The Study of Trace Cache Memory on

Superscalar DLX Processor

Apisake Hongwitayakorn

Thesis submitted for the degree of

Master of EngineeringScience

Department of Electrical and Electronic Engineering
Adelaide University
South Australia
5005

June, 2003

Contents

List of Figures
List of Tables
Abstract

Acknowledgements

1 Introduction
1.1 OVEIVIEW +ovenenentirenenseseneieussaeueseanssasssehsassastasstansassssansenin
1.2 Superscalar ATChItECIUIEcovuvniviininriinemiinrern s
1.3 Trace Cache MEMOTIY ...c.ceivieirnmmmeniomeiisimomanmesssirnstnssnsees
1.4 Contribution of the ThESISeviveeriruireeemmeiiiiiiiireiiaesnaen
1.5 Outline of the THESISveueevreeraurmreriiemnsaiesrisrierneasas et

2 Background
D1 OVEIVIEW «nvenrnnenrenenssensansassissiessesssssssanssnsssansnmensrnenssacantsee
2.2 Trace Cache Architecturec.ooviiveeiiiimmiiiiiimiiiaenne
221 The trace CACKE . .ouvvvrinrireeieaneiataia e easiaiasa s anaesaisiann
2.2.2 The fill UNIE +vvereiineerneeseeeeeasirrreeranesr e erssiaseaisaaneeeae
2.2.3 The branch predictorocoeviiiiiiiiiiimiii .
2.2.4 The instruction cachecc.cviiiiiiiaiiiiiiiiiiiiiia e
2.3 Related WOTKS wuvenertirinierenrnerneaseitaasenensassatssimeiaessisassassneee
2.3.1 The trace cache NIStOrYcvvvrverrerineniiiimimaniieeas
2.3.2 Other high bandwidth fetch mechanismocoooiviiiiiin

D4 CONCIUSION +envenrentensieeseessnseeseasaaiaeaennsasasasassatseitastnssnnsaaasss

vii

viii

xi

il

3 Experimental Processor Model
3.1 OVEIVIEW .. vinsesesiiissssesan i ivsssasisos s ssummmneymnsa eyt e oo e s uses
3.2 DLX Architecture SUMIMATYcuciverseismmeansonimmisiienmstsnsmesesasie
3.2.1 DLX FEQISTEIS 1evvururunirimnerenennmeersriiiemeimtssmuiinmmntisninane
3.2.2 DLX data fyPES «.vvveurueuruimmsrnemennnarsrisnssenesitasanasaeasaes
3.2.3 DLX addressing modesc.oeveiveruicisnmmmiminniiniiis
3.2.4 DLX inStruCtion tyPES «.vuvvvvereninmnmmisiiniiaieiisinatanassen
3.3 The Superscalar DLX Modelooviiiiiiiie
3.4 The Fetch UNItvivvierrsiirereerneernsamnemnreiiinssansssstesanseaassinninn

3.5 COnClUSION cocisiessansmseressanss passnyssmms moass pawsnss 5808 ¢350m0s i aish

4 Experimental Setup

4.1 Trace Cache in the Superscalar DLX ProCcessorc.oceoeivseieenenn
4.2 Trace Cache Line S1Zeovvvvrriirmiiiimiineiiierimiasiiaiais e
4.3 Trace Cache Model COMPONENLSo.overineneereieiiniiminmanemneneniaian
4.3.1 Instruction gathering unitc.cooiiiiiiiiii
432 FIll-bUFer oot e
4.3.2.1 Fill-buffer configurationooociiiiiiiiiiin

4.3.2.2 Fill-logic and fill-policy oeovieniiiiiiiiiiin

4.3.3 Trace cache MEMOTYcuvrnirinineinerenrsenraasiariattanasaaiaenss
4.33.1 Trace cache memory Structureooovvimmiiiiennenn

4.33.2 Buffer-cache transfer ..o,

4.3.4 Trace cache hit IoZIC ..c.ovvvviniiiiii

4.4 Benchmarking PrOgramscoeovieeminmmimmnsiinnannnnoissminn:
4.5 Simulation Testbench Configurationccooviiiiiiiiiiieieee
4.6 Measuring the Trace Cachec.coooiiiiiiii,

4.7 CONCIUSION .+ rtnrre ottt ensaeeeaseasasesaaseaaasisistaasssesesnsssssainseeiineasas

5 Results
5.1 OVEIVIEW «nvetee ettt e et e et et et i e ias s e s e s s tis s sna s s s tes
5.2 Hits and Misses of the Trace Cachecoiiiiiiiiiiiiiiiiiim.
5.3 Percentage of Trace Cache Hits and MiSSescoooiiieiiiiiniaen.
5.3.1 Trace cache NItSoeovivrrineeneiiiiiiieeie it sneaa e e eaaaaas

5.3.2 Trace CACHE IMISSES .. uvtivvrstreereannnnassratneaeassssearersrotoesesases

18
18
18
19
19
19
20
20
22
25

iii

5.4 Trace Cache SPace USAZEovvvrriuenenremnueienerennanriririiiaaneiienanns
54.1 Results of TC 4and TC 8 ..ivvvvriririnniniieiinnianncieitintiieninens
5.4.2 ANAlSISccciiesssesiiiriieisiiansosaoss sisaenivnesissa e sossnrensearess

5.5 CONCIUSION .uunn'n'sememaness sonsss b sbiaasane Vo vensns s ieiiaie e s vasvbase s

Conclusion

6.1 SUIMMALY .0 qveinsosossss iiueaismss 5o i sous s s s s e si st woies ow shn o
6.2 CONCIUSIONS ...ovviverronmsssnnssorsossasssvssssssssssnssssessossomvsaionssissvions
6.3 Further Worko.oiiiiiiiiiiiiieieiieiitie et sarn s esas e ranean

Companion CD-ROM Contents

A.1 DLX SOUICECOAE . .uvvrrnnearennersiiiansiscnasiasrneanssassssssneanssansassensne
A2 TeSt PIOGIAIMNS .ouvuiuiiiiiiiiinininiseiaiasiies ittt s s eesans
A.3 Simulation 10g fIlesooiviiiniriiiiiiiiiiii e

VHDL Code of Trace Cache

B.1 DIX.VIA ...cooonennon e sonmsnagsssnses sieribaed i aassss Mivmmemassaisae s suemmimes
B.2 DIxPackage.vhidcccoiiiiiimiiniiiiiieiiie
B.3 Environment.VAdovoeuiiiieiieiiiiiiiiisiiiiiirnne e

Excerpts from log files of DCT

Runtime Startup Code and Perl Script Listings

65
65
65
66

68

68

69

69

71

87
88

89

90

iv

List of Figures

1.1

2.1
2.2
23
24
25
2.6
2.7

|
32
33
34
3.5
3.6

4.1
4.2

43
4.4
4.5
4.6

Organization of superscalar architecture.oooourmminmii. 2
Trace CACHE OVEIVIEW. ..e.uvirrenuiisseresinneennseasssesesssastasnesnsesiasineens 6
Trace cache architecture diagram.ooeeverieieiirirrnnaneniisieiiein. 7
The trace cache fetch mechaniSm.coireviriiiiiiiiiiiiii 11
A 100p CONtAINS 3 SEGMENES. ..uueeivniirissrinsrnsrrrsr sttt 13
The trace cache fetch mechaniSm.ccooivieeiiiiiiiniinainia e 13
The Branch Address Cache.c.oeeiniiiiiiiimiiiiiiiii e 15
Collapsing BUuffer.oooovvivrimiiiii e 16
Big Endian byte ordering.cooovrirriienmmiinin s 19
DLX instruction fOIMAt.vveviereaeisiineaiisessesiiariiseaiiseiisisee 20
Superscalar DLX SIUCIUIE. ...evvuvmiessrrmneersisssrissinistnissssssssneees 21
INStruction caChe StIUCLUTE.veveveereeeenniinaaiserariertaa e ssensrssisss 23
Address-translation and cache-aCCesS.iivrriiriiiiiaiiuiiiiiuiiiiaieen, 24
Branch-target-buffer StruCture.ccooooiiiiriiiinneie 25
Trace cache placement in the superscalar DLX machine. imsssivess 28

Fill-Buffer structure composes of Trace Information and

TIACE CONEENE. .+ e ennreent ittt enneearaaeeetne e annnrasee s eaaseaaiaaaaasstanasans 30
Anatomy of Trace Information and Trace Content.cooovemimrnnneres 30
Trace cache MEMOTY STIUCTUIE.iuvuinvneneieinninrn i 33
Trace information portion of the trace cache memory.ooooeveeieen 34

Trace cache line selector is extracted starting from bit 3

Of the address WOTd. «....veeiirt ittt e e e eaa st saes 35

5.1a
5.1b
5.1c
5.1d
5.1e
5.1f
5.1g
5.1h
5.2

5.3

5.4
5.5
5.6
5.7
5.8
59
5.10

Hits and misses of the trace cache and the instruction cache on bs-a
Hits and misses of the trace cache and the instruction cache on bs-r
Hits and misses of the trace cache and the instruction cache on bs-d
Hits and misses of the trace cache and the instruction cache on pn-20
Hits and misses of the trace cache and the instruction cache on pn-50
Hits and misses of the trace cache and the instruction cache on pn-/ 00
Hits and misses of the trace cache and the instruction cache on Permute
Hits and misses of the trace cache and the instruction cache on DCT
Comparison between TC hit and Compulsory Miss and

Conflict MisS OF DCT ovuvtireineeneniieneiasiseinensaiiiaeesaeatansseansaan
Hit and miss comparison between TC_4 and TC_8 at the same cache

capacity of

() PEFMULE oevniensasan e esessssstea s s s st st bi bbbt
(M) DCT oo
Percentage of total trace cache hit of 7C_4 and TC 8 ..cosmemsmmpossossassin
Percentage of TC First Tag Hit of TC_4 and T C 8cissssswiessnsivmnees
Percentage of TC Line Content Hit of TC_4 aNd TC 8 ..ovvnucrinninsnsnnsnses
Percentage of TC Compulsory Miss of TC_4 and TC 8 iwisvsansinsvassosnveosss
Percentage of TC Conflict Miss of TC_4and TC_§ ...coveiviimmnnnnnnne:
TC4 — Percentage of Cache Space USageoovviiiiiiiiiiiiriesnees
TCS8 — Percentage of Cache Space Usageoovvviiiiiiiinnineee

44
44
45
45
46
46
47
47

vi

List of Tables

5.1 Trace cache hits comparison table of bs-7 on TC 4.ccvviiernnnnnnn 49

5.2 The equivalent cache capacity of different trace cache

CONFIGUIAtIONS. ..euvivniiiniiiiireiintri st sa s 53

vii

Abstract

Instruction-level parallelism (ILP) is a technique to increase processor performance
through the simultaneous execution of multiple instructions. Superscalar processor
architectures implement ILP by providing multiple execution units to process
instructions in parallel. To achieve high performance, the execution units must be
occupied by a continuous series of instructions. Hence, the front-end of the processor
has to be expanded in order to supply a continuous stream of instructions for the
execution units. Although instruction-cache memory has been successfully used to
enhance the fetch mechanism of superscalar processors for years, it cannot perform
well enough for contemporary processors because of the nature of the statically
ordered instructions stored in the cache. Branch instructions are the major problem
because of the two possible directions of the branch outcome. They break up the
continuity of the static code into short run-length basic blocks. Therefore, a line of an
instruction cache can contain instructions that might be abandoned if they follow a
branch that will be taken.

Trace cache architecture has been developed to reduce the effect of the
problem. It has a sophisticated logic unit to capture dynamic instruction traces,
possibly including multiple basic blocks, and store them in a single line. Therefore, it
is most likely able to supply a larger segment of useful instructions in one hit.
Moreover, the trace cache was deliberately designed not to lengthen the processor
pipeline. It has been shown that trace cache can outperform instruction caches in
large-scale microprocessors, €.g. 16-instruction wide processors.

This research studies the effect of trace cache memory on smaller-scale
microprocessors like the superscalar DLX model that can process only 2 instructions
simultaneously. The study will investigate the performance of the experimental trace
cache compared to the existing instruction cache and also investigate the trade-offs in

varying trace cache size.

viil

|

To my parents,
my wife, my family, my incoming child,

and everyone who believes in me.

ix

This work contains no material which has been accepted for the award of any
other degree or diploma in any university or other tertiary institution and, to the best
of my knowledge and belief, contains no material previously published or written by
another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library,

being available for loan and photocopying.

Signed: _ Date: 19/06/2003
(ApiSake Hongwitayakorn)

Acknowledgements

First, T would like to thank Michael J. Liebelt, my supervisor, for his help and
support in everything. Without his excellent guidance and patience, my work
definitely cannot be achievable.

All staff in the department of Electrical and Electronic Engineering, I
appreciate their help for all these years since the first day I’ve been here. Thank you
for everything.

I also want to thank my colleagues at Silpakorn University and my students
out there for faith and belief that I can do this. In addition, a big thank to AusAID and
Thai Royal Government for the scholarship.

And, of course, I’d like to thank all my teachers who gave me good knowledge
from a very first day at school.

I have a very long list of friends and relatives who I want to thank. If I write it
down, it would dominate the thesis. So, I would like to thank everyone with all my
heart.

Last but definitely not least, I want to thank my mom, dad, sister, and brothers
for everything. Also, I want to thank my wife who always be there for me and, at the
time I wrote this, she is about to deliver the best gift I've ever got. It is the first child

of us. What a marvelous timing! So, I can celebrate two things at the same time.

X1

Introduction

Chapter 1

Introduction

1.1 Overview

The performance requirements of high performance computers are escalating
tremendously in order to respond to the complexity of modern software applications.
Much research has been conducted on techniques to improve the performance of
microprocessors as they are deployed in almost every level of modern computers. The
objective is to increase the number of instructions that can be executed per unit time.
Researchers in the field of semiconductor technology propose to increase processor
clock frequency, the reciprocal of time usage. Meanwhile, computer architects
attempt to modify processor microarchitecture and improve compiler technology in
order to execute multiple instructions simultaneously.

Instruction-level parallelism (ILP) is the dominant technique exploited in
modern processor microarchitecture. Parallelism of incoming static sequential
instructions is detected in order to execute multiple instructions concurrently. This
technique can be implemented using both software and hardware approaches
depending on the type of processor. VLIW (Very Long Instruction Word) and
superscalar are two types of ILP processors [23], [29]. The former aggressively uses
compiler techniques to obtain high levels of parallelism. Hardware techniques are
used in the latter to capture incoming instructions and dynamically determine those
that can be executed in parallel. Consequently, software applications can be run on
superscalar processors without recompiling [12]. In this thesis, we focus on
superscalar processors as they are the more common type and have been for many

years.

Introduction

1.2 Superscalar Architecture

The operation cycle of a superscalar processor begins with fetching instructions
from a static program into the processor using the instruction fetching mechanism and
decoding them at the decoder unit. After this stage, the decoded instructions will be
dispatched and temporarily accumulated in an instruction buffer called the window of
execution. These instructions are no longer constrained by static program order.
Therefore, they are free to be executed in parallel and ready to be issued
simultaneously into the appropriate functional units located in the instruction
execution mechanism after their operands become available, subject to data
dependence and resource constraints [14], [15], [25], [32]. Figure 1.1 shows the

diagram of superscalar architecture organization.

Fetch mechanism and
instruction decoder

instruction dispatch

S

} Window of Execution

‘ l | sevees | instruction issue
Y

Instruction Execution Mechanism

[~

FU,

Figure 1.1 Organization of superscalar architecture.

To effectively exploit ILP is to improve superscalar processor performance by
widening the window size for the purpose of increasing the possibility of finding data-
independent instructions. More functional units are also required in order to be able to
execute more instructions concurrently. Ideally, instruction-fetching bandwidth
should correspond to the peak instruction dispatch and issue rate, to avoid the
bottleneck problem [25]. However the constraint imposed by control dependence
impedes the ability of the fetching mechanism to fetch instructions continuously, so it

becomes important to overcome this constraint.

Introduction

1.3 Trace Cache Memory

The fetch unit must be able to feed a continuous stream of instructions to the
window of execution as quickly as possible. It would be much easier if instructions
were all lined up in contiguous fashion from start to finish. Unfortunately, such
behavior is not found in typical application programs because they possess branch
instructions. Branch instructions, the causes of control dependence, are very common
in typical programs [8] and cause the instruction fetching mechanism to wait for
branch outcomes to determine whether the branches are taken or not taken. In [1], the
term basic block has been defined as an instruction group, which has one entry point
and one exit point. Whenever a branch instruction is encountered, that will be the end
of the basic block. Typically, the average run-length of a basic block is about 4 to 6
instructions [24]. Therefore, the sequentiality of instruction addressing is disrupted
and the program is divided into numerous small basic blocks.

The branch prediction method was introduced to lessen the problem of control
dependence by speculatively predicting the outcome of branches. However, there is a
problem of non-contiguous location of individual basic blocks inside the conventional
instruction cache. Basically, there are useless instructions lurking between useful
basic blocks that are scattered among different cache lines, so a single fetch might not
be so effective. Trace cache memory [24] is proposed not only to overcome this
crucial drawback which blocks the possibility of fetching multiple basic blocks
concurrently, but also to diminish the latency of fetching, which is the flaw of related
prior research on high bandwidth fetching mechanisms. Moreover, the trace cache
was designed to work outside the main pipeline of the processor. Therefore, it does
not introduce an additional pipeline stage that would increase processing time.

Trace cache research has been conducted for very high performance
microprocessors, i.e. 16 instruction-wide superscalar processors. Rotenberg et al [24]
showed that the fetching performance of a processor using a trace cache is improved
by 34% for integer benchmarks and 16% for floating-point benchmarks. Meanwhile,
the trace cache work on enhanced features conducted by Patel [21] showed that a
trace cache can outperform an aggressive instruction cache scheme by 14% of overall
performance and increase the fetch bandwidth by 34%. Recently, Intel Corporation
adopted trace cache technology for the Intel NetBurst micro-architecture in its

mainstream commercial processor, the Pentium-4 [11].

3

Introduction

There has been no reported study of trace cache performance for a small-scale
microprocessor. Therefore, this research will study the effect of the different trace
cache memory configurations for a VHDL model of a superscalar DLX machine [10],
which can process only 2 instructions simultaneously. The design of the trace cache of
the experiment will be done for two main configurations, 7C_4 and TC_8 for 4
instruction-wide and 8 instruction-wide trace cache respectively. Each configuration
is studied with a varying number of trace cache lines to understand the trade-offs

between performance and cache size.

1.4 Contribution of the Thesis

The contributions of this work can be summarized as follows:

e An analysis of the trade-offs between performance and trace cache size for
narrow-issue sperscalar processor.

e An indication of whether trace caches are a worthwhile enhancement for
narrow-issue superscalar DLX processor.

o A greater understanding of the performance characteristics of trace cache.

1.5 Outline of the Thesis

The thesis is organized into 6 chapters. Chapter 2 describes the background of
trace cache design and related research work. Details of the DLX architecture and the
superscalar DLX model that have been used in this research will be presented in
Chapter 3.

Chapter 4 explains the experimental setup and methods. The results of the
experiment and corresponding analysis will be in Chapter 5. This chapter also
includes the discussion of the experiment. Chapter 6 will be the conclusion of the

thesis.

Background

Chapter 2
Background

2.1 Overview

Although the conventional instruction cache has served as a good source of
instructions at high fetch rates for a long time, it cannot satisfy that high instruction
consumption of wide issue processors. Instructions residing in the instruction cache
are placed in compiled order and, unfortunately, typical programs possess many
branch instructions. Consequently, several small basic blocks exist in run-time
execution and disrupt the continuity of static instruction sequence in a wide
instruction cache line. Even though the processors are designed to fetch several
instructions in each line at the same time, many fetched instructions are abandoned.
Therefore, fetching efficiency is low in this circumstance. To avoid this instruction-
supply bottleneck, the trace cache was introduced to increase effective instruction
fetch bandwidth.

In a superscalar architecture, the sequences of executed instruction from the
pipeline are dynamic and divided into several basic-blocks by control instructions
(e.g. branches, return, and etc.). These are called instruction traces. Several such
instructions grouped together look like a VLIW instruction format but formed in
dynamic sequence. The trace cache counts on two important properties of dynamic
sequences of instructions, i.e. temporal locality and branch behavior [24]. That is, the
most recently used instructions are most likely to be reused in the near future and
branches mostly bias to one direction. If these dynamic traces are collected in a
special kind of cache memory, the performance of the fetch mechanism will possibly

be increased. There will be no need to fetch several times from different lines of the

Background

instruction cache to obtain an instruction sequence possibly spanning several non-

contiguous basic blocks.

Instruction Cache

Trace Cache

Processor Core

Figure 2.1 Trace cache overview

Figure 2.1 demonstrates the principle of the trace cache scheme. There are
four basic blocks (A, B, C, and D) residing in non-contiguous locations in the
instruction cache. They are logically connected together in run-time manner.
Unfortunately, they are split in physical location due to static-compiled order; this is
called “partial fetch” since each fetch could obtain just some part of all of the desired
instructions. Time is wasted reading these instructions, as 3 cache reads are required
(in this example). When these basic blocks are issued through the pipeline of the
processor core they are rearranged in dynamic sequence or trace order (A, B, C, and
D) to perform the task. This trace can be collected in the trace cache line. According
to temporal locality and branch behavior as mentioned earlier, this trace is most likely
to be used again in exactly the same sequence corresponding to the matching of fetch
address and multiple predicted branches. Then, all instructions in this trace can be
read in one fetch from the trace cache to the pipeline. This scheme obviously has the

potential to increase fetching efficiency.

Background

2.2 Trace Cache Architecture

The trace cache architecture is composed of four main components:

1. the trace cache (trace container),

2. the fill unit,

3. the branch predictor, and

4, the instruction cache.

As shown in figure 2.2, instructions can be read from the instruction cache or
the trace cache depending on the outcome of the hit logic which processes the
incoming fetch address and the outcomes of the branch prediction unit. If it signals Ait
the trace cache will deliver instructions. Otherwise, instructions are supplied from the
instruction cache. Instructions residing in the trace cache are collected by the fill unit,

which copies instruction traces entering the processor execution pipeline.

