................79 

5.2.1. Application to a 7-bus network .................................................................80 

5.2.2. Performance comparison .........................................................................82 

5.2.3. Critical bus determination .........................................................................85 

5.3. Comparison with the holomorphic embedding load-flow method (HELM) ..........88 

5.3.1. IEEE 14-bus system .................................................................................89 

5.3.2. IEEE 118-bus system . .............................................................................90 

5.4. Flexible AC transmission system (FACTS) and high voltage direct current 

transmission (HVDC) .........................................................................................91 



iv 

 

5.5. Conclusions ....................................................................................................95 

CHAPTER 6: CONCLUSION AND FUTURE WORK .....................................................98 

BIBLIOGRAPHY .......................................................................................................102 

 

  



v 

 

List of Figures 

Figure 1-1: Pre- and post-contingency P-V curves. .................................................. 3 

Figure 1-2. Active power vs. absolute voltage curves for different power factors. ...... 5 

Figure 1-3 Thesis structure ...................................................................................... 9 

Figure 2-1. Seven-bus system: Newton-Raphson vs HELM. ....................................33 

Figure 2-2. Bus 3 voltage stability limit, N-R vs HELM comparison. ..........................33 

Figure 4-1: P-V curve for load bus at constant power factor ....................................59 

Figure 5-1. Circle of complex active power values. ..................................................70 

Figure 5-2. Voltage complex absolute values. .........................................................70 

Figure 5-3. Fourier series coefficients. ....................................................................71 

Figure 5-4. Taylor series coefficients. ......................................................................71 

Figure 5-5. Estimation of series’ convergence radius. ..............................................72 

Figure 5-6. Padé and Taylor approximations to branch solutions. ............................72 

Figure 5-7. Singularities of the Padé rational function. .............................................73 

Figure 5-8. Two bus system: load base-line values in MW and Mvar. .......................74 

Figure 5-9. Two-bus branch solutions. ....................................................................75 

Figure 5-10. Zeros and poles of the Padé rational function (3.9). .............................75 

Figure 5-11. Bus No. 30 comparison of three methods. ..........................................78 

Figure 5-12. 7-bus network. ...................................................................................81 

Figure 5-13. 7-Bus network – |V3| vs P6. ................................................................82 

Figure 5-14. Radius of Convergence. .....................................................................87 



vi 

 

Figure 5-15. Poles and zeros of the Padé rational function. .....................................88 

Figure 5-16. Bus 14: HELM and DFT-Padé methods, HV branch comparison. .........89 

Figure 5-17. Bus 118: HELM and DFT-Padé methods HV branch comparison. ........91 

  



vii 

 

List of Tables 

Table 3-1: Poles and zeros of Padé approximant. ...................................................49 

Table 5-1. Rational function singularities. ................................................................73 

Table 5-2. Comparison of Voltage Stability Limits. ...................................................74 

Table 5-3. Voltage stability limits via HELM and DFT-Padé methods. .......................76 

Table 5-4. Bus No. 3 characteristic parameters, DFT-Padé method. .......................80 

Table 5-5. MATPOWER continuation power flow parameters and values .................81 

Table 5-6. Continuation Power Flow time performance parameters .........................83 

Table 5-7. Time performance comparison: D-P, N-R and CPF. ................................83 

Table 5-8. Time performances using systems contingencies. ..................................85 

.Table 5-9. 14-bus network - PQ buses ordered by criticality ...................................87 

Table 5-10. 30-bus network - PQ buses ordered by criticality. .................................87 

Table 5-11. Weakest buses in14-bus system. .........................................................87 

Table 5-12. Weakest buses in 30-bus system. ........................................................87 

Table 5-13. Bus 14: HELM and DFT-Padé voltage stability limits comparison. .........89 

Table 5-14. Bus 118: HELM and DFT-Padé voltage stability limits comparison. .......90 

  



viii 

 

Declaration of Authorship  

I certify that this work contains no material that has been accepted for the award of 

any other degree or diploma in my name, in any university or other tertiary institution 

and, to the best of my knowledge and belief, contains no material previously published 

written by another person, except where due reference has been made in the text. In 

addition 

I certify that no part of this work will, in the future, be used in a submission in my 

name, for any other degree or diploma in any university or other tertiary institution 

without the prior approval of the University of Adelaide and where applicable, any 

partner institution responsible for the joint-award of this degree. 

I give permission for the digital version of my thesis to be made available on the web 

via the University’s digital research repository, the Library catalogue, the Australasian 

Digital Thesis Program (ADTP) and through web search engines, unless permission has 

been granted by the University to restrict access for a period of time.  

I acknowledge the support I have received for my research through the provision of 

an Australian Government Research Training Program Scholarship. 

 

 

 

 

______ _____                                            21/01/2019 

 Signature                                                                                          Date 

 

 



ix 

 

 

  



x 

 

Abstract 

Since deregulation of the electric power industry, investment in the sector has not kept 

up with demand. State grids were interconnected to form vast power networks, which 

increased the overall system’s complexity. Conventional generation sources have, in 

some cases, closed under financial stress caused by the growing penetration of 

renewable sources and unfavourable government measures. The power system must 

adapt to a more demanding environment to that for which it was conceived. This thesis 

investigates the robustness of planning and simulation study tools for the determination 

of bus-voltages and voltage stability limits. It also provides an approach to obtain greater 

certainty in the determination of voltages where conventional methods fail to be 

deterministic. 

Two complementary methods for determining the collapse voltage are developed in 

this thesis. The first method applies Robust Padé approximations to the holomorphic 

embedding load flow method; while the second method uses the Newton-Raphson 

numerical calculation method to obtain both high and low voltage solution branches, and 

voltage stability limits of power system load buses. The proposed methods have been 

implemented using MATLAB and been demonstrated through a number of IEEE power 

system test cases. 

The robust Padé approximation algorithm improves the reliability of solutions of load 

flow problems when bus-voltages are presented in Taylor series form by converting the 

series into optimised rational functions. Differences between the classic Padé 

approximation algorithm and the new robust version, which is based on singular value 

decomposition (SVD), are described. The new robust approximation method can 

determine an optimal rational function approximation using the coefficients of a Taylor 

series expansion. Consequently, the voltage collapse points, as well as the steady-state 

voltage stability margin, can be calculated with high reliability. Voltage collapse points (i.e. 

branching points) are identified by using the locations of poles/zeros of a rational function 

approximation. Numerical examples are devised to illustrate potential use of the proposed 

method in practical applications. 
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Use of the Newton-Raphson method, combined with the discrete Fourier transform and 

robust Padé approximation, enables the calculation of the voltage stability limits and both 

the high and low voltage solution branches for the load buses of a power system. This can 

work to a great advantage of existing N-R based software users, as problems of initial 

guess, multiple solutions and Jacobian matrix conditioning when operating close to the 

voltage collapse point are avoided. The findings are assessed by comparisons with 

conventional Newton-Raphson, the holomorphic embedding load flow method, and 

continuation power flow method. 

This thesis contains a combination of conventional and publication formats, where 

some introductory materials are included to ensure that the thesis delivers a consistent 

narrative. For this reason, the first two chapters provide the required background 

information, research gap identification and contributions, whilst other chapters are 

written to provide more detailed work that has not yet been published or to summarise 

the research outcomes and future research directions. Furthermore, publications are 

listed in their publication formats, complete with statements of the authors’ contributions.  
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Chapter 1: Introduction 

The criticality of power system operation has been brought to the fore by the many 

incidents happening in the industry over many decades, and it is now even more critical 

as dependency on electricity is ever increasing. Taking society back to pre-electricity 

times would be unthinkable. Tools have been developed to assess the health of the grid 

at any given time. In this chapter, an overview of some of the most commonly used health 

checking mechanisms and grid state evaluation are presented. The heavy dependence 

on any method used will make any shortcomings all the more apparent, i.e., the 

underpinning mathematical models are exposed to the full scope of the variables’ domain. 

What follows is an overview of such dependency, which will be even more evident through 

the literature review in Chapter 2. 

1.1. Voltage stability 

The electric power industry world-wide has become increasingly concerned with 

voltage instability and collapse [2]. This concern is based on several recent incidents. 

Static analysis can be used effectively to determine security margins and identify network 

limitations. To deal with voltage stability related problems effectively, industry needs 

analytical tools, planning, operating guidelines and protection schemes [3].  

Among the lines of defence against voltage collapse, the real time assessment of 

voltage security in control centres is an important aspect, alongside complementary 

automatic protection devices. The traditional approach has been the establishment of off-

line secure operating limits, to be monitored by on-line operators.  

1.2. Contingency evaluation 

The purpose of contingency evaluation is to assess the system robustness at a given 

operating point with respect to credible contingencies and design normal 

countermeasures, including secondary voltage control and reactive power compensation. 
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The contingency evaluation can be classified into static and time simulation methods [4]. 

Static methods are usually based on load flow equations. Time simulation methods offer 

some advantages, including higher accuracy. However, its disadvantages are the large 

number of parameters and models needed. Some parameters may not be accurate, and 

also large computation resources are required. Time simulation methods are based on 

differential equations describing both transient and long-term dynamics. 

1.3. Preventive versus emergency indicators 

Preventive voltage stability indicators aim to assert the robustness of the system under 

normal operating conditions. Emergency indicators warn the operator after serious 

disturbances that the system may become unstable or that an insufficient security margin 

remains [4]. The concept of an emergency state before collapse is closely related to long-

term voltage instability, where the system degradation takes some time to develop, e.g. a 

few minutes. Nothing similar would exist for transient angle and transient voltage 

instability, which are faster than they can be perceived by standard control centre 

measurements. Two different approaches are envisaged to devise emergency indicators. 

The first one consists of building these indicators off-line. The second one takes 

advantage of the time available during long-term instability. Some of the indicators in use 

are [4]:  

• System topology, especially the status of important transmission lines, and 

sources of reactive and real power, 

• Indicators that dynamic sources of reactive power have reached their limits or 

are near to their limits of capacity, and 

• Heavy loading or overloading of transmission or generation. 

These indicators are often combined to predict voltage collapse conditions and require 

reliable, fast communication to bring information from different parts of the power network. 

However, emergency voltage indicators have received comparatively less attention. 

Sometimes, the power grid is under serious strain due to a diverse number of factors 

such as insufficient generation before contingencies, increased peak demand, 

renewables penetration, etc. [5-7]. Multiple solutions are devised to overcome such 
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adversities [8-10]. Also, if a system’s conditions are close to critical loading, numerical 

problems may be encountered during conventional load flow calculations using the 

Newton-Raphson method [3], so new approaches to tackle the power flow problem with 

more reliable tools [11-13] are needed. Power system analysts are still searching for the 

ideal index. Circumstances vary widely from utility to utility, both in electrical 

characteristics and in affordable means [14]. Loss of equilibrium is the basic instability 

mechanism most observed for voltage collapses in the time frame of a few minutes. This 

kind of dynamics can be analysed with static indices [14]. This gives space to the load-

flow software that needs to solve the Jacobian matrix many times to obtain a full picture 

of the network state. However, dynamic phenomena like oscillatory instability require a 

different approach. An outstanding aspect of the test results, encompassing these static 

indices, is the relevance of contingencies, i.e. a single outage is comparable to a 10% 

load increase, or more, confirming the fact that a clear majority of voltage collapses have 

been triggered by contingencies, as per Figure 1-1.  

 

Figure 1-1: Pre- and post-contingency P-V curves.  

Operating point “U” is unstable and leads to voltage collapse. Point “M” is 

marginally stable. Operating point “S” is stable even after the 

contingency [15]. 

The two curves represent the bus P-V characteristic pre-contingency (black) and post-

contingency (blue), such as the loss of a transmission line. If the bus voltage is close to 

the lower standard limit (operating point U), then the bus will suffer voltage collapse, i.e., 
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voltage will be zero or an inadmissible low value. The marginally stable situation arises 

when operating point M becomes M’ after the contingency (or its vicinity), which 

corresponds to a load designated as Pstab. On the other hand, if the active load Plim is 

such that it corresponds to an operating point S, the bus will ride over the contingency 

whilst remaining at an acceptable voltage level. This operating point is then within an 

adequate safety margin. 

As the risk of voltage collapse increases, the system becomes increasingly stressed. 

A satisfactory voltage stable state can be characterized as having a minimum post 

contingency security margin and having the ability to retain that margin to a foreseeable 

peak load. In terms of the indices, this means that the post contingency threshold should 

not be crossed [14]. The post contingency index value can be determined by extensive 

off-line simulation and prevent the system from undergoing voltage collapse if a second 

contingency occurs. This approach can give warnings hours in advance and allows 

operators to take either preventive or remedial action [14]. 

1.4. Voltage stability analysis 

The two methods that are widely used for network stability analysis are the 𝑃 − 𝑉 and 

𝑉 − 𝑄 curves. These curves determine the steady-state stability limits [16]. 𝑃 − 𝑉 curves 

are also useful for conceptual analysis and studies of radial systems. The method can be 

used for large networks where 𝑃 is the total load in the area and 𝑉 is the voltage at a 

representative bus [16]. 

The power consumed by loads varies with the voltage and frequency. For a specified 

load demand, the equation defining 𝑃 will form a curve on the 𝑃 − 𝑉 space and will 

intercept the 𝑉(𝑃, 𝑄) curve at one or more points. These points are possible operating 

points for a given demand. When the demand changes, the intersection points move on 

the surface forming the network 𝑃 − 𝑉 characteristic [17]. Figure 1-2 shows a P-V curve 

for varying power factors [18] without operating points. 
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Figure 1-2. Active power vs. absolute voltage curves for different power factors. 

A typical modern power system is a high-order multivariable process whose dynamic 

response is influenced by a wide array of devices with different characteristics and 

response rates. Voltage stability refers to the ability of a power system to maintain steady 

voltages at all buses in the system after being subjected to a disturbance from a given 

initial operating condition. Voltage collapse is the process by which the sequence of 

events accompanying voltage instability leads to a blackout or abnormally low voltages in 

a significant part of the power system.  

1.5. Review of recently proposed load flow methods 

The Load Flow methods based on the analytic continuation principle and rational 

function approximations have reached a great degree of accuracy in determining load 

flow states [11]. This is also true for the points near voltage collapse, which are the most 

difficult to compute as they lie at the nose of the active power - voltage curve (i.e. PV-
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curve) where the system of equations to solve become ill-conditioned. These methods 

use a bus-voltage representation based on a Taylor series expansion in the complex 

domain. To ensure the accuracy of the calculated voltage at points close to voltage 

collapse, the Taylor series is converted into a rational function to extend the radius of 

convergence of the series. These rational functions are the Padé approximants. They can 

reconstruct a complete solution branch using approximation at a single point [11, 12].  

The Holomorphic Embedding Load Flow method (HELM) has overcome problems that 

exist in traditional load flow methods [11-13] . Iterative methods like Newton-Raphson (N-

R) and all its variations [11, 12], as used in the power industry today, can have limitations 

for the study of steady-state voltage stability, as described in [19], Section II of [11] and 

Section IV of [12]. Changes in current practices, including new software suites, are 

unlikely, as HELM has not been in the public domain for long. Its serious use may be limited 

and may involve a relatively large outlay of capital to fully deploy and replace existing 

iterative-based tools. 

1.5.1. Robust Padé approximants 

The aim of this thesis is to improve HELM and present a tool that can produce the same 

results, working within the Newton-Raphson (N-R) environment. Details about N-R can be 

found in text books like [20, 21]. This novel algorithm uses the discrete Fourier transform 

and Padé rational function, or DFT-Padé (D-P). The direct methods of calculating Padé 

approximants by using coefficients of a Taylor series may not be the most computationally 

efficient [22], therefore in this thesis a novel method based on the Singular Value 

Decomposition (SVD) is explored. The new method is able to find a robust and optimal 

rational function fit. It should be noted that classic direct methods of constructing the Padé 

approximants could have some problems from a practical implementation point of view. 

For example, degeneracies of the approximation may occur in which the numerator and 

denominator have less than the allowed degree. This leads to several entries in the Padé 

table being identical, some of them matching the Taylor series of the function being 

approximated to less than the expected order [23]. In this thesis, the application of the 

SVD-based Padé approximation technique, and a corresponding numerical algorithm, are 
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proposed. Robust Padé approximants go a long way towards eliminating the problems 

associated with the classic Padé approximant constructor. 

1.5.2. DFT-Padé 

In this thesis, an alternative method based on the use of existing N-R software and the 

application of the Discrete Fourier Transform is proposed to find the loading range of each 

load bus in the system and their voltage stability limit. As will be shown below, minor 

modifications to the Jacobian matrix may be needed to satisfy the mathematical 

requirements of the method. This approach will give power system planners, using 

Newton-Raphson, the same advantages as non-iterative load flow methods possess.  

As in the holomorphic embedding method, the bus-voltage representation is done 

through a truncated Taylor series, whose coefficients are found by the application of the 

discrete Fourier transform to the complex absolute voltage values extracted from the 

Newton-Raphson method. Robust Padé approximations are then used to extend the 

radius of convergence of the resulting Taylor series (polynomial). The rational function 

thus found has two inherent properties, i.e., a) it extrapolates the voltage solution branch, 

and b) it approximates the voltage stability limits through the intersection of the high 

voltage (HV) and low voltage (LV) branches of the 𝑃 − 𝑉 curves, or through its inner 

singularities. 

1.6. Conclusions 

From the above discussion, it can be seen that the load flow method plays a key role 

in the planning and operation of the power grid, and that new methods have emerged to 

overcome the reliability issues of conventional methods.  

A review of improvements to the conventional load flow based on the Newton-Raphson 

algorithm (N-R) across the last decades are presented in the literature review in Chapter 

2. In that chapter, it is shown that the method’s shortcomings have been identified in many 

papers and proposed solutions have been provided by their authors. It should be noted 

that only selected articles focused around the typical issues have been chosen and 

presented.  
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An examination of robust load flow techniques, which lie at the core of this thesis, are 

explained in the remaining chapters. 

Chapter 3, “Robust Padé Approximations for HELM”, provides a brief description of 

HELM and its improvement via RPA. This enhancement is based on the exact 

determination of numerator’s and denominator’s degree for the univocal resolution of the 

rational function that will represent the bus-voltages. This chapter is the conference article 

by A. J. Sarnari and R. Živanović, "Robust Padé approximation for the holomorphic 

embedding load flow," given at the 2016 Australasian Universities Power Engineering 

Conference (AUPEC), 2016, pp. 1-6. 

Chapter 4, “DFT-Padé mathematical foundations”, sets the basis of the D-P method. 

Its salient components are examined, and the combined numerical accuracy of the 

algorithm is demonstrated:  

- Bus-voltages are sampled using the values of active power represented in the unit 

circle of the complex domain applying the N-R algorithm. This is a mathematical 

artifice that is required by the tools used to find the voltage representation through 

power series coefficients. 

- Trigonometric polynomials are obtained to form the bus voltage truncated power 

series using discrete Fourier transform (DFT). 

- The trapezoidal rule is the approach taken to solve the Fourier integrals. 

- The numerical adequacy of the trapezoidal rule is justified for its geometric 

convergence properties. 

The method implementation has been presented in the conference article by A. J. 

Sarnari and R. Živanović, "Reliable steady state voltage stability limit estimation using 

Newton-Raphson-based method," in 2017 Australasian Universities Power Engineering 

Conference (AUPEC), 2017, pp. 1-6. 

Chapter 5, “DFT-Padé applications” shows the applicability of the DFT-Padé method 

for different power systems and the analysis and use of its key parameters (power series 

radius of convergence and tolerance for the determination of the power series 

coefficients). Comparison with plain N-R, HELM and continuation power flow are 

presented, as well as time performance, weak bus determination and applicability to 
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networks with FACTS and HVDC. The main part of this chapter belongs to the submitted 

journal article by A. J. Sarnari, R. Živanović, and Said Al-Sarawi, “Augmenting Load Flow 

Software for Reliable Steady-State Voltage Stability Studies", International Journal of 

Electrical Power & Energy Systems, submitted 09/07/ 2018. 

Chapter 6, “Conclusions and future work” presents reflections on every chapter and a 

summary conclusion of the benefits of using the Padé-DFT method, including the fact that 

N-R users can take advantage of the same results as the non-iterative HELM method 

provides. Additional research work for future improvement to the presented DFT-Padé 

method is also described. The structure of the thesis is summarised in Figure 1-3. 

NUMERICALLY ROBUST LOAD FLOW TECHNIQUES IN POWER SYSTEM 

PLANNING 

 

Figure 1-3 Thesis structure 

Chapter titles and content summary 
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Chapter 2:  Literature Review 

2.1. Introduction 

Solving load flow problems is a prerequisite for the dependable operation of a power 

grid. The information thus obtained is used to tackle a variety of analyses and processes, 

i.e., expansion planning, voltage stability analysis, outage scheduling, contingency 

analysis, etc. They rely on the effectiveness of load-flow solvers [24]. 

Iterative methods have been used in power systems to determine load flows for many 

decades. Newton-Raphson has been the algorithm of choice since the 1960s. For the 

most part, N-R is a reliable algorithm. However, that may not be the case when the grid 

starts to be heavily loaded. 

Many alternative techniques have been developed to overcome the deficiencies 

presented by the iterative load flow methods, i.e., multiple solutions, starting points, 

Jacobian matrix conditioning, convergence problems, and ill-conditioned systems. 

Stating the obvious, if Newton-Raphson yielded the correct answer for every generation 

and load demand situation, then the variety of alternative solutions would never have 

appeared. The present chapter will focus on the attempts to resolve those limitations, and 

how the solutions have matured through time. 

Much has been written about voltage stability in the last two decades. The approach 

has been varied from a) variations to existing iterative methods, (b) an assorted quantity 

of stability indices applicable to static and dynamic power system states, as well as 

planning tools, to c) new power flow algorithms and software.  

