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Abstract

Instruction-level parallelism (ILP) is a technique to increase processor performance

through the simultaneous execution of multiple instructions. Superscalar processor

architectures implement ILP by providing multiple execution units to process

instructions in parallel. To achieve high perfoffnance' the execution units must be

occupied by a continuous series of instructions. Hence, the front-end of the processor

has to be expanded in order to supply a continuous stream of instructions for the

execution units. Although instruction-cache memory has been successfully used to

enhance the fetch mechanism of superscalar processors for years' it cannot perform

well enough for contemporary processors because of the nature of the statically

ordered instructions stored in the cache. Branch instructions are the major problem

because of the two possible directions of the branch outcome' They break up the

continuity of the static code into short run-length basic blocks. Therefore, a line of an

instruction cache can contain instructions that might be abandoned if they follow a

branch that will be taken'

Trace cache architecture has been developed to reduce the effect of the

problem. It has a sophisticated logic unit to capture dynamic instruction traces'

possibly including multiple basic blocks, and store them in a single line. Therefore, it

is most likely able to supply a latger segment of useful instructions in one hit.

Moreover, the trace cache was deliberately designed not to lengthen the processor

pipeline. It has been shown that trace cache can outperform instruction caches in

large-scale microprocessors, e.g. 1 6-instruction wide processors.

This research studies the effect of trace cache memory on smaller-scale

microprocessors like the superscalar DLX model that can process only 2 instructions

simultaneously. The study will investigate the performance of the experimental trace

cache compared to the existing instruction cache and also investigate the trade-offs in

varying trace cache size'
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Introduction

Chapter 1

Introduction

1.1 Overview

The performance requirements of high performance computers are escalating

tremendously in order to respond to the complexity of modern software applications'

Much research has been conducted on techniques to improve the performance of

microprocessors as they are deployed in almost every level of modern computers' The

objective is to increase the number of instructions that can be executed per unit time'

Researchers in the field of semiconductor technology propose to increase processor

clock frequency, the reciprocal of time usage. Meanwhile, computer architects

attempt to modify processor microarchitecture and improve compiler technology in

order to execute multiple instructions simultaneously'

Instruction-level parallelism (ILP) is the dominant technique exploited in

modern processor microarchitecture. Parallelism of incoming static sequential

instructions is detected in order to execute multiple instructions concuffently' This

technique can be implemented using both software and hardware approaches

depending on the type of processor. VLIW (Very Long Instruction word) and

superscalar are two types of ILP processors [23], [29]' The former aggressively uses

compiler techniques to obtain high levels of parallelism. Hardware techniques are

used in the latter to capture incoming instructions and dynamically determine those

that can be executed in parallel. Consequently, software applications can be run on

superscalar processors without recompiling ll2l. In this thesis, we focus on

superscalar processors as they are the more common type and have been for many

years

1



Introduction

1.2 Superscalar Architecture

The operation cycle of a superscalar processor begins with fetching instructions

from a static program into the processor using the instructionfetching mechanism and

decoding them at the decoder unit. After this stage, the decoded instructions will be

dispatched and temporarily accumulated in an instruction buffer called the window of

execution. These instructions are no longer constrained by static program order'

Therefore, they are free to be executed in parallel and ready to be issued

simultaneously into the appropriate functional units located in the instruction

execution mechønism after their operands become available, subject to data

dependence and resource constraints [14], [15], 1251, Í321. Figure 1.1 shows the

diagram of superscalar architecture organization'

instruction disPatch

instruction ¡ssue

Figure I .l Organization of superscalar architecture

To effectively exploit ILP is to improve superscalar processor performance by

widening the window size for the purpose of increasing the possibility of finding data-

independent instructions. More functional units are also required in order to be able to

execute more instructions concurrently. Ideally, instruction-fetching bandwidth

should correspond to the peak instruction dispatch and issue rate, to avoid the

bottleneck problem [25]. However the constraint imposed by control dependence

impedes the ability of the fetching mechanism to fetch instructions continuously, so it

becomes important to overcome this constraint.

2
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Introduction

1.3 Trace Cache MemorY

The fetch unit must be able to feed a continuous stream of instructions to the

window of execution as quickly as possible. It would be much easier if instructions

were all lined up in contiguous fashion from start to finish. Unfortunately, such

behavior is not found in typical application programs because they possess branch

instructions. Branch instructions, the causes of control dependence, are very common

in typical programs [8] and cause the instruction fetching mechanism to wait for

branch outcomes to determine whether the branches are taken or not taken. In [1], the

term basic blockhas been def,rned as an instruction group, which has one entry point

and one exit point. Whenever abranchinstruction is encountered, that will be the end

of the basic block. Typically, the average run-length of a basic block is about 4 to 6

instruction s pal. Therefore, the sequentiality of instruction addressing is disrupted

and the program is divided into numerous small basic blocks.

The branch prediction method was introduced to lessen the problem of control

dependence by speculatively predicting the outcome of branches' However, there is a

problem of non-contiguous location of individual basic blocks inside the conventional

instruction cache. Basically, there are useless instructions lurking between useful

basic blocks that are scattered among different cache lines, so a single fetch might not

be so effective. Trace cache memory l24l is proposed not only to overcome this

crucial drawback which blocks the possibility of fetching multiple basic blocks

concurrently, but also to diminish the latency of fetching' which is the flaw of related

prior research on high bandwidth fetching mechanisms. Moreover, the trace cache

was designed to work outside the main pipeline of the processor. Therefore, it does

not introduce an additional pipeline stage that would increase processing time.

Trace cache research has been conducted for very high performance

microprocessors, i.e. 16 instruction-wide superscalar processors' Rotenberg et al124]

showed that the fetching performance of a processor using a trace cache is improved

by 34% for integer benchmarks and 160/o for floating-point benchmarks. Meanwhile,

the trace cache work on enhanced features conducted by Patel [21] showed that a

trace cache can outperform an aggressive instruction cache scheme by 14% of overall

performance and increase the fetch bandwidth by 34%. Recently, Intel Corporation

adopted trace cache technology for the Intel NetBurst micro-architecture in its

mainstream commercial processor, the Pentium-a [I1]'

J



Introduction

There has been no reported study of trace cache performance for a small-scale

microprocessor. Therefore, this research will study the effect of the different trace

cache memory configurations for a VHDL model of a superscalar DLX machine [10],

which can process only 2instructions simultaneously. The design of the trace cache of

the experiment will be done for two main configurations, TC-4 and TC-8 fot 4

instruction-wide and 8 instruction-wide trace cache respectively. Each configuration

is studied with a varying number of trace cache lines to understand the trade-offs

between performance and cache size.

L.4 Contribution of the Thesis

The contributions of this work can be summarized as follows:

o An analysis of the trade-offs between performance and trace cache size for

narrow-issue sperscalar processor.

o An indication of whether trace caches are a worthwhile enhancement for

narrow-issue superscalar DLX processor'

o A greater understanding of the performance characteristics of trace cache'

1.5 Outline of the Thesis

The thesis is organized into 6 chapters. chapter 2 describes the background of

trace cache design and related research work. Details of the DLX architecture and the

superscalar DLX model that have been used in this research will be presented in

Chapter 3.

chapter 4 explains the experimental setup and methods. The results of the

experiment and corresponding analysis will be in Chapter 5' This chapter also

includes the discussion of the experiment. chapter 6 will be the conclusion of the

thesis.

4



Backqround

Chapter 2

Background

2.1 Overview

Although the conventional instruction cache has served as a good source of

instructions at high fetch rates for a long time, it cannot satisfy that high instruction

consumption of wide issue processors. Instructions residing in the instruction cache

are placed in compiled order and, unfortunately, typical programs possess many

branch instructions. Consequently, several small basic blocks exist in run-time

execution and disrupt the continuity of static instruction sequence in a wide

instruction cache line. Even though the processors are designed to fetch several

instructions in each line at the same time, many fetched instructions are abandoned'

Therefore, fetching efficiency is low in this circumstance. To avoid this instruction-

supply bottleneck, the trace cache was introduced to increase effective instruction

fetch bandwidth.

ln a superscalar architecture, the sequences of executed instruction from the

pipeline are dynamic and divided into several basic-blocks by control instructions

(e.g. branches, return, and etc.). These are called instruction traces' Several such

instructions grouped together look like a VLIW instruction format but formed in

dynamic sequence. The trace cache counts on two important properties of dynamic

sequences of instructions, i.e. temporal locality and branch behavior 1241. ThaI is, the

most recently used instructions are most likely to be reused in the near future and

branches mostly bias to one direction. If these dynamic traces are collected in a

special kind of cache memory, the performance of the fetch mechanism will possibly

be increased. There will be no need to fetch several times from different lines of the

5



Background

instruction cache to obtain an instruction sequence possibly spanning several non-

contiguous basic blocks.

lnstruction Gache

Trace Gache

DcBA

al
A

/L----l-- ------.-l

---JJ

Processor Gore

Figure 2.1 Trace cache overview

Figure 2.1 demonstrates the principle of the trace cache scheme. There are

four basic blocks (4, B, C, and D) residing in non-contiguous locations in the

instruction cache. They aÍe logically connected together in run-time manner'

Unfortunately, they are split in physical location due to static-compiled order; this is

called "partial fetch" since each fetch could obtain just some part of all of the desired

instructions. Time is wasted reading these instructions, as 3 cache reads are required

(in this example). 
'When these basic blocks are issued through the pipeline of the

processor core they aîe teaf'rafrged in dynamic Sequence or trace order (4, B, C, and

D) to perform the task. This trace can be collected in the trace cache line. According

to temporal locality and branch behavior as mentioned earlier, this trace is most likely

to be used againin exactly the same sequence corresponding to the matching of fetch

address and multiple predicted branches. Then, all instructions in this trace can be

read in one fetch from the trace cache to the pipeline. This scheme obviously has the

potential to increase fetching efficiency'

6
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Background

2.2 T race Cache Architecture

The trace cache architecture is composed of four main components:

1. the trace cache (trace container),

2. the fill unit,

3. the branch predictor, and

4. the instruction cache.

As shown in figure 2.2, inshructions can be read from the instruction cache or

the trace cache depending on the outcome of the hit logic which processes the

incoming fetch address and the outcomes of the branch prediction unit. If it signals hit

the trace cache will deliver instructions. Otherwise, instructions are supplied from the

instruction cache. Instructions residing in the trace cache are collected by the fill unit'

which copies instruction traces entering the processor execution pipeline'

Fetch Address

I n stru ct¡o n s

Figure 2.2 Trace Cache Architecture Diagram

Hit Logic

Branch Prediction
Un¡t

M a¡n M em orY

Trace Cache

Instruct¡on Cache

Fill Unit

H it Logic

Conventional Fetch Un¡t
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2.2.lThe Trace Cache

The trace cache container is an array of fast-access memory, which dominates

the area of the trace cache circuit. It collects several lines of trace issued from the fill

unit. To each individual line of the trace cache is attached information similar to that

in an ordinary instruction cache i.e. a valid bit to indicate availability of data in the

line and a tag to identify the starting address of the trace. Moreover, there are some

extended fields related to branch addresses because there might be more than one

basic block inside the trace. All of this information is processed by the ttace cache hit

logic to determine whether an instruction fetch results in a trace cache hit or miss.

2.2.2The Fill Unit

The fi|I unit is an essential component of the trace cache organization as all of

the instructions accommodated in the trace cache come from this section. It gathers

dynamic instruction sequences from the processor pipeline, merges the incoming

instructions with existing instructions to form a packet, provides the attached

information for each trace cache line as described above, and sends the packet to a

line of the trace cache container. The essential step in the formation of a trace packet

is packet finalization The maximum number of instructions z and the number of

predicted branches m are the main trace-packet delimiters. Both Patel [21] and

Rotenberg et al. l24l have built models which carry 16 instructions (n:16) with a

maximum of three branch predictions (m:3).Then, four conditions for finalizing the

trace-packet are:

1. the packet contains 16 instructions, or

2. the packet contains 3 conditional branches, or

3. the packet contains a single indirect jump, return, or trap instruction, or

4. incoming instructions could not be concatenated with the existing

instructions since the sum would exceed 16 instructions'

2.2.3 The Branch Predictor

The performance of any fetch mechanism relies on the precision of the branch

predictor because an incorrect branch prediction causes a time penalty due to

instruction recovery. In the case of a wide issue processor, a single branch predictor

seems to be inadequate because a line of trace cache is likely to contain multiple basic

8
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blocks, as mentioned earlier. Therefore, a ttace in the trace cache would be more

effective if the predictor can cover all of the branch instructions in a line and if the

outcome of the prediction is sufficiently accurate. otherwise, the penalty would be

more severe and waste more time'

Unfortunately, at a present, the technology of multiple branch predictors is

still immature and the accuracy is less than that of single branch predictors. However,

the scheme known as two-level branch prediction [34] showed impressive prediction

accvracy at97Yo. This method can be implemented within the trace cache scheme to

predict three branch outcomes in a single cycle.

2.2.4 The Instruction Cache

Even though the trace cache plays an important role supplying instructions for

the processor, the conventional instruction cache is still needed. When the hit logic

signals a trace cache miss, the instruction cache has to provide the requested

instructions, instead. Moreover, the instruction cache, itself, is the instruction gateway

connected between main memory and the processor. However, the size of the

instruction cache might be trimmed down to suit such less frequent activities.

2.3 Related Work

There is a large amount of published research, using both hardware- and

software-based approaches, on high bandwidth fetch mechanisms. Some hardware-

based approaches are listed here for the purpose of tracing back the history of the

trace cache. Some of these are currently adopted in parts of the trace cache scheme'

The others are signif,rcant competitors of the trace cache approach.

2.3.1 Trace Cache HistorY

The history of trace cache development begins with the fill-unit, which was

introduced as hardware proposed to increase the front-end performance of the VAX

architecture. Melvin et al [16], showed that the parallelism of such a sophisticated

instruction set architecture can be exploited by using a f,rll unit to create large

execution atomic units (EAUs) dynamically. Hypothetically, the larger EAUs contain

more microoperations able to be executed simultaneously. Each EAU is stored in the

9
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decoded instruction cache to be reused by the execution unit. In subsequent work

[17], Melvin and patt varied the size of EAUs of the dynamically scheduled machines

using a frll-unit unit to gather two or more instruction basic blocks in the associated

cache. The results showed that larger EAUs effectively enhance the performance of

the processor because of the higher utilization of processor pipeline slots.

In 1994, Franklin and Smotherïnan [6] adopted the fîll-unit for their multiple

instruction issue architecture. The fiIl-unit dynamically packs multiple instructions

into VLIW-type instructions and stores them in the shadow cache' When the

instructions in a shadow cache line are required, they can be issued and executed

simultaneously. The proposed fiIl-unit also includes logic for checking data

dependencies of stored instructions as well as a unit for dealing with delayed

branches. There is also a branch predictor to assist the fetching mechanism with

speculative execution in order to create effective cache lines.

In 1994, peleg and Weiser 122) patented their new instruction cache design,

which is similar to the trace cache, namely the Dynamic Flow Instruction Cache' This

scheme enhances the fetching mechanism for superscalar machines by storing 2

instruction basic blocks in a cache line. The branch instruction at the end of the first

basic block has been predicted and the outcome of the prediction is the physical

address of the first instruction of the following basic block of the cache line.

Instructions in the cache are collected dynamically from the instruction flow and all

instructions in a cache line can be fetched in a single access. The difference between

this cache scheme and the current trace cache is that in the former each basic block is

used as a starting point for each trace packet created'

The other trace cache lookalike is the Expanded Parallel Instruction Cache

(E7IC) proposed by Johnson in 1994 [13]. This architecture has been designed to

enhance in-order superscalar machines by reducing the complexity of the instruction

decoding and issuing mechanism. Each line of the Expansion Cache contains decoded

and dependency analyzed instructions, which were routed to certain execution units.

Therefore, it can reduce the processing time once the instructions are fetched. The

performance of this design is approximately equal to one of the more complex out-of-

order superscalar machines with traditional instruction cache.