Fetch Address

! Conventional Fetch Unit|

4
—_—————— —»{ Hit Logic

Fill Unit ‘ +’ |
' |

— Instruction Cache] — |
J. \ ‘ |
Trace Cache A
‘— — - Main Memory
Branch Prediction
Unit
Y

b‘ Hit Logic

Instructions

Figure 2.2 Trace Cache Architecture Diagram

Background

2.2.1 The Trace Cache

The trace cache container is an array of fast-access memory, which dominates
the area of the trace cache circuit. It collects several lines of trace issued from the fill
unit. To each individual line of the trace cache is attached information similar to that
in an ordinary instruction cache i.e. a valid bit to indicate availability of data in the
line and a tag to identify the starting address of the trace. Moreover, there are some
extended fields related to branch addresses because there might be more than one
basic block inside the trace. All of this information is processed by the trace cache Ait

logic to determine whether an instruction fetch results in a trace cache hit or miss.

2.2.2 The Fill Unit

The fill unit is an essential component of the trace cache organization as all of
the instructions accommodated in the trace cache come from this section. It gathers
dynamic instruction sequences from the processor pipeline, merges the incoming
instructions with existing instructions to form a packet, provides the attached
information for each trace cache line as described above, and sends the packet to a
line of the trace cache container. The essential step in the formation of a trace packet
is packet finalization. The maximum number of instructions # and the number of
predicted branches m are the main trace-packet delimiters. Both Patel [21] and
Rotenberg et al. [24] have built models which carry 16 instructions (n=16) with a
maximum of three branch predictions (m=3). Then, four conditions for finalizing the
trace-packet are:

1. the packet contains 16 instructions, or

2. the packet contains 3 conditional branches, or

3. the packet contains a single indirect jump, return, or trap instruction, or

4. incoming instructions could not be concatenated with the existing

instructions since the sum would exceed 16 instructions.

2.2.3 The Branch Predictor

The performance of any fetch mechanism relies on the precision of the branch
predictor because an incorrect branch prediction causes a time penalty due to
instruction recovery. In the case of a wide issue processor, a single branch predictor

seems to be inadequate because a line of trace cache is likely to contain multiple basic

Background

blocks, as mentioned earlier. Therefore, a trace in the trace cache would be more
effective if the predictor can cover all of the branch instructions in a line and if the
outcome of the prediction is sufficiently accurate. Otherwise, the penalty would be
more severe and waste more time.

Unfortunately, at a present, the technology of multiple branch predictors is
still immature and the accuracy is less than that of single branch predictors. However,
the scheme known as two-level branch prediction [34] showed impressive prediction
accuracy at 97%. This method can be implemented within the trace cache scheme to

predict three branch outcomes in a single cycle.

2.2.4 The Instruction Cache

Even though the trace cache plays an important role supplying instructions for
the processor, the conventional instruction cache is still needed. When the Ait logic
signals a trace cache miss, the instruction cache has to provide the requested
instructions, instead. Moreover, the instruction cache, itself, is the instruction gateway
connected between main memory and the processor. However, the size of the

instruction cache might be trimmed down to suit such less frequent activities.

2.3 Related Work

There is a large amount of published research, using both hardware- and
software-based approaches, on high bandwidth fetch mechanisms. Some hardware-
based approaches are listed here for the purpose of tracing back the history of the
trace cache. Some of these are currently adopted in parts of the trace cache scheme.

The others are significant competitors of the trace cache approach.

2.3.1 Trace Cache History

The history of trace cache development begins with the fill-unit, which was
introduced as hardware proposed to increase the front-end performance of the VAX
architecture. Melvin et al [16], showed that the parallelism of such a sophisticated
instruction set architecture can be exploited by using a fill unit to create large
execution atomic units (EAUs) dynamically. Hypothetically, the larger EAUs contain

more microoperations able to be executed simultaneously. Each EAU is stored in the

Background

decoded instruction cache to be reused by the execution unit. In subsequent work
[17], Melvin and Patt varied the size of EAUs of the dynamically scheduled machines
using a fill-unit unit to gather two or more instruction basic blocks in the associated
cache. The results showed that larger EAUs effectively enhance the performance of
the processor because of the higher utilization of processor pipeline slots.

In 1994, Franklin and Smotherman [6] adopted the fill-unit for their multiple
instruction issue architecture. The fill-unit dynamically packs multiple instructions
into VLIW-type instructions and stores them in the shadow cache. When the
instructions in a shadow cache line are required, they can be issued and executed
simultaneously. The proposed fill-unit also includes logic for checking data
dependencies of stored instructions as well as a unit for dealing with delayed
branches. There is also a branch predictor to assist the fetching mechanism with
speculative execution in order to create effective cache lines.

In 1994, Peleg and Weiser [22] patented their new instruction cache design,
which is similar to the trace cache, namely the Dynamic Flow Instruction Cache. This
scheme enhances the fetching mechanism for superscalar machines by storing 2
instruction basic blocks in a cache line. The branch instruction at the end of the first
basic block has been predicted and the outcome of the prediction is the physical
address of the first instruction of the following basic block of the cache line.
Instructions in the cache are collected dynamically from the instruction flow and all
instructions in a cache line can be fetched in a single access. The difference between
this cache scheme and the current trace cache is that in the former each basic block is
used as a starting point for each trace packet created.

The other trace cache lookalike is the Expanded Parallel Instruction Cache
(EPIC) proposed by Johnson in 1994 [13]. This architecture has been designed to
enhance in-order superscalar machines by reducing the complexity of the instruction
decoding and issuing mechanism. Each line of the Expansion Cache contains decoded
and dependency analyzed instructions, which were routed to certain execution units.
Therefore, it can reduce the processing time once the instructions are fetched. The
performance of this design is approximately equal to one of the more complex out-of-
order superscalar machines with traditional instruction cache.

Rotenberg et al. [24] designed the trace cache scheme consisting of a small

cache with a large instruction cache embedded in a 16-wide issue superscalar

10

Background

cache design, fill unit design, and in particular, multiple branch prediction. They
showed that a large trace cache assisted by a small instruction cache outperforms
alternative configurations [24]. Therefore, the instruction cache can be designed less
aggressively as it is subject to fewer instruction accesses. Patel et al. continued their
work to improve the performance of the trace cache as reported in [18], [19], and [20].
They explored several enhancements to the trace cache model in order to overcome
performance limitations. Recently, Patel assembled all of his previous works and
some new features of the trace cache into his Ph.D. dissertation [21]. He describes and
evaluates the basic trace cache fetch mechanism, which outperforms an aggressive
instruction cache. High performance was achieved through the use of several
enhancements including:

e Partial Matching — the ability to pick up the useful blocks in a matching
trace line and to discard the rest instead of wasting the whole trace due to
branch prediction mismatch.

e Inactive Issue — instead of totally discarding useless blocks because of
branch prediction mismatch as in Partial Matching, Inactive Issue allows
the whole trace to be fetched and marks these mismatch blocks as inactive
blocks. There is no effect on fetching performance if branch prediction
was correct. Otherwise, the inactive blocks would offer useful instructions
to be executed.

e Branch Promotion — in order to reduce the bandwidth of the branch
predictor and increase the effectiveness of the fetch mechanism, Branch
Promotion embeds the statically predicted information (taken/not taken) to
strongly bias branch instructions [25].

e Trace Packing — this enhancement sacrifices trace cache area in order to
increase individual fetching capability within the loop as shown in figure
2.4. Tn case of a 16-instruction trace, segment AB already occupied 11
slots and left § slots for the next segment. Unfortunately, segment C has 6
instructions and can not fit in. Therefore, the possible traces would be AB,
CA, and BC. Using Trace Packing will store 6 combinations for the
dynamically unrolled loop as follows: A¢BsCs, C1AgBs, CsAgBs, BiCsAs,
BsCgAs, and A;BsCs. The subscripts denote the number of instructions in

each particular segment.

12

Background

,-"-'- ~
—J‘ A J 6 instruclions

. A

/ N\
B) § instructions

N P

(

X

- \
C) 6 instruclions
|

Figure 2.4: A loop contains 3 segments.

The aggregation of Partial Matching, Inactive Issue, Branch Promotion, and
Trace Packing, make the trace cache outperform the state-of-the-art Sequential-Block
instruction cache scheme both in processor performance (IPC metric) and in average
fetch rate. Furthermore, Patel’s analysis showed that as fetch rate increases, branch
resolution time increases. Lastly, a next-generation processor implementation is
described which achieves high fetch rates at high branch prediction accuracy. Figure

2.5 shows this trace cache fetch mechanism.

Fetch Address

1 !
inslruclion | {arget addresses path info] - Instruclion Cache
Fill Unit
ki |
16 L)
Multiple Branch Predictor
1
l | | instructions |
‘ ~
[logic |a — 1
{race cache hil . " ! 3
. v
\ s |
W s number of .
= branches fetched Decoder / Routing
Y
selection logic |-< —
|
Vi trace cache access . Loy
N Irace cache miss \/
(prev cycle) i
nex fetch address l |
next felch address !
Irace cache accress "a‘(?:rgsccr;i‘f;ﬁs 7
P i ‘ _[l .
Y

f Execution Engine]

Figure 2.5: The trace cache fetch mechanism [19]

13

Background

Comparing figures 2.3 and 2.5, even though they are both based on the trace
cache fetch mechanism, there are some differences between them affecting overall
performance. The former model delivers dynamic instruction streams that have been
captured before they are sent to the decoder. On the other hand, in the latter model
decoded instructions are sent to the fill unit before being dispatched to the execution
engine. Therefore, when a trace cache hit is signaled, instructions go directly through
the execution engine without passing to the decoder/routing again. Furthermore, these
instructions are already analyzed for dependencies and pre-routed to appropriate
execution units. The other difference between the models is the information contained
in each trace cache line. The latter model includes not only the branch target address
for checking trace cache hit/miss, but also path information which facilitates the path

enhancement of the model i.e. Partial Matching and Inactive Issue.

2.3.2 Other High Bandwidth Fetch Mechanisms

The Branch Address Cache [34] and Collapsing Buffer [4] have been
previously mentioned as multiple basic block fetch mechanisms. They achieve high
effective fetch rate, although they cannot perform as well as a trace cache. However,
it is worthwhile to examine them to see why this is so.

In 1993, Yeh et al. proposed the branch address cache scheme [34] shown in
figure 2.6. It generates multiple fetch addresses in a single cycle resulting from the
branch address cache working together with the branch predictor. These addresses
will be calculated as indices to point to the exact location of each basic block residing
in the interleaved instruction cache. Finally, all targeted instructions are passed
through the alignment and masking network in order to form a packet ready for issue.
The problems of this scheme are hardware complexity and its lack of amenability to

aggressive branch prediction.

14

Background

== Fill Buffer
L il brffer | Control Logic
]
L wf@gielc] | [r[e[[[[[c[mIn]o
(]
E’ Predictor
7}
?
iL -~ 14 addresses
5
select logic
c G o
3 A
l Address Calculation Logic i
e 00
\ \ :
[_ bank address latches]
l) l
S =T
S
e
= o 00
"
'g =
:)
Q
O
& -
\ | B
| _ = = =
= L A X A N
[ALIGNMENT and MASKING NETWORK J

instruction latch FRREERRaal J

Figure 2.6: The Branch Address Cache.

Conte et al. proposed the Collapsing Buffer [4] as shown in figure 2.7. Two
nonadjacent cache lines can be fetched together since the scheme uses two passes
through an interleaved branch target buffer. Bach pass through the branch target
buffer produces a fetch address. Moreover, the BTB can detect any number of

branches in a cache line. Therefore, it can detect intrablock branches and eliminate the

15

Background

unused instructions by using the collapsing buffer in the interchange/masking
network. Likewise, this approach adds more process stages to the fetching pipeline

and this decreases overall performance.

. MULTIPLE
— 5 BRANCH
! PREDICTION
BRANCH TARGET BUFFER i - _._l |
fetch address 16-way Interleaved . valid ir;lructio;\s -
- e — - = BTB bit veclor
> . —T—1T"T1 T 1st: 0011100011111000
‘ ‘ i I s [LosiC Z:G: 0000000111111000
| . target
1 | | ‘ » address
- o B ! S D) ,.1 =g
o o5 nes s e | [
[™71 '
Line Size = 16 Instructions | Line Size = 16 Instructions
oy g - T c & ~
o T Benneaeeae |
= B 4
L I{‘V//M | 1 interblock
branch
. 1
e 2-Way Interleaved
Instruction Gache .
] l
INTERCHANGE/MASKING NETWORK
—_ B G
(s T VIAAL T T T TTTL kss

Poad . EN

!

to decoder

I_Cq_i_.La‘_\PSING BUFFER

Figure 2.7: Collapsing Buffer

2.4 Conclusion

In summary, the trace cache mechanism can perform better than other
aggressive approaches in respect of fetching ability but it needs sophisticated logic to
create effective traces and a substantial memory area. Therefore, a trace cache might
not be cost-effective for general-purpose processors at the present. However, the

previous trace cache studies have been conducted only on wide-issue processors.

16

Background

Hence, this research focuses on the effectiveness of trace cache on narrow-issue
processors. The objective is to find out the significance and trade-offs of TC
parameters that affect the performance of the cache scheme and the usage of cache

space for the consideration in TC implementation on narrow-issue processors.

17

Experimental Processor Model

Chapter 3

Experimental Processor Model

3.1 Overview

The trace cache experiments in this thesis are based on simulation. A
superscalar implementation of the DLX architecture has been chosen as the
experimental processor model. The VHDL language is used to describe the simulation
model, since the language facilitates both model construction and testbench
simulation. In addition, the working model could be used as a foundation to
synthesize the processor using suitable VHDL synthesis tools. Fortunately, there is a
superscalar DLX processor model [10] in VHDL that is suitable for the proposed

experimentation.

3.2 DLX Architecture Summary

The DLX architecture was first introduced by Hennessy and Patterson [9]. It
possesses features, which can be commonly found in several successful processors
based on the RISC philosophy.

The significant features of the DLX architecture are

an uncomplicated load/store instruction set,

- pipelining effectiveness,

- an easily decoded fixed-length instruction set, and

- efficient machine code, as targeted from high-level program

compilation.

18

Experimental Processor Model

3.2.1 DLX Registers

There are three register types in the DLX architecture. Firstly, the general-
purpose registers (GPRs) comprise thirty-two 32-bit registers named RO, R1, ..., R31.
The value of RO is permanently set to zero. The GPRs are used for all integer
operations and memory addressing modes. Secondly, the floating-point registers
(FPRs) comprise thirty-two 32 bit single-precision floating point registers named FO,
F1, ..., F31. They can be used as double-precision floating point registers (64-bit) by
coupling odd and even registers into a register pair (F0, F2, ..., F30). These registers
are used only for floating-point operations. Lastly, the special-purpose registers

comprise several registers for purposes such as masks and flags.

3.2.2 DLX Data Types
There are 8-bit (byte), 16-bit (half word), and 32-bit (word) integer data plus
32-bit single precision and 64-bit double precision floating point data type. They

conform to Big Endian byte ordering as illustrated in figure 3.1.

Most Significant Byte

Bit Number J.
0 7 8 1516 23 24 . 31 Word Address
12 13 14 15 n+3
8 9 10 1 n+2
5 6 7 n+1
1 2 3 n

Figure 3.1: Big Endian byte ordering.

Least Significant Byte

3.2.3 DLX Addressing Modes

The explicitly supported data-addressing modes in the DLX are immediate and
displacement, using 16-bit fields as immediate data and displacement address fields,
respectively. However, putting 0 in the 16-bit displacement field can accomplish the
register-deferred mode and using register RO as a base register associated with 16-bit
field can accomplish absolute addressing. Therefore, there are four effective

addressing modes available in the DLX.

19

Experimental Processor Model

3.2.4 DLX Instruction Types
There are three different instruction types: I-type (immediate), R-type

(register), and J-type (jump). All instructions are 32-bit format as shown in figure 3.2.

a) I-type instruction

Opcode rs1 rd immediate
6 5 5 16
b) R-type instruction
Opcode rs1 rs2 rd function
6 5 5 5 11
c) J-type instruction
Opcode Offset added to PC
6 26

Figure 3.2 DLX instruction format.

Since all instructions are of fixed-length format, instruction decoding is very simple.
DLX is an easy architecture to understand and, moreover, widely studied and
modeled. Consequently, it is a useful processor on which to base the study of the trace

cache.

3.3 The Superscalar DLX Model

The superscalar DLX model used in this research was created by Horch in the
VHDL language [10]. Both the source-code and documentation are provided at URL
htip://www.rs.e-technik.tu-darmstadt.de/T UD/res/dIxdocu/SuperscalarDLX. htm.
Although the documents were written in German, the source-code is commented in
English and is quite simple to follow. Figure 3.3 shows the structure of the superscalar

DLX processor.

20

Experimental Processor Model

Branch-Target

—] Instruction-Cache |———=| Instruction-Fetch
C Buffer
A }_ l__% 1
Instruction A ‘ Instruction B I
Instruction-Address o
Translation-Buffer l
(,,-- Instruction ™
. Decoder __,) —_—
—» Register-File |——* —
. T Dispatcher
A l y \ ¥ \ A \
Pipelined .
Integer Mul / Div Branch Resolve
[" CoadStece Unit Unit Unit

!

Reorder-Buffer

— —

_

Data-Cache

Write-Buffer

L
Y

Commit-Unit

(without data-flow)

Data-Address

Translation-Buffer

Bus-Interface-Unit

o —

]

Figure 3.3: Superscalar DLX structure. [10]

The microarchitecture of this model is a pipelined superscalar processor. It can

The dispatcher is the heart of the processor since it connects to every major

There are four execution units, each with a reservation station: pipelined load-

provide the speculative target of branch instructions.

fetch a maximum of two instructions simultaneously in a single cycle. The instruction
fetch unit is supported by a 64-byte instruction cache coupled with a 4 entry
instruction address translation buffer (ITB). There is a branch target buffer (BTB) to

unit of the model. Accordingly, it generates control signals to manipulate all processor
activity from instruction entry until instruction commit. Moreover, the dispatcher also
manages precise exception processing. This is assisted by the reorder-buffer, which

works with the commit unit to commit instructions in program order.

store unit, integer unit (arithmetic logic unit or ALU), multiply-divide unit (MDU),

21

Experimental Processor Model

and branch resolve unit. The load-store unit works cooperatively with the write buffer
and 64-byte data cache equipped with 4-entry data address translation buffer (DTB).
The ALU executes all logical, shift, and set-on-comparison instructions. Moreover, it
mainly does the integer arithmetic calculation for addition and subtraction.

Integer multiplication and division can be performed by the MDU but the
implementation of MDU is slightly different from the original DLX architecture. In
the original architecture, multiply and divide instructions can be performed only with
floating-point registers (FO-F31). Therefore, data type conversion instructions from
integer to floating-point and vice versa (i.e. MOVI2FP and MOVFP2I) are available
to enable integer multiplication and division using the floating-point multiply/divide
unit. To avoid any implementation of floating-point operations, Horch defined a
unique register file that can be addressed as GPRs (R0-R31) or FPRs (FO-F31). RO
and FO are the same physical register and so on. Consequently, multiply and divide
instructions (MULT, MULTU, DIV, and DIVU) perform integer multiplication and
division on the GPRs. This variation from the standard architecture required some
code modification, which will be described in chapter 4.

Lastly, the branch resolve unit determines actual branch outcomes, determines
the target address to insert in the BTB and also indicates when a branch misprediction

has occurred.

3.4 The Fetch Unit

The fetch unit is the part that is of most interest in this research, since the trace
cache is intended to improve the fetching performance beyond the conventional
instruction cache. So, the original fetch unit will be described in detail, to provide
information on the original model design.

The fetch unit has been designed to fetch a maximum of two instructions from
the instruction cache in a single cycle if the address of the first instruction in the
program counter is double word aligned. Word order within double word is Big
Endian (i.e. 0x00000000 is the high word and 0x00000004 is the low word). The
registers for storing the fetched instructions are divided into the stage A register and
the stage B register. Both of them can store either high word or low word. Normally,

stage A stores the high word and stage B stores the low word. However, stage A can

22

Experimental Processor Model

store the low word in which case stage B will become invalid. In the case of fetching
two instructions when the address is double word aligned, but when stage A is not
available, stage B can store the low word and the program counter will be increased
by 4 bytes.

As mentioned above, there are two main units associated with the fetch unit.
They are the instruction cache and the branch-target-buffer (BTB). The instruction
cache in the original model has a small capacity and is configured as a direct mapped
cache. It has 8 lines containing two instructions each. So, it can contain only 16

instructions (16*4 = 64 bytes) at a time. The availability of instructions in each cache

7 N
6 I\
5
4 ~
3
2 N
1N
0
L ¢ J
Tag Field (26 bits) Instruction Cache Block
— Valid Bit (1 bit) (2 instruction per block)

Figure 3.4: Instruction cache structure.

block is indicated by the valid bit and the tag field used for address matching.

The instruction cache cooperates with the instruction-address-translation
buffer (ITB) to convert a virtual page number (bits 31 to 7 of the program counter)
into a physical page number and this is joined with bit 6 of the program counter. The
results are used to compare with the tags of instruction blocks to determine cache hit
or miss. The ITB has a 128-byte page size. Figure 3.5 shows the address translation
mechanism of the instruction cache and instruction-address-translation buffer. This

configuration is also used for accessing the data cache in this model.

23

Experimental Processor Model

31 downto 7 6| 5downto3 | 2 downto O
_ |
Virtual oo
Page
//
25 /
3
Address- .
) Instruction
8 Translation- P
Cache
Buffer %
/] 1
/ / L7
7 25 /| 26 /| 64
Tag Data
Physical v (2 instructions)
Page 9
26
4._—

Cache Size: 64 Bytes

Page Size: 128 Bytes :

Cache-Hit
\J

Figure 3.5: Address-translation and cache-access. [10]

The branch-target-buffer (BTB) is a memory that contains destination
addresses of previously executed branch instructions. These addresses are most likely
to be the target of future branches. When one of these branches is fetched again, the
BTB will speculate the direction of the next instructions without waiting for the
outcome of branch condition determination. In this model, there are four slots within
the BTB to store destination addresses. Like the instruction cache, each entry
composes of a valid bit for indicating the availability of the BTB data and a tag field

for address matching.