Some important evaluations have already taken place for (b) in [25] and [26],  

Among the more recent power flow methods that are not based on iterative algorithms 

are the Holomorphic Embedding Load Flow [11-13] and Quadratic approximation based 

on Hermite-Padé approximants [26, 27].  
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The improvements to iterative methods, principally Newton-Raphson, include 

modifications to the basic algorithm [28] (followed by many others as summarised in 

Section 2.3). These improvements also include variations to Newton’s method, 

incorporating Gaussian elimination in Brown’s method [29, 30], use of the second-order 

term of the Taylor series [31] to improve convergence, modifications to N-R to solve ill—

conditioned systems [32] [33] ,or presenting the method in complex form [34] to include 

distribution systems under asymmetrical operating conditions. Continuation Power Flow 

formulation remains well conditioned around the critical point referred to as the voltage 

stability limit (VSL), can calculate the voltage stability index and identify areas prone to 

voltage collapse [35, 36], and it is arguably the most frequently used technique to date. 

This brief overview names a range of contributions in different directions. 

2.2. Plain Newton-Raphson 

What follows is a discussion about modifications to N-R, and added methods, that have 

been developed to enhance the load flow results, which aim at satisfying the requirements 

of network operators in an environment of high complexity due to extended power grids, 

as well as maximisation of the infrastructure resources.  

The Newton-Raphson method was introduced in 1961 and was shown to have very 

good convergence properties in comparison with contemporary methods [37]. B. Stott, 

in his 1974 review of load-flow calculation methods [38], refers to previous work [39] 

wherein more than 200 “respectable” publications in English had already been produced. 

One of the early drivers for change was the availability of increased computer capacities. 

Y-matrix methods took advantage of the low memory requirements, while Z-matrix 

methods had better convergence properties. In N-R, each bus power function is 

approximated by its tangent hyperplane, built with a Jacobian matrix and multiplied by the 

vector of angles and voltage differences of two consecutive iterations. Its convergence is 

quadratic and takes 4 to 5 iterations when the solution point is near. Polar or rectangular 

coordinates can be used. Stott also mentions the decoupled Newton methods based on 

the loose connection between active power and voltage magnitude, on the one hand, and 

reactive power and voltage angle on the other. This approximation simplifies the Jacobian 

matrix. However, although it may be faster than the full Newton method, it sacrifices 
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accuracy. Several other methods and variations are also discussed. As it was seen back 

then that the non-uniqueness of the load-flow solution is an important issue as well as the 

advantages of sparse matrix factorisation. 

2.2.1. Newton-Raphson equations 

The method is based on representing the system’s apparent power approximation (to 

the scheduled power) via Taylor series expansion, for which an initial estimation of bus 

voltages and voltage angles are provided. The algorithm entails the successive 

recalculation of voltages and angles until the linearised model of the apparent power is 

within an agreed tolerance of the actual (scheduled) power [21]. If power is expressed in 

megawatts, an acceptable tolerance could be 10−04. When the iterations converge, the 

voltages and angles are very accurate. 

The vectors scheduled power 𝒚, calculated power 𝒇(𝒙), and state variables 𝒙 are 

shown in (2.1) for an 𝑁 bus system. The power functions used to compare with the 

scheduled power are as per (2.2), where 𝑉𝑖 and 𝛿𝑖 are the voltage and angle of the bus in 

question, and |𝑌𝑖𝑘| and 𝜃𝑖𝑘 are the admittance’s absolute value and angle of the 

transmission line between buses 𝑖 and 𝑘. It is to be noted that bus 1 is the slack bus, used 

as the reference, and is therefore not part of the system [21]. 

 𝒚 =  [
𝐏
𝐐

]  =  

[
 
 
 
 
 
𝑃2

⋮
𝑃𝑁

𝑄2

⋮
𝑄𝑁]

 
 
 
 
 

;  𝒇(𝒙)  =  [
𝐏(𝐱)
𝐐(𝐱)

]  =  

[
 
 
 
 
 
𝑃2(𝑥)

⋮
𝑃𝑁(𝑥)
𝑄2(𝑥)

⋮
𝑄𝑁(𝑥)]

 
 
 
 
 

;  𝒙 =  [
𝛅
𝐕
]  =  

[
 
 
 
 
 
𝛿2

⋮
𝛿𝑁

𝑉2

⋮
𝑉𝑁]

 
 
 
 
 

. (2.1) 

 

𝑃𝑖(𝑥) = |𝑉𝑖|∑ |𝑌𝑖𝑘|
𝑁

𝑘=2
|𝑉𝑘| 𝑐𝑜𝑠(𝛿𝑖 − 𝛿𝑘 − 𝜃𝑖𝑘), 

𝑄𝑖(𝑥) = |𝑉𝑖| ∑ |𝑌𝑖𝑘|
𝑁
𝑘=2 |𝑉𝑘|𝑠𝑖𝑛(𝛿𝑖 − 𝛿𝑘 − 𝜃𝑖𝑘). 

(2.2) 

The system of equations (2.2) is nonlinear and its solution requires an approximation 

method. Newton-Raphson uses the two first terms of the Taylor series expansion 
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(discarding the higher order ones, assuming they are very small) to represent (2.2), in a 

single dimension that is [20]: 

 𝑦𝑖 ≅ 𝑓𝑖(𝑥𝑖
(0)

)  + ( 
𝜕 𝑓𝑖
𝜕𝑥

 )(0)∆𝑥𝑖
(0)

, (2.3) 

where 𝑓𝑖 is the active and/or reactive power function of (2.2) evaluated at 𝑥𝑖
(0)

, the initial 

estimate of the state variables, which are normally 𝑉𝑖(0)  =  1, and 𝛿𝑖(0)  =  0, also known 

as a “flat start”. In general, ∆𝑥 =  𝑥(𝑗+1) − 𝑥(𝑗), where 𝑥𝑗  is the value of 𝑥 at iteration 𝑗. 

Rearranging (2.3) with this in mind,  

 𝑥𝑖
(𝑗+1)

≅ 𝑥𝑖
(𝑗)

+ [( 
𝜕 𝑓𝑖
𝜕𝑥𝑖

 )(𝑗)]−1[ 𝑦𝑖  −  𝑓𝑖(𝑥
(𝑗))] . (2.4) 

Writing the terms of (2.4) in vector and matrix form, where 

 𝒙(𝑗)  =  [𝛅
(𝑗)

𝐕(𝑗)
], and  𝑭(𝒙(𝑗))  = 𝐲 − 𝒇 (𝒙

(𝑗))  =  ([
𝐏
𝐐

] − [
𝐏(𝒙(𝑗))

𝐐(𝒙(𝑗))
]), (2.5) 

 𝑱(𝑗) = (
𝜕 𝒇 

𝜕𝒙
 )(𝑗)  =  

[
 
 
 
 
 
 
 
 
𝜕𝑃2

𝜕𝛿2
…

𝜕𝑃2

𝜕𝛿𝑁

⋮   
𝜕𝑃𝑁

𝜕𝛿2
…

𝜕𝑃𝑁

𝜕𝛿𝑁

  

𝜕𝑃2

𝜕|𝑉2|
…

𝜕𝑃2

𝜕|𝑉𝑁|

⋮   
𝜕𝑃𝑛

𝜕|𝑉2|
…

𝜕𝑃𝑁

𝜕|𝑉𝑁|

𝜕𝑄2

𝜕𝛿2
…

𝜕𝑄2

𝜕𝛿𝑁
  

⋮   
𝜕𝑄𝑁

𝜕𝛿2
…

𝜕𝑄𝑁

𝜕𝛿𝑁

𝜕𝑄2

𝜕|𝑉2|
…

𝜕𝑄2

𝜕|𝑉𝑁|

⋮   
𝜕𝑄𝑁

𝜕|𝑉2|
…

𝜕𝑄𝑁

𝜕|𝑉𝑁|]
 
 
 
 
 
 
 
 
(𝑗)

, (2.6) 

𝑭(𝒙(𝑗)), 𝑡he right-hand side equation of (2.5), is called the vector of residuals, and (2.6) 

is known as the Jacobian matrix (at iteration 𝑗). 

Using (2.3), (2.5) and (2.6), the correction vector, ∆𝑥(𝑗) for iteration 𝑗, can be 

expressed as 

 ∆𝒙(𝑗) = 𝒙(𝑗+1) − 𝒙(𝑗) = 𝑱(𝑗)−1
𝑭(𝒙(𝑗)). (2.7) 
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It is worth mentioning that the Jacobian is presented in its general form in (2.6). The 

amount and type of unknown variables change with the bus type. For each voltage-

controlled bus the |𝑉| is already known, and the function 𝑄(𝑥) is not needed, therefore 

they can be removed from the system of equations. As a result, the Jacobian matrix is of 

the order (2𝑁 − 2 − 𝑚) ∗  (2𝑁 − 2 − 𝑚), where 𝑁 is the number of power system nodes, 

" ∗ " is the multiplication operator, and 𝑚 is the number of PV buses. This can be clearly 

seen if (2.6) and (2.7) are written as 

 [
∆𝑃
∆𝑄

]  =  [
𝐽11 𝐽12

𝐽21 𝐽22
] [

∆𝛿
∆|𝑉|

],  (2.8) 

where 

 𝐽11  =  [
𝜕𝑃(𝑥)

𝜕𝛿
] , 𝐽12  =  [

𝜕𝑃(𝑥)

𝜕|𝑉|
] , 𝐽21  =  [

𝜕𝑄(𝑥)

𝜕𝛿
],   𝐽22  =  [

𝜕𝑄(𝑥)

𝜕|𝑉|
],  (2.9) 

and the iteration number is omitted. 𝐽11, 𝐽12, 𝐽21 and  𝐽22 are the Jacobian submatrices. 

For 𝑁 − 1 known ∆𝑃 (rows), there will  be 𝑁 − 1 unknown ∆𝛿 columns, defining the  size 

of  𝐽11  =  (N − 1)  ∗  (N − 1), and applies to PQ +  PV buses. PQ and PV represent the 

sets of load and voltage-controlled buses. For 𝐽12 there will be PQ + PV  buses of known 

∆𝑃 (rows), and there will be PQ buses of unknown ∆𝛿 (columns), making the size of  𝐽12  =

 (N − 1)  ∗  (N − 1 − m). For 𝐽21 there will be PQ number of known   ∆𝑄 (rows) and PQ +

 PV buses of unknown ∆𝛿 (columns), which make the size of 𝐽21  =  (N − 1 − m) ∗  (N −

1). Then, for 𝐽22 there will be PQ number of known  ∆𝑄 (rows), and PQ buses of unknown 

𝜕|𝑉| (columns) making the size of 𝐽22  =  (N − 1 − m) ∗  (N − 1 − m). The generators’ 

reactive power is checked at the end of each iteration when reactive power limits are 

taken into account. If limits are exceeded then the bus type is changed to PQ, and its 

reactive power set to the maximum (or minimum) limit. 

2.3. Improvements in the Newton-Raphson power flow algorithm 

The following list shows some of the most important aspects of the proposed 

improvements to the N-R method that have been taking place since the early 1970s: 
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- Starting points: this addresses the fact that convergence can be compromised if 

the initial guess is not close enough to the actual solution (an innate limitation of 

this iterative method). 

- Solutions to ill-conditioned power systems: this condition refers to how sensitive 

the solution of a problem is to changes in the input data. Round-off errors in 

successive calculations make the solution of some problems unstable and is also 

known as ill-conditioning [40]. 

- Multiplication parameter: this is perhaps the most exploited mathematical artifice 

[41] that has been perfected to make N-R a more reliable algorithm. 

- Rectangular coordinates: one of its initial advantages is that it uses the exact 

number of terms in the Taylor series approximation. 

- Multiple load flow solutions: this is one of the problems encountered early on when 

systems get close to the stability limit. Figures 2-1 and 2-2 depict N-R convergence 

to these possible values. 

- Low voltage solution: this can also be seen as part of the previous problem. It is 

also shown in Figs. 2-1 and 2-2. There is a HELM approach to this problem as well 

as a DFT-Padé one, as described below. 

- Proximity to voltage stability limit: Jacobian matrix conditioning is one of the 

problems faced by the N-R algorithm for convergence at this particular point as it 

becomes singular. Also treated by many, due to its key importance. 

- Homotopy methods: this is another numerical algorithm where a difficult problem 

is embedded in an easier one [42]. This algorithm succeeded when formulated as 

continuation power flow.  

- Continuation power flow [41]: this is a specific case of homotopy, based on the 

predictor-corrector method. 

2.3.1. Starting point 

In 1971, a basic non-iterative load-flow was outlined in "Effective starting process for 

Newton-Raphson load flows" [43] to obtain starting values for the N-R method. It is well-

known for its reliance on the initial guess in numeric applications, and it is used to solve 

ill-conditioned cases. The approximation to those values is done in two steps: a) voltage 

angles are calculated using DC load-flow, and b) the voltage magnitudes are calculated 
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directly using those angles. The process takes advantage of several assumptions that 

simplify the set of equations. The processing time corresponds to half of one conventional 

N-R iteration. The tests of the method accelerate the convergence and makes it more 

accurate by two or three orders of magnitude. Other uses are also mentioned, they 

include: facilitating pinpointing problems caused by erroneous data, detection of split 

networks which otherwise would render non-convergence, and quick AC power-flow 

approximations. 

The authors of “Starting algorithm and modification for Newton-Raphson load-flow 

method" [44] propose an algorithm that provides good starting values for the system 

variables. They calculate the Jacobian matrix once, disregard the weak links 𝜕𝑃 𝜕|𝑉|⁄  and 

𝜕𝑄 𝜕𝜃⁄ , and take the values of the bus-voltage and angle based on two functions defined 

by minimal values of the couplings’ sensitivity matrices. Applying this method also implies 

taking some of the second order terms of the Taylor series expansion of the load flow 

equation. The method has better convergence than B. Stott’s [43] and N-R in several 

tests carried out over four different networks. This convergence is also achieved in fewer 

iterations than conventional N-R. The method could easily be programmed into existing 

N-R software. The authors claim this method of generating starting values delivers better 

results than any other methods known to them. 

The authors investigate homotopy-based techniques applied to the power flow problem 

using the N-R method with poor starting points in reference [24], and obtain robust results 

tested on 1200-bus, 2500-bus and 46000-bus networks. Previous works first solved the 

“easy” DC power flow to get the starting points and then solved the “hard” AC power flow 

but did not give robust outcomes [45, 46]. The two first techniques the authors tried, 

injenction homotopy and phase homotopy, did not give satisfactory performance because 

the solutions were attracted to near null voltage magnitudes. A third approach included 

preferences such that the solutions were inclined to voltages near one per unit in 

magnitude. This magnitude homotopy approach outperformed both Newton-Raphson 

and line search Newton-Raphson. 
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2.3.2. Solutions to ill-conditioned power systems 

A quadratic convergent Newton-like method that employs Gaussian elimination is 

proposed in [30], which does not solve all power system equations simultaneously as in 

the N-R algorithm.  

It presents results for the 11-, 13- & 43-bus systems, where other iterative methods 

did not converge. This method was developed by mathematician K. M. Brown.  

A problem is defined as ill-conditioned when the solution changes widely to small input 

variations and can be well characterised by the condition number 𝐾. For a symmetric 

positive definite Jacobian matrix [𝑱], it can be stated as: 

 𝐾 = ‖𝑱‖ ∗ ‖𝑱−1‖  =  𝐾([𝑱𝑇𝑱])1/2 = (
|𝜎𝑚𝑎𝑥|

|𝜎𝑚𝑖𝑛|⁄ )1/2. (2.10) 

This is a Euclidean matrix norm expressed by |𝜎𝑚𝑎𝑥| and |𝜎𝑚𝑖𝑛| real and positive 

eigenvalues. If the condition number is greater than the decimal precision of the 

computer, then the problem cannot be solved. The key aspect of Brown’s formulation is 

to change the [𝑱] matrix to a transverse upper triangular one using Gaussian elimination 

with triangular pivoting to lessen roundoff errors [47]. The condition number of this new 

matrix is much smaller than Newton’s Jacobian, and therefore the approach can resolve 

systems that the conventional N-R could not resolve. 

In “Continuous Newton’s method for power flow analysis” [48] the author tackles ill-

conditioned power flow problems aiming at the stability of the numerical method if the 

starting point is within the region of attraction of the solution. The technique used is the 

Runge-Kutta RK4 formula to approximate the voltage solution. It is shown that the vector 

continuous Newton’s method is analogous to a set of ordinary differential equations 

(ODE). The set of equations is similar to Davidenko’s homotopy method. These facts allow 

the use of Runge-Kutta formulas to solve the load-flow problem. The formulation of ODE 

can be solved by the Euler method where its parameter matches the optimal multiplier in 

robust N-R methods. It outperforms the simple robust method (SRM) and Iwamoto’s 

method in terms of the number of iterations when tested on 1254-bus UCTE system. The 

computational burden also improves that of Iwamoto’s, but it is below the SRM. 
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2.3.3. Multiplication parameter 

In [28] the load-flow steady-state stability problem is framed as a periodic stability (as 

opposed to self-oscillation in the system caused by automatic control not properly tuned). 

A parameter 𝜂 (2.11) that multiplies the inverse of the Jacobian is proposed.  

 𝒙(𝑗+1) = 𝒙(𝑗) + 𝜂(𝑗)[( 
𝜕 𝒇 

𝜕𝒙
 )(𝑗)]−1𝑭(𝒙(𝑗)). 

 

 (2.11) 

This parameter, less or equal to one, is a function of the norm of the vector of residuals 

and its second derivative with respect to the state variables (2.12).  

 𝜂(𝑗)  ∝  ‖𝑭(𝒙(𝑗))‖ ‖∑ 

ℎ,𝑙

𝜕2𝑭(𝒙(𝑗))

𝜕𝑥ℎ 𝜕𝑥𝑙
∆𝑥ℎ ∆𝑥𝑙‖ ,−1 (2.12) 

where ‖𝑭(𝒙(𝑗))‖ is the m-norm of the vector of residuals, and ‖∑  ℎ,𝑙
𝜕2𝑭(𝒙(𝑗))

𝜕𝑥ℎ 𝜕
∆𝑥ℎ ∆𝑥𝑙‖ is 

the m-norm of the second derivative of the vector of residuals multiplied by the vectors of 

corrections twice. 

This algorithm ensures convergence provided the Jacobian is not zero. The stability 

limit is achieved by increasing the system load in decreasing steps, where the previous 

result is the initial condition of the following system’s resolution. As the load approaches 

the limit, the value of the parameter and the Jacobian tend to zero. The limit can be 

determined by the change in sign of the Jacobian. To achieve this, the authors suggest 

two different methods, according to the type of change in the system. Jacobian 

divergence is avoided, and strained buses can be identified. The number of iterations to 

obtain the stability limit, in five load steps, increases from, say, four to eight. 

An Optimal Multiplier is proposed in [32]. The method never diverges and can resolve 

ill-conditioned systems. It uses the nonlinear programming formulation, where the cost 

function (2.13) is defined using the least squares method. The method makes use of the 

third term of the Taylor series expansion in the load flow equation in rectangular 
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coordinates. A factor, 𝜇(𝑗) in (2.13) that minimises the cost function in a least squared 

sense is calculated, using the Cardan’s formula, and applied to the correction vector 

∆𝑥(𝑗) at each iteration 𝑗, where 2 ∗ (𝑁 − 1) is the number of equations. 

 𝐹𝐶
(𝑗)

 =  
1

2
∑  [𝑦𝑘  −  𝑓𝑘(𝑥

(𝑗) + 𝜇(𝑗)∆𝑥(𝑗))]2.
2∗(𝑁−1)

𝑘=1
 (2.13) 

Convergence is found when the cost function becomes zero, as in the 11-bus system 

example, or stays at some positive value, as in the 43-bus system. It took nine iterations 

in both cases to determine convergence or otherwise. Details of these two bus systems 

can be found in [30]. 

Another technique based on the minimization of the sum of the square of the residuals 

using Newton’s polar form is nondivergent and is presented in [49]. It also points to 

potential problems like incorrect data usage by allocating the highest mismatch at the 

overloaded bus. This method entails reaching the critical point of the volt-ampere function 

(VAF) (2.14) at each iteration.  

 𝑉𝐴𝐹(𝑉)  =  ∑  
𝑁

𝑖=1
[−2𝑉𝑖𝐼𝑖 +

𝑉𝑖
2

𝑧𝑖0
+

1

2
∑  

𝑁

𝑘=1

(𝑉𝑖  −  𝑉𝑘)
2

𝑧𝑖𝑘
] (2.14) 

where 𝑉𝑖 and 𝐼𝑖 are the phasors’ voltage and current at bus 𝑖,  𝑧𝑖0 and 𝑧𝑖𝑘 are the line 

impedances between buses 𝑖 and reference 0, and between buses 𝑖 and 𝑘 respectively. 

In this case, the optimal multiplier 𝜇 affects the correction vector ∆𝑉, and is obtained from 

(2.15) and solving for it. Here, the voltage correction vector is calculated using 

rectangular coordinates and the exact Taylor formulation; the results are then converted 

to polar coordinates. 

 
𝜕𝑉𝐴𝐹(𝑉 + 𝜇∇𝑉)

𝜕𝜇
 =  0. (2.15) 

The resulting equation from (2.15) is scalar cubic in 𝜇, and the smallest root is chosen 

to calculate the sum of square residuals (SSR). When tested on the 11-bus and 43-bus 

systems, the solutions are not obtained but the estimated solutions are nondivergent with 
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a minimum 𝑆𝑆𝑅 =  0.0001 and 𝑆𝑆𝑅 =  1 respectively. This routine can identify the 

overloaded bus by the highest mismatch, which is more consistent than the rectangular 

coordinate-based method. 

2.3.4. Power flow in rectangular coordinate system 

In 1977, a Newton-Raphson method [50] claimed to execute the load-flow many times 

faster than the polar coordinate version of the software, even though it took 1.5 as many 

iterations. Because of the quadratic nature of the nodal equations in rectangular 

coordinates, their Taylor representation is exact and takes only three terms. The third 

term is one half of the second partial derivative of the power functions with respect to 

each one of the state variables. The computing time is drastically reduced since the 

Jacobian matrix is treated as constant. However, no indication is given in relation to ill-

conditioned systems. 