Rotenberg et al. 124] designed the trace cache scheme consisting of a small

cache with a large instruction cache embedded in a 16-wide issue superscalar

10
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cache design, fill unit design, and in particular, multiple branch prediction. They

showed that a large trace cache assisted by a small instruction cache ouþerforms

alternative configurations [24]. Therefore, the instruction cache can be designed less

aggtessively as it is subject to fewer instruction accesses. Patel et al. continued their

work to improve the performance of the trace cache as reported in [18], [19], and [20]'

They explored several enhancements to the trace cache model in order to overcome

performance limitations. Recently, Patel assembled all of his previous works and

some new features of the trace cache into his Ph.D. dissertation [21]. He describes and

evaluates the basic trace cache fetch mechanism, which outperforms an aggressive

instruction cache. High perforrnance was achieved through the use of several

enhancements including:

o partial Matching - the ability to pick up the useful blocks in a matching

trace line and to discard the rest instead of wasting the whole trace due to

branch Prediction mismatch.

o Inactive Issue - instead of totally discarding useless blocks because of

branch prediction mismatch as in Partial Matching, Inactive Issue allows

the whole trace to be fetched and marks these mismatch blocks as inactive

blocks. There is no effect on fetching performance if branch prediction

was conect. Otherwise, the inactive blocks would offer useful instructions

to be executed.

o Branch promotion - in order to reduce the bandwidth of the branch

predictor and increase the effectiveness of the fetch mechanism, Branch

promotion embeds the statically predicted information (takerVnot taken) to

strongly bias branch instructions [25]'

o Trace Packing - this enhancement sacrifices trace cache area in order to

increase individual fetching capability within the loop as shown in figure

2.4. In case of a l6-instruction trace, segment AB already occupied 11

slots and left 5 slots for the next segment. Unfortunately, segment C has 6

instructions and can not fit in. Therefore, the possible traces would be AB,

CA, and BC. Using Trace Packing will store 6 combinations for the

dynamically unrolled loop as follows: AoBsCs, CrAoBs, CoAeB¿, B1C6A6'

BsCoAs, and A1B5C6. The subscripts denote the number of instructions in

each Particular segment,

t2



Background

6 ¡nskucl¡ons

5 ¡nstruct¡ons

6 ¡nstrucl¡ons

Figure 2.4: Aloop contains 3 segments

The aggregation of Partial Matching, Inactive Issue, Branch Promotion, and

Trace packing, make the trace cache ouþerform the state-of-the-art Sequential-Block

instruction cache scheme both in processor performance (IPC metric) and in average

fetch rate. Furthermore, Patel's analysis showed that as fetch rate increases' branch

resolution time increases. Lastly, a next-generation processor implementation is

described which achieves high fetch rates at high branch prediction accuracy. Figure

2.5 shows this trace cache fetch mechanisnt'

Execution Engine

select¡on log¡c

Decoder / Rout¡ng

log¡c

instruclìons

Mult¡ple Branch Predictor
16

nôl felch eddress

lrãc€ €che âærêss

n€n feLch eddress

kaæ €che miss
(prev cycl€)

number of
branch6s f€tch€d

(prev cycle)

FÌll Un¡t

inslrucl¡on path infotatgot addl€sses lnstruction Cache

Fetch Address

kace øch6 hil

Figure 2.5: The trace cache fetch mechanism [19]
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Comparing figures 2.3 and2.5, even though they are both based on the trace

cache fetch mechanism, there are some differences between them affecting overall

performance. The former model delivers dynamic instruction streams that have been

captured before they are sent to the decoder. On the other hand, in the latter model

decoded instructions are sent to the fill unit before being dispatched to the execution

engine. Therefore, when atrace cache hit is signaled, instructions go directly through

the execution engine without passing to the decoder/routing again. Furthermore, these

instructions are already analyzed for dependencies and pre-routed to appropriate

execution units. The other difference between the models is the information contained

in each trace cache line. The latter model includes not only the branch target address

for checkingtrace cache hit/miss, but also path information which facilitates the path

enhancement of the model i.e. Partial Matching and Inactive Issue.

2.3.2 Other High Bandwidth Fetch Mechanisms

The Branch Address Cache Í341 and Collapsing Buffer l4l have been

previously mentioned as multiple basic block fetch mechanisms. They achieve high

effective fetch rate, although they cannot perform as well as a trace cache. However,

it is worthwhile to examine them to see why this is so.

In 1993, Yeh et al. proposed the branch address cache scheme [34] shown in

figure 2.6.It generates multiple fetch addresses in a single cycle resulting from the

branch address cache working together with the branch predictor. These addresses

will be calculated as indices to point to the exact location of each basic block residing

in the interleaved instruction cache. Finally, all targeted instructions are passed

through the alignment and masking network in order to form a packet ready for issue.

The problems of this scheme are hardware complexity and its lack of amenability to

aggressive branch prediction.
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conte et al. proposed the collapsing Buffer [4] as shown in figure 2'l ' Two

nonadjacent cache lines can be fetched together since the scheme uSeS two passes

through an interleaved branch target buffer. Each pass through the branch tatget

buffer produces a fetch address. Moreover, the BTB can detect any number of

branches in a cache line. Therefore, it can detect intrablock branches and eliminate the

ALIGNMENT and MASKING NETWORK

c

aoa
G

o

aaa
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unused instructions by using the collapsing buffer in the interchange/masking

network. Likewise, this approach adds mofe process stages to the fetching pipeline

and this decreases overall performance.

-11t

fetch addross

target
eddress

INTERCHANGE/MASKING NETWORK

to decoder

Figure 2.7: CollaPsing Buffer

2.4 Conclusion

ln summary, the trace cache mechanism can perform better than other

aggressive approaches in respect of fetching ability but it needs sophisticated logic to

create effective traces and a substantial memory area. Therefore, a trace cache might

not be cost-effective for general-purpose processors at the present' However, the

previous trace cache studies have been conducted only on wide-issue processors'
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Background

Hence, this research focuses on the effectiveness of trace cache on naffow-issue

processors. The objective is to find out the significance and trade-offs of TC

parameters that affect the performance of the cache scheme and the usage of cache

space for the consideration in TC implementation on narrow-issue processors.
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Experimental Processor Model

Chapter 3

Exp erimen tal Pro cessor Model

3.L Overview

The trace cache experiments in this thesis are based on simulation' A

superscalar implementation of the DLX architecture has been chosen as the

experimental processor model. The vHDL language is used to describe the simulation

model, since the language facilitates both model construction and testbench

simulation. In addition, the working model could be used as a foundation to

synthesize the processor using suitable VHDL synthesis tools. Fortunately' there is a

superscalar DLX processor model [10] in vHDL that is suitable for the proposed

experimentation.

3.2 DLX Architecture Summary

The DLX architecture was first introduced by Hennessy and Patterson [9]' It

poSSeSSeS features, which can be commonly found in several successful processors

based on the RISC PhilosoPhY.

The significant features of the DLX architecture are

- an uncomplicated load/store instruction set,

- pipelining effectiveness'

- arleasily decoded fixed-length instruction set, and

- efficient machine code, as targeted from high-level program

comPilation'
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3.2.1 DLX Registers

There are three register types in the DLX architecture. Firstly, the general-

purpose registers (GPRs) comprise thirty{wo 32-bit registers named R0, Rl, . . ., R31.

The value of R0 is permanently set to zero. The GPRs are used for all integer

operations and memory addressing modes. Secondly, the floating-point registers

(FPRs) comprise thirty-two 32 bit single-precision floating point registers named F0,

F1, ..., F31. They can be used as double-precision floating point registers (64-bit) by

coupling odd and even registers into a register pair (F0, F2, ..., F30). These registers

are used only for floating-point operations. Lastly, the special-purpose registers

comprise several registers for purposes such as masks and flags'

3.2.2DLXData Types

There are 8-bit (byte), 16-bit (half word), and32-bit (word) integer data plus

32-bit single precision and 64-bit double precision floating point data type. They

conform to Big Endian byte ordering as illustrated in figure 3.1.

Mosl Signilicant Byae

0 7B
Bit Number

15 16 23 24 31 Word Address

n+3

n+2

n+1
Byte Number

Figure 3. 1 : Big Endian byte ordering
Leasa Signilicant Byte

n

3.2.3 DLX Addressing Modes

The explicitly supported data-addressing modes in the DLX are immediate and

displacement, using 16-bit fields as immediate ðata and displacement address fields,

respectively. However, putting 0 in the 16-bit displacement field can accomplish the

register-deferred mode and using register R0 as a base register associated with 16-bit

field can accomplish absolute addressing. Therefore, there are four effective

addressing modes available in the DLX.

1 32

54 76

8 10I 11

12 1413 15
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3.2.4 DLX Instruction TYPes

There are three different instruction types: I-type (immediate), R-type

(register), and J-type (lrrmp). All instructions are 32-bitformat as shown in figure 3'2'

a) l-type instruction

immediaterdrs1Opcode

65
b) R-type instruction

functionrdrs2rs1Opcode

65
c) J-type instruction

11

5 16

5 5

26

Figure 3.2DLX instruction format.

Since all instructions are of fixed-length format, instruction decoding is very simple'

DLX is an easy architecture to understand and, moreover, widely studied and

modeled. consequently, it is a useful processor on which to base the study of the trace

cache.

3.3 The Superscalar DLX Model

The superscalar DLX model used in this research was created by Horch in the

VHDL language [10]. Both the source-code and documentation are provided at URL

http://www.rs.e-technik.tu-darmstadt.de/TUD/res/dlxdocu/superscalarDLX.htm'

Although the documents were written in German, the source-code is commented in

English and is quite simple to follow. Figure 3.3 shows the structure of the superscalar

DLX processor.

6

Opcode Offset added to PC
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Data-Address
Translation-Buffer

Bus-lnterface-Unit

Data-Cache Write-BufferReorder-Buffer

Pipelined
Load / Store

Unlt
Un¡t

lnteger Mul / Div
Unit

Branch Resolve
Unit

Register-File

lnstruction
Decoder

Dis

lnstruction-Address
Translation-Buffer

lnstruction A lnstruct¡on B

CommitUnit
(w¡thout data-flow)

lnstruction-Cache lnstruction-Fetch
Branch-Target

Buffer

Figure 3.3: Superscalar DLX structure' [10]

The microarchitecture of this model is a pipelined superscalar processor. It can

fetch a maximum of two instructions simultaneously in a single cycle. The instruction

fetch unit is supported by a 64-byte instruction cache coupled with a 4 entry

instruction address translation buffer (ITB). There is a branch target buffer (BTB) to

provide the speculative target of branch instructions'

The dispatcher is the heart of the processor since it connects to every major

unit of the model. Accordingly, it generates control signals to manipulate all processor

activity from instruction entry until instruction commit. Moreover, the dispatcher also

manages precise exception processing. This is assisted by the reorder-buffer, which

works with the commit unit to commit instructions in program order'

There are four execution units, each with a reservation station: pipelined load-

store unit, integer unit (arithmetic logic unit or ALU), multiply-divide unit (MDU),
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and branch resolve unit. The load-store unit works cooperatively with the write buffer

and 64-byte data cache equipped with 4-entry data address translation buffer (DTB).

The ALU executes all logical, shift, and set-on-comparison instructions. Moreover, it

mainly does the integer arithmetic calculation for addition and subtraction.

Integer multiplication and division can be performed by the MDU but the

implementation of MDU is slightly different from the original DLX architecture. In

the original architecture, multiply and divide instructions can be performed only with

floating-point registers (F0-F31). Therefore, data type conversion instructions from

integer to floating-point and vice versa (i.e. MOVI2FP and MOVFP2I) ate available

to enable integer multiplication and division using the floating-point multiply/divide

unit. To avoid any implementation of floating-point operations, Horch defined a

unique register file that can be addressed as GPRs (R0-R31) or FPRs (F0-F31). R0

and F0 are the same physical register and so on. Consequently, multiply and divide

instructions (MULT, MULTU, DIV, and DIVU) perform integer multiplication and

division on the GPRs. This variation from the standard architecture required some

code modification, which will be described in chapter 4.

Lastly, the branch resolve unit determines actual branch outcomes, determines

the target address to insert in the BTB and also indicates when a branch misprediction

has occurred.

3.4 The Fetch tlnit

The fetch unit is the part that is of most interest in this research, since the trace

cache is intended to improve the fetching performance beyond the conventional

instruction cache. So, the original fetch unit will be described in detail, to provide

information on the original model design.

The fetch unit has been designed to fetch a maximum of two instructions from

the instruction cache in a single cycle if the address of the fîrst instruction in the

program counter is double word aligned. V/ord order within double word is Big

Endian (i.e. 0x00000000 is the high word and 0x00000004 is the low word)' The

registers for storing the fetched instructions are divided into the stage A register and

the stage B register. Both of them can store either high word or low word. Normally,

stage A stores thc high word and stage B stores the low word. However, stage A can
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store the low word in which case stage B will become invalid. In the case of fetching

two instructions when the address is double word aligned, but when stage A is not

available, stage B can store the low word and the program counter will be increased

by 4 bytes.

As mentioned above, there are two main units associated with the fetch unit'

They are the instruction cache and the branch-target-buffer (BTB)' The instruction

cache in the original model has a small capacity and is configured as a direct mapped

cache. It has 8 lines containing two instructions each' So, it can contain only 16

instructions (16*4:64 bytes) at a time. The availability of instructions in each cache

Tag Field (26 bits) tnstruction Cache Block

Valid Bit (1 bit) (2 instruction per block)

Figure 3.4: Instruction cache structure'

block is indicated by the valid bit and the tagfield used for address matching'

The instruction cache cooperates with the instruction-address-translation

buffer (ITB) to convert a virtual page number (bits 3l to 7 of the program counter)

into a physical page number and this is joined with bit 6 of the program counter' The

results are used to compare with the tags of instruction blocks to determine cache hit

or miss. The ITB has a 128-byte page size. Figure 3.5 shows the address translation

mechanism of the instruction cache and instruction-address-translation buffer' This

configuration is also used for accessing the data cache in this model'
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lndex

3

26 64
Data
(2 instructions)

P hysica I

Page

Cache Size: 64 BYtes
Page Size: 128 Bytes

Cache-H it

Figure 3.5: Address-translation and cache-access. [10]

The branch-target-buffer (BTB) is a memory that contains destination

addresses of previously executed branch instructions. These addresses are most likely

to be the target of future branches. When one of these branches is fetched again, the

BTB will speculate the direction of the next instructions without waiting for the

outcome of branch condition determination. In this model, there are four slots within

the BTB to store destination addresses. Like the instruction cache, each entry

composes of a valid bil for indicating the availability of the BTB data and a tag field

for address matching.

Address-
Translation-

Buffer

lnstruction
Cache

25

25

Virtual
Page

631 downto 7 5 downto 3 2 downto 0
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27 bits

Program Counter

Least significant bit distinguish between a

branch of high / low word

Branch Destination
Address (32 bits)

Tag Field (28 bits)

Valid Bit (1 bit)

Figure 3.6: Branch-target-buffer structure

Indexing to the BTB slot uses bits 4 and,3 of program counter (2 bits : 4

combinations). Then, the last three bits make all entries represent 8-byte aligned

addresses. Consequently, the destination address stored in each slot has to indicate

whether the branch is a high-word or low-word instruction. This is accomplished by

attaching the extra bit as the least significant bit of the 28-bit tag portion' The extra bit

comes from bit 2 of the program counter'

3.5 Conclusion

The superscalar DLX model [10] is a narrow-issue processor model, which

was written in vHDL format. It can execute integer programs including integer

multiply and divide instructions without conversion between floating-point and

integer data type. The implementation details of a trace cache on this processor model

are described in the next chaPter.
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Chapter 4

Experimental SetuP

This research was conducted to find out whether and how a trace cache

memory can help a nafforw issue superscalar processor to fetch instructions' As

mentioned in chapter 3, an existing superscalar DLX processor model [10] was

chosen to avoid spending the time required to build the processor from a scratch and

give more time to focus on the trace cache model which is the tatget of this research'

This chapter contains the explanation of an experimental setup that was usecl to

implement the trace cache and to gain results for experimental analysis'

4.1 Trace cache in the superscalar DLX Processor

The trace cache is a source of instructions containing dynamic traces of

instructions instead of static ones as an ordinary instruction cache does' Therefore, the

trace cache is supposed to be an alternative repository' to compete with the embedded

instruction cache to supply instructions to the execution unit.

26



Experiment Setup

Processor Core

Fetch Unit
Original Procossor Model

(ln grey area)

I n stru ct¡o n

Cache
Trace Cache

System
Main Memory

Superscalar DLX Processor

:.1

'lt

t lnskuction Path

Conkol S¡gnals->

Figure 4.1: Trace aache placement in the superscalar DLX machine

Figure 4.1 shows the placement of atrace cache in a way that would fit in with

the original superscalar DLX processor model. The task of the trace cache is to collect

instructions tiom the fetch unit and pack these into traces with help from control

signals of the fetch unit itself and other units in the processor core, which determine

how to pack them. The trace cache can feed these traces back to the fetch unit.

However, the existing instruction cache is still the main supplier but also is the

competitor of the trace cache. Therefore' the trace cache system must be equipped

with trace cache 'hit' logic to make a decision on which instruction supplier would do

the job.

It is possible to build a trace cache by gathering instructions from the main

processor pipeline and producing instruction traces. However, incorporation of attace

cache would add a lot of complexity due to the original processor model, which was

not designed for this kind of expansion. Hence, the other way to accomplish this

mission is to leave the original superscalar DLX model untouched and examine the

utilization of the trace cache passively. In the other words, we build the whole trace

cache mechanism and investigate whether instructions collected in the trace cache

match the current fetched address in the program counter register of the processor'

This allows us to determine the effectiveness of the trace cache by measuring

trace cache hit rate, but we do not provide instructions from the trace cache to the

processor core since we are not attempting to measure the overall performance

t
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increase due to the trace cache. In other words, we will assess trace cache

performance in terms of trace cache hit rate and not be concerned with processor

performance improvement due to the higher fetch rate produced by the trace cache'

The latter is highly dependent on implementation technology.

4.2Trace Cache Line Size

In prior trace cache models 127,24], the superscalar processor models have

wide instruction-paths, which aÍe significantly different from the modest 2'

instruction-wide superscalar DLX machine we use in this research' In this

circumstance, the trace cache model used in this experiment is likely to be quite

different from them.

onal6-instruction-widesuperscalarprocessor,theindividualtracecacheline

is designed to fit 16 instructions and is able to feed a maximum of 16 instructions

simultaneously to the fetch unit. This approach would not fit with the 2-instruction-

wide processor (i.e. making the trace cache to accommodate just only 2 instructions in

a cache line) because the average basic block for typical applications is about 4 to 6

instruction s Qal.More importantly, the significant idea of the trace cache system is to

provide a trace that covers the basic block and to overcome the penalty of branch

misprediction. In this circumstance, we will provide a trace cache line size of 4-

instruction-wide or 8-instruction-wide to cover at least one basic block' The reason

for making 2 versions of trace cache line size is to find out an appropriate

configuration from the experiment results. In this project, we call the 4-instruction-

wide model and 8-instruction-wide model TC 4 andTC-S,respectively'

4.3 Trace Cache Model ComPonents

There are 4 main parts that work in concert, starting from gathering

instructions from the fetch unit until determinin g a ttace cache 'hit' or 'miss' '

4.3.1 Instruction Gathering Unit

This unit works closely with the fetch unit. In the original processor model'

the t-etch unit provides two registers for holding fctched instructions' Both instnrctions
i

ï
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could be dispatched through the execution windows simultaneously or just one of

them depending on the availability schedule of the required execution unit for each

instruction. The instruction that was left behind will be fed in the next clock period in

which the functional unit is available. To avoid double copying of the same

instruction from different fetch cycles, the instruction-gathering unit must be able to

determine how many instructions could be collected and which one of them should be

collected in the case that only one instruction could be dispatched. The determination

can be made by consulting a group of control signals. These signals are created by the

dispatcher in which they are originally used for checking the validity of incoming

instructions at the fetch stage. After the determination is accomplished, the individual

valid instruction is ready to be placed into the appropriate position of the fill-buffer

under the fîll-policy for creating a dynamic instruction trace.