24

Experimental Processor Model

Program Counter

t———— 27 bits

‘Least significant bit distinguish between a

— ’ branch of high / low word
Y <y
. A ¥
> 3|/
—p 2
—» 1/
P 0

T_ ~_ Branch Destination
Address (32 bits)

L Tag Field (28 bits)

L Valid Bit (1 bit)

Figure 3.6: Branch-target-buffer structure.

Indexing to the BTB slot uses bits 4 and 3 of program counter (2 bits = 4
combinations). Then, the last three bits make all entries represent 8-byte aligned
addresses. Consequently, the destination address stored in each slot has to indicate
whether the branch is a high-word or low-word instruction. This is accomplished by
attaching the extra bit as the least significant bit of the 28-bit tag portion. The extra bit

comes from bit 2 of the program counter.

3.5 Conclusion

The superscalar DLX model [10] is a narrow-issue processor model, which
was written in VHDL format. It can execute integer programs including integer
multiply and divide instructions without conversion between floating-point and
integer data type. The implementation details of a trace cache on this processor model

are described in the next chapter.

25

Experiment Setup

Chapter 4

Experimental Setup

This research was conducted to find out whether and how a trace cache
memory can help a narrow issue superscalar processor to fetch instructions. As
mentioned in chapter 3, an existing superscalar DLX processor model [10] was
chosen to avoid spending the time required to build the processor from a scratch and
give more time to focus on the trace cache model which is the target of this research.
This chapter contains the explanation of an experimental setup that was used fo

implement the trace cache and to gain results for experimental analysis.

4.1 Trace Cache in the Superscalar DLX Processor

The trace cache is a source of instructions containing dynamic traces of
instructions instead of static ones as an ordinary instruction cache does. Therefore, the
trace cache is supposed to be an alternative repository, to compete with the embedded

instruction cache to supply instructions to the execution unit.

26

Experiment Setup

Superscalar DLX Processor

Instruction
Cache

Trace Cache
System

Main Memory

Instrugtion
Suppliar Soleclor

Fetch Unit

Original Processor Model
{In grey area)

| - inslruction Palh

——m Conlrol Signals

—if Processor Core

L

Figure 4.1: Trace cache placement in the superscalar DLX machine.

Figure 4.1 shows the placement of a trace cache in a way that would fit in with
the original superscalar DLX processor model. The task of the trace cache is to collect
instructions trom the fetch unit and pack these into traces with help from control
signals of the fetch unit itself and other units in the processor core, which determine
how to pack them. The trace cache can feed these traces back to the fetch unit.
However, the existing instruction cache is still the main supplier but also is the
competitor of the trace cache. Therefore, the trace cache system must be equipped
with trace cache ‘hit’ logic to make a decision on which instruction supplier would do
the job.

It is possible to build a trace cache by gathering instructions from the main
processor pipeline and producing instruction traces. However, incorporation of a trace
cache would add a lot of complexity due to the original processor model, which was
not designed for this kind of expansion. Hence, the other way to accomplish this
mission is to leave the original superscalar DLX model untouched and examine the
utilization of the trace cache passively. In the other words, we build the whole trace
cache mechanism and investigate whether instructions collected in the trace cache
match the current fetched address in the program counter register of the processor.

This allows us to determine the effectiveness of the trace cache by measuring
trace cache hit rate, but we do not provide instructions from the trace cache to the

processor core since we are not attempting to measure the overall performance

27

Experiment Setup

increase due to the trace cache. In other words, we will assess frace cache
performance in terms of trace cache hit rate and not be concerned with processor
performance improvement due to the higher fetch rate produced by the trace cache.

The latter is highly dependent on implementation technology.

4.2 Trace Cache Line Size

In prior trace cache models [21,24], the superscalar processor models have
wide instruction-paths, which are significantly different from the modest 2-
instruction-wide superscalar DLX machine we use in this research. In this
circumstance, the trace cache model used in this experiment is likely to be quite
different from them.

On a 16-instruction-wide superscalar processor, the individual trace cache line
is designed to fit 16 instructions and is able to feed a maximum of 16 instructions
simultaneously to the fetch unit. This approach would not fit with the 2-instruction-
wide processor (i.e. making the trace cache to accommodate just only 2 instructions in
a cache line) because the average basic block for typical applications is about 4 to 6
instructions [24]. More importantly, the significant idea of the trace cache system is to
provide a trace that covers the basic block and to overcome the penalty of branch
misprediction. In this circumstance, we will provide a trace cache line size of 4-
instruction-wide or 8-instruction-wide to cover at least one basic block. The reason
for making 2 versions of trace cache line size is to find out an appropriate
configuration from the experiment results. In this project, we call the 4-instruction-

wide model and 8-instruction-wide model 7C_4 and T C_8, respectively.

4.3 Trace Cache Model Components

There are 4 main parts that work in concert, starting from gathering

instructions from the fetch unit until determining a trace cache ‘hit” or ‘miss’.

4.3.1 Instruction Gathering Unit
This unit works closely with the fetch unit. In the original processor model,

the fetch unit provides two registers for holding fetched instructions. Both instructions

28

Experiment Setup

could be dispatched through the execution windows simultaneously or just one of
them depending on the availability schedule of the required execution unit for each
instruction. The instruction that was left behind will be fed in the next clock period in
which the functional unit is available. To avoid double copying of the same
instruction from different fetch cycles, the instruction-gathering unit must be able to
determine how many instructions could be collected and which one of them should be
collected in the case that only one instruction could be dispatched. The determination
can be made by consulting a group of control signals. These signals are created by the
dispatcher in which they are originally used for checking the validity of incoming
instructions at the fetch stage. After the determination is accomplished, the individual
valid instruction is ready to be placed into the appropriate position of the fill-buffer

under the fill-policy for creating a dynamic instruction trace.

4.3.2 Fill-Buffer

This buffer is a temporary memory which stores valid incoming instructions as
traces, before transferring them to the trace cache memory space. However, it is the
most significant part of the mechanism because the usability of packed traces depends
directly on the fill-policy that crafts the individual trace. Because of the different trace
cache line size and different number of basic block coverage, the fill-policy will be
different from the previous trace cache works in [21] and [24]. Details of fill-policy
will be described in section 4.3.2.2 Fill-Logic and Fill-Policy.

4.3.2.1 Fill-Buffer Configuration

The buffer comprises two main sections, Trace Content and Trace
Information. Trace Content stores collected instructions and their addresses.
Meanwhile, Trace Information stores information associated with the trace which is
used during fill-buffer to trace cache transfers. Trace Content is constructed as 4 lines
(line numbers 0-3) by the number of instructions (4 and 8 instruction slots for 7C_4

and TC 8, respectively.) Figure 4.2 shows the structure of the fill-buffer.

29

— -

Experiment Setup

e Branch Existing Flag: This flag indicates whether or not there is a branch
instruction in the buffer line.
e Branch Position: Together with the previous flag, this field pinpoints the
location of the available branch instruction of the line.
The bit-length of the information fields Trace Size and Branch Position
depend on trace cache line size. Each of them is 2 bits for T C 4 and 3 bits for TC_8.
Note that, as explained in the following section, each trace cache line will contain no

more than one conditional branch (i.e. 2 basic blocks).

4.3.2.2 Fill-Logic and Fill-Policy

The most significant part of the whole fill-buffer is the fill-logic, which
determines how to fill instructions into the buffer, because the usefulness of traces
directly depends on the characteristic of the traces themselves. The implementation of
the fill-logic is ruled by the fill-policy, which defines how to construct and when to
terminate a trace from instructions collected from the instruction gathering unit.

The collected instructions will be put into available slots one after another in
the current incomplete trace until the trace is terminated by one of the following
conditions:

1. when the size of the current trace including one or both of the new

incoming instructions equals the buffer line size, or

2. when either one of the new incoming instructions is an unconditional

branch (jump), RFE, or trap, or

3. when the current trace already possesses a conditional branch and either

one of the new incoming instructions is also a conditional branch. It was
decided that there must be maximum of 2 basic blocks per line because
general programs have basic block run-length about 4-6 instructions [24].
Hence, the narrow cache width like 7C_4 and TC_8 will rarely be able to
accommodate more than 2 basic blocks.

Accordingly, the fill-logic fundamentally composes of a set of pointers used to
locate the current row and slot in the trace content space of the fill-buffer for each of
the incoming instructions and their addresses. The most important task of this unit is

to manipulate the pointers to implement the above rules correctly.

31

Experiment Setup

Rule 1 is the simplest way of terminating the line, when an incoming
instruction makes the current trace reach the limit of the buffer line size. Note that
there might be either one or two instructions collected from the fetch unit. In case
there is only one instruction, if the length of the incomplete current line plus this
instruction equals the buffer line size, the instruction will be placed into the line and
also terminates this line. Meanwhile, the pointers will be updated to the beginning of
the next line. However, if there are 2 incoming instructions, there could be two
distinct cases.

e Case 1: The first incoming instruction of the two occupies the last slot of the
current buffer line. Therefore, this line will be terminated and the other
instruction will be placed in the beginning slot of the next line.

e Case 2: There are two slots left in the current line while there also are 2
incoming instructions. The logic can place both instructions into the slots,
terminate the current line, and start the next line for the next incoming
instructions.

If the trace was terminated by rule 1, it means that the line was fully occupied
by instructions that are most likely coming from the same basic block and they can be
put in the buffer very easily in practice. This scenario is quite rare in reality because
there are many instructions that break into several small basic blocks [24]. Therefore,
rule 2 and rule 3 are often the ones that terminate the trace.

Rule 2 and rule 3 handle instruction-path changing instructions (i.e.
unconditional branches, RFE, and traps) and conditional branches, respectively.
Therefore, it is necessary to enable the fill-buffer to classify instruction types. If the
former was detected in either one of the incoming instructions, rule 2 will be applied.
Basically, that instruction will be put in the current position provided by the pointers
and then the line will be terminated immediately.

According to the structure of the fill-buffer (see figure 3.3), there are 2 fields
in the trace information concerning branch instructions. The ‘branch existing flag’
indicates whether or not there is a branch existing in the line yet. This field will be set
once a conditional branch instruction was inserted in the line. If the flag is set and if
one of the incoming instructions was detected as a conditional branch, the logic will
push that branch to start in the new line next to the current line even though there is a

space left to fit that instruction.

32

Experiment Setup

Apart from manipulating pointers to place instructions into their places by
applying the fill policy rules, the fill-logic also has to complete the trace information
of each buffer line. However, this task has to be done in parallel with the pointer
manipulation.

e The ‘buffer line ready’ flag is set immediately after the current line was

terminated.

e The ‘trace size’ field is the counter that counts the number of instructions
placed in the buffer line continuously until the line is terminated. Once the
line was terminated, this field can tell how many instructions are in the
particular buffer line.

e The ‘branch instruction flag’ was mentioned above.

e The ‘branch position’ indicates the location of the branch instruction
within the trace. This field is updated once the branch instruction was
placed in the buffer line. This information can be extracted from the

pointers that locate the position of the instruction.

4.3.3 Trace Cache Memory

4.3.3.1 Trace cache memory structure

= G - e] = = 1
i
Trace Cache Memory !
H Trace Information Trace Instructions
A
! _ _ —
LY = —, -’
£ < e - }
P e ~ L _____——
o~
~—
- e 1
k] <l - ~ N
+ T ’,/: H“'__i - e \ ./;/‘ - lf_' R
_ — = — — S !
1)
i
s B == _— H
1
)
1
, :
| - ———— 4 or 8 instructions ————————— W= 1
! O pp— - e e e e e e e e M

Figure 4.4: Trace cache memory structure.

33

Experiment Setup

The structure of the trace cache memory is quite similar to that of the fill-

buffer. Figure 4.4 shows the structure of the trace cache memory space. There are also

2 sections: Trace Information and Trace Instructions.

e Trace Instructions stores only sequences of instructions since it is not

necessary to store instruction addresses anymore. However, significant

instruction addresses of the trace (i.e. the address of the first instruction

and the address of the branch target instruction (if any) of the trace) are

kept and appear as tags, which will be stored in the trace information

portion.

e Trace Information comprises 6 information fields.

Valid Bit
/ Tag 1

Tag 2

Trace Size

Trace Information

Q

Q

a

\\— Branch Position

Branch Existing Flag

Figure 4.5: Trace Information portion of the trace cache memory.

Valid bit: This is a flag to indicate whether or not the particular
trace cache line is occupied by valid cache content.

Tag_1: This is the tag field of the first instruction in the line.
Tag_2: This is the tag field of the branch destination instruction
address if there is a branch instruction available in the line.
Otherwise, this field is an identical copy of tag 1.

Trace Size.

Branch Existing Flag.

Branch Position.

The last three fields of trace information are identical copies of ‘trace

size’, ‘branch existing flag’, and ‘branch position’ fields of the associated

fill-buffer entry as described in section 4.3.2.1 Fill-Buffer Configuration.

34

Experiment Setup

In this experiment, the number of trace cache memory lines is one of the
interesting parameters to investigate. It ranges from 4 up to 512 cache lines
(increasing by factor of 2) to analyze the effect of trace cache memory size on the
trace cache utilization. This parameter will be varied for both 7C 4 and TC_8

configuration.

4.3.3.2 Buffer-cache transfer
Every clock cycle, there must be a procedure to check whether there are any
traces ready in the fill-buffer waiting to be transferred into the trace cache memory
space. The buffer-cache transfer unit was built to accomplish this task. Moreover, the
unit has to make a decision whether the new trace should be placed into the trace
cache memory or dropped out.
a Trace cache memory line selection
When there is a ready fill-buffer line, the address of the first instruction of the
buffer line will be used as the trace cache memory line selector. Based on a direct
mapped cache, the number of extracted bits used for line selection depends on the
number of lines of trace cache memory (i.e. 2, 3, 4, 5, 6, and 7 bits are for 4, 8, 16,
32, 64, and 128 lines, respectively). The position of the extracted bits starts from
the third bit of the address (see figure 4.6).

—> 4—bit 1 and 0

Y

<—Line selector starting from bit ZD‘

i<7 ——Tag

Address of the first instruction of the buffer line (32 bit length)

B

Figure 4.6: Trace cache line selector is extracted starting from bit 3 of the address word.

o Commencing the transfer

Once the destination line was decoded, the transfer would be commenced if:

35

Experiment Setup

= There is more than one instruction in the ready-to-transfer fill-buffer line. This
avoids single-instruction traces, which are not likely to be very useful, from
occupying an entire TC line.

= The trace size of the ready-to-transfer fill-buffer line is longer than the existing
trace in the selected memory line. Hypothetically, a longer trace provides
more instructions and this would increase the probability of finding more
useful instructions.

o The contents to transfer

The contents from the fill-buffer line are:

= All instructions in the trace (note: addresses of these instructions will be
abandoned).

» The extract (Bits 31 to 2) of the address of the first instruction and the
address of the branch instruction destination (if any) to fit in ‘“Tag_1’ and
‘Tag_2’ of the cache line.

= Identical copies of ‘Trace size’, ‘Branch Existing Flag’, and ‘Branch
Position’ from the buffer line for each field with the same name of the
cache line.

o Finishing the transfer
After the transfer was complete, there are 2 tasks to be done.

= Reset all fields in the buffer line to make it ready to accommodate a new
trace.

= Set the “Valid Bit’ of the selected cache line to signal the validity of the

content.

4.3.4 Trace Cache Hit Logic

As mentioned earlier, the original DLX model will be left untouched and the
performance measurement will be done passively. The trace cache hit logic is the unit
assigned to find out whether the instruction at the current address in the program
counter register and its successors can be found in the trace cache. Therefore, this
function is the point at which can be made the measurement of trace cache hit rate.

The typical instruction-cache ‘hit’ is the outcome of comparison between the
value in the program counter register of the processor and the tag of the selected line.

This is the valid hit although the required instruction is not necessarily the first

36

Experiment Setup

instruction of the line since its tag covers all of the instructions of the selected line.
This is different from the trace cache ‘hit’ definition, particularly, the trace cache

configuration of this experiment.

o Trace cache information for ‘hit’ or ‘miss’

The trace cache is supposed to collect instructions from the dynamic
instruction stream. Although a trace cache line has a fixed size line into which
instructions are placed, we can not forecast which instruction would be the first
instruction of the cache line and how many instructions it can collect for a trace.
Moreover, some traces may contain a branch instruction with a destination
instruction whose address is not in consecutive order. Consequently, it is not
possible to make the tag address cover all of the instructions in a trace cache line.
In addition, the execution-path of the processor is only 2 instructions-wide. Then,
all instructions from the selected trace cache line can not flow through the
instruction-path simultaneously like those in the original instruction cache. One
trace cache line might contain instructions to be fed through the instruction-path in
several successive cycles. Therefore, the trace cache ‘hit’ or ‘miss’ depends on the
corresponding trace information and the trace information must be able to
indicate:

= how many instructions there are in a particular trace,
» the address of those instructions,
» whether the trace possesses a branch,

» the direction (taken / not taken) of that branch instruction.

o Trace cache ‘hit’ or ‘miss’ determination
There are 2 types of trace cache ‘hit’: a hit on the first instruction of the cache
line and a hit on the rest of the line. The former can be detected by matching the
current value in the program counter (PC) with the ‘tag 1 of the selected cache
line. After a hit on the first instruction, it is possible to have a hit on the rest of
the line in the next fetch. Thus, there must be a line-hit flag to indicate that the
first instruction of that line has been hit. This method will enable the hit logic to

check out the rest instructions.

37

Experiment Setup

2. Add the run time startup code crt0.o to the start of the compiler output.
3. Run this file through the standard link editor, /d.
4. Edit the a.out file to set the load addresses for the text and data segments, as
required by the simulation model.
5. Use the perl script to transform the floating-point instructions.
6. Edit the file to add nops around the jr instructions.
7. Assemble the resulting file ("dlx.asm") into object code ("dlx.out") using
dlxasm.
The crt0.0 file and perl script are listed in Appendix D and are included in the
companion CD-ROM.
At the end, the assembly codes were assembled into binary code as .out file for
the processor simulation. The assembler named dlxasm (downloaded from

http:.//www.ashenden.com. au/designers-guide/DG-DLX-material.html).

4.5 Simulation Testbench Configuration

The testbench configuration for simulating the superscalar DLX processor
model has been set to run DLX binary-assembled files. A program used to run on the
simulation must be named as ‘dlx.out’ and fit within 32 kilobytes memory range
(0x0000 to Ox7FFF). Originally, the capacity of the main memory was only 16
kilobytes but this was expanded to accommodate larger test programs. Note that there
must not be floating-point instructions in the test programs due to the processor
design. The output file will be created as ‘dlx.dump’ if it was programmed to gencrate

outputs.

4.6 Measuring the Trace Cache

In order to analyse the performance of the trace cache, the number of TC hits
and misses were collected. Hit and miss counts of the original instruction cache and
also the total cache accesses were also required for referencing purposes. The final
sum of trace cache hits and misses from the trace cache lines is too coarse a metric to
make any detailed analysis, therefore, the activities of each line of trace cache

memory were recorded as described in the Appendix A.

40

Experiment Setup

In addition, there must also be analysis of the cache space usage because the

trace cache model occupies real estate on the chip once it is implemented.

4.7 Conclusion

This research project benefits from the use of an existing processor model in
that it was not necessary to set up the experiment from scratch. However, this model
constrains the implementation of the original processor and the ability to expand the
instruction cache. This chapter has described the way in which the trace cache was
constructed and the method used to measure the trace cache performance in the
aspects of usefulness relative to the instruction-cache and space usage. VHDL source

code is included in Appendix B.

4

Results

Chapter S
Results

The trace cache was simulated in two configurations: a 4-instruction wide
(TC_4) and an 8-instruction wide (TC_8) trace cache. In each case the number of
trace cache lines was varied from 4 to 512. We will use 4L, 8L, and so on to denote
individual cache line configurations. Each one of them will be simulated on 4
different test programs: bubblesort (bs-a, bs-r, and bs-d), primenumber (pn-20, pn-50,
and pn-100), permutation, and DCT. For bubblesort and primenumber, the
simulations were performed for 4L to 128L only, because trace cache performance
became steady before reaching 128L and certainly would not vary for 256L and 512L

configurations.

5.1 Overview

This experiment is meant to determine the effect of a trace cache on a narrow-
issue processor like the Superscalar DLX in order to be able to determine whether the
trace cache is worth considering for implementation on this kind of microprocessor.
Obviously, performance comparison between the trace cache and the originally
embedded instruction cache seems to be inevitable. Unlike the trace cache, however,
it proved to be impractical to increase the capacity of the instruction cache in order to
make a fair comparison between the two. For this reason the instruction cache
capacity was not varied in these studies. The instruction cache can hold a maximum
of 16 instructions when the trace cache can increase virtually unlimited. The best case
for fair comparison would be TC 4 at 4 lines of trace cache, in which the total

capacity of the cache is 16 instructions (IC_4 = 1 line contains 4 instructions).

42

Results

Therefore, this analysis of this experiment will not focus on a head-to-head
comparison of the performance between the two caches. Instead we will focus on the
performance of different trace cache configurations.

There are three sections analyzing the performance of the trace cache from
different points of view. The first section shows the hit and miss counts on the trace
cache while the capacity of the cache is increasing in both the width of the trace cache
line and the number of trace cache lines. This section also shows hit and miss counts
of the instruction cache to provide a reference point for trace cache performance.

The next section shows the percentage of hits and misses of the trace cache for
different test programs. Hits and misses are presented in separated graphs to facilitate
analysis of each of them individually. The last section displays how much of the trace
cache space has been used and how much of it was left unused when the capacity of
the trace cache is expanding. Please note that the words trace cache and instruction
cache might be, from time to time, replaced with the abbreviations TC and IC,

respectively.

5.2 Hits and Misses of the Trace Cache

Fundamentally, the number of cache hits and misses is the performance
indicator of cache memories. If there are more cache hits and fewer misses, it
represents a better performance of the cache. This experiment has two main
parameters that affect the performance of the trace cache when they vary, the size of a
trace cache line and the total number of trace cache lines. The product of these
parameters is actually the capacity of the trace cache but there may be different results
for the same capacity from different parameter combinations because of the trace
cache mechanism. Generally, a bigger trace cache capacity should perform better than
a smaller one. However, it is essential to observe the actual results from these
parameters that come into play with the fill policy in order to understand the design
trade-offs.

The results are presented as graphs with associated data tables of individual
test programs (figures 5.1a to 5.1h). Each of them shows the acquired number of hits
and misses of all configurations of the trace cache and also of the original instruction

cache.