In “Simplified Newton–Raphson power-flow solution” [51], the author presents a 

simplified version of the Newton–Raphson power-flow solution method, based on the 

current balance principle to formulate a set of nonlinear equations. Although there exist 

several powerful load-flow solvers based on the standard N-R method, their 

corresponding problem formulation is not simple due to the need to calculate derivatives 

in their Jacobian matrix. The proposed method employs nonlinear current mismatch 

equations instead of the commonly used power mismatches to simplify the overall 

equation complexity. A derivation of the Jacobian matrix’s updating formulae is illustrated 

in comparison with those of the standard Newton–Raphson method. To demonstrate its 

use, a simple 3-bus power system was selected as a numerical example. The 

effectiveness of the proposed method was examined by computer simulations through 

five test systems: (1) a 5-bus test system, (2) a 6-bus test system, (3) the 24-bus IEEE 

test system, (4) the 30-bus IEEE test system and (5) the 57-bus IEEE test system. Its 

convergence and calculation times were observed carefully and compared with solutions 

obtained by the standard N-R load-flow method. The results show that the proposed N-R 

method takes less execution time than the standard method, with similar convergence 

characteristics.  
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In “A comparison of the optimal multiplier in polar and rectangular coordinates” [52] 

four methods are compared: the N-R algorithm with and without optimal multipliers (OM) 

using polar and rectangular coordinates. The paper concludes that the polar NR load flow 

with OM is the best method for both solvable and unsolvable load flow cases. The 

rectangular OM load flow by Iwamoto and Tamura [32] is the method used. For the polar 

OM load flow, the method developed by Castro and Braz [53] was chosen due to its 

comparative advantages, as demonstrated in [54]. The most significant drawback to the 

polar formulation is the presence of transcendental functions. These functions lead to an 

infinite number of terms in the Taylor expansion, which makes (2.4) an approximation 

rather than a strict equality as in the rectangular formulation. Also, the presence of sine 

and cosine in the polar load flow equations results in a more complex calculation of the 

second-order term needed to solve for the optimal multiplier. The greatest benefit of using 

the rectangular formulation results from the quadratic nature of the load flow equations 

when rectangular coordinates are used. Because all the state variables appear in 

quadratic terms in the equations, the third and higher order terms of the Taylor expansion 

are zero; which makes (2.4) hold with strong equality when the third term is included. This 

can lead to greater accuracy in the calculation of the rectangular formulation relative to 

the polar one. The extremely poor performance of the decoupled load flow in rectangular 

coordinates [55] also indicates that the rectangular formulation may not have as good a 

linearization as the polar formulation. The polar OM had fewer iterations than the 

rectangular OM, especially in unsolvable cases, where the rectangular OM took many 

more iterations before stopping the process, and also diverged more often. The authors 

endorse the use of polar coordinates when using an optimal multiplier to get faster 

responses and more robust results for any system condition or size. 

2.3.5. Dealing with multiple load-flow solutions 

Researchers and practitioners found that Newton-Raphson can converge to more than 

one voltage solution for a given bus load. The topic was discussed as early as 1975 by 

Klos and Kerner [56]. This is depicted in Figs. 2-1 and 2-2 from the insightful work of 

Baghsorkhi-Suetin [12]. 
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A method for analysing multiple solutions was developed since more than one solution 

is possible due to the non-linearity of the load flow equations. According to [57] it is 

necessary to find all feasible solutions to those equations when analysing the power 

system’s voltage stability. The authors propose a set of linearised equations to find the 

low and high voltage solutions of load buses for a given load. The positive (HV) or negative 

(LV) mode solutions, as named by the authors, are given according to the selection of 

initial values. The power transfer is maximum when both solutions coincide. There are 

also two reactive power and angle solutions for PV buses. The number of combinations 

of modes is 2𝑁 (without counting the reference bus). When the active power for bus 𝑖, 𝑃𝑖 , is 

greater than the maximum value, then the correction ∇𝑉𝑖 becomes a complex number, 

effectively determining the voltage stability limit for that bus and the given system 

conditions under this linearised model.  

A pair of solutions obtained using the N-R method is related to voltage instability in 

power systems. The authors of [58] discovered that the convergent characteristic of the 

N-R load flow in rectangular coordinates has a unique linearity. It tends to converge 

straight towards a pair of multiple solutions when they are closely located to each other. 

They belong to the high voltage and low voltage solution branches. Their proximity 

indicates a near-coalescence, which is the voltage stability limit of the P-V curve. They 

also minimise the cost function, cubic in nature, that delivers 3 roots, and they must be 

real numbers for the system to have the two close solutions. The optimal multiplier, as 

described in [32], is the first one of those roots, and the proposed method uses the third 

root to find the second convergent voltage value. It was successfully tested in ill-

conditioned systems. The remarkable aspect of this approach is that its convergence is 

very fast, and therefore suitable for on-line applications. 

Voltage stability assessment using the energy method has been used in [59] to 

determine a voltage security measure in closed form by integrating the power mismatch 

between the low and high voltage solutions. A key aspect of the energy function is that it 

can determine the correct low voltage solution to use in the voltage security measure. As 

generation and load move towards voltage collapse, the amount of low voltage solutions 

decreases until there is only one at the point of maximum active power. For a load 

increasing scenario, the energy measures will decrease, however, this is not constant in 
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all areas (the group of buses) of the system since this measure can change rates for 

different areas. Combining the rates of change with the energy values would signal the 

proximity of the system’s voltage collapse to operators. 

A method to approximate the closest loadability limit (CLL), in the local sense, is 

proposed in [60] from a pair of multiple load flow results, i.e., the low voltage and the 

operating solutions to localise the nearest (Euclidean norm) loadability limit, assuming that 

the loads and generations are increased in the worst direction. Right and left eigenvectors 

from the zero eigenvalue of the Jacobian matrix are used to identify the weak areas in the 

power system. This follows the work in [61]. The voltage collapse is then obtained by 

increasing load and generation in the worst direction. The midpoint between the HV and 

LV solutions is the loadability limit where the Jacobian becomes singular; and this holds 

regardless of the distance between both solutions. The conditions for the approximation 

in [60] are that the operating point is near the voltage collapse and the Jacobian matrix is 

symmetrical. The approximations to the loadability limits are then compared with exact 

ones calculated using [62] and [63]. The maximum error found using test systems, from 

5/6/14/30/57-bus systems, was 6%. The computation time reported for these 

approximations corresponded to one iteration of the power flow, while the exact results 

required 100 power flow solutions. 

2.3.6. Low voltage solutions 

Low voltage solutions could be considered as a subset of multiple load-flow solutions, 

but they stimulate interest of their own. Iba et al found that two voltage solutions, HV and 

LV, could be found when the bus approaches its stability limit; hence that limit lies half 

way between the two solutions [58]. Others discuss how the stability limit can be found 

where the two solutions coalesce: details are given below. Indeed, this is one of the 

approaches taken by DFT-Padé, to find the bus-voltage stability limits. 

An improved method to calculate the low voltage solution using state space search is 

presented in [64]. The method does so in polar coordinates which would make it easier 

to integrate to existing load flow software. It can always obtain an initial value leading to a 

low voltage solution regardless of its distance to the stable HV solution. The method is 

state space search-based and is also able to detect a lack of both convergence and 
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divergence. It develops step size optimisation from a second order Taylor representation 

of the power functions, and an optimisation factor that minimises the quadratic function 

of power mismatches in the direction of the state variable increments. As a result, an initial 

value for voltage and its angle are obtained. The optimised step change allows the load 

flow calculations to approach the LV solution initial estimate and the LV solution. The 

maximum loading point (MLP) and proximity index are also obtained. 

An auxiliary gradient to obtain the low voltage of load buses is proposed in [65]. It 

shows how the stability points are worked out for the related gradient systems, which are 

also the solutions to the low voltage load flow. Following others, the authors argue that an 

indication of voltage collapse proximity is given by fewer LV solutions for any given bus 

load. The collapse happens when the critical LV solution coalesces with that of the HV. 

The method finds the critical LV solution by keeping on searching if the one found 

coalesces with another LV solution, which is the difference from previous state-space 

search methods. The authors also found few cases of non-convergence to either an LV 

or an HV solution. They see the method as being reliable and promising, with more 

research required to find the critical LV solution, as well as the existence of more than one 

stable load flow solution. 

The Step Size of the Newton Raphson Method [66] finds the low voltage solution at the 

maximum loading point of a system using scalar quadratic equations (SQE) to determine 

the optimal multiplier. In this work, it is shown that the optimal multiplier is the closest to 

an indicator based on the SQE, overcoming problems from previous step size methods 

that are based on the smallest optimal multiplier. The SQE indicator is the singularity point 

of the P-V curve. This optimal multiplier gets the correct LV solution from all possible ones 

at the maximum loading point.  

2.3.7. Proximity to voltage stability limit 

The uncertain solutions, including Jacobian singularity, that may be found by the 

Newton-Raphson algorithm when the system loading approaches the stability limit, 

prompted researchers to devise methods to overcome this hurdle. Some of them are 

shown below since the papers written on this topic is vast. 
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The voltage instability proximity index (VIPI) proposed in [67] predicts the voltage 

instability based on multiple power flow solutions. It states that despite voltage collapse 

being a dynamic event, the static qualities are also relevant. Several indices are compared 

including a) the number of iterations in power flow calculations, b) transmission losses, c) 

variations in bus voltages with respect to variations in the reactive load, d) the quantity of 

multiple load flow solutions, e) the determinant of the Jacobian matrix, f) convergence 

rate, and g) the proposed index VIPI, defined by the angle between the node-specification 

vector and the singular vector in the space of the node-specification. The authors 

concluded that power losses, determinant of the Jacobian and VIPI, are well suited to 

determine voltage collapse. The last two are rather sensitive to generators’ reactive power 

limits. Weak buses can be identified by a sensitivity defined as the bigger of the VIPI 

variations, with respect to active and reactive power variations. VIPI needs only two 

solutions to be worked out. When systems are overloaded, they produce these two 

solutions only. Their selection is essential and is achieved using [68]. The authors 

acknowledge that further research, through case studies, is required to establish the 

effectiveness of the index. 

In “Towards a theory of voltage collapse in electric power systems” [69], the authors 

frame the loss of equilibrium of the load flow when the system approaches the voltage 

collapse, within the saddle-node bifurcation. A dynamic mechanism to describe the 

voltage progression towards saddle node bifurcation is used. Other authors have 

discussed the nature of voltage collapse, whether static or dynamic. This work is based 

around Sotomayor’s Dynamic Systems. Despite the simplification of the model that 

encompasses the key mechanisms of voltage collapse, the authors feel that it is a robust 

candidate to explain the phenomenon. 

In “Power system steady-state stability and the load-flow Jacobian” [70], an 

association between the conventional static load flow, from the linearised model and the 

system dynamic model, is attempted. Both sets of equations attempt to solve the system 

in three Jacobian matrices. The zero value of the standard Jacobian is associated with 

the maximum load transfer of the system, coinciding with the other authors in this 

assessment. If the Jacobians were not singular, then the steady-state stability would be 

given by the eigenvalues of the dynamic state Jacobian, where the system could be 
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critically unstable if the real part of one eigenvalue was zero. For the analysis of voltage 

instability and collapse, the singularity of the Jacobian matrix would be relevant if the 

system should be close to its maximum power transfer. 

In “An energy-based security measure for assessing vulnerability to voltage collapse” 

[71], a security measure or distance to voltage collapse is developed based on the power 

system dynamic model and energy functions, taking into account the non-linearities 

caused by generators’ var limits. Bifurcation analysis, dynamics of the load, as well as 

Jacobian singularity from the load flow equations are also considered. It is recognised that 

voltage collapse is not preceded by large disturbances, nor a loss of transient stability, 

but rather by the gradual increase of the general system load. The authors adopt a 

dynamic model where the voltage depends on the active power demand and they call it 

the energy function instead of the Lyapunov function, where the original model is 

extracted from that, using the notion of the closest unstable equilibrium. Low voltage 

results and the associated energy differences from the high voltage results can be related 

to areas of vulnerability. As the system gets loaded up, the number of solutions decreases 

until only one remains, thus reducing the computational effort. The method requirements 

entail a load flow solution, apart from the current load point results, and an assessment of 

the energy function for each weak bus. The method was still being developed and the 

authors deemed it required more research in some areas. 

In “Cascaded voltage collapse” [72], voltage collapse is seen as a series of dynamic 

phenomena that start at the weakest bus and expand to other weak buses nearby. 

Transients at generators are ignored for these tests, as they tend to disappear much more 

quickly than those found at the loads. These tests are conducted in two stages: first, the 

load flow is solved for motor loads. A disturbance is considered in the second stage, 

where the motor slips are taken into consideration. Then, the power flow is recalculated 

for the new set of loads. The change in speed of the motor and the voltage drop could be 

controlled by switching capacitors at this point. It is noted that the system could be 

recovered after the voltage dip into the low voltage region. The dynamic voltage stability 

is characterised as a local phenomenon. After testing systems with motor loads, it is 

concluded that voltage collapse starts in the weak bus and gradually expands to other 
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weak buses. It is also concluded that it is not always unstable to operate in the lower 

voltage area of the P-V curve, subject to the dynamic behaviour or the load in question. 

In “Point of Collapse Methods Applied to AC/DC Power Systems” [73], the authors 

present an addition to the point of collapse (PoC) method developed for AC systems. 

They use the bifurcation theory of nonlinear systems [42] to find an estimate of the 

loadability margin of a power system. Hopf bifurcations [42] are suitable when the 

dynamics of high voltage direct current transmission (HVDC) are considered. Important 

instabilities happen when the Jacobian of the system is singular, however the PoC method 

is robust to the saddle-node bifurcations that can be produced. It uses a transient stability 

model for near static voltage evolution, and voltage and frequency load models. The 

HVDC model employs two types of controls. The authors take advantage of the fact that 

both the power flow Jacobian and the Jacobian of the linearised dynamic system at the 

balance point have zero eigenvalues. Obtaining these eigenvalues allows the system to 

find the singularities or points of maximum loading. The PoC method uses a specific 

technique to find a suitable starting point for the eigenvectors that will allow the N-R to 

converge to the desired bifurcation, namely, the power flow Jacobian undergoes several 

iterations of the inverse power method [40]. Whilst it is reasonably accurate, its efficacy 

is not guaranteed. The method produces a P-V curve of the systems buses, with the 

number of equations being twice as many as for conventional N-R, and the solution times 

being around 10 to 20 times those of conventional load flows. 

 In “New methods for computing a closest saddle node bifurcation and worst case load 

power margin for voltage collapse” [62], an index of voltage collapse is defined as the 

distance of the current load to the closest bifurcation point, or worst case load margin, 

using the proposed iterative and direct methods. These methods rely on both static and 

dynamic models of the power system. The iterative method obtains the maximum load of 

the system based on the worst case when the load increase direction is unknown. The 

direct method uses the load flow equations in an estimated direction of load increase, the 

corresponding Jacobian and its left eigenvector at the point of critical loads. It can be 

applied to the whole system, to a set of buses, or to an individual bus. The worst-case 

power margin is convenient when the direction of load increase is undefined, and it assists 

the load power margin. Sensitivities, as a function of the distance to the bifurcation points, 
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can also be derived and assist in determining what loads should be shed. It was reported 

in [60] that the direct method may have problems with finding suitable initial estimates. 

However, it is proposed that the iterative method can be used to find the exact solution. 

In “Computation of maximum loading points via the factored load flow” [74], a quick 

algorithm is presented to find the maximum loading point of a network by executing binary 

searches between viable and unviable power flow cases. The factored load flow (FLF) 

method has a modified set of equations such that the iterative process converges 

quadratically and its region of attraction around the solution point is much wider. This 

allows the method to converge from initial points that are remote from the result. 

Therefore, it requires less iterations to converge. It will also reach for results in the 

complex domain when there are none in the real domain. It does so by making the starting 

point complex by adding a small imaginary part. The maximum loading point is sought in 

two steps: first, by solving the base load problem, then generation and load are multiplied 

by an increasing scalar until the method finds a solution with a significant imaginary part. 

This unviable result, together with the last viable one, form a gap that is shrunk through 

binary search. The method was tested against continuation power flow (CPF) and point 

of collapse (PoC) methods in various cases up to 2383 buses, showing a faster 

convergence in all cases. Unlike competing methods, the number of steps is independent 

of the network size. The other remarkable fact is that it needed an average of 3.1 iterations 

per step (network resolution) despite most of them being close to voltage collapse. 

2.3.8. Homotopy methods 

Homotopy methods are based on continuous mapping from a starting point to an end 

point (or continuous deformation). In other words, first a simple problem whose solution 

is easy to obtain is specified, then a path is defined between such a solution and the one 

that is hard to solve. This technique is particularly useful when a “flat start” may not be as 

good an option as an initial guess [35]. If 𝑭(𝒙)  =  0 is the difficult problem to solve, i.e. 

the bus-voltage near the stability limit, and 𝑮(𝒙)  =  0 is the easy problem to solve, i.e., 

the network is lightly loaded, then the homotopy equation can be given by (2.16). 

 𝑯(𝒙, 𝜆) = 𝜆𝑭(𝒙) + (1 − 𝜆)𝑮(𝒙), 0 ≤ 𝜆 ≤ 1 (2.16) 
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beginning at 𝜆 =  0 with the simple problem and hopefully finishing at 𝜆 =  1 with the 

difficult one [42]. 

In “Calculation of Critical Loading Condition with Nose Curve Using Homotopy 

Continuation” [75], the authors use a Newton-Raphson based method to calculate the 

critical load and to determine the nose of the P-V curve, overcoming the singularity 

problems of the Jacobian matrix. The Newton-Raphson is solved with a homotopy 

parameter 𝑡 that affects generation and loads linearly as per 𝑌𝑠(𝑡)  =  𝑌𝑠0 +  𝑡𝑌𝐷, where 

𝑌𝑠0 is the base load and 𝑌𝐷 the direction of change. The homotopy continuation method is 

used to choose the step change ∆𝑡𝑗  =  𝑡𝑗 − 𝑡𝑗−1. Both sides of the curve can be obtained 

using [58], but two different procedures are used according to the system loading 

condition, since [58] may not find a solution if the HV and LV solutions are far apart, which 

is the case for base loadings. Four systems are tested: Klos-Kerner’s 11-bus, 233, 118 

and 469-bus systems. The P-V curve for some of the buses in each system is drawn, and 

the critical loading point is reached within ten steps, showing the robustness of the 

method. 

The “Numerical polynomial homotopy continuation method locates all the power flow 

solutions” [76]. It embeds the load flow equations in the complex domain. The solution 

converges to the real domain at the end of the homotopy path. The method makes use of 

polynomial equations that guarantee to find all the solutions at the expense of high 

computational cost, finding its limit in perhaps 15 buses. 

“Improving the robustness of newton-based power flow methods to cope with poor 

initial points” [24] is a homotopy-based technique applied to the power flow problem using 

the Newton-Raphson method with poor starting points. Details of the method can be read 

on page 15 under Starting point subsection. This homotopy approach outperforms N-R 

and line search N-R. 

2.3.9. Continuation power-flow methods 

Continuation power flow is a method that ensures the correct bus voltage values are 

obtained at the nose of the P-V curve, since convergence problems and the Jacobian 

singularity of plain N-R can compromise those results [77]. This method encompasses 
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the following process: a) predictor steps, b) parameterisation, c) corrector steps, and d) 

step length control. The predictor step gives an estimate of the state variables for the 

corrector step to find the correct result. The step size is the distance between two 

successive solutions. As the P-V curve trace approaches the critical solution or maximum 

bus loading, the Jacobian matrix becomes singular. It is here where the continuation 

parameter also becomes unsuitable. Then, arc length parameterisation is used to 

overcome this problem. Local parameterization [35, 78] allows not only the added load 

parameter 𝜆, but also the state variables to be used as continuation parameters. 

In “Continuation power flow: a tool for stead-state stability analysis” [79], the authors 

present a method to track the P-V curve around the maximum loading point accurately, 

without being affected by either convergence problems or the Jacobian matrix singularity. 

As a by-product of the calculations, a voltage stability index and weak bus indicator are 

also obtained. The weak bus is determined by the greatest change in bus voltage in 

respect of the whole system’s active load change, where the bus voltage differentials are 

obtained from the tangent vector calculated in the predictor step, and the total active load 

change is proportional to the load parameter 𝜆. The authors also use the inverse of the 

weakest bus determination for its maximum active load, as the system voltage stability 

index. According to this load scenario, the total reactive power change can also be used 

in the index determination. The results were demonstrated using diverse scenarios of the 

30-bus New England grid that had been used by other authors for research into voltage 

stability. 

In “CPFLOW: a practical tool for tracing power system steady-state stationary 

behaviour due to load and generation variations” [36], a form of software applying the 

continuation method is described. It works with fully modelled power systems and avoids 

ill-conditioning by a) treating the parameter 𝜆 as a state variable, b) introducing the arc 

length as a new parameter that combines with the step size, providing an additional 

constraint, c) applying this constraint to all load buses forming part of the Jacobian matrix. 

These constraints make a set of equations that is well-conditioned at any point of the P-V 

curve. CPFLOW uses two type of predictors for computational efficiency: first, the tangent 

method, then, the secant method. It uses N-R in the corrector step. A step length control 
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is also included, such that the step is longer where the P-V curve is flat and shorter where 

the change of voltage is greater. It handles up to 12,000 buses in its original release. 

There are many CPF packages available from the Internet; some of them are open 

source that can be used for testing and research. Amongst others, the list includes PSSE 

[80], PowerWorld [81], PSAT [82], PST [83] and MATPOWER [84]. MATPOWER was 

used for verification and comparison purposes in Chapter 5, modelling a 7-bus network 

where it serves as a benchmark against results obtained using the developed DFT-Padé 

method. To determine the steady state loading limit, the basic power flow equation [84]: 

 𝑔(𝑥) = [
𝑃(𝑥) − 𝑃𝑖𝑛𝑗

𝑄(𝑥) − 𝑄𝑖𝑛𝑗] = 0, (2.17) 

is system of 𝑁 nonlinear equations, with 𝑔(𝑥), 𝑥 ∈  𝑅𝑛. By adding a continuation parameter 

𝜆 and one more equation to the system, 𝑥 can be traced by varying 𝜆. The resulting system 

𝑓(𝑥, 𝜆) =  0, has N + 1 dimensions. 