4.3.2 Fill-Buffer

This buffer is a temporary memory which stores valid incoming instructions as

traces, before transferring them to the trace cache memory Space. However, it is the

most signifi cantpartof the mechanism because the usability of packed traces depends

directly on the fill-policy that crafts the individualtrace. Because of the different trace

cache line size and different number of basic block coverage, the fill-policy will be

different from the previous trace cache works in [21] andl24). Details of f,rll-policy

will be described in section 4.3.2.2 Fill-Logic and Fill-Policy.

4.3.2.1 Fill-Buffer ConfTguration

The buffer comprises two main sections, Trace Content and Trace

Information. Trace Content stores collected instructions and their addresses.

Meanwhile, Trace Information stores information associated with the trace which is

used during frll-buffer to trace cache transfers. Trace Content is constructed as 4 lines

(line numbers 0-3) by the number of instructions (4 and 8 instruction slots for TC 4

and TC_S,respectively.) Figure 4.2 shows the structure of the fill-buffer.

I
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o Branch Existing Flag: This flag indicates whether or not there is a branch

instruction in the buffer line.

o Branch Position: Together with the previous flag, this f,reld pinpoints the

location of the available branch instruction of the line'

The bit-length of the information fields Trace Size and Branch Position

depend on trace cache line size. Each of them is 2 bits for TC 4 and 3 bits for TC-8'

Note that, as explained in the following section, each trace cache line will contain no

more than one conditional branch (i.e' 2 basic blocks).

4.3.2.2 Fill-Logic and Fill-Policy

The most significant part of the whole fill-buffer is the f,rll-logic, which

determines how to fill instructions into the buffer, because the usefulness of traces

directly depends on the characteristic of the traces themselves. The implementation of

the fill-logic is ruled by the fill-policy, which defines how to construct and when to

terminate afiace from instructions collected from the instruction gathering unit.

The collected instructions will be put into available slots one after another in

the current incomplete trace until the trace is terminated by one of the following

conditions:

1. when the size of the current trace including one or both of the new

incoming instructions equals the buffer line size, or

2. when either one of the new incoming instructions is an unconditional

branch Ûump), RFE, or traP, or

3. when the current trace already possesses a conditional branch and either

one of the new incoming instructions is also a conditional branch. It was

decided that there must be maximum of 2 basic blocks per line because

general programs have basic block run-length about 4-6 instructions [24].

Hence, the narrow cache width like TC-4 and TC-B will rarely be able to

accommodate more than2 basic blocks.

Accordingly, the fill-logic fundamentally composes of a set of pointers used to

locate the current row and slot in the trace content space of the fîIl-buffer for each of

the incoming instructions and their addresses. The most important task of this unit is

to manipulate the pointers to implement the above rules correctly.

þ
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Rule I is the simplest way of terminating the line, when an incoming

instruction makes the current trace reach the limit of the buffer line size. Note that

there might be either one or two instructions collected from the fetch unit. In case

there is only one instruction, if the length of the incomplete current line plus this

instruction equals the buffer line size, the instruction will be placed into the line and

also terminates this line. Meanwhile, the pointers will be updated to the beginning of

the next line. However, if there are 2 incoming instructions, there could be two

distinct cases.

o Case l: The first incoming instruction of the two occupies the last slot of the

current buffer line. Therefore, this line will be terminated and the other

instruction will be placed in the beginning slot of the next line.

o Case 2: There are two slots left in the current line while there also are 2

incoming instructions. The logic can place both instructions into the slots,

terminate the current line, and start the next line for the next incoming

instructions.

If the trace was terminated by rule 1, it means that the line was fully occupied

by instructions that are most likely coming from the same basic block and they can be

put in the buffer very easily in practice. This scenario is quite rare in reality because

there are many instructions that break into several small basic blocks l2al. Therefore,

rule 2 and rule 3 are often the ones that terminate the trace'

Rule 2 and rule 3 handle instruction-path changing instructions (i.e.

unconditional branches, RFE, and traps) and conditional branches, respectively.

Therefore, it is necessary to enable the f,rll-buffer to classify instruction types. If the

former was detected in either one of the incoming instructions, rule 2 wtll be applied.

Basically, that instruction will be put in the current position provided by the pointers

and then the line will be terminated immediately'

According to the structure of the fill-buffer (see figure 3.3), there are 2 fields

in the trace information concerning branch instructions. The 'branch existing flag'

indicates whether or not there is a branch existing in the line yet. This field will be set

once a conditional branch instruction was inserted in the line. If the flag is set and if

one of the incoming instructions was detected as a conditional branch, the logic will

push that branch to start in the new line next to the current line even though there is a

space left to fit that instruction.
l{
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Apart from manipulating pointers to place instructions into their places by

applying the frll policy rules, the fill-logic also has to complete the trace information

of each buffer line. However, this task has to be done in parallel with the pointer

manipulation.

o The 'buffer line ready' flag is set immediately after the current line was

terminated.

o The 'trace size' field is the counter that counts the number of instructions

placed in the buffer line continuously until the line is terminated. Once the

line was terminated, this field can tell how many instructions are in the

particular buffer line.

o The 'branch instruction flag' was mentioned above.

o The 'branch position' indicates the location of the branch instruction

within the trace. This field is updated once the branch instruction was

placed in the buffer line. This information can be extracted from the

pointers that locate the position of the instruction.

4.3.3 Trace Cache Memory

4.3.3.1 Trace cache memory structure

Trace Cache Mem

Trace Inform ation Trace Instructions

4 or I instructions

o
E
@
N

o
+

Figure 4.4'.Trace cache memory structure.

\--- \---
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The structure of the trace cache memory is quite similar to that of the fill-

buffer. Figure 4.4 shows the structure of the trace cache memory space' There are also

2 sections: Trace Information and Trace Instructions'

o Trace Instructions stores only sequences of instructions since it is not

necessary to store instruction addresses anymore. However, significant

instruction addresses of the trace (i.e. the address of the first instruction

and the address of the branch target instruction (if any) of the trace) are

kept and appear as tags, which will be stored in the trace information

Portion.

o Trace Information comprises 6 information fields'

Valid Bt

Taq_1

Trælnfonrøtim

1q-2

TræSze

Branch Fosition

Branch âisting Flag

Figure 4.5: Trace Information portion of the hace cache memory

tr Valid bit: This is a flag to indicate whether or not the particular

trace cache line is occupied by valid cache content'

tr Tag_l: This is the tag field of the first instruction in the line.

tr Tag]: This is the tag held of the branch destination instruction

address if there is a branch instruction available in the line.

Otherwise, this field is an identical copy of tag-l'

tr Trace Size.

o Branch Existing Flag.

a Branch Position.

The last three fields of trace information are identical copies of 'trace

size','branch existing flag', and 'branch position' fields of the associated

fill-buffer entry as describecl in section 4.3.2.1 Fill-Buffer Configuration'
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In this experiment, the number of trace cache memory lines is one of the

interesting parameters to investigate. It ranges from 4 up to 512 cache lines

(increasing by factor of 2) to analyze the effect of trace cache memory size on the

trace cache utilization. This parameter will be varied for both TC-4 and TC 8

configuration.

4.3.3.2 Buffer-cache transfer

Every clock cycle, there must be a procedure to check whether there are any

traces ready in the fiIl-buffer waiting to be transferred into the trace cache memory

space. The buffer-cache transfer unit was built to accomplish this task. Moreover, the

unit has to make a decision whether the new trace should be placed into the trace

cache memory or dropped out.

tr Trace cache memory line selection

When there is a rcady fill-buffer line, the address of the f,trst instruction of the

buffer line will be used as the trace cache memory line selector. Based on a direct

mapped cache, the number of extracted bits used for line selection depends on the

numberof lines of trace cachememory (i.e.2,3,4,5,6,and 7 bits are for 4,8,16,

32, 64, and I28lines, respectively). The position of the extracted bits starts from

the third bit of the address (see figure 4.6).

1rbit 1 and 0

-t- Line selector starting from bit 2iTag -t-

Address of the first ¡nstruction of the buffer line (32 bit length)

Figure 4.6: Trace cache line selector is cxtracted starting from bit 3 of the address word.

tr Commencing the transfer

Once the destination line was decoded, the transfer would be commenced if:
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. There is more than one instruction in the ready-to-transfer fill-buffer line. This

avoids single-instruction traces, which are not likely to be very useful, from

occupying an entire TC line.

. The trace size of the ready-to-transfer frll-buffer line is longer than the existing

trace in the selected memory line. Hypothetically, a longer trace provides

more instructions and this would increase the probability of finding more

useful instructions'

tr The contents to transfer

The contents from the frll-buffer line are:

. All instructions in the trace (note: addresses of these instructions will be

abandoned).

. The extract (Bits 3I to 2) of the address of the first instruction and the

address of the branch instruction destination (if any) to f,rt in 'Tag-l' and

'Tag-2'of the cache line.

. Identical copies of 'Trace size', 'P¡tanch Existing Flag', and 'Branch

Position' from the buffer line for each field with the same name of the

cache line.

tr Finishing the transfer

After the transfer was complete, there are 2 tasks to be done.

. Reset all fields in the buffer line to make it ready to accommodate a new

trace.

. Set the ,Valid Bit' of the selected cache line to signal the validity of the

content.

4.3.4Trzce Cache Hit Logic

As mentioned earlier, the original DLX model will be left untouched and the

performance measurement will be done passively. The trace cache hit logic is the unit

assigned to find out whether the instruction at the current address in the progfam

counter register and its successors can be found in the trace cache' Therefore' this

function is the point at which can be made the measurement of trace cache hit rate'

The typical instruction-cache 'hit' is the outcome of comparison between the

value in the program counter register of the processor and the tag of the selected line'

This is the valid hit although the required instruction is not necessarily the first
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instruction of the line since its tag covers all of the instructions of the selected line.

This is different from the trace cache 'hit' definition, particularly, the trace cache

configuration of this experiment.

Trace cache information for 'hit' or 'misst

The trace cache is supposed to collect instructions from the dynamic

instruction stream. Although a trace cache line has a fixed size line into which

instructions are placed, we can not forecast which instruction would be the first

instruction of the cache line and how many instructions it can collect for a trace'

Moreover, some traces may contain a branch instruction with a destination

instruction whose address is not in consecutive order' Consequently, it is not

possible to make the tag address cover all of the instructions in a trace cache line'

In addition, the execution-path of the processor is only 2 instructions-wide. Then,

all instructions from the selected trace cache line can not flow through the

instruction-path simultaneously like those in the original instruction cache' One

trace cache line might contain instructions to be fed through the instruction-path in

several successive cycles. Therefore, the trace cache 'hit' or 'miSS' depends on the

corresponding trace information and the trace information must be able to

indicate

o

. how many instructions there are in a particular ttace,

. the address of those instructions,

. whether the trace possesses a branch,

¡ the direction (taken / not taken) of that branch instruction.

Trace cache thit' or 'misst determination

There are 2 types of trace cache 'hit': a hit on the f,rrst instruction of the cache

line and a hit on the rest of the line. The former can be detected by matching the

current value in the program counter (PC) with the 'tag-l' of the selected cache

line. After a hit on the first instruction, it is possible to have a hit on the rest of

the line in the next fetch. Thus, there must be a line-hit flag to indicate that the

first instruction of that line has been hit. This method will enable the hit logic to

check out the rest instructions'
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2. Addthe run time startup code crt1.o to the start of the compiler output.

3. Run this file through the standard link editor,ld'

4. Edit the a.out file to set the load addresses for the text and data segments, as

required by the simulation model.

5. Use the perl script to transform the floating-point instructions.

6. Edit the file to add nops aroundthe jr instructions'

7. Assemble the resulting f:ire ("dlx.asz") into object code ("dlx'out") using

dlxasm.

The crt7.o file and perl script are listed in Appendix D and are included in the

companion CD-ROM.

At the end, the assembly codes were assembled into binary code as 'out filre fot

the processor simulation. The assembler named dlxasm (downloaded from

http : //www. as henden. c om. au/des i gn er s - guide/ D G- DLX-mat eri al. html)'

4.5 Simulation Testbench Configuration

The testbench conf,rguration for simulating the superscalar DLX processor

model has been set to run DLX binary-assembled files. A program used to run on the

simulation must be named as 'dlx.out' and fit within 32 kilobytes memory range

(0x0000 to Ox7FFF). Originally, the capacity of the main memory was only 16

kilobytes but this was expanded to accommodate larger test programs. Note that there

must not be floating-point instructions in the test programs due to the processor

design. The output file will be created as 'dlx.dump' if it was programmed to generate

outputs.

4.6 Measuring the Trace Cache

In order to analyse the performance of the trace cache, the number of TC hits

and misses were collected. Hit and miss counts of the original instruction cache and

also the total cache accesses were also required for referencing purposes. The f,rnal

sum of trace cache hits and misses from the trace cache lines is too coarse a metric to

make any detailed analysis, therefore, the activities of each line of trace cache

memory were recorded as described in the Appenclix A.
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In addition, there must also be analysis of the cache space usage because the

trace cache model occupies real estate on the chip once it is implemented.

4.7 Conclusion

This research project benefits from the use of an existing processor model in

that it was not necessary to set up the experiment from scratch. However, this model

constrains the implementation of the original processor and the ability to expand the

instruction cache. This chapter has described the way in which the trace cache was

constructed and the method used to measure the trace cache performance in the

aspects of usefulness relative to the instruction-cache and space usage. VHDL source

code is included in Appendix B.
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Chapter 5

Results

The trace cache was simulated in two configurations: a 4-instruction wide

(fC_4) and an 8-instruction wide (TC_8) trace cache. In each case the number of

trace cache lines was varied from4 to 572. V/e will use 4L, 8L, and so on to denote

individual cache line configurations. Each one of them will be simulated on 4

different test programs: bubblesort (bs-a, bs-r, and bs-d), primenumber þn-20, pn-50,

and pn-100), permutation, and DCT. For bubblesort and primenumber, the

simulations were performed for 4L to 128L only, because trace cache performance

became steady before reaching l28L and certainly would not vary fot 256L and 5l2L

configurations.

5.1 Overview

This experiment is meant to determine the effect of a trace cache on a narrow-

issue processor like the SuperscalarDLX in order to be able to determine whether the

trace cache is worth considering for implementation on this kind of microprocessor.

Obviously, performance comparison between the trace cache and the originally

embedded instruction cache seems to be inevitable. Unlike the trace cache, however,

it proved to be impractical to increase the capacity of the instruction cache in order to

make a fair comparison between the two. For this reason the instruction cache

capacity was not varied in these studies. The instruction cache can hold a maximum

of 16 instructions when the trace cache can increase virtually unlimited. The best case

for fair comparison would be TC_4 at 4 lines of trace cache, in which the total

capacity of the cache is 16 instructions (TC-4 = 1 line contains 4 instructions).
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Therefore, this analysis of this experiment will not focus on a head-to-head

comparison of the performance between the two caches. Instead we will focus on the

performance of different trace cache configurations.

There are three sections analyzing the performance of the trace cache from

different points of view. The first section shows the hit and miss counts on the trace

cache while the capacity of the cache is increasing in both the width of the trace cache

line and the number of trace cache lines. This section also shows hit and miss counts

of the instruction cache to provide a reference point for trace cache performance.

The next section shows the percentage of hits and misses of the trace cache for

different test programs. Hits and misses are presented in separated graphs to facilitate

analysis of each of them individually. The last section displays how much of the trace

cache space has been used and how much of it was left unused when the capacity of

the trace cache is expanding. Please note that the words trace cache and instructíon

cache might be, from time to time, replaced with the abbreviations TC and IC,

respectively.

5.2 Hits and Misses of the Trace Cache

Fundamentally, the number of cache hits and misses is the performance

indicator of cache memories. If there are more cache hits and fewer misses, it

represents a better performance of the cache. This experiment has two main

parameters that affect the performance of the trace cache when they vary, the size of a

trace cache line and the total number of trace cache lines. The product of these

parameters is actually the capacity of the trace cache but there may be different results

for the same capacity from different parameter combinations because of the trace

cache mechanism. Generally, a bigger trace cache capacity should perform better than

a smaller one. However, it is essential to observe the actual results from these

parameters that come into play with the fill policy in order to understand the design

trade-offs.

The results are presented as graphs with associated data tables of individual

test programs (figures 5.la to 5.1h). Each of them shows the acquired number of hits

and misses of all conflrgurations of the trace cache and also of the original instruction

cache.
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In general, TC-ï perfoffns better than TC-4 in particular at the same number

of TC lines exceptfor DCT. Undoubtedly, the longer traces of TC-8 increase the

opportunity to find useful instructions in a single trace and the larger space allows

more instructions to fit in and also decreases the chances of overwriting useful ones

due to space contention. However, this advantage is not effective in every program as

mentioned in the explanation above. The effectiveness depends on the pattern of

dynamic execution of each particular progran\ so the advantage is not perfectly

predictable.

For the case of bubblesort, TC_8 at 4L is not as effective as TC-4 because of

two significant reasons evident from the raw datzfrom the simulation (referencing the

companion CD-ROM). This analysis is based on the comparison of 4L and 8L oî bs-r

and bs-d. The first reason is that 4L provides less space to hold useful traces long

enough to offer required instructions and that particular traces were replaced by other

traces that are not well used and live too long and, therefore, result in a lot of misses'

The other reason is there is too much overwriting to the same line too frequently, so

the useful traces cannot live long enough to produce hits. All of this is chiefly the

problem of cache space contention combined with the direct-mapped scheme'

Therefore, more TC lines can relax this drawback and offer more TC hit counts as we

can see from the results.