43

Results

bs-a
300
250 :
200 + /
g 150 x /
]
(3]
100 A
A Y
50 -
N \J v L e s
W U e D e M e = K
0
4L 8L 16L 32L 64L 128L
—&@—TC_4-Hits 99 244 244 244 244 EM_
——TC_8-Hits 244_ 244 244 244 244 244
IC-Hits 245 245 245 245 245 - 245
Y= TC_4-Misses 168 23 23 23 23 23
= M= TC 8-Misses 23 23 23 23 23 23
IC-Misses 22 22 22 22 22 22
No. of TC lines

Figure 5.1a : Hits and misses of the trace cache and the instruction cache on bs-a.

bs-r
9000 -
8000 /.? // !
7000 +— ¢ ;’: /
6000 o\ ’; /
£ 5000 € ,,‘ /
3 /
O 4000 {
/.
3000 7 X
L 8
2000 %
s
1000 .) S
0 M . ﬁ ; 3 S
4 8L 16L 2L 4L 28|
—&—TC_4-Hits 1852 5393 8562 8562 8562 | 8562
——TC_8-Hits 1901 8492 8492 8492 8492 8492 |
* |C-Hits 8562 8562 8562 8562 8562 8562
= = TC 4-Misses | 6869 3328 159 159 159 159
= M= TC 8-Misses | 6820 229 229 229 229 229 |
IC-Misses 159 159 159 159 159 159
No. of TC lines

Figure 5.1b : Hits and misses of the trace cache and the instruction cache on bs-r.

44

Results

Counts

bs-d

10000
9000 4 RN e A
¥ /" - .
8000 * /f /
7000 : = /- :
> /¥
6000 Y, /
5000 L ¥,
4000 / ~
3000 o A W
= -x
2000 -
1000
0 =
aL
——TC_4-Hits 1469 6481 8982 8982 8982 | 8982
—8—TC_8-Hits 1763 8884 8884 8884 8884 8884
IC-Hits 8980 8980 8980 | 8980 | 8980 | 8980
= = TC_4-Misses | 7729 2717 216 216 216 216
= M= TC 8-Misses | 7435 314 314 314 314 314
IC-Misses 218 218 218 218 218 218
No. of TC lines

Figure 5.1c : Hits and misses of the trace cache and the instruction cache on bs-d.

pn-20
1800
L F ™ ™ o L
1600 _— / e v
1400 - / i
2 1000
=
8 800
600 x
400 i—x
200 x 2
0 > o N‘ﬁ‘ = ":.‘ - By W 5 < “
4L 8L 16L 321 64L 128L
—&— TC_4-Hits JSZ 1340 1606 1606 1606 - 1606_
———TC_8-Hits 1544 1636 1635 1635 n 1635 1635
IC-Hits 1631 1631 1631 1631 iN 1631 1631 |
= Y= TC_4-Misses 519 331 65 B 65 | 95 65
m M= TC_8-Misses 127 35 36 36 I 36 __36_)
IC-Misses 40 40 40 40 40 40
No. of TC lines
Figure 5.1d : Hits and misses of the trace cache and the instruction cache on pn-20.

45

Results

pn-50

12000
10000 "-—*"’:-—._;;_——"':"‘—‘_-_-"—"‘_"—-*
8000
£
3 6000
(&)
4000
2000 X‘
0- ¥ o
AL
—&— TC_4-Hits 7018 8285 9818 9818 9818 9818
——TC_8-Hits 9508 9946 9945 9945 9945 9945
IC-Hits 9892 9892 9892 9892 9892 | 9892
jm M= TC_4-Misses | 2963 1696 163 163 163 163
@ M= TC 8-Misses | 383 35 36 36 36 36
IC-Misses 89 89 89 89 89 89
No. of TC lines

Figure 5.1¢ : Hits and misses of the trace cache and the instruction cache on pn-50.

pn-100
45000
40000 S -~ = = - -
35000 //
30000 - /
2 25000 —
3
o 20000
15000
10000 ———X—~
3000 o
0 % - b 0 ” i o
ki1 6! 4] '
—@—TC_4-Hits 27282 32443 38197 38197 38197 38197 |
——TC_8-Hits 3766§ 38537 38536 38536 38536 38536
IC-Hits 38377 38377 3831 38377 38377 38377
=)= TC 4-Misses | 11290 6129 375 375 375 375
m M= TC_8-Misses 907 /B | 36 36 36 36
IC-Misses 195 195 195 195 195 195
No. of TC lines

Figure 5.1f : Hits and misses of the trace cache and the instruction cache on pn-100.

46

Results

Counts

Permute

14000
12000 4+ ——— =
-
10000 X x -
x -x - /.
8000 R
r o
6000
/ b
// \
4000 —w—— ‘i
/ N :
2000 - oy NE- LY =
* =R K =X
0
4L 8L 16L 32L 64L | 128L | 256L | 512L
—@—TC_4-Hits 2367 | 2365 | 5088 | 9365 | 10922 11171 | 11747 | 11747
~—{—TC_8-Hits 3543 | 3599 | 6333 | 9981 | 11741 | 11893 | 12062 | 12062
IC-Hits 1216 | 1216 1216 | 1216 | 1216 | 1216 | 1216 | 1216
=)= TC_4-Misses | 10616 | 10618 7895 | 3618 | 2061 | 1812 | 1236 | 1236
= M= TC_8-Misses | 9440 9384 | 6650 | 3002 | 1242 | 1090 | 921 921
IC-Misses 11767 | 11767 | 11767 | 11767 | 11767 | 11767 | 11767 | 11767
No. of TC lines

Figure 5.1g : Hits and misses of the trace cache and the instruction cache on Permute.

Counts

DCT
140000
120000 4 :
100000 54—
XK
80000 —DK————\-X
60000
40000 4" —— x
./‘C/ LN
20000 X
. = =X =X
4L | 8L | 16L | 32L | eaL | 128L | 256L | 512L
—e—TC 4-His | 25454 | 32938 | 49166 | 80583 |111921|116162/118325/116325
= TC 8Hits | 42413 | 32276 | 47055 | 80789 | 112256|117934|118456|118456
IC-Hits 2510 | 2510 | 2510 | 2510 | 2510 | 2510 | 2510 | 2510
= = TC_4-Misses | 99180 | 91696 | 75468 | 44051 | 12713 | 8472 | 6309 | 6309
m W= TC_8-Missos | 82221 | 92358 | 77579 | 43845 | 12378 | 6700 | 6178 | 6178
IC-Misses |122124(122124|122124|122124|122124]122124] 122124122124

No. of TC lines

Figure 5.1h : Hits and misses of the trace cache and the instruction cache on DCT.

47

Results

In general, TC_8 performs better than 7C_4 in particular at the same number
of TC lines except for DCT. Undoubtedly, the longer traces of TC 8 increase the
opportunity to find useful instructions in a single trace and the larger space allows
more instructions to fit in and also decreases the chances of overwriting useful ones
due to space contention. However, this advantage is not effective in every program as
mentioned in the explanation above. The effectiveness depends on the pattern of
dynamic execution of each particular program, so the advantage is not perfectly
predictable.

For the case of bubblesort, TC_8 at 4L is not as effective as TC_4 because of
two significant reasons evident from the raw data from the simulation (referencing the
companion CD-ROM). This analysis is based on the comparison of 4L and 8L of bs-r
and bs-d. The first reason is that 4L provides less space to hold useful traces long
enough to offer required instructions and that particular traces were replaced by other
traces that are not well used and live too long and, therefore, result in a lot of misses.
The other reason is there is too much overwriting to the same line too frequently, so
the useful traces cannot live long enough to produce hits. All of this is chiefly the
problem of cache space contention combined with the direct-mapped scheme.
Therefore, more TC lines can relax this drawback and offer more TC hit counts as we
can see from the results.

DCT is an exception from all of the graphs mentioned above. The performance
of TC_8 is not better than TC_4 at the same number of TC lines. This peculiarity can
be explained by the comparison graphs of TC hit, compulsory miss, and conflict miss
of TC 4 and TC_8 in figure 5.2.

In the following discussion we refer to misses as either compulsory misses or
conflict misses. When the line was selected at the first time but there is no instruction
in it (valid bit = 0), it is called a compulsory miss. In contrast, if the selected line

contains valid data but not the required instructions, it is called a conflict miss.

51

Results

DCT

140000
120000
100000 -

80000 -

Counts

60000
40000

20000

e SRR MR % e |
O_ 3 *-‘ = §_ RS W SRE T
4L 8L 16L 32L 64L 128L | 256L | 512L
——TC_4_Hit 25454 | 32938 | 49166 | 80583 [111921|116162|118325| 118325
s TC 4 Comp| 22 | 24 | 29 | 805 | 2214 | 1992 | 6306 | 6309 |

TC_4_Conf | 99158 | 91672 | 75439 | 45236 | 10499 | 6480 | 3 0

3 --TCs Hit | 42413 | 32276 | 47055 | 80789 [112256|117934 118456 118456

% --TC.8 Comp| 24 | 36 | 10033 | 7006 | 3791 | 1863 | 6177 6178 |

@ --TC.B Conf | 82197 | 92322 | 67546 | 36830 | 8567 | 4837 | 0
No. of TC lines

Figure 5.2: Comparison between TC hit and Compulsory Miss and Conflict Miss of DCT.

Figure 5.2 shows the comparison of three features (TC hit and both TC miss
types) of TC 4 and TC 8. Suppose that the trend of the TC 4 graphs draws the
baseline of normal behavior in which the TC hit rate is increasing, representing better
performance when there are more TC lines. Meanwhile, the conflict miss rate falls
and the compulsory miss rate is a little higher as the number of lines increases. We
can see that the behavior of TC &'s graphs is different. If T7C 8 consistently
performed better than TC 4, either of compulsory miss rate or conflict miss rate
should be distinctly lower than those of 7C_4 from 4L to 512L. But it is only at 4L
that TC_8 performs better than TC_4 because of the low conflict miss rate. At 8L, the
conflict miss rate of TC_8 is higher than that of TC_4. This unexpected effect has to
be explored by consulting the raw data on Appendix C which contains excepts from
the corresponding simulation log files of DCT. Comparing the data of T7C_4 and 7C 8
at 8L for DCT, it reveals that trace line number 2 of 7C 8 has a noticeably higher
conflict miss than TC_4. Although the overwriting count is only a few in TC_8, the
conflict miss rate is high. This means that useful traces are overwritten by less useful
ones. Moreover, the less useful traces occupy lines for too long. Comparing this to the
same line of TC 4, there are more trace overwrites but fewer conflict misses.

At 16L, although the conflict miss rate decreases the compulsory miss rate

suddenly gels higher than the compulsory miss rate of 7C_4 which makes the TC hit

52

Results

rate of TC_8 still less than TC_4’s. After 16L, the falling conflict miss rate of TC 8 is
offset by an increasing compulsory miss rate. The raw data for TC_8 at 16L to 64L of
DCT gives the insight into this occurrence. This happens at trace cache line number 2

that has high compulsory miss which dominates the total compulsory misses.

The above comparison between TC_4 and 7C_8 for the same number of TC
lines is actually not fair because TC_§ naturally has more room for instructions. At a
particular number of TC lines, TC_8 has twice the capacity of 7C_4. For example, the
8L-trace cache of TC 8 is able to store 64 instructions as is the 16L-trace cache of
TC 4. Hence, it is interesting to make a comparison using total capacity to categorize

a particular comparison between TC_4 and TC_& as shown in table 5.2.

TC configuration Number of TC lines

TC 4 8L 16L 32L 64L 128L 256L 512L
TC 8 4L 8L 16L 32L 64L 128L 256L
Cache capacity (instructions) 32 64 128 256 512 1024 2048

Table 5.2: The equivalent cache capacity of different trace cache configurations.

For the bubblesort and primenumber programs, the comparison will stop at
128L of TC 4 while all of the above configurations (8L-512L of 7C_4) will be shown
for Permute and DCT. Figures 5.3a to 5.3h show the graphs of hits and misses based
on the total cache capacity of each TC line width.

53

Results

bs-a bs-r
300 So08 A —
8000
250 __'___.—.'—_---——.—-—-——:1.—-—'—“."‘_J /’. f
7000 X/
200 8000 'q ¥
E E 5000 T —
8 160 3 Y
4000 7 \
100 3000 X
50 . 2000 ‘+ \
S Pas 23 e 1000
0 ' . 0 3!_ — G
32 84 128 256 512 32 84 128 256 512
—&—TCA Hits 244 244 244 244 244 |——Tc4 Hits 5388 8562 8562 8562 8562
W TC8 Hits 244 244 244 244 244 ———TC8 Hits 1801 8402 8402 8492 8492
TC4 Misses 23 23 23 23 23 TC4 Misses 3328 160 158 159 159
—3—7C8 Mlsses 23 23 23 23 23 ——TCB Mlsses 6820 220 220 229 220
Total Cache Capacity {Instructions) Total Cache Capaclty (instructions)
(@) (b)
bs-d pn-20
10000 2000
8000 P : T }.__._!.____Q—-—-Q
| 00 A
X e
8000 : E
g \ 5 1000
4000 ra
N o
2000 F—@——
x‘—-—._.v A e A
0
o -
32 84 128 256 512 32 64 128 258 512
——TC4 Hits 6481 8082 8082 8982 8982 [=—#—TC4 Hits 1340 1608 1806 1808 1608
TC8 Hits 1763 8084 8884 8684 8884 ~——=TC8 Hits 1544 1638 1835 1835 1635
TC4 Misses | 2717 216 216 218 218 TC4 Misses | 331 85 85 65 85
| ——TC8 Misses | 7435 314 314 314 314 | —¢—TcRMIsses | 127 35 36 36 38
Total Cache Capaclty (inetructione) Total Cache Capaclty (Instructions)
(©) ()
pn-50 pn-100
12000 50000
10000 ? e] 40000 55—
8000 3
§ § 30000
6000
20000
4000
2000 10000
0 ¢ —= o - o = 2 ¢ e S
32 84 128 266 512 22 64 128 256 512
——0—TC4 Hlls 8285 9818 9818 9818 2818 ——0—TC4 Hits 32443 | 38107 | 38197 38197 | 38197
TC8 Hite 0508 9946 0945 9945 0845 ——TC8 Hils 37665 | 38537 | 38538 38536 | 38536
TC4 Miesee | 1608 163 163 163 | 163 TCA4 Misses ’> 8126 | 375 ars | a8 375
——TCB Migsea | 383 35 36 36 38 —¢—TC8 Misses | 907 35 36 36 36

Tolal Cache Capacliy (Instructions) Total Cache Capacity {Instructions)

() ®

Figure 5.3: Hit and miss comparison between TC_4 and TC_8 at the same cache capacity of
(a) bs-a, (b) bs-r, (c) bs-d, (d) pn-20, (e) pn-50, and (f) pn-100.

54

Results

permute

14000

12000

e

10000

8000

Count

6000

D
R
/X
7 - \

4000 %
2000 4

e

32

128 256 512

1024

2048

—&—TC4 Hits 2365

9365 | 10922

TCBHIts | 3543
TC4 Misses | 10618

6333

11171
11741

11747
11893

14747
12062

3618

~—)—TC8 Misses | 9440

6650 | 3002 | 1242

1812 |

1236
1090

1236

921

Total Cache Capaclly (Instructions)

®

Count

140000

120000

100000

80000

60000

40000

20000

0

32 64

128 256 512 | 1024

2048

S=—TCA IS
¥ TC8 Hits

32938 | 49166
42413 | 32276

47055

80583 | 111921

80789

TC4 Misses
—¥— TCB Miss

91696 75468

_44051

82221 | 92358

12713 | 8472
43845 | 12378

77578 BI00

116162| 118325 | 1183256
112256(117934
6309

118458
6309
6178

Total Cache Capaclty (Instructlons}

Figure 5.3 : Hit and miss comparison between TC_4 and TC 8 at the same
(continue) cache capacity of (g) Permute, and (h) DC T.

(h)

Figures 5.3a to 5.3h show that TC_§ does not significantly outperform TC 4

as it might be expected to when the total cache space is equal between the two. For

Permute and DCT, TC_8 performs generally worse than TC 4. The hypothetical

reason for this is the importance of TC line numbers. Although the wider TC line

offers the opportunity to get more hits on the contents of traces, there is also the

possibility that not all of the contents are useful and, in addition, not all fully useful

traces are longer than 4 instructions. Therefore, when comparing 7C_4 with TC_& on

a fair basis (equal capacity), TC_4 generally performs better than TC 8. Permute and

DCT are good basis for this comparison since bubblesort and primenumber are t00

short to tell the difference due to their early saturation of TC hit rate.

In the end, these results are useful for determination of chip area investment in

the stage of hardware implementation in which the choice between increasing the

number of TC lines and widening the traces is considered.

55

Results

5.3 Percentage of Trace Cache Hits and Misses

This section focuses on the percentage of trace cache hits and misses in order
to show and compare the nature of the hits and misses of each test programs. Trace

cache hits will be discussed in term of 3 figures.

e Total trace cache hit — This is the percentage of trace cache hits rlelative to
total cache accesses. Total trace cache hit is the sum of the trace cache
first tag hit and the trace cache line content hit.

e Trace cache first tag hit — The first tag of the trace cache line represents
the first instruction of the trace. When the first tag was hit, it means the
line can start to supply instructions. However, the other instructions in that
line can be fetched or not depending on another hit signal — trace cache
line content hit.

e Trace cache line content hit — As mentioned above, this hit is counted

when instructions after the hit first instruction are eligible to be fetched.

As we described the definition of compulsory misses or conflict misses earlier,
both of these figures are elements of the total trace cache miss percentage, which is
the percentage of total trace cache hits subtracted from 100.

Each of figures 5.4 to 5.8 shows the graphs of percentage of particular hit and

miss of TC_4 and TC_8 together for comparison purposes.

5.3.1 Trace cache hits
Figure 5.4 shows the graph of percentage of total trace cache hit of (a) TC_4
and (b) TC_8. Hence, they provide comparable figures among all test programs in

which the numbers of total cache accesses are different.

56

Results

(a) TC_4 - Trace Cache Hit

[-}]
o
®
S
c
@
o
3
[
o
64L
pbs-a 2708 | 9138 | 9138 | 9138 | 9138 | 9138
mbs-r 2124 | 6184 | 9818 | 9818 | 9818 | 9818
Qbs-d 1597 | 7046 | 9765 | 9765 | 9765 | 9765
opn-20 6894 | 8019 | 96.11 96.11 %.11 96.11
Bpn-50 70.31 8301 | 9837 | 9837 | 9837 | 98.37
Qpn100 | 7073 | 8411 | 9903 | 9903 | 9903 | 990
mPermue | 1823 | 1822 | 3919 | 7213 | 8413 | 8604 | 9048 9048
mDCT 042 | 2643 | 3945 | 6466 808 93.2 %94 | 9494

No. of TC Lines

) TC_8 - Trace Cache Hit
100 ~
iin 1
b |
e Ll e .
ol J- E -
S 5 [| T
‘“ i
t 50 l |
c L] pe 1 s
8 |
Q 40 4 - ——— =
o i
30
oMl
10
[
0 i {
4 8L 16L 32 64L 1281 2561 512L
gbs-a 91.39 91.39 91.39 9139 | 9139 91.39
mbs-r 218 97.37 97.37 9737 | 9737 97.37
Obs-d 1947 96.58 96.58 9658 | 9658 96.58
Opn-20 924 97.91 97.85 9785 | 9785 97.85

Bon50 %616 | 9965 | 9964 | 9964 | 9984 | 9984
gonie | 9765 | 9991 | 91 | 9991 | %91 | 091

mPermute | 27.28 o 4878 76.88 90.43 9186 9291 92.91
@DCT 34.03 259 37.75 64.82 90.07 94.62 95,04 95.04

No. of TC Lines

Figure 5.4 : Percentage of total trace cache hit of (a) TC_4 and (b) TC_8.

57

Results

5.3.1 Trace cache misses

There are two kinds of TC misses — compulsory miss and conflict miss — as
explained earlier. Figures 5.7 and 5.8 show the percentage of each kind of miss for
both TC 4 and TC_8, taking the total miss count as 100% and each miss is the share
of the total miss count.

We would expect that the percentage of compulsory miss would be increasing
when the number of TC lines is higher while conflict miss tends to go the opposite
way. This can be explained by the nature of the cache scheme. When there are a few
TC lines, it is most likely that an existing trace is replaced by a new incoming trace
since they are mapped at the same line. Therefore, when that line is engaged by a new
one that is not matched with the requirements of the fetch unit, it signals conflict miss.
Conflict misses can be resolved by increasing the number of TC lines and eventually
when there is enough room to store most or all of the instructions, the conflict miss
rate is zero. Likewise, compulsory miss can be explained from the same effect of
increasing the number of TC lines. More TC lines increase the probability of a hit on
an empty cache line. Hence, eventually all of the TC misses are conflict misses when
the trace cache is big enough to cover all executed instructions.

If we look at the results of TC misses, each of them has the tendency as
hypothesized. However, the results of each test program are different and
unpredictable when two parameters — the trace size and the number of TC lines — are
varied. Therefore, no firm conclusion can be made about how the variation of trace

cache parameters affects the behavior of trace cache misses.

60

Percentage

Percentage

Results

(@

TC_4 - TC Compulsory Miss

(a)

100 7 -

W ——

80 °

70T

60

50

40

30

20

10

o 4L BL 16L 3z2L 64L 128L 256L | 512L
Blbs-a 64.29 | 60.87 | 78.26 | 95.65 100 100
B bs-r 41.2 427 | 52.83 | 99.37 100 1OL
DObsd 48.93 | 49.17 | 51.85 99.5;4I 100 100 I
Opn-20 1.73 3.83 56.92 | 95.38 100 100
W pn-50 03 0.7 52,76 | 98.16 100 100
B pn-100 0.08 0.2 51.2 99.2 100 | K _ |
.Permug__ _0.79 0.83 0.52 . ;i _31.49 55.35 | 99.03 :0
IlDCT 0.02 0.03 0.04 1.83 | 17.42 | 23,51 | 89.85 100

No. of TC Lines

Percentage

)

TC_8- TC Compulsory Miss

Figure 5.7 : Percentage of TC Compulsory Miss of (a) TC_4 and (b) TC_38.