 𝑓(𝑥, 𝜆) = 𝑔(𝑥) − 𝜆𝑏 = 0,  (2.18) 

where x ≡ (θ, Vm), and b is a vector of power transfer given by:  

 𝑏 = [
𝑃𝑡𝑎𝑟𝑔𝑒𝑡

𝑖𝑛𝑗
− 𝑃𝑏𝑎𝑠𝑒

𝑖𝑛𝑗

𝑄𝑡𝑎𝑟𝑔𝑒𝑡
𝑖𝑛𝑗

− 𝑄𝑏𝑎𝑠𝑒
𝑖𝑛𝑗

], (2.19) 

where the target power can be approximated to the voltage stability limit, or any other 

greater than the base-line value, specifying the stoppage parameter at “NOSE”. For the 

curve to trace the LV branch, then “FULL” needs to be specified instead. Application 

details are given in Chapter 5. 

2.4. Non-iterative methods 

There are two non-iterative, novel approaches, explained below, that overcome the 

limitations of N-R.  
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- HELM: the bus voltages are represented by Taylor approximations whose 

coefficients are obtained by a successive convolution process until the number of 

coefficients is reached or their relative differences converge. 

- Quadratic approximation: Bus voltages are also represented by a truncated Taylor 

series, whose coefficients are part of a system of quadratic equations obtained by 

the application of singular value decomposition (VSD). The HV and LV branches 

are then obtained by applying the quadratic formula whose determinant will yield 

the branching points (or voltage stability limits).  

2.4.1. The holomorphic load flow method (HELM) 

Trias, in 2012 [11], promised to overcome N-R shortcomings, i.e. starting points in the 

region of attraction, multiple solutions and Jacobian singularity when the system 

approaches voltage collapse. This is vital, particularly for online applications where the 

physical model, which is accurate, must be solved one hundred percent of the time. The 

proposed method takes the nodal equations to the complex domain where it is embedded 

in a larger problem, which is easier to solve. The method consists of finding the bus 

voltages in a Taylor series (or truncated polynomials) whose coefficients are unravelled 

by a recursive process that finishes when either a desired amount or tolerance is reached. 

Linear systems are solved at each step of the way. One of the key points is the 

determination of the germ of the analytic function. Such germ will allow to start the 

recursive process. The working out of the germ will have a bearing on the “strength” of 

the obtained power series. So far, the limitation would be the radius of convergence of 

the series, such that it could cover all possible solutions. The only way to ensure that is to 

resort to the analytic continuation property of some functions in the complex domain. The 

Padé rational functions (Padé approximants) can guarantee maximal analytical 

continuations.  
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Figure 2-1. Seven-bus system: Newton-Raphson vs HELM. 

 N-R (blue), HELM (red) [12]. 

 
Figure 2-2. Bus 3 voltage stability limit, N-R vs HELM comparison. 

Inset from Fig. 2-1. Voltage |𝑽𝟑|as a function of P6. N-R (blue), HELM 

(red) [12]. 

That is, the limit of these approximants are the branching points that will determine the 

voltage stability limit of the system or buses in question. Some of its basic equations are 
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presented in the next chapter, “Robust Padé approximations for the Holomorphic 

embedding load flow method”. 

In “Embedding the AC power flow with voltage control in the complex plane: the case 

of analytic continuation via Padé approximants” [12], the authors show how the 

holomorphic idea can be applied to a complex variable fixed in its modulus, as is the case 

of generator buses where the voltage magnitude is set. An interesting 7-bus example, Fig. 

5-12, demonstrates the unpredictability of N-R before the voltage stability limit, where load 

bus 3’s absolute voltage |𝑉3| is drawn as a function of generator bus 6’s active power 

𝑃6, acting as free parameter, see Fig. 2-1. Past 𝑃6 = 0.973 𝑝𝑢 N-R (the blue trace) finds 

physically unrealisable branches, whereas HELM, taking advantage of Padé 

approximants (the red trace), finds solutions on the HV branch only. Fig. 2-2 shows the 

details of the inset around the voltage stability limit. 

This clearly depicts the multiple solutions found by the iterative method, where a low 

voltage branch gets some of the convergences, making uncertain the coalescence of 

both branches to determine the VSL. The green trace belongs to the convergence of the 

semi-definite relaxation method that is also discussed in [12]. 

In “Multi-stage holomorphic embedding method for calculating the power-voltage 

curve” (MSHEM) [85], a HELM method that is based on predictor-corrector steps is 

proposed to avoid precision issues, as reported in [26]. A HELM that uses physical germs 

to yield the Taylor series is required to calculate the next point on the curve as the 

predictor step. The step length is chosen such that a predetermined error with the actual 

curve is reached. The corrector step uses the holomorphic error embedding (HEE) to join 

the incorrect power flow solution to the accurate one when close to the nose of the P-V 

curve. MSHEM reached the nose of the New England 39-bus network in 3 steps when 

tested against CPF, employed as a benchmark, which took 228 steps. 

2.4.2. Quadratic approximations 

In “Continuation via quadratic approximation to reconstruct solution branches and 

locate singularities in the power flow problem” [27], it is demonstrated how quadratic 
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approximants of the Hermit-Padé type [22] have better performance than Padé 

approximants, since their structure resembles that of the nodal equations. 

It was found in “Exploration of a scalable holomorphic embedding method formulation 

for power system analysis applications” [26] that the quadratic approximants can get the 

solution to the required tolerance using fewer terms than Padé approximants when using 

the correct coefficient polynomial orders. It was observed, through many structured trials, 

that the combination of those polynomial orders was system dependent. It was also 

observed that up to 32% fewer terms of the quadratic approximants were needed, 

compared with those of Padé’s, as the loads of the 14-bus and 118-bus test systems were 

increasing. 

2.5. Conclusions 

Since the use of the Newton-Raphson (N-R) method became widespread, limitations 

were identified, and improvements were devised to overcome application problems. A 

diverse number of approaches were taken to overcome such limitations. Starting points 

or initial guesses of the iterative algorithm were some of the first to be identified. As with 

the other approaches to solve ill-conditioning, multiple solutions, proximity to voltage 

collapse singularity, etc, have all matured along the way as new research and 

improvements were realised. One of the most successful approaches is the continuation 

power flow (CPF), which is taken as a benchmark when new improvements or algorithms 

are tested. To this day, it is, perhaps, the most successful of the N-R related methods. 

The use of new mathematical instruments like complex analysis has opened a new 

window to more robust approaches to solve the load-flow problems, giving birth to non-

iterative methods such as HELM and quadratic approximations. Non-iterative methods 

have come to light to avoid the shortcomings of their iterative counterparts. HELM was 

introduced to the public in 2012 and has had many contributors making the algorithm 

more robust and reliable. Subsequently, Hermit-Padé quadratic approximations have 

been implemented to solve the load flow problem with remarkable success, though they 

are not yet fully explored. 
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The proposed DFT-Padé method brings together both approaches, N-R and the use 

of additional approximation algorithms, based on complex analysis which provides highly 

reliable convergence. In this context, the D-P method is developed and promises to give 

similar results to those of HELM but in the N-R environment, so N-R users can reap the 

benefits of non-iterative techniques. 



37 

 

Chapter 3: Robust Padé Approximation for HELM 

A. J. Sarnari and R. Živanović, "Robust Padé approximation for the holomorphic 

embedding load flow," in 2016 Australasian Universities Power Engineering Conference 

(AUPEC), 2016. DOI: 10.1109/AUPEC.2016.7749303 
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3.1. Introduction 

The Load Flow methods, based on the analytic continuation principle and rational 

function approximations, have reached a great degree of accuracy in determining load 

flow states [11]. This is also true for the points near voltage collapse, which are most 

difficult to compute as they lie at the nose of the active power - voltage curve (i.e. the P-

V curve). These methods use a bus-voltage representation, based on a Taylor series 

expansion in the complex domain. To ensure the accuracy of the calculated voltage at 

points close to voltage collapse, the Taylor series is converted into a rational function that 

extends its radius of convergence. These particular rational functions are the Padé 

approximants [22]. They provide a greater radius of convergence, as compared with the 

power series (i.e. Taylor expansion). They can reconstruct a complete solution branch in 

a complex plane using approximation at a single point. 

The direct methods of calculating Padé approximants by using the coefficients of a 

Taylor series may not be the most computationally efficient [22], Section 2.1. Therefore, 

in the following sections, a novel method based on Singular Value Decomposition (SVD), 

which is able to find robust and optimal rational functions, is explored. It should be noted 

that classic direct methods of constructing the Padé approximants could have some 

practical problems; for example, degeneracies of the approximation may occur in which 

the numerator and denominator have less than the allowed degree, and this leads to 

several entries in the Padé table being identical, some of them matching the Taylor series 

of the function being approximated to less than the expected order [23]. Another 

complication is that in the presence of computational rounding errors, Padé approximants 

are subject to the appearance of spurious pole-zero pairs or “Froissart doublets” in 

arbitrary locations that prevent the expected efficient point-wise convergence [23]. 

From here on, an application of the SVD-based Padé approximation technique is 

proposed, alongside the corresponding numerical algorithm that goes a good way 

towards eliminating the problems associated with a classic Padé approximant 

constructor. 

This topic is developed as follows: the section “Bus-voltage representation through 

Taylor series expansion” gives an overview of HELM, nodal equations with holomorphic 
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embedding in the complex parameter z, the importance of the germ, the convolution 

process to obtain the power series coefficients and their conversion into rational functions. 

The section “The rational approximation algorithm” describes the ill-conditioning and 

spurious-poles problems of the Padé approximation algorithm and gives an insight as to 

how to overcome them by using the SVD algorithm. Under “Simulation studies”, 

comparisons of the classic (diagonal) Padé with the Robust Padé algorithm are shown, 

as well as the advantages of using Robust Padé in practical applications. 

3.2. Bus-voltage representation through Taylor series expansion 

As was introduced by Trias in [11], the Holomorphic Embedding Load Flow (HELM) 

method is based on representing the bus-voltages through a Taylor power series. In 

practice, a derived polynomial is used, whose coefficients’ order is determined by the 

required bus-voltage approximation accuracy. The Taylor expansions are obtained by 

writing the following nodal equations, where the bus-voltages are expressed as a function 

of a complex variable z: 

 ∑  𝑌𝑖𝑘

𝑘∈𝑁

𝑉𝑘(𝑧) =  
𝑧𝑆𝑖

∗

𝑉𝑖
∗(𝑧∗)

, ∀ 𝑖 ∈ 𝑁 − 𝑟, (3.1) 

where 

 Vk(z)= ∑   cs
[k]

∞

s=0
zs. (3.2) 

𝑉𝑘(𝑧) in (3.2) is the voltage of the bus k in the set of all N buses. The slack bus r is used 

as the reference. The constants  𝑐𝑠
[𝑘]

 in (3.2) are the coefficients of order s for the bus k 

power series approximation. These voltage functions are holomorphic, and thus it is 

possible to guarantee an accurate approximation in the high voltage arc of the P-V curve, 

even in the critical area of voltage collapse, where iterative methods are not reliable [11, 

12]. Introducing embedding parameter z and formulating the nodal equation (3.1) will 

permit computation of the coefficients of the Taylor expansions (3.2) for all bus-voltages 

at a point (i.e. a reference condition), called a germ solution. 
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3.2.1. Bus voltage Taylor series coefficients [86] 

Combining (3.1) and (3.2), and introducing 

 
1

𝑉𝑖
∗(𝑧∗)

= ∑ 𝑑𝑠
∗[𝑖]∞

𝑠=0 𝑧𝑠, (3.3) 

we obtained the following expression: 

 ∑ 𝑌𝑖𝑘𝑘∈𝑁 (∑  𝑐𝑠
[𝑘]∞

𝑠=0 𝑧𝑠) =  𝑧𝑆𝑖
∗(∑  𝑑𝑠

∗[𝑖]∞
𝑠=0 𝑧𝑠). (3.4) 

The first coefficients of Taylor expansions (3.2) are obtained by making the embedding 

variable 𝑧 = 0, 

 ∑ 𝑌𝑖𝑘 𝑐0
[𝑘]

𝑘∈𝑁 = 0. (3.5) 

The  ds
∗[i]

coefficients of the expansion representing 
1

Vi
∗(z∗)

 can be obtained from the 

convolution formula: 

 1 = 𝑉 (𝑧)𝑉
−1(𝑧) = (∑  𝑐𝑠

[𝑘]∞
𝑠=0 𝑧𝑠)(∑  𝑑𝑠

[𝑘]∞
𝑠=0 𝑧𝑠). (3.6) 

So, at 𝑧 = 0, we have  d0
∗[k]

=  1/ c0
[k]

. 

By taking the derivatives of (3.4) and (3.6) with respect to 𝑧 and then making 𝑧 = 0, 

we find the equations that will allow us to obtain successive coefficients for  𝑐𝑠
[𝑘]

and  𝑑𝑠
[𝑘]

: 

 ∑ 𝑌𝑖𝑘 𝑐𝑠
[𝑘]

𝑘∈𝑁 = 𝑆𝑖
∗ 𝑑𝑠−1

∗[𝑖] , and (3.7) 

  𝑑𝑠
[𝑖] = − 

∑  𝑐𝑠−𝑡
[𝑖]

  𝑑𝑡
[𝑖]𝑠−1

𝑡=0

 𝑐0
[𝑖]  . (3.8) 

We will have the Taylor series (3.2) for each bus when the desired orders of 𝑐 

coefficients have been computed. However, the radius of convergence of the polynomials 

(3.2) may not be large enough to ensure the correct bus-voltages’ extrapolation to branch 
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points. The HELM method suggests the use of the Padé approximants to ensure maximal 

analytical continuation and extrapolation of P-V curves up to branch points. (i.e. voltage 

collapse points) [11]. Further information and discussion about HELM can be found in 

[87, 88]. 

3.2.2. Padé rational functions 

From (3.2), V (z) for any bus can be represented as 

 ∑   𝑐𝑠
 ∞

𝑠=0 𝑧𝑠 = 
𝑎0+𝑎1𝑧+𝑎2𝑧2+⋯+𝑎𝑚𝑧𝑚

𝑏0+𝑏1𝑧+𝑏2𝑧2+⋯+𝑏𝑛𝑧𝑛 + 𝑂(𝑧𝑚+𝑛+1). (3.9) 

Normally 𝑏0 in (3.9) is chosen to be 1. The remaining m + n + 1 unknowns must fit the 

power series through the orders 1, z, z2, … , zm+n [22]. By cross multiplying (3.9) we get: 

 

(𝑏0 + 𝑏1𝑧 + ⋯+ 𝑏𝑛𝑧𝑛)(𝑐0 + 𝑐1𝑧 + ⋯) 

= 𝑎0 + 𝑎1𝑧 + ⋯+ 𝑎𝑚𝑧𝑚 + 𝑂(𝑧𝑚+𝑛+1). 

(3.10) 

The coefficients of 𝑧𝑚+1 to 𝑧𝑚+𝑛 of the cross product on the left-hand side will be 

equated to zero, and (3.10) can be expressed as the system of linear equations.  

3.3. The Rational approximation Algorithm 

Zeros and poles of the rational approximants (3.9) tend to accumulate on the branch 

cuts of the bus-voltage function in the load flow problem [11]. Therefore, their values and 

pattern of appearance, as the approximant order increases, may be used as indicators of 

voltage collapse proximity. Zero-pole distributions of the Padé approximants show the 

analytic structure of the bus-voltage functions and confirm the general pattern of the 

voltage stability margin [12]. The concentration of zeros and poles of the diagonal Padé 

approximant defines the closest common branch point of the bus-voltage function. This 

branch point is given by Fabry’s theorem as the following ratio: lims→∞
cs

cs+1
 , where cs and 

cs+1 are consecutive coefficients of a bus-voltage power series (3.2). The rational function 

obtained from the bus-voltage Taylor series also helps determine the safe operating 
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margin by computing the distance between the operating point and the location of the 

closest zeros and poles [12, 27]. 

3.3.1. Defect and ill-posed Padé approximation 

Equation (3.10) can be written as [22]: 

 𝑝(𝑧) = 𝑉(𝑧)𝑞(𝑧) + 𝑂(𝑧𝑚+𝑛+1), (3.11) 

The numerator polynomial of the rational function approximation of 𝑉(𝑧) is  

  𝑝(𝑧) =  𝑎0 + 𝑎1𝑧 + 𝑎2𝑧
2 + ⋯+ 𝑎𝑚𝑧𝑚, (3.12) 

and its denominator  

 𝑞(𝑧) =  𝑏0 + 𝑏1𝑧 + 𝑏2𝑧
2 + ⋯+ 𝑏𝑛𝑧𝑛, (3.13) 

where the “big O” is the order of the first non-zero term in the difference 𝑉(𝑧) − 
𝑝(𝑧)

 𝑞(𝑧)
. 

Normalization is usually done by a coefficient condition such as b0 = 1, whereupon 

what remains in (3.11) is a system of linear equations that may be highly ill-conditioned or 

singular. Instead, we can normalize by using the condition ‖𝐛‖ = 1, where ‖𝐛‖ is the 2-

norm vector of the coefficient vector 𝐛 [89]. This normalization will help eliminate problems 

of singularity and ill-conditioning [23]. The Padé approximation is ill-posed if the rational 

function, which represents the Taylor polynomial of the bus-voltage expressed with 

degrees m and n, of 𝑝(𝑧) and 𝑞(𝑧) respectively, has a defect 𝛿 > 0. The defect is defined 

as  

 𝛿 =  𝑚𝑖𝑛 { 𝑚 − 𝜇, 𝑛 − 𝜐}. (3.14) 

In exact arithmetic, the degrees 𝜇 and 𝜈 are defined, such that 𝜇 ≤ 𝑚 and 𝜈 ≤ 𝑛, and 

match 𝑓(𝑧) as far as possible [23]. The reason is that an arbitrarily small perturbation 

could fracture the block, forcing the rational function approximation to match the bus-

voltage function to a higher order than before. For details see [90, 91]. 
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3.3.2. Removal of spurious poles via SVD-based Padé approximation 

How can a pole-zero pair be spurious? The formal definition of spurious poles is given 

in [92]. In the simplest case, we assume 𝑓(𝑧) is a meromorphic function in the complex 

plane C, and we consider the behaviour of 𝑓(𝑧) − 𝑟𝑚𝑛, where 𝑟𝑚𝑛 =
𝑝(𝑧)

 𝑞(𝑧)
 , as 𝑚, 𝑛 → ∞. It 

could be expected that for a compact set, disjointed from the poles of 𝑓(𝑧), the supremum 

norm of 𝑓(𝑧) − 𝑟𝑚𝑛 should converge to zero. However, this does not happen in general. 

The Padé approximants rmn can have poles in arbitrary locations in C, and as 𝑚, 𝑛 → ∞. 

Although the residues of these poles will decrease, they may never disappear entirely. In 

fact, it may even happen that the diagonal type of the Padé approximants to a fixed entire 

function 𝑓(𝑧) have so many spurious poles that the sequence of approximants is 

unbounded at every nonzero point in the complex plane [23].  

Arbitrary small perturbations in the Taylor series coefficients (i.e. rounding errors) could 

lead to cases where the rational function approximation will match the bus-voltage power 

series to a higher degree [1, 90]. As a rule of thumb, approximately n decimal places of 

accuracy are lost in the calculation of an [m/n] approximant by direct solution of the linear 

system. This means that approximately n extra decimal places of precision are required 

for the data coefficients 𝑐𝑚−𝑛+1, 𝑐𝑚−𝑛+2, … , 𝑐𝑚+𝑛 than is expected of the solution 

coefficients 𝑏0, 𝑏1, … , 𝑏𝑛 [22].  

If the equations are rank degenerate, caused by m and n being bigger than they should 

be, there is a multiplicity of solutions. Conversely, if the equations appear numerically to 

have a full row rank n, there is no problem and the solution is said to be unique [22] 

A central feature of the Robust Padé algorithm is that it removes spurious poles (i.e. 

Froissart doublets) as a by-product of the use of numerical ranks computed with the SVD 

[23]. This algorithm also produces the absolute value of the residue for each pole, which 

can suggest how to distinguish genuine from spurious values, introduced by rounding 

errors. 

The system of equations (3.10) can be written in the following matrix form:  
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[
 
 
 
 
 
 
 
 

𝑎0

𝑎1

⋮
𝑎𝑛

⋮
𝑎𝑚
− −
𝑎𝑚+1

⋮
𝑎𝑚+𝑛]

 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
   𝑐0                    
𝑐1               𝑐0                                  

⋮  ⋱  

 
 
 

𝑐𝑛       𝑐𝑛−1           …
⋮ ⋮  

𝑐𝑚         𝑐𝑚−1 …
…

𝑐0

⋮
𝑐𝑚−𝑛

− − − − − − − − − − −
𝑐𝑚+1 𝑐𝑚 . . .

⋮ ⋮ ⋱
𝑐𝑚+𝑛 𝑐𝑚+𝑛−1  

…

𝑐𝑚+1−𝑛

⋮
𝑐𝑚 ]

 
 
 
 
 
 
 
 

 [

𝑏0

𝑏1

⋮
𝑏𝑛

], (3.15) 

where, 

 [

𝑎𝑚+1

⋮
𝑎𝑚+𝑛

] = [
0
⋮
0
]. (3.16) 

Normalisation is typically done by setting a coefficient 𝑏0 =  1, so a system of linear 

equations (3.15) may be highly ill-conditioned or singular. Instead, following [89], we 

normalize using the condition ‖𝐛‖ = 1, where ‖∙‖ is the 2-norm vector. This normalisation 

will help eliminate problems of singularity and ill-conditioning [23]. 