DCT is an exception from all of the graphs mentioned above. The performance

of TC g is not better than TC_4 at the same number of TC lines. This peculiarity can

be explained by the comparison graphs of TC hit, compulsory miss, and conflict miss

of TC-4 and TC-8 in figure 5.2.

In the following discussion we refer to misses as either compulsory misses or

conflict misses. When the line was selected at the first time but there is no instruction

in it (valid bit = 0), it is called a compulsory miss.In contrast, if the selected line

contains valid data but not the required instructions, it is called a conflict miss.
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Figure 5.2 shows the comparison of three features (TC hit and both TC miss

types) of TC-4 and TC-Y. Suppose that the trend of the TC-4 graphs draws the

baseline of normal behavior in which the TC hit rate is increasing, representing better

performance when there are more TC lines. Meanwhile, the conflict miss rate falls

and the compulsory miss rate is a little higher as the number of lines increases. We

can see that the behavior of 7C_8's graphs is different. If TC-9 consistently

performed better than TC_4, either of compulsory miss rate or conflict miss rate

should be distinctly lower than those of TC. 4 from 4L to 512L. But it is only at 4L

that TC_g performs better than TC_4 because of the low conflict miss rate. At 8L, the

conflict miss rate of TC_8 is higher than that of TC-4. This unexpected effect has to

be explored by consulting the raw data on Appendix C which contains excepts from

the corresponding simulation log files of DCT. Comparing the dat¿ of TC-4 and TC-\

at 8L for DCT, it reveals that trace line number 2 of TC I has a noticeably higher

conflict miss than TC_4. Although the overwriting count is only a few in TC-9, the

conflict miss rate is high. This means that useful traces are overwritten by less useful

ones. Moreover, the less useful traces occupy lines for too long. Comparing this to the

same line of TC_4,there are more trace overwrites but fewer conflict misses.

At l6L, although the conflict miss rate decreases the compulsory miss rate

suddenly gets higher than the compulsory miss rate of TC 4 which makes the TC hit
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rate of TC_$ still less than TC_4's. After 16L, the falling conflict miss rate of ZC-8 is

offset by an increasing compulsory miss rate. The ruw datafor TC I at l6L to 64L of

DCT gives the insight into this occunence. This happens at trace cache line number 2

that has high compulsory miss which dominates the total compulsory misses.

The above comparison between TC_4 and TC-9 for the same number of TC

lines is actually not fair because TC_8 naturally has more room for instructions. At a

particular number of TC lines, TC-ï has twice the capacity of TC-4. For example, the

8l-trace cache of TC 8 is able to store 64 instructions as is the líL-trace cache of

TC_4. Hence, it is interesting to make a comparison using total capacity to categorize

a particular comparison between TC-4 and TC I as shown in table 5.2.

Table 5.2: The equivalent cache capacity of different trace cache configurations

For the bubblesort and primenumber programs, the comparison will stop at

l28L of TC 4 while all of the above configurations (8L-512L of fC-4) will be shown

for Permute and DCT. Figures 5.3a to 5.3h show the graphs of hits and misses based

on the total cache capacity of each TC line width'

204810245122561286432Cache capacity (instructions)

2561128L64132L1618L4LTC8

512L256L128L64132L1618LTC 4

Number linesTC configuration
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Figures 5.3a to 5.3h show that TC_8 does not significantly ouþerforrr'TC-4

as it might be expected to when the total cache space is equal between the two. For

Permute aîd DCT, TC-| performs generally worse than TC-4. The hypothetical

reason for this is the importance of TC line numbers. Although the wider TC line

offers the opportunity to get more hits on the contents of traces, there is also the

possibility that not all of the contents are useful and, in addition, not all fully useful

traces are longer than 4 instructions. Therefore, when comparing TC-4 with ZC-$ on

a fair basis (equal capacity), TC-4 generally performs better Ihan TC-8' Permute and

DCT are good basis for this comparison since bubblesort and primenumber are too

short to tell the difference due to their early saturation of TC hit rate'

In the end, these results are useful for determination of chip area investment in

the stage of hardware implementation in which the choice between increasing the

number of TC lines and widening the traces is considered'
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5.3 Percentage of Trace Cache Hits and Misses

This section focuses on the percentage of trace cache hits and misses in order

to show and compare the nature of the hits and misses of each test programs. Trace

cache hits will be discussed in term of 3 figures.

o

o

a

Total trace cache hit -This is the percentage of trace cache hits relative to

total cache accesses. Total trace cache hit is the sum of the trace cache

first tag hit andthe trace cache line content hit'

Trace cache fi.rst tag hit - The first tag of the trace cache line represents

the first instruction of the trace. When the fîrst tag was hit, it means the

line can start to supply instructions. However, the other instructions in that

line can be fetched or not depending on another hit signal - trace cache

line content hit.

Trace cache line content hit - As mentioned above, this hit is counted

when instructions after the hit first instruction are eligible to be fetched.

As we described the definition of compulsory misses or conflict misses earlier,

both of these figures are elements of the total trace cache miss percentage, which is

the percentage of total trace cache hits subtracted from 100.

Each of figures 5.4 to 5.8 shows the graphs of percentage of particular hit and

miss of TC-4 and TC-| together for comparison purposes'

5.3.1 Trace cache hits

Figure 5.4 shows the graph of percentage of total trace cache hit of (a) TC-a

and (b) TC_8. Hence, they provide comparable figures among all test programs in

which the numbers of total cache accesses are different'

I
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Results

5.3.1 Trace cache misses

There are two kinds of Tc misses - compulsory miss and conflíct miss - as

explained earlier. Figures 5.7 and 5.8 show the percentage of each kind of miss for

both TC_4 and TC_8,taking the total miss count as 100% and each miss is the share

of the total miss count.

We would expect that the percentage of compulsory miss would be increasing

when the number of TC lines is higher while conflict n ¡ss tends to go the opposite

way. This can be explained by the nature of the cache scheme. rù/hen there are a few

TC lines, it is most likely that an existing trace is replaced by a new incoming trace

since they are mapped at the same line. Therefore, when that line is engaged by a new

one that is not matched with the requirements of the fetch unit, it signals conflict miss.

Conflict misses can be resolved by increasing the number of TC lines and eventually

when there is enough room to store most or all of the instructions, the conflict miss

rate is zero. Likewise, compulsory miss can be explained from the same effect of

increasing the number of TC lines. More TC lines increase the probability of a hit on

an empty cache line. Hence, eventually all of the TC misses are conflict misses when

the trace cache is big enough to cover all executed instructions.

If we look at the results of TC misses, each of them has the tendency as

hlpothesized. However, the results of each test program are different and

unpredictable when two parameters - the trace size and the number of TC lines - are

varied. Therefore, no firm conclusion can be made about how the variation of trace

cache parameters affects the behavior of trace cache misses.
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5.4 Trace Cache SPace Usage

Increasing trace cache space seems to improve the hit rate but also introduces

additional expenses. Therefore, it is important to obtain some indication of how

efflrciently each configuration uses the available memory. Figures 5.9 and 5'10 show

the percentage of trace cache space usage of TC-4 and TC-9, respectively' The

individual percentage was calculated from the total number of instructions stored in

the cache divided by the maximum instruction capacity of the cache.

TG-4- Percentage of Cache Space Usage TG-8 - Percentage of Cache Space tlsage
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5.4.1 Results of TC-4 md TC-ï

According to figures 5.9 and 5.10, there is one common feature among all test

programs: the utilization of cache space is dropping while the cache capacity is

expanding.

5.4.2 Analysis

This result is quite predictable since the more cache space is available the

more space tends to be wasted, especially for very short programs like bubblesort and
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primenumber. Althou gh Permute and DCT are longer in terms of program span' at

5l2L there is clearly much more space available than required. According to the raw

data (in the cD-RoM), there are two main effects that waste cache space. First, some

cache lines were occupied by short traces (less than 4 and 8 instructions for TC-4 and

TC_8, respectively). second, there are some cache lines that have never been

occupied by any trace; this is worse when the number of TC lines increases' Both of

them are inevitable because, for the former, there is no certainty of the width of an

individual trace, one might contain only 1 instruction while another contains more

instructions up to the maximum number (4 or 8 instructions) due to the fill-policy'

Consequently, the mapping of a trace entirely depends on the address of its first

instruction. Some cache lines, then, might be unused because it is unlikely that the

cache line following the line occupied by the current trace will be the place for the

succeeding trace.

5.5 Conclusion

The results show that the hit rate of the trace cache tends to increase while the

trace cache size is increasing from both the bigger number of instructions in each line

and the largernumber of trace cache lines. However, the increasing rate will come to

saturate once the number of trace cache lines can cover all of the instructions of the

test program.

In short test programs, the results show that the hit rate of the trace cache in

TC 8 is increasing and becoming steady earlier comparing to TC-4' It shows that the

larger cache space allows more instructions to fit in and, certainly, the probability of

finding the right instructions is increasing. Meanwhile, the hit rate also saturates faster

because of the larger cache space, which can cover all of the instructions in fewer

lines. On long programs, the results show that extending cache capacity both by

increasing the number of trace cache lines and increasing the line width increases the

performance of the trace cache as well.

Increasing the number of TC lines might improve performance of the trace

cache but also leads to trace cache Space waste because of the escalation of unused

trace cache lines accoding to the direct-mapped scheme'
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The wider trace on TC-T also increases the performance of the trace cache

over TC 4 if thecomparison has been made at the same number of TC lines' But' if

rwe compafes at the same capacity, for example, 16L of TC-4 and 8L of TC-8 for the

capacity of 64 instructions, the performance of both is similar or most of the time

TC 
-4 

performs better tltan TC 
-8'
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Chapter 6

Conclusion

6.1 Summary

This research has been conducted to study the performance of trace cache

memory on a small-scale superscalar microprocessor. The superscalar DLX machine

[9] was chosen as the basis for the experiment. The original model can process two

instructions simultaneously with the help of a very small instruction cache to supply

instructions. The trace cache memory was designed with less complexity than the

previous works 1201,123).There is no sophisticated branch prediction unit for packing

the instruction traces and the number of instructions in one trace cache line was

reduced to balance with the issue width of the processor' The experiment has been

performed on2 main configurations: TC-4 and TC-\, which are 4 instruction-wide

and 8 instruction-wide trace cache, respectively' Each conf,rguration has a number of

cache lines varied from 4 to Sl}lines. Test programs used in this experiment can be

categorized into 2 groups: the short ones (e.g' bubblesort and primenumber) and the

longer ones (e.g. permute and DCT).

6.2 Conclusions

The experiment shows that the crucial parameters affecting the performance of

the trace cache are the number of TC lines and the width of trace. An increment of

both parameters leads to better performance of the trace cache indicated by the

increasing number of hits. However, increasing the number of TC lines also causes

more unused cache space according to the nature of the cache scheme.
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The performance of TC-ï is generally better than Tc-4 if the comparison has

been made at the same number of TC lines but if we compare them at the same cache

capacity, TC-| does not really outperform TC 4 and most of the time performance of

the former is lower than that of the latter'

Apart from those parameters that affect the performance of the trace cache' the

policy of the fill-unit and also the logic unit for transferring traces from the f,rll-buffer

to the trace cache memory are also crucial. Investigation of the effect of these policies

is a matter for future work. From these results, the trace cache is not able to

demonstrate clear advantage over the instruction cache as expected' On the other

hand, even this trace cache model without sophisticated fîll strategies is quite complex

comparing with the original instruction cache. In that case, we found no evidence that

it is worthwhile to invest the chip area to implement such model while a simple

instruction cache works quite well for narrow-issue processors.

6.3 Further'Work

From the results of these experiments, we gain some insight into

characteristics of the designed trace cache on a naffow-issue processor and also some

indications of pitfalls of the model. This section is a discussion of these drawbacks,

which were not resolved in this research because of the time limitations'

The results show that the number of Tc lines and the width of traces are

crucial parameters in the aspect of trace cache performance' However, there is another

parameter that is also vital but was paid less attention' It is the functional unit for

transferring traces from the fill-buffer to trace cache memory. Some trace cache lines

are not as useful as they should be and cause a significant number of misses' This is

because the strategies to put a ttace into the destination TC line were not as effective

in avoiding misses as they could have been. Therefore, this unit should be

investigated further to find the optimum strategies. Clearly, this unit involves

significant complexity and adds to the implementation cost of the trace cache'

The advantage of a ïrace cache is the ability to contain two or more non-

consecutive basic-blocks, which an instruction cache cannot' The best metric we have

to evaluate the usefulness of the trace cache ís TC Line content Hit in which the hit

counts indicate the possibility of taking advantage of the trace cache' This feature
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should have been explicitly gathered for the purpose of trace cache analysis. Yet, it

was not implemented in the design because of the complexity of modifying the

existing DLX model to collect this data'

In this experiment, there are only two more additional test programs, permute

and DCT, apart from the originally provided programs, bubblesort and primenumber,

for the simulation. They can be categorized as long programs and short programs

according to the span of the particular sourcecode. The results and analysis would be

more reliable if there were mofe long programs simulated. However, there are two

main constraints that obstruct us for gathering more test programs. The first one is

converting the sourcecode of the prospective test programs to binary code is a time-

consuming process because of the hand conversion of the source code described in

chapter 4. The second constraint is the simulation for the long programs takes a very

long time.

Finally, the experiment reveals that the other parameter that should taken into

account to gain more insight into the trace cache is the strategies used to decide

whether to hold the an existing trace or to replace it with a new coming trace that

mapped at the same TC line. A more intelligent scheme would improve performance

of the trace cache because it can hold the useful trace and ignore the less useful one at

the right time. However, investigation of this feature needs more time and certainly

would increase the complexity of the trace cache. Therefore, it is not included in this

research.
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Appendix A

Companion CD-ROM Contents

This CD contains essential materials that can be used to reproduce the

simulation and the results created from our simulation for referencing purposes. At

root directory, there are three subdirectories: DLX Sourcecode, Test Programs, and

Simulation logfiles.

4.1 DLX Sourcecode

This subdirectory contains sets of VHDL sourcecode of the Superscalar DLX

processor model categorized by processor configurations. Each set of VHDL

sourcecode comprises four files: Dlx.vhd, DlxPackage.vhd, Environment.vhd, and

Testbench.vhd.

Dlx.vhd is the main VHDL file that describes the architecture of the DLX

processor. Most of the trace cache code is in this file.

Dlxpackage.vhd is the package file that contains types, subtypes, constants,

and functions in which they are used along with Dlx.vhd. This file also includes some

code for the trace cache.

Environment.vhd creates the environment for the simulation. It describes how

the processor model interfaces with the outside world and the system otganization

including the memory configuration. Originally, the memory capacity was l6Kbyte,

which was not enough to run Permute and DCT. Therefore, this file was modified to

increase the memory capacity to 32Kbyte.

Testbench.vhd connects all fîles together to make the simulation possible. This

file is the only original fîle that was not modified for the trace cache.
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To run each simulation configuration, we have to compile DlxPackage'vhd

first followed by Dlx.out, Environment.vhd, and Testbench.vhd.

4.2 Test Programs

There are two subdirectories: outJiles and Test programs sourcecode'The out

files subdirectory contains .out r:fles for use as test programs' To use these files, we

have to change the filename of the desired one into dlx'out and place it into the same

directory as the desired DLX VHDL code. For example, if we want to run DCT in the

simulation of TC 4 at8L, change from dct.out to dlx.out and put it into directory

tc4 gt. 'When the simulation is halted, it will create a result.log file of DCT rot the

chosen configuration.

In Test programs sourcecode, there are assembly files of all test programs'

Bubblesort and Primenumber are the original assembly sourcecode (bs-r and pn-20)

and the manually modified assembly sourcecode (bs-a, bs-d, pn-50, and pn-l00)'

Permute and DCT are the ones create dby GNU-d.lxcc of permute.c and dct'c from c

sourcecode subdirectory and patched as described in 4'4, which is included in that

subdirectory. All assembly f,rles are in Assembly sourcecode subdirectory'

4.3 Simulation log files

This directory contains results created by each TC configuration as 'log fúes'

An individual filename was changed from result.Iog created from the simulation after

the name of the test program. Each file contains information as follows:

. Log file banner - identifies the trace cache configuration and the name of the

test program used in the simulation'

Example:

*************i***********************************

TC 4 : 4 Línes *Test Program: bs-a'out
*******************i*****************************

. General Information - this section provides information about the number of

instructions that have been fetched into the processor (Total Fetched

htstructions), committed by the Commit Unit (Committed Instructions)'
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rejected (Omitted Instructions), and the number of instructions that have been

accessed from the instruction cache (Cache Memory Access (fetch))'

o Instruction-cache Info - indicates how many instruction cache hits there are in

the simulation of the test program and the percentage of hits by the total

instruction cache accesses.

o Trace-cache Info - this section shows how many trace cache hits (including

TC-First Tag Hit and TC-Content Hit) and misses (including Compulsory

Misses and conflict Misses) there are in the simulation of the test program and

the percentage of hits and misses'

o Information collected From Individual Trace cache Line - this table is the

information gathered from each TC line and contains the following items:

o Line - the trace cache line number'

oComp-Miss_thenumberofcompulsorymissesonaTCline,

o conf-Miss - the number of conflict misses on a TC line,

oTC-Write-thenumberoftraceswrittenonaTCline,

o TC-O Write - the number of traces that were overwritten with a

different trace content on a TC line,

oTC-Size-thelongesttracesizeexistingonaTCline,

o TC-Hit - the number of hits on a TC line,

oFTag-Hit-thenumberorTC-FirstTagHitonaTCline,and

oCont-Hit_thenumberofTC-ContentHitonaTCline.

o Percentage of Cache Space Usage - this section indicates the percentage of

cache space that has been written by traces'
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Appendix B

VHDL Code of Trace Cache

Three files have been modified from the original Superscalar DLX model'

They are Dlx.vhd, DlxPackage.vhd, and Environment.vhd'

8.1 Dlx.vhd

This file describes the architecture of the trace cache. The first part is signal

declaration.