TC_4- TC Conflict Miss

100 1

90

80 1= = e 3 S0 D2 CT)

70 T =

60 = E=ne S

50 7 I————

40

30

20

10

0 -
4L aL 16L 2L 64L 128L | 256L | 512L
Dbs-a 3571 38.13 | 21.74 | 4.35 0 0
E 58.8 | 57.3 | 47.17 | 0.83 0 0 S
Obs-d 51.07 | 50.83 48.1_5 0.46 0 0 —
EE"'ZO 98,27 | 96.37 | 43.08 | 4.62 0 0 —
M pn-50 99.7 | 99.3 41.24 1.84 0 | o |]
=] ;_|!|-__12? 99.92 | 99.8 48.27 08] B 0
WPamute | 99.21| 99.17 | 99.48 | 97.62 | 6851 | 4465 | 097 | 0
BopcT 09,98 | 9997 | 99.96 | 98.17 | B2.58 | 7649 | 0.05 0
No. of TC Lines

Percentage

Figure 5.8 : Percentage of TC Conflict Miss of (a) TC_4 and (b) TC_S8.

@s—a 39.13' 66,22 | 82.61 | 95.65 | 100 100 B
BEbs-r 0.13 | 20.52 | 67.69 | 99.56 100 100 [| B
DObsd 012 | 19.43 | 67.52 iﬁﬂ_ 100 130 I |
__9,45 M 60 | 7222 99.44_ 100 100 i .
313 60 | 7222 |99.44 | 100 100 B
_npn-il)ﬂ 0.08 : 0.2 | 7222 |99.44 100 100
-Permu[e 0.76 0.86 Oi.12 46 | 55.56 | 76.79 | 99.02 ﬂ)
mﬂT 0.03 | 0.04 | 12,93 | 1508 | 30,63 | 27.81 | 69,98 | 100 i
No. of TC Lines
(b) TC_8 - TC Conflict Miss
100 =
90 e =
80 1 m — B Ty s T &
70 il s
80 === = [L ==
50
40
30
20
10
o a
4L 8L 16L 321 64L | 128L | 256L | 512L
Obs-a 60.87 | 34.78 | 17.39 | 4.35 0 0
Wosr |90s7 |7ode|azat|oas | o | o |
Obsd 99.88 | 80.57 | 3248 | 0.32 0 o] N
Dpn-20 90.55 40 27.78 | 556 _0_ L 0
M pn-50 96.87 40 27.78" Eﬁ 0 __0 |
Dpn-100 | 98.68 | 40 [27.78 ﬁ_ o 1o] B
.ﬁmule 99.24 _99.14 99.23 | 87.54 .44 44 £21 0.98 . 0
B pcT ©9.97 | 99,96 | 87.07 | B4.02 | 69.37 | 72.19 0.02 0
No. of TC Lines

61

Percentage

Results

5.4 Trace Cache Space Usage

Increasing trace cache space seems to improve the hit rate but also introduces

additional expenses. Therefore, it is important to obtain some indication of how

efficiently each configuration uses the available memory. Figures 5.9 and 5.10 show

the percentage of trace cache space usage of TC 4 and TC 8, respectively. The

individual percentage was calculated from the total number of instructions stored in

the cache divided by the maximum instruction capacity of the cache.

TC_4 - Percentage of Cache Space Usage

4L

8L

16L

2L

256L

5121

———bs-a

87

85

50

26

= bg-r

a7

81

62

35

bs-d

87

58

56

32

—8—pn20

100

93

73

45

M pin-50

100

93

73

45

¢ pn41_l_]£l_ il

100

93

73

45

—®—Pamuts_

100

100

100

87

32

——D0CT

100

100

21

73

31

No. of TC lines

Figure 5.9

5.4.1 Results of TC_4 and TC 8

According to figures 5.9 and 5.10, there is one common feature among all test

Percentage

TC_8 - Percentage of Cache Space Usage

—&—hs-a 65 | 32 23 12 6 1 3_ L |
S ps-r 7 54 34 17 9 _. 4 N .
bsd | 71 | 46 | 30 | 16 8 4
:_0-—-‘_;;“.20 I a7 54 _41 21 10 | 5 C o
—w—pns0 | &7 54 41 21 10 5 B
—e—pr100 | 87 | 54 | 41 | 2 0 | 5]
—o—rpomua | 100 | 100 | o7 | o0 [s | @ [e | &
—_.'—l:A:T 100 100 92 74 80 30 o 16 8
No. of TC lines
Figure 5.10

programs: the utilization of cache space is dropping while the cache capacity is

expanding.

5.4.2 Analysis

This result is quite predictable since the more cache space is available the

more space tends to be wasted, especially for very short programs like bubblesort and

62

Results

primenumber. Although Permute and DCT are longer in terms of program span, at
512L there is clearly much more space available than required. According to the raw
data (in the CD-ROM), there are two main effects that waste cache space. First, some
cache lines were occupied by short traces (less than 4 and 8 instructions for TC_4 and
TC 8, respectively). Second, there are some cache lines that have never been
occupied by any trace; this is worse when the number of TC lines increases. Both of
them are inevitable because, for the former, there is no certainty of the width of an
individual trace, one might contain only 1 instruction while another contains more
instructions up to the maximum number (4 or 8 instructions) due to the fill-policy.
Consequently, the mapping of a trace entirely depends on the address of its first
instruction. Some cache lines, then, might be unused because it is unlikely that the
cache line following the line occupied by the current trace will be the place for the

succeeding trace.

5.5 Conclusion

The results show that the hit rate of the trace cache tends to increase while the
trace cache size is increasing from both the bigger number of instructions in each line
and the larger number of trace cache lines. However, the increasing rate will come to
saturate once the number of trace cache lines can cover all of the instructions of the
test program.

In short test programs, the results show that the hit rate of the trace cache in
TC 8 is increasing and becoming steady earlier comparing to TC_4. It shows that the
larger cache space allows more instructions to fit in and, certainly, the probability of
finding the right instructions is increasing. Meanwhile, the hit rate also saturates faster
because of the larger cache space, which can cover all of the instructions in fewer
lines. On long programs, the results show that extending cache capacity both by
increasing the number of trace cache lines and increasing the line width increases the
performance of the trace cache as well.

Increasing the number of TC lines might improve performance of the trace
cache but also leads to trace cache space waste because of the escalation of unused

trace cache lines accoding to the direct-mapped scheme.

63

Results

The wider trace on TC_8 also increases the performance of the trace cache
over TC 4 if the comparison has been made at the same number of TC lines. But, if
we compares at the same capacity, for example, 16L of TC_4 and 8L of TC 8 for the
capacity of 64 instructions, the performance of both is similar or most of the time

TC 4 performs better than TC_8.

64

Conclusion

Chapter 6

Conclusion

6.1 Summary

This research has been conducted to study the performance of trace cache
memory on a small-scale superscalar microprocessor. The superscalar DLX machine
[9] was chosen as the basis for the experiment. The original model can process two
instructions simultaneously with the help of a very small instruction cache to supply
instructions. The trace cache memory was designed with less complexity than the
previous works [20], [23]. There is no sophisticated branch prediction unit for packing
the instruction traces and the number of instructions in one frace cache line was
reduced to balance with the issue width of the processor. The experiment has been
performed on 2 main configurations: TC 4 and TC_8, which are 4 instruction-wide
and 8 instruction-wide trace cache, respectively. Each configuration has a number of
cache lines varied from 4 to 512 lines. Test programs used in this experiment can be
categorized into 2 groups: the short ones (e.g. bubblesort and primenumber) and the

longer ones (e.g. permute and DCT).

6.2 Conclusions

The experiment shows that the crucial parameters affecting the performance of
the trace cache are the number of TC lines and the width of trace. An increment of
both parameters leads to better performance of the trace cache indicated by the
increasing number of hits. However, increasing the number of TC lines also causes

more unused cache space according to the nature of the cache scheme.

65

Conclusion

The performance of TC_8 is generally better than TC 4 if the comparison has
been made at the same number of TC lines but if we compare them at the same cache
capacity, TC_8 does not really outperform 7C_4 and most of the time performance of
the former is lower than that of the latter.

Apart from those parameters that affect the performance of the trace cache, the
policy of the fill-unit and also the logic unit for transferring traces from the fill-buffer
to the trace cache memory are also crucial. Investigation of the effect of these policies
is a matter for future work. From these results, the trace cache is not able to
demonstrate clear advantage over the instruction cache as expected. On the other
hand, even this trace cache model without sophisticated fill strategies is quite complex
comparing with the original instruction cache. In that case, we found no evidence that
it is worthwhile to invest the chip area to implement such model while a simple

instruction cache works quite well for narrow-issue processors.

6.3 Further Work

From the results of these experiments, we gain some insight into
characteristics of the designed trace cache on a narrow-issue processor and also some
indications of pitfalls of the model. This section is a discussion of these drawbacks,
which were not resolved in this research because of the time limitations.

The results show that the number of TC lines and the width of traces are
crucial parameters in the aspect of trace cache performance. However, there is another
parameter that is also vital but was paid less attention. It is the functional unit for
transferring traces from the fill-buffer to trace cache memory. Some trace cache lines
are not as useful as they should be and cause a significant number of misses. This is
because the strategies to put a trace into the destination TC line were not as effective
in avoiding misses as they could have been. Therefore, this unit should be
investigated further to find the optimum strategies. Clearly, this unit involves
significant complexity and adds to the implementation cost of the trace cache.

The advantage of a trace cache is the ability to contain two or more non-
consecutive basic-blocks, which an instruction cache cannot. The best metric we have
to evaluate the usefulness of the trace cache is 7C Line Content Hit in which the hit

counts indicate the possibility of taking advantage of the trace cache. This feature

66

Conclusion

should have been explicitly gathered for the purpose of trace cache analysis. Yet, it
was not implemented in the design because of the complexity of modifying the
existing DLX model to collect this data.

In this experiment, there are only two more additional test programs, permute
and DCT, apart from the originally provided programs, bubblesort and primenumber,
for the simulation. They can be categorized as long programs and short programs
according to the span of the particular sourcecode. The results and analysis would be
more reliable if there were more long programs simulated. However, there are two
main constraints that obstruct us for gathering more test programs. The first one is
converting the sourcecode of the prospective test programs to binary code is a time-
consuming process because of the hand conversion of the source code described in
chapter 4. The second constraint is the simulation for the long programs takes a very
long time.

Finally, the experiment reveals that the other parameter that should taken into
account to gain more insight into the trace cache is the strategies used to decide
whether to hold the an existing trace or to replace it with a new coming trace that
mapped at the same TC line. A more intelligent scheme would improve performance
of the trace cache because it can hold the useful trace and ignore the less useful one at
the right time. However, investigation of this feature needs more time and certainly
would increase the complexity of the trace cache. Therefore, it is not included in this

research.

67

Companion CD-ROM Contents

Appendix A
Companion CD-ROM Contents

This CD contains essential materials that can be used to reproduce the
simulation and the results created from our simulation for referencing purposes. At
root directory, there are three subdirectories: DLX Sourcecode, Test Programs, and

Simulation log files.

A.1 DLX Sourcecode

This subdirectory contains sets of VHDL sourcecode of the Superscalar DLX
processor model categorized by processor configurations. Each set of VHDL
sourcecode comprises four files: Dix.vhd, DixPackage.vhd, Environment.vhd, and
Testbench.vhd.

Dix.vhd is the main VHDL file that describes the architecture of the DLX
processor. Most of the trace cache code is in this file.

DixPackage.vhd is the package file that contains types, subtypes, constants,
and functions in which they are used along with DIx.vhd. This file also includes some
code for the trace cache.

Environment.vhd creates the environment for the simulation. It describes how
the processor model interfaces with the outside world and the system organization
including the memory configuration. Originally, the memory capacity was 16Kbyte,
which was not enough to run Permute and DCT. Therefore, this file was modified to
increase the memory capacity to 32Kbyte.

Testbench.vhd connects all files together to make the simulation possible. This

file is the only original file that was not modified for the trace cache.

68

Companion CD-ROM Contents

To run each simulation configuration, we have to compile DIxPackage.vhd

first followed by DlIx.out, Environment.vhd, and Testbench.vhd.

A.2 Test Programs

There are two subdirectories: out files and Test programs sourcecode. The out
files subdirectory contains .out files for use as test programs. To use these files, we
have to change the filename of the desired one into dix.out and place it into the same
directory as the desired DLX VHDL code. For example, if we want to run DCT in the
simulation of 7C 4 at 8L, change from dct.out to dlx.out and put it into directory
tc4_81. When the simulation is halted, it will create a resuit.log file of DCT for the
chosen configuration.

In Test programs sourcecode, there are assembly files of all test programs.
Bubblesort and Primenumber are the original assembly sourcecode (bs-r and pn-20)
and the manually modified assembly sourcecode (bs-a, bs-d, pn-50, and pn-100).
Permute and DCT are the ones created by GNU-dIxcc of permute.c and dct.c from C
Sourcecode subdirectory and patched as described in 4.4, which is included in that

subdirectory. All assembly files are in Assembly Sourcecode subdirectory.

A.3 Simulation log files

This directory contains results created by each TC configuration as .Jog files.

An individual filename was changed from result.log created from the simulation after
the name of the test program. Each file contains information as follows:

e Log file banner — identifies the trace cache configuration and the name of the

test program used in the simulation.

Example:

TC 4 : 4 Lines *Test Program: bs-a.out

******************************‘k******************

e General Information — this section provides information about the number of
instructions that have been fetched into the processor (7 otal Fetched

Instructions), committed by the Commit Unit (Committed Instructions),

69

Companion CD-ROM Contents

rejected (Omitted Instructions), and the number of instructions that have been
accessed from the instruction cache (Cache Memory Access (fetch)).

e Instruction-Cache Info — indicates how many instruction cache hits there are in
the simulation of the test program and the percentage of hits by the total
instruction cache accesses.

o Trace-Cache Info — this section shows how many trace cache hits (including
TC-First Tag Hit and TC-Content Hit) and misses (including Compulsory
Misses and Conflict Misses) there are in the simulation of the test program and
the percentage of hits and misses.

e Information Collected From Individual Trace Cache Line — this table is the
information gathered from each TC line and contains the following items:

o Line — the trace cache line number,
o Comp-Miss — the number of compulsory misses on a TC line,
o Conf-Miss — the number of conflict misses on a TC line,
o TC-Write — the number of traces written ona TC line,
o TC-O Write — the number of traces that were overwritten with a
different trace content on a TC line,
o TC-Size — the longest trace size existing on a TC line,
o TC-Hit — the number of hits on a TC line,
o FTag-Hit — the number of TC-First Tag Hit on a TC line, and
o Cont-Hit — the number of TC-Content Hit on a TC line.
e Percentage of Cache Space Usage — this section indicates the percentage of

cache space that has been written by traces.

70

VHDL Code of Trace Cache

Appendix B
VHDL Code of Trace Cache

Three files have been modified from the original Superscalar DLX model.

They are Dlx.vhd, DixPackage.vhd, and Environment. vhd.

B.1 Dix.vhd

This file describes the architecture of the trace cache. The first part is signal

declaration.

-- Fill Buffer Structure

signal
signal

signal
signal
signal
signal

FB_InstrBuffer : TypeArrayInstr(0 to cInstrRow, 0 to cInstrSlot);
FB_InstrAddrBuffer : TypeArrayInstr(0 to cInstrRow, 0 to cInstrSlot);

FB_BufferReady : unsigned(0 to cInstrRow);
FB_TraceSize : TypeArraySlotCount (0 to cInstrRow):
FB_BranchExisting : unsigned(0 to cInstrRow);
FB_BranchSlot : TypeArraySlot (0 to cInstrRow);

-- signal to inform trace line counter when there are 2 instructions sit in the line simultaneously

signal

FB_TraceCount2up : bit;

-- Buffer line termination signals

signal
signal

signal
signal

signal
signal

FB_RowTerminatedByA : bit;
FB RowTerminatedByB : bit;

FB_FinishRowNumber A : TypeRow;
FB_FinishRowNumber B : TypeRow;

FB_BranchInstrA_Row : TypeRow;
FB_BranchInstrB_Row : TypeRow;

-- Instruction Write Enable

signal
signal
signal

FB_InstrAWrite : bit;
FB_InstrBWrite : bit;
FB_InstrWrite A B : unsigned(0 to 1)7

—- Buffer Index suite: Instruction A Index, Instruction B Index, and Reference Index (current index)

signal
signal
signal
signal
signal
signal

FB_InstrA_Row : TypeRow:=0;
FB_InstrA_Slot : TypeSlot:
FB_InstrB_Row : TypeRow:
FB_InstrB_Slot : TypeSlo
FB_CurrentRow : TypeRow:=0;
FB_CurrentSlot : TypeSlot:

-- Instruction Type Flags

signal
signal
signal
signal

-- For
signal
signal
signal

signal

FB_InstrA_IsBranch : bit := 'D';
FB_InstrB_IsBranch : bit t= '0%;
FB_InstrA_IsDelimiter : bit := *'0%;
FB_InstrB_IsDelimiter : bit := '0";

Experiment

FB_LastInstr : TypeWord;
FB_LastInstrShift : TypeWord;
FB_LastInstrIsBranch : bit:='0';

FB_Test :bit:='0';

71

VHDL Code of Trace Cache

'1' when Clock = '0' and FB_InstrAWrite = 'l' and
(FB_InstrA_IsDelimiter = 'l1' or
FB_CurrentSlot = cInstrSlot or
(FB_InstrA_IsBranch = 'l1' and FB_BranchExisting(FB_CurrentRow) = '1')
} else
'1' when Clock = '0' and FB_InstrWrite A B = "11" and
FB_InstrA_IsBranch = 'l' and
FB_InstrB_IsBranch = '1l' else
or;
FB_RowTerminatedByB <=
-- Test
'0' when Clock = '0' and FB_InstrWrite A B = "11" and
FB_CurrentSlot /= 0 and
(Equal(IF_InstrAddrRegA_Input,FBiLastInstrShift)='0') and
(FB_LastInstrIsBranch='0‘) else
'1' when Clock = '0' and FB_InstrWrite A B = "01" and
FB_CurrentSlot /= 0 and
(Equal(IF_InstrAddrRegB_Input,FB_LastInstrShift)='0') and
(FB_LastInstrIsBranch='0') else
-- When only instruction B is coming
"1' when Clock = '0' and FB_InstrWrite A B = "O1" and
(FP_InstrB_IsDelimiter = 'l' or
FB_CurrentSlot = cInstrSlot or
(FB_InstrB IsBranch = '1' and FB_BranchExisting (FB_CurrentRow) = '1' }
) else
-- When both instructions are coming
10" when Clock = '0' and FB_InstrWrite A B = "11" and
FB_InstrA_IsBranch = 'l' and
FB_BranchExisting(FB_CurrentRow) = '1' and
FB_InstrB_IsBranch = '0' and
FB_InstrB_IsDelimiter = '0' else
'0' when Clock = '0' and FB_InstrWrite A B = "11" and
FB_InstrA_IsBranch = 'l' and
FB_InstrB_IsBranch = '1' and
FB_BranchExisting(FB_CurrentRow) = '0' else
*1' when Clock = '0' and FB_InstrWrite A B = "11" and
FB_InstrA IsBranch = 'l' and
FB_InstrB_IsBranch = '1' and
FB_BranchExisting(FB_CurrentRow) = '1' else
11" when Clock = '0' and FB_InstrWrite A B = "11" and
{ FB_InstrB_IsDelimiter = 'l' or
FB_CurrentSlot = cInstrSlot-1 or
(FB_InstrA_IsBranch = '0' and
FB_InstrA_IsDelimiter = '0' and
FB_InstrB_IsBranch = 'l' and
FB_BranchExisting(FB_CurrentRow) = '1')) else
0;
-- Identify which buffer line(s) is(are) terminated.
FB_FinishRowNumber A <=
-- Test
FB_CurrentRow when Clock = '0' and FB_InstrAWrite = 'l' and
FB_CurrentSlot /= 0 and
(Equal(IF_InstrAddrRegA_Input,FB_LastInstrShift)='O') and
(FB_LastInstrIsBranch='0') else
FB CurrentRow when Clock = '0' and FB_InstrWrite A B = "11" and
FB_InstrA_IsBranch = 'l' and
FB_BranchExisting(FB_CurrentRow) = 'l' and
FB_InstrB_IsBranch = ‘0! and
FB_InstrB_IsDelimiter = '0’ else
FB_InstrA_Row when Clock = '0' and FB_InstrAWrite = 'l' and
(FB_InstrA_IsDelimiter = '1' or
(FB_CurrentSlot = cInstrSlot and
FB_InstrA_IsBranch ='0') or
(FB_CurrentSlot = cInstrSlot and
FB_InstrA IsBranch = 'l' and
FBHBranchExisting(FBicurrentRow) = '0')) else
FB_CurrentRow when Clock = '0' and FB_InstrAWrite = '1' and
{ FB_InstrA_IsBranch = '1' and
FBABranchExisting(FB_CurrentRow) = '1l'") else
FB_InstrA Row when Clock = '0' and FB_InstrWrite A B = "11" and
FB_InstrA_TsBranch = 'l' and
FB_InstrB_IsBranch = 'l' else
unaffected;
FB_FinishRowNumber B <=
-- Test
FB_CurrentRow when Clock = '0' and FB_InstrWrite A B = 01" and

FB CurrentSlot /= 0 and
(Equal(IF_InstrAddrRegB_Input,FB_LastInstrShift)=‘0‘) and
(FB_LastInstrIsBranch='0') else

-- When only instruction B is coming

FB InstrB Row when Clock = '0' and FB_InstrWrite A B = "01" and
{ FB_InstrB_IsDelimiter = '1' or
(FB_CurrentsSlot = cInstrSlot and
FB_InstrB_IsBranch = 0')) else

73

VHDL Code of Trace Cache

FB_CurrentRow when Clock '0' and FB InstrWrite A B = "01" and

" and

(FB_InstrB_IsBranch = 1
FB_BranchExisting(FB_CurrentRow) = '1l'") else

~-- When both instructions are coming

FB_InstrA_Row when Clock = '0' and FB_InstrWrite A B = "11" and
FB InstrA_IsBranch = '0' and
FB_InstrA IsDelimiter = '0' and
FB_InstrB_IsBranch = 'l1' and
FB_BranchExisting(FB_CurrentRow) = '1l' else
FB_InstrA_Row when Clock = '0' and FB_InstrWrite A B = "11" and
FB_InstrA_IsBranch = 'l' and
FB_InstrB_IsBranch = 'l' and
FB_BranchExisting(FB_CurrentRow) = '1l' else
FB_InstrB_Row when Clock = '0' and FB_InstrWrite A B = "11" and
(FB_InstrB_IsDelimiter = '1' or