Vector b values, of 𝑞(𝑧) polynomialsin (3.11), are obtained by solving the system below 

the dotted line in (3.15) 

 0 =  𝑪̃𝒃, (3.17) 

where for known 𝑚 and 𝑛, 

 𝑪̃ = [

𝑐𝑚+1 𝑐𝑚 …
⋮ ⋮ ⋱

𝑐𝑚+𝑛 𝑐𝑚+𝑛−1  
…

𝑐𝑚+1−𝑛

⋮
𝑐𝑚

]. (3.18) 

Applying the SVD to 𝐂̃, the following factorization is obtained: 

 𝑪̃ = 𝑼𝜮𝑽𝑇 , (3.19) 

where U is (𝑛 ×  𝑛) and unitary matrix, V, is (𝑛 + 1) × (𝑛 + 1) also unitary matrix, and 𝜮 

is an 𝑛 × (𝑛 + 1) real diagonal matrix with diagonal entries 𝜎1, 𝜎2,…,𝜎𝑛 ≥ 0. If 𝜎𝑛 > 0, then 



46 

 

𝑪̃ has rank n, and the final column of V provides a unique nonzero null vector 𝒃 of 𝑪̃ up to 

a scale factor. This null vector defines the coefficients of the polynomial q [23]. If 𝜎𝑛 = 0, 

𝑪̃ must have rank 𝜌 < 𝑛 with zero singular values σρ+1 = ⋯ = σn = 0. Then 𝑪̃ has a rank 

𝜌 and the defect of the rational function is at least (𝑛 − 𝜌), and we can reduce the degree 

of the 𝑞 polynomial from 𝑛 to 𝜌, and the degree of the 𝑝 polynomial from 𝑚 to 𝑚 − (𝑛 − 𝜌) 

[23]. The resulting algorithm will produce a unique Padé approximant in a minimal degree 

representation. More details of the algorithm are presented in [23]. 

Recapping the matrix work to find the coefficients 𝑎 and 𝑏 of 𝑝(𝑧) and 𝑞(𝑧) in (3.11): 

once the 𝜎 singular values are calculated in (3.19) and those smaller than the specified 

tolerance (they are considered to be zero) are discarded. Then, the matrix of (3.15) is 

reformulated using the first ρ coefficients of the voltage power series 𝑉(𝑧). Therefore, the 

last (n − ρ) columns and rows of the original matrix will disappear. This process is 

repeated until all singular values 𝜎 remain above the specified tolerance value. In other 

words, only the linearly independent columns of (3.15) are left [27]. The values of vector 𝒃 

are then extracted from the last column of matrix 𝑽 (3.19), which are the least square 

solutions [27]. The values of vector 𝒂 are then calculated using (3.15) above the line. 

The Robust Padé algorithm also caters for noisy data, whether intrinsic to the data or 

rounding errors: it treats singular values as zero if they are less than a specified tolerance 

computed as 𝑡𝑜𝑙 ∗ ‖𝒄‖, where c = [c0, … , cm+n]
T is the vector of power series coefficients, 

and 𝑡𝑜𝑙 is the problem dependent parameter. Rounding errors or other perturbations 

commonly introduce Froissart doublets, which do not reflect genuine information about 

the specific function. The algorithm presented removes such an effect by reducing the 

degrees of 𝑚 and n to optimal values. 

3.4. Simulation study 

To compare the classical Padé approximation algorithm and the robust version based 

on the SVD, we selected a 3-bus power system as presented in [12] and shown in Figure 

3-1.  
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Figure 3-1. 3-bus system for the analysis of bus 1 state variables 

Drawing obtained from PowerWorld [81]. 

The following Figures, 3-2 and 3-3, show the rate of convergence of the bus 1 voltage 

power series constructed at a nominal loading condition, and the locations of poles and 

zeros of the resulting classic (diagonal) Padé rational function, respectively. The voltage 

power series has been constructed with 201 coefficients, consequently the diagonal Padé 

approximant has 100 poles and 100 zeros. The poles (crosses) and zeros (small 

circumferences) in Figure 3-3, that lie concentrically around the zero point, cancel one 

another out. They are the Froissart doublets as defined in [93]. The embedding parameter 

used in this approximation was the active power at bus 1. The Robust Padé algorithm has 

been used to determine the poles and zeros of the rational function for bus 1 voltage. 
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Figure 3-2. Convergence of 201 power series coefficients. 
|𝑉1| bus 1 voltage at base load using HELM [86]. 

The rational function approximation with nine poles and nine zeros will approximate the 

voltage function for bus 1 at the given base load. Critical poles and zeros are shown in 

Figure 3-4, and all 9 values are listed in Table 3-1. 

 

Figure 3-3: Poles and zeros of the rational function. 

Padé direct method. No. of coefficients = 201, 100 poles and 100 zeros 
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Figure 3-4: Nine poles and zeros using Robust 

Padé for the 3-bus system. 

Table 3-1: Poles and 

zeros of Padé 

approximant. 

Voltage at bus 1, 

including stability limit. 

 

 

Figure 3-5 shows the application of analytic continuations (i.e. extrapolations of bus 1 

voltage magnitudes vs bus loads at fixed power factors), by using the rational function 

with 9 poles and zeros, when varying the active power at bus 1 in the range p = -2 to 1.56. 

A power value of 0.5 is the germ value of the analytic function used to calculate the 

function approximation, well away from the convergence radius of the power series [11].  

 

Figure 3-5: |𝐕𝟏| voltage analytic continuation vs active power p at bus 1 
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It can be seen in Figure 3-5 that the nose of the PV-curve is at the value given by the 

zero closest to the origin in Fig. 3.4, i.e. p = 1.5567, which is the approximation to the 

voltage stability limit. 

Another way of finding the maximum power transfer is doing binary searches varying 

the parameter z in the rational function until the boundary is reached, after which the 

power balance equations are not maintained as per the HELM formulations presented in 

[13]. This active power limit is sometimes called saddle-node bifurcation point where the 

dV

dP
 →  ∞. If Newton-Raphson was used to solve the load flow, its Jacobian matrix would 

be singular. In practice, this matrix normally becomes ill-conditioned before reaching the 

vertical tangent point to the P-V curve. Saddle node refers to the turning point of the P-V 

curve, see Figs 1-1 and 1-2, where the low voltage branch meets the high voltage branch. 

The term is used to characterise the behaviour of solutions in differential equations [42] 

(dynamic systems).  

The other type of voltage collapse, called-limit induced bifurcation can take place when 

the generator reactive power reaches its limit, (and not typified by the singularity of the 

Jacobian matrix in the Newton-Raphson algorithm)  [94]. The determination of this limit 

acquires even more significance when it is far from the saddle-node bifurcation point. A 

HELM method to determine the limit-induced bifurcation is presented in [26], and also 

discussed in [95].  

3.5. Conclusions 

Steady-state voltage stability margin approximations can be reliably determined using 

the inner-most zero/pole location of the rational function of all bus-voltages in a power 

system. In this chapter, it has been shown how the classic algorithms for constructing 

Padé approximations in the HELM load flow algorithm can be ill-posed. As a result of using 

such a method, the degrees of the rational approximation numerator and denominator 

are greater than physically required and such representation becomes very sensitive to 

any type of noise, including round-off errors. It has also been shown how the application 

of the SVD algorithm can solve the problem of ill-posed equations. The SVD-based Robust 

Padé approximation algorithm can determine reliably the exact rank of the problem and 
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will avoid multiple solutions and remove all spurious poles from the rational function 

approximation. 

 

 

 

 

  



52 

 

Chapter 4: DFT-Padé mathematical foundations 

A. J. Sarnari and R. Živanović, "Reliable steady state voltage stability limit estimation 

using Newton-Raphson-based method," in 2017 Australasian Universities Power 

Engineering Conference (AUPEC), 2017. DOI: 10.1109/AUPEC.2017.8282450 
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4.1. Introduction 

This chapter discusses the mathematical foundations and technicalities to make 

possible the use of the Newton-Raphson (N-R) method combined with the discrete Fourier 

transform and Robust Padé approximation (DFT–Padé) to obtain the high voltage (HV) 

solution branch for load buses, as well as the voltage stability limit of a power system. This 

is of potentially great advantage to existing N-R based software users because the 

problem of Jacobian matrix singularity at the voltage collapse point is avoided. 

In the next two chapters, an alternative method based on the use of the existing 

Newton-Raphson (N-R) algorithm and the application of the Discrete Fourier Transform 

(DFT) to find the loading range of each load bus in the system and their saddle-node 

bifurcation points (SNBP) is proposed. As will be shown below, minor modifications to the 

Jacobian matrix may be needed to satisfy the mathematical requirements of the method. 

In addition to N-R based load flow software, the proposed method integrates the tool that 

finds the best approximation to the solution branch of load buses using rational functions 

of the Robust Padé type [96].  

4.2. Mathematical foundations of the DFT-Padé load-flow method 

The following discussion is based on the works of Živanović [27], Trefethen, Austin, 

Kravanja [97], Trefethen and Weideman [98], and Curtiss [99]. These works encompass 

the approximation of analytic or meromorphic functions sampled at the roots of unity in 

the unit disk. In this case, the functions in question are the bus voltages expressed first 

as Taylor series and then as Fourier series, whose coefficients are calculated by the 

trapezoidal rule and the Discrete Fourier Transform, using the Fast Fourier Transform 

(FFT). These algorithms provide accurate solutions when the problems at hand can be 

defined within the constraints of the algorithms’ applicability, as will be shown below. 

First, the advantages of sampling the voltage function to be approximated by a 

polynomial (truncated Taylor series) at the roots of unity, or at a circle where the radius is 

bigger or smaller than 1. Then, what happens, in terms of convergence properties when 

those approximants are constructed using harmonic functions. Lastly, what behaviour is 
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expected when the coefficients of those harmonic functions are obtained using the 

Trapezoidal rule. These are the three main pillars of the DFT-Padé method that justify its 

robustness. Equations are presented, and the nodal equations are revisited under the 

lights of the method, and its computational process is described step by step. 

4.2.1. Roots of unity on the unit disk 

The following explanation refers to the bus-voltage function which is to be 

approximated using tools of complex analysis and starts with a generic example where 

the function domain is an open disk. 

It is assumed that a function 𝑓(𝑧), analytic in the open disc 𝐷𝑅  with radius 𝑅 >  1, can 

be approximated for any value of the 𝑧 in the disk {𝑧 ∈  𝐶 ∶  |𝑧| < 𝑅} . The approximation 

technique used is the power series or truncated polynomial and then its conversion to 

rational interpolation for its improved convergence properties [97]. The available 

information is a set of sampled values {𝑓𝑘} of the actual functions at 𝑛 roots of unity points 

{𝑧𝑘}, 0 < 𝑘 < 𝑛 − 1 and 𝑧𝑘  =  𝑒2𝜋𝑗𝑘/𝑛, where 𝑗 is the imaginary unit. 

The polynomial interpolation approaches 𝑓(𝑧) by 𝑝(𝑧), where 𝑝 ∈  𝑃𝑛−1 (the set of 

polynomials of degree less or equal to 𝑛 − 1) is the unique polynomial interpolant of 𝑓 at 

the roots or unity {𝑧𝑘}. If the Taylor series is used, 

 𝑝(𝑧)  =  ∑ 𝑐𝑘𝑧
𝑘 ∞

𝑘=0 , (4.1) 

and the coefficients 𝑐𝑘 are defined in the unit disk 𝑆 using the Cauchy integral:  

 (2𝜋𝑖)−1 ∫(𝜁 − 𝑧)−1
 

𝑆

𝑓(𝜁)𝑑𝜁 . (4.2) 

If 𝑓 is defined within a disk 𝐷𝜌 𝑎𝑛𝑑 𝜌 <  𝑅 , the uncertainty in the determination of the 

coefficients according to Cauchy’s estimate is 

 |𝑐𝑘|  =  𝑂(𝜌−𝑘), 𝑘 → ∞. (4.3) 

Truncating the series to 𝑛 − 1 degree, the resulting polynomial can be written as 
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 𝑝𝑛−1(𝑧)  =  ∑ 𝑐𝑘𝑧
𝑘 𝑛−1

𝑘=0 , (4.4) 

and for any 𝑧 within 𝐷𝜌 the error is given by  

 |𝑓(𝑧)  − 𝑝𝑛−1(𝑧)|  =  𝑂((|𝑧|/𝜌)𝑛), 𝑛 → ∞. (4.5) 

Given that |𝑧| < 𝜌, the error in the approximation is very small. The Taylor polynomial 

coefficients can be calculated through the Fast Fourier Transform (FFT) with MATLAB 

notation: 

 𝒄 =  𝐹𝐹𝑇(𝑓𝑘)/𝑛. (4.6) 

Where the trapezoidal rule is applied to (4.2) 𝑛 times simultaneously to calculate the 

𝒄 vector of Taylor coefficients in reverse order (highest degree first). The trapezoidal rule 

has geometric convergence (4.5) for analytic functions, and its natural place of application 

is to integrals defined over circles in the complex domain, for instance, 𝑧 = 𝑒𝑗𝜃, where 𝑗 is 

the imaginary unit. The Taylor coefficients can then be defined by the following 

approximation: 

 𝑐𝑖
𝑛  =  

1

𝑛
 ∑  𝑛

𝑘=1 𝑧𝑘
−𝑖𝑓𝑘, 𝑖 =  0, 1, 2, . . . , 𝑛 − 1 , (4.7) 

where there are 𝑛 roots of unity 𝑧𝑘  =  𝑒2𝜋𝑗𝑘 that define the coefficient 𝑐𝑖
𝑛 of order (degree) 

𝑖. Polynomial interpolants in the roots of unity are maximally convergent [97]. The 

geometric convergence of (4.5) reflects the fact that the accuracy increases exponentially 

with the number of roots of unity used. It can also be said that calculating the 𝑐𝑖
𝑛 Taylor 

coefficient is equivalent to evaluating the derivative of 𝑖𝑡ℎ order at 𝑧 = 0, 𝑓𝑖(0)  =  𝑖! 𝑐𝑖
𝑛 (or 

other value-centred series). The same convergence rate applies to the calculation of the 

derivatives using the trapezoidal rule. If the Taylor series is not centred at 0, the contour 

integral will not have a pole at 0 but at 𝜁, according to (4.2), where |𝜁| < 1.  
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4.2.2. When the radius of convergence is different from 1 

If the sampling of 𝑓 happens on a disk of radius 𝑅 > 1 then the convergence rate 

improvement is 𝑂((1/𝑅)𝑛). Convergence could be accelerated even further if the 

complex variable 𝑧 is scaled by a factor 𝜏 <  1, making it 𝑂 ((
𝜏

𝑅
)
𝑛

). However, there may 

be problems of ill-conditioning for floating-point arithmetic. They become increasingly 

evident when trying to compute higher order terms of the Taylor series. It has also been 

shown that an optimal choice of 𝜏 can eliminate ill-conditioning. 

4.2.3. Interpolation by harmonic polynomials 

A function defined within a certain complex domain of a smooth first derivative and 

sampled at 2𝑛 + 1 points, can be replicated by a harmonic polynomial of maximum 

degree 𝑛 that is uniquely determined and converges at an exponential rate. The 

interpolation to the continuous function is on the closed domain boundary, where the 

convergence ensues. If the choice of sampling points is on the roots of unity, the 

convergence is maximised [99]. 

4.2.4. How to reconstruct an aperiodic curve: Fourier Series and Transforms  

A periodic function 𝑓(𝑡) of period 𝑇 can be represented by Fourier series as 

 ∑ 𝑐𝑘𝑒
2𝜋𝑗𝑘𝑡/𝑇 ∞

𝑘=−∞ , (4.8) 

where 𝑘 takes positive integers 1, 2, 3, . ... These numbers can be associated with 

harmonic multiples of the fundamental frequency 𝑘 =  1. 𝑡 is the independent variable 

that can take the time dimension. 𝑐𝑘 is the terms’ coefficient that can be complex-valued. 

Each coefficient 𝑐𝑘 is calculated using the following integral, 

 𝑐𝑘 = 𝑓(𝑘) =
1

𝑇
∫ 𝑒−2𝜋𝑗𝑘𝑡/𝑇

𝑇 

0

𝑓(𝑡)𝑑𝑡 , (4.9) 

with 𝑓(𝑘) being its alternative notation. 



58 

 

If the function to be represented is not periodic, then 𝑇 → ∞, and the different 

harmonics 𝑘/𝑇 are replaced by the new variable 𝑠. Such coefficients are to be obtained 

by (4.10) 

 𝑓(𝑠) = ∫ 𝑒−2𝜋𝑗𝑠𝑡
∞ 

−∞

𝑓(𝑡)𝑑𝑡,  (4.10) 

“periodising” 𝑓(𝑡) [100], that is, representing the aperiodic function with harmonic 

components. This process is known as the Fourier transform. It produces a continuum of 

frequencies and opens the doors to many possible applications. The inverse Fourier 

transform that will allow the recovery 𝑓(𝑡) is in (4.11) 

 𝑓(𝑡) = ∫ 𝑒j2𝜋𝑠𝑡
∞ 

−∞

𝑓(𝑠)𝑑𝑠,  (4.11) 

The discrete Fourier transform (DFT) was born from the need to have a fast and 

efficient means to calculate the transform. Instead of thinking in terms of “sampled 

values”, it can be thought of as a process that takes a vector of 𝑁 numbers as inputs 𝒇 =

 (𝑓[0], 𝑓[1], . . . , 𝑓[𝑁 − 1]) and returns another 𝑁 − 𝑡𝑢𝑝𝑙𝑒 vector of numbers as outputs 

𝑭 =  (𝐹[0], 𝐹[1], . . . , 𝐹[𝑁 − 1]) and defined by 

 𝑭[𝑚]  =  ∑ 𝑓[𝑘]

𝑁−1

𝑘=0

𝑒−j2𝜋𝑘𝑚/𝑁 ,𝑚 =  0, 1, 2, . . . , 𝑁 − 1,  (4.12) 

the 𝑓[𝑘] are the values of the 𝑓 function at 𝑁 different points of the domain where 𝑓 is 

defined. The equation implies the addition of every function value multiplied by the inverse 

of the roots of unity at the corresponding power [100]. 𝑘 =  0 would correspond to the 

direct current component of the frequency spectrum.  

The computational complexity of the method in terms of floating-point operations is 𝑁2 

for an 𝑁 points-based DFT. One of the decisive factors that made the practical Fourier so 

useful is the fast Fourier transform algorithm, a highly efficient way to calculate the DFT. 

The computation work involved in its calculation is approximately 𝑁 ∗ 𝑙𝑜𝑔𝑁 arithmetic 

operations [101].  
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4.3. Application to load-flow problem 

We look for the representation of the bus voltage, or its absolute value, as a function of 

the active power injected into the bus in question. Figure 4-1 shows such a representation 

which consists of three entities: the high voltage branch or stable solution is represented 

by the blue trace, the branching point, dot at the intersection, and low voltage branch or 

unstable solution is represented by the green trace [16, 17]. Conventional load-flow 

programs solve the bus-voltage for the given active power by an initial guess or point for 

each bus to start the iteration process.  

 

Figure 4-1: P-V curve for load bus at constant power factor 

There are two voltage solutions for each value of active power within the range defined 

to the branching point, where there is only one solution and the voltage slope becomes 

vertical. The solution sought and starting point are usually close, so the process 

converges successfully.  

The approach taken here considers the HV absolute value being approximated by a 

power series (4.13). Approximations to continuous functions on a bounded interval can 

get arbitrarily close when approximated by polynomials, according to Weierstras’ theorem 

[102]:  

 |𝑉(𝑃)| =  ∑  
∞

𝑘=0
ℎ𝑘(𝑃 − 𝑃𝑐)

𝑘. (4.13) 
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This series expansion is an analytic function within its radius of convergence 𝑅, 

for |𝑃 − 𝑃𝑐|  < 𝑅, where 𝑃 can be any active power value within 𝑅, and 𝑃𝑐 is its bus load. 

This assertion has a direct implication on the left-hand side (LHS) of (4.13) in terms of 

feasible voltage values for the system in question. Coefficients ℎ𝑘 of the series (4.13) are 

obtained by considering the bus active power P in the complex plane (4.7) and [27]:  

  𝑃(𝜃) =  𝑃𝑐 + 𝑟𝑒𝑗𝜃,  (4.14) 

where 𝑟 is selected so that 𝑃𝑐 and the circular contour of 𝑃(𝜃) is within the radius of 

convergence 𝑅. It is shown by Walsh, Curtiss and others [97, 99] that the resulting 

polynomial obtained by (4.15) below, will have maximal convergence. 

Replacing 𝑃(𝜃) in (4.13), a trigonometric series is obtained. This will allow us to obtain 

the Taylor series coefficients using the discrete Fourier transform (DFT): 

 |𝑉(𝑃𝑐 + 𝑟𝑒𝑗𝜃)| =  ∑  
∞

𝑘=0
ℎ𝑘𝑟

𝑘𝑒𝑗𝑘𝜃, (4.15) 

where, |𝑉(𝑃𝑐 + 𝑟𝑒𝑗𝜃)| is a 2𝜋-periodic function or a Fourier series, whose coefficients are 

given by [100]:  

 ℎ𝑘𝑟𝑘 = 
1

2𝜋
∫  

2𝜋

0
|𝑉(𝑃𝑐 + 𝑟𝑒𝑗𝜃)|𝑒−𝑗𝑘𝜃𝑑𝜃. (4.16) 

These, ℎ𝑘𝑟𝑘, are scaled coefficients of the Taylor series given in (4.13). The ℎ𝑘 

coefficients are numerically computed by approximating the integral (4.16) using the 

composite trapezoid rule [98] with N equidistant points 𝜃𝑙 = 
2𝜋𝑙

𝑁
: 

 ℎ𝑘 = 
1

𝑟𝑘
[
1

𝑁
∑  

𝑁−1

𝑙=0
|𝑉(𝑃𝑐 + 𝑟𝑒𝑗𝜃𝑙)|𝑒−𝑗𝑘𝜃𝑙], (4.17) 

where 𝑙 = 0,… ,𝑁 − 1. The expression between brackets [ ] is equivalent to the Discrete 

Fourier Transform (DFT) [100]. Computation of these N coefficients is possible using the 

Fast Fourier Transform (FFT) algorithm. The values |𝑉(𝑃𝑐 + 𝑟𝑒𝑗𝜃𝑙)|are obtained through 

the Newton-Raphson method for every one of the resulting (𝑃𝑐 + 𝑟𝑒𝑗𝜃𝑙). In other words, 
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these |𝑉(𝜃𝑙)|̅̅ ̅̅ ̅̅ ̅̅ ̅ are samples of the voltage function in the complex domain. Once those 

voltage samples have been obtained, the approach is to compute consecutive FFTs of 

𝑁 = 2𝑘 points 𝜃𝑙, for 𝑘 = 2, 3, 4, … until the coefficients ℎ𝑘 converge within a given 

tolerance. So, the first round, k = 2 will give four ℎ𝑘 coefficients, then their convergence 

is tested. This process continues until convergence is achieved. This means that some of 

the coefficients of the last round may be below tolerance, and so they get trimmed. To 

make the algorithm manageable, the required number of sample points, 𝑃(𝜃𝑙) =  𝑃𝑐 +

𝑟𝑒𝑗𝜃𝑙, is kept to a minimum, since each sample is a run of the N-R algorithm.  