-- Filt Buffer structure
signal FB-InstrBuffer: TypeÀrraylnstr( O to clnstrRow, 0 to clnstrslot );
silnal le-InstrAddrBuffer: TypeArraylnstl( 0 to clnstrRow, 0 to clnstrSlot );

signal EB_BuffêrReady : unsigned( 0 to clnstrRow);
siinal FB-Tracesize : TypeArrayslotcount( 0 to clnstrRow);
signal EB BranchBxisting : unsigned( 0 to clnstrRow);
signal FB-BranchSloL : TyPeAlraysÌot( 0 Lo clnstrRow);

-- signal to inforn tlace line counter when there aIe 2 instluctions sit ín the line simultaneously
sígnaI EB_Tracecount2up : bit;

-- Buffer line termination signals
signal EB_RowTerminatedByA : bit;
signaÌ FB-RowTerminatedBYB : bit;

signal PB_FinishRowNunber-A : TypeRow;
signat FB_FinishRowNumber-B : TypeRow;

signal FB_BranchInstrA-Row : TypeRow;
signal FB_BranchInstrB-Row : TypeRow;

-- Instruction Write Enable
signal FB_InstrAwrite I bit;
signaÌ FB InstrB9Írite: bit;
signal EB-InstrWrite-A-B : unsíqned( 0 to 1 );

-- Buffer Index suite: Instruction A Index, Instruction B lndex, and Reference Index (culrent index)

signal
signal
signal
signâI
signal
s igna 1

FB InstlA Row : TYPeRow:=0;
FB InstrA slot i TYPeSlot:=0;
FB InstrB Row : TYPeRow:=0;
FB InstrB SloL : TYPeSlot:=0i
FB CurrentRow : TYPeRow:=0;
FB culrentStot : TYPeSlot:=0;

-- Instruction TYPe ['lags
signal FB_InstrA_IsBrânch : biL
signal EB_InstrB_lsBranch : bit
signal EB_InstrA_IsDelimiter :

signâI FB-TnstrB-TsDeIimi Ler :

0

0
brt
brt

-- Eor Experiment
signaÌ FB_LastIûstr : TYPeWord;
signal FB_Lâstlnstrshift : Typeword,'
signal FB_LastlnstrlsBranch : bit ::' 0' ;

signâl EB_Test : bit::r0' ;
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) elae

'1' when Clock ='0'and EB InstrA!'Ùrite:'1' and
( EB lnstrA lsDelimiter = '1' ol

FB_Currentslot = clnstrslot or
( Fg-Instre-Isgranch : '1' and FB-BranchExisting(FB-CurrentRow) = r1r

'1' when clock = 'O' and FB-Instrt'Ûrite-À-B = "11" and
FB InstrA IsBranch : r1r and
EB InstrB lsB¡anch = '1' else

FB RowTerminatedByB <=

-- Test
'O' when Clock = '0' and FB-lnstrf'ÙriLe-Ä-B = "11' and

FB_currentslot /= 0 and
(Eaual (IF-lnstrAddrRegÀ-lnPut, FB Lastlnstrshift)=r 0r ) and
(FB LastlnstrlsBranch='0' ) else

'1' when clock = 'o' and FB-Inst¡write-A-B = "01" and
FB Currentslot /= 0 and
(Equa1 ( TE-InstrAddrRegB-Input, FB-LastlnstrShif t ) =' 0' ) and
(FB LastlnstllsBranch='0' ) elsê

-- when only insLruction B is coming
'1' when Clock = '0r and EB-Instr!'ÙriLe-Ä-B = "01' and

( FB_IôstrB-IsDeliniter = r1r or
FB CurlentSlot = clnstrSlot or
( FB-TnstrB-lsBranch ='1' and EB-BranchExisting(FB-currentRow)

-- f,lhen both instructions are coming

'0' when Clock = '0' and EB-InstrwríLe-A-B = "11u and
FB lnstrA IsBranch = r1r and
FB BranchExistinq(EB CurrentRow) = '1' and
EB InstlB lsBlanch = r0r and
EB InstrB IsDeliniter = '0' else

'O'when ctock ='o' and FB Inst¡9'¡rite A B: ir11rr and
FB TnstrA rsBran¿h = '1' anã
EB_InstrB_IsBranch = '1r and
FB BranchExisting(Þ'B-CulrentRow) = r0' else

'1' when clock ='0' and FB lnstrg'irite A B = "11" and
EB lnslrA Issranãh = 'I' anã
EB_InstrB_IsBranch = '1' and
FB BranchExisting(EB-CurrentRow) = rlr efse

'1' when Clock ='0'and EB Instrwrite A B = "11u and
( FB-Instr B--LsD.li*it.. = ' t'-o.

EB Cullentslot = clnstrslot-1 or
( FB_lnstrA_IsBrânch = '0r ând

FB IûstrA IsDeliniter = r0r and
EB_InstrB_IsBranch = r1' and
FB-BranchExisting(FB-CurrentRov) ='1' ) ) else

-- Identify which buffer tine(s) is(are) terminated'
FB EinishRowNumber A <=

EB-CurrentRow when clock = '0' and EB-InstrAwrite = r1r and
FB-CulrentsÌot /= 0 and
( Eãual ( IF-InstrAddrRegA-Input, FB-LastTnstrshif t ) = | 0 I ) and
(FB LâstlnstrlsBranch='0' ) else

FB-currentRo{ when clock = 'O' and EB-Instrt'lrite-Ã-B = "11" ãnd
FB-InstrA-IsBranch = '1' and
FB BranchExisting(FB-Cur¡entRow) = r1' and
FB InstrB IsBranch = '0' and
FB TnstrB IsDelimiter = '0' efse

) else

FB InstrA Row when Clock = '0' and EB Inst¡A9{rite: '1' and
( EB_InstrA_IsDelimiter = r1r ol

( EB Currentslot = clnstrsfot and
FB InstrA IsBranch = '0' ) ol

( FB Currentslot = clnstlslot and
FB InstrA IsBranch : '1' and
FB BranchExisting(FB culrentRow) = '0'

EB Cur¡entRow when Clock = 'O' and FB InstrAwrite ='1' and
( FB_InstrA_IsBranch = '1r and

FB_BranchExisting(FB_CurrentRow) = r1r ) else

FB Tnst¡À Row when Clock ='O' and EB-TnstrWrite-A-B: "11" and
FB InstrA IsBranch : '1' and
FB InstrB IsBranch = '1' eÌse

una f fe cted;
FB FinishRowNumber B <=

) ) else

-- Test
FB CurrentRow when Clock ='0' and EB-InstrWrite-A-B = "01irand

FB Currentslot /= 0 and
( Eãual ( TE-InstrÀddrRegB-InPut, FB-Lastlnstrshif t ) =' 0' ) aod
(FB LastlnstrlsBlanch:'0' ) else

-- f,lhen only instruction B is coming
EB InstrB Row when Clock = 'O' and FB-Instrwríte-A-B = "01" and

- ( EB InsLrB IsDelimíLer = '1r o¡
( EB CurrentSlot = clnstlSfÔt and

FB InstrB IsBranch : '0' ) ) else

73



VHDL Code of Trace Cache

FB CurrentRow when Cfock

FB BranchExisting(EB-CurrentRow) = '1' ) else

: '0' and FB_Inst¡Write_A_R : "01" and
( EB_InstrB_IsBranch = '1' and

-- t'Ùhen both instructions are coming
EB-InstrA-Row when clock : 'O' and EB-InstlWrite-A-B = "11" aod

- FB-InstrA-IsBranch = '0' and
EB-fnstrA-IsDelimiter = '0' ând
FB-InstrB-IsBranch = r1' ând
FB BranchExisting(FB-CurrentRow) = r1r else

FB-InstrA-Row when Clock = '0' and FB-InstrWrite-A-B = "11" and

FB lnstrA IsBranch = '1' and
EB-InstrB-IsBranch = '1' and
FB BlanchExisting(FB-CurrentRow) = r1r else

EB-InstrB-Row when clock = '0' and EB-Inst¡Í'¡rite-A-B = "11" and
- ( FB-InstrB-IsDelimiter = '1' or

FB CurrentSfot = clnstrSlot-1 or
( FB-InstrA IsBranch = r0r and

EB-InstlA-IsDelimite! : '0' and
FB-InstrB-IsBlanch = '1' ând
EB BlanchExistinq(FB CurrentRow) = '1r ) ) else

unaffected;

-- Logic for informing when Lhele are 2 instructions sitting in the same line
-- ( for trace line counter mechanism )

FB-TracêCount2tjp <= r1' when clock = '0' and Clock'event and
EB Instrf'Ùrite A B: "11" and
FB-CurrenLsÌoE ¿= clnstrsl ot-1 and
( ( FB-InstrA-IsBranch = '0' and

FB-lnstrB-IsBlanch = '0r ènd
FB-TnstrA-IsDefimite¡ ='0' ) o¡

( ( ( FB-BrãnchExisting(aB-currentRow) ='0' ând
( ( EB-InstrA-IsBranch = '1' and

EB InstrB IsBranch = r0r ) or
( aB InstrA-lsBrènch = '0' and

EB lnstrA-IsDeliniter = i0r ãnd
FB rnstrB IsBlanch = r1' ) ) ) or

( PB-BraÃchExisting(FB-CurrentRow) = r1r and
( FB_InstrA-IsBranch = '1' and

EB InstrB IsDelimiter = '0' and
FB InstrB TsBranch ='0' ) ) ) ) ) efse

,0,;

-- DeLermining whether íncoming blanch would sit in the curlent row or next possible row

FB BrãnchlnstrA Row <=
O when ( Clock = '0' and clock'event ) and

i EB-InstrA-IsB¡anch ='1' and FB BranchExisting( EB-curlentRow ) : '1' ) and

FB CurrentRow = clnstrRow else
FB-CurrentRow + 1 when ( Clock ='O'and Clock'event ) and

( FB InstrA IsBranch : '1' and FB BranchExisting(
FB currentRow ) : r1' ) and

FB CurrentRow ) :'1' ) and

EB CurrentRow < cTnstrRow else
FB CurrentRow;

FB_BranchInstrB_Row <=
- When only instruction B is comang

0 when ( Clock = 'O' and Clock'event ) and
FB rnstrv'lrite A B = "01" and
i-fe-i."ate-t"eraoch ='1' and EB BranchExisting( EB currentRow ) ='1! )

EB CurrentRow: clnstrRow elsê
FB CurrentRow + 1 whên ( Clock = 'O'and Clock'event ) and

FB-Instrwlite-A-B = "01" and
( FB InstrB rãeianch = r1' and EB-BranchExisting(

FB CurrentRow < clnstrRow else
-- When boLh instrucLions are coming
0 when ( Ctock = r0' and Clock'event ) and

EB-lnstrg'Írite-A-B : "11" and
( ( FB-CurrentRow = clnstrRow and

( ( FB-lnstrÀ-IsBranch = '0' and
FB-InstrA-IsDe1íniter : '0' ând
FB InstrB lsBrânch : '1' ând
EB Culrentstot = clnst¡Slot ) o!

( FB-Inst!A-IsBrãnch = '0r and
FB lnstrA IsDelimiLer : '0' and
FB_InsttB_lsBranch = '1' and
FB BranchExisting(FB-currentRow) : '1' ) or

( FB-InstrA-IsDeIÌmiter = '1' and
FB-Inst¡B-IsBlanch ='1' ) or

( FB-InstrA-IsBranch = '1' and
FB-InstrB-IsBrånch = '1' and
FBBranchExisting(FB-cu¡rentRow) = r1r ) ) ) or

( FB CurrentRow = clnstrRow-I and
EB-InstlA-IsBranch : '1' and
FB-InstrB-IsBlanch = '1' and
FB-BranchExisting(FB-curlentRow) ='1r ) ) else

and

1' ) ) ) or

FBCurlentRow+1when ( clock : '0' and ctock'event ) and
FB rnsLrwtite À B = "11" and
EB CulrêntRow < cTnstrRow and
( ( EB_lnstrA-IsBranch : '0' and

FB InstrA lsDelimiter : '0' and
FB InstlB IsBranch = '1' and
( FB_Currentslot = clnstrslot or

( EB-BranchExisting (FB-CurlentRow)
( FB-TûstrA-IsDelimiter = '1r and

FB InstrB IsBranch = r1r ) or
( FB_TnstrA-TsBranch = '1

EB InstrB IsBranch = '1' and
FB BrânchExisting(EB-cur¡entRow) : I 0

and

) ) else
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FBCulrentrow+2when

FB CurrentRow;

( Ctock = 10' and Clock'êvent ) and
FB Instrwrite A B = "11" and
EB currentRow < cTnstrRow-l and
FB_rnstrA rsBrânch = '1' and
FB InstrB IsB¡anch = '1' and
FB BrânchExisting(FB-CurrentRow) ='1r

and

and

efse

-- Index for instluction A

FB InstrA Row <=

-- Test
0 when ( clock = 'O' and clock'event ) and

FB lnstrAwrite = r1r and
FB currentRow = clnstlRow and
FB Currentslot /= 0 and
(Eãual (IF-InstrAddrRegA-Input, EB-Lastlnstrshift) = ' 0 ' )

(EB LàstlnstrlsBranch='0') efse

< clnstrRow ) and

else

and

else

FB CutrentRow+1 when ( Clock =rO' and Ctock'event ) and
- FB-lnsLrAl'lrite : '1' and

FB CullentRow < clnstrRow and
t'B-currentSlot /: 0 and
( Equal ( IF-InstrÄddrRegA-lnput' FB-Lastlnstrshif t ) =' 0' ) and

(FB LastrnstrTsBranch='0' ) else

0 when ( Clock = '0' and Clock'event ) and
FB-InstrA-IsB¡anch = '1' and

( rg e¡anchÉxisting(EB-currentRow) = '1' and FB-cur¡entRow = clnstrRow )

( EB-Instrf'lrite-A-B = '10" or FB-Instrt,Ùrite-A-B = "11r' ) else
FB_currentRow;1 wnen ( cToãk = r0' and clock'event ) and

FB_InstrÀ_IsBranch = '1' and
( fe granchExisting(FB-CurrentRow) = r1r and FB-CurlentRow

( FB-InstrWrite-A-B = "10" o¡ FB-Instrt'Ûrite-A-B = "11" )

ctock = '0' and clock'event ) and
( FB lnstrl,lrite A-B : "10' or FB Instrl4rite A B = "11" ) else

-- Test
0 when ( clock = 'O' and CÌock'event ) and

FB TnstrAf'Ìríte = '1' and
EB Curlentslot /:0 and
( EãuaI ( IF-InstrAddrReqÀ-Input, FB-Lastlnstrshif t ) :' 0' ) and
( FB LastlnstrlsBlanch=' 0' ) else

O when ( clock = '0' and Clock'event ) and
FB rnstrA IsBlanch : '1' and

( FB-InstrW;ite-A-B = "10' or FB-Instrwrite-A-B = 'r11rr ) and

( FB-BranchExísaing(FB-currentRow) = !1r ) elsê
FB CurrentSlol when ( CÌock = '0' and cfock'event ) and

( FB-InstrWrite-A-B = "10" or FB-InstrWrite-A-B = "11"

una ffected;

FB Cu¡rentRow when (

una f fect ed;
FB InstrA SIot <=

-- lndex fol instruction B

FB InstrB Row <:

-- Test
0 when ( clock = '0' and clock'event ) and

EB_Instrt'ùrite-A-B : "11" and
FB CurrentRow = clnstrRow and
FB Currentslot /= 0 and
(Eãuâ1. (1F-InstrAddrRegA-Input, PB-Lâstlnstrshift) =r 0 I )

(EB LâstlnstrlsBranch=!0' ) else

t'B CurrentRow+1 when ( Clock = '0' and Clock'event ) ând
- FB Instrwrite A B = "11" and

FB CurrentRow < clnstlRow and
FB Currentslot /= 0 and
( Equal ( I F-InstrAddrRegA-Input, FB-Last Inst rSh i ft ) : ' 0

(EB LastlnstrlsBranch='0r ) else

0 when ( Clock = '0' and Clock'event ) and
FB rnstrf'lrite À B = "01" and
FB-currents.lot /= 0 and
EB Cu¡rentRow = clnstlRow and
(Eãua1 ( I F-InstrAddrRegB-InPut, FB-LastlnstrShif t ) =' 0 I ) and

(FB LàstlnstrlsBranch='0' ) efse

FB CurrentRow+1 when ( Clock ='O'and Clock'event ) ând
- FB rnstrwrite A B = "01" and

FB-Currentslot /= O aod
FB-CurrentRow < clnstrRow and
( Eãual ( I F-InstrAddrRegB-Input, EB-Last Instrsh ift ) = ' 0

( FB LastlnstllsBranch='0' ) else

0 when ( Clock : '0' and Clock'event ) and
FB InstrAl'Ûrite = '1' and
FB Currentslot /:0 and
EB-CurtentRow = clnstrRow and
(EõuaI(IF-InstrAddrRegA-Input, FB-Lastlnstrshift)=' 0' ) ãnd
(EB LaotlnstrlsBranch='0' ) else

EB Cu¡rentRow+I when ( Clock = 'O' and clock'event ) and

) and

) and
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FB InstrAwrite = '1' and
FB Currentslot /= 0 and
FB CurrentRow < clnstlRow and
(Eãual ( I E-rnstrAdd¡RegA-InpuL' FB-Lastlnstrshif t ) = | 0' ) and
(FB LastlnstrlsBranch='0' ) else