FB_CurrentSlot = cInstrSlot-1 or
(FB_InstrA_IsBranch = '0' and

FB:InstrA_IsDelimiter = '0" and
FB_InstrB_IsBranch = 'l' and
FB_BranchExisting(FB_CurrentRow) = '1'")) else

unaffected;

-- Logic for informing when there are 2 instructions sitting in the same line
-— { for trace line counter mechanism }

FB_TraceCount2Up <= '1' when Clock = '0' and Clock'event and
FB_InstrWrite A B = "11" and
FB CurrentSlot <= cInstrSlot-1 and
(¢ FB_InstrA_IsBranch = '0' and
FB_InstrB_TIsBranch = '0' and
FB_InstrA_IsDelimiter = '0') or
¢ ((FB_BranchExisting(FB_CurrentRow) = '0' and
[S FB_InstrAAIsBranch = '1'" and
FB_InstrB_IsBranch = '0') or
(FB_InstrA_IsBranch = '0' and
FB_InstrA_IsDelimiter = '0' and
FB_InstrB_IsBranch = '1'")))} or
{ FB#BranchExisting(FB_CurrentRow) = '1l' and
(FB_InstrA_IsBranch = 'l' and
FB_InstrB_IsDelimiter = '0' and
FB_InstrB_IsBranch =1'0'")}))) else
oty

—— Determining whether incoming branch would sit in the current row or next possible row
FB_BranchInstrA_Row <=

0 when (Clock = '0' and Clock'event) and
(FB_InstrA_IsBranch = '1' and FB_BranchExisting(FB_CurrentRow)y = '1'" } and
FB_CurrentRow = cInstrRow else
FB_CurrentRow + 1 when (Clock = '0' and Clock'event } and
{ FB_InstrA_IsBranch = '1' and FBﬂBranchExisting(

FB_CurrentRow)y = '1'" } and
FB_CurrentRow < cInstrRow else
FB_CurrentRow;

FB_BranchInstrB_Row <=
-- When only instruction B is coming
0 when { Clock = '0' and Clock'event } and

FB_InstrWrite A_B = "01" and
(FB_InstrB_IsBranch = 'l' and FB_BranchExisting(FB_CurrentRow) = '1'") and
FB_CurrentRow = cInstrRow else
FB_CurrentRow + 1 when (Clock = '0' and Clock'event } and
FB_InstrWrite A_B = "01" and
{ FB_InstrB_IsBranch = '1' and FB_BranchExisting(

FB_CurrentRow) = '1')} and
FB_CurrentRow < cInstrRow else
-- When both instructions are coming

0 when (Clock = '0' and Clock'event) and
FB_InstrWrite A B = "11" and
((FB_CurrentRow = cInstrRow and
((FB_InstrA_IsBranch = '0' and
FB_InstrA_TsDelimiter = '0' and
FB_InstrB_IsBranch = 'l' and
FB_CurrentSlot = cInstrSlot) or
(FB_InstrA_IsBranch = '0' and
FB_InstrA_IsDelimiter = 'O' and
FB InstrB_IsBranch = 'l' and
FB_BranchExisting(FB_CurrentRow) = '1") or
{ FB_InstrA_IsDelimiter = 'l' and
FB_InstrB_IsBranch = 'l') or
(FB_InstrA_IsBranch = '1' and
FB_InstrB_IsBranch = '1' and
FB_BranchExisting(FB_CurrentRow) = '1'"))) or
(FB_CurrentRow = cInstrRow-1 and
FB_InstrA TsBranch = '1' and
FB_InstrB_IsBranch = 'l' and
FBgBranchExisting(FB_CurrentRow) ='1'")) else
FB_CurrentRow + 1 when (Clock = '0' and Clock'event) and

FB_InstrWrite A B = 11" and
FB_CurrentRow < cInstrRow and

((FB_InstrA‘IsBranch = '0' and
FB_InstrA_IsDelimiter = '0' and
FB_InstrB_IsBranch = 'l and
{ FB_CurrentSlot = cInstrSlot or
{ FB_BranchExisting(FB_CurrentRow) = '1'))) or
{ FB_InstrA_IsDelimiter = '1' and
FB_InstrB_IsBranch = 'l' } or
(FB_TnstrA_TsBranch = '1' and
FB_InstrB_IsBranch = '1' and
FB_BranchExisting(FB_CurrentRow) = '0")) else

74

VHDL Code of Trace Cache

FB_Currentrow + 2 when { Clock = *0' and Clock'event } and
FB_InstrWrite A B = 11" and
FB CurrentRow < cInstrRow-1 and
FB_InstrA_IsBranch '1' and

FB_InstrB_IsBranch = 'l' and
FB_BranchExisting(FB_CurrentRow) = '1l' else
FB_CurrentRow;
-- Index for instruction A
FB_InstrA_Row <=
-- Test
0 when (Clock = '0' and Clock'event) and
FB_InstrAWrite = '1' and
FB_CurrentRow = cInstrRow and
FB Currentslot /= 0 and
(Equal(IF InstrAddrRegA_Input, FB_. LastInstrShift)='0') and
(FB_LastInstrIsBranch='0") else
FB_CurrentRow+1l when (Clock = '0' and Clock'event) and
FB_InstrAWrite = 'l' and
FB_ CurrentRow < cInstrRow and
FB Currentslot /= 0 and
(Equal(IF InstrAddrReghA_Input, FB_ LastInstrShift)='0') and
(FB_LastInstrIsBranch—'0‘) else
0 when { Clock = '0' and Clock’event) and
FB_InstrA_IsBranch = '1' and
{ FBdBranchExisting(FB_CurrentRow) = '1' and FB_CurrentRow = cInstrRow)
and
(FB_InstrWrite A B = "10" or FB_InstrWrite A B = "11") else
FB_CurrentRow+l when (Clock = '0' and Clock'event) and
FB_InstrA IsBranch = '1' and
(FB_BranchExisting(FB_CurrentRow) = '1' and FB_CurrentRow
< cInstrRow) and
{ FB_InstrWrite A B = "10" or FB_InstrWrite A B = "11")
else
FB_CurrentRow when (Clock = '0' and Clock'event) and
(FB_ InstrWrite A B = "10" or FB_InstrWrite_A_B = "11") else
unaffected;
FB_InstrA_Slot <=
-— Test
0 when (Clock = '0' and Clock'event } and
FB InstrAWrite = '1' and
FB_ “CurrentSlot /= 0 and
(Equal(IF InstrAddrRegA_Input, FB_ LastInstrShift)='0"') and
(FB_LastInstrIsBranch—‘O)} else
0 when (Clock = '0' and Clock'event) and
FB_InstrA_IsBranch = '1' and
{ FB_ Instrerte A B = "10" or FB _InstrWrite A B = "11") and
(FB BranchEx1st1ng(FB CurrentRow) = '1') else
FB_CurrentSlot when (Clock = '0' and Clock'event) and
{ FB_InstrWrite A B = "10" or FB_InstrWrite A B = "11"]
else
unaffected;
-- Index for instruction B
FB_InstrB_Row <=
-- Test
0 when (Clock = '0' and Clock'event) and
FB InstrWrite A B = "11" and
FB_CurrentRow = cInstrRow and
FB_ “currentSlot /= 0 and
(Equal(IF InstrAddrRegA_Input, FB_| LastInstrShift)="0'} and
(FB_LastInstrIsBranch—‘O } else
FB_CurrentRow+l when (Clock = '0' and Clock’event) and
FB_InstrWrite A_B = “11" and
FB CurrentRow < cinstrRow and
FB_ “CurrentSlot /= 0 and
(Equal(IF InstrAddrRegA_Input, FB_: LastInstrShift)='0"') and
(FB_LastInstrIsBranch—'O') else
0 when (Clock = '0' and Clock'event) and
FB_InstrWrite A B = "01" and
FB_CurrentSlot /= 0 and
FB CurrentRow = cInstrRow and
(Equal(IF InstrAddrRegB_Input, FB LastInstrShlft)='0) and
(FB_LastInstrIsBranch—'O) else
FB_! CurrentRow+1l when { Clock = '0' and Clock'event } and
FB_InstrWrite A_B = "01" and
FB Currentslot 7= 0 and
FB_(CurrentRow < cInstrRow and
(Equal(IF InstrAddrRegB_Input, FB LastInstrShlft)='0 } and
(FBdLastInstrIsBranch—'0') else
0 when { Clock = '0' and Clock'event) and
FB_InstrAWrite = 'l' and
FB_CurrentSlot /= 0 and
FB_ _CurrentRow = cInstrRow and
(Equal(IF InstrAddrRegA_Input, FB_] LastInstrShift)='0')} and
(FB_LastInstrIsBranch 0') else
FB_CurrentRow+l when (Clock = '0' and Clock'event) and

75

VHDL Code of Trace Cache

FB_InstrAWrite = 'l' and

FB_CurrentSlot /= 0 and

FB_CurrentRow < cInstrRow and
(Equal(IF_InstrAddrRegA_Input,FB_LastInstrShift)='0‘) and
(FB_LastInstrIsBranch='0') else

—- Current row has branch and Both instructions are coming

1 when (Clock = '0' and Clock'event) and
FB_InstrWrite A B = "11" and
FB_BranchExisting(FB_CurrentRow) = '1' and
FB_CurrentRow = cInstrRow and
FB_InstrA_IsBranch = 'l1' and
FB_InstrB_IsBranch = '1' else
FB_CurrentRow+2 when { Clock = '0' and Clock'event) and
FB_InstrWrite A_B = "11" and
FBﬁBranchExisting(FB_CurrentRow) = '1' and
FB_CurrentRow < cInstrRow-1 and
FB_InstrA_IsBranch = 'l' and
FB_InstrB_IsBranch = 'l' else
0 when (Clock = '0' and Clock'event) and
(FB_InstrWrite A B = "11" and
FB_BranchExisting(FB_CurrentRow) = '1' } and
((FB_CurrentRow = cInstrRow and
{ (FB_InstrA_IsBranch = '1' and FB_InstrB_IsBranch = '0') or
(FB_InstrA_IsBranch = '0' and FB_InstrB_IsBranch = '1' } }) or
{ FB_CurrentRow = cInstrRow-1 and
FB_InstrA_IsBranch = 'l' and

FB_InstrB_IsBranch = '1'") } else

FB_CurrentRow+l when (Clock = '0' and Clock'event) and
(FB_InstrWrite A B = "11" and
FB_BranchExisting(FB_CurrentRow) ='1'") and
{ FB_CurrentRow < cInstrRow and
((FB_InstrA_IsBranch = 'l' and FB_InstrB_IsBranch = '0'
) or
(FB_InstrA_IsBranch = '0' and FB_InstrB_IsBranch =
'1'))) else
__ Current row has NO branch and Both instructions are coming
0 when (Clock = '0' and Clock'event } and
{ FB_InstrWrite A_B = "11" and
FB_BranchExisting(FB_CurrentRow) = '0' and
FB_CurrentRow = cInstrRow)} and
{ (FB_CurrentSlot = cInstrSlot and
((FB_Instrh IsBranch = 'l' and FB_InstrB_IsBranch = '0') or
{ FB_InstrA_IsBranch = '0' and FB_InstrB_IsBranch = *1'))) or
(FB_InstrA IsBranch = 'l' and
FB_InstrB_IsBranch =1'1'"}) else
FB_CurrentRow+l when (Clock = '0' and Clock'event } and
(FB_InstrWrite A B = "11" and
FB_BranchExisting(FB_CurrentRow) = '0' and
FB_CurrentRow < cInstrRow) and
{ (FB_CurrentSlot = cInstrSlot and
((FB InstrA_IsBranch = 'l' and FB_InstrB_IsBranch =
'0') or
(FB_InstrA_IsBranch = '0' and FB_InstrB_IsBranch =
"1'))) or
{ FB_InstrA_IsBranch = '1l' and
FB_InstrB_IsBranch ='1'")) else
__ Current row has branch and only instruction B is coming and it is a branch
0 when (Clock = '0' and Clock'event) and
FB_InstrWrite A B = "01" and
FB_BranchExisting(FB_CurrentRow) = '1l'" and
FB_InstrB_IsBranch = 'l1' and
FB_Currentrow = cInstrRow else
FB_CurrentRow+l when (Clock = '0' and Clock'event) and
FB_InstrWrite A B = "01" and
FB_BranchExisting(FB_CurrentRow) = '1'" and
FB_InstrB_IsBranch = '1' and

FB_Currentrow < cInstrRow else

—— In case of Instruction A is a delimiter instruction (Jumps, Trap, RFE)

0 when (Clock = '0' and Clock'event) and
FB_InstrWrite A B = "11" and
FB_CurrentRow = clInstrRow and
FB_InstrA_IsDelimiter = 'l' else
FB CurrentRow+l when { Clock = '0' and clock'event) and
FB_InstrWrite A_B = "11" and
FB_CurrentRow < cInstrRow and
FB_InstrA_IsDelimiter = '1l' else
-- Original cases
FB_CurrentRow when (Clock = '0' and Clock'event) and FB_InstrWrite A B = "01" else
0 when { Clock = '0' and Clock'event) and
(FB_InstrWrite A B = "11" and FB_CurrentRow = cInstrRow and FB_CurrentSlot =
cInstrSlot } else -
FB_CurrentRow+1 when (Clock = '0' and Clock'event) and
(FB_InstrWrite A_B = "11" and FB_CurrentSlot = cInstrSlot)
else
FB_CurrentRow when (Clock = '0' and Clock'event) and FB InstrWrite A B = "11" else
unaffected; B o
FB_InstrB_Slot <=
—-- TesL
0 when { Clock = '0' and Clock'event) and
FB_InstrWrite A B = "01" and

76

VHDL Code of Trace Cache

FB_InstrWrite A B = "11" and
FB_BranchExisting(FB_CurrentRow) = ‘1’ and
FB_currentRow < cInstrRow and
{ (FB_InstrA_IsBranch = '1' and
FB_InstrB_IsBranch = '0' and
FB_InstrB_IsDelimiter = '0') or
{ FB_InstrA_IsBranch = '0'" and
FB_InstrA_TIsDelimiter = '0' and
FB_InstrB_IsBranch = '1l') or
(FB_InstrAvIsDelimiter = '1'" and
FBﬁInstrB_IsBranch = '1"'")) else
1 when { Clock = 'l' and Clock'event) and
FB_InstrWrite A B = "11" and
FB_BranchExisting(FBfCurrentRow) = '1' and
FB_currentRow = cInstrRow and
{(FB_InstrA_IsBranch = '1' and
FB_InstrB_IsDelimiter = '1') or
(FB_InstrA IsBranch = 'l' and
FB_InstrB_IsBranch ='1')) else
0 when (Clock = 'l' and Clock'event) and
FB_InstrWrite A B = "11" and
FB_BranchExisting(FB~CurrentRow) = '1' and
{{ FB_CurrentRow = cInstrRow and
{{ FB_InstrA_IsBranch = '1l' and
FB_InstrB_IsBranch = '0' and

FB_InstrB_IsDelimiter
FB_InstrA_IsBranch = and
FB_InstrA_IsDelimiter '0' and

= '0') or
ot
FB_InstrB_IsBranch = '1') or
.

FB_InstrA_IsDelimiter = '1' and
FB_InstrB-IsBranch = })) or
(FB_CurrentRow = cInstrRow-1 and

(G FB_InstrA_IsBranch = '1' and
FBAInstrB_IsDelimiter ='1'"} or
{ FB_InstrAfIsBranch = '1' and
FB_InstrB_IsBranch = '1')))) else
- Current row has NO branch and both instructions is coming
1 when { Clock = '1' and Clock'event) and
FB_InstrWrite A B = "11" and
FB_BranchExisting(FB_CurrentRow) = '0' and

FB_CurrentSlot = cInstrSlot and
FB_currentRow = cInstrRow and
FB_InstrA_IsBranch = '1' and
FB_InstrB_IsDelimiter = 'l' else

0 when { Clock = '1' and Clock'event) and
FB InstrWrite A B = "11" and
FB_BranchExisting (FB_CurrentRow) = ‘0’ and
FB_CurrentSlot = cInstrSlot and
{ (FB_CurrentRow = cInstrRow and

(G FB_InstrA_IsBranch = '1' and
FB_InstrB_IsBranch = '0' and
FB_InstrB_IsDelimiter = '0') or

(FBfInstrA_IsBranch = '0' and
FB_InstrA_IsDelimiter = '0" and
FB_InstrB_IsBranch = '1'") or

(FB_InstrA_IsDelimiter = '1' and
FB_InstrB_IsBranch = '1"}))) or

(FB_CurrentRow = cInstrRow-1 and
FB_InstrA_IsDelimiter = 'l' and
FB_InstrB_IsDelimiter = '1")) else
FB_CurrentRow+l when (Clock = 'l' and Clock'event)y and

FB_InstrWrite A B = "11" and
FB_CurrentRow <= cInstrRow-1 and

FB_InstrA_IsBranch = '1' and
FB_InstrB_IsBranch = 'l' else
FB_CurrentRow+1 when (Clock = '1' and Clock'event) and
FB_InstrWrite A_B = "11" and
FB_BranchExisting(FB_CurrentRow) = '0' and
FB_CurrentSlot = cInstrSlot and
{ -- (FB_CurrentRow <= cInstrRow-1 and
-- FB_InstrA_IsBranch = 'l' and
-- FB_InstrB_IsBranch = 'l') or
(FB CurrentRow < cInstrRow and
((FB_InstrA‘IsBranch = '1' and
FB_InstrB_IsBranch = '0' and
FB_InstrB_IsDelimiter = '0") or
{ FB_InstrA_IsBranch = '0' and
FB_InstrA_IsDelimiter = '0' and
FB_InstrB_IsBranch = '1')) } or

{ FB_CurrentRow = cInstrRow-1 and
FB_InstrA_IsDelimiter = '1' and
FB_InstrB"IsBranch = '1')) else

-~ Current row has a branch and instruction A is coming {it is a branch)

0 when (Clock = '1' and Clock’event) and
FB_InstrWrite A_B = "10" and
FB_BranchExisting(FB_CurrentRow) = '1' and
FB_CurrentRow = cInstrRow and
FB_InstrA_IsBranch = 'l' else
FB_CurrentRow+1l when (Clock = '1' and Clock'event) and
FB_InstrWrite A B = "10" and
FB_BranchExisting(FE_CurrentRow) = '1' and
FB_CurrentRow < cInstrRow and
FB_InstrA_IsBranch = '1°' else

78

VHDL Code of Trace Cache

__ Current row has a branch and instruction B is coming (it is a branch)

0 when { Clock = '1l' and Clock'event y and

FB_InstrWrite A_B = "01" and

FB_ BranchExlstlng(FB CurrentRow) = '1' and

FB_CurrentRow = cInstrRow and

FB_InstrB_IsBranch = 'l' else

» FB_CurrentRow+1 when (Clock = '1' and Clock'event) and

FB_InstrWrite A B = "0l1" and
FB BranchEx1st1ng(FB CurrentRow) = 'l1' and
FB CurrentRow < cInstrRow and
FB_InstrB_IsBranch = 'l' else

-~ If Instruction A is delimiter instruction

FB_InstrA Row+l when (Clock = '1' and Clock'event) and
FB_InstrWrite A B = "10" and
FB_InstrA_IsDelimiter = '1' and
FB_InstrA Row < cInstrRow else
0 when (Clock = 'l' and clock'event) and
FB_InstrWrite A B = "10" and
FB InstrA IsPelimiter = '1' and
FB_InstrA_Row = cInstrRow else
FB_InstrB Row when (Clock = '1' and Clock'event) and
FB_InstrWrite A B = "11" and
FB_InstrA_IsDelimiter = 'l' and
FB_InstrB_IsDelimiter = '0' else
-- If Instruction B is delimiter instruction
FB_InstrB_Row+1 when (Clock = 'l1' and Clock'event)} and
FB_InstrB _IsDelimiter = ‘1" and
FB_InstrB_Row < cInstrRow else
0 when {(Clock = '1' and Clock’ event) and
FB_InstrB_IsDelimiter = 'l' and

FB_InstrB_Row = cInstrRow else

-- Original cases

FB CurrentRow+1 when { Clock = '1' and Clock'event) and

((FB_InstrWrite A B = "10" and

FB InstrA Row < cInstrRow and
FB_InstrA_Slot = cInstrSlot) or
FB_ Instrerte A_B = "01" and
FB InstrB_Row < cInstrRow and
FB InstrB_Slot = cInstrSlot)} or
{ FB_. InstrWrite A B = "11" and

{ (FB_InstrB_| Row /= 0 and FB_InstrA_Slot =

cInstrSlot) or
(FB_InstrB_Row < cInstrRow and FB_InstrB_Slot =
cInstrSlot })})) else
0 when (Clock = 'l' and Clock'event) and
{ (FB_ InstrWrite A B = "10" and
FB_InstrA_Row = cInstrRow and
FB_InstrA_Slot = cInstrSlot) or
FB InstrWrite A B = "01" and
FB_InstrB Row = cInstrRow and
FB_InstrB_Slot = cInstrSlot) or
(FB_InstrWrite A B = "11" and
{ {(FB_InstrB_Row = 0 and FB_InstrA_Slot = cInstrSlot) or
(FB_InstrB_Row = cInstrRow and FB_InstrB_Slot = cInstrSlot))))

5
3
4

else
unaffected;

FB_CurrentSlot <=

-- Test
2 when { Clock = 'l' and Clock'event) and
FB_InstrWrite A B = "11" and
FB Currentslot 7= 0 and
(Equal(IF InstrAddrRegA_Input, FB_] LastInstrsShift)='0") and
(FB_LastInstrIsBranch—'0') else

1 when { Clock = '1' and Clock'event } and
FB InstrAWrite = '1' and
FB_ _currentSlot /= 0 and
(Equal(IF InstrAddrRegA_Input, FB_ LastInstrShift)='0') and
(FB_LastInstrIsBranch—'O) else