Recapping this load flow application equations and their correspondence with those of 

the mathematical concepts in subsection 4.2, the following can be said: 

- The power series coefficients 𝑐𝑘 of (4.1) correspond with the coefficients ℎ𝑘 of 

(4.13). 

- The sampling of the voltage continuous function, |𝑉(𝑃)| in (4.13) or 𝑝(𝑧) in (4.1), 

is done in 𝑧𝑘 roots of unity, or 𝑃(𝜃) =  𝑃𝑐 + 𝑟𝑒𝑗𝜃(4.14), in a radius 𝑟 <  𝑅 radius of 

convergence of the series. As can be seen, the complex active power is a 

mathematical artifice, as well as the voltage complex absolute value |𝑉(𝑃𝑐 + 𝑟𝑒𝑗𝜃)| 

in (4.15) as a result of the Fourier series representation. However, the FFT returns 

real coefficients for (4.13). 

4.3.1. Nodal equations 

Active and reactive power are real functions of real variables in conventional N-R, but 

they are a real function of complex variables as required by the D-P method. Nodal 

equations are written to preserve the integrity of the bus voltage complex absolute values 

as well as the complex expressions of the active and reactive power alike. These are 

mathematical artifices that return to their real values by virtue of the FFT for the final 

expression of the bus-voltage in Taylor series. 

The voltages |𝑉(𝜃𝑙)|̅̅ ̅̅ ̅̅ ̅̅ ̅ are complex values, indicated with a long dash, since they are the 

summation of the product by complex exponential functions (4.15), so is the active power 

𝑃(𝜃) (4.14). Reactive power is also a complex magnitude 𝑄(𝜃)  =  𝑎 ∗ 𝑃(𝜃). Factor 𝑎 =
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𝑏𝑎𝑠𝑒 𝑃

𝑏𝑎𝑠𝑒 𝑄
 is a scalar number. A 3-bus system is used as an example of an application. The 

bus currents, for such a model using MATLAB notation, are: 

 [

𝑦11𝑟 + 𝑗𝑦11𝑖 𝑦12𝑟 + 𝑗𝑦12𝑖 𝑦13𝑟 + 𝑗𝑦13𝑖

𝑦21𝑟 + 𝑗𝑦21𝑖 𝑦22𝑟 + 𝑗𝑦21𝑖 𝑦23𝑟 + 𝑗𝑦23𝑖

𝑦31𝑟 + 𝑗𝑦31𝑖 𝑦32𝑟 + 𝑗𝑦32𝑖 𝑦33𝑟 + 𝑗𝑦33𝑖

] ∗ [

|𝑉1|̅̅ ̅̅ ̅𝑐𝑜𝑠𝛿1 + 𝑗|𝑉1|̅̅ ̅̅ ̅𝑠𝑖𝑛𝛿1

|𝑉2|̅̅ ̅̅ ̅𝑐𝑜𝑠𝛿2 + 𝑗|𝑉2|̅̅ ̅̅ ̅𝑠𝑖𝑛𝛿2

|𝑉3|̅̅ ̅̅ ̅𝑐𝑜𝑠𝛿3 + 𝑗|𝑉3|̅̅ ̅̅ ̅𝑠𝑖𝑛𝛿3

], (4.18) 

where 𝑦12𝑟 + 𝑗𝑦12𝑖 is the admittance between buses 1 and 2,  |𝑉1|̅̅ ̅̅ ̅ is the voltage complex 

absolute value and 𝛿1  voltage angle for bus 1, making |𝑉1|̅̅ ̅̅ ̅𝑐𝑜𝑠𝛿1 and |𝑉1|̅̅ ̅̅ ̅𝑠𝑖𝑛𝛿1 the active 

and reactive components of the said voltage; “*” is the matrix multiplication sign. The 

expression of the resulting current for bus 1 is: 

 𝐼𝐶̅1 = [

(𝑦11𝑟|𝑉1|̅̅ ̅̅ ̅𝑐𝑜𝑠𝛿1 − 𝑦11𝑖|𝑉1|̅̅ ̅̅ ̅𝑠𝑖𝑛𝛿1) + 𝑗(𝑦11𝑟|𝑉1|̅̅ ̅̅ ̅𝑠𝑖𝑛𝛿1 + 𝑦11𝑖|𝑉1|̅̅ ̅̅ ̅𝑐𝑜𝑠𝛿1)  +

(𝑦12𝑟|𝑉2|̅̅ ̅̅ ̅𝑐𝑜𝑠𝛿1 − 𝑦12𝑖|𝑉2|̅̅ ̅̅ ̅𝑠𝑖𝑛𝛿2) + 𝑗(𝑦12𝑟|𝑉2|̅̅ ̅̅ ̅𝑠𝑖𝑛𝛿2 + 𝑦12𝑖|𝑉2|̅̅ ̅̅ ̅𝑐𝑜𝑠𝛿2)  +

(𝑦13𝑟|𝑉3|̅̅ ̅̅ ̅𝑐𝑜𝑠𝛿3 − 𝑦13𝑖|𝑉3|̅̅ ̅̅ ̅𝑠𝑖𝑛𝛿3) + 𝑗(𝑦13𝑟|𝑉3|̅̅ ̅̅ ̅𝑠𝑖𝑛𝛿3 + 𝑦13𝑖|𝑉3|̅̅ ̅̅ ̅𝑐𝑜𝑠𝛿3)

], (4.19) 

where 𝐼𝐶̅1 = 𝐼𝐶̅1𝑟 + 𝑗𝐼𝐶̅1𝑖  is the current phasor based on voltage complex absolute value 

split into its two components. The writing can be simplified and generalized by using 

vectorized MATLAB notation:  

 𝑰𝑪 = (𝒓𝒀 ∗ 𝑽𝒓 −  𝒊𝒀 ∗ 𝑽𝒊)  + 𝑗(𝒓𝒀 ∗ 𝑽𝒊 + 𝒊𝒀 ∗ 𝑽𝒓) (4.20) 

with the following descriptions: 

𝑰𝑪 Vector of bus currents based on voltage complex absolute values. 

𝒓𝒀, 𝒊𝒀 Line conductance and susceptance matrices respectively. 

𝑽𝒓, 𝑽𝒊 Vectors of bus active and reactive voltage complex absolute values. 

And their expressions from the example above are: 
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 𝒓𝒀 = [

𝑦11𝑟 𝑦12𝑟 𝑦13𝑟

𝑦21𝑟 𝑦22𝑟 𝑦23𝑟

𝑦31𝑟 𝑦32𝑟 𝑦33𝑟

] , 𝒊𝒀 = [

𝑦11𝑖 𝑦12𝑖 𝑦13𝑖

𝑦21𝑖 𝑦21𝑖 𝑦23𝑖

𝑦31𝑖 𝑦32𝑖 𝑦33𝑖

], (4.21) 

for the line conductance matrix and line susceptance matrix. The bus active and 

reactive voltage absolute values are: 

 𝑽𝒓 =  [

|𝑉1|̅̅ ̅̅ ̅𝑐𝑜𝑠𝛿1

|𝑉2|̅̅ ̅̅ ̅𝑐𝑜𝑠𝛿2

|𝑉3|̅̅ ̅̅ ̅𝑐𝑜𝑠𝛿3

] , 𝑽𝒊 =  [

|𝑉1|̅̅ ̅̅ ̅𝑠𝑖𝑛𝛿1

|𝑉2|̅̅ ̅̅ ̅𝑠𝑖𝑛𝛿2

|𝑉3|̅̅ ̅̅ ̅𝑠𝑖𝑛𝛿3

].  (4.22) 

The corresponding vector of the buses’ apparent power can be expressed as: 

 𝑺𝑪  = (𝑽𝒓 + 𝒋𝑽𝒊).∗ (𝑰𝑪𝒓 + 𝑗𝑰𝑪𝒊)
∗,  (4.23) 

Effecting the multiplication, the equation becomes: 

 𝑺𝑪 = 𝑷𝑪 + 𝒋𝑸𝑪 = (𝑽𝒓.∗ 𝑰𝑪𝒓 + 𝑽𝒊.∗ 𝑰𝑪𝒊)  + 𝒋(𝑽𝒊.∗ 𝑰𝑪𝒓 − 𝑽𝒓.∗ 𝑰𝑪𝒊),  (4.24) 

where .∗ indicates the element to element product. The vector of residuals between the 

scheduled power and the calculated power from (2.5) above is: 

 𝒎𝒊𝒔𝒗𝒆𝒄𝒕 =  [(𝑷𝒔𝒄𝒉  − 𝑷𝑪); (𝑸
𝒔𝒄𝒉  − 𝑸𝑪)] 

𝑇 . (4.25) 

As 𝑷𝒄 and 𝑸𝒄 are complex values, their derivatives have to be separate, as shown in 

(2.6). In conventional N-R 𝜕𝑆
𝜕𝛿⁄  and 𝜕𝑆

𝜕|𝑉|⁄  are acceptable since the real part is the 

derivative of 𝑃 and the imaginary part is the derivative of 𝑄.  

4.3.2. Computational process 

The proposed method can be summarised in steps to show the computational process 

and its working sequence: 1) determining the equally spaced points in the roots of unity 

by applying (4.14) and the corresponding 𝑃 active powers for a load bus; 2) calculating 

the voltage complex absolute values through N-R for each of the 𝑃 points; 3) obtaining 

the corresponding power series coefficients using the fast Fourier transform; 4) verifying 
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the coefficients’ tolerance with respect to each other; 5) repeating the above process, 

increasing the number of sampling points if there was no convergence; 6) obtaining the 

Padé approximants for the resulting power series; and 7) obtaining the LV solution, if 

required.  

The details of the steps are as follows: 

1. There will be four values of 𝑙 = 0, . . . , 3, 𝑁 =  4, and 𝜃𝑙 = 
2𝜋𝑙

𝑁
 if the process is 

started with k = 2, (4.17), the polynomial initial order. This is convenient as the 

next set of sample points will be located in interleaving positions. See Figures 

4-2 and 4-3. 

 

Figure 4-2. Eight Sample points. 

 

Figure 4-3. Sixteen interspersed sample 

points 

The coefficients’ tolerance needs to be decided, and 10−5 can be a good 

starting value. This value is related to the bus position in the network, as well as 

the network loading. The value of 𝑟 is related to the radius of convergence of 

the series, a choice of r = 1 is a sensible first approach. The power series radius 

of convergence, like the tolerance, will depend on the bus load and location in 

the network. So, as a choice guide, the bigger the relative load, the smaller the 

value of r, and, conversely, the bigger the tolerance choice (see 4.14 and 4.17). 

2. The complex active power is calculated using P (θ𝑙) (4.14) for each sampling 

point, with Pc equal to the bus base-line active power. The bus reactive power 

is then calculated keeping the original power factor, resulting in a complex value 

as well. 
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3. The bus voltage |𝑉(𝑃𝑐 + 𝑟𝑒𝑗𝜃l)| is calculated using the N-R method for the 

apparent power S (θl) of the bus in question. The sequence cycles to cover 

each of the sampling points, while the load of the other buses remain at the 

baseline.  

4. The set of |V (P (θl))| so obtained will be used to calculate the coefficient hk of 

the power series (4.13) using the FFT. Their absolute values are then compared 

against their normalised tolerance. 

5. The above process is repeated until a coefficient is smaller than the set 

tolerance. Coefficients smaller than the tolerance are discarded.  

6. The power series (polynomial) so formed will be converted to a rational function 

using Robust Padé [96]. This Padé approximant will depict the whole HV branch 

of the P-V curve for the chosen bus, as it will be shown in the next chapter. The 

inner singularities of this approximant will be a very good estimate of the bus 

stability limit in terms of the feasible load range at a constant power factor. This 

is so in relation to the power system loading at the specific time of the bus in 

question’s base-line load. 

7. If a closer approximation to the bus voltage stability limit is required, it can be 

obtained at the intersection of the HV and LV solution branches. The LV branch 

can be obtained by using a small initial value at the start of the N-R iterations, 

for instance 0.4 [pu], to ensure that the bottom part of the PV curve is 

approximated. This will also be shown in the next chapter. 

4.3.3. Conclusions 

It has been shown that the Taylor series coefficients, in the complex domain, calculated 

via the Trapezoidal rule applying the FFT have geometric convergence (4.5) within their 

radius of convergence. Also, if the radius of the sampling circle is greater than 1, 

convergence improves. The it is a harmonic series extrapolated through function values 

obtained at the roots of unity, then fast convergence is also guaranteed.  

The method’s equations have been presented and their detailed applicability has been 

shown step by step. This includes the selection of the Taylor series radius of convergence 

and series coefficients tolerance, the use of N-R to obtain sampled voltage absolute 
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values, and how to obtain the LV solution branch to find a closer approach to the stability 

limit through its intersection with the HV solution branch. 
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Chapter 5: DFT-Padé application. 

A. J. Sarnari and R. Živanović, and Said Al-Sarawi, “Augmenting Load Flow Software 

for Reliable Steady-State Voltage Stability Studies", International Journal of Electrical 

Power & Energy Systems, for printing. 
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5.1. Introduction 

This chapter will show the detailed results obtained at the different steps of the process 

and discuss the method applicability options. Comparison with conventional Newton-

Raphson, Holomorphic Embedding load-flow (HELM) and Continuation power-flow (CPF) 

approaches will also be discussed, as well as the D-P time performance and weakest bus 

determination. 

- The application of the DFT-Padé method will be shown step by step through the 

IEEE 14-bus test system [103] for the analysis of bus No. 14. Each step is depicted 

with a graph. 

- A 2-bus system is analysed through the use of different parameters, determination 

of stability limits and a comparison with HELM. 

- The analysis of a weak bus is carried out by determining the voltage stability limits 

and a comparison with plain N-R and HELM using the IEEE 30-bus test system. 

- The analysis of a load bus voltage as a function of a generator bus active power is 

used to show the different behaviour of plain N-R and DFT-Padé, and the results 

of a comparison with CPF [84] are also shown. 

- A DFT-Padé comparison with a HELM formulation that scales load buses by 

different amounts [104] is undertaken to obtain the HV branch solutions and the 

approximation to the voltage stability limits for the IEEE 14 and 118-bus test 

systems [103]. 

- D-P, plain N-R and CPF time performance comparison is carried out on five 

different test systems. 

- A D-P critical bus determination is presented on two different test networks, and 

the results are confirmed with CPF. 

- D-P applicability on networks containing FACTS equipment and HVDC links is 

analysed and the conclusions presented. 

5.1.1. Application to 14-bus system 

The following simulation study, based on trigonometric coefficients to determine a load 

bus stability limit, is applied on the IEEE 14-bus test system [103]. Bus 14 of the system 
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is selected to determine its voltage stability limit and the results are shown in Figures 5-1 

to 5-7.  

The complex active power is calculated using P (θ𝑙) (4.14) for each sampling point, and 

𝑃𝑐  =  −0.149 (sign as per load convention). The bus base-line active power is shown in 

Figure 5-1. 𝑁 = 32 gives the total amount of points used. It implies that the N-R method 

ran 32 times to obtain the voltage complex absolute values, as per Figure 5-2. 

 

Figure 5-1. Circle of complex active 

power values. 

𝑁 =  32 sampling points of radius 𝑟 =
 1.2 centred at 𝑃𝑐  = −0.149 [𝑝𝑢] 

 

Figure 5-2. Voltage complex absolute 

values. 

Obtained via N-R for each complex P (θ𝑙) . 

It is to be noted that the smaller density of voltage values, as the real part of 

|𝑉(P (θ𝑙))|  <  1 [𝑝𝑢], indicates the increasing change of slope in the P-V curve, given that 

the sampling points are equally spaced. When there is no convergence, the points do not 

close the circle. It then becomes an indication of voltage collapse. 
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Figure 5-3. Fourier series coefficients. 

Twenty-two coefficients for tolerance 

𝟏𝟎−𝟎𝟓 

 
Figure 5-4. Taylor series coefficients. 

 Coefficients scaled by 𝑟 =  1.2 

DFT coefficients, are considered in geometrically increasing amounts given 𝑁 =

 4, 8, 16, 32, by (4.16) and calculated using the trapezoidal rule (the expression between 

brackets in (4.17). They converged in 22 terms for a tolerance of 10−5; the remaining 10 

below tolerance were discarded. Their absolute values are shown in Figure 5-3. While 

Figure 5-4 represents the Taylor series coefficients (4.17), with a  scaling factor of 

1

𝑟𝑘   (𝑟 = 1.2), making their absolute value decrease faster. It is interesting to estimate the 

radius of convergence of the Taylor series using the formula 𝑅 = 𝑙𝑖𝑚
𝑛→∞

|𝑐(𝑛)|

|𝑐(𝑛+1)|
 [105]. Figure 

5-5 illustrates the process. The choice of 𝑟 = 1.2 is well within that estimation of 𝑅 =  1.62. 

Values of 𝑟 >  𝑅 would have compromised the calculation of |𝑉(P (θ𝑙))| by the Newton-

Raphson method. A value of 𝑟 =  1 would have yielded the same results. 

Having defined the polynomial representing the Taylor series, the next step is to obtain 

the Padé approximant rational function that will represent the HV branch of bus 14 as a 

function of the active power 𝑃. As explained above, the method of choice is Robust Padé. 

The results are shown in Figure 5-6. 
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Figure 5-5. Estimation of series’ convergence radius. 

Determined by the ratio test for the given Taylor 

coefficients. 

  

Figure 5-6. Padé and Taylor approximations to branch solutions. 

Taylor within radius of convergence (red dots) overlaps the Padé 

approximant curve. Both approximations yield the same voltage at loading 

point 𝑷𝒄 of bus 14. 

The active power range 𝑃 was taken from the intersections with the LV curve: [−6.812 

𝑝𝑢 left and 1.3657 𝑝𝑢 right]. The LV curve was obtained through the same procedure, 

except that the first guess for the N-R iteration process was 0.45 [𝑝𝑢]. Both curves extend 

over the negative values of active power 𝑃. This can be assimilated to a fixed speed 

induction generator [106]. Any larger active power outside that range will cause instability 
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and voltage collapse (to either side). It is also to be noted that for practical purposes the 

Taylor approximation covers the voltage values with the same accuracy given that its 

convergence radius is large enough. 

The inner singularities of the Padé approximants also give a very good approximation 

to the voltage stability limits, as shown in Figure 5-7 and Table 5-1. 

 
Figure 5-7. Singularities of the Padé rational 

function. 

 N.B. The negative singularities are not shown. 

Table 5-1. Rational 

function singularities. 

VSLs highlighted in yellow. 

Values in [pu] of active 

power. 

Zeros Poles 

12.5176 22.0154 

-12.2251 -13.5039 

-7.4768 -7.583 

5.0734 6.2345 

3.0632 3.4055 

2.1968 2.3254 

1.7526 1.8032 

1.5128 1.5305 

1.3926 1.3965 
 

The voltage stability limit for bus 14 was found to be 1.356 [𝑝𝑢], given by MATPOWER 

CPF [84]. The difference with the intersection method above is −0.72 %, and −2.7% with 

respect to the inner singularities (poles & zeros) method.  

5.1.2. Two-bus system study 

The 2-bus system has a closed-form algebraic solution to which the approximation 

methods can be compared. The algebraic solution is well known and is, for example, 

derived in [27]. This can represent a distributed generation system, where the generator 

and transmission line are the Thévenin equivalent. The generator can also be thought of 

as the infinite bus of constant voltage and reference angle. The energy can flow both ways 

provided the load bus can also act as a generator. When performing load sweep, the bus 

will acquire negative values, as well. This negative load can be thought of as a fixed speed 

induction generator or wind turbine [106]. The base-load values are as shown in Figure 
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5-8. The circuit parameters are: 𝑉1 =  1 [𝑝𝑢], transmission line, 0.001 + j0.1 [pu], and the 

load at bus 2 is 1 + j0.2506 [pu]. 

 

Figure 5-8. Two bus system: load base-line values in MW and Mvar. 

Generator or Thévenin equivalent. Load sweep will range from 

positive to negative values. Energy can flow in both directions. 

Graph obtained using PowerWorld software [81]. 

The DFT-Padé solution was obtained using exploring radii and tolerances according to 

Table 5-2. The radius has been termed “exploring”, in this context, since it will fetch 

complex absolute voltage values according to its size as per (4.15).  

Table 5-2. Comparison of Voltage Stability Limits. 

They are given by HV and LV curve intersections, inner singularities and algebraic 

solutions for two different "exploring" radii and coefficient tolerances using the 

DFT-Padé method. 

Radius No. of No. of Active Power for Voltage Stability Limits 

R Tolerances Coefficients Intersections Singularities Branching Points 

      [pu] [pu] [pu] 

2 10−08 16 -6.6878   3.8923 -6.9687   3.9310 

-6.4905    3.8712 4 10−12 32 -6.6152   3.8783 -6.9686   3.9311 

 

The positive VSL is of practical interest. It is shown in Figure 5-9. There may be some 

differences in the VSLs when using two different radii and tolerances: a bigger radius, r =

4, and a smaller tolerance, tol =  10−12, will have greater “exploring” capabilities, and will 

bring more information from the voltage function than a small radius, 𝑟 = 2, and a bigger 

tolerance tol =  10−8. If the algebraic branching point is taken as the true value, then the 

difference with the curves’ two intersection points is 0.18% and 0.55% respectively. If the 

comparison is now made using the inner singularities of the rational function that 

characterise the HV branch of the voltage 𝑉2, the differences with the algebraic branching 

point are 1.546% and 1.545% respectively, Figure 5-10. These singularities are less 
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accurate, as they both are the zeros of the rational function approximant and, as such, 

they are further away than the curves’ intersection points. In general, if the exploring 

radius can take a large number, implying that the load bus is not a weak bus, there is a 

potential for reducing errors in the Fourier coefficients, see eq. (4.17). There is one 

complex absolute voltage for each Fourier coefficient, as seen from (4.16). This implies  

 

Figure 5-9. Two-bus branch solutions. 