-- current low has branch ènd Both instructions are comlng
1 when ( clock = rO' and CÌockrevent ) ênd

FB_InstrW¡ite-A-B = "11" and
FB BranchExisting(EB-CurrentRow) : r1' and
FB CurrentRow = clnstrRow and
EB InstlA IsBlanch = r1r aDd
FB lnstrB IsBranch = '1' else

FB CurrentRow+2 when ( Clock: '0' and Clock'evênL ) and
- FB Instrt'Ù¡ite A B = "11" and

EB-BranchExisting ( EB-CurrentRow)
FB CurrentRow < clnstrRow-1 and

= r1r and

EB InstTA
FB Inst!B

sBranch = '1' and
sBrånch = '1' else

I
I

0 when ( clock = '0' and Clock'event ) and
( FB_Instrw¡ite-A-B : "11" and

FB BranchExisting(FB CurrentRow) = '1' ) and
( ( FB-currentRow = cr;strRou and

( ( FB-InstrA-IsBranch ='1' and EB-rnstrB-IsBrânch: :9: I :t.
( FB-lnstrA IsBlanch ='0' and FB-lnstrB-lsBranch = r1i ) ) ) or

( FB CurrentRow : clnstlRow-1 and
EB-Instr.A-IsBlanch : '1' and
FB lnstrB lsBranch = '1' ) ) else

EB CurrentRow+1 when ( Clock ='0' aDd Clock'event ) and
- ( EB-InstrÍ'lriLe-A-B = "11" and

FB-BranchExisting(EB-curlentRow) : r1' ) and
( EB-CurrentRow < clnstrRow end

( ( EB-InstrA-IsBranch = '1' and EB-InstrB-IsBranch : '0'

( EB Inst¡A IsBranch : '0' and EB-InstrB-IsBranch =)or
r1r)))etse

0' ) or

1' ) ) ) or

-- Current tow has NO branch and Both instructions are coning
O when ( Clock = '0' and Clock'event ) and

( FB-InstrWrite-A-B: "11" and
EB BranchExìsting(EB CurrentRow) = r0r and
FB-currenLRow = clnsfrRow ) and

( ( FB-currentslot = clnstrslot and
( I EB-InstrÀ-IsBranch = '1' and FB-lnstrB-IsBranch =

( FB InstrA IsB¡anch : 'O' and FB-InstrB-IsBranch =

( FB-InstrA-IsBlanch = r1' and
EB InstlB lsBlanch : '1' ) ) else

FB CurrentRow+1 when ( Clock ='0' and Clock'event ) and
- ( FB Instrwrite A-B = '11" aod

EB-BranchExisting(FB-Cur¡entRow) = r0r and
FB CuÌrentRow < êInstrRow ) and

( ( FB Currentsfot = clnstlslot and
( ( FB-TnstrA-IsBranch = '1i and FB-InstrB-fsBranch =

( FB-InstrA-IsBranch = '0' and EB-InstrB-IsBrânch =

( FB_Instr,q_IsBranch = r1r ând
FB InstrB IsBranch : '1' ) ) else

-- Current row has b¡anch ând only instruction B is coning and it is a blânch
0 when ( Clock = '0' and Clock'êvent ) and

FB_Instrwlite-À-B = "01" and
EB BranchExisting(EB-CurrentRow) = r1r and
FB InstrB IsBranch = '1r and
FB Currentrow = clnstrRow else

0' ) or
1' ) ) ) or

FB Current Row+1 when ( Clock = '0' and Clock'event ) and
EB_InstrWrite_A-B : "01" and
FB BranchExisting ( FB-currentRow)
EB InstrB IsBranch = '1' and
FB Currentrow < clnstrRow else

= '1' and

clnstlSlot ) eÌse

eÌse

-- In case of Instluction A is a delimiter instruction (Jumps,Trap,RFE)

0 when ( Clock = '0' and CÌock'event ) and
FB Instrwrite A B: "11" ând
FB CurrentRow: clnstlRow and
FB_InsttA-IsDeÌimiter = '1' else

FB currenrRo;+1 when ( clock =;.;.:i."_:Ì::no.å.l."lrî.3,0
EB CurrentRow < clnstrRow and
FB InstrA IsDelimiter = '1' else

-- original cases
FB cur;entRow when ( clock ='0i and Clock'event ) and FB-InstrWritê-A-B: r01tr else
0 ;hen ( clock = '0' and clock'evenL ) ând

( FB-Instll'lrite-A-B = "11" and FB-currentRow = clnstrRow and FB-CurlenLslot:

FB CurrentRow+l when ( Clock = '0' and Cl'ock'event ) and
- ( EB-InstrWrite-A-B = "11' and FB-Currentsfot = clnstrslot )

EB CurrentRow when ( Clock:'0' and Clock'event ) and FB-Instrl"lrite-A-B = n11tr elêe
unaffected;

-- TesL
0 when ( Clock : '0' and Clock'event ) and

EB InsLrwrite A B = "01" and

FB InstrB Slot <=
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1 when

EB_Instlf'Irite_À_B = "11' and
FB BranchExísiiñg(EB-cutlentRow) : rl' and

EB-currentRow < clnstrRow and
( I EB-InstlA-rsBranch = '1' and

FB InstrB-IsBranch = '0' and
FB-InstrB-IsDeIimiter ='0' ) or

( FB-InstrA-IsBranch = '0' and
FB-InstrA-IsDelimiter : '0' and
FB-lnstrB-IsBlanch :'1' ) or

( FB-Inst¡A IsDelimiter = '1r and
FB InstrB IsBranch : 'l' ) ) etse

( clock = '1' and clock'event ) and
FB_Instrwrite_A_B = "11" ånd
FB-BranchExisting(FB-CurrentRow) :'1' and
FB currentRow = clnst¡Row ând
( ( FB-InstrA-lsBrânch = rl' and

FB InstrB IsDelimiter : '1' ) or
(FB

EB
InstrA I
InstrB I

sBranch : '1' and
sBranch='1,) ) else

0 when ( clock = '1' and clock'event ) and
FB_Instrwríte-A-B = "11" aDd
EB-BranchExisting(FB-CulrentRow) : r1r and
( ( FB-CurrentRow = clnstrRow ând

( I t'B-rnstrA-rsBranch = r1' ând
EB_InstrB-IsBranch = '0' and
FB-InstrB-IsDelimíte¡ ='0r ) or

( EB-lnstrA-IsBlanch = '0' and
EB lnstrA TsDelimiter : '0' and
FB-lnstrB-IsBranch = i1' ) or

( FB InstrA-IsDe'limiter : '1' and
FB-InstrB-IsBranch='1') ) ) or

( FB-Cur¡entRow = clnstrRow-1 and
( ( FB-InstrA-IsBratch = '1' and

FB-InstrB-IsDeIimiter ='1' ) or
( EB-InstrA TsBranch = r1r ând

FB InstrB IsBranch :'1' ) ) ) ) else

-- Current low has NO branch and both instluctions is coming
1 when ( clock = '1' and Clock'event ) and

FB_rnstr!,¡¡ite-A-B = "11" and
EB BranchExisting(FB-currentRow) = r0r and
EB-Currentslot = clnstlslot and
FB currentRow: clnstlRow and
EB InstlA IsB¡anch = '1' and
FB InstrB IsDelimiter = 'l' else

O when ( clock = '1' ãnd clock'event ) and
FB-InstrWríte-A-B = "11" and
FB BranchExisting(FB-CurrentRow) = '0' and

FB-currentslot = clnstrslot and
( ( FB-CurrentRow : clnstrRow and

( ( FB-InstrA-IsBranch = '1' and
!'B-InstrB-IsBrânch : '0' and
FB-InstlB-IsDeliniter :'0' ) or

( FB-InstrA-IsBranch = r0' and
FB InstrA IsDelimiter : r0r and
FB_InstrB-fsB¡anch :'1' ) or

( EB-InstrÀ-IsDelimite' : '1' and
FB-lnstrB-IsBrânch : r1' ) ) ) or

( FB-CurrentRow = clnstrRow-1 and
EB InstrA-IsDelimiter = '1' and
FB InstrB fsDelimitel = '1r ) ) else

FB-CurrentRow+1 when ( Clock : '1r and Clock'event ) and
FB-Instrl,lrite-A-B = "11" and
FB CúrrentRow <= clnstrRow-1 and
FtInstrA IsBlanch = '1' and
FB InstrB IsBranch = r1r else

FB CurrentRow+1 when (

FB CurrentRow+1 ehen ( Cfock :

Clock = '1' and clock'event ) and
EB-Instrg'[rite-A-B = "11" and
EB-BranchExisaing(FB-culrentRow) : r0r and

EB Currentslot = clnstrSlot and

1 -- I FB-currentRow <= clnstrRow-1 and

-- FB InstrA TsBranch = '1r and
-- FB InstlB IsBranch : '1' ) or
( FB-CurrentRow < clnstrRow and

( ( EB-InstrA-IsBranch = '1' and
FB-InstrB-lsB¡anch = '0' and
FB-InstrB-lsDelimiter ='0' ) or

( FB-InstrÄ-IsBrânch : '0' and
FB-InstrA-IsDeliniter = '0i and
FB InstrB IsBranch :'1' ) ) ) or

( FB-CulrentRow = clnstrRow-1 and
FB InstrÀ-IsDêlimiter = '1' and
EB lnstrB IsBranch = '1r ) ) else

-- current row has a blanch and instruction A is coming (it is a branch)
O when ( clock = '1' and Clock'event ) and

EB_Instrwrite-A-B = "10" and
FB-BranchExis¿ing(FB-CurrentRow) ='1r and
FB-CulrentRow = clnstrRow ãnd
FB InstrA IsBlanch : '1' else

'1' and CIock'event ) and
EB_Instrwrite-A-B = "10" an.l
FB_BranchExi sting ( EB-Cu rrentRow )

FB CurrentRow < clnstrRow and
FB lnstrA IsBranch = 'L' else
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__Current'owhasabranchandinstructionBisconing(itisabranch)
0 when ( Clock = '1' and Clock'event ) and

EB Instrv{rite A B = "01" and
FB-BranchExistíng ( FB-currentRow) =
FB CurrentRow: cTnstrRow and
FB InstrB IsBranch = '1' etse

1r and

)
ltl

'tJ

FB_currentRow+1 when ( cr.ock =r;r 
;,:i."rr:i::*o.å.1.. å rî'l"o

EB BrânchExisting ( EB-CurrentRow )

FBturrentRow < clnstrRow and
FB rnsLrB IsBlanch = '1' else

-- 1f Instruction À is deliniter instruction
EB-InstrA Row+1 uhen ( Clock = r1' and Clock'event ) ând

FB_rnstrt.{rite_A-B = "10rr ând
FtrnstrA lsDerinite. = '1' and
EB InstlA Row < clnstrRow else

0 when ( Clock =
EB Inst
FB INST

= ,1, and

'1' and clock'event ) and
rwriteAB='10"and
rA lsDelimiter = r1r and

FB InstrA-Row = clnstrRow else
Ee_rnstrB-Ro; when T clock = 'l; ï;!.:*:ii.";'l'=,"ïiÎ."0

EB-rnstrÀ-rsDãliniter = '1' and
FB InstlB IsDeliniter : '0r else

-- If Instruction B is deliniter instruction
EB-lnstrB-Row+1 when ( Cfock = '1' and Clock'event ) and

FB lnstrB IsDelimiter = '1' and
FB InstrB Row < clnstlRow else

0 when ( Clock = '1' and Clock'event ) and
FB-InstrB-IsDeliniter = '1' ând
FB InstrB Row = clnstrRow eÌse

-- original cases
FB currentRow+1 uhen Clock = '1' ând Cfock'event ) and

( ( FB-InstrWrite-A-B = "10u and
['B-InstlA-Row < clnstrRow and
FB InstrA-Slot = clnstrslot ) or

( FB Instrwrj-te-A-B = "01" and
FB InstrB-Rou < clnstlRow and
FB InstrB Slot = clnstrsfot ) or

( FB Instrw;ite-A-B = "11" and
( ( FB-lnstrB Rõw /= 0 and FB-lnstrA-slot :

( EB-InstrB-Row < clnstrRow and EB-InstrB-Slot =

Clock = '1' and cÌock'event ) and
( ( EB_Instrtlrìte-A-B = "10" and

FB InstrA Row: cTnstrRow and
fa fnstrA Stot = clnstlslot ) or

( FB-rnstrw;ite-A-B: "01" and
EB-InstrB-Row = clnstrRow and
FB InstlB SloL = clnstrslot ) ol

( FB-Tnstrw;ite-À-B : "11" and
( ( FB-InstrB-Rõw = 0 and FB-InstrA-Slot =-clnstrslot ) or
' ( fe-tnstre-now : clnstrRoi and EB-lnstrB-Slot : clnstrslot ) ) ) )

clnstrSlot ) or

crnstrslot))))else

else

FB CurrentsÌot <:

0 when (

unaffected;

-- Test
2 when ( Clock : '1' and Clock'event ) and

FB-lnstrl,[rite-A-B = "11" and
EB currentslot /= 0 and
( Equal ( IF-InstrAddrRegA-Input, FB-LastInst¡Shif t ) =' 0' ) and

(EB LastlnstrlsBranch='0r ) ê1se

1 when ( clock : '1' and clock'evênt ) and
FB InstrAwlite : '1' and
FB-currentslot /= o and
( EquaI ( IF-InstrAddrRegA-Input, FB-LastlnstrShif t ) =' 0' ) ând

(FB LastlnstrlsBlanch:r0' ) else

1 when ( Clock = '1' and Clock'event ) and
EB Instrvlrite A B: "01" and
FB currentslot /:0 and
(Equal (IE-InstrAddrRegB-Input, EB-Lastlnstrshift)=' 0' ) and

(EB LastlnstllsBranch='0' ) else

-- Current low has branch and both instluctions are coning
2 when ( Clock = '1' and clock'event ) ånd

FB-Instrl,lrite-A-B = "11" ând
EB-BranchExisiing(EB-curÌentRow) ='1' and

FB InstlA-IsBranch = '1' and
FB lnstrB IsBranch = '0' and
ÉB InstrB IsDelimiter : '0' else

0 uhen ( clock = '1' and Clock'event ) and
EB Tnstrt'ùrite A B: "11" and
FB BranchExisEiãg(FB-currentRow) ='1
FB InstrA IsBranch = '1r and
EB lnstrB IsDelimiter = '1' eÌse

and

( Clock = '1' and Clock'event ) and
FB_Instrwrite-A-B = "11" and
FB-BranchExisting(FB-currentRow) : r1r and
( ( EB-In6trA-IsBranñh = '0r ênd

FB InstrA IsDelimiter = '0' and
FB InstrB IsBranch = r1r ) or

I

i

I

I when
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( EB_fnstÌÀ_IsBranch =
FB InstrB IsBlanch =

1r and
0' ) or

and
) ) else

1 when ( Clock = '1' and CÌock'êvent ) and
FB-Instrt/lrite-A-B = "10" and
FB-BrânchExisting(FB-CurrentRow) = r1r and
EB InstrA IsBrãnch = r1r else

1 when ( Clock = '1' and clock'event ) and
FB-Instrf'úrite-A-B = "01" and
FB-BranchExisaing(FB-currêntRow) ='1r and
FB InstrB lsBranch : '1' else

-- Cu¡Ìent low has NO brânch ând both instructions are coming

1 wben ( Clock : '1' and Clock'event ) ând
FB-InstrWrite-A-B = "11" and
EB BranchExisting(FB CurrentRow) = r0r and
( ( FB-CurrentSlot = clnst!SIoL ànd

FB-InstrA-IsBrânch : r0' and
FB fnstrA IsDefimiter = '0' and
EB-InstrB-IsBranch = r1' ) or

( FB lnstrA-IsBranch = '1' and
FB InstrB lsBranch = '1' ) ) else

0 when ( Clock = '1' and Ctock'evênt ) and
FB_InstrÍ.¡rite_A_B = "11" and
¡'B sranchaxisEing(FB curlenbRow) : '0' and
( a FB-Currentsl-ot = c-LnstrSlol-I and

EB-InstrA-IsBranch = '0' ând
FB InstrÀ IsDelimiter : '0' and
EB-InstrB-IsBranch ='1' ) or

( EB InstrA-IsDeÌimiter = !1r and
FB InstrB IsBranch = r1r ) ) else

FB-currentslot+2 when ( Clock = '1' and Clock'event ) and
EB_Instrwrite_A_B = il11,, and
FB-BranchExisaiãg(FB-currentRow) = r0r ând

FB Culrentslot < cTnstrsÌot-1 and
EB InstrA IsBranch = r0' and
FB InstrA rsDelimiter = '0' and
EB InstrB-IsBranch = '1' eLse

O when ( Clock = '1' and cfock'event ) and
( ( FB-Instrf'lrite-A-B = "10" and

FB-rnstrA-lsDelimite¡ :'1' ) or
FB InstrB IsDelinitel = '1r ) else

FB_rnsrrB_sror+r when ( "r."0 ;", 1,"ïl$,!l!.1'["3"lrl..llo
FB InstrA IsDeliniter = '1r and
FB InstrB IsDelimiter : '0' else

-- Original cases
0 whån ( clock = '1' and Clock'event ) and

( ( FB-InstrWrite-A-B = "10" and FB-InstrA-Slot = clnstrslot )

i ¡g-rnstrwrite-e-e = "01" and EB InstrB-sfot = clnstrslot )

( FB-InstrWrite-A-B = n11n and FB-InstrB-Slot: clnst¡Slot )

1 when ( Clock = '1' and Clock'event ) aôd
( FB-InstrWrite-A-B: "11" and EB-InstrÀ-SIot = clnstrslot and

( FB lnstrA_IsBranch = '1'
EB InstlB IsBranch = '11

-- In case of whether Instruction A and/or lnstruction B is a delimiter instruction