1 when (Clock = 'l' and Clock'event) and

FB InstrWrite A_B = "01" and

FB_ " CurrentSlot /= 0 and

(Equal(IF InstrAddrRegB_Input, FB_] LastInstrShift)='0') and
' (FBﬁLastInstrIsBranch—'O } else

-— Current row has branch and both instructions are coming
2 when { Clock = 'l' and Clock'event) and
! FB_InstrWrite A B = "11" and
'} FB BranchExlstlng(FB CurrentRow) = '1' and
FB_InstrA_IsBranch = 'l' and
FB_InstrB_IsBranch = '0' and
FB_InstrB_IsDelimiter = '0' else

0 when (Clock = '1' and Clock'event) and
L- FB_InstrWrite A B = "11" and
FB BranchEx1st1ng(FB CurrentRow) = 'l' and
i FB_InstrA_IsBranch = '1' and
j FB_InstrB_IsDelimiter = 'l' else

1 when (Clock = '1' and Clock'event) and
FB InstrWrite A_B = "11" and
FB BranchEx1st1ng(FB CurrentRow) = '1' and
(G FB_InstrAAIsBranrh ='0' and
FB_InstrA_IsDelimiter = '0' and
FB_InstrB_IsBranch = ‘1") or

79

VHDL Code of Trace Cache

! (FB_InstrA_IsBranch = 'l' and
FB_InstrB_IsBranch = '0') or
(FB_InstrA_IsBranch = '1' and
FB_InstrB_IsBranch = '1')) else

1 when { Clock = 'l' and Clock'event) and
FB InstrWrite A B = "10" and
e FB_BranchExisting(FB_CurrentRow) = '1l' and
FB_InstrA_IsBranch = 'l' else
1 when (Clock = '1' and Clock'event } and

FB_InstrWrite A B = "01" and
FB_BranchExisting(FB_CurrentRow) = '1' and

FB_InstrB_IsBranch '1' else

—- Current row has NO branch and both instructions are coming

1 when { Clock = '1' and Clock'event } and
FB_InstrWrite A B = "11" and
FB_BranchExisting(FB_CurrentRow) = '0' and
((FB_CurrentSlot = cInstrSlot and

FB_InstrA_IsBranch = '0' and
FB_InstrA TsDelimiter = '0’ and
FB_InstrB_IsBranch = 'l') or

(FB_InstrA_IsBranch = '1' and
FB_InstrB_IsBranch = '1')) else

0 when { Clock = '1' and Clock'event) and
FB_InstrWrite A B = "11" and
FB_BranchExisting(FB_CurrentRow) = '0' and
((FB_CurrentSlot = cInstrSlot-1 and

FB_InstrA_IsBranch = ‘0' and
FB_InstrA_IsDelimiter = '0' and
FB_InstrB_IsBranch = 'l') or

{ FB_InstrA_IsDelimiter = '1' and
FB_InstrB_IsBranch = '1')) else

'1' and Clock'event) and
FB_InstrWrite A B "11" and
FB_BranchExisting (FB_CurrentRow)
FB_CurrentSlot < cInstrSlot-1 and

FB CurrentSlot+2 when { Clock

= '0' and

FB_InstrA IsBranch = '0' and
: FB_InstrA_IsDelimiter = '0' and
FB_InstrB_IsBranch = 'l' else

—— In case of whether Instruction A and/or Instruction B is a delimiter instruction

0 when (Clock = '1' and Clock'event) and
((FB_InstrWrite A B = "10" and
FB_InstrA_IsDelimiter = 1'1'") or
FB_InstrB_IsDelimiter = 'l') else
FB_InstrB_Slot+1 when (Clock = '1' and Clock'event)} and

FB_InstrWrite A B = "11" and
FB_InstrA_IsDelimiter = 'l' and
FB_InstrB_IsDelimiter = '0' else
-- Original cases
0 when { Clock = 'l' and Clock'event) and
((FB_InstrWrite A B = "10" and FB_InstrA_Slot = cInstrSlot) or

(FB_InstrWrite A_B
(FB_InstrWrite A B
1 when (Clock = 'l' and Clock

"01" and FB_InstrB_Slot
"11" and FB_InstrB_Slot
'event) and

cInstrSlot) or

cInstrSlot)) else

cInstrSlot and

{ FB_InstrWrite A B "11" and FB_InstrA_Slot

FB_InstrB_Slot = 0) else
FB_CurrentSlot+l when { Clock = '1' and Clock'event) and
((FB_InstrWrite A B = "10" and FB_InstrA_Slot <=
cInstrSlot-1) or
(FB_InstrWrite A B = "01" and FB_InstrB_Slot <=
cInstrSlot-1) } else
FB_CurrentSlot+2 when { Clock = 'l' and Clock'evenlL)y and
(FB_Instrwrite A B = "11" and FB_InstrB_Slot <=
cInstrSlot-1) else

unaffected;

This part is the concurrent part of the trace cache memory and trace cache hit

: logic.

' - Trace Cache Portion (Concurrent}

TC_FirstInstrAddr <= FB_InstrAddrBuffer(0,0) when FB_TraceSize(0) > 1 and FB_BufferReady(O) =
'1' else

FB_InstrAddrBuffer(l,O) when FE_TraceSize(l) > 1 and FB_BufferReady(l) =
'l' else

FB_InstrAddrBuffer(2,0) when FB_TraceSize(Z) > 1 and FB_BufferReady(2) =
'1' else

FB_InstrAddrBuffer(3,0) when FB_TraceSize(3) > 1 and FB_BufferReady(3) =
'1' else

unaffected;

ze(0) > 1 and

TC_DestInstrAddr <=
FB_BufferReady (0}

FB_InstrAddrBuffer(O,FB_BranchSlot(0)+l) when FB_TraceSi

'1' and

FB_BranchSlot(O) <
FB_TraceSize(O)—l and

FB_BranchExisting(0) = '1' else

80

e

VHDL Code of Trace Cache

FB_InstrAddrBuffer(l,FB_BranchSlot(1)+1) when FB_TraceSize(l) > 1 and
FB_BufferReady(l) =

'1' and

FB_TraceSize(1)-1 and

FB_BranchSlot(l) <

FB_BranchExisting(l) = '1' else

'1' and

FB_TraceSize(Z)—l and

FB_InstrAddrBuffer(Z,FB_BranchSlot(2)+l) when FB_TraceSize(2) > 1 and

FB_BufferReady(2) =

FB_BranchSlot (2) <

FB_BranchExisting(Z) = '1' else

'1' and

FPB_TraceSize(3)-1 and

FB_InstrAddrBuffer(3,FB_BranchSlot(3)+1) when FB_TraceSize(3) > 1 and
FB_BufferReady(3)

FB_BranchSlot(S) <

FB_BranchExisting(3) = '1' else

TC_SelectedEntry <= To_Integer

unaffected;

(TC_FirstInstrAddr(3 downto 2)); —— <--= No of bit for TC line

amount

- Trace Cache Hit Logic el

TC_FirstTagHit <= Equal(TC_ValidBit(To_Integer(IF_InstrCounterReg(3 downto 2))) &
TC_TagReg_Ol(To#Integer(IF.InstrCounterReg(3 downto 2)}) ,
"1t & IF_InstrCounterreg(31 downto 2)); -- "~~~ Change here for No of bit

for TC line amount
TC_OtherHit <= 'l' when TC_Hit

To_Integer (TC_TagReg_01(TC_Hit

To_Integer(TC_TagReg_Ol(TC#Hit

To_Integer (TC_TagReg_01(TC_Hit

Line = '1' and
TC_FirstTagHit = '0' and
{ To_Integer(IF_InstrCounterReg) >
LineNumber) & "00™))} and
({ TC_BranchExisting(TC_HitLineNumber) = '0' and
ToLInteger(IF_InstrCounterReg) <
LineNumber) & "00" + { TC_TraceSize(TC_HitLineNumber) * 4))
) or
{ TC_BranchExisting(TC_HitLineNumber) = '1' and
(
(
To_Integer(IF_InstrCounterReg) <
LineNumber) & "00" + ({ TC_BranchSlot(TC_HitLineNumber)+l)*4))
} or
(
To_Integer(IF_InstrCounterReg) <

To_Integer(TC_TagReg‘OZ(TCAHitLineNumber) & "00"™ + (| TC_TraceSize(TC_HitLineNumber)—
TC_BranchSlot(TC_HitLineNumber)+l) *4))

)

TC_Hit <= TC_FirstTagHit or TC_OtherHit;

This section is the sequential portion of the VHDL code that

conditions to put instructions

and the associated addresses into fill-buffer.

Fill Buffer e

—— Pplace instruction(s) and address(es) into fill-buffer
if FB_InstrAWrite = '1' then

IF_InstrAddrRegA_Input;
end if;

FB_InstrBuffer(FB_InstrA Row , FB_InstrA_Slot) <= IF InstrRegA_Input;
FB_InstrAddrBuffer(FB _InstrA_Row ’ FB_InstrA_Slot)

if FB_InstrBWrite = 'l' then

IF_InstrAddrRegB_Input;
end if;

FB_InstrBuffer(FB_InstrB_Row , FB_InstrB_Slot) <= IF_InstrRegB_Input;
FB_InstrAddrBuffer(FB_InstrB_Row A FB_InstrBislot)

-- For Experiment
if FB_InstrWrite A B = "10" then

end if;

if FB_Ins

end if;

FB_LastInstr <= IF_InstrAddrRegA_Input;
FB_LastInstrShift <= IF_InstrAddrRegA_Input+4;
FB_LastInstrIsBranch <= IsBranch(IF_InstrRegA_Input);

trWrite A B = "01" or FB_InstrWrite A B = "11" then
FB LastInstr <= IF_InstrAddrRegB_Input;
FB_LastInstrShift <= IF_InstrAddrRegB_Input+4;
FB_LastInstrIsBranch <= IsBranch(IF_InstrRegB_Input);

defines the

<=

<=

81

VHDL Code of Trace Cache

-- Bny row termination(s})?
-- If so, which instruction? (A and/or B did it) and which line?
—— When known, set the "Buffer Ready flag" to indicate the incident
if FB_RowTerminatedByA = 'l' then
FB_BufferReady(FB_FinishRowNumber_ A) <= "1t

end if;
if FB_RowTerminatedByB = 'l' then
FB_BufferReady(FB_FinishRowNumber B y <= '1";
1 end if;

-- Counting the trace size of fill-buffer line(s)
if FB_InstrWrite A B = "10" then

FB_TraceSize(FB_InstrA_Row) <= FB_TraceSize(FB_InstrA_Row } + hIN;]
end if;

if FB_InstrWrite_A B = "01" then
FB_TraceSize(FB_InstrB_Row) <= FB_TraceSize(FB_InstrB_Row] + 1;
end if;

if FB_InstrWrite A B = "11" then
if FB_TraceCount2Up = '1' then
FB_TraceSize(FB_InstrA Row } <= FB_TraceSize(FB_InstrA_ Row) *

2;
! else
FB_TraceSize(FB_InstrA Row) <= FB_TraceSize{ FB_InstrA_Row) +
1;
FB_TraceSize{ FB_InstrB_Row)} <= FB_TraceSize(FB_InstrB_Row) +
1;

end if;
end if;

-- Updating "Branch Existing Flag" and "Branch Slot" of trace information when there
comes the branch
if FB_InstrA_IsBranch = 'l' then
FB BranchEx1st1nq(FB_BranchInstrA_Row)y <= "'1";
FB Branchslot(FB_ InstrA Row) <= FB_InstrA_Slot;

end if;
if FB InstrB_IsBranch = 'l' then
FB BranchExisting(FB BranchInstrB_Row) <= '1';
FB_BranchSlot(FB_InstrB_Row) <= FB_InstrB_Slot;
end if:

This section describes the transfer function of instructions from fill-buffer to

trace cache memory and the trace cache hit consideration.

—- Trace transfer function and line reset
for line in FB_BufferReady'range loop
if FB BufferReady(line) = '1' then
-~ If there are more than one instruction in the line, the transfer function will
commence.
-- Otherwise, the line would be abandoned.
if | FB_TraceSize(line) > 1)} and
(
(TC_FirstInstrAddr (31 downto 2) /= TC_TagReg | 01(TC_selectedEntry)) or
(FB_TraceSize(line) >= TC_TraceSize (TC_. SelectedEntry))
) then
-- Transfer function commencing
TC_ValidBit (TC_SelectedEntry) <= A NIR
TC_TagReg_01 (TC_: SelectedEntry) <= TC_FirstInstrAddr (31 downto 2);
if | FBHBranchEx1st1ng(llne) = '1' and FB Branchslot(llne) <
FB_TraceSize(line)—l } then
TC_TagReg_OZ(TC_SeléctedEntry) <= TC_DestInstrAddr (31
downto 2);
else
TC_TagReg_02 (TC_SelectedEntry} <= TC_FirstInstrAddr (31
downto 2);
end if;
TC_TraceSize (TC_| SelectedEntry) <= FB_’ TraceSize(line):
TC BranchEx1st1ng(TC SelectedEntry) <= FB_BranchExisting(line);
TC_BranchSlot(TC_SelectedEntry) <= FB_| BranchSlot {line) ;

i —- For counting the number of writing to the individual cache
line
TC_TraceWrite(TC_SelectedEntry) <=
TC_TraceWrite(TC_SelectedEntry)+1;

~- Number of overwriting
if ((TC_TraceSize(TC_selectedEntry) /= FB_TraceSize(line)) or

(TCuTagReg_OZ(TC_selectedEntry) /= TC_DestInstrAddr(31
downto 2)) and

(FB_BranchExisting(line) = '1l' and FB_BranchSlot(line) <
FB_TraceSize(line)-1)) or
((TC_TagReg_02(TC_selectedEntry) /= TC_FirstInstrAddr(31
downto 2)) and
not { FB_BranchExisting(line) = s] and
FR_BranchSlot (line) < FB_TraceSize(line)-1)) } then
TC_TraceOverwrite(TC_SelectedEntry) <=

TC_TraceOverwrite(TC_SelectedEntry)+1;

82

VHDL Code of Trace Cache

end if;

-- Recording the longest trace in a particular line
if (FB_TraceSize(line)} > TC_LongestTrace(TC_SelectedEntry))
then
TC_LongestTrace(TC_SelectedEntry) <= FB TraceSize(
line)¢
end if;

for trace_slot in 0 to cInstrSlot loop
TC_Instr(TC_SelectedEntry,trace_slot) <=
FB_InstrBuffer(line,trace_slot);
TC_InstrAddr(TC_SelectedEntry,traceASlot) <=
FB_InstrAddrBuffer(line,trace_slot);
end loop;

end if;
FB_BufferReady(line) <= '0';
FB_TraceSize(line)} <= 0;
FB_BranchExisting(line) <= '0";
FB_BranchSlot(line) <= 0;
for slot in 0 to cInstrSlot loop
FB_InstrBuffer(line , slot) <= (others => R
AN N

FB_InstrAddrBuffer(line , slot) <= (others =>
end loop;

end if;
end loop;
== TC Hit Logic -
If TC_FirstTagHit = 'l' then

TC_HitLine <= 'l';

TC_HitLineNumber <= To_Integer(IF_InstrCounterReg(3 downto 2)); -_— o

Change here for TC lines

end if;

This section shows the resetting of the trace cache signal at the start of the

simulation (in bold).

—- External RESET .

if Reset = '1' then
IF_ValidFlagh <= '07;
IF_ValidFlagB <= '0';
BTB_ValidFlag <= (others => '0');
DP_HaltFlag <= 0';
DP InterruptEnableFlag <= '0';
DP_ProcessIdentifierReg <= (others => '0');
RB_ValidFlag <= (others => o')
BRU_ValidFlag <= '0';
ALU_ValidFlag <= '0';
MDU_ValidFlag <= '0';
LSU_validFlag <= '0';
LSU_EA_ValidFlag <= '0';
LSU_SPR_ValidFlag <= ‘o'
CU_NextCommitPointerReg <= "10000"; —- Initialize pointer
ITB ValidFlag <= (others => '0' };
IC_validFlag <= (others 0)

DTB_ValidFlag <= (others o')
DC_validFlag <= (others U
WB_EntrancevalidFlag <= '0';
WB_ValidFlag <= { others => '0' });

BIU_ActiveLoadFlag <= '0';
BIU_ActiveFetchFlag <= '0'";
BIU_ActiveStoreFlag <= '0';
BIU—FirstBusClockOfActiveCycleFlag <= '0';

TC_TraceWrite <= (others => 0);
TC_T:aceOvezwrite <= (others => 0);

end if;

This is the last part of DIx.vhd for writing the log file of the simulation.

-- Write acquisited data to file --

process
begin
-- BusClock continues while DLX is halted.

83

VHDL Code of Trace Cache

wait on IncomingClock until IncomingClock = '1';

BIU_BusClock <= not BIU_BusClock;
end process;

- Model data logger ==

process

-- Name of experiment set
",

constant exp_name : string(l to 49) = "TC_4 4 Lines *Test Program: ;
constant exp_name_ul String(l to 49) = "****&*****&***&*&rk****************&*****&k*******";

-- Type of Hit/Miss

constant TraceMiss : string(l to 26) := "No. of Trace Cache Miss = ";
constant TCAccessMiss : string(l to 26) := "No. of TC Access Miss ="
constant CompMiss : string(l to 28) = "No, of TC Compulsary Miss = ";
constant ContMiss : string(l to 28} := "No. of TC Conflict Miss =";

constant CacheRccess : string(l to 26) 1= "No. of All Cache BAccess = ";

-- Disposal

constant ICache_Hit : string(l to 30) := "Total Instruction Cache Hit = ";
constant TCache FirstTagHit : string{l to 21) := "TC (First Tag) Hit = ";
constant TCache_OtherHit : string(l to 17) := "TC (other) Hit = ";
constant PC : string(l to 26) := "Program Counter Address : ";

constant InstrA : string(l to 26) := "Instruction A Address S
constant InstrB : string(l to 26) "Instruction B Address s
constant Commit : string{l to 30) := "Committed Instruction Count = ";
constant Omit : string(l to 28) := "Omitted Instruction Count = ";
constant MemFetch : string(l to 29) := “I-Cache Fetch Memory Count = ";

use std.textio.all;

-- Result file name
file log: text open write_ mode is "result.log";

variable log_line : line;
-- Variables for experiment result

variable TraceMissCount : natural
variable TCAccessMissCount : natural :=0;

;

variable CompMissCount : natural :=0;
variable ContMissCount : natural :
variable CacheAccessCount : natural :

variable Instr_Count : natural:=0;
variable InstrA_Count : natural:=0;
variable InstrB_Count : natural:=0;

variable ICache_ HitCount : natural:=0;
variable TCache_FirstTagHitCount : natural:
variable TCache_OtherHitCount : natural:=0;

type TraceCacheLine is array (0 to cTC_Entry) of natural;
variable CompMissLineCount : TraceCacheline:
variable ContMissLineCount : TraceCachelLine;

variable FirstTagHitCount : TraceCacheline;
variable ContentHitCount : TraceCacheline;

variable Commit_Count : natural:=0;
variable MemFetch_Count : natural
variable PC_Word : string(l to 8);

variable InstrA_word : string(l to 8);
variable InstrB_word : string{l to 8);

0;

variable CacheSpaceUsage : integer:=0;

—— Datatype conversion functions
function NumberToDigit(Number : natural) return character is
begin
if (Number >= 0) and (Number <= 9) then
return character'val(character'pos{'0'} + Number };
elsif (Number >= 10) and (Number <= 15) then

return character'val(character'pos('A') - 10 + Number)i
else

report "Invalid Hex-Number"

severity error;

return '0';
end if;

end NumberToDigit;

function NaturalToString{ Number : natural) return string is
variable StringResult : string(l to 8};
variable WorkNumber : natural := Number;
begin
for i in 8 downto 1 loop
StringResult(i) := NumberToDigit { WorkNumber mod 16);
WorkNumber := WorkNumber / 16;
end loop;
return StringResult;
end NaturalToString;

function WordToString(Word : unsigned) return string is

84

VHDL Code of Trace Cache

variable StringResult : string(l to 8):
variable Digit : unsigned(3 downto 0);
begin
for i in 1 to 8 loop
Digit := Word{ 4*(8-1i)+3 downto 4% (8-1));
StringResult{ i) := NumberToDigit(natural{ To_Integer(Digit }) } ¢
end loop;
return StringResult;
end WordToString;

begin
wait on Clock until Clock = '17;
PC_Word := WordToString (IF_InstrCounterReg);
InstrA Word := WordToString (IF_InstrAddrRegR_Input);
InstrB_Word := WordToString (IF_InstrAddrRegB_Input);
if IF_InstrCounterRegWrite = '1' then

CacheAccessCount := CacheAccessCount + 1;

if not (TC_FirstTagHit = 'l' or TC_OtherHit = '1') then
TraceMissCount := TraceMissCount + 1;
end if;
if { TC_FirstTagHit = '0' and TC_OtherHit = '0') then
TCAccessMissCount := TCAccessMissCount + 1;
if TC_ValidBit(To_Integer(IF_InstrCounterReg(B downto 2)})) = '0' then
CompMissCount := CompMissCount + 1;

CompMissLineCount(To_Integer(IF_InstrCounterReg(3 downto 2)}}) =
CompMissLineCount(To_Integer(IF_InstrCounterReg(3 downto 2})}) + 1;

else
ContMissCount := ContMissCount + 1;
ContMissLineCount(To_Integer(IF_InstrCounterReg(3 downto 2))) ==
ContMissLineCount(To_Integer(IF_InstrCounterReg(3 downto 2))) + 1;

end if;
end if;
if TC_FirstTagHit = 'l' then
FirstTagHitCount(To_Integer(IF_InstrCounterReg(3 downto 2))) =
FirstTagHitCount(Toilnteqer(IF_InstrCounterReg(3 downto 2})) + 1;
end if;
if TC_OtherHit = 'l' then
ContentHitCount(TC_HitLineNumber) 1= ContentHitCount(TC_HitLineNumber) + 1;
end if;

end if;

if DP_HaltDlx = 'l' then

-- Display the experiment set name
write(log_line,exp_name_ul);
writeline(log,log_line);
write(log_line,exp_name)}
writeline(log,log_line);
write(log_line,exp_name_ul);
writeline(log,log_line};
writeline{log,log_line);