Exact solution, dashed. HELM, red curve, and DFT-Padé approximation, HV 

and LV, green curve. Pc is the base-line active power with corresponding 

voltage |V(Pc)|. 

 

Figure 5-10. Zeros and poles of the Padé rational function (3.9). 

True branching points from the algebraic solution are in red. 

that the more coefficients that are required for the series to converge, the longer the 

processing time, i.e., there are as many N-R algorithms to execute as coefficients in the 
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series, hence the interest in keeping the series to a minimum to avoid unnecessary, 

expensive computational time. The number of N-R executions, or coefficients, cannot be 

known before the bus HV branch has been solved at least once. The LV branch 

approximation requires running DFT-Padé, where the starting voltage of the bus in 

question is 0.4 [pu], which will guarantee that the rational function will yield the LV instead 

of the HV branch. This LV approximation is more demanding than that of the HV. The 

series convergence radius is smaller, and the possible tolerances are larger. It may fail to 

converge in very difficult cases. 

The HELM solution (the red curve) was derived from the convolution process implied 

by (3.7) and (3.8) to form the truncated Taylor series of coefficients  cs
[2]

 for PQ bus 2. 

The coefficients were calculated until the difference between the two consecutive ones 

was smaller than the tolerance 10-14, see Table 5-2. Twenty-one of them were required. 

Robust Padé approximants were derived from the series ∑  cs
[2]20

s=0 zs. The inner 

singularities of that rational function approximate the VSLs. A pole is the closest singularity 

from the left, which explains the upwards trend of the curve. Both HELM and DFT-Padé 

have similar approaches from the right. The three methods, including the algebraic 

solution, yield the same base-line voltage for bus 2.  

 

Table 5-3. Voltage stability limits via HELM and DFT-Padé methods. 

Tolerances and number of coefficients can be compared. Right-hand side 

singularities for both methods can be compared with the true branching point. Values 

are in [pu] of active power. 

  Voltage Stability Limits No. of  Radius 

  by Intersection by Singularities Branching Points Coefficients Tolerances r 

  [pu] [pu] [pu]    

HELM N/A -7.3127   4.0793 

-6.4905    3.8712 

21 10−14 N/A 

DFT-Padé -6.6152   3.8783 -6.9686   3.9311 16 10−08 2 

 

For the HELM case there is no radius involved, hence the N/A abbreviation. However, 

the intersection case could be resolved by using the equations of the LV as explained in 

[25]. Alternatively, the Padé approximants for the voltages must be evaluated until the 

function’s domain boundary is reached, which is indicated by high bus-power mismatches 

[13]. The accuracy of both methods is very similar, as seen in Fig. 5-9. 
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5.1.3. IEEE 30-bus system test case  

Voltage collapse starts at the weakest bus and then spreads out to other weak buses. 

Therefore, the weakest bus is the most important in the voltage collapse analysis [107]. 

Bus 30 is a weak bus for the present network, as identified by contingency ranking in the 

power system using a fuzzy-based load flow [108] and fast voltage stability index [109]. 

Also, after numerous DFT-Padé studies were conducted on different systems, this bus is 

of interest, given its small power series radius of convergence, manifesting its weak load 

bus characteristics.  

The following tests were carried out on bus 30 of the IEEE test case using the base-

line loads. The assumption is that all loads remain at those values except for bus 30, which 

is subjected to a load sweep (exposed to a range of loads) from and to the stability limits, 

or very close to them when using N-R. The generators’ reactive power limits are not 

enforced. As already mentioned, the plain N-R MATLAB algorithm presented in [110] was 

used to solve the system of successive loads at bus 30 within the limits given by the DFT-

Padé intersection points.  

The HELM solution, a rational function approximant for bus 30 that allows extrapolation 

of the load within the stability limits, was obtained by applying the direction-of-change 

scaling formulation [104]. The DFT-Padé approximation, is also a rational function (3.9), 

that allows scaling of the load in the same range. A constant power factor is implicit in the 

load scaling of both rational functions, while it has been designed that way for the N-R 

load sweep.  

The N-R power sweep range applied is [-1.562, 0.4816] pu, the red trace, as can be 

seen in Figure 5-11. Negative active power has been used under the same concept as in 

the 2-bus example. The HELM method, the blue trace, and the DFT-Padé, the green 

trace, are more accurate near the VSL, the generation side, where N-R solutions start to 

diverge, as shown in Figure 5-11. From this figure the following points can be noted: 
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Figure 5-11. Bus No. 30 comparison of three methods. 

Conventional NR, holomorphic embedding load flow (HELM) and DFT-

Padé. Negative loads correspond to generation [39]. 

- The positive end of the load range was taken from CPF [84], but not the range left 

end, since it is a feature not documented and perhaps not programmed. Instead, 

the approximated value was obtained from the intersection of the HV and LV 

curves, from the DFT-Padé method. 

- The HELM LV solution is investigated in [25] but no specific mention of its use to 

find voltage stability limits is made. The stability limit here is found by checking if the 

power balance equation, the difference between the actual and calculated power, 

is within a specified tolerance. Based on experience, the bus voltage solution may 

take somewhere between 21 and 41 terms. A fixed number of terms is used, as in 

this case. For buses or systems close to the voltage stability limit, the number of 

terms of the power series can be between 61 and 81 [104]. 

- The 3 curves overlap over nearly the whole range, except near the branching point 

or voltage stability limit on the negative load’s side. The three methods yield the 

same |𝑉(𝑃𝑐)| at the base load. The DFT-Padé method obtains the stability limit for 

bus 30 very close to the continuation power flow (CPF) value, with a difference of  
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-1.18%. The N-R voltage values, on the left, start to depart from the other two 

curves at -1.562 pu, where the Jacobian matrix yields very large increases in the 

condition number. Both, the HELM and DFT-Padé traces overlap the whole range. 

As expected, the inner singularities are a bit further away from the CPF, or the 

intersection values, hence they can provide a coarse approximation to the stability 

limit. 

Bus 30 is of relevance for the DFT-Padé method, as the coefficients of its Taylor power 

series are divergent, unlike the DFT coefficients, providing an indication as to the bus’ 

weakness. The small radius of convergence, approximately 0.6 pu, as per the ratio test: 

limk→∞
hk

hk+1
 [111], when applied to the last two coefficients of the series as given by 

(4.17), is also an indication of the bus’ weakness. To ensure convergence, the exploring 

radius, r, given in (4.15) should be less than 0.6. In this case, 𝑟 =  0.5 has been chosen. 

Despite these limitations of the Taylor series, the Padé rational function coefficients are 

convergent.  

5.2. Improvements over the plain N-R method and comparison with 

the continuation power flow approach 

As the bus voltage approaches its stability limit, the accuracy of the Jacobian matrix 

deteriorates until it becomes singular [112], [63]. Consequently, conventional power flow 

algorithms are prone to convergence problems when operating near the stability limit. The 

continuation power-flow analysis overcomes this limitation by reformulating the power-

flow equation, so that the equations remain well-conditioned at all possible load states 

[77]. Continuation methods or branching tracing methods are used to trace a curve given 

an initial point on the curve and can also be called a predictor-corrector method. 

Continuation power flow (CPF) [79] is an N-R based tool that traces the solution branches 

and therefore determines the voltage stability limit for power system buses. The limit is 

determined from a nose curve where the nose represents the maximum power transfer 

that the system can handle given a power transfer schedule. This is characterised by 

equations (2.17-19), as applied to MATPOWER [84] implementation. 
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5.2.1. Application to a 7-bus network  

A study based on a 7-bus network, see Figure 5-12, involving HELM, Semidefinite 

Relaxation, and N-R methods, is already presented in [12]. It will now serve the purpose 

of showing the applicability of DFT-Padé and a comparison with CPF. It entails the 

analyses of load-bus 3 voltage behaviour as a function of generator bus 6 active power 

variations. 

The DFT-Padé method was set with an exploring radius of 0.25 to obtain 16 coefficients 

(only 10 are used) of the discrete Fourier transform power series, with 10−05 tolerance.  

Table 5-4. Bus No. 3 characteristic parameters, DFT-Padé method. 

Seven-bus network. Voltage |𝑉3| vs power 𝑃6. 

Radius Tolerance No of  Inner Singularities 

r  Coefficients. Left Right 

0.25 10−05 10 -0.1945 1.1296 
 

The inner singularities, corresponding to zeros of the Padé rational function, 

approximate the VSLs. They have been taken as the basis to set the generator bus 6 

active power range. In this case, the negative active power corresponds to the generator 

acting as a load. Bus 3 voltage, as a function of bus 6 generator active power, is shown 

in Figure 5-13. It is worth noting that 𝑃6  =  0.3 𝑝𝑢 has been set as a base power to ensure 

N-R convergence, for which the bus 3 voltage, as per the given network, is 0.9897 [𝑝𝑢]. 

DFT-Padé LV approximation did not converge for this bus. The inner singularities range 

(both zeros of the rational function) are [−0.194, 1.129] [𝑝𝑢], which served as a first 

approximation to determine the power range, see Table 5-4. 

The MATPOWER continuation power flow options are based on the example given in 

the manual [84] and are listed in Table 5-5. One point of interest is that the generator 

base power in this case was given as the near-end range on the negative side (-100 MW) 

and the scaling factor is less than one. This allows the mechanisms of the predictor and 

corrector steps to work through most of the HV branch of the PV curve. MATPOWER CPF 

found the VSL at 𝑃6  =  1.0569 [𝑝𝑢]. The voltage stability limits for bus 3 was found to be 

[−0.114, 1.057][pu] of bus 6’s active power, in the insightful work by Baghsorkhi and 

Suetin [12]. 
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Figure 5-12. 7-bus network. 

Monitoring of PQ bus 3 absolute voltage, while varying PV bus 6 generator's 

active power within bus 3’s stability limits 

 

Table 5-5. MATPOWER continuation 

power flow parameters and values 

CPF Options 

cpf.stop_at NOSE 

cpf.step 0.05 

cpf.plot.bus 3 

cpf.adapt_step 1 

P6 base -100 [MW] 

P6 target -0.1 [MW] 
 

The N-R power sweep on the bus 6 generator was conducted over the same range. 

However, it converged to the wrong values, or did not converge for the generator’s active 

power greater than 0.97 [𝑝𝑢], as shown in Figure 5-13. Both, CPF and DFT-Padé obtained 

the correct absolute voltage value for PQ bus 3 within the given range; and both yield 

|𝑉3|  =  0.8363 [𝑝𝑢] when 𝑃6  =  1 [𝑝𝑢], which is the generator active power according to 

Figure 5-12. 
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Figure 5-13. 7-Bus network – |V3| vs P6. 

Bus No. 3 comparison by three methods. High voltage branch: N-

R, CPF and DFT-Padé. 

5.2.2. Performance comparison 

Five networks were tested in order to determine the time performances of plain D-P, 

N-R and CPF namely, 2-bus – Figure 5-8, IEEE 14, 30, 57 and 118-bus test systems. The 

last bus of each network was tested, except for the 30-bus system where bus number 24 

was used so 16 coefficients were obtained instead of 32. The conditions set for each 

system were as follows. 

Sixteen coefficients were necessary to characterise those buses using the D-P method. 

Their tolerance was 10−05 in all cases. The radii for each network were 3, 1, 1, 0.4 and 3 

respectively. D-P needed to run the load flow program once for each coefficient. Elapsed 

times were recorded for each case. 

To make the comparison possible, sixteen points where calculated spanning through 

their allowable load range using a plain N-R solver [110]. As the load points got closer to 

the feasibility limits, the number of iterations increased. The time elapsed to run the load 

sweep for each case was recorded. 

For CPF [84] the number of steps were determined by the options shown in Table 5-6. 

The base load was the starting point to reach the voltage stability limit for each one of the 
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buses under the test. Execution times and the number of steps required to reach the 

voltage stability limits were recorded. The execution times were taken from the elapsed 

time clock returned by the “runcpf.m” MATPOWER script, while the target loads were the 

voltage stability limits obtained through D-P, previously.  

Table 5-6. Continuation Power Flow time performance parameters 

CPF Options 

cpf.stop_at NOSE 

cpf.step 0.2 

cpf.plot.level 0 

cpf.adapt_step 1 

cpf.plot.bus 
bus under 

study 

P base base value 

P target bus VSL 
 

Tests have been carried out with a computer running with a processor Intel Core™ i7-

2630QM CPU @ 2.00 GHz, operating system Windows 10 Home, and simulation software 

based on MATLAB R2017a. 

The results can be seen in Table 5-7. The run times are comparable and given as a 

guide only. 

Table 5-7. Time performance comparison: D-P, N-R and CPF. 

D-P and N-R calculated over 16 points, CPF steps as per option parameters. 

System 

D-P N-R CPF 

Time 

(sec) 

Iterations 

(Avg) 

Time 

(sec) 

Iterations 

(Avg) 

Time 

(sec) 

No. 

of 

Steps 

2-bus 0.030 5.8 0.008 5.1 0.052 20 

14-bus 0.045 5.5 0.025 5.3 0.079 24 

30-bus 0.056 5.0 0.041 5.2 0.070 17 

57-bus 0.087 5.2 0.079 4.8 0.116 23 

118-bus 0.149 5.0 0.218 5.4 0.181 28 
 

5.2.2.1 Contingencies  

Contingency is better understood within the framework of Security Analysis which is 

about examining the system’s ability to undergo disturbances. The power system is said 
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to be “secure” if it can withstand each specified disturbance without entering an 

emergency state. In practice, power grids are checked against a set of “credible 

incidents” (N), that is the ones which have a realistic chance of happening. They are called 

“contingencies”, and refer to the outage of generators, transmission lines, transformers, 

etc. For the long-term stability analysis, the well-known criterion is N-1 security, according 

to which the system must be able to withstand any single transmission or generation 

outage without entering an emergency state. It may also be required that no generator 

operates under reactive power limit after a contingency. The impact of a contingency is 

assessed by calculating the post-contingency long-term network stability. Multiple 

contingencies may also be taken into account to determine security criteria, especially 

when they are caused by a credible event [17]. 

It is necessary to know how far the system can deviate from the present operating 

condition and continue to be safe. The distance to that limit (in terms of MW or MVA) is 

called Security Margin.  Contingencies generally decrease or even eliminate the security 

margin. Direct P-V curve computation can be used to determine post-contingency 

margins. Detailed analysis needs to be carried out to identify critical contingencies [113]. 

In other words, if a contingency is characterized by a maximum loading smaller than the 

specified margin (typically set by the network operator), that contingency is critical. 

Stability limits are generally determined in terms of active power and are computed off-

line based on N-1 contingency criterion [41]. 

The following findings on the IEEE 118-bus network single contingency analysis were 

revealed in [114]. Two-line outages caused voltage collapse out of the of the 177 possible 

line outages, due to the fact that they isolated a critical generator. The majority of these 

outages did not cause an important effect: 126 of them had less than 10 MW decrease in 

loading margins. Twenty-five of the worst cases caused no less than 50 MW margin 

decrease, and fifteen of them involved lines terminating at transformer buses. Four cases 

out of the 25 could be attributed to generator VAR limits. Multiple contingencies were 

estimated by summing up two single line contingencies. The average margin reduction in 

twenty-one double line outages was 63 MW. Eleven of those 21 outages caused loading 

margin reductions larger than 50 MW. 
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The following contingency cases were also simulated, timed and recorded in Table 5-

8 using the same conditions as the above example in Table 5-7.  

- IEEE 14-bus test system: 1) Outage of line between bus 7 and bus 9. 2) Outage 

of transformer between bus 5 and bus 6. 

- IEEE 30-bus test system: 1) Outage of line between bus 4 and bus 6. 2) Outage 

of transformer between bus 4 and bus 12. 

- IEEE 118-bus test system: 1) Outage of lines between buses 37-49, 41-42, and 

42-49. 2) Outage of generator at bus 12. 

Table 5-8. Time performances using systems contingencies. 
The same three load flow algorithms and conditions were used as in Table 5-7. 

System Contingency 

D-P N-R CPF 

Time 
(sec) 

Iterations 
(Avg) 

Time 
(sec) 

Iterations 
(Avg) 

Time 
(sec) 

No. of 
Steps 

14-bus 
Line 7-9 0.050 5.4 0.021 5.1 0.042 17 

Transformer 5-6 0.054 5.3 0.02 4.6 0.043 15 

30-bus 
Line 4-6 0.054 5.2 0.04 5.2 0.048 15 

Transformer 4-12 0.054 5.3 0.046 5.3 0.049 14 

118-bus 

Lines 37-40, 41-
42, 42-49 

0.152 5.0 0.224 5.4 0.083 15 

Generator G12 0.158 5.0 0.229 5.4 0.083 15 
 

Sixteen voltage points were sampled to approximate the HV branch rational function 

of D-P, and sixteen voltage points were obtained spanning the boundary limit for the buses 

under study for N-R. The number of steps achieved in MATPOWER CPF were obtained 

using target values much greater than the active power boundary limit. However, precise 

VSLs were calculated by the load flow algorithm. Contingency examples were taken from 

[115, 116]. 

5.2.3. Critical bus determination 

A method to determine the critical bus (also referred to as the weakest bus) of a 

network is presented in this section through the features of the Taylor series bus-voltage 

representation (4.13) and (4.17), and the rational function (3.9) of the HV solution branch 

given by the DFT-Padé method. The approach is tested using the IEEE-14 and 30-bus 

systems and the results are presented in Tables 5-9 to 5-12. 
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To ensure the network’s stability, it is required to identify critical network components. 

There are diverse methods presented by different authors [35] to that end. Voltage 

collapse starts at the weakest bus and extends to the other weak buses of the grid. For 

this reason, the critical (or weakest) bus is the most relevant determination in voltage 

collapse analysis [107]. The objective of the voltage security assessment is to find the 

weakest bus for the operating point under study [108, 117]. As a consequence, network 

stability can then be enhanced, taking appropriate action [118]. 

Transmission lines are characterised by their inductive and capacitive reactances. 

When the line is lightly loaded capacitive reactance is prevalent, injecting reactive power 

to the network and increasing the line voltage. Conversely, when the transmission line is 

heavily loaded, it takes reactive power from the network and its voltage drops [21]. There 

are two well-known methods, among others, that make use of this power transmission 

characteristic to point out the weakest bus of the grid, namely: modal analysis [41, 119], 

and the V-Q curve technique [107, 120]. 

It is convenient to use the P-V curve to identify the weakest bus given by the closest 

proximity of the working point to the “knee” of the curve [121], or branching point, see 

Figure 4-1. It can also be said that the weakest bus is the one that will have the greatest 

∆𝑉/∆𝑃 gradient according to [35]. The P-V curve is used in operation planning to 

determine weak buses [107]. 

The radius of convergence of the power series bus-voltage representation (4-1) is a 

parameter that closely reflects the voltage strength, as used by D-P. This became 

apparent through the countless network tests using the method, and it is also intuitively 

coherent. Tables 5-9 and 5-10 show the PQ buses for the IEEE 14 and 30-bus systems, 

sorted according to their criticality.  
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Table 5-9. 14-bus network - PQ 

buses ordered by criticality 

IEEE 14-BUS TEST SYSTEM 

Bus No Radius of 
Inner 

Singularity 

(PQ) Convergence Right 

14 1.620 1.366 

10 1.970 1.749 

12 1.980 1.899 

11 2.020 1.941 

9 2.920 2.665 

13 2.990 2.840 

7 3.940 3.792 

5 7.010 6.480 

4 7.850 8.036 

 

Table 5-10. 30-bus network - PQ 

buses ordered by criticality. 

IEEE 30-BUS TEST SYSTEM 

Bus No Radius of 
Inner 

Singularity 

(PQ) Convergence Right 

26 0.350 0.304 

29 0.460 0.452 

30 0.620 0.490 

25 0.870 0.798 

23 1.090 1.045 

24 1.120 1.017 

18 1.280 1.199 

19 1.340 1.180 

20 1.340 1.256 

27 1.340 1.288 

14 1.520 1.361 

16 1.540 1.485 

17 1.750 1.608 

21 1.890 1.709 

15 2.180 2.003 

22 2.490 2.443 

12 2.840 2.672 

10 2.950 2.807 

9 4.120 4.091 

3 4.600 4.410 

7 4.820 4.443 

28 5.570 5.668 

4 6.980 6.906 

6 7.520 7.949 

Table 5-11. Weakest buses in14-bus 

system. 

Comparison with CPF VSLs. 

IEEE 14-BUS TEST SYSTEM 

Bus 

No 
Radius of 

Inner 

Singularity 
CPF 

(PQ) Convergence Right [pu] 

14 1.620 1.366 1.356 

10 1.970 1.749 1.670 

12 1.980 1.899 1.830 

11 2.020 1.941 1.870 

 

Table 5-12. Weakest buses in 30-bus 

system. 

Comparison with CPF VSLs. 

IEEE 30-BUS TEST SYSTEM 

Bus 

No 
Radius of 

Inner  

Singularity 
CPF 

(PQ) Convergence Right [pu] 

26 0.350 0.304 0.294 

29 0.460 0.452 0.418 

30 0.620 0.490 0.482 

25 0.870 0.798 0.756 

23 1.090 1.045 1.028 

24 1.120 1.017 1.001 

 

Figure 5-14. Radius of Convergence. 

Approximation to the radius of convergence 

through the Taylor series coefficients, where 

n is the coefficient number applied to 

subsequent coefficients. 
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Figure 5-15. Poles and zeros of the Padé rational function. 

Inner singularities, red dots, approach the voltage stability limit for bus 26. 