.l
!lú
,ij

,i or
or
) else

FBInstrBSlot=0)else

clnstrSlot-1 ) or

clnstrSlot-1 ) ) else

clnstrSlot-l ) efse

FB Currentslot+1 when

EB Currentsfot+2 when

unâ ffected;

clock = '1' and clock'event ) and
( ( EB-Instrwrite-A-B = "10" ând FB-InstrA-slot <=

( EB lnstrt'ürite-À-B = "01" and FB-InstrB-Slot <=

cÌock = '1' èôd clock'everlL ) alld
( FB lnstrwrite-A-B : "11" and FB-InstrB-Slot <=

This part is the concurrent paft of the trace cache memory and trace cache hit

logic

Trãce Cache Pottion (Concurrent)

TC Ei¡stlnstrAddr <=

' 1' else

'1' else

'1' else

'1' else

FB InstrAddrBuffe¡(0,0) when

EB InstrAddrBuffer(1,0) when

EB InstrAddrBuffer(2, 0) when

EB lnstrAddrBuffer(3,0) when

una ffected;

EBTracesize(0) >1and

FBTracesize(1) >1ãnd

FBTracesize(2) >1and

FBfracesize(3) >1and

EB BufferReady(0) :

EB BufferReady(1) :

EB BufferReady(2) =

FB BufferReady(3) :

TC DestlnstrAddr <=

'1' and

FB InstrAddrBuffer(0,88-Branchslot(O)+1) when FB-TraceSize(0) > 1 and
FB BufferReâdY(0) =

FB Branchslot(0) <

Fts lracesíze(0)-1 and

FB BranchExisting(0) = r1r else

I

t
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'1' and

EB Tracesize(1)-1 and

FB BranchExisting(1) = r1

'1r and

FB Tracesize(2)-1 and

EB BranchExistins(2) =

'1' ând

EB Tracesize (3) -1 and

EB_BranchExisting(3) : '1' else
una f fe cted;

TC SelectedEnt¡y <= To-Integer(TC-EirstlnstrAddr(3 downto 2) );
amount

FB lnstrAddrBuffer(1,F8 Branchslot(1)+1) when FB,TraceSize(1) > 1 and
EB BufferReady(1) :

FB Brânchslot(1) <

else
FB InstrAddrBuffer(2,F8 Branchslot(2)+1) when EB-Tracesize(2) > 1 and

EB BufferReâdY(2) =

FB BranchSlot(2) <

FB lnstrÀddrBuffer(3,F8 BÌanchslot(3)+1) when FB-Tracesize(3) > 1 and 
-.EB BufferReãdy(3) :

FB Branchslot(3) <

-- <--- No of bit for Tc line

rc_Firsrras'* <: Equar( 'L*'iËlìljilaläiìiillli¿åliÌî;:ï*;:å:31:"ii3lÌ3.311,1."',,,, ,

,l' û IF Instrcounterreg(31 downto 2)); -'^^^^ Chânge here fol No of bit

for Tc line âmount
Tc_OtherHit <: '1' when TC Hit],lne = '1' and

TC FirstTagHit = '0' and
( To_Integer(lF-InstlcountêrReg) >

To-InLeger(TC-TagReg-o1(TC-HitLineNÙmber) & "00"), ),and
( ( TC BranchExisting(Tc HitLineNúmber) = r0' and

To Integel
To Integer (Tc-TaqReg-o1 (fC-HitLineNumber)

(IF_InstrCounterReg) <

¿ "OO" + ( TC Tracesizê(Tc-HitlineNumber) * 4 ))
)or

( TC BranchExisting(TC-Hitl,ineNumber) : r1r and
(

(

To Integer(TE-InstrcounterReg) <

To-Integer(Tc-TagReg-O1(Tc-HitlineNumber)ti00"+((Tc-Branchslot(Tc-HítlineNumber)+1)*4))

(

To Integer(18-InstrcounterReg) <

To-Integer(Tc-TagReg-o2(Tc-HitlineNunber) & ';00" +-( ( rc-Tracesize(Tc-HitlineNunber)-
TC Branchslot(Tc HitlineNumber)+1) r4))

else

Trace Cache Hit Logic

TC Hit <= TC EirstTagHit or Tc-OtherHit;

!d

¡

This section is the sequential portion of the VHDL code that defines the

conditions to put instructions and the associated addresses into fill-buffer.

FiÌl Buffer

-- Place instruction(s) and add¡ess(es) into fill-buffer
if EB InstrAwrite = '1' then

FBInstrBuffer(FBlnstrARow,FB_InstrA_slot)<:1E_InstlRegÂ_Input;
f'ã-instreddreufferT rB-tnstrn now , EB-InstrÀ-slot )

I F InstrAddrRegA_InPut ;

I E_InstrAddrRegB_InPut ;
FB Inst¡Add.Buffer (

end if;

if FB InstrBwrite = '1' then
EB lnsLrBuffe¡( FB Ins trB_Row , FB-InstrB-Slot ) <= IF-InstrRegB-lnput;

FB InstrB Row , 0B InstrB Slot )

end if;

-- for Experiment
if EB_InstrWrite-A-B: "10" then

EB Lastlnstr <: IF InstrÀddrRegA Input;
EB-Lastlnstrshift ?= lF-InstrAddrRegA-Input+4;
FB LastlnstrlsBranch (= IsBranch(IF lnstrRegA-InPut) ;

end if;

if EB-lnstrwrite-A-B = "01" or EB-Instrwrite-A-B = "11" theD
EB Lastlnstr <: IE InstrAddrRegB Input;
EB Lastlnstrshift ¡= IF InstrAddrRegB-Input+4;
FB-LastlnstrlsBranch <= IsBrânch(TF lnstrRegB-Input) ;

end if;

!
8l



VHDL Code of Trace Cache

-- Any row têrmination(s)?
-- If so/ which instruction? (A and/or B did it) and which line?
-- When known, set the "Buffer Ready flag" to indicate the incident
if EB RowTerminatedByA : '1' then

EB BufferReady( EB FinishRowNunbêr-A ) <= '1';
end if;

if EB RowTerninatedByB = '1' then
EB BufferReady( FB FinishRowNumber-B ) <= '1';

end if;

-- counting the trace size of fill-buffer line(s)
if EB_Instr!'lrite-A-B = rr10rt then

- EB-Traãesize( EB-InstrA-Row ) <= FB-TraceSize( EB-InstrA-Row
end if;

if FB_Instrt'ùrite-A-B = "01" then
- r'g t¡aãesize( EB rnstrB Row ) <= FB-Tracesize( EB-InstrB-Row

end if;

if FB_InstrWrite_A-B = "11" then
if EB Tracecount2Up = r1r Lhen

FB Tracesize( FB InstrA Row

else
FB-Tracesize ( t'B-InstrA-Row

EB TraceSize( FB-InstrB-Row

end if;
end if;

+ 1;

+ 1;

<= FB T¡âcesize( FB_InstrÀ-Row )

1;

<: FB_Tracesize( FB-InstrA-Row ) +

<= EB Tracesize( FB-InstrB-Row ) +

-- Updating "B¡anch Existing Flag" and "Blanch S1ot" of tlace infolmation when there

comes Lhe branch
if FB InstrA IsBranch = '1' then

FB-Branch8xisting( FB-BranchInstrA-Row ) <: r1r'
FB Branchslot( EB InstrA Row ) <= FB-InstrA SIot;

end if;

if FB TnstrB IsBranch = '1r then
- FB-BranchExisting( FB-BranchTnstrB-Row ) <= r1r;

FB-Blanchslot( FB-InstrB-Row ) <: EB-InstrB-Slot;
end ift

This section describes the transfer function of instructions from fill-buffer to

trace cache memory and the trace cache hit consideration.'!

!d
.tj

-- Trace transfel function and line reset
for line in FB BufferReady'range loop

if FB BufferReady( line ) : '1'
-- If there are more than one

comence

then
iostruction in the Iine, the transfer function wiII

-- Otherwise, the fine would be abandoned'
if ( FB Tracesize( line ) > 1 ) ând

(

(TC-FirstlnstrAddr (31 downto 2 ) /= Tc-TagReg-o1 (Tc-selectedEntry) ) or
(FB Tracesize( linê ) >: TC-TlaceSize(Tc-SelectedEntry))

) Lhen
_- Tlansfer function comencìng
TC-ValidBit (TC-setectedBntry) <=' 1' ;
Tc TàgReg-Ol (Tc-SeÌectedEntry) <= TC-FirstrnstrAddr (31- dow¡to 2) ;
it ( r'g Bt"n"hExisting (line) = '1' and FB-Branchslot (line) <

FB Tracesize(Iine)-1 ) then

downto 2);

downto 2);

else

end if;

TC-TâgRe9-02(TC-SelêctedEntry) <

TC TagReg-o2(TC-SelectedEntry) <= Tc-FirstlnstrAddr(31

Tc T¡acesize(Tc SelectedEntry) <= FB-Tracesize(Iine) ;
Tc-BranchExisti;g (TC-SelectedEnt!y) <= EB-BranchExisting (line) ;

Tc-Branchstot (ÎC-SelectedBntry) <= EB-Branchslot(Iine) ;

Iine

Tc Tracewrite (Tc selectedEntry) +1;

downto 2) ) ând

EB Tracesize(line)-1 ) )

downto 2) ) and

FB_BranchStot(line) < FB-TrâceSíze(line)-1 ) )

TC Traceoverwrite (TC SelectedEntry) +1;

-- Eol counting the number of writing to the

TC Tracewrite (TC SeIectedEntrY)

not ( EB BraochExisting ( line)
) then

TC Traceoverwrite(TC SeÌectedEntry)

-- Number of ove¡writing

if ( ( Tc-Trâcesize(Tc-selectedEntry) /= EB-Tracesize(line) ) or
( ( Tc-TâgReg-ot(Tc-selectedEntry) /= Tc-Destrnst¡Addr(31

( FB BranchExisting(line) = '1' âôd FB-Branchslot(Ìine) <

( ( Tc-TâgReg-O2(Tc-selectedEntry) /: Tc-FirstrnstrAddr(31

individual cache

ot

t
I

t; and

I
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then

line ) ;

EB InstrBuffêr (line, trace_slot) ;

FB TnstrAddrBuffer (line, trace slot) ;

end if;

-- Recording the longest tracê in a particular line
if ( FB Tra;esize( line ) > Tc-LongestTrace( Tc-selectedEntry ) )

TC LongestTrace ( Tc-SelectedEntry ) <= FB-TraceSize (

end if;

for trace_slot in 0 to cInstrsloL loop
TC Instr(TC SelectedEntry,trace-slot) <

Tc InstrÀddr(TC SelectedBntry,trace-slot) <

end loop;

end if;
FB Buffe¡Ready( Iine ¡ <= 'g't
EB Tracesize( Iine ) <: 0;
FB BranchExisting( line ) <: '0';
FB BranchsÌot( line ) <= 0;
for slot in 0 to crnstrslot IooP

FB lnstrBuffer( Ìine, slot ) <= ( others =>'0' );
FB InstrAddrBuffer( line, slot ) <= ( others =>'0' )¡

end loop;
end if;

end loop;

TC HiL Logic

If TC FirstTagHit = '1r then
TC Hitline <='1';
TC FtítlineNumber <= To Integer(IE Inst'CounterReg(3 downto 2) );

Change he¡e for Tc lines
end if;

External RESET

if Reset = '1' then
lP ValidFlagA <= '0';
IE ValidElagB <='0';
BTB VaIidFIag <= ( others :> '0' );
DP HaltEtag <= r0r;
DP-lnterruPtEnablePlag <: '0' ;
DP ProcessldentifierReg <= ( others
RB VatidFlaq <= ( others :> '0' );
BRU ValidElag <=r0','
ALU ValidFlag <=r0r;
MDU ValidFlag <= '0';
LSU VâlidFlâg <= r0';
LSU EA VatidEtag <= '0';
LSU sPR ValidElag <= '0';
CU NextcomiLPointerReg <= "10000";
ITB VâIidFlag <= ( others =>'0' );
IC ValidFÌag <= ( others => '0' );
DTB_VaIidFIag <= ( others => '0' );
Dc validElag <= ( others
l'ûB EntrancevalidElag <= '0';
llB ValidElag <= ( othêrs => '0' ) ;
BIU AcLiveloadFlaq <= '6't
BIU ActiveFetchFlag <='6',
BIU Actj veStoreEIàg <= ' 0 ' ;
BIU EirstBusclockofÀctivecycleFlag <=

EC Trac€Write <= ( othêrs => 0 );
TC-IraceOverwrit€ <= ( oÈhêr6 => 0 );

This section shows the resetting of the trace cache signal at the start of the

simulation (in bold).

-- Initialize Pointer

This is the last part of Dlx.vhd for writing the log file of the simulation.

end if;

-- Write âcquisited data to file --

-- Busclock continues while DLX is halted.

lr
begin
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wait on Incomingctock until Incomingclock : '1';

BTU Busclock <= not BIU Busclock;
end process;

procêss

Model data logger

-- Name of experinent set
constant exp_name : string(1 to 49)
constânt exp_name-uI : string(1 to 49)

-- Type of Hit/Miss
constant TraceMiss i string(1 Lo 26\ r=
constant TCAccessMiss : stling(1 to 26)

constant CompMiss : stling(1 to 2B)

constant contMiss I string(1 to 28)

-- Result file name
file log: text open write-node is "¡esult'1o9";

variable log_line : line;

-- Variables for experiment lesult
valiable TraceMisscount : natulal ::0;
variable TCAccessMisscount : natulaÌ :=0;

variable comPMisscount : natural i=0;
variable ContMisscount : natural ::0;
variable CacheAccesscount : naturaf ::0;

"No. of T¡ace Cache Miss : "
:= "No. of TC Access Miss

"No
"No

of TC
of TC

conpulsary Miss = ";
conflict Miss = ";

constant CåcheAccess : string(1 to 26) := "No' of AIl Câche Access = ";

use std,têxLio.all;

-- Disposal
co.rtant lcache-Hit: stling(1 to 30) :: "Total lnstruction câche Hit = ";
constantTcache-EirstTagHiL:string(1to21)::"Tc(FírstTag)Hit=";
constant Tcache-OtherHit: string(1 to 1?) := "TC (other) Hit = ";
constant PC : stríng(1 to 26) r= "Progran Counter Àddress : ";
coostant InstrÀ : string(1 Lo 26) r= "lnst¡ucLion A Address i "ì
constanL InstrB : string(1 Lo 26\ t= "Instruction B Address : ";
constant Comit : string(1 to 30) := "Comitted Instruction Count = ";
constant Omit : st¡ing(1 to 28) := "Omitted Instruction Count: ";
constant MemFetch : stríng(1 to 291 t: "I-cache Eetch Memory count = ";

va¡iable Instr count
vâriable InstlA Count
variable TnstrB count

natulal : =0;
naLural: =0;
natural : =0;

variable Icache-Hitcount : natural:=0i
variabte TCache-EirstTagHitcount : natural:=0;
variable Tcache otherHítcount : natural:=0;

variable FirstTagHitCount : TracecãcheLine;
vâriable ContentHitcount : TrâceCacheLine;

type Tracecðcheline is array (0 to cTc-Ently) of natural;
variabfe compMisslinecount : Tracecacheline;
variable ContMissLineCount : TracecacheLine;

variable
variable
vâriable
var iabl e
variable

Comit Count : nâtural:=0;
MemFetch Count : nâturaÌ:=0;
PC Word : string(1 to B);
InstrA word: string(1 to 8);
InstrB word: sLring(1 to 8);

variãble CachespaceUsage : integer::0;

-- Datatype conversion functions
function ÑumberToDigit( Number : naLuraÌ ) return character is
beg in

if (Number >= 0) and (Number <= 9) then
leturn character'va1( character'pos('0') + Number );

eÌsif (Number >= 10) atd (Number <= 15) then
retuln charâcter'val( charactel'Pos('A') - 10 + Number );

else
rePort "Invalid Hex-Number"
severity errol;
leturn '0' ;

end if;
end NumberToDigit;

function NatúralTost¡ing( Numbêr : natural ) return string is
variable StringResulL : string(1 to B);
variable i'JorkNumber : naLural i= Number;

begin
foriinSdowntolloop

StringResult( i ) := NumberToDigit( WorkNumber
workNumber :: WorkNumber / 16;

end loop;
retuln StringResult;

end NaturtlÎostring;

nod 16 );

function wordTostring( word : unsigned ) return string is
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variable StringResuIL: string(1 to B);
vâriable Dígit : unsigned( 3 downto 0 );

beg ín
foriinltoBlooP

Digit := VÙord( 4*(8-i)+3 downto 4*(8-i) );
St¡ingResult( i ) :: NumberToDigit( natural(

end loop;
leturn StringResult;

end WordTostring;

To Integer ( Digit ))

begin
wait on Clock untif Clock = '1';

PC tJord := WordTostring(lF-InstrcounterReg) ;
InãtrA wo¡d := wordTostring(IE-lnsLrAddrRegÀ-Input) ;
InstrB ['lord : = t¡ùordTostring ( r t'-InstrAddrRegB-r ûput ) ;

if IF InstrcountelRegwríte = '1' then

CâcheAccesscount :: CacheAccesscount + 1;

if not ( Tc EirstTagHit: '1' or Tc othelHit ='1r ) then
TraceMisscount := TrèceMisscount + 1;

end if;

if ( TC EirstTaqHit =r0' and TC otherHit = '0r ) then
TcAccessMisscount :: TcAccessMisscount + 1;
ifTc_ValidBiL(To_IntegeI(IE_InstlcounterReg(3dounto2))):.0'then

ComPMisscount := ComPMisscount + 1;
conpMissT,inêcount (To Inteqer(rF-rnstrcountelReq (3 downto 2) ) )