D ko Rk okok ok ok kR ok ok ko

-- General Information
—— kkkkkhkkFhkkkhokokh ok kh

write(log_line,string' ("------=----—===--== ")}; writeline(log,log_line);
write{log line,string' ("General Information"}); writeline(log,log_line):
write(log_line,string' ("-===--===---====-—- "))

writeline(log,log_line);

-- Fetched Instruction Count
write(log_line,string'(“Total Fetched Instructions = "});
write(log_line, Instr_Count}:

writeline(log,log _line};

-- Commited/Omitted Instructions

write (log_line,string' ("Committed Instructions = ")};
write(log_line,Commit_Count);
writeline(log,log_line);
write(log_line,string'("Omitted Instructions = "))
write(log_line,Instr_Count-Commit_Count);

writeline (log,log_line);

- MehsEbabmebbeEnEn

—-- Cache Information

—— hk kA kA Ak hkhhkkokkkk

-- Cache Access

write(log_line,string’("Cache Memory Access ({(fetch) = "));
write(log_line,CacheAccessCount);

writeline(log,log_line);

writeline(log, log_line);

-- Instruction Cache

write(log line,string' ("--=---—=---—------—-==="- ")
write(log_line,string'("Instruction—Cache Info"
write(log_line,string' (" "
writeline(log,log_line);
wriLe(lug_line,string'("Instruction—Cachc Hit = "))
write(log line, ICache HitCount):
writeline(log,log_line);

); writeline{log,log_line);
): writeline(log,log_line);
)

85

VHDL Code of Trace Cache

TCacheAOtherHitCount)*100)/real(CacheAccessCount),digits

writeline(log,log_line);

writeline(log,log_line);

TC-Size TC-Hit

write(log_line,string' {"Percent of IC Hit = ")}

write(log_line,real(ICachemHitCount*IOO)/real(CacheAccessCount),digits = 2);

writeline(log,log_line);
writeline(log,log_line):;

-- Trace Cache
write(log_line,string' ("---

——=")}; writeline(log,log_line):

write(log_line,string'("Trace—cache Info")); writeline(log,log_line);

write{log line,string' ("-----==-~-=-===--= "y
writeline(log,log_line});

write(log_line,string'("Trace-Cache Hit = ™));

write(log_line,TCache_FirstTagHitCount + TCache_OtherHitCount):

write(log line,string’ (" ("}):
write(log_line,string' ("TC-First Tag Hit =
write(log_line,TCache_FirstTagHitCount);
write(log_line,string'(" / TC-Content Hit =
write (log_line,TCache_OtherHitCount);
write(log_line,string'(" Y™y
writeline(log,log_line};

e
i

write(log_line,string' ("Percent of TC Hit =
write(log_line,real((TCache_FirstTagHitCount
=> 2};
write(log_line,string' (" ("))i
write{log_line,string' ("TC-First Tag Hit =

"))

"))

write(log_line,real(TCache_FirstTagHitCount*100)/real(CacheAccessCount),

write(log_line,string' (" / TC-Content Hit = "));

write(log_line,real(TCache_OtherHitCount*lOO)/real(CacheAccessCount),digits => 2);

write(log_line,string' (" IR
writeline{log,log_line);

writeline(log,log_line);
write(log_line,string'("Total Trace Cache Miss =
write(log_line,TraceMissCount):
write(logfline,string'(" "))
write(log_line,string' ("TC - Compulsary Miss =
write(log_line,CompMissCount);
write(log_line,string'(" / TC - Conflict Miss =
write(log_line,ContMissCount);
write(log_line,string' (" Y™y g
writeline(log,log_line);

"))

"

"))

write(log_line,string'("Percent of (™))

write(log_line,string'("Compulsary Miss = "))

write(log_line,real(CompMissCount*lOO)/real(TraceMissCount),

write(log_line,string'(" / Conflict Miss =

"))

digits => 2);

write(log_line,real(ContMissCount*lOO)/real(TraceMissCount),digits => 2);

write(log_line,string'(" YY"y
writeline (log,log_line);

writeline (log,log_line);

- BEGASBABSEREEEE

-- Information Table
hhkkk kA hokhkkd ok kkh

write(log_line,string' ("

"))

digits => 2};

write(log_line,string'("Information Collected From Individual Trace Cache Line")):

write{log_line,string’ ("
writeline{log,log_line);
writeline(log,log_line};

"))

write(log_line,string' ("
write(log_line,string' ("
write(log_line,string' ("
write(log_line,string' ("
write(log_line,string‘("
write(log_line,string'("
right,
write(log_line,string’ ("

write{log_line,string' ("

digits => 2);

field => 10); write{log_line,string'("

"yyi
writeline(log,logqline):
-- Calculate the sum of Cache Space Usage

CacheSpaceUsage := CacheSpacelUsage + TC_LongestTrace (index) ;

end loop:

writeline(log, log_line);
write(log_line,string'{" ------- - ")
write(log_line,string' ("Parcentage af Cache Space Usage"));
write(logAline,string'{“)
write(log_line,string'("Trace Cache Space Usage =

;

s vy

"))

write(log_linc,rcal(CacheSpacelisage * 100 / ((cTC_Entry+l) *

write (log_line,string' (" %"}}:

writeline(log,log_line};
writeline(log,log_line);
writeline(log,log_line);

{cInstrSlot+l)))

write(log_line,string' ("Line Comp-Miss Conf-Miss TC-Write TC-O_Write
FTag-Hit Cont-Hit")); writeline{log,log_line);
write(log_line,string' ("----
")) ; writeline(log,log_line);
for index in 0 to cTC_Entry loop
write(log_line, index, justified => right, field => 4);
"))
write(log_line,CompMissLineCount(index),justified => right, field => 10);
"}y
write(log_line,ContMissLineCount(index),justified => right, field => 10);
")
write(log_line,TCﬁTraceWrite(index),justified => right, field => 10});
"y
write(log_line,TCﬂTraceOverWrite(index),justified => right, field => 10);
"YYyi
write(log_line,TCﬂLongestTrace(index),justified => right, field => 10);
"))
write(log_line,FirstTagHitCount(index)+ContentHitCount(index),justified =>
"y)i
write(log_line,FirstTagHitCount(index),justified => right, field => 10};
"))
write(log_line,ContentHitCount(index),justified => right, field => 10);

.

86

VHDL Code of Trace Cache

writeline(log, log_line);

if IF_InstrCounterRegWrite = '1' then
if IC_Hit = '1' then
ICache_HitCount := ICache_HitCount+l;
end if;
if TC FirstTagHit = '1' then
TCache_FirstTagHitCount := TCache_FirstTagHitCount+1;
end if;
if TC_OtherHit = '1' then
TCache_OtherHitCount := TCache_OtherHitCount+1l;
end if;
end if;
if IC_FetchRequest = '1' then
MemFetch_Count := MemFetch_Count+1;
end if;
if IF InstrCounterRegWrite = 'l' then
if (IF_StageA Write = 'l' and IF_StageB_Write = '1') then
if (IF_InstrCounterReg = IF_InstrAddrReghA_Tnput) and
(IF_InstrCounterReg /= IF_InstrAddrRegB_Input) then
Instr_Count := Instr_Count+2;
elsif ((IF_InstrCounterReg /= IF_InstrAddrRegA_ Input) and
(IF InstrCounterReg = IF_InstrAddrRegB_Input) } or
{ (IF_InstrCounterReg = IF_InstrAddrRegA_Input) and
(IF InstrCounterReg = IF_InstrAddrRegB_Input)) then
Instr_Count := Instr Count+l;
end if;
elsif (IF StageA Write = 'l' and IF_StageB_Write = '0') or
(IF_StageA_Write = '0' and IF_StageB Write = '1') then
Instr_Count := Instr_Count+l;
end if;
end if;
if (CU_CommitInstrA = *1' and CU_CommitInstrB = '1') then
Commit_Count := Commit_Count+2;
elsif (CU_CommitInstrA = 'l' and CU_CommitInstrB = ‘0") or
(CU_CommitInstrA = '0' and CU_CommitInstrB = '1') then
Commit_Count := Commit_Count+l;
end if;

end process;

B.2 DIxPackage.vhd

This section is to define types, subtypes, and constants used in the trace cache.

type TypeArraylnstr is array (natural range<>,natural range<>) of unsigned (31 downto 0};

-- TC_4 : cInstrSlot = 3
-- TC_8 : clnstrSlot =7
constant cInstrRow : integer :=
constant cInstrSlot : integer :

—— These constant has to be added by 1 for actual amount.

H

of 1.
constant c¢TC_Entry : integer :=3; -- <-—- Lines of trace cache
subtype TypeRow is integer range 0 to cInstrRow;
subtype TypeSlot is integer range 0 to cInstrSlot;
subtype TypeSlotCount is integer range 0 to cIlnstrSlot+l;

type TypeArraySlot is array (natural range<>) of Typeslot;
type TypeArraySlotCount is array (natural range<>) of TypeSlotCount;

type TypeArrayWriteCount is array (natural range<>) of integer;

type TypeArrayTag is array (natural range<>) of unsigned(31 downto 2);

; -- Since they will be mainly used for counter that start at 0 instead

87

VHDL Code of Trace Cache

This is the declaration of additional functions used in the trace cache. Function

IsBranch is for checking whether the instruction is any kind of branch instruction and

function IsDelimiterInstr is for checking, whether the instruction is a jump, trap, or

rfe.

-- Functions for TraceCache Model
function IsBranch(Instruction : TypeWord) return bit;
function IsDelimiterInstr(Instruction : TypeWord) return bit;

These functions are here:

—- Functions for TraceCache Model
function IsBranch{ Instruction : TypeWord) return bit is
alias InstructionOpcode : TypeDlxOpcode is Instruction{ 31 downto 26)}

variable Result : bit := '0'7

begin

case InstructionOpcode is
-- branches
when cOpcode_beqz => Result := "1';
when cOpcode_bnez => Result := '1';
-- not a branch
when others => Result := '0';

end case;

return Result;
end IsBranch;

function IsDelimiterInstr(Instruction : TypeWord } return bit is
alias InstructionOpcode : TypeDlxOpcode is Instruction{ 31 downto 26);

variable Result : bit := '0';

begin

case InstructionOpcode is
-- jumps
when cOpcode_j => Result := '1";
when cOpcode_jr => Result := 1Y
when cOpcode_jal => Result := '1';
when cOpcode_jalr => Result := '1';
-- trap
when cOpcode_trap => Result := '1";
-- rfe
when cOpcode_rfe => Result := '1';

-- other instructions
when others => Result := '0';
end case;

return Result;
end IsDelimiterInstr;

B.3 Environment.vhd

This file has been modified to increase the memory capacity from 16Kbyte to

32 Kbyte to run Permute and DCT. Therefore, these two lines are changed.

constant cMemorySize : positive := 32768;

constant cHighAddress_unsigned : unsigned := X"0000_7FFE";

Originally, the constant cMemorySize Wwas 16384 (16Kbyte)
cHighAddress_unsigned was X”0000_3FFF”.

and

88

Excerpts from log files of DCT

Appendix C

Excerpts from log files of DCT

8L

Line Comp-Miss Conf-Miss TC-Write TC-O_Write TC-Size TC-Hit FTag-Hit Cont-Hit
tc_4: T - - o T N -

2 12 19599 4456 1335 4 18134 4543 13591
tc_8

2 22 22667 3704 134 8 7314 4545 2769
16L
]_:.;;1;--“(_Z;r_n;):b‘;l;;;---'(;;r_];:;d;;; _____ ';‘(_Z:;W;;'-:e TC-0_Write “;(-:-Siz TC-Hit FTag-Hit Cont—Hi;
v b a B a '

2 8 6271 120 113 4 1642 519 1123
ta_8

2 9861 0] 0] 0 0 0
32L
e Treomite Tooweite | fc.size | To-it Flag-dit Cont-Hit
ot T

2 5 831 64 1 4 1978 575 1403
tc 8

2 1236 0 9] 0 0 0 1]
64L
mine eompomiss Gomtmiss | memrite Tc-omrite | TC-size To-nit | FlagHit | Cont-it
T T S ———

2 5 519 64 1 4 1342 575 167
te 8

2 1029 0 0 1]] 0 0 0

89

Runtime Startup Code and Perl Script Listings

Appendix D
Runtime Startup Code and Perl Script Listings

Runtime Startup Code (crt0.0)

.text
.proc ___main
.global __ main
___main:
jr r31
nop
.endproc __ main

.proc start
.global start
start:
; Starting point for simulations: loads r29 with memSize and calls main with
; argc and argv
1hi r29, (((memSize-8)>>16)&0xfEff)
addui r29,r29, ((memSize-B) &0xE£fff)
addir29,r29, #-16

add rl,r0,r0
1lhi rl, ((argc>>16) &0x£f£f)
addui rl,rl, (argc&Oxffff)
1w r2, (rl)
sw (r29),r2
add rl, r0,x0
1hi rl, ({(argv>>16) &0xffff)
addui rl,rl, (argv&Oxffff)
1w r2, (rl)
sw 4(r29),r2
add rl, 0, r0
lhi rl, ({_environ>>16)&0xffff
addui rl,rl, (_environsOxffff
1w r2, (rl)
sw B(r29),r2
jal _main
nop
addi r29,r29,4#16
jal _exit
nop
.endproc start
.data
.align 2
.global argc
argc:
.word 0
.global argv
argv:
.word 0

.global _environ
_environ:
.word 0

Perl Script (filter.pl)

#1/usr/local/bin/perl
eval 'exec /usr/local/bin/perl -S $0 $(1+"$@"}'
if $running_under_some_shell;
this emulates #! processing on NIH machines.
(remove #! line above if indigestible)

eval '8'.$1.782;" while $ARGV[0] =~ /~([A-Za-z_0-9)+=) (.*)/ && shift; #'
process any FOO=bar switches

$[= 1; # set array base to 1
$, ="' # set output field separator
$\ = "\n"; # set output record separator

P

$regmap = ();

90

Runtime Startup Code and Perl Script Listings

line: while ({<>) {
chop; # strip record separator
@Fld = split(' ', $_, 9999);
if ($F1d[1] eq 'movi2fp') {
print “;;; " . $_ i
@parlist = split(',', $Fld{2], 9999); #Should strip ; first
$regmap{$Parlist[1]} = $Parlist[2];
next;

}
if ($F1ld(1] =~ /mult/ || $Fld[1] =~ /div/ || $F1d[1] =~ /multu/

$Fld[1] =~ /div/) {

print “;;; " . $_ i

@Parlist = split({',', $Fld[2], 9999): #Should strip ; first
Soperation = $Fldf1l];
$oprndl = $Parlist(l];
$oprnd2 = 'f' . substr ($regmap($Parlist(2]), 2, 999999);
$oprnd3 = 'f' . substr($regmap{$Parlist (3]}, 2, 999999) ;
next;

}
if ($F1d(1] eq 'movip2i') {
print “ii; " . §_
@Parlist = split(',', $Fld(2], 9999); #Should strip ; first
if ($Parlist[2] ne $oprndl) (#2272
print 'Translation sequence error at line' . $.;
last line;

)

else {
print "\t" . "nop";
print "\t" . "nop":
print "\t" . $operation . w\t" . 'f' . substr{$Parlist[1l], 2,
999999) , ',' ., Soprnd2 . ',' . $oprnd3 . "\t; Patched from" .
$_:
)
next;
}
print $_;

91

Bibliography

Bibliography

[1]

(2]

[3]

[4]

[5]

[6]

[7]

(8]

A. V. Aho, R. Sethi, and J. D. Ullman, Compiler: Principles, T echniques, and
Tools, Addison-Wesley Publishing Company, 1986.

P. J. Ashenden, The Designer’s Guide to VHDL, Morgan Kaufmann Publishers,
San Francisco, CA, 1996.

D. Burger, T. Austin, and S. Bennett, “Evaluating Future Microprocessor: the
SimpleScalar Tool Set,” Technical Report 1308, University of Wisconsin-
Madison Technical Report, July 1996.

T. M. Conte, K. N. Menezes, P. M. Mills, and B. A. Patel, “Optimization of
Instruction Fetch Mechanism for High Issue Rates,” in Proceedings of the 22
Annual International Symposium on Computer Architecture, 1995.

S. Dutta and M. Franklin, “Control Flow Prediction with Tree-Like Subgraphs
for Superscalar Processors,” in Proceedings of the 28" ACM/IEEE Annual
International Symposium on Microarchitecture, pp. 258-263, 1995.

M. Franklin and M. Smotherman, “A Fill-Unit Approach to Multiple Instruction
Issue,” in Proceedings of the 2 7" Annual ACM/IEEE International Symposium
on Microarchitecture, pp. 162-171, 1994.

D. H. Friendly, S. J. Patel, and Y. N. Patt, “Alternative Fetch and Issue
Techniques from the Trace Cache Fetch Mechanism,” in Proceedings of the 3 0"
Annual ACM/IEEE International Symposium on Microarchitecture, 1997.

D. H. Friendly, S. J. Patel, and Y. N. Patt, “Puiting the Fill Unit to Work:
Dynamic Optimizations for Trace Cache Microprocessors,” in Proceedings of
the 31 Annual ACM/IEEE International Symposium on Microarchitecture,
1998.

J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative
Approach, Morgan Kaufmann Publishers, San Francisco, CA, second edition,

1996.

92

Bibliography

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[18]

[19]

[20]

J. Horch, “A Superscalar Version of the DLX Processor,” Superscalar DLX
Processor, 1997. http://www.rs.e-technik.tu-darmstadt.de/TUD/res/dIxdocu/
SuperscalarDLX html (9 July 1999).

Intel Corporation, “Intel® NetBurst™ Microarchitecture,” The Intel®
Pentium® 4 Processor Product Overview, 2002. http://www.intel.com/design/
Pentium4/prodbref/index.htm (15 July 2002).

M. Johnson, Superscalar Microprocessor Design, Prentice Hall, Englewood
Cliffs, NJ, 1991.

J. D. Johnson, “Expansion Caches for Superscalar Microprocessors,” Technical
Report CSL-TR-94-630, Stanford University, Palo Alto CA, June 1994.

S. Jourdan, P. Sainrat, and D. Litalize, “Exploring Configurations of Functional
Units in an Out-of-Order Superscalar Processor,” in Proceedings of the 22nd
Annual International Symposium on Computer Architecture, pp. 117-125, 1995.

S. Jourdan, P. Sainrat, and D. Litalize, “An Investigation of the Performance of
Various Instruction-Issue Buffer Topologies,” in Proceedings of the 28"
ACM/IEEE Annual International Symposium on Microarchitecture, pp. 279-
284, 1995.

S. W. Melvin, M. C. Shebanow, and Y. N. Patt, “Hardware Support for Large
Atomic Units in Dynamically Scheduled Machines,” in Proceedings of the 21 *
Annual ACM/IEEE International Symposium on Microarchitecture, pp. 60-63,
1988.

S. W. Melvin and Y. N. Patt, “Performance Benefits of Large Execution Atomic
Units in Dynamically Scheduled Machines,” in Proceedings of Supercomputing
‘89, pp. 427-432, 1989.

S. J. Patel, M. Evers, and Y. N. Patt, “Improving Trace Cache Effectiveness
with Branch Promotion and Trace Packing,” in Proceedings of the 25" Annual
International Symposium on Computer Architecture, 1998.

S. J. Patel, D. H. Friendly, and Y. N. Patt, “Critical Issues Regarding the Trace
Cache Fetch Mechanism,” Technical Report CSE-TR-335-97, University of
Michigan Technical Report, May 1997.

S. J. Patel, D. H. Friendly, and Y. N. Patt, “Evaluation of Design Options for the
Trace Cache Fetch Mechanism,” IEEE Transactions on Computers, vol. 48, no.

2, pp. 435-446, February 1999.

93

Bibliography

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[32]

[33]

S. J. Patel, “Trace Cache Design for Wide-Issue Superscalar Processor,” PhD
Dissertation, University of Michigan, Ann Arbor MI, 1999.

A. Peleg and U. Weiser. Dynamic Flow Instruction Cache Memory Organized
Around Trace Segments Independent of Virtual Address Line. U.S. Patent
Number 5,381,533, 1994.

B. R. Rau and J. A. Fisher, “Instruction-Level Parallel Processing: History,
Overview and Perspective,” Journal of Supercomputing, vol. 7, no. 1/2, pp. 9-
50, 1993.

E. Rotenberg, S. Bennett, and J. E. Smith, “Trace Cache: A Low Latency
Approach to High Bandwidth Instruction Fetching,” Technical Report 1310,
University of Wisconsin-Madison Technical Report, April 1996.

E. Rotenberg, S. Bennett, and J. E. Smith, “A Trace Cache Microarchitecture
and Evaluation,” IEEE Transaction on Computers, vol. 48, no. 2, pp. 111-120,
February 1999.

E. Rotenberg, Q. Jacobsen, Y. Sazeides, and J. E. Smith, “Trace Processors,” in
Proceedings of the 30" Annual ACM/IEEE International Symposium on
Microarchitecture, 1997.

R. H. Saavedra and A. J. Smith, “Measuring Cache and TLB Performance and
Their Effect on Benchmark Runtimes,” IEEE Transaction on Computers, vol.
44 no. 10, pp. 1223-1235, October 1995.

P. M. Sailer and D. R. Kaeli, The DLX Instruction Set Architecture Handbook,
Morgan Kaufmann Publishers, San Francisco, CA, 1996.

M. Schlansker et al., “Compilers for Instruction-Level Parallelism,” Computer,
pp. 63-69, December 1997.

D. Sima, “Superscalar Instruction Issue,” IEEE Micro, vol. 17, pp. 28-39,
September-October 1997.

A. J. Smith, “Cache Memories,” ACM Computing Surveys, vol. 14, pp. 473-530,
September 1982.

J. E. Smith and G. S. Sohi, “The Microarchitecture of Superscalar Processors,”
Proceedings of the IEEE, vol. 83, pp. 1609-1624, December 1995.

M. Smotherman and M. Franklin, “Improving CISC Instruction Decoding
Performance Using a Fill Unit,” in Proceedings of the 28" Annual ACM/IEEE
International Symposium on Microarchitecture, pp. 219-229, 1995.

94

Bibliography

[34] T-Y. Yeh, D. Marr and Y. Patt, “Increasing the Instruction Fetch Rate via
Multiple Branch Prediction and a Branch Address Cache,” in Proceedings of the
7"" ACM International Conference on Supercomputing, pp. 67-76, 1993.

95