 They are approximate values to the maximum loadability of each bus for the systems’ 

base loading, that is, while the bus in question is stressed, the rest remain at the base 

load condition. The inner singularities (those closest to the origin in the complex plane) 

also reflect the same hierarchy in terms of bus weakness. These singularities are given by 

the Padé approximants (PA) derived from the Taylor power series, as explained in Section 

3.2 and equations (3.2) and (3.9). 

Tables 5-10 and 5-11 show the comparison between the weakest buses and the active 

power stability limit obtained through continuation power flow [84]. All figures correspond 

to the level of active power per unit. Figures 5-14 and 5-15 show the radius of 

convergence of the Taylor coefficients’ ratio test [111] and the right inner singularity (the 

red dot) for the weakest bus in the IEEE 30-bus test case. 

Apart from the discrepancy in the sorting order between buses 23 and 24 due to 

possible numerical problems when generating the Taylor series but straightened out with 

the rational approximation, the HV branch of the DFT-Padé conveys this valuable 

additional information about the bus under study. 

5.3. Comparison with the holomorphic embedding load-flow 

method (HELM) 

A HELM formulation for scaling loads at buses by different amounts, as described in 

[13], is used for comparison with the proposed DFT-Padé method. This HELM formulation 

allows the researcher to scale one bus at a time, while the rest of the system remains at 
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the base load. It is worth noting that loads can also be scaled uniformly [13], the 

formulation will do so when individual buses are scaled, and behaves as if the whole 

system were scaled simultaneously, i.e. the rational function, representing the voltage for 

the bus in question, can achieve this remarkable feat. Further information and discussion 

about HELM can also be found in [87, 88]. 

5.3.1. IEEE 14-bus system  

The basis for obtaining the DFT-Padé HV branch of bus No. 14, was to sample the 

complex active power in a radius r = 1.2, with a tolerance of 10−5, to obtain 32 DFT 

coefficients. The bus active load and variable P range are the same as in the previous 

section. Forty-three coefficients were calculated for the HELM Taylor series to determine 

its Padé approximation [104]. The limits of the curves have been set based on the 

intersection of the HV and LV curves using DFT-Padé, as explained in the Section 5.1.1 

above. Figure 5-16 shows the HELM curve, red dots, and the DFT-Padé curve, using the 

green trace. 

 

Figure 5-16. Bus 14: HELM and DFT-Padé methods, HV branch 

comparison. 

Both find the same solution to the base-load voltage 𝑉(𝑃𝑐). 

Both curves overlap for most of the active power range where the voltages are 

calculated; and both voltage values, 𝑉(𝑃𝑐), at the actual loading point, 𝑃𝑐, also match that 

of the N-R’s. Table 5-12 shows the difference between the singularities that approximate 

the voltage stability limits by both methods, DFT-Padé and HELM. 
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Table 5-13. Bus 14 HELM and DFT-Padé voltage stability limits comparison. 

Active power in [pu] 

Load flow algorithm 
Inner Singularities 

Pl (left) Pr (right) 

HELM: -7.343 1.2182 

DFT-Padé: -7.476 1.3657 
 

The difference between both singularities on the RHS, positive active power, 

is 0.1475 [pu], where Pl and Pr are the left and right active power VSLs. There are no 

voltages associated with these P values, as they are zeros of the rational function ∴  𝑉 =

 0. While the base-line load is 𝑃𝑐  =  0.149 𝑝𝑢, the VSL is ~ 1.4 𝑝𝑢. This base load could 

still increase ~ 9 times before reaching the bus VSL. 

5.3.2. IEEE 118-bus system . 

The comparison of both methods on bus 118 can be seen in Figure 5-17. In this case, 

the DFT-Padé HV branch was obtained with a radius r = 3 and a coefficients tolerance of 

10−08. 15 coefficients were needed to reach the desired tolerance. As in previous case, 

the HELM Padé rational function was built from a Taylor expansion of 43 coefficients 

[104].  

Table 5-13 shows the difference between the singularities that approximate the voltage 

stability limits by both methods. The difference at the VSL (positive load) is 8.8%. 

It can be seen that there is a large margin between the actual load, 𝑃𝑐  =  0.33 𝑝𝑢, and 

VSL ~ 7 𝑝𝑢 of the active power for bus 118. This bus is far from being stressed at the 

present system loading conditions. 

Table 5-14. Bus 118 HELM and DFT-Padé voltage stability limits comparison. 

Active power in [pu] 

Load flow solution 
Inner Singularities 

Pl (left) Pr (right) 

HELM: -28.01 6.5887 

DFT-Padé: -35.03 7.2249 
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Figure 5-17. Bus 118: HELM and DFT-Padé methods HV branch comparison. 

Both find the same solution to the base-load voltage 𝑉(𝑃𝑐). 

5.4. Flexible AC transmission system (FACTS) and high voltage 

direct current transmission (HVDC) 

An introduction to FACTS and HVDC technologies follows to highlight their relevance 

to power system transmission. This will help frame their load flow algorithm characteristics 

and how they relate to DFT-Padé requirements. 

The motivation is to find out how the FACTS and HVDC-link Jacobians will work with 

the split active and reactive powers’ derivatives demanded by the D-P N-R based method. 

The derivatives’ decoupled power is the definition of the Jacobian matrix, as can be seen 

from the power system design textbooks [20, 21]. 

FACTS and HDC have come to resolve serious power transmission issues stemming 

from low infrastructure investment, increasing demand, environmental concerns in the 

United States (US) and many parts of the world [122, 123]. Power systems have become 

highly integrated to keep track of the increasing energy consumption. The need to lower 

costs and environmental concerns is a worldwide phenomenon. These constraints have 

given rise to the more efficient direct current (DC) power transmission, aided by new 

developments in power electronics, instead of investing in conventional AC transmission 

lines [124]. 
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FACTS technologies are based in highly engineered power semiconductor converters 

and advanced control software. Among other applications, they are used to increase 

transmission capacity, enhance voltage stability, stabilise voltages at transmission lines, 

and reduce reactive power consumption, etc. FACTS can take many forms, namely, static 

var compensators (SVC), thyristor-controlled series capacitors (TCSC), and voltage 

source converter (VSC)-based systems. VSC systems include static reactive 

compensators (STATCOMs), static series synchronous compensators (SSSCs), unified 

power controllers (UPFCs), and back-to-back (BTB) converters. SVCs and STATCOMs 

are shunt connected devices that provide reactive power compensation for voltage 

control, power quality improvements and system stability. TCSCs and SSSCs deliver 

control of real power flows. UPFCs are a combination of SSSC and STATCOM designs 

that allow for increased active power flow and voltage stability controls from the same 

device. BTBs interconnect two systems to improve inter-tie reliability and control [122, 

123]. 

HVDC has certain advantages over long distance transmission, as well as submarine 

cable crossing. The core HVDC technologies are current-sourced converters (CSC) and 

voltage-sourced converters (VSC). CSC are based on conventional thyristors and require 

a synchronous voltage source in order to operate. VCSs are based in self-commutated 

devices and dominated by IGBTs. VSC technology is developing fast and overcoming 

problems associated with CSCs. CSC-HVDCs have reached distances of 2400 km and 

transmission capacities of 8000 MW [123, 125]. 

When compared with conventional solutions in US transmission infrastructure 

upgrades, FACTS could become 30% less expensive, as estimated in [122]. Also, similar 

savings can be expected for long distance HVDC lines, where 500 km is a typical “break 

even” value [125]. Another study found the distance to be over 600 km [126]. It was 

found in [123] that the “break-even” distance for overhead lines is 500 km, or 40 km for 

underground cables. These comparisons are indicative guidelines, since each installation 

would have its own specific requirements. 

An SVC advanced model is presented in [127], where the equations to determine the 

susceptance that maintains the specified voltage level in the N-R iteration process are 
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purely reactive. The second partial derivative matrix to determine the optimal power flow 

shows separate active and reactive power derivatives. 

There are nine control modes to the STATCOM model presented in [128]. The load 

flow solution uses an extended Jacobian with two additional rows and columns for each 

STATCOM. The first additional row corresponds to the active power constraint at the 

STATCOM bus, and the second one to the variable constraints of each one of the control 

modes: voltage magnitudes and voltage angles. The derivatives of active and reactive 

powers are shown separately in the extended Jacobian (eq. 2-24) of [128]. 

The SSSC is characterised by four control modes in [128]: namely, active and reactive 

powers’ flow through the line (branch) in question, with voltages at either bus, and 

transmission line impedance. The extended Jacobian has the same structure as the 

STATCOM: two additional lines and columns for each SSSC line. Likewise, the active and 

reactive power derivatives are shown separately. 

SVC and TCSC are represented by STATCOM and SSSC models respectively in [128]. 

UPFC can control bus voltage as well as line power flow simultaneously. Direct voltage 

injection and shifting of phase angle and impedance control are also used in practice. 

Power flow equations follow similar strategies as STATCOMs and SSSCs. They represent 

thirteen control modes and two degrees of freedom, involving two variables of the bus 

under study and two variables of the UPFC controls. Two variables of each of the two 

interconnected buses are also possible. The Jacobian includes the information regarding 

variables for each control mode, plus the conventional active and reactive power 

derivatives [128]. Other UPFC variants follow the same Jacobian arrangement, where 

active and reactive power derivatives are shown separately.  

The load flow in mixed HVAC and HVDC systems is presented in [123]. The power 

mismatch equations contain the expression of the active and reactive power with the 

rectifier and inverter components. The resulting Jacobian is expressed as a function of 

split active and reactive power derivatives. 

DFT-Padé forms the power series voltage representation using voltage values obtained 

from the N-R method. The Jacobian modifications discussed for the different FACTS 

arrangements and HVDC transmission have shown formats compatible with DFT-Padé 
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method requirements, therefore it is straightforward to conclude that this method will be 

able to obtain the voltage values to construct the bus-voltage representations. It is worth 

mentioning that the software implantation of these Jacobians should follow the formulation 

presented; that is, the active and reactive powers should be calculated separately. In 

general, this is true for any voltage regulation strategy and should be considered under 

those merits to ascertain its D-P compatibility. 

FACTS were recommended by Electrical Power Research Institute (EPRI) of U.S in 

1998 to maximise power networks functionality when they are placed in suitable locations. 

Many methods have been devised to find the locations that optimises the network 

loadability. Modal analysis near the point of collapse, heuristic methods e.g., particle 

swarm optimization and genetic algorithms, sensitivity-based approaches, and mixed 

integer dynamic optimization are extensively employed. FACTS can improve existing 

networks performance by re-dispatching power flows to avoid exceeding thermal limits 

while satisfying contractual obligations [129, 130]. 

There has been a surge of interest in HVDC transmission lines since the middle of the 

last century. Lately, they have gained momentum by the development of voltage 

converters and the need to connect offshore wind turbines in Europe. The interconnection 

of HVDC lines with existing AC grids has aroused interest in the research and engineering 

communities. Some sources argue that HVDC technologies are preferable to the 

conventional AC power transmission [131]. 

A tool for optimal placement of multiple FACTS devices that maximises networks 

loadability using genetic algorithm is presented in [130]. The software that applies the 

algorithm, termed FACTS Placement Toolbox, requires a grid (network) definition, 

settings for the genetic algorithm, and the number and type of FACTS to be allocated to 

the grid. The algorithm then identifies places for the static loadability of the power system 

will to maximised. It does so by analysing transmission line loading and bus voltage 

violations in a considerable number of possible network stress levels. It makes use of 

continuation power flow to solve the optimisation problem and standard power flow to 

enforce security (power and voltage) constrains. As an application example on the IEEE 

57-bus test case, the algorithm allocates one SVC, two TCSC, one UPFC and one 

thyristor-controlled phase shifting transformer (TCPST) to maintain acceptable voltage 
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levels when maximum loading factors are applied to the network. When the FACTS were 

not used, some of the buses had unacceptable low voltages for the same loading 

conditions. 

An analysis of three different FACTS and HVDC when applied to the IEEE 14-bus and 

IEEE 30-bus system and a comparison of resulting voltage stability boundaries are carried 

out in [129]. Static var compensator (SVC), static compensator (STATCOM) and 

thyristor-controlled series capacitor (TCSC) are the three FACTS. The HVDC comprises 

two voltage source converters (VSC), one acting as rectifier and the other as inverter, 

and a DC line, with the same resistance as the original line, between the two (VSC). The 

weakest buses of both networks are the locations for the SVC and STATCOM. They are 

determined using three different indices: modal analysis, VQ-sensitivity and minimum 

distance to voltage collapse. Voltage stability boundaries for the three cases: base load, 

SVC and STATCOM are obtained for each network. The voltage stability boundary 

improved 18% with the SVC and 20% with the  STATCOM, both connected as shunt 

devices to bus 14 of the IEEE 14-bus system. While for bus 30 of the IEEE 30-bus system, 

the improvements over the system without FACTS were 51% and 56% respectively. 

The locations of the  series devices, TCSC and HVDC, were determined using four 

different indices to find the weakest line connected to the weakest bus for both networks. 

They were line stability index (Lmn), fast voltage stability index (FSVI), line stability factor 

(𝐿𝑄𝑃), and line collapse proximity index (LCPI). The TCSC and the HVDC improved the 

voltage stability boundary of the bus 14 by 26% and 79% respectively, while the 

improvements in the bus 30 voltage stability boundary were 43% and 134% respectively. 

Noting that TCSC provided 50% of line compensation for both networks. The impact of 

the HVDC is unrivalled with respect to the FACTS performances. 

5.5. Conclusions 

The DFT-Padé method workings were shown in detail with the 14-bus system. Two key 

aspects of the algorithm are the radius of convergence of the power series (or truncated 

polynomial) and the tolerance with which the bus under study is to be analysed. There is 

no a priori way to know what those two values are, so the default is to use a unity radius 

and a rather large tolerance between consecutive series coefficients: 10−5. This will return 
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the minimum required number of coefficients to characterise the solution branch of the 

PQ bus. However, if the bus in question is lightly loaded in a context of low system 

demand, then those minimum requirements may have to be adjusted to produce the 

correct results, and a fast converging polynomial with few terms will result. 

Little difference is found by increasing the radius and decreasing the tolerance to obtain 

the bus voltage and VSLs in the 2-bus system. However, the number of coefficients is 

halved when using the default values, which implies a reduction in the N-R solutions by 

the same amount. 

Bus 30 of the 30-bus system shows the signs of a weak bus, characterized by its small 

radius of convergence, 0.6[𝑝𝑢], where the Fourier Series coefficients are convergent, the 

Taylor coefficients are not, but the PA can characterise the bus-voltage between the 

stability limits. 

D-P method’s improvement over conventional N-R is shown in the 7-bus test, where 

plain N-R fails to converge for values close to the stability limit. In this case, DFT-Padé can 

still find the solution by working with a smaller generator active power 𝑃6, avoiding N-R 

non-convergence, and taking advantage of the maximal analytic continuation provided by 

the Padé approximant, proving the robust nature of the method. 

D-P’s execution time is shown to be comparable to that of plain N-R when both systems 

resolve the same quantity of active power loads within the allowable range. This 

comparison is not so direct with CPF, since it adjusts the number of steps to reach the 

stability limit. This comparison is a guide to indicate the D-P processing speed for different 

networks. 

PQ buses were classified according to their smallest load range, not the safe load 

margin to the VSL. Network structural weakness conditions were key considerations for 

the given loading level. Tests were done at constant power factors. The weakest buses 

were confirmed using CPF methods for the IEEE 14-bus and IEEE 30 bus test systems. 

CPF and HELM comparisons with D-P showed a near exact match for all the networks 

tested. 



97 

 

Lastly, it was shown through the analysis of FACTS equipment and HVDC links that D-

P can resolve any network that can be processed through an N-R based algorithm, as 

long as the Jacobian active and reactive power derivatives are separate. 

It was also shown that the correct location of FACTS equipment and HVDC links is 

critical to improve the voltage collapse limits of power networks. Some of the location 

methods were presented. 



98 

 

Chapter 6: Conclusion and future work 

This thesis presented an augmentation to the conventional N-R algorithm, based on 

the superior convergence properties of harmonic interpolations in the complex domain 

and Robust Padé approximations. As a result, PQ Buses are characterised by their HV 

values in the whole stable load range. The thesis can be summarised as follows. 

The introductory discussion in the first chapter of this thesis aims to frame the current 

condition of the power grid, and its likelihood to function close to the stability limit is one 

of its salient aspects. Regulatory policies, together with market conditions, technological 

disruptions, and investment trends, play in the medium to long term timeframe, and they 

result in stretching existing infrastructures to their maximum capacity. 

The literature review in the second chapter has highlighted the importance of a reliable 

power-flow methodology that gives planners and operators dependable tools for best 

performance when applied to demanding processes. For about five decades, innumerable 

contributions from researchers and practitioners all over the world have resulted in not 

only framing the problems of conventional power-flow methods, but also giving more 

accurate responses for improved algorithm performances. 

The third chapter exposes a methodology to make Padé approximants more reliable. 

This fits in the context of non-iterative load flow techniques that represent bus-voltages 

through Taylor series. They are also an important step in the DFT-Padé method that allow 

for the easy identification of voltage stability limit approximations.  

The fourth chapter explores key mathematical formulations that are the bases of the 

proposed method: the convergence properties of functions resulting from interpolations 

around the roots of unity, the benefits of the trapezoidal rule in calculating the integrals, 

as well as the solid convergence properties of harmonic polynomials. This highlights the 

numerical applicability and validity of the mathematical instruments used. Finally, the 

algorithm is discussed and put together. 
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The fifth chapter shows the workings of the method, step by step, highlighting the 

salient aspects of its main parameters: Taylor series radius of convergence and 

coefficients’ tolerance. The DFT-Padé approximants need to be calculated at operating 

points of the power system where the N-R method will converge. It will require as many 

points of the complex active power to be applied to N-R as coefficients of the Taylor series 

are needed, and then to compute the Padé approximants. Complex active power is a 

mathematical artifice, as shown in equations (4.14) and (4.15) and explained in 

subsection 4.3.1. These rational functions are used to extrapolate the bus voltages at any 

point within the allowable active power range for the bus under study. The voltage stability 

limits have been compared with HELM, N-R and Continuation Power Flow. The D-P’s 

accuracy was tested and shown to be a reliable algorithm. 

A summary of the load flow methods discussed in previous sections can be 

summarised in the following way: 

- Newton-Raphson or some of its variations are widely used in industry today. It 

presents many advantages, it converges quickly and accurately in most cases as 

has been discussed in Chapter II. However, the complexity of interconnected 

power systems and their operation close to their capacity limit has brought to light 

inherent problems of N-R. the applicability, namely: initial guess far from the actual 

operating point, convergence problems close to the stability limit where it may 

converge to the wrong value, or it may diverge. The number of iterations increases 

as the systems approaches the stability limit increasing the solution time. 

- HELM is a load flow method that has come to public knowledge in 2012. Many 

research contributions have appeared since then. It is a method based in complex 

analysis, it arrives at the solution by progressive convolution (recursive 

calculations) instead of iterations. It is dependent on the embedding method and 

the solution germ. It overcomes most of the iterative methods shortcomings, it is 

deterministic. The number of terms required for the power series voltage 

representation increases as the grid approaches its stability limit. It uses power 

binary search to determine the stability limit, which is computationally expensive, 

and it’s been reported to lack accuracy in its determination. However, the problem 

seems to have been overcome in [132]. There is only one report of time 

comparison [133] known to the authors where it was found to be slower than N-R. 
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However, the HELM seminal paper states that 3,000 electrical nodes were solved 

within 10 to 20 milliseconds according to the loading using an Intel Xeon 5500 

processor. One important HELM advantage is that it produces a rational function 

to represent the bus voltage, so each bus behaviour is fully characterised within 

its voltage stability limits, and the inner singularities of these rational functions are 

a rather accurate approximation to these stability limits. 

- Continuation Power Flow (CPF) is an extension of N-R developed in the early 

1990s. The technique used in this approach overcomes N-R problems [134]. It 

arrives to the voltage stability limit through solving N-R many times, this means that 

the P-V curve is represented by as many points as the required N-R solutions. The 

most relevant application of CPF is the contingency analysis [41]. It is commonly 

used as a benchmark. Possibly the most reliable technique for this purpose. Time 

comparisons with plain N-R and D-P methods were presented in Tables 5-7 and 

5-8. 

- DFT-Padé requires as many N-R solutions as terms of the voltage power series 

which normally varies between 16 and up to 32. Its final product, as in the HELM 

case, is a rational function of the Padé type that returns the bus voltage value within 

the allowable load range for the existing power network loading. It is suitable as a 

planning and simulation tool for PQ buses as it is the case in its present state of 

development. Its advantage is that it can be applied to N-R with minor software 

modifications and can deliver similar, if not the same results, as HELM. The stability 

limits can be obtained by the inner singularities of the rational function, or a more 

precise one given be the intersections of the HV and LV curves. Detailed 

comparisons with N-R, HELM and CPF can be seen in subsections 5.2 

“Improvements over the plain N-R method and comparison with the continuation 

power flow approach”, and 5.3 “Comparison with the holomorphic embedding 

load-flow method (HELM)”.  

The main advantage of the D-P method is that it can deliver similar results to a non-

iterative method like HELM, that is, it will converge at all points within the load bus stability 

limits; and  only minor additions to existing N-R load flow software will suffice to run D-P. 

There is a minor advantage with respect to continuation power flow (CPF) which is the 

rational function that represents the load bus voltage will extrapolate the bus voltage for 
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any load within the feasibility range, while the high voltage solution obtained from CPF is 

a fixed set of P-V points. 

It is the author’s opinion that HELM is the algorithm of choice when weighing 

performance advantages, and disadvantages, in terms of accuracy and speed. Its 

disadvantage, otherwise, is that it is a relatively new development and not a mainstream 

application. However, in years to come, it may become widely used given its present 

amount of research interest. 

Future work will include escalating the analysis of the whole network instead of just the 

bus under study, finalising the voltage angle curve for the allowable power range, and 

ensuring the LV solution branch can be determined in all cases. Also, D-P’s possible 

adaptation for real time applications will be considered, as well as its application for large 

networks with voltage regulation and HVDC links.  
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