CompMisslinecount (To-Integer ( IF-InstrcounterReq (3 downto 2l \' + 7 ;

else
ContMisscounL :: ContMisscount + 1;
ContMissLinecount(To-Integer(lF-InstrcounterReg(3 downto 2) ) )

ContMíssl,inecounL (To-Inteqel (IE-InstrcounLelReg (3 downto 2) ) ) + 1 ì
end ifi

end if;

if TC FirstÎagHit = '1' then
EirstTagHitcount (To-InLegel (IE-InstrcountêrReg (3 downto 2) I )

FilstTaqHitcount(To Integer(IF-InstrcounterReg(3 downto 2\ | ) + Iì
end if;

'if TC OtherHit = r1r then-----'-õ"^t.ntHitcount(Tc 
HitLineNumber) := contentHitcount(Tc_HitT,ineNumber) + 1;

end if;

end if;

if DP HaItDIx = '1' then

-- DisPlaY the experiment set name
write (Iog-line, exp-nane-ul) ;

writeline (log, Iog-line) ;
write ( log_line, exp-name ) ;
writeline (Iog, 1og_line) ;
write ( tog-line, exP-nane-ul ) ;
writeline (Ìog, log-line) ;

w!iteline (1o9, Iog-1ine) ;

-- General Infolmation

write(log-line,strìng'("-------------------")); writeline(1og'1og-line);
write(to;-line,string'l"GeneraI Information")); wÌiteline(log'log-1ine);
write(Iog line,sLring' ("-------------------") ) ;
writeline ( 1 og, Iog_line) ;

-- Fetched Instruction Count
write(1og-line'string' ("Totâl Fetched Instructions = ") ) ;

w!ite ( log-1ine, Instr-count ) ;
writelíne (1o9, log-line) ;

-- Comited/Omitted Instructions
write(log-line,string' ("Comitted Instluctions : ") ) ;
wtite ( fog-line, CoMit-count ) ;
wr-iteline (log, Iog 1 ine) ;
write(1og-line,string' ("omitted Instructions ='));
write ( log-line, Instr-count-comit-Count ) ;
writeline (tog, log Iine) ;

-- Cache Infotmation

-- Cache Access
write(Ioq-Ìine,string'("cache Memory Access (fetch) = ") );
ilrite ( tog_Iine, CacheAccesscount ) ;
writeline (Iog, lo9_Iíne) ;
writeline (log, Iog_line) ;

-- InstÌuction Cache
write(log-line,string'("------ -"));writeline(log'log-1ine);
writeiroé-line,striné,(',rnstruction-câche rnfo,,)); writeline(1og,rog-line);
write (log-line,stÌing' ("----------------------") ) ;

wliteline (1og,1og line) ;
wrlLe (1og-lirte, string' (r'fnstruction-cacho Hit : ") ) ;
write (log_Iine, Icache Hitcount) i
writeline (1o9, log_line) ;
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write(log-tine,gtring'("Percent of Ic Hit : "));
writeilo;-Iine,reâ1(icache-HitcounL*100),/real(cacheAccesscount)'digits => 2);
wr-iteline (log, Iog_line) ;

writeÌine (log/ 1og-line) ;

-- Trace Cache
w!ìte (1og-Iine, string' ( n------
write ito;-Iine,striné' ("Trace-cache lnfo") ) ; writeline (log' log-line) ;

write(Iog line,string' ("----------------") ),
writeline ( 1og, I og-line),'
write(log-Iine,string' ("Trace-Cache Hit = ") ) ;
write (1o;-line,TCach¿-FirstTagHitcount + TCache-OtherHitcount) t

write (Iog-tine' string' (" ( ") ) ;
write(log line,string'("Tc-First Tag Hit = ") );
write ( Ìog-line, Tcache-FirstTagHitCount ) ;
write (log-line, string' (" / Tc-Content Hit = ") ) ;
write ( 1og-Iine, TCache-OtherHitcount ) ;
write(Iog_line,string' (" ) ") ) ;
writeline (1o9, Iog-l ine) ;

write(Iog-line,stringr("Percent of Tc Hit = "));
write (Iog-1ine, real ( (Tcache FirstTagHitcount

Tcâche-otherHitcount) *100) /real (cacheAccêsscount),digíts => 2)'
write(Iog-tine,string'(" ( ") );
write(tog line,string'("Tc-First Tag Hit = "))t
write iloé-rine, rear (Tcache Fitstragiitcoúnt*100) /rea1 (câcheAccesscount) 

' 
digits :>

write(tog-Iine,string'(" / Tc-content Hit = ") ) 
'write(1o;-line,real(Tcache otherHitcount*100)/real(cacheAccesscoûnt)'digits => 2);

write (log_llne,string' (" ) ") ) ;
writêline ( Iog, lo9_l j ne) ;

writeline ( 1og, I og_L i ne) ;
write ( tog-Iíne, st;ing' ( "TotaI Trace cache Miss = " ) ) ;
write ( Iog_Iine, TraceMisscount ) ;
w¡ite (log_line, strinq' (" ( ") ) ;
write(loõ-line,string'("Tc - Compulsary Miss : ") );
write ( fog-lìne, conpMi sscount ) ;
write(Ioõ-line'strinq'(" / TC - Conflict Miss = ") );
wríte ( Iog-Iine, contMisscoúnt ) ;
wlite(log_Iine,string' (" ) ") );
writeline (Iog, log-l ine) ;

2\ì

wríte(1og_line,string' ("Percent of ( "));
write(log line,stling'("Conpulsary Miss = ") );
*.ii.ìi"é 1i".,¡eal(óomp¡'tisicount+100)/rear(TraceMisscount)'digits:> 2);
write(loq-líne,string'(" / conflict Miss = "));
r.it.iroé-rin.,real(óootMisscount*100)/real(TraceMisscount)'digits => 2);
write(log_Iine,string' (" ) ") ) ;
writeline (log, Iog_Iine) ;

writeÌine (log, log_1ine) ;

-- lnformation Table

write(Iog-Iine,string'("------ ------------------"));
writeline (Iog, log_Iine) ;

write(1og-Line,strinq'("lnformation Collected From Indlvidual Trace Cache Line") );

writerine(rog'rog line); 
write(toq line'stríng'('------------- -----------"));
writeline (log, Iog-line) i
writeline (log, Iog-1ine) ;

write(log-líne,sLring'("Line comP-Miss conf-Miss Tc-t¡¡rite Tc-o write

Tc-Size TC-Hit FTag-Hit Cãnt-Hit")); writeline(log'Iog-1i'ne);
write (1og-line,string' ("-------------

-------------=-------,') ) ; writeline(Ìog, -Log_1ine) ;

for index in 0 to cTC Entry loop
write (log-line, index, justitiea >

rrite(log_line,string' (" "));
write (Iog-line, CompMissLinecount (index) , justified :> right' field => 10) ;

write (Iog_line, st¡íng' (" ") );
write (Iog-line, contMissT,j.necount (index) , jusLified :> right' fieÌd => 10) ;

write(Iog_Iine,string' (" ") ) ;
w¡ite (log-line,Tc-Tracewrite (index) , justified >

H¡ite(log_line,stringr (" ") ) ;
write(1og-líne,Tc-Traceoverl{rite(index) 'justified => right' fietd => 10);

write (Iog_Iine, stling! (" ") ) ;
write (Io9-line, Tc- LongestTrace (index) , justified => right' field :> 10) ;

wlite(Iog_líne,string' (" "));
wriLe(lo9-Iine,FirstTagHitcount(index)+contentHitcount(index)'justified >

right, field => 1O); urite(log-Iine,string'(" ")li' 
"iit.1toq-Iine, 

FirstTagHitcount (índex) , justified => right' field => 10);

wlite(1og_Iine,string' (" "));
write (log-line,ContentHitcount (index), iustified => right' field :> 10) ;

write(Iog_Iine,string' (" "));
writeline (1o9, log- Iine) ;
-- CâIculate the sum of Cache space Usage
cachespaceUsage :: CacheSPaceUsðge + Tc-LongestTrace(index) ;

digits :> 2);

end loop;

writeline ( log, log_1in
write(rog line,siiing ---"))' writeline(log'rog-rine);
write iloé-Iine, strinq cache space Usaqe" ) ) ; wÌitêline (Iog' log-lite) ;

write iÌo;-line, strinõ ---") ) ; writeline (1og' log-line) ;

write(1ot-line,string pâce Usage = ,) );
write(Ioé-linc,rcal(*100/((cTc-Entry+1)*(crnstrsÌot+1)))

write (log_line,string' (" B") ) ;
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writeline (Iog, log_Iine) ;
end if;

-- counting Mechanísm --

if IF InstrcounterRegwlite = '1' then

if 1c-Hit = 11' then
Icache Hitcount := Icache Hitcount+1;

end if;

if TC-FirstTagHit = r1' then
Tcache t'irstTagHiLcount := Tcache-FirstTagHitcount+1;

end if;

if TC otherHit = r1r then
Tcâche otherHitcount :: TCache-otherHitcount+1;

end if;

end if;

if fc_FetchRequest : '1' then
MemEêtch count := MemFetch Count+1;

end if;

if IF InstlcounterReqt'Ùrite = 'l' then
- if ( IF-StáqeA-Write = '1'and IF-SLðgeB-f'ùlite =r1' ) then

if ( IF lnstrcounterReg : IF-InstrAddrRegA-Input ) and
( IF InstrcounterReg /= IF-InstrAddrRegB-Input ) then

eI6if (

(

Instr-Count := Instr-Count+2;
( IE-rn;trcounterReg /: rF-InstrAddrRegA-Input. ). and
( IE InstrcounterReg = IF InstrAddrReqB-Input ) ) or
( rE-Instrcounte¡Reg = IF-lnstrAddrRegA-Input ì ?nd.
( IF-lnst¡counterReg = IE-InstrAddrRegB-Input ) ) then

Instr Count := Instr Count+1;
end if;

eÌsif ( IF-StâgeA-W¡ite = '1r and 1F-StageB-Write = '0
( IE-staqeA-Write = '0' and lE-StâgeB-write : '1

Instr-Count'= lnstr-Count+1;
end if;

end if;

if ( cU-ComitInstrA =r1'and cu-ComiLInstrB ='1' ) then
Comit-count : = comit-Count+2;

elsif ( cu-comiilnstre ='1' and cu-comitlnstrB: r0r ) or
( Cu-comitlnstrÄ = 'O' ðnd Cu-ComitlnstrB = '1' ) Lhen

Comit Count : = comit count+1;
end if¡

)or
) then

end process;

8.2 DlxPackage.vhd

This section is to define types, subtypes, and constants used in the trace cache'

For Trace cache Model

type TypeArraylnst! is arlay (natulal rânqe<>,natural range<>) of unsigned (31 downto 0);

--TC4:cTnstrslot=3
--TcB: clnstrslot:?
constãnt clnstrRow : intêger ::3;
constant clnstrslot : integer :=3;

-- These constant has to be added by 1 for actual amount'

-- Since they will be mainly used for counter that start at 0 instead

of1

constant cTc-Entry : integer :=3; -- <--- Lines of trace cache

subtype TypeRow is integer range 0 to clnstrRow;
subtype TypeSlot is integer range 0 to cTnstrslot;
subtype lypeslotcount j-s integer lange 0 to clnstrslot+1;

type TypeArrayslot is array (naturâl' range<>) of Typeslot;
type fypenrraySlotcount is array (natural range<>) of Typesfotcount;

type ÍypeArrayt'üritecounL is arrây (natural range<>) of integer;

type TypeArtayTag is array (naturâl ¡ange<>) of unsigned(31 dounto 2)i
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This is the declaration of additional functions used in the trace cache. Function

IsBranch is for checking whether the instruction is any kind of branch instruction and

function IsDelimiterlnstr is for checking, whether the instruction is a jump, trap, or

rfe.

-- Functions fot Tracecache Model
function IsBlanch( Instruction : Typeword ) return bit;
function rsDelimiterrnstr( rnstruction I Typeword ) retuÌn bit;

These functions are here:

-- Functions for Tracecache Model
function IsBranch( Inst¡uction : Typeword ) leLurn bit is
alias Instructionopcode : TypeDlxopcode is Instluction( 31

variable Result : bit :: '0"
begin
case InstructionoPcodê is

-- branches
when copcode-beqz :> Result := r1r;
when coPcode-bnez => ResuÌt ::'1';
-- not a branch
when others => Result := t0';

end casei

downto 26 );

return Result;
end lsBranch;

function IsDelimite!Instr( InsLruction : Typei'lord ) leturn bit is
alias Instructíonopcode : TypeDlxopcode is Instruction( 31 downto 26 );
variable Result : bit := '0r;
begin
case InsLluctionoPcode is

-- lunps
when coPcode-j => R€sutt := r1';
when coPcode-il :> Result l= '1';
when copcode-jal' :> Result ::'1';
when copcode-jalr => Result ::'1';
-- trâP
when copcode-traP:> Result ¡= r1r'
-- rfe
when coPcode-rfe => Result::'1';
-- other instructions
when othels :> Result ::'0';

end case;

return Result;
end IsDeliniterlnstr;

8.3 Environment.vhd

This file has been modified to increase the memory capacity from l6Kbyte to

32Kbyteto run Permute and DCT. Therefore, these two lines are changed'

constant cMemorysize : Positive t= 32'168;

constaot cHighAddress-unsigned : unsigned := X"0000-7FFF";

originally, the constant cMemorySize \ryas 16384 (l6Kbyte) and

cHighAddress 
-unsígned 

was X"0000 3FFF"'
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Appendix C

Excerpts from log files of DCT

8L

Line Comp-Miss Conf-Miss TC-Wríte TC-O Write TC-Size TC-Hit FTag-Hit Cont-Hit

Èc a:

2

tc 8:

2

1-2 19599

22667

4456

3704

1335

134

18134

1314

4543

4545

13591

2't 69
22 I

t6L

Line Conp-Miss Conf-Miss TC-Write TC-O-Writê Tc-s i ze TC-Hit FTag-Hit Cont-Hit

Èc ¿:

2

Èo 8:

2

62'1L

0

L20 113

0

4 !642

0

519 L723

0
9861

32L

Line Conp-Miss Conf-Miss Tc-t{rlte TC-o f'Irite TC-Size TC-Hit FTag-Hit Cont-Hit

Èo ¡l:

2

tc 8i

5 831 64

0

1978 575

0

14 03

r236 00

64L

Line Conp-Miss Conf-Miss TC-Wlite TC-O Write TC-Size Tc-Hlt FTag-Hit cont-Hit

tc ¡l!

2 519

0

41 1342 't 61

tc 8!

L029

64

89

0 0



Runtime Startup Code and Perl Script Listines

Appendix I)
Runtime Startup Code and Perl Script Listings

Runtime Startup Code (crt0.o)

- text
.proc _ma1n
, qlobal _main

maln i
jr r31
noP

. endproc _mãin

.proc start

.globâl start
start:
; Starting point for simulations: Ioads 129 with nensize and cal1s naín with
; argc and argv

thi 129, ( ( (mensize-B) >>16) eoxffff)
addui t29,r29, ( (nemsize-B) eoxffff)
addit2g 

' 
E29, ll-76

add 11, r0, r0
thi r1, ( (argc>>16) &0xffff)
ãddui r1, 11, (argc&oxffff)
lw Ê2, (tL)
sw lt29l ttz
add 11, r0, r0
thi
addui
lw
sw
add
rhí
addui
1w
sw
jàl
nop
addi
j ar
nop

. endproc start
, data
.aIign 2
.globaÌ ârgc
a19c:
.word 0
.global argv
argv:
.word 0

.global _environ
envaron:

.word 0

$[ :1;

r1, ( (argv>>16) &oxffff)
11, r1, (argv&oxffff)
12, ltTl
4 lr29) , 12
r1, r0 / r0
11, ( (_envaron>>16) eoxffff
11, 11, (_environeoxf f f f )

12, ltl)
B lr29) , 12
maÌn

Perl Scrip t (fìlter.pl)

* ! /usr/1ocat/bin/perl
eval 'exec /usr/local/bin/perl -S 90 çf1+"çG"l'

if $running_under_some_shell ;- * this emulates # ! processing on NIH machines
* (remove *l Ìine above if indigestible)

eval,S,.S1.'S2;'white SARGVtOI =- /"1[À-za-z 0-9]+=)(.*)/ e& shift; *'
* Process ânY Eoo=bar switches

t29, r29 
' #16

exi t

# set array base to 1

# set output field separator
* set output recold seParator

åregnâp = O;
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Iine: while (<>) {

chop; # strip record
@Ftd - sptlt(' ', $ ,

separator

if ($FIdtll eq rnovi2fPr) {

pri-nt ";;; " 9- ;
õparlist = split-l', ', $Fldt2l ' 

99991 t #should strip ; first
$regmap{SParlist [1] ] = 9Parrist[2] ;
next;

Ì
it lçer¿rrl =- /nurt/ I I $Frdtll -' /dív/ I I $Fldt1l =- /murtu'/ I I

$FIdtll =- /dív/) I
Print ";;i " 9- ,
õParlist = spliLJ',', gEldt2l | 9999); #shourd strip ; first

çoperation = çFIdt1l,
$oprndl = 9ParIist[1];
goprnaZ = 'ft . substr($legmap{$Parlist[2])' 2t 9999991i
$oprnd: = 'f' . substr($¡egmap{çParIist[3]l | 2, 999999) ì
next;

)
if (9FIdt1l eq 'movfp2i') {

print ";;; " $_ ;
õpartist = split(',', $FIdt2l ' 9999)t #should strip ; first

if (SParlistt2l ne $oprndl) I *zlz
print 'Translation sequence error at line' ' S';
Iaat line;

ì
elsê {

print "\trr . "noP";
print "\t" "nop";
print "\t" . $opèration 'f' substr(çParlist [1], 2'

999999) ',' . $op¡nd2. ',' Soprnd3 "\t; Patched fron"

)

next;
Ì
print $_;
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